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Abstract: Photonic crystal fibers (PCFs) have attracted significant attention during 
the last years and much research has been devoted to develop fiber designs for 
various applications, hereunder tunable fiber devices. Recently, thermally and 
electrically tunable PCF devices based on liquid crystals (LCs) have been 
demonstrated. However, optical tuning of the LC PCF has until now not been 
demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 
532nm laser to modulate the spectral position of the bandgaps in a photonic crystal 
fiber infiltrated with a dye-doped nematic liquid crystal. We demonstrate a 
modulation frequency of 2kHz for a moderate pump power of 2-3mW and describe 
two pump pulse regimes in which there is an order of magnitude difference between 
the decay times. 

©2004 Optical Society of America 
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1. Introduction 

Photonic crystal fibers (PCFs) have attracted significant attention during the last years and 
much research has been devoted to develop fiber designs for various applications, hereunder 
tunable fiber devices. This type of device was first demonstrated by Eggleton et al. [1], where 
a high-index liquid plug was dynamically positioned in a tapered ‘grapefruit’ fiber, thereby 
creating a fiber device with tunable transmission properties. Later, Bise et al. [2] demonstrated 
a tunable photonic bandgap fiber, where the air holes of a solid-core PCF were filled with a 
high-index oil. Recently, thermally tunable fiber devices based on Liquid Crystals (LCs) were 
presented [3], and tunable and switchable bandgaps were demonstrated. Recently, electrical 
control was achieved using external applied electric fields to reorient the LC [4,5]. In [4], the 
cladding holes of a solid core PCF were infiltrated with a LC and the LCPCF was placed 
between electrodes and the photonic bandgaps in the LC filled section could be electrically 
tuned. The reorientation of the LC by the E-field, resulted in a high anisotropy in the cross-
section of the PCF, and a Polarization Dependent Loss (PDL) was introduced when the E-
field was applied. No PDL was present when the E-field was off.  A modulation frequency of 
5Hz was demonstrated at λ=1500nm, and the rise and decay times were 5ms and 52ms, 
respectively. In [5], the core and cladding holes of an aircore photonic bandgap fiber were 
filled with a LC, which transformed the PBG guiding fiber into a TIR guiding fiber. The 
transmission of a 633nm HeNe laser could be switched by applying a voltage across the fiber 
and the rise and decay times were here 10ms and 200ms, respectively.  

However, optical control of PCF properties has until now not been demonstrated. In this 
paper, we present an all-optical tunable Liquid Crystal Photonic BandGap (LCPBG) fiber 
device, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps 
in a PCF infiltrated with a dye-doped nematic liquid crystal. This device utilizes local heating 
of the LC to shift the spectral position of the bandgaps and introduces, in principle, no PDL. A 
modulation frequency of 2kHz is demonstrated for a pump power of 2-3mW.  
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2. The LCPBG fiber device 

In this experiment we used a so-called ‘Large-Mode Area’ PCF, an all-silica PCF, which has a 
silica core surrounded by 7 periods of air holes arranged in a triangular lattice. The hole 
diameter, inter-hole distance and core size are 3µm, 7µm and 10µm, respectively. The fiber is 
endlessly single mode and guides light by the principle of modified Total-Internal-Reflection 
(mTIR). An optical micrograph of the end facet of the PCF is shown in Fig. 1(a). The fiber 
was infiltrated for 10mm of its length with a nematic Liquid Crystal (LC, Merck, E7) using 
capillary forces. Depending on the mesophase as well as the surface boundary conditions, the 
LC mesogens will align in a specific orientational configuration, which minimizes the free 
energy of the LC [6].  Using polarized microscopy on a 5µm fused silica capillary tube, we 
found that E7 was aligned in a planar alignment, i.e., with the director of the LC pointing 
mainly along the fiber over the entire cross-section of the capillary. It is, therefore, reasonable 
to assume that this alignment is also present in the 3µm tubes, which constitute the PCF. 
Figure 1(b) shows polarized micrographs of the 5µm silica tube infiltrated with the LC in its 
nematic phase. The top picture is when the angle between the capillary axis and the crossed 
polarizers is 0/90 degrees and the bottom picture is when the angle is 45 degrees between the 
capillary and the polarizers. In addition, polarized microscopy investigations on another 
nematic liquid crystal, 5CB (one of the components of E7; see Fig. 2, top left), in fused silica 
tubes of 6µm and 2µm diameter, respectively, gave the same result concerning the alignment 
of the liquid crystal. In this study, the direction of the optic axis (the director) was further 
validated by observing the change of birefringence colors when inserting an additional λ/4-
wave plate into the polarizing microscope after the capillary tube specimen, but before the 
crossed analyzer, and oriented at 0/90 degrees with respect to the axis of the capillary. In this 
way, it was possible to determine explicitly that the director was indeed parallel to the 
capillary tube axis, and not perpendicular to it. In addition, the uniformity of the alignment 
was greater in the 2µm capillary tube than in the 6µm capillary tube. 
 

Fig. 1. (a) Optical micrograph of the end facet of the PCF used in the experiment. (b) Polarized 
micrographs of a silica capillary (inner diameter= 5µm) infiltrated with the nematic LC E7.  
Capillary is angled at 0 degrees (top right) and at 45 degrees (bottom right) relative to the axis 
of the polarizer. 

 
In order to stabilize the alignment of the LC, the PCF was infiltrated with the LC in the 

isotropic phase (70°C). After the infiltration, the LCPCF was heated to 70°C again and slowly 
cooled down to room temperature. This process is necessary to achieve a good uniform 
alignment of the LC, and, thereby, reduce the insertion loss of the device. 

(b) (a) 
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3. Thermal and spectral properties 

The device presented in this article is based on the nematic liquid crystal E7 from Merck, 
which is a mixture of the four organic compounds [7] shown in Fig. 2. The optical properties 
of the LCPBG fiber are determined by the alignment and the wavelength dependent refractive 
indices of the LC and the thermal tuning sensitivity is dependent on the temperature gradient 
of the refractive indices.  

Fig. 2.  Molecular structure of the compounds used in nematic LC E7. 
  
The refractive indices as function of wavelength of an anisotropic material can be 

estimated using the extended Cauchy equations [8]:  
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Where ne,o is the extraordinary and ordinary refractive index of the LC, λ is the wavelength 
and A’e,o, B’e,o and C’e,o are the modified Cauchy coefficients, which can be determined by 
polynomial fitting to experimental data points. The temperature dependence of the refractive 
indices can be estimated using a four-parameter model [9]: 
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Here Tc=58°C and is the clearing temperature of the LC, A and B are fitting parameters and 
can be calculated from the temperature dependence of the average refractive index: 

    BTATn −=)(                                               (4) 

 
where <n(T)> is the average refractive index. (∆n)o is the birefringence in the crystalline state 
and the exponent β is a material constant. These parameters can be calculated from the 
temperature dependence of the birefringence: 
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Using these equations and experimental data points measured, with a “Multi-wavelength 
Abbe Refractometer”, Atago model DR-M4, from 15°C to 55°C in steps of 5° and at 
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wavelengths 450nm, 486nm, 546nm, 589nm, 633nm and 656nm, it is possible to calculate the 
refractive indices at any optical wavelength and temperature. Figure 3 shows the wavelength 
dependent refractive indices for T=15°C and T=55°C, where the experimental data points 
have been used to determine the Cauchy coefficients, which are used to calculate the 
refractive indices in the near-infrared region. Figure 4 shows the temperature dependent 
refractive indices measured at λ=450nm and λ=656nm.  
 

 

 

 

 

 

 

 

Fig. 3. Ordinary and extra-ordinary refractive indices as function of wavelength of nematic LC 
E7.  The experimental points have been measured using a “Multi-wavelength Abbe 
refractometer” (Atago model DR-M4) and the theoretical curves have been calculated using the 
extended Cauchy equations for anisotropic materials. 

 

 

Fig. 4. Ordinary and extraordinary refractive indices as function of temperature of nematic LC 
E7.  The experimental points have been measured using a “Multi-wavelength Abbe 
refractometer” (Atago model DR-M4) and the theoretical curves have been calculated using the 
four parameter model. 
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The infiltration of the air holes with the LC changes the waveguiding properties of the 
infiltrated section, since the fiber now has a low–index core surrounded by high-index 
anisotropic rods. The infiltrated section cannot guide by mTIR, but can support a number of 
guided wavelength bands due to anti-resonant reflection from the LC-filled holes. If the 
refractive indices of the LC are considerably higher than that of silica, the LC infiltrated holes 
can be approximated as being isolated waveguides and the spectral position of the bandgaps 
becomes insensitive to the inter hole distance. In this case, the spectral features of the fiber 
can be estimated using a simple cut-off approach, where minima in the transmission spectrum 
occur at cut-off wavelengths of the optical modes supported by one LC filled hole [10,11,12]. 
In the isotropic case, this is fairly simple, and the transmission minima are approximately 
given by the simple analytical expression [11]: 
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Here λm is the wavelength of transmission minima, d is the diameter of the hole, m is an 
integer, n2 is the refractive index of the isotropic liquid filling the hole/core and n1 is the 
refractive index of the cladding material, which in this case is silica with n1 ≈ 1.45. This 
approach is valid when the individual LC filled holes can be approximated as isolated 
waveguides. This condition can be written as [11]: 
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The wavelengths given by Eq. (6) are the cut-off wavelengths of the individual LC rods 
and should coincide with the long-wavelength bandgap edges of the transmission spectrum. 
Figure 5 shows the calculated average refractive index of E7 at 67°C (isotropic phase). The 
wavelength dependent refractive indices at this temperature have been calculated using the 
Cauchy equations and the four-parameter model. Figure 6 shows the experimentally measured 
transmission spectrum of the LCPBG fiber at T= 67°C and the vertical lines mark the long-
wavelength side of the bandgaps according to Eq. (6), where the wavelength dependent 
refractive index of both E7 and silica has been used. As seen, there is good correspondence 
between the experimental spectrum and theoretical predictions. 

Further, in the isolated waveguide regime, the spectral features of the transmission 
spectrum are predominantly determined by the features of the first inner rings of LC filled 
holes surrounding the core, but better transmission is achieved when increasing the number of 
rings [10]. This simple approach gives reasonably good and intuitive results for the isotropic 
case, but for the anisotropic case it becomes more complicated due to anisotropic splitting of 
the bands and coupling between the LC waveguides. In the nematic phase, which is an 
anisotropic phase, n2 of eq. (7) becomes smaller due to the planar alignment of the LC. This 
means that the isolated waveguide regime is still valid in the visible region of the spectrum, 
but the LC waveguides approaches a coupled waveguide regime in the near infrared region, 
due to a further reduced index contrast in this region. Further, since the LC waveguides are 
now anisotropic, the optical modes that were coinciding in the isotropic phase start to split-up 
since the different classes of optical modes (TE, TM, HE, EH) have different z-components of 
the E-field. This makes the band diagram somewhat more complicated, but a reasonably good 
agreement between calculated cut-off wavelengths of an anisotropic cylindrical waveguide 
and experimental data can still be obtained, if we ignore cut-off wavelengths that are closely 
spaced, since no bandgap guidance is supported when the band separation is narrow. The cut-
off wavelengths have been determined by analytically solving Maxwells equations for a 
anisotropic cylindrical waveguide. Figure 7 shows the transmission spectrum of the LCPBG 
fiber, when the LC is in the nematic phase at 40 °C. The dotted red lines indicate the cut-off 
wavelengths of a single LC infiltrated hole with planar aligned LC and, therefore, an 
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anisotropic rod.  The numerically calculated cut-off wavelengths are in agreement with 
experiments at short wavelengths but as the wavelength is increased, the cut-off wavelengths 
start to deviate slightly. This is probably because the index contrast of the LC waveguide is 
decreased and the modes becomes less confined and, therefore, starts to be coupled, and the 
isolated waveguide approximation can no longer be used. 
 

 

Fig. 5. Calculated average refractive index at 67°C (isotropic phase) of nematic LC E7.  The 
refractive index has been calculated from the experimental data in the nematic phase using both 
the extended Cauchy equations and the four-parameter model.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Transmission spectrum of the LCPBG fiber measured at 67°C (solid black line), which 
is the isotropic phase of the LC. The PCF was infiltrated for 10mm of the length with the 
nematic LC E7. The spectral position of the long-wavelength side of the bandgap edges was 
calculated using a simple analytical expression for the cut-off wavelengths. These are marked 
with the vertical red dotted lines. 
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Fig. 7. Transmission spectrum of the LCPBG fiber measured at 40°C (solid black line), which 
is in the nematic phase of the LC. The PCF was infiltrated for 10mm of the length with E7. The 
spectral position of the long-wavelength side of the bandgap edges was calculated numerically 
using a simple cut-off approach for an anisotropic cylindrical waveguide. These are marked as 
the vertical red dotted lines. 

 

Since the spectral positions of the bandgaps are dominated by the ordinary refractive 
index, the tuning sensitivity is, therefore, mainly linked to the temperature gradient of no.  
The cross-over temperature of E7, i.e., the temperature at which the temperature gradient of no 
is zero, is approximately 21°C, and from Fig. 4 it can be observed that the temperature 
gradient of no becomes positive, when the temperature is increased to above the cross-over 
temperature.  

Figures 8 and 9 show the temperature dependence of the bandgaps centered at around 
545nm and 1400nm of Fig. 7, respectively. The spectra were measured using an unpolarized 
halogen-tungsten whitelight source and the temperature was controlled using a Linkam MC60 
hotplate. The figures clearly illustrate that the tuning sensitivity is increased when the 
temperature approaches the clearing temperature of the LC (58°C), due to an increasing 
temperature gradient of no. 
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Fig. 8. Thermal tuning of a bandgap located around 545nm. The spectral position of the 
bandgap is tuned by varying the temperature from 44°C to 56°C, which is just below the 
clearing point of the LC (58°C). The tuning sensitivity is mainly linked to the refractive index 
gradient of the ordinary refractive index no. Around room temperature, this gradient is close to 
zero and only a small tuning sensitivity is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Thermal tuning of a bandgap located around 1400nm. The spectral position of the 
bandgap is tuned by varying the temperature from 44°C to 56°C, which is just below the 
clearing point of the LC (58°C). The tuning sensitivity is mainly linked to the refractive index 
gradient of the ordinary refractive index no. Around room temperature, this gradient is close to 
zero and only a small tuning sensitivity is observed. 

4. Loss mechanisms 

The mechanisms contributing to the transmission losses in the PBG guided modes can be 
divided into absorption and scattering losses, leakage loss, and mode mismatch and reflection 
losses. The absorption and scattering losses of nematic LC are generally much larger than that 
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of silica, and the material loss of silica can, therefore, be ignored.  In general, the dominating 
loss mechanism in bulk nematic LC is scattering losses of around 15-40dB/cm [13], and 
absorption losses at visible and near-infrared wavelengths are usually very small compared to 
the scattering loss. Further, it has been shown, that the scattering loss of nematic LCs can be 
decreased substantially by confining the LC in small capillaries with inner diameters of 2-
8µm, and losses of 1-3dB/cm have been reported [14].  Further, the scattering loss of LC 
capillaries is influenced by the filling technique. For example a higher loss is observed when 
the capillary is filled using high-pressure than when filling using capillary forces [14]. 
Leakage loss arises since the cladding structure is finite and the guided mode may penetrate 
the microstructured cladding and leak into the outer cladding region. The leakage loss is 
strongly dependent on the number of rings surrounding the core [15]. Losses originating from 
mode mismatch and reflection losses are minimal in fibers with structural parameters 
considerably larger than the wavelength. The effective area of the index-guiding section and 
the PBG guiding section of the fiber are in both cases slightly larger than Λ2 (Λ=inter hole 
distance) [12, 16], but a small coupling-loss can still be observed because the mode-profiles 
are not completely identical. Further, reflection losses due to mismatch of the effective index 
of the index-guiding and PBG guiding mode are also minimal, since the effective indices in 
both cases are just below the index of silica [17]. This means, that these devices can be 
inserted into an existing telecom transmission link without any significant degradation, since 
the mode field diameter can easily be matched to that of a SMF28 and additional reflection 
losses from the infiltrated section are also avoided since the effective mode index of the 
infiltrated and non-infiltrated PCF are almost equal.  The minimum insertion loss of the 
nematic LCPBG fibre used in this paper can be determined from Figs. 8 and 9, which shows 
an insertion loss of 0.5dB and 1.6dB at 540nm and 1400nm, respectively. 

5. Optical tuning of the LCPBG fiber 

It is evident from Figs. 8 and 9 that the transmission properties of the LCPBG fiber can be 
easily tuned by varying the temperature of the infiltrated section of the fiber, but this is 
inherently a rather slow process.  Therefore, in order to decrease the thermal response time, 
compared to heating/cooling the entire fiber, a 532nm pulsed laser is used to locally heat the 
LC positioned in the inner rings of holes surrounding the core. The transfer of energy from the 
pump to the LC is achieved by doping the LC with an azobenzene dye called Disperse Red 1 
(0.4wt%). The dye DR1 has an absorption peak around 502nm and the molecular structure of 
DR1 is shown on Fig. 10.  
 

 
 
 
 
 

Fig. 10. Molecular structure of Disperse Red 1. 
 

The dye doping does not affect the alignment of the LC, and Fig. 11 shows the bandgaps 
of the LCPBG fiber before and after dye doping. The figure clearly shows that the presence of 
the dye, decreases the transmission in the bandgaps located around the dye absorption peak, 
but does not alter the position or the transmission level of the remaining bandgaps. 

The 532nm laser source is coupled into the core of the PCF, such that there is an 
evanescent field overlapping with the dye-doped LC in the cladding, when the LCPBG fiber 
supports a guided mode at this wavelength, i.e., a bandgap is present at 532nm. The energy 
transfer efficiency is increased substantially when there is a high overlap between the core 
mode and the inner rings of cladding holes. This is achieved by heating the entire fiber using a 
hotplate, such that the 532nm source is positioned on the edge or just outside a bandgap. On 
the bandgap edges, the effective area of the core mode increases substantially [17], thereby 
leading to a higher overlap between the core mode and the LC in the inner rings of holes. As 
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seen from Fig. 8, the 532nm laser will be positioned on the bandgap edge or outside a 
bandgap when the LC temperature is between 44°C and 56°C.  

In order to investigate the dynamics of the LCPBG fiber device, a low-power CW probe 
laser was coupled into the fiber together with the pulsed pump laser. Both the polarization of 
the pump and the probe could be individually adjusted using the setup shown on Fig. 12. The 
probe laser was chosen to be located on the long-wavelength side of the bandgap centered at 
around 1400nm, i.e., at 1620nm due to the availability of a laser source in this range.  
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Doping the LC with the dye Disperse Red 1 (DR1), enhances the absorption around 
500nm, but does not alter the alignment and the transmission above the absorption  
wavelengths of the dye. Transmission spectra with an un-doped LC (top), and a doped LC 
(bottom). 

 
The temperature of the LCPBG fiber was raised to 45°C and the probe laser was 

monitored using a PIN photo detector and a storage oscilloscope. The pulsed pump laser 
(square-wave modulated, 50% duty cycle) was turned on and the polarization of both the 
pump and probe laser was adjusted until a modulation of the probe laser was observed on the 
oscilloscope. Figure 13 shows the observed waveforms of the 1620nm probe laser when the 
532nm pump laser was modulated with 100Hz, 1kHz and 2kHz square wave signal. During 
the pump pulse, the LC is heated and the ordinary refractive index of the LC increases, which 
causes the bandgaps to shift toward longer wavelengths. This modulates the power of the 
probe laser, which is located on the edge of the bandgap. An explanation for the modulation 
ripples on Fig. 13(a) was not found. The pump power was monitored and we estimate that the 
power of the pump coupled into the LCPBG device, at the junction of the butt-coupling 
indicated in Fig. 12, was around 2-3mW. Increasing the input power did not yield any 
improvement, which is attributed to a too large increase in temperature, whereby a bandgap 
shift up in wavelength and assist in confining the 532nm pump to the core region, and thereby 
decreasing the effective area of the core mode and, thereby, also decreasing the overlap with 
the LC. 
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Fig. 12. Experimental setup for measuring the dynamics of the dye-doped LCPBG fiber. The 
same setup is used for measuring the polarization sensitivity of the bandgaps. 

Fig. 13.  Oscilloscope traces of the time-domain response of the 1620nm CW polarized laser 
source, which is coupled into the dye-doped LCPBG fiber. The traces shows the response of 
the 1620nm CW source when the pump laser is square-wave modulated with f=100Hz (a), 
f=1kHz (b) and f=2kHz (c). The estimated pump power was 2-3mW. 

(a) (b) 

(c) 
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6. Polarization properties 

Toward the center of the bandgap, no polarization sensitivity of the transmission level was 
observed, while this was not the case on the edge of the bandgap. Using a polarized tunable 
laser, we measured the polarization sensitivity of the bandgap edge from 1520-1620nm and 
observed a small shift (approx. 10-15nm) of the bandgap edge depending on the polarization 
of the laser. This shift is attributed to very small variations (few tens of nanometers) in the 
hole diameter and shape of the inner ring of holes, thereby leading to a small birefringence.  

Figure 14 shows the transmission spectrum of the LCPBG fiber device measured at 40°C 
with a polarized laser source. The polarization sensitive bandgap shift was measured using 
two polarizations, Polarization 1 and Polarization 2. These polarizations were identified by 
maximizing and minimizing the power at 1620nm, respectively. It should be expected that this 
polarization sensitivity should cause birefringence near the bandgap edges, since the two 
polarization modes have different effective mode indices.  Also, it would be interesting to 
know if this resulted in any noteworthy birefringence toward the center of the bandgap. 

The Differential Group Delay (DGD), which is the time delay between the two Principal 
States of Polarization  (PSP), of the LCPBG fiber was, therefore, measured using the 
HP/Agilent 8509 Polarization Analyzer and the HP 8168C tunable laser source. Figure 15 
shows the DGD measured from 1520-1600nm at different temperatures. The DGD is around 
0ps toward the center of the bandgap, but increases slightly toward the bandgap edge. A 
temperature sensitivity of the DGD is observed, which is caused by the temperature sensitivity 
of the spectral location of the bandgap. Further, it should be mentioned the DGD is very low 
but the corresponding birefringence ∆n=DGD*c/L=0.07e-12*3e8/10e-3= 2e-3 is rather high 
and comparable to birefringence in polarization maintaining PCFs [18,19]. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Polarization sensitivity of the transmission at the edge of the bandgap centered around 
1400nm in Fig. 7.  Maximizing and minimizing the transmission at 1620nm identified 
polarization 1 and Polarization 2, respectively. 
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Fig. 15. Differential Group Delay (DGD) measured on the LCPBG fiber with the polarization 
sensitive bandgap edges shown on Fig. 14. The DGD was measured using the HP/Agilent 8509 
Polarization analyzer and the HP 8168C tunable laser. A relatively small temperature sensitive 
DGD is measured on the edge of the bandgap, but due to the short length of the LCPBG fiber, 
this translates into a rather high birefringence on the order of 10-3. 

 

 7. Dynamics 

The rise time of the 1620nm modulated signal, measured from 10% to 90% amplitude 
modulation, was estimated to be 190µs, 250µs and 400µs, for pulse durations of 250µs, 500µs 
and 5ms, respectively. The optical response to the different modulation frequencies was not 
measured on the same sample, which means that small variations in hole size and shape along 
the fiber can cause the slope of the bandgap edge to vary between the samples. Therefore, 
exact comparison of rise and decay times at different frequencies should not be made. The rise 
time is linked to the thermalization time, i.e. the timescale on which the absorbed optical 
energy is transferred from the dye to the LC. The thermalization time is around 1-10ns, but 
the response time is further limited to 100-200ns by the viscous forces, since the thermo-optic 
effect is directly linked to the temperature dependence of the order parameter [20], i.e., the 
directional order of the LC.  Further, a slowing down behavior of the order parameter is 
observed near the nematic to isotropic phase transition temperature, which further reduces the 
response time [20]. The dynamics of the decay time can be divided into two regimes in which 
different decay times can be observed: a long-pulse regime and a short-pulse regime, which 
relates the duration of the pulse to the thermal diffusion time, τTD, of the LC rods. The decay 
time, also measured from 90% to 10% modulation, was estimated to be 175µs, 120µs and 
3.2ms, for pulse durations of 250µs, 500µs and 5ms, respectively. Again an exact comparison 
between the decay times should not be made, but it is evident that for a pulse duration of 5ms, 
the decay time is an order of magnitude longer than for the short pulses. This is due to a 
change in the characteristic length scale in the thermal diffusion process. The thermal 
diffusion time, τTD, can be written as [21]: 

 

2L
C

T

p
TD λ

ρ
τ =                                                         (8) 
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Where Cp is the heat capacity, ρ is the material density, λT is the heat conductivity and L is the 
characteristic diffusion length scale. For a LC rod with 3µm diameter, Cp=2J/gK, ρ=1g/cm3 
and λT = 16*10-4 J/cmsK [22], the thermal diffusion time is τTD, LC ≈ 100µs.  For comparison, 
the silica area between three LC rods has τTD, SiO2 ≈ 20µs (Cp=0.7J/gK, ρ=2.2g/cm3, L=4µm 
and λT = 14*10-3 J/cmsK).  Therefore, when the LC rods are heated with a pulse, which has a 
time duration considerably longer than τTD, LC, the LC will heat up, thereafter, the thermal 
energy in the LC will be transferred to the silica, which also heats up. At the end of the pulse, 
the pump pulse has heated both the LC and the silica. Therefore, in order to link the decay 
time to τTD, LC, it is necessary to increase the characteristic diffusion length in Eq. (8), since the 
heated volume is much larger in this regime. Assuming that the first three rings of LC rods are 
heated by the pump pulse i.e. L ≈40µm and assuming that the effective values of Cp, ρ and λT, 
are the values of silica and the LC weighted with the LC filling fraction of the PCF structure 
(fLC=18%), the thermal diffusion time of the mixed material structure τTD, SiO2+LC = 2.5ms, 
which is close to the observed decay time of 3.2ms. In the short pulse regime, τTD, LC ≈ 100µs, 
which is in good agreement with the decay times of 175µs and 120µs measured at pulse 
durations of 250µs and 500µs, respectively. 

From the 100Hz modulation trace in Fig. 13(a), a 3.5mV modulation amplitude was 
obtained. Taking into account both the slope of the bandgap edge at Polarization2 and the 
linear response of the photodetector, we estimate that the spectral shift was approximately 3-
4nm.  

 8. Conclusion 

In this paper we have, to our knowledge, presented the first optically tunable PBG fiber 
device. We have demonstrated how a 532nm pulsed laser can modulate a 1620nm CW laser 
by locally modifying the optical properties of LC inclusions in a LC infiltrated PCF. This is 
achieved using a low pump power of only 2-3mW, and we have demonstrated a modulation 
frequency of up to 2kHz. We have analyzed the thermal and spectral characteristics of the 
device, and we have measured an insertion loss of 0.5dB at 540nm and 1.6dB at 1400nm.  
We have demonstrated that there is a short- and long-pulse regime in which the decay times 
vary by an order of magnitude. The rise time was of the same order of magnitude in these two 
regimes. We believe that these optically tuned LCPBG fiber devices can find use as 
distributed devices i.e. with signal processing elements, such as tunable Bragg gratings, 
distributed in a transmission fiber and with the data signal (the probe) and the control signal 
(the pump) carried in the same fiber.  
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