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We investigate modifications of the discrete-time lattice action, for a quantum mechanical particle in
one spatial dimension, that vanish in the naïve continuum limit but which, nevertheless, induce non-
trivial effects due to quantum fluctuations. These effects are seen to modify the geometry of the paths
contributing to the path-integral describing the time evolution of the particle, which we investigate
through numerical simulations. In particular, we demonstrate the existence of a modified lattice action
resulting in paths with any fractal dimension, d f , between one and two. We argue that d f = 2 is a
critical value, and we exhibit a type of lattice modification where the fluctuations in the position of the
particle becomes independent of the time step, in which case the paths are interpreted as superdiffusive
Lévy flights. We also consider the jaggedness of the paths, and show that this gives an independent
classification of lattice theories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The path-integral representation of the amplitude 〈x′, t′|x, t〉 for
a quantum mechanical particle of mass m moving in a local po-
tential V (x) is usually written as a limit of a multi-dimensional
integral [1]:

Z ≡ 〈
x′, t′|x, t

〉 = lim
N→∞N

∫
dx1 . . . dxN−1 e−S N , (1)

where we have changed to imaginary time (t → −it) and set h̄ = 1.
Here N = (m/2πa)N/2 and SN is the discrete-time action which
should approach the classical continuum action S as the lattice
constant a ≡ (t f − ti)/N goes to zero, i.e.,

lim
N→∞ SN = S =

t f∫
ti

dt

[
1

2
ẋ2 + V (x)

]
. (2)

We have chosen units such that the mass m of the particle is one.
The particular choice

SN ≡
N−1∑
k=0

Sk =
N−1∑
k=0

a

[
1

2

(
�xk

a

)2

+ V (xk)

]
, (3)

* Corresponding author.
E-mail addresses: arne.grimsmo@ntnu.no (A.L. Grimsmo), klauder@phys.ufl.edu

(J.R. Klauder), bo-sture.skagerstam@ntnu.no (B.-S.K. Skagerstam).

where �xk ≡ xk+1 − xk , with a time-step dt → �t ≡ a, is referred
to as the naïve discretization of the classical action S , and has, for
example, been used in modeling time as a discrete and dynamical
variable [2]. The choice of Eq. (3) is, however, by no means unique
and the ambiguity of the discretization has been investigated pre-
viously by, e.g., Klauder et al. in Ref. [3]. As an interesting example,
it has also been shown that adding terms proportional to a�x2n

k , as
a → 0 (n = 1,2, . . .), to each term Sk in the sum in Eq. (3) permits
a radical speedup of the convergence in Monte Carlo simulations
[5]. Classically, one expects �xk/a → ẋ to be well-defined as a → 0
and thus Sk =O(a), and, as was noted in Ref. [5], one would have
a�x2n

k → a2n+1 ẋ2n = O(a2n+1), which clearly vanish in the a → 0
limit. We will refer to these considerations as the “naïve contin-
uum limit” in the following.

As was pointed out in Ref. [3], and in a related framework in
Ref. [4], the argumentation above is, however, not true for quan-
tum mechanical paths, as one expects �xk =O(

√
a ) in accordance

with the Itô calculus for a Wiener process, and thus the action
then contains terms Sk of order one. Modifications as those con-
sidered in Ref. [5] still vanish, but only as fast as O(an+1). This
implies no difficulty for the numerical speedup procedure, but in
general, it is clear that one must take care when modifying the
action in the presence of quantum fluctuations.

We now wish to expand on the work from Ref. [3] and pro-
ceed to study precisely those modifications to the discrete action
that vanish in the naïve limit, but might induce non-trivial ef-
fects when quantum fluctuations are taken into account. We will
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show that not only can non-vanishing local potentials be induced
by such alterations, as was shown in Ref. [3], but the situation is
further complicated in that the size of quantum fluctuations can
be changed under the modified lattice theory, such that no naïve
assumptions on the continuum limit can be made. This can be
seen to manifest itself in the geometrical properties of the paths
contributing to the path-integral, and as we will see shortly, can
generate both sub- and super-diffusive behaviour.

2. Geometry of path-integral trajectories

We now quickly review two useful measures that will be used
to quantify the geometry of relevant paths in the path-integral. The
geometry of path-integral trajectories has been investigated pre-
viously, in particular by Kröger et al. in Ref. [6], where a fractal
dimension was defined and found both analytically and numer-
ically for local and velocity-dependent potentials. More recently
a complementary property termed “jaggedness” was identified by
Bogojevic et al. in Ref. [7]. Both of these measures signify the rel-
evance of different paths as to what degree they contribute to the
total path-integral.

To define the fractal dimension, d f , for path-integral trajecto-
ries, we recall that the fractal dimension for a classical path can
be defined in the following way: We first define a length of the
path, L(ε), as obtained with some fundamental resolution ε . This
can, for example, be done by making use of a minimal covering
of the path with “balls” of diameter ε such that L(ε) = N(ε) × ε ,
where N(ε) is the number of balls. A fractal dimension can then
be defined as the unique number d f such that L(ε) ∼ ε1−d f as
ε → 0 [12]. For path-integral trajectories, a total length can be
defined as 〈L〉 = 〈∑k |�xk|〉, and the role of ε will be played by
the expected absolute change in position, 〈|�xk|〉, over one small
time step �t � a. Here 〈·〉 denotes the quantum-mechanical av-
erage using the probability distribution obtained from Eq. (1). For
a typical value, |�x|, of 〈|�xk|〉, say |�x| � (�t)1/γ , we then have
that 〈L〉 � N|�x| � T |�x|1−γ since N � T /�t , with T = t f − ti . We
then conclude that d f = γ . The fractal dimension can therefore be
obtained through a scaling with the number of lattice sites N , as
N → ∞, with T = N�t � Na held fixed, i.e.,

〈L〉 ∼ N1−1/d f , (4)

for sufficiently large N . This is also the definition made use of in
Ref. [6], and is a measure of how the increments 〈|�xk|〉 scale with
the time step �t � a. In the spirit of anomalous-diffusion consid-
erations (see e.g. Ref. [13]), we will refer to those paths with a
fractal dimension d f < 2, as defined above, as sub-diffusive, re-
flecting that they spread in space at a slower than normal rate.
Similarly those paths with d f > 2 are referred to as super-diffusive,
which then corresponds to Lévy flights (see e.g. Ref. [14]).

A remark on the physical interpretation of d f is in order before
we proceed. The length 〈L〉 defined above is not necessarily an
experimentally observable length. It gives us, however, an insight
into the nature of how the geometry of those paths with a non-
zero measure change under modification of the lattice action. The
definition of a fractal dimension for the physical path of a quan-
tum mechanical particle must necessarily involve considerations of
a measuring apparatus, as was done by Abbott and Wise [8]. Inclu-
sion of quantum measurements in a path-integral framework has
been discussed in the literature (see e.g. Ref. [9]), but will not be
considered in this work.

It is well known that the paths contributing to the path-
integral, Eq. (1), are continuous but non-differentiable. Indeed, us-
ing a partial integration, Feynman and Hibbs [1] showed that for
any observable F the identity

〈
δF

δxk

〉
=

〈
F

δS

δxk

〉
(5)

holds. In the case F = xk this leads to

〈
�x2

k

〉 = O(a), (6)

for the lattice action Eq. (3) and for sufficiently small a, and where
we from now on assume that expressions like 〈xk dV (xk)/dxk〉 are
finite. Hence, we expect 〈|�xk|〉 ∝ 1/

√
N and 〈L〉 ∝ √

N corre-
sponding to a fractal dimension of d f = 2, which has been con-
firmed numerically in Ref. [6].

The second measure we will use to describe the relevant paths
in the path-integral, is the “jaggedness”, J , defined in Ref. [7],
which counts the number of maxima and minima of a given path:

J = 1

N − 1

N−2∑
k=0

1

2

[
1 − 〈

sgn(�xk�xk+1)
〉]
, (7)

with J ∈ [0,1]. It is a measure of the correlation between �xk
and �xk+1 with J = 1/2 +O(a) for completely uncorrelated incre-
ments. We therefore expect the jaggedness to be invariant under
modifications only altering nearest neighbor interactions on the
lattice. Below we will consider the average value of J for sub- and
super-diffusive paths.

3. Sub-diffusive paths

Sub-diffusive paths, as defined here, were discovered to be the
contributing paths in the presence of a velocity dependent poten-
tial, V 0|v|α , in Ref. [6]. We will here consider a similar modifica-
tion, that in fact vanish in the naïve continuum limit, yet changes
the geometry of the paths when quantum fluctuations are taken
into account:

Sk → Sk + gaξ

∣∣∣∣�xk

a

∣∣∣∣
α

, (8)

where g is a coupling constant, ξ � 1 and α � 0. The last term
is identical to the modification considered in Ref. [6] for ξ = 1,
but naïvely vanishes for any ξ > 1. Due to quantum fluctuations,
however, Eq. (6) must be replaced by

1

a

〈
�x2

k

〉 + gαaξ−α
〈|�xk|α

〉 = O(1), (9)

showing that for α > 2ξ the last term dominates, and we expect
〈|�xk|〉 ∝ a(α−ξ)/α , corresponding to a fractal dimension of d f =
α/(α − ξ). For α � 2ξ we still have d f = 2 showing that 2ξ is
a critical point for the fractal dimension as a function of α. For
ξ = 1 this reproduces the results from [6]. In Fig. 1 we show how
the length 〈L〉 scales with the number of lattice sites N for various
α and ξ = 2. The results are produced numerically by standard
Monte Carlo methods [6,10,11]. From this scaling one can find the
fractal dimension according to Eq. (4). In Fig. 2 we have extracted
the fractal dimension as a function of α numerically for ξ = 1, 2
and 3. We see that the numerical results fit well to the expected
values of d f = 2 for α � 2ξ and d f = α/(α − ξ) for α > 2ξ , shown
as solid lines in the figure.

4. Super-diffusive paths

Consider now modifications of the form

Sk → f (Sk), (10)

for some analytical function, f (x), with the constraint f (x) = x as
x → 0, in order to reproduce the classical limit. This constitutes
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Fig. 1. Scaling of the average length 〈L〉 as a function of lattice sites, N , for the lattice
action given in Eq. (8), with ξ = 2 and various α. log(〈L〉) was fitted to β log(N) +
b. The values for α are 3, 4, 5 and 6, starting from the top line and descending.
Statistical error bars are not visible in the figure.

Fig. 2. The fractal dimension, d f , as a function of α, for ξ = 1, 2 and 3, for the action
defined in Eq. (8). The dots are numerical results, and the solid lines represent the
expected theoretical values according to d f = α/(α − ξ), with ξ = 3 (the top line),
ξ = 2 (the middle curve), and ξ = 1 (the lowest curve).

a large class of local modifications—i.e., only influencing nearest-
neighbor couplings on the lattice—that have the same naïve a → 0
limit.

We will also assume, if required, that there exists some large
distance infrared cutoff so that the integral

ψ(xk+1) = N

∫
dxk e− f (Sk)ψ(xk), (11)

exists, describing the evolution of the wave-function ψ(x) over a
small time step, a, under the modified lattice action. For reasons
of simplicity, we assume the infrared regularization ψ(xk) = 0 for
|xi+k − xk| � L, for some sufficiently large L.

Through a straightforward renormalization procedure (see Ap-
pendix A) we are able to write down an effective action that is
equivalent to the modification, Eq. (10), in the continuum limit.
Remarkably, the so obtained effective action can formally be writ-
ten in the naïve form of Eq. (3), i.e.

SN → Seff
N = a

N−1∑
k=0

[
1

2s[ f ]
(

�xk

a

)2

+ g[ f ]V (xk)

]
, (12)

where

s[ f ] =
∫
Ω

dy y2 exp(− f ( y2

2 ))∫
Ω

dy exp(− f ( y2

2 ))
, (13)

and

g[ f ] =
∫
Ω

dy f ′( y2

2 )exp(− f ( y2

2 ))∫
Ω

dy exp(− f ( y2

2 ))
. (14)

Here the integrals run over the domain Ω , given by −L/
√

a < y <

L/
√

a. Hence the integrals become independent of the infrared cut-
off, L, in the a → 0 limit. As discussed in Appendix A, this can be
interpreted as a renormalization of the particle’s mass and poten-
tial, and will in general be finite or infinite in the limit a → 0,
depending on the form of f . With the modification of Eq. (10),
Eq. (6) must, however, be replaced by
〈
f ′(Sk)�x2

k

〉 = O(a), (15)

potentially changing how 〈|�xk|〉 scales with a and thus the fractal
dimension d f as defined above. Similarly, for the equivalent effec-
tive counterpart of Eq. (12), we see that the scaling can be written
〈
�x2

k

〉 = s[ f ]a, (16)

and therefore all modifications to the short-time scaling are con-
tained in the functional s[ f ]. For a function f (x) that is bounded,
however, s[ f ] diverges like L2/a as a goes to zero, and there-
fore 〈�x2

k 〉 � L2 in terms of the infrared cutoff L. In this case we
therefore expect that the particle can make arbitrarily large jumps,
independent of a. This behavior can be interpreted, at least for-
mally, as an infinite fractal dimension for the particle’s path since
〈�x2

k 〉 � a2/d f , and is typical for any such f . Such paths are anal-
ogous to Poisson paths, such as appear in Ref. [15], which involve
paths with continuous segments joined by jumps whose magni-
tude is drawn from a well defined distribution at time intervals,
again, with a suitable distribution.

We illustrate these features in terms of the following family of
lattice modifications, defined through Eq. (10),

f ≡ fγ (x) =
{

(1 + x)γ γ > 0

−(1 + x)γ γ < 0.
(17)

Here fγ (x) � 1 + γ x as x → 0 (the scaling factor γ and constant
term is irrelevant for our discussion). As γ approaches zero from
above, s[ fγ ] becomes larger, and is infinite in the limit γ → 0.
Since s[ fγ ] implies a rescaling of a, as can be seen in Eq. (16),
the exceedingly large values of s[ fγ ] for small γ means we need a
correspondingly large number of lattice sites to approach the con-
tinuum limit. In any case, as long as s[ fγ ] implies a finite rescaling,
we expect the fractal dimension to be invariant. For γ < 0, how-
ever, the integral s[ fγ ] does not exist as a approaches zero.

In Fig. 3 we show example paths for a free particle, V (x) = 0,
and four different γ , generated by standard Monte Carlo methods.
The paths exhibit larger jumps for smaller γ . For γ = −1 the path
has a radically different geometry. In Fig. 4 the length 〈L〉 is plotted
for varying number of lattice sites, N , for the same values of γ . The
scaling 〈L〉 ∝ Nβ was found to be β = 0.499 ± 0.001, β = 0.495 ±
0.001, β = 0.495 ± 0.004 and β = 0.997 ± 0.003 for the respective
cases γ = 2, γ = 1, γ = 0.5 and γ = −1 (the errors are mean
square errors from the linear regression). The corresponding fractal
dimensions, as defined in Eq. (4), are consistent with d f = 2 for
the γ > 0 cases and d f = ∞ for γ = −1.

The behavior for negative γ is in fact typical for any modifi-
cation of the form Eq. (10) with a bounded f (x), and f (x) = x
as x → 0. In Fig. 4 we also include results for the modifications
f (x) = tanh(x) and f (x) = sin(x). The scaling was found to be
β = 1.006 ± 0.011 and β = 0.982 ± 0.007 respectively, correspond-
ing to an infinite fractal dimension in both cases.

In Fig. 5 we show how β scales with γ for the modifications
in Eq. (17). As γ becomes small and positive, there are numerical
difficulties due to the necessity of a large number of lattice sites.
We here show results for positive γ no smaller than γ = 0.3. The
results are consistent with β = 1 and d f = ∞ for γ < 0 and β =
0.5, and d f = 2 for γ > 0, and points towards critical behaviour at
γ = 0, in the limit N → ∞.
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Fig. 3. Example paths for the lattice modification defined through Eq. (17), for differ-
ent γ , showing the various behaviour. Top left is for γ = 2.0, top right for γ = 1.0,
bottom left for γ = 0.5 and bottom right for γ = −1, using dimensionless units.

Fig. 4. Scaling of the average length 〈L〉 as a function of lattice sites N . log(〈L〉) was
fitted to β log(N) + b. The γ = −1 and “tanh” action coincide at the top line, the
second line is for the “sin” action, the third for γ = 0.5, the forth for γ = 1.0 and
the fifth for γ = 2.0.

We have also calculated the jaggedness for sub- and super-
diffusive actions. In the sub-diffusive case, i.e. actions of the form
given in Eq. (8), we find results consistent with J = 1/2 as ex-
pected, since there are no correlations between increments �xk

and �xk+1 introduced through the modification. This highlights
the fact that a classification in terms of jaggedness is independent
of a classification in terms of fractal dimension, as was stressed
in Ref. [7]. Indeed, even when the paths have a fractal dimension
close to one, they are not at all smooth and still fall in to the same
jaggedness class, with J = 1/2.

For the super-diffusive case there is, however, a subtlety in-
volved in that the particle will always be subject to the infrared
boundary effects. In practice, for a finite number of Monte Carlo
samples stored on a computer, the particle’s position is always
confined to some interval for all times, say −L/2 < xk < L/2. If
the probability density for the particle’s position at time tk � ka,
p(xk) = |ψ(xk)|2, becomes independent of the position at prior

Fig. 5. β = (d f − 1)/d f as a function of γ for the modification Eq. (17). For negative
γ , β = 1.0 corresponds to d f = ∞, and for positive γ , β = 0.5 to d f = 2.

Fig. 6. Typical distributions for the jaggedness with N = 512 and a = 1/N . The left-
most Gaussian is centered at 0.5 with width 0.022, and well approximates the case
of the naïve action Eq. (3), and the action given in Eq. (8) with ξ = 1 and α = 10,
for which the numerical results represented as dots are nearly indistinguishable.
The middle Gaussian is centered at 0.625, and the coinciding dots are numerical re-
sults for the action given through Eq. (17), with γ = −1 and the particle’s position
restrained to a box of width one. The rightmost Gaussian is centered at 0.667, and
the dots are numerical results for a uniform distribution of the particles position at
each time step.

times, such as is the case for the super-diffusive paths considered
here, the conditional probability ppeak(xk) for a “peak” at xk , where
a “peak” is defined as a point xk such that �xk−1 and �xk have
opposite signs, is just

ppeak(xk) ≡ P
(
(xk−1 < xk and xk+1 < xk)

or (xk−1 > xk and xk+1 > xk)
)
, (18)

that is,

ppeak(xk) = P (xk−1 < xk)P (xk+1 < xk)

+ P (xk−1 > xk)P (xk+1 > xk). (19)

Consider now, as an example, the case of a uniform distribution
on the interval, i.e. p(xk) = 1/L for −L/2 < xk < L/2, and zero oth-
erwise. One easily finds that ppeak(xk) = (1/2 + xk/L)2 + (1/2 −
xk/L)2. One might think that for large L the probability for a peak
should be close to 1/2, but since there is no restriction on the par-
ticle’s position, it can be close to the boundary for any L. The ex-
pected number of peaks then becomes

∫ L/2
−L/2 ppeak(xk)p(xk)dxk =

2/3 � 0.667, which is, of course, precisely the jaggedness. For
super-diffusive actions we find, in numerical simulations, that the
jaggedness takes values in between the value for the naïve action
and the value for a uniform distribution as just discussed. In Fig. 6
we show some typical example distributions p( J ) of the jagged-
ness. We compare the sub-diffusive case with the usual naïve ac-
tion, and find that the distributions are nearly indistinguishable
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and very well approximated by a Gaussian centered at 0.5. We
also show a distribution for a super-diffusive action, and for a uni-
form distribution of the particle’s position at each time step, for
comparison.

5. Conclusions

To conclude, we have shown that lattice actions, that approach
the classical action in the naïve continuum limit, can display highly
anomalous behaviour when quantum fluctuations are taken into
account. Not only can non-vanishing local potentials be induced
by such lattice modifications, as was shown by Klauder et al. in
Ref. [3], but non-local effects can appear in that the geometry of
the paths is changed. We have demonstrated modified lattice the-
ories where the paths in the path-integral, with measure greater
than zero, exhibit both sub-diffusive and super-diffusive behaviour.
We find it noticeable that under certain assumptions, a large class
of modified actions can, through a renormalization procedure, al-
ways be written formally on the naïve discretized form. Alternative
views on the notion of fractal dimensions in quantum physics has
been discussed in the literature as in, e.g., Ref. [16] which, however,
is closely related to the notion of fractional derivatives [13] and
therefore different from the local deformations of the lattice ac-
tions as consider in the present Letter. Finally, we remark, as was
argued already in Ref. [3], that the lattice corrections considered
in the present Letter do not effect the physics of the continuum
limit in the field-theoretical case, at least not for asymptotically
free gauge field theories.
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Appendix A. Renormalizations induced by modified lattice
actions

For the convenience of the readers we give a derivation of
the Schrödinger equation for the modified mechanics defined in
Eq. (10). Consider the evolution of the wave function over a small
time step a:

ψk+1(xk+1) = N

L+xk+1∫
−L+xk+1

dxk exp
(− f (Sk+1,k)

)
ψk(xk), (A.1)

where N is a normalization constant and we have restricted the
particles movement to the interval −L < xi+1 −xi < L to ensure the
integral always is finite. Introducing the variables x and y through
x = xk+1 and xk = x + √

ay, and by Taylor expanding a sufficiently
smooth potential V (xk), f (xk) and ψk(xk), dropping terms of order
O (a2), we obtain

ψk+1(x)

= N
√

a

∫
Ω

dy exp

{
− f

(
y2

2

)}
ψk(x)

+ 1

2
N

√
aa

∫
Ω

dy y2 exp

{
− f

(
y2

2

)}
ψ ′′

k (x)

− N
√

aaV (x)

∫
Ω

dy f ′
(

y2

2

)
exp

{
− f

(
y2

2

)}
ψk(x), (A.2)

with a domain of integration Ω as given by −L/
√

a < y < L/
√

a.
We now choose the normalization constant such that

N
√

a

∫
Ω

dy exp

{
− f

(
y2

2

)}
= 1. (A.3)

Then

ψk+1(x) = ψk(x) + a

2
s[ f ]ψ ′′

k (x) − aV (x)g[ f ]ψk(x), (A.4)

where s[ f ] and g[ f ] are given in Eqs. (13) and (14). We now ob-
tain the following imaginary-time Schrödinger equation

lim
a→0

ψk+1(x) − ψk(x)

a
= ∂ψ(x, t)

∂t

= 1

2
s[ f ]ψ ′′(x, t) − g[ f ]V (x)ψ(x, t), (A.5)

i.e.,

∂ψ(x, t)

∂t
= s[ f ]

2
ψ ′′(x, t) − g[ f ]V (x)ψ(x, t). (A.6)

Introducing a mass m and h̄ again, we see that s[ f ] and g[ f ] con-
stitutes a renormalization of the mass and potential respectively.
One can also use this wave equation to show that the imaginary-
time commutation relation [x, p] = h̄ still holds in the discretized
theory when we use mR ẋ for the momentum and the bare mass
m has been replaced by the renormalized mass mR = m/s[ f ] (see
Sections 7–5 in Ref. [1]). Since h̄ is unrenormalized we can make
use of units such that h̄ = 1.
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