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ABSTRACT

In today’s world, supply chains are facing market dynamics dominated by strong global
competition, high labor costs, shorter product life cycles, and environmental regulations. Supply
chains have evolved to keep pace with the rapid growth in these business dynamics, becoming
longer and more complex. As a result, supply chains are systems with a great number of network
connections among their multiple components. The interactions of the network components with
respect to each other and the environment cause these systems to behave in a highly nonlinear
dynamic manner.

Ripple effects that have a huge, negative impact on the behavior of the supply chain (SC)
are called instabilities. They can produce oscillations in demand forecasts, inventory levels, and
employment rates and, cause unpredictability in revenues and profits. Instabilities amplify risk,
raise the cost of capital, and lower profits. To reduce these negative impacts, modern enterprise
managers must be able to change policies and plans quickly when those consequences can be
detrimental.

This research proposes the development of a methodology that, based on the concepts of
asymptotic stability and accumulated deviations from equilibrium (ADE) convergence, can be
used to stabilize a great variety of supply chains at the aggregate levels of decision making that
correspond to strategic and tactical decision levels. The general applicability and simplicity of
this method make it an effective tool for practitioners specializing in the stability analysis of
systems with complex dynamics, especially those with oscillatory behavior.

This methodology captures the dynamics of the supply chain by using system dynamics
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(SD) modeling. SD was the chosen technique because it can capture the complex relationships,
feedback processes, and multiple time delays that are typical of systems in which oscillations are
present. If the behavior of the supply chain shows instability patterns, such as ripple effects, the
methodology solves an optimization problem to find a stabilization policy to remove instability
or minimize its impact. The policy optimization problem relies upon a theorem which states that
ADE convergence of a particular state variable of the system, such as inventory, implies
asymptotic stability for that variable. The stabilization based on the ADE requires neither
linearization of the system nor direct knowledge of the internal structure of the model. Moreover,
the ADE concept can be incorporated easily in any SD modeling language.

The optimization algorithm combines the advantage of particle swarm optimization
(PSO) to determine good regions of the search space with the advantage of local optimization to
quickly find the optimal point within those regions. The local search uses a Powell hill-climbing
(PHC) algorithm as an improved procedure to the solution obtained from the PSO algorithm,
which assures a fast convergence of the ADE. The experiments showed that solutions generated
by this hybrid optimization algorithm were robust.

A framework built on the premises of this methodology can contribute to the analysis of
planning strategies to design robust supply chains. These improved supply chains can then
effectively cope with significant changes and disturbances, providing companies with the

corresponding cost savings.
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CHAPTER ONE: INTRODUCTION

During the last decade, manufacturing enterprises have been under pressure to compete in
a market that is rapidly changing due to global competition, shorter product life cycles, dynamic
changes of demand patterns and product varieties and environmental standards. In these global
markets, competition is ever increasing and companies are widely adopting customer-focused
strategies in integrated-system approaches. In addition, push manufacturing concepts are being
replaced by pull concepts and notions of quality systems are getting more and more significant.

Globalization of products and services and the rapid changes in technology have also
resulted in fast-growing dynamic markets and greater uncertainty in customer demand. The
process of managing and controlling the supply chain has become increasingly complex due to
the geographic extension of the global operations between facilities. Moreover, competition has
evolved from one company against other companies to one supply chain against other supply
chains.

Supply chain management (SCM) is seen as a mechanism that will allow companies to
respond to these environmental changes and has become one of the top priorities on the strategic
agenda of industrial and service businesses. The objective of SCM activities is to provide right
quality of the right product at the right time. The attempt is to improve responsiveness,
understand customer demand, control production or service processes, and align together the
objectives of all partners in the supply chain. To achieve this goal, companies need the ability to
provide improved management policies in order to react quickly to unexpected events taking

place in the supply chain, eliminate the most undesirable effects if possible, and, minimize the



impact of those that can not be eliminated.

In order to make investigations and to support decision-making about the impact of
supply chain dynamics, system dynamics simulation models are suitable tools. “System
dynamics is an approach for the modeling and simulation of nonlinear dynamic systems that
aims at the understanding of a system’s structure and the deduction of the behavior from it. This
focus on understanding is a great advantage of the system dynamics methodology as it is a
requirement for the development of policies that lead to the improvement of the system’s
performance. One important advantage of system dynamics is the possibility to deduce the
occurrence of a specific behavior mode because the structure that leads to systems’ behavior is
made transparent” (Schieritz and GroBler 2003).

Policy analysis' as a method to generate stabilization policies in SCM can be addressed
by getting a better understanding of the model structure that determines the SC behavior. The
main idea behind this structural investigation is that the behavior of a SC model is obtained by
adding elementary behavior modes. For linear models the eigenvalues” represent these different
behavior modes the superposition of which gives rise to the observed behavior of the system. For
nonlinear systems the model has to be linearized at any point in time. Finding the connection
between structure and behavior provides a way to discover pieces of the model where to apply
policies to eliminate instabilities. However, other techniques are required to determine the best

values of the parameters related to the stabilization policy.

"In policy analysis, decisions are represented by a set of parameters, referred to as “policy parameters” (Grossmann
2002).



SD models coupled with policy optimization techniques have proven to be a very
powerful means for improving the behavior of dynamic systems. These methods are based on the
optimization of a certain objective function to find the parameter values of the improved policy
(Mohapatra and Sharma 1985). Choosing the objective function appropriately is critical for the
effective change of the system behavior (Chen and Jeng 2004).

The objective of this research is to develop a methodology that models and manages
supply chains as dynamic systems® and uses a policy optimization approach to modify the

behavior of entire supply chains in order to achieve stability.

1.1. Statement of the Problem

As the world changes, supply chains have evolved to keep pace with the changing
business dynamics, becoming longer and more complex. Today, supply chains are networks with
an overwhelming number of interactions and interdependencies among different entities,
processes and resources. These interactions of the system components with respect to each other
and the environment create a highly nonlinear dynamic system.

The classical way of managing a supply chain was to observe and analyze sales, demand,
and inventory levels at the end of a certain pre-defined time and fill the required gap in it. That
was based on the assumption that the supply and demand would remain linear, or at least stable,

with no drastic fluctuations. This assumption was valid in a market dominated by the supplier’s

? Eigenvalues (1) are special set of scalars (real or complex numbers) associated with a linear system X = JX . They
are the roots of the characteristic equation Jr = Ar , where J=0x; / Ox j is a square matrix known as the Jacobian

matrix, and r#0 is called the eigenvector (AbdelGawad et al. 2005).



perspective, not the consumer’s (Rabelo ef al. 2004). However, due to the complexity of the
current supply chains, for example, small fluctuations in customer demand can lead to
instabilities that quickly ripple through the entire supply chain. These ripple effects can cause
excessive inventory buildup, poor customer service, unnecessary capital investment, and
dangerously low profits (Sterman 2006).

This research recognizes the difficulties and challenges for developing a methodology
that will be based on a general concept that can be used to stabilize a great variety of supply
chains, with emphasis on the ones with complex dynamic behaviors arising from nonlinearities

and complicated interdependencies.

1.2. Motivation of this Research

This research is motivated by the large negative impacts of supply chain instabilities.
Those impacts occur because instabilities can cause (1) oscillations in demand forecasts,
inventory levels, and employment rates and (2) unpredictability in revenues and profits. These
impacts amplify risk, raise the cost of capital, and lower profits. Modern enterprise managers can
minimize these negative impacts by having the ability to determine alternative policies and plans
quickly.

This work proposes a methodology to reduce or eliminate undesirable behaviors by

generating stabilization policies that focus on the aggregate levels of decision making that

3 A dynamic system is a model that captures the relevant changes among variables and parameters over time. For
example, a simple pendulum is a system that actually evolves over time and can be modeled as a dynamic system.



correspond to the strategic and tactical levels® of the SC. These policies will be obtained by
redefining the relevant parameters of the SC at these levels. The proposed approach first uses SD
to capture current dynamics. Then, a parameter optimization problem will produce policies that
will remain stable for small variations” in the system, providing the managers with an instrument
to generate robust policies that eliminate instabilities in the SC.

A supply chain model can be described by its structure and its parameters. Traditional
approaches that relate model structure and behavior have relied upon sensitivity analysis and
linearized models when exploring possible changes in complex systems. Although it is possible
from the structure of the system to identify relevant parameters responsible for generating
specific behaviors, it is hard to determine how much these parameters have to change
simultaneously in order to obtain a desired overall behavior. While these methods can be used to
obtain stable policies of the SC, the complexity of the associated mathematics makes them
difficult to use for managers and practitioners.

On the other hand, policy optimization methods have been used to optimally modify the
parameters of dynamic systems to achieve certain objectives. However, these objectives are
defined to meet particular characteristics of the system, implying that different systems require
different objectives and settings.

For the reasons presented above, there is a necessity for a methodology that, based on
stability conditions obtained from the structure of a generic SC model, can produce robust

policies to eliminate or reduce the impact of instabilities. It is the hope of the author of this

* The different decision levels of the supply chain are explained in chapter two.
> Small variations represent a region close to the equilibrium state



research that this methodology will be able to provide a powerful and simple tool that can be

used by practitioners and academics.

1.3. Research Question

Due to the non-existence and the need for a general methodology that can assist in the
stabilization capabilities for supply chains, it is the primary focus of this research to answer the
following question:

Can a methodology be developed that extends the current research findings in the
engineering field to form the components of a framework that allows to eliminate or minimize

the impact of supply chain instabilities?

1.4. Research Objectives

The objectives of this research include the following:

1) Proposition of generic stability conditions, based on the accumulated deviations from
equilibrium®, to produce robust policies that can be applied to a great variety of supply
chain models.

2) Formulation of an optimization problem, based on the conditions proposed in objective 1,
to eliminate or minimize instability of the SC.

3) Use of a simulation optimization method that combines SD with a hybrid search engine

based on PSO and PHC algorithms, to model and solve the optimization problem stated

® For a state variable of a SC model, the deviations from equilibrium at time “t” represent the absolute value of the
difference between its value at time “t” and its value in the equilibrium state. The ADE are the summation of these



in objective 2. The efficiency of this hybrid method relies on the advantage of the PSO
algorithm to provide a global view of the search space and the ability of the PHC to find
the local optimum with high accuracy.

4) Development and demonstration of the benefits of a computerized framework for
modifying the behavior of SC models in order to achieve stability. The framework will

use the conditions and methods presented in objectives 1 through 3.

1.5. Research Contribution

Companies are discovering that effective SCM is having a tremendous impact to increase
profit and market share. On the contrary, inefficient SCM can cause numerous problems, such as
ineffective production and transportation schedules, poor customer service and excessive
inventory investment. These problems can cost companies millions of dollars. Here are some
facts that show the magnitude of the costs:

0 The Wall Street Journal published an article (Chozick 2007) that explains that due to a
delay in making deliveries of a piston ring costing $1.50 from a mayor supplier, nearly

70% of Japan's auto production was temporarily paralyzed. For instance, Toyota stopped

production in its Japanese plants for at least one day and a half, causing a loss of output

of at least 25,000 vehicles.
O Instability around the world has cost U.S companies more than $300 billion in SC

disruptions, according to a recent study by Aon Trade Credit (Karrenbauer 2006).

deviations for the time horizon considered in the SC model. The mathematical equation for the ADE is introduced in
chapter 3.



0 A fire in 2000 at a chip plant of the Dutch electronics giant, Phillips N.V., caused the
shortage of millions of chips needed for the cell phone manufacturer Ericsson. It took a
$2.34 billion loss in its mobile phone division (Bartholomew 2006).

0 According to the State of Logistics Report (Delaney and Wilson 2000), in 2000, the US
companies spent $1 trillion (10% of GNP) on supply-related activities (movement,
storage, and control of products across supply chains).

0 Compaq Computer estimated that it lost $500 million to $1 billion in sales in 1994
because its laptops and desktops were not available when and where customers were
ready to buy them (Henkoff 1994).

0 One study suggested that inefficiencies within a supply chain increase costs by as much
as 25% (Kurt Salmon Associates 1993).

0 It is estimated that the grocery industry could save $30 billion per year (10% of operating
cost) by using effective logistics strategies (Kurt Salmon Associates 1993).

0 Carlsson and Fullér (1999) claimed that demand variability along the SC would cost $17-
34 million euros per year to the forest products industry.

Due to the dynamic changes in the business environment, managers today rely on
decision technology’ more than ever to make decisions. In the area of supply chain, the top
projected activities where decision technology applications have great potential of development
are planning, forecasting, and scheduling (Poirier and Quinn 2006).

This research work is proposing a methodology that from now on will be called

stabilization based on the accumulated deviations from equilibrium (SADE). A framework built



on the base of this methodology will allow the analysis of planning strategies to design robust
supply chains that can effectively cope with significant changes and disturbances, with the

corresponding cost savings to the companies.

1.6. Thesis Outline

The remainder of this thesis is organized as follows. Chapter Two discusses the literature
review of SD modeling in SCM, model structural analysis (MSA), policy optimization, stability
analysis of the supply chain, PSO and PHC algorithms. Chapter Three presents the steps of the
research methodology which considers the logic and the validation of the SADE methodology
and its integration into a framework. Chapter Four provides the definitions and theorems that
support the theoretical concepts of the stabilization methodology. Chapter Five discusses the
application of the framework to several case studies and presents the results of the experimental
analysis for the SADE methodology. Finally, Chapter Six presents the conclusions and

contributions of this work and suggests directions for further research.

" Decision technology adds value to network infrastructure and applications by making them smarter.



CHAPTER TWO: LITERATURE REVIEW

This chapter discusses the definitions and technical aspects that are necessary for a
conceptualization of a methodology of general applicability for stabilizing supply chains. Much
of the literature that can be related to SCM control systems presents techniques for separated
analysis of the SC related to specific problems, but does not discuss wider conceptual
methodologies for stability analysis.

This literature review focuses on presenting the scope and approaches behind the
concepts of stability, system dynamics, eigenvalue analysis and optimization, as a facilitator to
link some of these concepts to one another. Applications of these concepts in the area of supply
chain are provided when found in the literature; otherwise similar lines of development in
engineering and business fields are presented. This chapter covers the following topics:

1. System dynamics modeling in supply chain management. This topic presents the
different decision levels of the supply chain and explains the use of SD modeling at
the top level of the management hierarchy.

2. Model structural analysis. This topic shows the use of the model structural analysis
for identifying the connection between behavior and structure of dynamic systems.

3. Policy optimization. This topic illustrates the use of optimization methods to find
policies that modify the system behavior and when combined with simulation
optimization represents the most general mean for achieving stability.

4. Stability analysis of the supply chain. This topic shows how the stability of supply

chains can be analyzed using different approaches such as control theory methods,
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MSA and policy optimization.

5. Particle swarm optimization. This topic presents the advantages of using a global
search algorithm based on PSO to find optimal policies that can stabilize linear and
nonlinear SD models.

6. Powell hill-climbing algorithm. This topic shows how the benefits of hill-climbing
algorithms can help to improve the searching capabilities of global search methods.

As the final result of this review, the research gaps that justify the development of the

proposed methodology are identified.

2.1. System Dynamics Modeling in Supply Chain Management

This topic is divided in two parts. The first introduces the definition of SCM and the
decision levels involved in the SC. The second presents the SD methodology and its applications

in supply chain management.

2.1.1. Supply Chain Management and Decision Levels
In today’s business environment, companies can not expect to build a successful product,
process, or service advantage if their strategies are not integrated with those of the supply chain
systems in which they are interconnected (Ross 2003). Therefore, supply chain management is a
mayor component of competitive strategy to enhance organizational productivity and
profitability (Gunasekaran et al. 2004).
In order to understand the concept of supply chain management, firstly, it is necessary to

define what a supply chain is. Several authors have proposed the following definitions for SC
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and SCM:
Handfield and Nichols (1999) define supply chain as encompassing:
“all activities with the flow and transformation of goods from the raw materials
stage (extraction), through to the end user, as well as the associated information
flows. Material and information flow both up and down the supply chain”.
After that, supply chain management is defined as:
“the integration of these activities through improved supply chain relationships to
achieve a sustainable competitive advantage”.
According to Ayers (2001), the supply chain is “more than the physical move of goods”.
It is also information, money movement, and the creation and deployment of intellectual capital.
He defines the supply chain as:
“life cycle processes comprising physical, information, financial, and knowledge
flows for moving products and services from suppliers to end users”.
Ayers then defines supply chain management as the:
“design, maintenance and operation of supply chain processes for satisfaction of
end user needs”.
Simchi-Levi et al. (2002) propose the idea of supply chain network in their definition of
SCM. They state that “supply chain management is a discipline that focuses on the integration of
suppliers, factories, warehouses, distribution centers, and retail outlets so that the items are
produced and distributed to the right customers, at the right time, at the right place, and at the
right price. It is important to do this in a way that minimizes costs while satisfying a certain level

of service”.
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Having defined the concept of SCM, it is necessary to categorize the decisions associated
with the planning and control activities of the supply chain.

Anthony (1965) proposes a category where the decision process can be partitioned, to
select adequate models and techniques to deal with the individual decisions at different
hierarchical levels. He classifies decisions in three categories: strategic planning, tactical
planning, and operations control. This hierarchical classification recognizes the distinct level of
aggregation of the required information, and the time frame in which the decision is to be made.
This classification has been incorporated into the SCM to support integrated decision making
(Chang and Harris 2001; Surana et al. 2005; Huang et al. 2003; Beamon and Chen 2001;
Gunasekaran et al. 2004).

Strategic planning is concerned mainly with establishing managerial policies and with
developing the necessary resources the enterprise needs to satisfy its external requirements in a
manner consistent with its specific goals (Hax 1974). Strategic decisions consider the long term
(time horizons up to several years in length), and the scope is corporate wide, requiring
information to be processed in a very aggregate form. At this level, the performance of the SC is
measured against corporate goals often reflecting broad based policies, financial plans, and
competitiveness. Strategic level analysis includes location and capacity of warehouses and
manufacturing plants, the flow of material through the supply network, inventory management
policies, distribution strategies, outsourcing and procurement strategies, product design, etc.
(Georgiadis et al. 2005).

Tactical planning is concerned with the effective allocation of resources to satisfy

demand and technological requirements. Tactical decisions correspond to the medium term (time
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horizons up to several months in length), and the scope is at least regional or corporate wide.
Some resources, such as the location of manufacturing facilities, are fixed. Tactical level analysis
considers demand forecast, inventory control, production/distribution coordination, material
handling and layout design.

Operational planning is concerned with the very short term decisions made from day to
day. This requires the complete disaggregation of the information generated at higher levels into
the details consistent with the managerial procedures followed in daily activities. Resources are
typically known and fixed. Analysis at this level considers routing, scheduling, workload
balancing and inventory control. Performance measures of the SC at the operational level require

accurate data and assess the results of low level managers’ decisions.

2.1.2. System Dynamics and its Application in Supply Chain Management

Jay Forrester (1958, 1961) introduced SD in the late 50s as a model and simulation
methodology for the analysis and long-term decision making of dynamic industrial management
problems. System Dynamics has its origins in control engineering and management; the
approach uses a perspective based on information feedback and delays to understand the
dynamic behavior of complex physical, biological, and social systems (Angerhofer and
Angelides 2000). The essential idea in SD is that all the objects in a system interact through
causal relationships. These relationships are represented by feedback loops, which control the
interactions between the system objects and cause the system behavior (Rabelo ez al. 2003).

According to Lane (1997), Forrester (1958) proposes a whole new way to understand and

model management problems. He summarizes that Forrester claims:
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. systems should be modeled as flow rates and accumulations linked by
information feedback loops involving delays and nonlinear relationships.
Computer simulation is then the means of inferring the time evolutionary
dynamics endogenously created by such system structures. The purpose is to learn
about their modes of behavior and to design policies which improve
performance”.

Supply chain is a dynamic process and involves the complex flow of information,
material, and funds across multiple functional areas both within and among companies (Ahn et
al. 2003). Surana et al. (2005) present some characteristics of supply chains:

0 Coexistence of competition and cooperation. The entities in a SC often have
conflicting objectives. Competition abounds in the form of sharing and contention of
resources. Global control over nodes is an exception rather than a rule; more likely is
a localized cooperation out of which a global order emerges, which is itself
unpredictable.

0 Nonlinear dynamics. Customers can initiate transactions at any time with little or not
regard for existing load. The coordination protocols in the SC attempt to arbitrate
among entities with resource conflicts, generating over- and under-corrections which
contribute to the nonlinear character of the network.

0 Quasi-equilibrium: Supply chains can experience a structural change when they are
stretched from equilibrium. At such a point, a small event can trigger a cascade of
changes that eventually can lead to system-wide reconfiguration. One of the causes of

unstable phenomena is that the information feedback in the system is slow relative to
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the rate of changes that occur in the SC.

0 Emergent behavior: From the interaction of the simple entities, the organization of the
overall SC emerges through a natural process order and spontaneity. Demand
amplification and inventory swing are two undesirable emergent phenomena that can
also arise.

SD models use a system of differential equations to capture interactions between different
subsystems and the impacts of delays in the SC. Because of the complexity of the system with
nonlinearity, many times it is not possible to solve it analytically. In such cases, continuous
simulation must be used to provide the solution. Therefore, simulation is the most versatile tool
for dealing with complex dynamic systems like the supply chain.

Since differential equations produce smooth outputs, they are not suited to the modeling
of all levels of the supply chain. The system must be considered at an aggregate level, in which
individual entities in the system (products) are not considered. Consequently, SD is not an
appropriate technique to be used in production processes in which each individual entity has an
impact on the fundamental state of the system, such as lot sizing and job sequencing problems
(Riddalls et al. 2000).

Strategic supply chain management deals with a wide spectrum of issues and includes
several types of decision-making problems that affect the long term development and operations
of a firm. The data required at this stage is more aggregate than at subsequent levels (tactical and
operational) and there are not fixed resources. Mathematical programming (optimization
techniques) and SD have been two approaches used for the analysis and study of the strategic

SCM models. However, SC optimization models may produce an optimal solution for a static
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point in time, but this solution may not prove to be robust in dynamic environments (Blackhurst
et al. 2005).

Conversely, simulation is a well suited technique for studying dynamics in supply chains
and generally proceeds based on SD models (Surana et al. 2005). Riddalls et al. (2000) conclude
that global behavior of a supply chain can only be assessed by using dynamic simulation.
Ashayeri et al. (1998) consider that SD is an adequate technique for the modeling and simulation
of strategic systems. The reason proposed is that detailed information is not required to represent
the relationships of the feedback loops used in SD models to represent the behavior of the
system. Akkermans and Bertrand (1997) affirm that SD models are commonly characterized as
especially successful in capturing strategic issues. However, this does not mean that SD models
contain no links to tactical or operational processes in the SC (Baines and Harrison 1999). To
build a SD model it is necessary to identify the main operational flows in an organization and the
main stages in these flows: the flow of customer orders, of goods or services, of employees, etc.
(Forrester 1961; Richmond 1994; Kleijnen 2005).

System dynamic models represent the frequency domain more naturally than
optimization models, providing a framework particularly suited to the study of systems in which
oscillations are a main attribute. Through these models it is possible to investigate which factors
determine how demand fluctuations may be amplified as they are passed along the supply chain
(Riddalls et al. 2000).

According to Akkermans (2005), SD is an approach that is able to model “implicit
system boundaries explicitly”. For instance, “the presence of competitors is often only noticeable

in elements like shortage costs (a customer who is not served well might go somewhere else)”.
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However, “only in SD are these competitors considered to be within the system boundary when
this is relevant for the problem at stake”. Moreover, modeling causal structures in feedback loops
helps to provide an endogenous explanation of real system behavior. For example, the customer
demand can be considered part of the SD model, something that is very rare in other quantitative
approaches. Customer demand is not exogenous but endogenous, and is determined at least in
part by the supply network (Akkermans and Dellaert 2005; Mandal and Sohal 1998).

The application of SD modeling to SCM has its roots in Industrial Dynamics (Forrester
1958, 1961). Forrester presents a three-level SC model consisting of a factory with a warehouse,
a distributor and a retailer. He suggests that the main task of managers is the understanding and
control of five types of flows that occur in industrial companies: “information, materials, money,
manpower, and capital equipment”. Forrester examines how production and distribution
procedures in a supply chain may result in an inadequate assessment of perceived demand,
creating a demand amplification effect (see Figure 2.1). This effect, also know as the bullwhip
effect, is the process by which small fluctuations in demand at the retailer end of SC are
amplified as they proceed throughout the chain, causing increased inventory, irregular capacity
utilization, and reduced service level (Chu 2003).

More examples of practical applications of SD modeling to SCM will be presented in the
following lines.

Sterman (1989) uses a SD model of the Beer Distribution Game, which is a realistic
simplification of the SC for beer manufacturer, to rigorously test the existence of the bullwhip
effect in an experimental context. He provides evidence that the bullwhip effect exists and may

be caused by chain member’s tendency to underweight inventory in the SC. Later, Sterman
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(2000) introduces a generic SD model of the stock management structure which is used to
explain the origin of oscillations in supply chains. He concludes that SC distortions can be
amplified due to the existence of hard safety stock policies. Oscillations arise from the
combination of time delays in negative feedbacks® and failure of the decision maker to take the
time delays into account. Villegas and Smith (2006) extend Sterman’s work by considering in
the analysis the trade-off between production quantity oscillations and inventory oscillations.
They show that this trade-off can be managed by a change to the planning policy to give more

relevance to the forecast rather than the safety stock policy.
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Figure 2.1. Bullwhip effect in a supply chain

Anderson Jr. et al. (2000) investigate demand amplification effects in the machine tool
industry through a SD model. The SD methodology allows them to incorporate typical features
of the capital equipment supply chains, such as feedback loops, delays and nonlinearities. Unlike

other modeling studies which only concentrate on logistical decisions, these authors also

¥ In SD theory, all dynamics arise from the interaction of just two types of feedback loops, positive (or self-
reinforcing) and negative (or self-correcting) loops. Positive feedbacks tend to reinforce or amplify whatever is
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investigate the effect of factors such as work force learning on supply chain dynamics. The study
demonstrate that: (1) the (observed and simulated) extreme amplification is primarily due to the
machine tool industry capacity in conjunction with investment accelerator effect, (2) the machine
maker’s employee productivity decreases with increasing volatility, and (3) smoothing
employment and product order policies can improve machine maker operations. They also
identify the machine tool customers’ order forecast rules as important point for reducing
volatility, which could be improved through closer collaboration between customers and
suppliers in the machine tool industry (Angerhofer and Angelides 2000).

Ashayeri et al. (1998) create a model for the distribution chain of Edisco — the European
distribution arm of the US Company Abbott Laboratories. They propose a new conceptual
framework for conducting a structured business process reengineering supported by SD
simulation. The SD model is simulated in order to find out which strategies will result in the
highest performance improvements and help a company to change toward its vision. Important
conclusions obtained from the experiments are: (1) increase of production capacity (a structural
change) does not guarantee a stable supply chain, (2) the higher the total lead-time, the bigger the
degree of instability, and (3) although sufficient production capacity does not guarantee a stable
supply chain, full scheduling of capacity is disastrous.

Joshi (2000) builds a framework for improving visibility of information in the SC by
reducing the delays in information flow. He analyzes the dynamics of a SC under different

scenarios of information visibility and forecasting decisions with the help of SD simulation.

happening in the system. On the contrary, negative feedbacks counteract and oppose change (Sterman 2000).
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The SD methodology has also been applied to the food industry supply chain. Minegishi
and Thiel (2000) develop a model to improve the understanding of the complex logistic behavior
of an integrated food industry. The model allows them to study the influence of different policies
applied to the poultry production and processing, and to show the phenomena of instabilities and
system controls in supply chains confronted with serious hazards in their customer demand.
Georgiadis et al. (2005) present a holistic model to capture the extended food supply chain at a
strategic level. They adopt the SD methodology as a modeling and analytical tool to tackle
strategic issues for food supply chains. The model is used to identify effective policies and
optimal parameters for various strategic decision making problems of single and multi-echelon
supply chains. Finally, they demonstrate the applicability of the developed methodology on a
multi-echelon network of a major Greek fast food chain.

Design and development of close-loop supply chains’ have been analyzed using SD
models. Spengler and Schréter (2003) use SD to model and evaluate different scenarios of a SC
for the recovery of spare parts in the electronics industry. The scenario analysis allowed taking
managerial decisions based on cost and production capacity. Georgiadis and Vlachos (2004)
study long-term behavior of reverse SC with product recovery under various ecological
awareness influences capacity planning policies. The behavior of the system is analyzed through
a dynamic simulation model based on the principles of the SD methodology. They examine two

main environmental issues, the green image effect on customer demand, and the effect of state

? Close-loop supply chains include the return process in addition to the conventional activities of forward supply
chains, where the customer is the end of the process. (Guide Jr. et al. 2003).

21



environmental protection policies, such as the state campaigns for proper disposal of used
products.

Higuchi and Troutt (2004) simulate the SC for the Japanese pet-toy called Tamagotchi
using SD technique. They use a multi-echelon model that considers the simultaneous influences
of several phenomena, such as the bullwhip effect, boom and bust, and multi-echelon decisions.
The model contributes to decision-making such as the levels of manufacturing capacity and
advertisement, as well as the timing to foreign market. Recommendations are derived about three
important issues in the SC: the control of diffusion speed of new products, the importance of
repeat purchasers as a buffer, and the identification of phantom demand.

From the literature presented above, it is clear that SD is a well-proven technique for the
modeling and analysis of supply chains in different industries. Because SD uses simulation to
evaluate SC strategies, it provides more flexibility to deal with nonlinear dynamic systems than
the mathematical analytical methods. However, the advantage of SD over other approaches that
study the behavior of supply chains is that it uses feedback loops to capture the complex
relationships of the system. Although SD has its origins in control engineering, it models
feedback loops differently. SD uses causal loop diagrams, which makes it easy to identify and
understand the causal-effect relationships that drive system behavior, extending the

comprehension of the system from the engineering to the management levels.

2.2. Model Structural Analysis

One of the most challenging tasks in understanding the behavior of the supply chain

model is uncovering the components (structure) responsible for generating such behavior, and to
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what extent. In SD modeling, these important components are called dominant loops. Three
analytical methods have been identified that help to find this relationship between the structure
and behavior of the SD model. They are the following: the eigenvalue elasticity analysis (EEA),
the pathway participation metric (PPM) method and the behavioral decomposition weights
(BDW) analysis.

The first method, the eigenvalue elasticity analysis, was introduced by Nathan Forrester
(1982) in the context of analyzing stabilization policies in a macro-economic model. The method
consists of linearizing the model under study at any point in time, calculating its eigenvalues and
then noting how the eigenvalues change as link gains change'® (Giineralp 2005), that is, link
elasticities''. The eigenvalues characterize different behavior modes (exponential growth,
exponential decay, expanding oscillations, sustained oscillations, dampened oscillations) the
superposition of which gives the rise to the observed behavior of the system. A large elasticity
would indicate that the link gain (structural component) is in some sense “important” on
generating the behavior mode associated with that eigenvalue. Forrester then extends this
concept considering the loops elasticies'?, which measure the overall importance of a loop to a
behavior mode. Therefore, EEA, by forming a connection between the model structure and
behavior, provides a means to figure out the dominant structure in the model. By governing these
structural components, it is possible to influence the modes of behavior that govern the model

behavior and thus manage the model (Saleh and Davidsen 2001).

' The gain of the link between two variables is defined as the partial derivative of the output variable with respect to
the input variable (Saleh 2006).

Me= (04,1 2;)/(0g, / g, ), where ¢ is the elasticity of the eigenvalue 4; with respect to the link gain g;
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In a typical EEA study, only one behavior mode is regarded as dominant at each analysis
time step. Thus, the resulting explanation on loop dominance would be based on that behavior
mode. This approach fails when there is more than a single dominant behavior mode to explain
the behavior of the selected variable. The EEA has been extended to consider several behavior
modes affecting simultaneously the decision variables. The procedure proposed by Giineralp
(2005) considers all behavior modes to the contribution of the behavior of the variable of interest
at each time step and a conglomerate measure for loop dominance is devised based on this
method.

Saleh et al. (2005) focus the eigenvalue analysis on the contribution of both eigenvalues
and eigenvectors on model behavior. They provide a computational method (implemented in
Matlab) to calculate such influence. Recently, an analytical method to incorporate eigenvectors
to the more traditional eigenvalue analysis has been proposed by Gongalves (2006). His work
identifies the significant role of the eigenvector in the short term behavior of the system, while
the behavior mode is more influenced by the eigenvalue in the long term. Eigenvalue and
eigenvector sensitivities (i.e., the partial derivatives with respect to a link gain) are incorporated
in the analysis to show how they work together to influence system behavior. A shortcoming to
the method is that solutions to the system behavior equations are required to obtain the analytical
results.

Mojtahedzadeh (1997) proposes a second method that would aid in understanding

structure behavior linkages. His method uses the so-called pathway participation metric to find

12 Similar to the link elasticity but instead of a link gain it uses a loop gain. The loop gain is given by the product of
all link gains forming the loop (Gongalves ef al. 2000).
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the structure that most influences the time path of a state variable (variable of interest). This
measure is based on the loop dominance work proposed by Richardson (1995)"%. PPM relies on
the analysis of linkages or pathways between two state variables of a model as the primary
building blocks of influential structure. Using a recursive heuristic systematic analysis, the PPM
calculations always yield a reduced structure of a key feedback loop plus one or more pathways
that contribute most to a given mode of behavior for the selected variable. PPM stands as the
only approach whose features are implemented in an experimental piece of software, Digest
(Mojtahedzadeh et al. 2004). A limitation of the current implementation of PPM is that it
identifies only the single most influential pathway for a variable. The pathway searching
algorithm does not capture the situation when more than one structure may contribute
significantly to the model behavior and may miss alternative paths that could prove to yield a
larger total value of the metric (Kampmann and Oliva 2006). Another problem about the PPM
method is its somewhat myopic approach to structure-behavior relationship. In other words, by
confining itself to a single path of dominance of the selected variable, the method could lead to
“localized” explanations of the variable’s behavior. Thus, while the method has the advantage of
being computationally simple it is not well suited for systems that oscillate, since the analysis is
local and cannot capture global modes of behavior.

The third approach, the behavioral decomposition weights analysis, is proposed by Saleh
et al. (2007). This method explores the significance that each behavior mode has on the system

state variables. This is achieved by decomposing the behavior of a variable into a sum of

" Richarson proposed that the net time derivative of a state variable with respect to the state variable itself, i.e.
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weighted reference modes observed in a linear system (represented by the eigenvalues). They
propose that focusing on the weights, rather than on the eigenvalues, is a more efficient way to
develop policy recommendations. In other words, instead of aiming to change the characteristic
of the behavior mode, the authors suggest that a more effective method to identify policies is
adjusting the significance of a particular behavior mode. In order to identify the elements of
model structure more responsible for the observed behavior, they define the elasticity of a weight
to gain'*. A routine developed in Mathematica is provided to calculate the eigenvalues and
weights. The fact that weights and eigenvalues are not independently determined is perhaps one
the shortcomings of the method.

The literature shows that MSA methods provide a powerful mechanism for identifying
the structural parts of the SD model that are responsible for certain behaviors of interest. This
can help to concentrate the focus of the analysis on specific pieces of the model, reducing the
number of parameters considered to stabilize the system. However, these approaches require the
linearization of the system and they rely on the sensitivity analysis to determine the parameter

values of the stabilization policy.

2.3. Policy Optimization

The policy optimization process uses methods based on mathematical programming and
algorithmic search to find an improved policy. Several optimization methods have been used to

obtain policies that modify system behavior. Burns and Malone (1974) express the required

0(0x/0t)/ ox = Ox/ Ox, can be an important measure of when a loop shifts dominance. The PPM approach calls
Ox / Ox the Total Pathway Participation Measure.
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policy as an open-loop solution (i.e., the solution function has not the variables from the system).
The drawback of this method is that if the system fluctuates by some little impact, the open loop
solution without information feedback can not adjust itself to the new state. Keloharju (1982)
proposed a method of iterative simulation where each iteration consists of a parameter
optimization. He suggests predefining the policy structure by allowing certain parameters of the
model to be variables and by adding new parameters. However, the policies obtained with
Keloharju’s method are not robust when subject to variations of external inputs because the
policy structure was predefined and thereafter optimized (Macedo 1989). Coyle (1985) includes
structural changes to the model, and applies the method to a production system.

Kleijnen (1995) presents a method that includes design of experiments and response
surface methodology for optimizing the parameters of a model. The approach treats SD as a
black box, creating a set of regression equations to approximate the simulation model. The
statistical design of experiments is applied to determine which parameters are significant. After
dropping the insignificant parameters, the objective function is optimized by using the Lagrange
multiplier method. The parameter values obtained through the procedure are the final solution.
Bailey et al. (2000) extend Kleijnen’s method by using response surfaces not to replace the
simulation models with analytic equations, but instead to direct attention to regions within the
design space with the most desirable performance. Their approach identifies the exploration
points surrounding the solution of Kleijnen’s method and the finds a set of real best-combination

of parameters from them (Chen and Jeng 2004).

"1t is the ratio of the fractional change in the weight to the fractional change in the gain.
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Grossmann (2002) uses genetic algorithms (GA) to find optimal policies. He
demonstrates his approach in the Information Society Integrated System Model where he
evaluates different objective functions. Another method that uses genetic algorithms to search
the solution space is the one proposed by Chen and Jeng (2004). First, they transform the SD
model into a recurrent neural network. Next, they use a genetic algorithm to generate policies by
fitting the desired system behavior to patterns established in the neural network. Chen and Jeng
claim their approach is flexible in the sense that it can find policies for a variety of behavior
patterns including stable trajectories. However, the transformation stage might become difficult
when SD models reach real-world sizes.

In the area of optimal control applied to system dynamics, Macedo (1989) introduces a
mixed approach in which optimal control and traditional optimization are sequentially applied in
the improvement of the SD model. Macedo’s approach consists principally of two models: a
reference model and a control model. The reference model is an optimization model whose main
objective is to obtain the desired trajectories of the variables of interest. The control model is an
optimal linear-quadratic control model whose fundamental goal is to reduce the difference
between the desired trajectories (obtained by solving the reference model) and the observed
trajectories (obtained by simulation of the system dynamic model).

The drawback of the methods presented above is that the objective function has to be

defined for each particular model and it is not easy to choose.

2.4. Stability Analysis of the Supply Chain

The main objective in stability analysis is to determine whether a system that is pushed
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slightly from an equilibrium state (system variables do not change over time) will return to that
state. If for small perturbations or disturbances from the equilibrium state the system always
remains within a finite region surrounding that state, then this equilibrium state is stable.
However, if a system tends to continue to move away from its original equilibrium state when
perturbed from it, the system is unstable.

Sterman (2006) states that “supply chain instability is a persistent and enduring
characteristic of market economies”. As a result, company indicators such as demand forecast,
inventory level, and employment rate show an irregular and constant fluctuation. Supply chain
instability is costly because it creates “excessive inventories, poor customer service, and
unnecessary capital investment” (Sterman 20006).

In dynamic complex systems like supply chains, a small deviation from the equilibrium
state can cause disproportionately large changes in the system behavior, such as oscillatory
behavior of increasing magnitude over time. The four main contribution factors to instability in
SC have been identified by Lee et al. (1997), which are:

0 Demand forecast updating: when companies throughout the SC do not share
information about demand, this have to be forecasted with the possible cause of
information distortion.

0 Order batching: this means a company ordering a large quantity of a product in one
week and not ordering any for many weeks, which will cause distortion on the demand
forecast of other members of the SC, because it is based on orders rather than actual
sales.

0 Shortage gaming: when a product demand exceeds supply, a manufacturer often rations
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its product to customers, which will cause that customers exaggerate their orders to
ensure that they receive enough amount of the required product.

0 Price fluctuations: when the price of a product changes significantly, customers will
purchase the product when it is cheapest, causing them to buy in bulk (order batching
problem).

The stability of supply chains models can be analyzed using the vast theory of linear and
nonlinear dynamic systems control. Disney et al. (2000) describe a procedure for optimizing the
performance of an industrially design inventory control system. They quantify five desirable
characteristics of a production distribution system by drawing in classical control techniques for
use in a modern optimization procedure based on GA. They demonstrate that their procedure can
improve the performance of a production or distribution control system by fully understanding
the trade-off between inventory levels and factory orders. Riddalls and Bennett (2002) study the
stability properties of a continuous time version of the Beer Distribution Game. They
demonstrate the importance of robust stability, i.e. stability for a range a production/distribution
delays, and how stock outs in lower echelons can create vicious circle of unstable influences in
the supply chain. Nagatani and Helbing (2004) study several production strategies to stabilize
supply chains, which is expressed by different specifications of the management function
controlling the production speed in dependence of the stock levels. They derive linear stability
conditions and carry out simulations for different control strategies. Ortega and Lin (2004) show
that control theory can be applied to the production-inventory problem to address issues such as
reduction of inventory variation, demand amplification, and ordering rules optimization.

Linearization is frequently the quickest and easiest way to determine stability of an
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equilibrium point (EP) for a nonlinear system. The linearization approach of nonlinear systems
can be used to extend the stability concepts for linear systems (eigenvalue analysis") to
equilibrium points of nonlinear systems in which deviation from linear behavior can be
presumed small. Mohapatra and Sharma (1985) apply modal control to analyze and improve a
SD model of a manufacturing company that has two departments: manufacturing and
distribution. The eigenvalues of the motion equations are used to synthesize new policy options.
The main strength of using modal control theory is that new policy structures can be generated
mathematically. Drawbacks of modal control theory include the amount of computation, and the
design of realistic policies from the synthetically generated policies.

Control theory has been combined with other approaches to determine stability
conditions. Daganzo (2004) examines the stability of decentralized, multistage supply chains
under arbitrary demand conditions. He uses numerical analysis for conservation laws to design
stable policies. His research looks for intrinsic properties of the inventory replenishment policies
that hold for all customer demand processes and for policies with desirable properties. He
discovers that a simple necessary condition for the bullwhip avoidance is identified in terms of a
policy’s gain. Gain is defined as the marginal change in average inventory induced by a policy
where there is a small but sustained change in demand rate. It is shown that all policies with
positive gain produce the bullwhip effect if they do not use future order commitments. Perea et
al. (2000) propose an approach for SCM that relies on dynamic modeling and control theory.

The approach is based on two elements, a framework to capture the dynamics of the SC, and on

' Eigenvalues in the right half of the complex plane cause instability, whereas eigenvalues in the left half of the
complex plane determine stable systems.
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the design of methodical procedures defined by control laws to manage the SC. They test several
heuristic control laws and analyze their impact on the behavior of the SC.

Model structural analysis methods have also been used to eliminate oscillatory behavior
in SC models. Lertpattarapong (2002) and Gongalves (2003) use EEA to identify the loops that
are responsible for the oscillatory behavior of the inventory in the SC. Then they use the insights
about the impact of feedback structures on model behavior to propose policies for stabilizing the
system. These policies are based on inventory buffers or safety stock. Saleh et al. (2006) use the
BDW analysis to identify relevant parameters that stabilize the inventory fluctuations in a linear
inventory-force model. To explore the utility of the method in a SD nonlinear model they choose
a medium-size economic model. In order to perform the BDW analysis, they linearize the model
at a point in time, once the eigenvalues have become stable. The method provides a partial policy
analysis as it studies the effects of changing individual policy parameters. Currently, the method
does not consider the interactions due to changes in several parameters simultaneously.

Forrester (1982) presents several policies for stabilizing dynamic systems. The first two
approaches, reduction of the frequency of oscillations and increment in the rate decay of
oscillations, represent a measure of behavior of the whole system and are covered by the linear
system control theory. Other methods such as variance reduction and gain reduction are focused
on the stability of a particular variable of the system. Therefore, they have to be extended to
implement stabilizing policies of the entire system.

Policy optimization provides an efficient method for obtaining SC stabilization policies.
O’Donnell ef al. (2006) employ GA to reduce the bullwhip effect and cost in the MIT Beer

Distribution Game. The GA is used to determine the optimal ordering policy for members of the
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SC. Lakkoju (2005) uses a methodology for minimizing the oscillations in the SC based on SD
and GA. He applies the variance reduction criterion proposed by Forrester to stabilize the
finished goods inventory of an electronics manufacturing company.

The literature review on stability analysis of the SC shows that several techniques have
been used to generate stabilization policies. Model structural analysis methods can provide some
insights into how to tackle the behaviors that generate instability of supply chains modeled as
dynamic systems through the identification of the loops responsible for them. However, these
methods rely on sensitivity analysis to design the stabilization policies. Control theory can
support the stabilization methodologies by providing theoretical concepts to stabilize dynamics
systems. One problem with the approaches based on control theory is the mathematics involved
in order to determine the analytical solution. Moreover, similar to the model structural analysis
methods, they can require certain simplifications, such as the linearization of the system
(Dangerfield and Roberts 1996). On the other hand, policy optimization based on algorithmic
search methods that use simulation represent the most general mean for stability analysis of
nonlinear systems, due to its effectiveness in handling the general cases and most of special
problems that arise from nonlinearity. However, the objective functions are chosen to represent
the stability conditions particular to each model. The use of a generic objective function applied
to stabilize SC models independent of their linear or nonlinear structure has not been found in the

literature surveyed so far.

2.5. Particle Swarm Optimization

Optimization techniques based on evolutionary algorithms belong to the class of direct
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search strategies, where every considered solution is rated using the objective function values
only. Therefore, no closed form of the problem and no further analytical information is required
to direct the search process towards good or preferably optimal elements of the search space. For
that reason, evolutionary search strategies are well suited for simulation optimization problems.
Additionally, because of their flexibility, ease of operation, minimal requirements and global
perspective, evolutionary algorithms have been successfully used in a wide range of
combinatorial and continuous problems.

Evolutionary algorithms differ from conventional nonlinear optimization techniques,
such as tabu search and simulated annealing, in that they search by maintaining a population of
solutions from which better solutions are created rather than making incremental changes to a
single solution to the problem. In other words, they do not carry out examinations sequentially,
but search in parallel mode using a multi-individual population (O’Donnell ef al. 2006).

Particle swarm optimization was invented in the mid 1990s by Kennedy and Eberhart
(1995) as an alternative to genetic algorithms. PSO is based on a social simulation of the
movement of flocks of birds. PSO performs a population-based search to optimize the objective
function. The population is composed by a swarm of particles that represent potential solutions
to the problem. These particles, which are a metaphor of birds in flocks, fly through the search
space updating their positions and velocities based on the best experience of their own and the
swarm. The swarm moves in the direction of “the region with the higher objective function
value, and eventually all particles will gather around the point with the highest objective value”
(Jones 2005).

Among the advantages of PSO, it can be mentioned that PSO is conceptually simple and
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can be implemented in a few lines of code. In comparison with other stochastic optimization
techniques like GA or simulated annealing, PSO has fewer complicated operations and fewer
defining parameters (Cui and Weile 2005). PSO has been shown to be effective in optimizing
difficult multidimensional discontinuous problems in a variety of fields (Eberhart and Shi 1998),
and it is also very effective in solving minimax problems (Laskari et al. 2002). According to
Schutte and Groenwold (2005), a drawback of the original PSO algorithm proposed by Kennedy
and Eberhart lies in that although the algorithm is known to quickly converge to the approximate
region of the global minimum; however, it does not maintain this efficiency when entering the
stage where a refined local search is required to find the minimum exactly. To overcome this
shortcoming, variations of the original PSO algorithm that employ methods with adaptive
parameters have been proposed (Shi and Eberhart 1998, 2001; Clerk 1999).

Comparison on the performance of GA and PSO, when solving different optimization
problems, is mentioned in the literature. Hassan et al. (2005) compare the performance of both
algorithms using a benchmark test of problems. The analysis shows that PSO is more efficient
than GA in terms of computational effort when applied to unconstrained nonlinear problems with
continuous variables. The computational savings offered by PSO over GA are not very
significant when used to solve constrained nonlinear problems with discrete or continuous
variables. Jones (2005) chooses the identification of model parameters for control systems as the
problem area for the comparison. He indicates that in terms of computational effort, the GA
approach is faster, although it should be noted that neither algorithm takes an unacceptably long
time to determine their results. With respect to accuracy of model parameters, the GA determines

values which are closer to the known ones than does the PSO. Moreover, the GA seems to arrive
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at its final parameter values in fewer generations that the PSO. Lee ef al. (2005) select the return
evaluation in stock market as the scenario for comparing GA and PSO. They show that PSO
shares the ability of GA to handle arbitrary nonlinear functions, but PSO can reach the global
optimal value with less iteration that GA. When finding technical trading rules, PSO is more
efficient than GA too. Clow and White (2004) compare the performance of GA and PSO when
used to train artificial neural networks (weight optimization problem). They show that PSO is
superior for this application, training networks faster and more accurately than GA does, once
properly optimized.

From the literature presented above, it is shown that PSO combined with simulation
optimization is a very efficient technique that can be implemented and applied easily to solve
various function optimization problems. Thus, this approach can be extended to the SCM area to
search for policies using an objective function defined on a general stabilization concept like the

one that is proposed in this research.

2.6. Powell Hill-Climbing Algorithm

Hill-climbing methods are heuristics that use an iterative improvement technique and are
based on a single solution search strategy. These methods can only provide local optimum
values, and they depend on the selection of the starting point (Michalewicz and Fogel 2000).
Some advantages of hill-climbing-based approaches include: (1) very easy to use (Michalewicz
and Fogel 2000), (2) do not require extensive parameter tuning, and (3) very effective in
producing good solutions in a moderate amount of time (DeRonne and Karypis 2007).

The Powell hill-climbing algorithm was developed by Powell (1964) and it is a hill-
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climbing optimization approach that searches the objective in a multidimensional space by
repeatedly using single dimensional optimization. The method finds an optimum in one search
direction before moving to a perpendicular direction in order to find an improvement (Press et al.
1992). The main advantage of this algorithm lies in not requiring the calculation of derivatives to
find an unconstraint minimum of a function of several variables (Powell 1964). This allows
using the method to optimize highly nonlinear problems where it can be laborious or practically
impossible to calculate the derivatives. Moreover, it has been shown that a hybrid strategy that
uses a local search method such as hill-climbing can accelerate the search towards the global
optimum, improving the performance of the searching algorithm (Yin et al. 2006; Ozcan and

Yilmaz 2007).

2.7. Discussion of Research Gaps

This chapter presented a review of the literatures that are related to the proposed
methodology for stabilizing the SC. The following research gaps that require further research and
implementation have been identified:

1. The lack of a methodology that uses SD modeling, generic stability conditions and
simulation optimization to eliminate instability of the SC and produce robust policies. This
methodology has the potential to solve a wide variety of complex stabilization problems not
only in SCM but also in many other fields. Previous attempts have been focused on few
variables of interest and selected parameters for the optimization problem. Moreover,
analytical methods in control theory have been restricted to particular cases. However, due to

the complexity of generalizing the stability criterion for nonlinear dynamic systems, still
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there is not a methodology capable of optimize the behavior of any SD model.

2. The lack of a fully computerized framework for policy optimization that uses a hybrid PSO-

PHC based searching engine and works with SD models.

Table 2.1 summarizes the literature research done in the field of supply chain
management for each of the four surveyed areas. It is clear from the table that methods based on

a general stabilization concept (useful for linear and nonlinear models) that use an optimization

engine based on PSO and PHC have not been applied to the supply chain.

Table 2.1. Literature review for surveyed areas related to SCM

Researches

SD modeling
in SCM

Model structural

analysis

Stability

analysis

Optimization

Particular
condition

General
condition

PSO +
PHC

Other

Akkermans and Dellaert (2005)

Anderson Jr. et al. (2000)

Angerhofer and Angelides (2000)

Ashayeri et al. (1998)

<=

Daganzo (2004)

Disney et al. (2000)

Forrester (1958, 1961)

Georgiadis and Vlachos (2004)

Georgiadis et al. (2005)

Gongalves (2003)

Higuchi and Troutt (2004)

Huang et al. (2003)

Joshi (2000)

Lakkoju (2005)

Lee et al. (1997)

Lertpattarapong (2002)

Minegishi and Thiel (2000)

Mohapatra and Sharma (1985)

Nagatani and Helbing (2004)

O’Donnell ef al. (2006)
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CHAPTER THREE: METHODOLOGY

This chapter presents an overview of the research methodology, which is divided in three

phases as shown in Figure 3.1.

/ Phase I \ / \
Research Develop SADE ;
Problem Methodology 8

v ' =
]
Research Develop
Question \ Framework /
Research / A \
Objectives Perform
¢ Experiments
Research ¢
Contribution Analysis and Test of
¢ Stabilization Policies -
2
Literature 1)
Review E

Figure 3.1. High level research methodology

Phase I covers the identification of the research problem, question, objectives and
contribution that justify the development of this dissertation. These issues were explained in
chapter one. Moreover, this phase identifies the research gaps, related to the research question,

that were found after reviewing the relevant literature. This information was presented in chapter
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two.

Phase II covers the development of the theoretical aspects of the SADE methodology and
the implementation of these concepts in a computerized framework. Section 3.1 provides a
description of the functioning of the SADE methodology which considers the SD model, the
optimization problem and the PSO solution algorithm. Justification of the stabilization properties
of the objective function used in the optimization problem is discussed in chapter four. This
justification involves the presentation of several theorems and their proofs. Section 3.2 presents
the optimization framework.

In Phase III the framework is used to perform the stability analysis of several case
studies. Section 3.3 explains how to validate the SADE methodology based on the results
obtained from the experiments performed in those case studies.

If the research objectives are not achieved then Phase II has to be evaluated in order to

see if it can be reformulated to meet the research goals.

3.1. Description of the SADE Methodology

The purpose of this dissertation is to develop a methodology that captures the dynamics
of the supply chain and indicates potentials for modifications in the SC settings in order to avoid
(or mitigate) the undesirable behaviors and performances. Figure 3.2 shows the different stages
of the methodology and the general functioning is explained in the following lines.

The supply chain environment represents the actual participants, structure, strategies,
policies, objectives, variables, constraints and parameters that configure different scenarios of the

supply chain over time. All configurations require making different decisions that when
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implemented will produce changes in the behavior of the supply chain. Behavior in the supply

chain is referred as observed patterns in the state variables (e.g. oscillatory behavior).

Mo actions needed

Capture 3C A
_ dynamics behavior
Supply Chain S0 model of
Environment the 5C
LA
o
ATE | Parameter set
1 (policy)
Implement v | Change undesired
i !
poucy Optimization » behavior
M odule

—  Artion
_______ 2 Information

Figure 3.2. General procedure of the SADE methodology

The first step of the methodology uses a SD model to replicate the dynamic behavior of
the supply chain. A SD model is chosen because it can capture the complex relationships,
feedback processes, and multiple time delays necessary to track accurately the evolution of
important endogenous variables. Section 3.1.1 provides a detailed description of the different
type of variables, feedback structures and model equations used to represent a model in SD.

If the current behavior of the SC does not show instability patterns, such as ripple effects,
then no actions are needed to be carried out over the supply chain, otherwise a new management
policy must be found to remove the instability or minimize its impact.

The second step of the methodology uses a simulation optimization technique to find
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such a policy. This technique uses a hybrid algorithm that combines PSO and PHC methods to
modify the set of parameters that constitute the current policy in order to minimize the ADE and
thus achieve stability. In every iteration of the algorithm, the parameter set is sent to the SD
model in order to calculate, through simulation, the value of the ADE (objective function).
Simulation is used due to the difficulty of solving the complex dynamic equations by analytical
methods. The optimization problem and the hybrid algorithm are described in sections 3.1.2 and
3.1.3.

Once the best setting of parameters (stabilization policy) is obtained, then it is

implemented in the actual supply chain to ensure it is kept stable and robust.

3.1.1. System Dynamic Model of the Supply Chain

The dynamic relationships of the supply chain are represented by using a SD model that
consists in feedback structures linked with stock and flow structures.

The basic building block in the feedback structure is the feedback loop. The feedback
loop is a path coupling decision, action, stock (or state) of the system, and information, with the
path returning to the decision point (Forrester 1990) as shown in Figure 3.3. Causal relationships
of the SC that tend to move the behavior toward a goal are modeled as negative feedback loops.
In contrast, causal relationships that amplify disturbances in the system to create even higher

variations in behavior are modeled as positive feedback loops.
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Figure 3.3. Feedback loop

Stocks and flows compose a substructure within feedback loops. The stock and flow
structure consists in two types of variable elements: the stocks and the rates. The stock (or state)
variables describe the condition of the system at any particular time. They accumulate the results
of action within the system. On the other hand, the rate (action) variables tell how fast the levels
are changing. They are the policy statements that describe action in the system.

The feedback and stock and flow structures of the SD model are converted into
mathematical equations. These equations can be classified into four categories: level, rate,
auxiliary and initial-value equations. A description of each category is provided as follows:

= Stock equations. They are equations of the form:

Stock(t) = j[Inﬂow(s) — Outflow(s)]ds + Stock(t,)

to
These equations calculate the value of the stock variables as the accumulation over time of
the difference between the inflows to a process and its outflows (Figure 3.4). For example,
the inventory can be expressed as the integral of the difference between Production and

Shipment rates as follows:

t
Inventory(t) = I[Production Rate(s) — Shipment Rate(s)]ds + Inventory(0)
0

44



Q#» Stock Z »‘Q

Inflow Outflow

Figure 3.4. Stock and flow diagram

Rate equations. They state how the flows within a system are controlled. Unlike, stock
equations, rate equations have not standard form. Each rate equation represents an
understanding of some process of change in a particular system. For example, the Production
rate can be expressed as the sum of two terms:

. . . i t -1 t t
Production Rate = Desired Production + (Desired Inventory - Inventory(t))

Inventory Adjustment Time
The first term aligns the current production rate with its desired value. The second term
modifies the production rate to keep the inventory in line with the desired inventory level.

Auxiliary equations. The auxiliary equations are merely algebraic subdivisions of the rates

used with the purpose of providing more clarity and meaning to the rate equations. For
instance, the auxiliary variable “Adjustment for Inventory” can be used to represent the
second term in the Production Rate equation of the previous example. Thus, now there is a
more simple and meaningful rate equation:

Production Rate = Desired Production + Adjustment for Inventory
Along with the auxiliary equation:

Adjustment for Inventory = (Desired Inventory - Inventory(t))

Inventory Adjustment Time

Initial-value equations. They are used to define initial values of all levels and initially to

compute values of some constants from other constants. For example, the
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expression: Inventory(0) =100, sets the initial value of the inventory variable to 100 units.

3.1.2. Optimization Problem

The SD model can be described by an equation of the form x(t)=f(x(t),p), where
X(t) = 0x(t)/ot, x(t) is the vector of state variables (dimension 1) and pis a vector of adjustable
parameters (dimension 7,) with lower and upper bounds p“and p" respectively.
Using the results of Theorem 5 (see chapter 4) an optimization problem can be formulated to find
the parameter vector p~ that causes the state variable x, to become asymptotically stable around
the equilibrium pointx(p"). This optimal parameter vector can be found by minimizing the

ADE for predetermined time horizon T and making use of Theorem 5. That is, the optimization

problem will find the vector that makes ADE converge'®. The optimization problem is then

stated as
m T m
Minimize J(p) = Z{WSI X, (t) —x dt}, where Zws =1 3.1
P s=1 0 s=1
Subject to
x(t) = f(x(t), p) (3.2)
x(0)=x, (3.3)
p-<p<p’ (3.4)

x(t)eR",peR™, p" eR",p" eR™,t€[0,T]
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The objective function J(p) is defined as the weighted average value of the ADE. The

X, () = x

T
term I dt is the mathematical expression of the ADE for the state variablex_, where
0

the symbol |c| represents the absolute value of c. If necessary the time horizon T should be
increased to obtain similar effects of convergence that when time goes to infinity, as stated in
Theorem 5.

The use of weights, w,, means that J(p) will support the simultaneous stabilization of any

subset of m state variables (m <n). Positive weights can be assigned to these variables in any

way, provided the normalization constraint (Z:ws =1) is met. This allows higher weights to be

s=1
assigned to the variables that are considered more important.

If the equilibrium point x{* is not known in advance, J(p) can be modified to include it as

a variable (a, ) and change to optimization of the problem'’ as follows:

m T m
Minimize J(p) = Z{ws j x,()—a,] dt} , where Y w, =1 (3.5)
P 0 s=1

s=1

This amounts to including a_(s=1,..,m) as part of the solution vector p. Theorem 6 (see
chapter 4) guarantees that the values of a_ obtained from the optimization will, in fact, coincide

with the equilibrium points x;* (s=1,..,m).

'® One way to check the convergence of ADE is by adding a new state variable to the model, called “ADE” (see
Figure 3.5), and graphically verify that its graph becomes a flat line when time goes to T.

' For example, for an inventory variable, the interval of variation of its EP in the optimization problem would be
based on the minimum and maximum levels of inventory determined by the production plan.
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The objective function defined in (3.5) can be incorporated very easily into any SD
formulation by adding a “stock and flow” piece to the model that is linked to the state variables

of interest as illustrated in Figure 3.5. Then the variables DE(t) and ADE are defined as follows:

}

X, (1) —a,

DE(t) = i{ws

T
ADE = j DE(t) dt
0

al a2 am
ADE
/DE
x1 x2 Xm

Figure 3.5. Stock and flow diagram for the objective function

3.1.3. Optimization Algorithm
The method used to solve the optimization problem is a hybrid algorithm that combines
the advantage of PSO optimization to determine good regions of the search space with the
advantage of local optimization to find quickly the optimal point within those regions. In other
words, the local search is an improvement procedure over the solution obtained from the PSO
algorithm that assures a fast convergence of the ADE.
The local search technique selected was the Powell hill-climbing algorithm. This method

was chosen because: (1) it can be applied to solve multi-dimensional optimization problems, (2)
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it is a relatively simple heuristic that does not require the calculation of derivatives.

The general structure of the method is illustrated in Figure 3.6. This figure indicates that
the solution to the optimization problem obtained by the PSO algorithm becomes the initial point
to perform a local search using the PHC algorithm. Finally, if the ADE has converged then the
solution provided by the PHC method is the stabilization policy; otherwise the parameter settings
of the PSO algorithm have to be changed in order to improve the search that makes ADE to

converge.

Ay
PSO = PSO solution
Algorithm
Yes
PHC Does ADE e e .
Algorithm T SO — = Stabilization policy
Change parameter settings of the algorithm No I
Global Search Local Search

Figure 3.6. Optimization algorithm

The details of the functioning of each algorithm are explained in the following lines.

3.1.3.1. Global Search: PSO Algorithm

The algorithm used is called “local best PSO” (Engelbrecht 2005) and is based on a
social network composed of neighborhoods related to each particle. The algorithm maintains a
swarm of particles, where each particle represents a candidate solution to the optimization

problem. These particles move across the search space communicating good positions to each
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other within the neighborhood and adjusting their own position and velocity based on these good
positions. For this purpose, each particle keeps a memory of its own best position found so far
and the neighborhood best position among all the neighbor particles. The goodness of a position
is determined by using a fitness function. The stopping condition of the algorithm is when the
maximum number of iterations has been exceeded. The basic elements of the algorithm are
defined as follows:

= Particle. A particle i is represented by a n,-dimensional real-valued vector pi. This vector is

composed of particle positions pj, i.e., P;=[py,PissPi, |- Each particle position

corresponds to one of the parameters of the parameter vector defined in the optimization
problem 3.1.2.
= Swarm size. It is the number of particles in the swarm, and it is denoted by N.

= Fitness function. It is a mathematical function used to quantify how good the solution

represented by a particle is. For a particle i the fitness function is the objective function J(p;)
as defined in 3.1.2.

= Personal best position. As a particle moves through the search space, it compares its fitness

value at the current position to the fitness value it has ever attained so far, which is called the
personal best position. For each particle i the personal best position can be expressed as the

real-valued vector y, =[y,,, YizssYin, 1> and it is determined so that J(y,) <J(p,), i=1..,N.

= Neighborhood size. Defines the extent of the social iteration within the swarm (Engelbrecht

2005) and it is denoted by H. Selection of neighbors was done based on particle indexes.

Each particle i has a neighborhood associated to, where B; defines the set of indexes for the
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particles neighbors. The neighborhood associated to particle i is composed by B; = {i, i+1,
i+2,..., i+H-1}. It can be noted that neighborhoods overlap.

Neighborhood best position. It is the best position among all the personal best positions in the

neighborhood. It is denoted by the real-valued vector v, =[¥i> ¥i2o» ¥, ] and it is

determined so that J(y,) <J(y;), j€ B;.

Global best position. It is the best position among all the personal best positions achieved so

far. It is denoted by the real-valued vector g :[gl,gz,..,gnp]and it is determined so that

Jg)<I(y,),i=1.,N.

Particle velocity. It is the velocity of the moving particle i represented by the real-valued

vector v, =[v,,V,,,...V,, ]. This vector reflects both the experiential knowledge of the

particle and socially exchanged information from the particle’s neighborhood (Engelbrecht
2005). The experiential knowledge of a particle is generally referred as the cognitive
component, which quantifies the performance of particle i relative to past performances. It is
represented by the term cr,(y, —p;). The socially exchanged information is referred as the
social component of the velocity equation. It is represented by the term c,r, (¥, —p,).

Acceleration coefficients. The acceleration coefficients, ¢; and c;, together with the random

vectors r; and r», control the stochastic influence of the cognitive and social components on
the overall velocity of a particle (Engelbrecht 2005). The constants ¢; and c, are also referred
as trust parameters, where c; expresses how much confidence a particle has in itself, while c,

expresses how much a particle has in its neighbors. The random vectors are defined as
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r =[n,,5,,.5, ] and r, =[r,,1y,..,1,, ], where r;j and r,; are uniformly distributed random

numbers in [0,1].
= Inertia weight. It is a parameter “w” that is used to control the influence in the new velocity
of a particle by its previous velocity (flight direction). Thus, it influences the tradeoff
between the global and local exploration abilities of the particles (Shi and Eberhart 1998).
For initial stages of the search process where global exploration is required, it is
recommended to set a large inertia weight, while for the last stages, the inertia weight should
be reduced for better local exploration. A decrement function for decreasing the inertia
weight at the iteration k can be given by w(k) =aw(k'), where a=0.98, and k’ is the last
iteration when the fitness function was improved. A parameter “iteration lag” is defined to
set the number of iterations that are required to change the inertia weight if the fitness
function has not been improved.
The following empirical rules are recommended to guide the choice of selecting the

initial values for the parameters of the PSO algorithm.

Table 3.1. Empirical rules for selecting the PSO parameters

Parameter Empirical rule of choice
Swarm size From 20 to 40 (Clerc 2006)
Inertia weight In ]0,1] (Shi and Eberhart 1998)
Cognitive coefficient Suggestion 1.43 (Clerc 2006)
Social coefficient Suggestion 1.43 (Clerc 2006)

The steps of the algorithm are described in the following lines.
Step 1) Initialization:

0 Set iteration k=0
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(0]

Generate N particles p,(0) =[p;(0), piZ(O),..,pinp (0)], i=1,..,N; where p;;(0) is
randomly selected according to a uniform distribution in the interval [ij ,pJU 1,
J=1,...np.

Generate velocities v,(0) =[0,0,..,0], i=1,..,N.

Evaluate the fitness of each particle using J(pi(0)) , i=1,..,N.

Set the initial value of the personal best position vector as y,(0)=p,(0),
i=1,..,N.

Determine the neighborhood best position vector y,(0) using the formula
J1(¥,(0)) = min{J(y;(0))},j € B, .

Determine the global best position g(0) using the formula
J(g(0)) = min{J(y,(0))}, i=1,..,N.

Set the initial value of the inertia weight w(0) . Set k’=0.

Step 2) Iteration updating: Set k=k+1.

Step 3) Weight updating: If k-1-k’> iteration lag then update the inertia weight using:

w(k) = aw(k').

Step 4) Velocity updating: Calculate the velocity of particle i by using:

vi(k) = wk)v;(k =1) + ¢, ([y; (k) = p; (k)] + ¢,r, ()[y; (k) = p; (k)]

Step 5) Position updating: Based on the updated velocities, each particle changes its

position according to the following equation:

p;(k)=v,(k)+p;(k-1)
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Step 6) Personal best updating: Determine the personal best position visited so far by

each particle:

0 Evaluate the fitness of each particle using J(pi(k)) , i=1,..,N.

k=1 if J(p,(k+1) 2 X(y, (k- 1))
p.(k)  if J(p,(K) < J(y, (k- 1))

0 Sety. (k) ={
Step 7) Neighborhood best updating: Determine the neighborhood best position . (k)
visited so far by the whole swarm by using the formula
1(y;(k)) = min{J(y;(k))},j € B,
Step 8) Global best updating: Determine the global best position g(k) visited so far by the
whole swarm by using the formula
J(g(k)) =min{J(y,(k))}, i=1,.,N.

If J(g(k)) <J(g(k -1)) then set k’=k

Step 9) Stopping criteria: If the maximum number of iterations is achieved then stop,

g* = g(k) is the optimal solution; otherwise go to step 2.

3.1.3.2. Local Search: Powell Hill-Climbing Algorithm

PHC method basically uses one-dimensional minimization algorithms to solve
multi-dimensional optimization problems. The procedure searches into a region by
constructing a set of linearly independent, mutually “non-interfering” or conjugate search
directions and applies linear minimization to move into each direction (Press et al. 1992).

The number of conjugate directions coincides with the dimension of the search space and
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their linear independence guarantees the whole search space can be covered. The use of
conjugate directions has the advantage that minimization in one direction is not interfered
by subsequent minimization along another direction, avoiding endless cycling through
the set of directions.

The steps of the algorithm are described in the following lines:
Step 1) Initialization:

0 Set iteration k=0

O Set the initial search point Z, =[z,z2,,..,z, ] as the optimal solution of the
PSO algorithm, i.e. Z,=g*
0 Initialize directions uq to the basis vectors, i.e. ug=eq, d=1,..,n,, where
e, =[1,0,..,0],e, =[0, 1,..,0],...,enp =[0,0,..,1]
Step 2) Define the iteration start point: Set S, =Z,
Step 3) Minimize objective function along direction uq
For every direction d=1,..,n,
0 Find the value y, that minimizes J(S,, + v u,)
0 SetS;=8S,,+74uy
Step 4) Update directions

0 Setug=ug+s, d=1,..,np-1

Step 5) Iteration updating: Set k=k+1.
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Step 6) Minimize objective function along direction u,
0 Find the value y that minimizes J(S, + yu, )
0 SetZ, =8, +yu,

Step 7) Stopping criteria: If J(Z,)>J(Z, ,)then stop, Zi is the optimal solution;

otherwise go to step 2.

3.2. Optimization Framework

The structure of the optimization framework is divided into the framework architecture

and the framework interface.

3.2.1. Framework Architecture
The framework architecture consists of three components: the simulation, optimization

and report modules. Figure 3.7 shows the interactions between these components.

Simulation Module

: . Report
Simulation «» Model Module
Engine
A
y
. Solver .
Input File Engine Output File
Optimization Module

Figure 3.7. Framework architecture
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The description of these components is explained in the following lines:

Simulation module. This module is composed by the model equations file and the simulation

engine. Vensim DSS simulation package will be used to build the SD model and to run the
simulations. The model and the simulation engine can be accessed from the optimization
module by using the following functions incorporated in the Vensim Dynamic Link Library.

0 Vensim_command. This function is used to load the SD model, to pass values to the
parameters selected in the optimization problem, to run the simulation and the PHC
algorithm. However, before calling this function, the model file must be saved in
binary format as a .vmf file.

0 Vensim_be quiet. This function is used to turn off the work in progress dialog that
Vensim displays during the simulation, and to prevent the appearance of “yes or no”
dialogs.

O Vensim get data. This function is used to retrieve the value of ADE from the
simulation run.

Optimization module. This module is composed by the solver engine, the input and output

files. The input file is a text file that contains the settings of the PSO algorithm, such as the
inertia weight, social and cognitive coefficients, maximum number of iterations, etc. along
with the parameter vector p. The output file is also a text file that displays the optimal value
of p and the value of the best fitness. The solver engine follows the steps of the PSO and
PHC algorithms defined in section 3.1.3. The code is built using the programming language
Visual Basic from the Microsoft Visual Studio environment. The solver engine consists in a

module file: Main.bas and five class files: SwarmType.cls, NeighborhoodType.cls,
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ParticleType.cls, VensimCalculations.cls and RandomNumberType.cls.

0 Main.bas: This module controls the reading and writing of the input and output files,
and runs the optimization algorithm. First the subroutine ReadOptData is called to
read the values of the input file (previously loaded in the interface). Then the
subroutine Algorithm performs the steps of the PSO algorithm by using the
SwarmType class and the PCH algorithm by using the VensimCalculations class. The
final solution is written in the output file which is immediately opened with the
Notepad application.

o0 SwarmType.cls: This class enables manipulation of the entire swarm by calling the
methods and properties of the individual particles defined in the ParticleType class.
Calculations for the neighborhoods of particles are also done here by using the
NeighborhoodType class.

0 NeighborhoodType.cls: This class basically keeps the information of the best position
for each neighborhood and the particle index associated to it.

0 ParticleType.cls: The methods used to calculate the position and velocity of each
particle are defined in this class.

0 VesimCalculations.cls: This class contains the logic to load the SD model, pass the
values of p to the model, simulate the model with these values, and retrieve the ADE
value. Moreover, this class calls a function in the Vensim Dynamic Link Library to
compute the PHC algorithm. The results are then passed to the Main.bas module.

0 RandomNumberType.cls: This class generates random numbers between a lower and

upper limit.
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Report module. This module uses the class Report to build the solution and detailed reports.

The solution report presents the values for the parameters of the stabilization policy (Figure
3.8). Both the PSO and PHC solutions are provided. The detailed report presents information
of each particle for every iteration of the PSO algorithm (Figure 3.9). Because this report
presents a lot of information, it can be loaded in Excel and with the help of a macro extract

only pertinent information such as the value of the ADE at each iteration of the algorithm.

[} LSMC_Solution - Notepad M=
File Edit Format Wiew Help

Farameter PAT A
Lower Timit, 0.5 |
Upper Timit, 10

Parameter TAFSI

Lower T4imit, 0.5

Upper Timit, 10

Farameter al

Lower Timit, 500000

Upper Timit, 1000000

RUM 1

HOHCHCHOHW

clobhal search Minimum value = 120130.2

MCTime = 2.37
MoPTime = 0.31
TaAl = §5.22
PAaT = 3.11
TAFSI = 0.5

al = 946315, 3

Local search Minimum walue = 1209130.2

MCTime = 2.37
MoPTime = 0.31
TAAL = 5.22
PaT = 3.11
TAFGI = 0.5

al = 946315, 3

ToTAL TIME (SECONDS) = 235,88

£ | *

Figure 3.8. Solution report
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Figure 3.9. Detailed report

3.2.2. Framework Interface

A | 8 | c | o | E | F [ & | H | I - O S A N \
Numtk Number of Number of Number of Number of
| 1 |of Runs Ilterations Neighborhoods Particles  Parameters
| 2 | 3 3 B i 13
gBest gBest Neighborhood nBest Fitness pBest Vector  Velocity Position pBest Vector

| 3 |Run Iteration  gBest Value  Particle Iteration Index Value Particle Value Value Index Vector Value Vector Value Value
| 4| 1 0 2 46EHI7 a 0 1 246EHY 1 1.67E+10 1.6FE+1D 1 0 3557183 36567183
| 6 | . . . . . . 2 0 27378 2713778
| B | 3 0 107.9419 107.5419
|7 4 0 15.18856 16.16856
| B | 8 0 1679545 16.79545
| 9 | & 0 35.96227 3896227
| 10| 7 0 1.686564 1.666864
| 11| g 0 35.27546 38.27546
|12 | 9 0 40.91001 40.91001
| 13 | 10 0 §2090.38 82090.35
| 14 | n 0 35453.83 36463.63
| 16 | 12 0 79.14033 79.14033
| 16 | . . 13 0 1072.624 1072.524
17 2 1.63E+18 1.63EHE 1 0 39.73362 39.73352
| 18 | . . 2 0 1930327 19.30327
|19 | 3 0 146.1953 146.1953
| 20 | 4 0 43.70085 43.70085
| 21 | 8 0 3.755606 3768606
| 22 | & 0 47 82827 47 62827
| 23 | 7 0 18.83692 18 63652
| 24 | g 0 26.71850 26.71855
| 26 | 9 0 35.568847 35668847
| 26 | 10 0 75536.08 76536.05
| 27 | n 0 40924 565 40924.65
| 26 | 12 0 79 657 79.657
| 29 | . . 13 0 959 6331 969.6331
| 30 | 3 TI2EHIF 7A2EHT 1 0 381214 31.81214
| 31| . . 2 0 3274324 32.74324

32 3 0 76.3793 76.3753

The interface consists of a window with a File menu, a Run option and three tabs: Model

Parameters, PSO Settings and Vensim Settings.

File menu. This menu contains the commands to create, open and save a file with the settings

and parameters used in the optimization algorithm.

Run option. This command is used to run the optimization algorithm using the settings

defined in the three tabs.

Model Parameters tab. This tab is used to enter the list of model parameters to be searched

over in the optimization. For each parameter it is required to enter the parameter name and its

lower and upper bound (see Figure 3.10).
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PSO Settings tab. This tab is used to enter the parameter settings required by the PSO
algorithm. The names of the solution report and detailed report can also be entered here (see

Figure 3.11).

Vensim Settings tab. This tab is used to enter the parameter settings, the SD model and the

data file required by Vensim DSS application to simulate the model. Moreover, the payoff
file and the optimization parameter file used by the PHC algorithm are defined here (see
Figure 3.12). The payoff file includes the variable that has to be optimized. The Vensim
optimizer is designed to maximize the payoff, therefore to minimize the objective function
the variable has to be entered as a negative expression in the payoff file. The optimization

parameter file is built using the information entered in the Model Parameters tab.

= P50 Optimizer - LSMC_Proposal. pso
Fie Run

Pacameters o optimze

T¢mMCTimec=3

0.1<=MOPTimeas=1

0.1¢=TAll=8

0.5<=PaT<=10

0.5<=TAFGI<=10

SO0000: =a1 <=1 000000 Dredete

Lower bound ~ Paramater name Uppe bound

Figure 3.10. Model Parameters Tab
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= P50 Optimizer - LSMC_Proposal. pso
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Model Parameters PSO Settings | Vensim Settings |
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Figure 3.11. PSO Settings Tab
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Figure 3.12. Vensim Settings Tab
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3.3. Validation of the Methodology

The stabilization methodology will be validated by performing several experiments on

the framework using the SC models of four case studies.

3.3.1. Case Studies
The validation process will be based on the effective application of the methodology to
two academic case studies (see case studies A and B) and two case studies of real companies
referred as LSMC and PMOC (see case studies C and D). A brief description of the case studies
is presented in the following lines:

= (Case study A: the Inventory-Workforce model.

This is a short case about a manufacturing supply chain that includes labor as an explicit
factor of production. Saleh et al. (2007) developed a linear SD model for this supply chain
by modifying Sterman’s original model (2000). The interactions between inventory
management policies and the labor adjustment policies are the main cause for the oscillatory
behavior of the supply chain.

= (Case study B: the Mass model

Mass (Mass 1975) developed a nonlinear SD model of a manufacturing supply chain to
explore the economic processes underlying business-cycle behavior. Business cycles are
recurring fluctuations that affect total production, prices, employment, inventories and capital
investment. This case is designed to show how production, hiring and investment policies
within a SC can interact to create fluctuations in inventory and employment that are

characteristic of a business cycle. This model contains a production sector plus two factors of
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production: labor sector and capital sector.

Case study C: the LSMC model.

This case, which is based on the work of Lertpattarapong (2002), describes the operations of
an actual electronics manufacturing company called LSMC. LSMC supplies products for
personal computers to original equipment manufacturers such as Dell, Gateway, and
Hewlett-Packard. Since 1998, many original equipment manufacturers have changed their
strategies by adopting built-to-order and just-in-time processes. These changes in personal
computers in addition to their short life cycles have amplified the coordination problems in
the company’s supply chain, which in turn has caused excess inventories and sometimes
difficulties to keep up with demand. LSMC was facing a problem of persistent oscillations in
its finished goods inventory and desired capacity.

Case study D: the PMOC model.

This case, which is based on the work of Helal (2008), describes the operations of a real
industrial company (referred as PMOC) that produces various optical products. The case
study focuses on the lenses production process which constitutes 65% of the company’s
production. The SD model covers the production process of the enterprise system which is
composed by the following sub-systems: internal supply chain, suppliers and labor. The goal
of management is to find a policy that maintains the stocks at equilibrium through the setting

of various parameters in the model.

3.3.2. Experimental Analysis

The dynamic behavior of the supply chain can be studied through experiments by
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applying various types of inputs to the model and modifying its parameters to respond to those
changes while keeping the supply chain stable (policy optimization).

First, the model needs to be placed in balanced equilibrium when possible'®. At the
equilibrium, the model does not generate any dynamic behavior, i.e. nothing changes over time,
and it lies at the equilibrium unless otherwise disturbed. This action facilitates the process of
experimentation because the system is disturbed only by the inputs the tester chooses to impose
avoiding confusion with the transient behavior induced by initial disequilibrium (Sterman 2000).

Second, from equilibrium, the SC will be disturbed by various types of inputs affecting
some variables of the model and generating different scenarios:

= Scenario 1 (step input): This is a sudden, permanent increase/decrease in the input from one

rate to another. It can serve to “excite” any mode of response that may be inherent in the
system model. If the system has oscillatory behavior, the step input gives an immediate
indication of the natural period of oscillation and the rapidity of damping or of growth of the
oscillation (Forrester 1961).
This input will be implemented by using the STEP function. For example, in the following
equation the variable Sales returns the value 100 units/week until week 20, and then it
changes to 110 units/week.

Sales=100+STEP(10,20)

= Scenario 2 (linear growth or decline input): These inputs contain underlying growth and

decline trends on which the other variations are superimposed. Instead of being a one-shot

'8 Many times it is difficult to calculate the equilibrium point of a system due to the complexity of the system
equations.
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change like the one obtained from the STEP function, this input represents continual changes
of a fixed magnitude.
This input will be implemented by using the RAMP function. For example, in the following
equation the variable Demand increases linearly with rate of 20 units/week, beginning at
week 2.

Demand=RAMP(20,2)

= Scenario 3 (combination of different inputs): This scenario is built by adding the effects of

several inputs.

Third, using the framework, several experiments will be performed with the result of
stabilization policies created as a response to the inputs mentioned in the previous step.
Robustness of the solutions then will be investigated after varying several parameters of the
model. For small perturbations of the system (small variations in parameters of the model —
typically they are chosen to be exogenous variables) the asymptotic stability of the SC must be
kept.

The effectiveness of the stabilization methodology will be demonstrated by the
comparison of the stabilization policies obtained in the experimentation step against the base
policy. The base policy is the one that has been disturbed after applying some of the inputs
mentioned before. Although, it is possible to verify graphically if the application of a policy has
made the system to achieve asymptotic stability, it is necessary other indicators to measure the
characteristics of a stabilization policy. Two useful quantitative indicators are shown next.

=  Amplification of a variable. It is the maximum value in a variable of interest due to the

change in a parameter. When testing robustness, a policy with lower amplification value may
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indicate a more robust solution.
= Response time. It is the time the system takes to achieve asymptotic stability. A policy with

longer response times may indicate trouble in adjusting to growth or decline in business.
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CHAPTER FOUR: DEVELOPMENT OF STABILITY CONDITIONS

The direction of this chapter points toward the demonstration of the properties of the
objective function used in the optimization problem presented in chapter 3, which is used to
achieve stability of nonlinear dynamic systems. As it was explained in the previous chapters, this
optimization problem relies on the concept that the minimization of the ADE will make the
trajectory of the state variables to converge to the equilibrium point. Throughout this chapter it
will be proved several lemmas and theorems that will facilitate the calculation of the state vector
equation, and therefore the calculation of the ADE in order to lead to the conditions of
convergence of a dynamic system. The challenge is to demonstrate the general applicability of
the objective function to reach stability of any linear or nonlinear dynamic system formulated as

a system of first-order differential equations.

Two objectives are set for this purpose. The first is to define the concepts for stability of

linear dynamic systems. The second is to extend these ideas to the nonlinear dynamic case.

For the linear case, Theorems 1 through 3 provide different forms of expressing the state
vector equation. From an equation stated in terms of the matrix exponential (see Definition 4) to
a more simple form to operate, expressed in terms of eigenvalues and eigenvectors. This last
form, which is more suitable for integration, is applied to find a bound for the ADE that is used
to set the conditions for its convergence. Theorem 4 will guarantee that ADE convergence
implies the restriction and convergence of the state variable trajectory, and thus asymptotic
stability.

For the nonlinear case, the system equations are approximated by an infinite number of
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linear system equations defined at very small intervals of time. The ADE is calculated as the
summation of the accumulated deviations of each of these linear systems. Expressing ADE in
this form facilitates the use of the theory of convergence of an infinite series to establish the
condition in which Theorem 5 is based on to prove asymptotic stability. Theorem 6 is presented
to cover the cases when the EP is unknown, letting the optimization problem to decide which EP
leads to fewer oscillations and faster stability. Finally, if the ADE convergence is close, but not
achieved completely, it can be useful to amplify the deviations from the equilibrium point (DE)
to accelerate the asymptotic stability of the variables of interest. Theorem 7 provides a

mechanism to do that.

4.1. Definition of the Concept of Stability

The intuition for stability of a dynamic system captures the idea that if the system is
started at a particular set of initial values near an equilibrium point (as stated in Definition 1), it
will stay near that equilibrium point for all future time.

Definition 1 (Khalil 1996) The point x* € R" is said to be an equilibrium point of the

differential equation x(t)=f(x(t)) if it has the property that once the corresponding system

reaches x* at time tq it will remain at x* for all future time; in other words, f(x(t)) =0 for all t
> teq-
A more rigorous mathematical description for stability is given in the following

definition.

Definition 2 Consider the system defined by x(t) =f(x(t)); x(0)=x,; where x(t) € R";
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f:R" > R";x(t) = [xl(t), xz(t),..,xn(t)]T = [xs(t)], s=1,.,n. The state variable x_ is defined to
be stable (around the EP x:*) if it is bounded, that is, there is a finite number M; such that

x,(t) —x <M, . If this condition holds for all state variables then the system is said to be

stable.

Because the notion of supply chain stability should consider also the reduction or
minimization of oscillatory behavior, then the concept of asymptotic stability is preferred over
the mere stability. A system is to be said asymptotically stable, if the system trajectory converges
to the equilibrium point as time increases indefinitely. Next, the concept of asymptotic stability

will be restated in a formal mathematical context.

Definition 3 Consider the system defined by x(t) = f(x(t)); x(0) =x,; where x(t) e R";
f:R" > R";x(t)= [xs(t)], s=1,..,n. The state variable x, is defined to be asymptotically stable
(around the EP x{') if it is both stable (satisfies Definition 2), and additionally, it satisfies

Lim(xs(t) - X:q)= 0. If these two conditions hold for all state variables then the system is said to
t—>o0

be asymptotically stable.

Definitions 2 and 3 were adapted from the formal definitions of stability and asymptotic
stability used in control theory (Khalil 1996). The stability conditions used in this research work
are defined in terms of “one state variable” and not in terms of “all state variables” like
traditional control theory that uses the norm of the state vector. This facilitates performing the
stability analysis of specific state variables of the system (e.g. finished goods inventory). If

necessary, stability can be extended to the whole system by using a weighted average function
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that includes all state variables.

4.2. Stability of Linear Systems

Stability analysis of linear systems is more tractable than the nonlinear case due to the
well know structure of the system represented as a set of first-order linear differential equations.
In section 4.2.1 it is found an equation for the solution of the linear system in terms of
eigenvalues and eigenvectors that clear the path for justifying the notion of stability based on the

convergence of ADE. This last step is presented in section 4.2.2.

4.2.1. Solution of Linear Systems

The structure of a linear dynamic system can be represented compactly as:
X(t) = Ax(t) + b; x(0)=x,; where xe R",Ac R"*",be R"'.
The matrix A = 0x(t)/dx(t) is commonly known as the Jacobian of the system.
The solution of this system can be expressed in terms of the matrix exponential (Definition 4) as
it is shown in Theorem 1.
Definition 4 (Edwards and Penney 2001) For each matrix A € R"*", define the matrix

exponential of Af to be the matrix:

© k 2 3
eAt:Z(At) :I+At+&+&+...;
o0 k! 2! 3!

where te R and 1€ R"*" is the identity matrix.

Theorem 1 (Umez-Eronini 1999) Consider the system defined by x(t) = Ax(t)+b;
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x(0) = x,; where x(t)e R", Ae R"*",be R"*'. The solution to this system is given by
t
x(t) = e*x, + jeA(H)bdr
0

Proof: The solution to the system can be written as the sum of two terms: x(t) = x, (t) + x,, (1),

where the subscripts 4 and p denote homogeneous and particular.

The homogeneous solution is the solution to the equation:

X, () = Ax, (1); x,(0)=x, 4.1)
The particular solution is the solution to the equation:

X, (t) = Ax () +b; x,(0)=0 (4.2)
First, the homogeneous solution will be calculated. Equation (4.1) can be expressed as:

_dx(;t(t) = Ax, () or O _ Adt

X,
Integrating: j (O = IAdt
X, (1)
It follows that In(x, (t)) = At+ K, where K is a constant.
Hence x, (t)=e"e". Substituting the initial condition x,(0) = x,,, the homogeneous solution is
given by x, (t) =e™x, 4.3)
Second, the particular solution (4.2) is calculated. Doing the following transformation:
z(t) = e™x, (1) (4.4)

After taking the derivatives to both terms:
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a(t) = %(e'“)xp(t) FeMR (1) = —Ae™x () + e (1)

Substituting (4.2) into (4.5)

#(t) = —Ae™x, (1) + e™[Ax, () + b]
Simplifying: z(t) =e™b
Integrating both sides from 0 to “t” gives
t

z(t)-z(0) = Ie'Adet

0
But z(0) = e'AOXp (0)=0, then

2(t) = [e™"bdz

0

Substituting the transformation (4.4) into (4.6)
t

e 'x, (1) = J‘e"“bdr

0

Solving for x,(t) in the above equation
t

x,(t) =™ [e*bdr

0

t
= IeA“'”bdr
0

Combining the homogeneous and particular solutions (4.3) and (4.7) into a total solution

X(t) = x,, (t) + x,(t), it is proved that
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t
x(t) =e*x, + Ie‘““”bdr m
0

Example 1 Consider the manufacturing supply chain shown in Figure 4.1. The SD model
is composed of three state variables: Inventory, Work in Process (WIP) Inventory and Expected
Demand. The current level for these variables is 50, 70 and O units respectively. Inventory
integrates the difference between production and shipments. Production starts to replenish
inventory to its desired level and satisfy the expected demand. The expected demand is a smooth
function of actual demand. Shipment rate depends on the current inventory level and the
shipment delay. In this model it is assumed that demand is greater or equal to the shipment rate
and all orders not immediately filled are lost as customers seek alternate suppliers. Obtain the
trajectory equations for the state variables of this system knowing that the model equations are
the following:

OExpected Demand(t)  (Demand — Expected Demand(t))
ot Time to Average Demand

_ — Expected Demand(t) N Demand
Time to Average Demand Time to Average Demand

dlnventory(t) _ WIP Inventory(t) ~ Inventory(t)

ot Production Delay =~ Shipment Delay
OWIP Inventory(t) _ Expected Demand(t) + (Desired Ir.lventor.y - Invent(?ry(t))
ot Production Adjustment Time
_ WIP Inventory(t)
Production Delay
= Expected Demand(t) — Inventory(t)

Production Adjustment Time
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_ WIP Inventory(t) N Desired Inventory
Production Delay  Production Adjustment Time

Table 4.1 shows the values for the demand, which is an exogenous variable, and the set of

parameters that define the inventory management policy for this supply chain.

Table 4.1. Parameter values for the supply chain of Example 1

Parameter Value Unit

Demand 2000 Units
Production Delay 1 Weeks
Shipment Delay 1/3 Weeks

Desired Inventory 100 Units
Production Adjustment Time 1 Weeks
Time to Average Demand 10 Weeks

Production Delay
Q#» WIP Y’/> Inventory #’Q
Production Llnventory Production Rate ment Rate
Start Rate
.~ \
\ Shipment Delay
Expected - z ,
AN
Demand Change in Expected
Production Demand
Adjustment Time )
Desired Inventory
Time to Average
Demand Demand

Figure 4.1. Manufacturing supply chain
Solution: The model equations of this supply chain can be expressed as the linear system

x(t) = Ax(t) + b; x(0) = x,, where
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Expected Demand(t) -10 0 O 200 0
x(t) =| Inventory(t) , A= 0 -3 1b=| 0 [ x,=(50
WIP Inventory(t) 1 -1 -1 100 70

To obtain the solution of this model, first the matrix exponential has to be determined.

For the given matrix A, the following terms are calculated

100 0 O -1000 0 O 10000 0 O
A= 1 8 -4[A’=| -14 -20 12|,A*=| 152 48 -32|etc. (4.8)
-11 4 0 110 -12 4 1096 32 -16
By Definition 4,

oA i(At)k i Ars ADT L (AD° (AD'
~ k! 2! 3! 41

Substituting the values of (4.8) into the expression above it is obtained

2 3

10 0] [-100 0 0] f100* o o | [-1000 0 01,
eM=l0 1 0|+ 0 -3t t|+] t2 82 -4? o 143 -0t 1263 3
00 1 £ oot -t] |-11t2 a2 0 |7 | 11080 -123 4l |7

(4.9)

Then by (4.9) and the theory of convergence of infinite series results that

2 3
2 —1_10p4 1008 10006
2! 31

a,=0+0+0+0+---=0

a;,=0+0+0+0+---=0
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-1 -2 )
0t e t e tt

a, =0+0+t> —14t> +... = - +
64 64 8
t*  20t’
a22:1—3t+8—— O 4 me e
2! 3!
4t*  12¢°
a,, =0+t——+ +oe=e
2! 3!
11¢> 110t 7e7  7e e
331:O+t— + e =— + +
2! 3! 64 64
4t*  12t°
a, =0—t+—-— +oo=—e 't
2! 3!
3
Ay :1—t+0—43L'+---:e_2t +e 't
Thus, the matrix exponential is given by
eflot 0 0
oAt e _ e + e’'t o2t _e 2t o2t
6410 64 . 8 ,
-10t -2t -2t
_Te + Te FE ey ey
L 64 64 8 _

It is know from Theorem 1 that,
t
x(t) = eMx, + IeA(t")bdr
0

t
=ex, + eAtJ.e'Ader
0

Substituting the matrix exponential obtained in (4.10) into (4.11)
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e—lOt O
—10t -2t -2t
€ e e 't _ _
x(t) = - + e X —e 't
64 64 8
~ 7710t N 7672 o2y oy o
L 64 64 8
e—lO(t—t) 0
t ~10(1—t) —2(1—t) —2(t-t)
€ € € T—t (1 (-
J‘ _ ( ) eZ(‘c t)_e 2(x t)(T_t)
0 61?( ) 642( t) 2<8 )
7e Y 7Y e (p—t Py
e e 8( b

0 0
2t 50 |+
+e 't 70
0
e 2V (t-1)

o200 4 07260 (t—1)

200
0 |(dt
100

(4.12)

After applying matrix and integral operations to the expression in (4.12) and simplifying, the

solution of the system is obtained.

Expected Demand(t)
x(t) = | Inventory(t)
WIP Inventory(t)

20—20e '™
30— 5¢710 325¢7% ~ 85¢ %'t .
16 16 2
90 35" 355" 85¢”'t
L 16 16 2]

It follows from Example 1 that the calculation of the matrix exponential involves the

computation of several infinite series. However, this calculation can be simplified using the

eigenvalue-eigenvector method. The essential idea in this method is to transform matrix A into a

Jordan canonical form J (Definition 7) by using a transformation matrix T composed by

generalized eigenvectors (Definition 6). The transformation A =TJT™' then leads to the

equation e* =Te” T, which is much simpler to compute than the formula given in Definition

4 and can be used for any matrix A as it is stated in Lemma 1. First, it is necessary to provide the
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following definitions required to understand the proof of this lemma.

Definition 5 (Edwards and Penney 2001) For a matrix A e R"*", if the number A eC
and nonzero vector reC" satisfy: Ar=Ar, then A is called an eigenvalue of A and r its
corresponding eigenvector.

Definition 6 (Edwards and Penney 2001) If A € Cis an eigenvalue of matrix AeR""",
then a generalized eigenvector ueC" with multiplicity & associated with A satisfies:

(A -AI)*u = 0. Ordinary eigenvectors as on Definition 5 are obtained for k=1.

Definition 7 (Edwards and Penney 2001) A square matrix is in Jordan canonical form if
it has a block decomposition in which all diagonal blocks are Jordan blocks J, (i=1,..,m) and all

other blocks are zero:

J= . (4.13)

where a Jordan block J, is a square matrix in which all diagonal entries are equal to a single

eigenvalue A;, all entries immediately above the diagonal are one, and all other entries are zero:

A1 0
A1
J. = A (4.14)
S
0 A

If the dimension of J; is n; (i=1,..,m) then the dimension of J is n;+ny+...+np,

79



Definition 8 (Edwards and Penney 2001) A set of k-vectors {u,,u,,---,u,} is called
linearly independent when the equation o u, +a,u, +---+o,u, =0 is satisfied only by the

trivial choice of scalars o, =, =---=a, =0.

Lemma 1 (Khalil 1996) For any matrix A € R"*" there is an invertible matrix T such
that it is possible to find the following transformations:

i) A=TJT

ii) e* =Te"T™'
where JeC"*" is a matrix in Jordan canonical form andTeC"*" is a matrix composed by
generalized eigenvectors.
Proof: Part i. Refer to Gel’fand (1977) to see the proof of this part. There, it is also proved that
the generalized eigenvectors that compose T are linearly independent and they span R" .

Moreover, matrix T has the form

T=[uj,u;,,u;] (4.15)
where
u =[u, u, -- u;, | (4.16)
Uy,
W = uijz
iin;
(4.17)

u; denotes the group of generalized eigenvectors associated to the i™ Jordan block.
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u;; denotes the " seneralized eigenvector of the i Jordan block.
j J g g

u;;s denotes the element of the s™ row of the /™ generalized eigenvector of the i™ Jordan block.
j J g g

The generalized eigenvectors satisfy the following equations:
Ay, =Au,

Auij = kiuij +u, ., ,ifj>1

i1

Part ii. Using Definition 4 the expression for e*' is given by

oA _ i (AD)"
i k!

Solving for J in equation A = TJT™'
J=T'AT

Thus, now J? can be calculated as

(4.18)

(4.19)

(4.20)

J° =(T'AT)Y(T'AT) = (T'A)YTT " )(AT) = (T'A)I)(AT) =T 'A’T

In a similar fashion, J¥ is obtained as
J¥ =T 'A*T (for k=0 the expression J° gives A’ =1)
Therefore
JO* =3t =T'A*T=T"(AD)"T

Using Definition 4 the expression for ¢” can be written as

o i (Jn)"
i k!

Substituting (4.21) into (4.22) yields
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N (At) [ (AD*
Z =T (ZTJT (4.23)

=0 k=0

Using (4.23) the expression Te"T™' can be expanded as

TeJtT'zT[T‘[i(i?kj }T Z(At) (4.24)

From (4.20) and (4.24) it is proved that e* = Te"T™' m

Now it is possible to express x(t) in terms of the deviations from the equilibrium point of
the system. To obtain the trajectory equation x(t) two cases have to be considered. The first case
is when at least one of the eigenvalues of the Jacobian matrix of the system has real part equal to
zero. Trajectory equations of this type cannot achieve asymptotic stability (Khalil 1996). The
second case is when the Jacobian matrix has no eigenvalues with zero real part. These
trajectories can be shaped to attain asymptotic behavior, and therefore the equations for x(t) will
be derived based on this second case. The equations will be obtained by applying the results
obtained in Lemma 1 to the solution provided in Theorem 1, where the DE can be written as a
linear combination of the generalized eigenvectors associated with the eigenvalues of the
Jacobian matrix, as shown in the following theorem.

Theorem 2 Consider the system defined by x(t) = Ax(t)+b; x(0)=x,; where

x(t)eR", Ae R"*",be R, then the solution to this system can be expressed as

x(t) =[x, (t)],s=1,..,n

e RO . (_l)h_lBi,k+h—l tj_l At
X, () =x"+ ZZ oy + 0 [Wikjeis —(_ 1)‘6 (4.25)
j—D!

i=1 j=1 k=j h=1 )
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where
. th . . .
ujjs 1s the element of the s row of the generalized eigenvector u;; associated to the nonzero

eigenvalue of A A, e R, and a; R, Bij € R are constants, i=1,..,m; j=1,..,n;.

Proof: From Lemma 1 it is known that:
e™ =Te” T (4.26)

From Theorem 1 the solution to the linear system is given by
t
x(t) = e™x, + j e Ihdr (4.27)
0
Substituting (4.26) into (4.27)

t
X() = Te"T'x, + [ Te" VT bdr
0

=Te T 'x, + TeJtU e"”erT'lb (4.28)

0

Because the number zero is not an eigenvalue of A (from the hypothesis) then J is invertible and

from Lemma A.1 (see Appendix A):

(4.29)
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‘1/7\‘1 —1/7&2‘ 1/7\'3; (_l)ni_l/xni‘ _
1/7\41 —1/73l (_l)ni—z/xlii_l

where J;' =

0 1/,

Moreover, from Lemma A.2 the matrix exponential is given by

et 0
Jot
oM — e
0 eJmt
B 2 At -1 At |
te™ t e
Mt ekt '
2 (n, =1)!
n; -2 _Ajt
oMt et th e
Jit _
where e’ = (n,-2)!|,1=1,..,m
O e)»it

Calculating the integral in (4.28) and simplifying

x(t) = Te" T'x, + Te" |- (3 ") D) [T"'b
=Te" T 'x, + TI'(e" -=DT'b
=Te"T'x, + TJ'e"T'b-TI'T'b
=Te"T 'x, +Te"J'T'b-TJ'T'b

= Te"(T'x, +J'T'b)-TI'T'b
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Making

o f
J J
T'x, =| * | and T'b=| P (4.34)
o, B,
all Bil
o .
where o =| .” | and B} = B:Q are column vectors of constants associated to the i Jordan
(x‘m Binl
block. (4.35)
It therefore follows from (4.29) and (4.34) that
«] [3 0 8] [« +ar
J J—l J J J—l J
T'x, + 3T =| % |+ : 2| @t b (4.36)
@, | [0 I Bn] Lon+3.B,
Using (4.15), (4.32) and (4.36) the term Te™ (T*IXO + J'lT'lb) can be written as
e 0 || o +J,'B;
J,t J + J—l J m
TS SRR S we (o v B) (437)
' : i=1
0 e’ | ey, +JB,
Expanding the terms of the summation by using (4.17), (4.30), (4.32), and (4.35)
m m 0, n n—k+l (_1)b-13 k—j
ZuiJeJit(uiJ +Ji—1BiJ)=ZZZ o, + z (G B;,k+h—1 t ‘ em“i,j (4.38)
i=l i=l =l k= h=1 () (k—p!
j-1
After rearranging the terms of (4.38) around the common factor — then

J-Dn!
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m m n; n n;—k+1 _1 h-1 ] j—1
Z“ijeJit(aiJ +J;1'3ij): Oy + ) kBlﬁhhl LT —.t 1 ‘elit
i i i ) (J-D!

h=1

In view of Lemma 1, it is known that A = TJT™'. This leads to the expression
A'=TJ'T"

Multiplying both terms of the expression above by vector b yields
A'b=TJ'T'b

It is also known that the EP is determined by making x(t) = Ax(t) +b = 0, therefore
x“=—-A"b

Using (4.40) and (4.41) gives
x4 =-TJ"'T"'b

Substituting (4.15), (4.29), and (4.34) into (4.42) gives

J! 0 | B
J! J n
= uulnt] 0 P2 | S wyp:
0 b

Expanding the terms of the summation by using (4.17), (4.30), and (4.35)

Py (- 1)]'(51J
O ED) B

i=l j=1 k=l

From (4.37), (4.39), (4.42) and (4.33), it is clear that

o m 0 n n;—k+1 (_1)h—1 Bi’kJrh_l tj71 y
x(t) =x" + ZZZ{[aik + Z T}li,k—jﬂ me , }

i=1 j=1 k=j h=1

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

By expressing this equation in terms of each state variable x_(t) of vector x(t) it is proved that
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=

X (t)=Xeq+i ShN o _I_ni_zkfl(_l)h_lﬁi,kml 0 t! Ml
= kb | Q=R (O P (-1

Example 2 Consider the manufacturing supply chain presented in Example 1. Assuming
the same initial conditions and parameters shown in Table 4.1, obtain the trajectory equations for

the state variables of this system using the results of Theorem 2.

Solution: The model equations of this supply chain can be expressed as the linear system

x(t) = Ax(t) + b; x(0) = x,, where

Expected Demand(t) -10 0 O 200 0
x(t) =| Inventory(t) , A= 0 -3 1|b=| 0 x,=(50
WIP Inventory(t) r -1 -1 100 70

The real eigenvalues of A are: A, =-10,A, =—2,A, =-2; thus there are two Jordan blocks
(m=2); the first one of dimension n;=1 associated to eigenvalue A, and the second one of

dimension n,=2 associated to eigenvalues A,and A,. The Jordan canonical form is given by

-10 0 0
J=| 0 -2 1
0 0 -2
-64 0 0
The matrix of generalized eigenvectors is: Tz[u11 u,, u22]= -1 1 -1}.
7 1 0

The constants are found as follows:

o, 0
o, [=T'x,=|70
0y, 20
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B, -25/8
B, [=T'b=|975/8
B, 125

X, (t) Expected Demand(t)
Let x(t) =| x,(t) | =| Inventory(t)
X,(t) WIP Inventory(t)

The equilibrium point is calculated using (4.43), for m=2, n;=1, n,=2

inzj‘, (I)Jku ——&u Bzz Bz,lu _Bz,zu
T Wik (T ' 2.1 2,2
(h)" A, (9 ) A, Ay

i=l j=1 k=1

Replacing the values of the eigenvalues and constants in (4.45) gives

X, 20
x“ = x31|=]30
x5! 90

(4.45)

The variables Expected Demand(t), Inventory(t) and WIP Inventory(t) are calculated replacing

the corresponding values in (4.25), for m=2, n;=1, n,=2, s=1,..,3

o= ()

i=1 j=1 k=j

m n; n n; —k+1 -1 h-1 ] j
Expected Demand(t) = x;* + ZZZ{ oy + M Uikt (—
KB G

Expected Demand(t) = 20 + oc“+& u,e™ 4| oy, — L u,,e""
A )" A,

+(0L22 +%Ju211te (azz _%juzzleth

2 2

Expected Demand(t) = 20 —20¢ "' m

m n; n n; —k+1 (_1)}’_1B. tj_l 2
Inventory(t) = x5+ Y > > 4| oy + T W G-1)! e
2 G

= )

i=1 j=1 k=j
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1 (}\’2)2 }\‘2

B, Tt B, ot
+[0L22 +_k }umte 2 +(0L22 __k Jume 2
2 2

5¢710 . 325¢™ B 85¢ 't .
16 16 2

Inventory(t) = 30 + (ocn vL%Jumellt + [OLZI _ P + &]umew

Inventory(t) =30 —

m n; n n; —k+1 (_l)hfIB' tj—l
WIP Inventory(t) = x5 + Zz oy + $ U i3 ——e
i=1 j=1 k=j h=1 ) ’ (-

B 1 B B 2
WIP Inventory(t) =90 + [OLH +K_1: umek "] o, —ﬁ + }L—ZZI umek t

+ (0122 +—[i22 ]umteth + (0122 ——izz ]umelzt

2 2

35¢ ™ 355¢” 85e”'t

WIP Inventory(t) = 90 +
ventory(t) 16 16 2

The restriction of Theorem 2 is that requires the eigenvalues to be real numbers in order
to obtain a vector x(t) in the real space. However, knowing that the eigenvalues are complex
numbers (real numbers are a subset of the complex numbers with a zero imaginary part), it is
necessary to develop a state trajectory equation that considers all type of eigenvalues. In order to
do that, first it has to be proved that the eigenvalues, eigenvectors and constants of expression
x(t) occur in conjugate pairs when they are complex numbers. This is done in Lemma 2. This
facilitates the conversion of the state trajectory into an expression of pure real numbers as shown

in Theorem 3. This new expression obtained in Theorem 3 decomposes x(t) into several modes

of behavior (exponential growth, exponential decay, expanding oscillations, etc.) each
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characterized by an eigenvalue.

Lemma 2 Consider the system defined by x(t)=Ax(t)+b; x(0)=x,; where
x(t)e R", Ae R"*",be R"*'. If the complex eigenvalues of A, A_and A, are a conjugate pair
corresponding to the Jordan blocks J, andJ, respectively, then the following are conjugate
pairs:

)u,;andu,

i) o, ;and a, ;

Bz,j and Bz‘,j
i) L o+ S B 1)h B }, and ( LS 1>h 1BZ j“
= r)" = A

where a,; €C, B,; € C are constants defined as in Theorem 2, and u,; ,u,, ;are the
corresponding generalized eigenvectors of A, and A,
Proof: Parti. Let A, =c,+d,i, A,=c,—d,, u,;=p,;+q,; (4.46)
It has to be shown that u,; =p,;—q, i, j=1,..n,
Case for j=1
By equation (4.18)

Au,, =}\u,, (4.47)

Use of (4.46) for j=1 into (4.47) yields
A(pz,l + qz,li) = (Cz + dzi)(pz,l + qz,li)

Apz,l + qu,li = (Cz + dzi)(pz,l + qz,li)
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=c,p, teq,i+dp,i-dq,
=(c.p, —d.q,)+(.q,, +d,p,)i
Then
Ap,,=(c,p,,—d,q,,) (4.48)
Aq,i=(cq, +dp,)i (4.49)
Subtracting (4.48) minus (4.49)
Ap, -Aq,i=cp, ~dgq, ~-cq,i-dp,i
AP, —9.0)=(c,~dp,, —(d, +¢,q,,
=(c,; —d,,0p, —(=d,i’ +¢,i)q,
=(c,—d,Dp, ~(c, —d,Nq,i
=(c, =d, )P, —q..1)
It follows from (4.46) that A, =c, —d i, thus
AP, =900 =2 (P, —,00)
However, by comparing with equation (4.18) the term p,, —q, i 1s the eigenvector u,,
associated to the eigenvalue A ., therefore
U, =P, —q, ™

Case for >1
By equation (4.19)

Au,; =k, +u, g, (4.50)
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From (4.46) and (4.50) yields
AP, +q,) =(c, +d,D)P,; +d, 1)+ P+,
After some operations then
Ap,;=(c,p,;—d,q,)+P, (4.51)
AqZ,ji = (chZ,j + dzpz’j)i +q,. (4.52)
Subtracting (4.51) minus (4.52)
Ap,;—Aq,i=cp,;-dQq,;-¢q,i-dp,i+tp,; ~q,
After simplifying it is obtained
AP, —q,;)=(c, =dDP,; =4, ;) +P, 1~ i
It follows from (4.46) that A, =c, —d i, thus
AP, =4, ) =2 P, — 9, + (P51 — 4,10
However, by comparing with equation (4.19) the term p,; —q, ; is the generalized eigenvector

u, ; associated to the eigenvalue A, therefore

u,i=p,;—4q,i ™

J

W
WJ
Part ii. First, it has to be shown thatif T™' =| " ? (4.53)
W,
wz,l
J WZZ n
where w, = © |, w,; € C"are row vectors; then (4.54)
w
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W, A=Aw,

W, A=AW,  +W, ., ifj<n,
From Lemma 1-part i, it follows
A=TIT'
Rearranging terms
T'A=JT"'
W J, 0| w
w) A J, w)
W] Lo 5w,
[ wiA Jw,
W%A = Jzzwi then w)A =J w), z=1,..,.m (4.55)
wial Law

A1 0 |-
Wi Wi
’ A1
W22 A _ 7\,i Wz2
1
Wen Win
n, 0 2
which implies that
W, A=Aw, (4.56)

W A=W, + W, i j<n, (4.57)
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Similar to part i of this lemma, using (4.56) and (4.57), it can be shown that w,;andw, ;

conjugate pair, if A, and A, are a conjugate pair of eigenvalues of A

J
a’l
J
Theorem 2 shows that | * |=T'x,
J
a]Tl
a‘z,l
2 . .
where @) =| | is a column vector of constants associated to J,
az,nz

Substituting (4.53) into (4.59) yields

J J J
a, W WX,
J J J
a, | |W, | WX,
A . | Xg = .

J J J
o’m Wm meO

Thus
a =w'x,,ze{l,..,m} and @, =w.x,,z'c {l,..,m}-{z}
From (4.54), (4.60) and (4.61), it can be obtained

o, =W, X and 0, =W, X,

i arc a

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

From (4.58) it is known that w, ;and w, ; are a conjugate pair, then they can be expressed as:

wz,j = gz,j + Vz,ji ’ wz',j = gz,j - Vz,ji
Using (4.62) and (4.63) leads to
o,; =W, X, =8, X,+ VZ,jXOi

Z.
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z

0 i Wz',jXO = gz,jXO - VZ’jXOl

This means that a,; and o, ; are a conjugate pair too m

Similarly,
B
BJ
It follows from Theorem 2 that | "> | =T 'x, (4.64)
g
Bz,l
where B] = Bf’z is a column vector of constants associated to J, (4.65)
B,
Substituting (4.53) into (4.64) gives
Bi| | W WiX,
B || w | _[wx
. - . 0 — .
Bol [Wa WX
Thus
B, =w.x,, z€{l,..,m} and B, =w.x,, z'€ {l,..,m} - {z} (4.66)

Substituting (4.54) and (4.65) into (4.66) yields

Bz,j = wz,jXO and BZ‘,j = wz’,jXO

In a similar fashion that was proved that a,;anda,; are a conjugate pair it is possible to

conclude that 3, ;and B, ; are a conjugate pair too m

Part iii. Let denote ;1 € C the conjugate of ye C
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n,-k+1 lhl
[ a3 D o DB ) Byicsnot W,
= )"

Because A, , A, are conjugate pairs and by the property of complex numbers: (y)h = (S/)h
then
()" and (1,)" are a conjugate pair (4.67)

From (4.67) and because B, ., .,B, ., are a conjugate pair (part ii of this lemma) and by the

property of complex numbers: (% ) = y_l/ y_z, y, # 0 then
2

B, kn and Bz',k+hh—1 are a conjugate pair (4.68)

()" (*,)

From (4.68) and by the property of complex numbers: 6/ = cy, c=constant then

(_l)h_le,k+h—l ( l)h IBZ Jk+h-1
and
)" ()"

are a conjugate pair (4.69)

From (4.69) and because o, and o, are a conjugate pair, and by the property of complex

numbers: E y)= Zy then

n, —k+1 —1 h-1 n, —k+1 1 h-1
[a‘z,k + Z % sk T Z % are a conjugate pair
h=1 z h=1

(4.70)

From (4.70) and because u u,, ;. areaconjugate pair (part i of this lemma), and by the

z,k—j+1°

property of complex numbers: iyly2 )= y_1 y_2 then it can be deduced that
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0 —k+l h-1 n,—k+1 h-1

z _1 1 ‘

o, + M w,, o oand ot Y M W, area conjugate
= *,) = A"

pair m

Theorem 3 Consider the system defined by x(t) = Ax(t)+b; x(0)=x,; where
x(t)eR", Ae R"*",be R"™'. If matrix A has nonzero eigenvalues, then the solution to this

system can be expressed as

x(t) =[x, (t)],s=1,..,n

n; n g Ng .
Xs(t) — X:q + ZZZ{WUkstJ 1_Re(h; )t}+ Z Z { " Sil’l(Il’IlO\.q)t + eqjks )tjfleRe(Xq)t}
ieH,; j=1 k=j qeH, j=1 k=j

where

w. —Relo + n; —k+1 (_1)h71Bi,k+h—1 ui’k_jﬂ’s
ijks ik — (xi)h (J _ 1)'

R ( l)h IBq k+h-1 q k—-j+l,s
qk + Z h (N
h=1 Gg-n!

being ||z|| the modulus'® of ze C

xXs(t) denotes the state variable s of vector x(t), s=1,..,n
Ap and uy,; are the corresponding eigenvalues and generalized eigenvectors of the pth Jordan
block, p=1,..,m; j=1,..,n,

Re(z) and Im(z) mean the real and imaginary parts of ze C

¥ Given z=a+bi then |7 =+va® + b’
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n,—k+1 h-1
q -1
Rel | o, + E —( ) Bq};“h_l LU
h=1 (xq)
0, = arctan

q n, —k+1 h-1
e D7 Byiina
—Im[[och + hZ::‘ —(Kq)qh LI

H; is a set of Jordan blocks J; such that Im(%;) =0

, expressed in radians

H; is a set of pair of Jordan blocks {J ,J } such that Im(Aq) # O, where g denotes the
conjugate pair of eigenvalues A, and A, i.e. one index g represents two eigenvalues.
Therefore, Re(A,) =Re(r,) and Im(A,) =Im(A,)

Proof: Dividing equation (4.25) in two parts associated to sets H; and H-H;:

icH, j=1 k=j h=1

AN " D" B o
Z {( 1k+ z (7\’) Jui,k_jﬂjsme } (471)

ie{H-H;} j=1 k=j h=1

R X & (_l)h_lBi,k+h—1 tj_l_ At
R 0 3 L N O e T

where H; is defined as in the text of this theorem and H is the set of indexes that represent all the

Jordan blocks of matrix J; thus H={1,..,m}.
All the terms in the first summation of equation (4.71) are real numbers (which are a subset of
the complex numbers); thus, summation

n, n;—k+1 _1 h-1 ) j-1
ZZZ{[%( + > %jui,k_ms ﬁem} is equivalent to
i J=U

icH, j=1 k=j h=1

ieH, j=1 k=j

n n; n;—k+1 (_l)h_IBi,k+h—l Ui s i1_Re(h, )t
ZZZ{R{(%H = J(j—m ]t e )} (4.72)
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Now it is necessary to obtain an expression in terms of pure real numbers for the complex
numbers in the second summation of equation (4.71) (whose imaginary part is different from

Zero).
Sets {H-H;} and H, (as defined in the text of this theorem) point the same Jordan blocks; thus,

the cardinality of {H-H;} is twice the cardinality of H,.

For any index g € H,, the conjugate eigenvalues represented by ¢ as can be expresses as

ng—k+l (_1)h716 ng—k+1 (_1)h—1B
Also, as the terms | o, + z % and | o + Z ————4L | are conjugates
= (Aq) b1 (Aq)

(by Lemma 2), the following terms can be written them as

n,—k+1 h-1
« (D Bq kehot | Yqk—j+1
o, + ; S —f g ]
D W G T TR S

n_.—k+1 h-1
4 (D" Bysn-t |Ugrjens A
o, + . .’ >~ =1. = g . sl
i Z (k)" (-nr e T

Using the conjugate terms defined above, the summation

n; n; n; —k+1 _1 h-1 ) j—1
z ZZ{[aik + Z Mjui,k_mﬁﬁex‘t} can be expressed as
J_

h
ie{H-H,} j=I k=j h=1 A) 1)!

g D4 . oy
Z ZZ {(quks + gqjksi)e(cqmql)ttj_l + (Fys — gqjksf)e(cq dql)ttj_l}

qeH, j=1 k=]

q q
A t d,it,j— A t —d 1t i—
- Z {(quks +gqjksz)eCq et 1+(qukS —gqjksz)ec“‘ e 't 1}

=
m
jus)
)
—
Il
—_
~
1
—
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By Euler’s formula (Spivak 1967) it is known that e” = cos(y) + sin(y)7 ; thus replacing this

formula in the expression above:

-y ZZ{( £ + Bqed)e™ 7 (cos(d, 1) + sin(d )7 )+ (F gqjksf)e%‘ti-l(cos(—dqt)+sin(—dqt)f)}

qeH, j=1 k=j

-y zz{( £ + 8 )e T (cos(d, 1) + sin(d, 0)7)+ (£, — gyl)e ™ (cos(d, t) — sin(d t)l)}

qeH; j=1 k=j
Simplifying:
< cqt j-1 .
= z {e t (qujks cos(d t) —2g sm(dqt))}
qeH, j=1 k=]
- {2e' 7 (£, cos(d, t) — g, sin(d, 1))} (4.73)
qeH; j-1 k=]

. f jks
Making 0, = arctan| —* then

- gqjks

sin(0,,,) = fa and cos(0,,,) = _ Bais (4.74)
V) + ()’ V) + (2 )’

Multiplying and dividing (4.73) by \/ ( quS) + (gqjks)2 and replacing the terms of (4.74)

-y 22{2\/&%1{5) +(gge) €'t l(sm(eqjks)cos(dqt)+cos(9qjks)sin(dqt))}

qeH, j=1 k=j

= ZZ{N( fe)’ +(g)” €7t sin(d t+9mk5)} (4.75)

qeH, j=1 k=j

It is known that
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\/(quks)2 + (gqjks)2 = qujks + ikl

ng—k+l  1yh-1
oy + Z (-1 th,km—l uq:k—j+1,s
=R ON G-D!|

Also, it is clear that

nq—k+l (_l)h—IB . u -
¢, =Re(d,),d, =Im,), £, =Re| | oy + Z LR |2 and

h=1 ()" (G-n!
ng—k+l (—l)h_qu,kJrh—l Yqk-jris
s = Im[{aqk + hZ:l: )" ] G-1)! } (4.76)

n,—k+l1 h-1
e D" By
Rel|a, + - L e u :
[( gk ; (}\‘q)h q.k—j+Ls
n,—k+1 h-1
‘o D7 By
[[ qk hz; (kq)h q.k—j+1,s

ng okl 1yh-l A
Oy + Z D th’“h_l uq_’k_”l’s =V, and replacing (4.76) in (4.75) it follows
=RON G-Dt|

f jks
Thus, 0, = arctan| —=— | = arctan

- gqjks

Making 2

that:

D Qi n‘_kﬂ(_l)hilBi,km—l t! Mt _
% ZZ{ % T] (-0t }

ie{H-H,} j=I k=] h=1

> 35 i sinlimen e+ 0, e 4.77)

qeH, j=I k=)

n;—k+1 -1 h-1 ) o
From (4.72) making w, = Re[(oaik + D" Pusonr | Bisosons

= : and substituting this term
h=1 *) J-D!

and (4.77) into (4.71) it is demonstrated that
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nq n

X, =x7"+ Zii {Wijkstj_leRe(k')t }+ °‘ {quks sin(Im(kq )+ O )tj_leRe(xq)t} m

ieH; j=1 k=j qeH, j=1 k=j

Example 3 Consider the manufacturing supply chain presented in Example 1.
Considering the same initial conditions and the parameters shown in Table 4.2, obtain the

trajectory equations for the state variables of this system using the results of Theorem 3.

Table 4.2. Parameter values for the supply chain of Example 3

Parameter Value Unit

Demand 200 Units
Production Delay 1 Weeks
Shipment Delay 1 Weeks
Desired Inventory 100 Units
Production Adjustment Time 1 Weeks
Time to Average Demand 1 Weeks

Solution: The model equations of this supply chain can be expressed as the linear system

x(t) = Ax(t) + b; x(0) = x,, where

Expected Demand(t) -1 0 0 200 0
x(t) =| Inventory(t) ,A=10 -1 1| b= 0 |,x,=|50
WIP Inventory(t) I -1 -1 100 70
The eigenvalues of A are: A, =—-LA,=-1-7, A, =-1+1 (4.78)

Thus, there are three Jordan blocks (m=3) of dimension n;=1 (i=1,..,3) associated to each of the

-1 0 0
eigenvalues. The Jordan canonical form is givenby J=| 0 —-1-7 0

0 0 —1+7

The matrix of generalized eigenvectors is:
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1
T:[un Uy “31]:l
0

The constants are found as follows:

o, 0
o, |=T'x, =|35-251
| ay, 35+251
B 200
B, |=T'b=|50+100i
Bs) 50 — 1007

The following terms are obtained as follows:

-200 0 0

oy +& u, =—2001, | a, +ﬁ u, =| 50-407 |, | o, +& u, =| 50+407
7\’1 7\‘2 A 7\’3 A
0 —40-50: —40+ 501
(4.79)
-200 0 0
%un -200 |, ﬁu21 =| 25-751 |, &un 25+ 751 (4.80)
: 0 ? ~75-251 ’ ~75+25i
X, (t) Expected Demand(t)
Let x(t) =| x,(t) | =| Inventory(t)
X5(t) WIP Inventory(t)
The equilibrium point is calculated using (4.43) and (4.80), for m=3, n;i=1, i=1,..,3.
m 1 i- k
_Zzz - k+1u ik =_&“11 _&“21 _&“31 (4.81)
i=l j=1 k=1 (7\‘ )J 7\‘1 7\'2 7\'3

Substituting the values above in (4.81) it is obtained
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From (4.78) it is known know that H, ={l},H, ={2}. Variables Expected Demand(t),
Inventory(t) and WIP Inventory(t) are calculated substituting the values above in the equation of
Theorem 3, for n;=1, ns=1, s=1,..,3.

Calculating Expected Demand(t)

Expected Demand(t) = x;* + Zii {Wijkltj—leke(x,)t}

ieH, o1 k=j
Ng Ny

+O {qukl sin(hn(kq )t + 0 HeRC(kq)t}
4ety 11 ko)

Expected Demand(t) = —200 + w,,, """ + v, , sin(Im(L,)t + 0,,,, Je"**"

where

Wi = Re(anum +%u111j =-200

1

f,,=0,g,,,,=0=6,,,, = arctan(AJ = arctan(0)=0
~8amn

Vol = 2‘\/ J[“21112 + gzm2 =0
Thus,

Expected Demand(t) = 200 — 200 m

It can be verified that

Expected Demand(0)=200—-200=0
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Calculating Inventory(t)

Inventory(t) = x5 + Zii {wijkztj—leRew)t}

ieH, j=1 k=]

+ Z ii {qukz sin(Im(?»q)t +60, )tj‘leke(kq)t }

4ty 1 ke
Inventory(t) =150+ w,, ,e" " + v, , Sin(ImOVz)t +6,1 )eRe(M)t

where

Wi = Re(anunz + %unzj =-200

1

f51,=50,8,,=-40=0,,, = arCtan(ﬁJ = aI‘Ctan[%) =0.8961

— 812

Vo = 2Eos” + gy’ = 128.0625

Thus,

Inventory(t) = 150 — 200e ' +128.0625 ¢ ' sin(— t +0.8961) m
It can be verified that

Inventory(0) = 150 — 200 + 128.0625 sin(0.8961) = 50

Calculating WIP Inventory(t)

WIP Inventory(t) = x5! + Zii {Wijk3tj’leRe(”')‘}

ieH, j=1 k=]

+ Z nzq nz“ {quk3 Sin(Im(kq )+ 0 )tj—leRc(xq)t }

qetl, 71 k=]

WIP Inventory(t) =150 + aneRe(kl " Vous Sin(Im(kz)t +0,,5 )eRe(}»Z)t
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where

_ By _
Wiz = Re(anum +Tu213] =0

1

)5 =-40,2,,,=-50=0,,; = arCtaﬂ(@J = arctan(%j =-0.6747
— 813

Vars =24 Ery1 + Gons” = 128.0625

Thus,

WIP Inventory(t) = 150 + 128.0625 ¢~ ' sin(— t — 0.6747) m

It can be verified that

WIP Inventory(0) = 150 +128.0625 sin(— 0.6747) = 70

From the state variables equations the solution of the system is obtained

Expected Demand(t) (200 —200e 1)
x(t) =| Inventory(t) =[ (150 200t +128.0625 ¢ ' sin(— t + 0.8961)) | m
WIP Inventory(t) (150 +128.0625 ¢ U sin(— t —0.6747))

4.2.2. Conditions for linear stability
In this section the concept of ADE is applied in order to achieve stability of linear
systems. It is demonstrated that if ADE converge then the system is asymptotically stable. In
order to do that, first, it is proved in Theorem 4 that the convergence of ADE assures the
convergence of the state variable trajectory to the equilibrium point.

Theorem 4 Consider the system defined by x(t) = Ax(t)+b; x(0)=x,; where
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x(t) e R", x(t) = [xs(t)], s=1,.,n;AeR"*",be R"*'. The state variable x, is asymptotically

stable (around the EP x*), if ”xs(t) —x%|dt converges.
0

dt converges then the

Proof: As initial step, it will be proved by contradiction that if J.|xs(t) —x
0

real part of all the eigenvalues of A has to be negative. (4.82)
Thus, assume to contrary that there is at least one eigenvalue of A with a real part greater than or
equal to zero.

Recalling the following equation for x4(t) from Theorem 3

X, =x"+ Zii {Wijkstj_leke(ki)t }+ > ii {quks sin(lm(kq)t +0, )tj_leRe“q)t}

ieH, j=1 k=j qeH, j=1 k=j

After rearranging terms

nqn

q {quks sin(Im(kq)t + quks)tj_leRe(kq)t}

=1 k=j

X, (t)—x = Zii {Wijkstj_leRe(xi)t }+

ieH, j=1 k=j qeH,

—

(4.83)

Taking absolute value in both sides and rearranging terms again

Xs(t) - X:q

Zii {WijkstjileRe(kl)t }+ Z ii {Vq_iks Sin(ImO»q)t + 0 )tjleke(xq)t)( =

ieH, j=1 k=j qeH, j=1 k=j

By the property of absolute value: ||a| - |b|| <la+b|

< ‘xs(t) -x

z ii {quks Sin(ImO»q)t + 0 )tileRe@q)t%

qeH, j=1 k=j

ieH, j=1 k=j

Applying the inequality property (- fa,|< —|Z ai|) to the second summation
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Zii{wﬁkst“eh“‘)w— Z S Vgiks sm(Im(k )t+9mks)tj 1gReHa)t <‘Xs(t)—xg’q

ieH, j=1 k=j qeH, j=1 k=j

(4.84)

By applying the property: |sin(t)|<1,Vt e R to the second summation

n n . N
z ii‘vqjks sin(Im(kq)t + eqjks)tj—leRe(xq)t < z ii“’qjkstj_leww

qeH; j=1 k=j qeH, j=1 k=j

tj_leRe(an

Because v >0,Vt>0 then the absolute vale can be removed from the second

summation
g N Ng Mg N
R t 1 R t
IPHI I CORTEEIN CECL D 35 3) ST
qeH, j=1 k=j qeH, j=1 k=j

Multiplying by (-1) both terms

n n

=Y IS e <= 5SS sin(Im(n, )t 0, e (4.85)
qeH; j=1 k=j qeH; j=1 k=j
From inequalities (4.84) and (4.85) it follows
Zii{wﬁmﬂ*e“ew)‘— > izq{vqjkstj-le‘“‘“”)(s [x, (1) - x2* (4.86)
icH, j=1 k=j qeH, j=I k=j

o
a

Making h(t) =[x (t) — x| and g(t) =

n n
J 1 Re(x )t j—1_Re(Aq)t
T i ﬁ vt e
qeH,

ieH,; j=I k=j j=I1 k=j

satisfies the hypothesis of Lemma A.3, i.e. g(t) and h(t) are continuous functions on [0,), and
0<g(t)<h(t).

Integrating g(t) from zero to infinity
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o
o

jg(t) dt_j

0

n n
j-1 Re(l )t j=1_Re(rg)t
DRI e at
qeH,

ieH; j=1 k=j j=1 k=j

By the property of absolute value: ﬂw(t) dt| > Uw(t) dt‘

jgom>j

0

ZZZ{ Ukst] e )t>{ Z quzq:{qukstheRe(kq)t}dt

ieH, j=1 k=j qeH, j=1 k=j

By the property of integrals: j (a—-b)dt= ja dt - jb dt

q g

Ig(t) dt > { Vot {i1aReC-q )t}dt

J

0

123 SR PR Do)

ieH; j=1 k=j 09eH; j=1 k=j

Applying the property: I |w(t) dt| > Uw(t) dt‘ to the first summation and by the property of

integrals: J'(Z ai)z ani)

=

ja0m>

S3$ e al

ieH,; j=1 k=j

ng n 0
i—1 _Re(A
303 3 ISR
qeH, j=1 k=j

=] L0

Taking the constant terms out of the integrals

j g(t)dt> (4.87)

ZZZ{ Uksjtj gReho)t dt}

ieH, j=1 k=j

>SSl

qeH, j=I k=]

By Lemma A.5 and the assumption that there is at least one eigenvalue of A with a real part

greater than or equal to zero then there is at least one integral in (4.87) that diverges. This implies

that [g(t)dt> .
0
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Buy using part ii of Lemma A.3, it is concluded that I h(t)dt = Hxs(t) —x1dt diverges because
1] 0

_[ g(t)dt diverges. But this is a contradiction to the hypothesis that says that .|.|xs(t)—x:°‘ dt
0

converges. Therefore, the assumption that the real part of at least one eigenvalue of A has to be
greater or equal to zero is false.

Now it will be shown that if the real part of all the eigenvalues of A is negative then

I;irg(xs(t) —x)=0 (4.88)

Taking limits to both sides of equation (4.83) gives

Lim(xs(t)—xz ) lezzz{ Wit el )t}+

=0 ieH, j=1 k=]

Lim ZZZ{ Viks sm(Im(% t+0, )tJ 1Rt )t} (4.89)

quzjl k=j

By property of limits the first limit can be expressed as ZZZle{ ti-tgRet )‘}

ieH, j=1 k=]

Uks

By using the L Hospital rule and considering that Re(A,) < 0, Vi € H, the first limit in (4.89) is

calculated as follows
-1

ZZZle{ et e )t} ZZZle —lfzkes(x )

ieH, j=1 k=j 1eH]]1k]t*>ooe

Taking the first derivative to the expression inside the limit

(G-Dt"”
Uks
- Zzz Hw —Re(A, )efRe(}L Ot

ieH, j=I1 k=j
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Taking the second derivative

_ ljks(.] l)(.] z)tJ -
ZZZ Re(h )]2 —Re(A;)t

IEHIJlkJ

Continuing in this fashion after taking (j-1) derivatives yields

. Wy (= D!
zzlem{ 1JkstJ 1 R(}L) } zzz im Re(?f)](j'l) e*Re(M)t -

{eH, j=1 k=j 1EH|_|lkjt_)w

Then Lim ZZZ{ Wt e )t} 0 (4.90)

1EH1JlkJ

The calculation of the second limit in (4.89) requires the use of the sandwich theorem. The

function of the second limit can be bounded as follows by using (4.85):

-2 ii{vmkstflemuq)t}s > ii{vqjks sin(Im(%, )t + quks)tj“eRe(xq)t}g

qeH, j=1 k=j qeH, j=1 k=j

g Dg
ZZZ {V N tj—leRe(xq)t}
qjks

qeH, =1 k=j
Similar to the results of (4.90) and considering that Re(A) <0, Vq € H, it is known that

il - 3 85 bl 3 55

t t
7P\ geH, j=l k=] 7% qeH, j=1 k=

Then by the sandwich theorem

Lim Z ZZ{ Veiks s1n(Im(k t+ 0, )tJ gReta )t} (4.91)

t
_)OOqEHZJIkJ

Substituting the results of (4.90) and (4.91) into (4.89) gives Lim(x, (t)—x*)=0
t—>
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dt converges then Lim(xs(t) -x! ) =0
t—o0

From (4.82) and (4.88) it is clear that if ”Xs(t) -x
0

(4.92)

Finally, Definition 2 will be used to prove that if HXS (t)—x1
0

X, 1s stable. (4.93)

X, (D) —x¢*
0

In view of (4.82), 1

part.

By applying properties of absolute value in (4.83)

. -1, Re(Aq)t
V giks s1n(Im(kq)t +0 s )tJ e

ieH, j=I k=j qeH, j=1 k=j

Xs(t) - X:q

By applying the property: |sin(t)| <1,Vte R to the second summation

X, =X < T3 Y w1 TSy e (4.94)
ieH, j=1 k=j qeH, j=1 k=j
By using calculus it is derived that the maximum value of the function f(t) =t""'e**""is in
IS
L =207D Reiy<0. Thus, £(t) = 7™ < £ty =| —U=D | i (4.95)
" Re(h) Re(1;)

From (4.94) and (4.95), it follows

-0-D 1) oD 4
Vi) Re )

X, () =x{"| <

DHI

ieH, j=1 k=j

wl [=g-n] o
ZP:‘ZI JV‘”‘“{Re(xq)} )

k=j
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Making M, = Zzz

ieH, j=1 k=j

Q=D conl, sl [=G-D] o
”k{R(M} Z - k{Re@q)} :

[x, (0= X"

then ‘Xs(t) —-xJI<

is bounded, implying that x_is stable.

From (4.92), (4.93) and Definition 3, it is proved that the state variable x_ is asymptotically

stable around the EP x* if .[ |Xs(t) -x
0

4.3, Stability of Nonlinear Systems

The most difficult task for studying the stability of nonlinear systems is not having a well
defined structure of the system like in the linear case. This problem can be overcome by the
linearization of the system at infinite number of operating points. Using this approach it is
obtained a linearized model, as presented in Definition 10, which makes easier to apply the

conditions for stability derived for the linear system.

4.3.1. Linearization of a Nonlinear System
The linearization of the nonlinear system equations at an operating point can be
accomplished using the Taylor series expansion, as it is shown in Definition 9.

Definition 9 (Khalil 1996) Consider the nonlinear system defined by equation
x(t) = f(x(t)); x(0)=x,; where x(t)€ R";x(t) = [xs(t)], s=1,..,n; and function f is defined by
f:R" > R";f(x(t)) = [fs(x(t))], s=1,..,n. The linear approximation z(t) for the st component

of vector X(t) around the operating point X, =[Xg,, Xq,,"**,Xg,] 1S given by
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i

2.(0) fs<xe>+i{2fs

(z, — Xei)} (4.96)

X=X,
A nonlinear system can be approximated by linearizing the model around several
operating points as shown in the following definition.
Definition 10 Consider the nonlinear system defined by x(t) = f(x(t)); x(0)=x,; where
x(t)e R";f: R" > R". The linearized model z(t)of system x(t) around m operating points

{z(ty-1), p=1,...m; to<t;<...<tn} is represented by the following equations

Az(t)+b,t, <t<t; Initial condition : z(t,) = x(t,)
A z(t)+b,, t, <t<t,; Initial condition : z(t
it)=4"" (+b2, ? ) () (4.97)
A z(t)+b_,t  <t<t; Initial condition : z(t,)
where z(t,) = Limz(t)),p=1,..,m-1 (4.98)
tot,

This definition implies that trajectory x(t) is been approximated by trajectories z(t) of p
linear systems. Note that z(t) is a continuous piecewise function. This is because z(t) is

differentiable and therefore continuous in [t, ,t,),p=1,..m, and condition (4.98).

Example 4 Consider the system defined by Xl=f—;(—0.1x2+1.1)—§—(‘)e("2_“);

x,=0.01x,; x,=(12,2). Obtain the linearized model z(t)for the operating points:
z(t=0),z(t=1).

Solution: To use equation (4.96) it is necessary to determine the initial values and first
derivatives for function f. The following calculations are required to linearize the model around

an operating point.
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For the component f(x,,x,) =X, = i(—sl(—O.lx2 +1.1) —;—(l)e(xf“) , it results:

of, _ (<0.1x, +1.1) ™™
ox, 15 30

ﬁ __ 0.1x, _ﬁeuz—n)
0X, 15 30

Using equation (4.96) to calculate component z,(t) yields

2, (0) = £,(12,2) + 20 (2, -12)+ 0 (2,-2)

Xilx=(12,2) 0%, lx=(12,2)
Replacing values and simplifying:
z,(t)=0.72+0.06(z, —12) + (-0.08)(z, — 2)
z,(t)=0.06z, —0.08z, +0.16 (4.99)

For the component f,(x,,x,) =%, =0.01x,, it results:

% ~001
0X,
o,
0X,

Using equation (4.96) to calculate component z, (t)

7.1 = £,(12,2)+ 2 (2, —12)+ L2

X1 lx=(12,2) 0X21x=(12,2)

(z,-2)

Replacing values and simplifying:

2,()=0.12+0.01(z, —12) + 0(z, — 2)
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z,(t)=0.01z, (4.100)
From (4.99) and (4.100), z(t) can be expressed as the linear system
Z(t)=Az(t)+b,,0<t <1 (4.101)
where

A, = {0.06 —0.08} b = {0.16}
0.01 0 0

In order to find the second operating point, it is required to solve (4.101) and obtain z(t =1). The
solution trajectory is given by equation (4.44). The terms of this equation are the following:

The eigenvalues of A; are: A, =0.04,A, =0.02, which are different and implies a Jordan

canonical form decomposition of two Jordan blocks.

. . . : 0.9701 0.8947
The matrix of generalized eigenvectors is: T = [u11 u,, ] =

0.2427 0.4467

The constants are:
_an B 16.5188
Lo, || —4.4986

By | [ 03308
B, | [-0.1798

For m=2, nj=n,=1 equation (4.44) is simplified as

z(t) = eq+z(aﬂ+—J 4 (4.102)
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Substituting the terms above in (4.102) yields:

24.0546 "™ —12.0546 "™
6.0186¢"" —6.0186 "™

z(t) =
Fort=1, z(t =1) =(12.74,2.12) . The following calculations are required to linearize the model

around the operating point (12.74,2.12).

By using equation (4.96) component z,(t) is calculated as

o (z, —12.74)+ﬁ (z,—2.12)

z,(t)=1,(12.74,2.12) +
11x=(12.74,2.12) X, x=(12.74,2.12)
Replacing values and simplifying:
7,(t)=0.75+0.059(z, —12.74) + (-0.085)(z, — 2.12)
z,(t)=0.059z, —0.085z, + 0.18 (4.103)

By using equation (4.96) component z,(t) is calculated as

7,0 = £,(12.742.12) + 0 (2, ~12.74)+ O

0%, [x=(12.74,2.12) 0%, [x=(12,2.12)

(z,—2.12)

Replacing values and simplifying:
z,(t)=0.1274+0.01(z, —12.74) + 0(z, — 2.12)
z,(t)=0.01z, (4.104)
From (4.103) and (4.104) z(t) can be expressed as the linear system
Z(t)=A,z(t)+b,, 1<t (4.105)

where
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0.059 -0.085 0.18
A2 = , b1 =
0.01 0 0

After combining (4.101) and (4.105) into one equation it is obtained the linearized model

0.06 -0.08 0.16
z(t)+ 0 ,0<t<1

3 = 0.01 0 .
~110.059 —0.085 0.18
z(t) + <t
0.01 0 0

4.3.2. Conditions for Nonlinear Stability
In this section, it is extended the stabilization concept of ADE applied for the linear
system to cover the nonlinear stability as well. Theorem 5 shows that the condition for the ADE
convergence of the nonlinear system (approximated by a linearized model) can be derived from
the convergence of an infinite series of linear systems. This condition states that all eigenvalues
of the m™ linear system have to be negative when m goes to infinity, which assures asymptotic

stability of the linearized model and therefore asymptotic stability of the nonlinear system.

Theorem 5 Consider the system defined by x(t) =f(x(t)); x(0) =x,; where x(t) € R";

f:R" > R";x(t)= [xs(t)], s=1,..,n. The state variable x_ is asymptotically stable (around the

EP x{*), if ﬂxs(t)—qu dt converges.
0

Proof: First, it will be proved by contradiction that if I ‘xs(t) —x%dt converges the state variable
0

X, is stable around the EP x*. (4.106)

Thus, it 1s assumed to contrary that state variable x, is not stable, which by Definition 2 means
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that |xs(t) —x:1 1s not bounded, 1.e.

VM, 3t,, such that|x, (t) -

Making y (t) = x(t)—x{?, thus

VM,, 3t,, such that |y (t,,)| > M, (4.107)

Expressing J-|ys(t)| dt as Riemann sums (Yuen and Yuan 2000)
0

0

j (D] dt =

0 i=1

ys(C )AL, | (4.108)
where At, =t,—t_,and ¢, e[t,t,]

By hypothesis it is known that the integral Hxs(t) -x!
0

there is a number W, such that I |Xs(t) -xg
0

Expressing the above statement in terms of y (t): there is a number W such that
!
From (4.108) and (4.109) gives

i Y ()AL S W, = |y (e)AL] < W, Vi= |y (c)| <

= |

y, (D] dt < W,,Vt >0, Vs (4.109)

(4.110)

Because “t” is a continuous variable from 0 to infinity, then there is an index i=b such that

= t,, - Moreover, condition (4.110) holds for every c, and particularly for ¢, =t,,, therefore
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4.111)

YS M)| - |Atb|

Condition (4.107) holds for every M, and particularly for M, = W,

, thus
At,

W,
|YS(tM)| |Atb|

But this is a contradiction to the statement in (4.111). Therefore, the assumption that the

equilibrium point x;*is not stable is false.

Second, it will be proved that if I |Xs(t) —x{!
0

Lin (xs(t) - xsq): 0

(4.112)
In order to do that, the nonlinear system has to be linearized around m operating points. It is
important to note that the equilibrium points of these linear systems do not have to coincide with
the equilibrium point of the nonlinear system. However, it will be shown that when the system is
asymptotically stable the equilibrium points of the linear systems tend to converge to the
equilibrium point of the nonlinear system when t goes to infinity.

Making the transformation y (t)=x.(t)—x{*. The equilibrium point for the new nonlinear

system will be the origin, i.e. x{* =0, and therefore

.

if]'o

0

x, ()~ x

”ys (t)| dt converges (4.113)
0
Applying Definition 10, it is possible to approximate y(t) by z(t) after linearizing the system
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y(t) around m operating points {z(t,.1), p=1,..,m; to<t;<...<tyn} as follows:

Az(t)+b,t,<t<t,
() = A,z(t)+ bz., t,St<t,

A z(t)+b .t St<t

m> "m-1 —

After considering At =t —t , =constant=h>0, p=1,.,m, the interval of validity for each

linear system is [t, ,t , +h).

p-1°

Now the integral I|ys(t)| dt can be calculated as the sum of the integrals of m linear systems
0

when m goes to infinity as follows

T y,(0)]dt = Ir;irgitiﬁl;s(t)| dt (4.114)
0 =l g,
ti+h m
Making ¥, = [|z,(t)|dt and S, =D ¥, (4.115)
i i=l
Replacing Sy, in (4.114) results
T y,(t)]dt = Lim§, = i\{g (4.116)
0 i=1

From (4.113), it follows that _[|ys(t)| dt converges and therefore from (4.116) it is obtained that
0

Z‘I’i converges also. Therefore, Lim'¥_ =0 (from Lemma A.4)

° m—» oo
i=l1

Using (4.115) yields:
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tno+h

Lim j z,(t)|dt =0 (4.117)
[

1

From (4.86) it is known that for the system z=A_ z(t)+b_,t ,<t<t_, the following
inequality holds:

n; n; q
j=1_Re(hjm )t j—1_Re(hgm)t
SO et ] PSS e <

icH, j=1 k=] qeH, j=1 k=]

o

(4.118)

z,(0) - zg,

Note that all the parameters on the left-hand side of the inequality have also a subindex m,
denoting that they are dependant of the m™ linear model. In other words, each linear model p

(p=1,..,m) has its own parameters (constants, eigenvalues and eigenvectors).

By the property of absolute value |a - b| < |a| + |b| and by (4.118)

n; n; Ng Ng Re(ho )
-1 Re(Ajp )t j-1 e(Agm)t eq
T Wit = T Y S gt <[ 0+
icH, j=1 k=j qeH, j=1 k=j
Rearranging terms
n; n; Ng Ng Re(ho)
-1 Re(p)t 4 jm1 Re(hgm)t | _eq
YO ot DI 28| <[z
icH, j=1 k=j qeH, j=1 k=]

Integrating both terms of the inequality from ty.; to tp.;+th

tm +h +h tm +h

z3|dt< flz,(0]dt

t

J

m-1

o ( .
Zii {WijksmtjileRE(xlm ' ){ ) Z nzli {quksmtjileRe(x“"“ 't —

ieH, j=1 k=j qeH, j=1 k=j t

tmot m-1

Applying different properties of the absolute value and the integral results
tn +h

ZZZ Wiiesm J. tle" et — Zii Vgiksm

ieH, j=1 k=j t qeH, j=1 k=j

tmo+h tmo+h
1 Re(Agy )t

'[ti leReCham)t ¢ jz

t

m-1 m-1

eq
sm

dt

t

m-1
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tpn+h

tmo +h
Integrating by parts the integral jtJ’leRe(”‘"‘”dt is calculated as

[}

t c=0

m-1

ty+h c ¢ Re(kiy)h c
jtj—leRe(Mm)tdt — eRe(Mm)t, 4 Z n'( I)J o [(tm 1 + h) feCn) ( m—l) ]
c!Re(), )<

Let define

c!Re(n, )00

c=0

Rt )= et §° {nv( DTt +h) et <m_l)61}

Similarly

t c=0

tpy+h c c Re(?» am)h c
J‘tj—leRe(xqm)tdt Rl ,lz n!(— 1)J - [(t,, +h)e —(t,. )]
clRe(h,, )~

m-1

61, )= e § D M e (1, ]
ml o clRe(h,, )"

tn_+h
Evaluating the integral j

tnot

€q

z | dt

tn+h

|z

m-1

eq
sm

eq
sm

dt= h

V4
t

Substituting (4.120-4.122) into (4.119)

g

eq
ZZZ{ 1_|ksm m 1) z Z { qjksmG(tm—l) - Zsm h
ieH, j=1 k=j qeH, j=1 k=j

tyopth

< |le,

tn-t
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Taking the limit when m goes to infinity, and knowing that

(m > )= (t,, — )= (t > o) results (4.124)
le ZZZ{ 1_|ksm m 1) Z Z {quksmG(tm—l) le eq hdt
tm-1 7> icH, j=1 k=j qeH, j=1 k=j
tpno+h
<Lim j 2, (1)) dt (4.125)
tn +h
However, by (4.117) it is known that Lim I|zs(t)| dt =0, and therefore the only way to satisfy

this condition is if the terms on the left-hand side of inequality (4.125) are zero.

ZZZ{ WiksmE . )i— Zii{vmksmG(th) , can take two values

The first term, L1m
tm 1eH1 =1 k=j qeH, j=1 k=j

-1

when t,,; goes to infinity: zero or infinity. The requirement for this term to be zero is that the
real part of all the eigenvalues of A has to be negative.

eq

is zero (because h>0). Therefore,

z:! =0when m goes to infinity, which coincides with the equilibrium point of the nonlinear
system y(t) that is also zero.

Following similar steps to (4.88-4.91) it can be shown that Lim(zs(t) - zzﬁl):
t—>o0

Considering that z;! =0 when m — o and (4.124) the previous expression can be written as
Lim(z (t))=0 (4.126)
t— 0

Because z(t) is as an approximation of y(t) and from (4.126) it is concluded that
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Lim(y,(1)=0 (4.127)

But it is known that y (t) = x (t)—x{*. Thus, taking limits to both sides when t goes to infinity
and from (4.127) gives
Lim(y, (1)) = Lim(x,(t) - x%)= 0 (4.128)
t— o t—o0

From (4.112-4.128) it follows that

0

ifj

0

X, (0 —x¢*

dt converges then Lim(xs(t) - X:q)= 0 (4.129)
t— o0

Using (4.106), (4.129) and Definition 3 it is proved that the state variable x, is asymptotically

stable around the EP x* if I |xs(t)—x:q dt converges m
0

In complex models where the EP is difficult to estimate, it can be easily added as one
more variable to calculate in the optimization problem. The following theorem guarantees that if

the ADE of a state variable converge to a variable a_then the value of a_ is the EP of the state

variable.

Theorem 6 Consider the system defined by x(t) =f(x(t)); x(0) =x,; where x(t) € R";

f:R" > R";x(t) =[x (t)],s=1,..,n.If T|xs(t)—as|dt converges then a_ =x*.
0

Proof: It will be proved by contradiction that if I |x,(t)—a,|dt converges then a = x*.
0

Thus, it is assumed to contrary that a_ # x{*. (4.130)

Making y (t) =x(t)—a,, thus (4.131)

125



0

dtzj

0

x,(t)—a, y,(t)|dt Vs implying that

|

if I X,(t) —a | dt converges then I
0 0

Y, (t)| dt converges

From (4.130) and (4.131) it is derived that y* =x{—a_#0 (4.132)

In view of Theorem 5, if _[ ys(t)| dt converges then Lim(ys(t)) =0, and this statement is satisfied
t—> o0
0

independently of the initial conditions of the system y(t) = f(y(t)) (4.133)

By Definition 1, if the system y(t) = f(y(t)) starts at the equilibrium point y{* then

y.(t) =y, Vt, and thus

Lim(y, (1)) = Lim{y:*)= y:* (4.134)
From (4.132) and (4.134) yields

Lim(y, (t))# 0
t— 0
But this is a contradiction to the statement in (4.133). Therefore, the assumption that a_ = x{" is

false m

There are situations where achieving the convergence of the ADE is close but it is not
totally obtained. This can happen when near the end of the time horizon the DE are small but in
an increasing rate. To help accelerate the convergence of the objective function, which initially is
expressed only in terms of the ADE (see section 3.1.2), these small DE have to be amplified.
This is done by raising them to the exponential power. By summing these values (associated to a

state variable) it is obtained a new term called accumulated exponential deviations from
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equilibrium (AEDE). The mathematical expression of this term is provided in Definition 11.

Definition 11 Consider the system defined by x(t) = f(x(t)); x(0) = x,; where x(t) € R";
f:R" - R";x(t)=[x_(t)],s=1,.,n. For the state variable x, the accumulated exponential

X, (0-x1]

deviations from its EP x* is defined as .[ e‘ dt.

0
Similar to the ADE case, the following theorem states that the AEDE convergence of a

state variable also guarantees the asymptotic stability of that variable.

Theorem 7 Consider the system defined by x(t) = f(x(t)); x(0) =x, ; where x(t) € R";

f:R" > R";x(t) = [Xs(t)] ,s=1,..,n. The state variable x_ is asymptotically stable (around the
EP x%), if _[ 0 gy converges.
0

[x, (0-x]

Proof: First, it will be proved that e is greater than or equal to the term [x_(t)—x;*

2

Vt>0.

By the property of the exponential function: ' > y(t), Vy(t) > 0

Making y(t) = ‘xs (t)—x*

>0,vt>0 it follows

‘Xs (t)_X:q

| > ‘Xs(t) -x!

,Vt>0 (4.135)

[, (0-x]

Making h(t)=e and g(t) = ‘xs(t) — x| satisfies the hypothesis of Lemma A.3, i.e. g(t)

and h(t) are continuous functions on [0,0), and 0 < g(t) <h(t).

From the hypothesis, it is known that Ih(t) dt = .[ e‘xg(t)_qu‘ dt converges (4.136)
0

0
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Thus, by using part i of Lemma A.3. and (4.136) then

x, ()~ x

J g(t)dt = I dt converges (4.137)
0 0

From Theorem 5 and (4.137) then the state variable x_ is asymptotically stable (4.138)

Finally, from (4.136) and (4.138), it is proved that the state variable x, is asymptotically stable

o0
. —x 4
around the EP x* if I o0 g converges m
0

128



CHAPTER FIVE: CASE STUDIES ANALYSIS AND RESULTS

This chapter applies the SADE methodology to several case studies. For each case study
it is provided a SD model that represents the structure of the supply chain, a description of the
problem, and a description of the business if the case study was created based on a real
manufacturing company (LSMC and PMOC models).

A general optimization problem, following the guidelines of section 3.1.2., is formulated
to test different scenarios and develop alternative stabilization policies. The analysis and results
of these experiments are presented to demonstrate the quality and robustness of the policies

obtained.

5.1. Case Study A: The Inventory-Workforce Model

5.1.1. Description
The Inventory-Workforce (I-W) model is the case of a manufacturing supply chain that
includes labor as an explicit factor of production. The purpose of this case study is to illustrate
how production scheduling and hiring policies can interact to generate instability in the SC.
Moreover, it is intended to illustrate how instability can feed back undermining trust among
partners in a SC and leading to behavior that worsens the instability. The goal of management is

to find a policy that maintains the finished goods inventory and labor at equilibrium.

5.1.2. SD Model

Saleh et al. (2007) developed a linear SD model for this supply chain by modifying
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Sterman’s original model (2000). This linear model is divided in two sectors: (1) the inventory
management sector and (2) the labor sector. These sectors are described and depicted below.

The inventory management sector (Figure 5.1) is represented by two state variables:
Inventory and Work in Process Inventory. The variable Work in Process Inventory represents all
the stages of the production process where intermediate inventory is created. The variable
Inventory represents the finished goods inventory. This model assumes that orders are filled as
they arrive and the ones that cannot be filled immediately are lost as customers seek other
sources of supply.

The labor sector (Figure 5.2) is represented by two state variables: Vacancies and Labor.
The stock of vacancies is the supply line or order of workers that have been placed but not yet
filled. This states that workers cannot be instantly hired. Hiring takes time: positions must be
authorized and vacancies must be created. The labor force is a stock of people, which is
increased by the Hiring Rate and decreased by the Quit Rate. This last rate includes voluntary

quits and retirements, excluding the possibility of layoffs.

Work in Process

=% vento = e Minimum Order
<Labor>——sProduction HFRA—! Production Shipment Processing Time
___» Start Rate Rate Rate
Productivity Adjustment
or .
<Standard / f Mcam:lf: (’:]'t‘:lrrll:g Customer
Workweek> Desired y Production ~ Order Rate
Production Adjustment from Desired Invento
Adj ustment ry
Start rat‘e\ ime Desired WIP Inventory Coverage
P Desired 4//4 \
<Customer Production Inventory Desired Safety Stock
Order Rate> Adjustment Time Inventory Coverage

Figure 5.1. I-W model: Structure of inventory management sector
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=——X——op Vacancie——%—0

Vacancy Vacancy Hiring Rate
Creation Rate \ Closure Rate ¢——— A N
A Time T Average Duration
Adjustment for verage 1ime 10 Of Employment
Vacancies Fill Vacancies Adjustment For
Labor -~
. Vacancy . Desired Labor Adjustment
Adjustment Time Vacancies Desired Time
<Labor> Labor
Desired Hiring
Rate

e Standard  <Degired Production
<Productivity> Workweek Start rate>

Figure 5.2. I-W model: Structure of labor sector

5.1.3. Current Policy and SC Instability

The set of parameters in Table 5.1 defines the current policy for this supply chain.

Table 5.1. I-W model: Parameter values for the current policy

Parameter Value Unit
Manufacturing Cycle Time 8 Weeks
Inventory Adjustment Time 12 Weeks
Average Duration of Employment 100 Weeks
Average Time to Fill Vacancies 8 Weeks
Labor Adjustment Time 19 Weeks
Vacancy Adjustment Time 4 Weeks
WIP Adjustment Time 6 Weeks
Minimum Order Processing Time 2 Weeks
Safety Stock Coverage 2 Widgets

At time 0, the system starts at the equilibrium points: 40,000, 1,000, 80 and 8,0000 for
the variables Inventory, Labor, Vacancies and WIP Inventory respectively. Customer orders are
arriving at the rate of 10,000 widgets/week. After the system remains in equilibrium for the first

five weeks, customer orders experienced a linear increment for the next twenty five weeks until
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reaching 20 percent of their original value, where they remain constant. As a result, Figure 5.3
shows sharp increases in the variables of interest: Inventory and Labor, follow by several

oscillatory fluctuations.

80,000
1,500
25,000

Widgets
People
Widgets/week

40,000
1,150
16,500

Widgets
People
Widgets/week

0 Widgets
800 People
8,000 Widgets/week

0 20 40 60 80 100 120

Time (Week)

140 160 180 200

Inventory

Widgets

Labor

People

Customer Orders

Widgets/week

Figure 5.3. I-W model: Behavior of variables of interest for the current policy
In the next section an optimization problem is formulated to determine a new policy that

can damp these fluctuations.

5.1.4. Optimization Problem
This optimization problem considers the simultaneous stabilization of the /nventory and
Labor state variables according to the equations described in section 3.1.2. Equal weights
(ws=0.5, s=1,2) were assigned to these two variables. The time horizon (T) considered was 200
weeks.
Let x;= Inventory, x,=Labor

Let a;=the new equilibrium point associated to the i state variable (i=1,2)

132



200

2
Minimize J(p) =Y {0.5 |
p s=1 0

x,()-a,| dt}

Subject to

x(t) =f(x(t),p) (This notation represents the SD model equations)

x," =[40000 1000 80000 80]

1 < Manufacturing Cycle Time < 8

1 <Inventory Adjustment Time < 50

50 < Average Duration of Employment < 150
1 < Average Time to Fill Vacancies < 50

1 < Labor Adjustment Time < 50

1 < Vacancy Adjustment Time < 50

1 < WIP Adjustment Time < 50

1 < Minimum Order Processing Time < 50
1 < Safety Stock Coverage < 50

10,000 <a; < 150,000

10 <a><1,000

5.1.5. Stabilization Policy

The stabilization policy is obtained after solving the optimization problem presented in
the previous section. The optimization algorithm was run at the fifth week using the following
settings: swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5,
iteration lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2. These settings were
obtained after performing some initial experiments using the empirical rules defined in Table
3.1. They will be used as the initial settings in the other case studies. The time to obtain the
optimal policy (after 150 PSO iterations and 1,393 PHC iterations) was 206 seconds.

The solution yielded the parameter values shown in Table 5.2. This table also includes

parameters a;, a; which are the new equilibrium points for the state variables of interest.
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Table 5.2. I-W model: Parameter values for the stabilization policy

Parameter Value Unit

Manufacturing Cycle Time 5.02 Weeks
Inventory Adjustment Time 2.53 Weeks
Average Duration of Employment 50.14 Weeks
Average Time to Fill Vacancies 1 Weeks
Labor Adjustment Time 1 Weeks
Vacancy Adjustment Time 1 Weeks
WIP Adjustment Time 10.96 Weeks
Minimum Order Processing Time 1 Weeks
Safety Stock Coverage 3.54 Widgets
a; (EP for Inventory) 54,482.22 Widgets
a, (EP for Labor) 1,200.2 People

Figure 5.4 shows the behavior of the state variables when this revised policy is applied at
the fifth week. While there are, indeed, changes to these variables, their fluctuations have all but
disappeared approximately in 30 weeks (response time) since the system was disturbed. This
figure also shows that the convergence of ADE has caused the asymptotic stability of the two

state variables of interest.
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Figure 5.4. I-W model: Behavior of variables of interest for the stabilization policy
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An interpretation of the improved policy points out that to keep up with the increased
customer orders is necessary to increase the production rate reducing the manufacturing cycle
time and the time to adjust inventory. Because production and labor are directly proportional,
decreasing the time to adjust labor and vacancies will help production to track the desired

production rates more closely.

5.1.6. Testing for Policy Robustness

The stabilization policy is tested by generating a sudden change in week 40 in the
customer orders and showing the system’s response to this change. The customer order rate is
increased or decreased to new levels calculated as a percentage of its initial value (Figure 5.5).
Figures 5.6 and 5.7 depict the robust behavior of the Inventory and Labor variables to the
changes. These variables show a sharp increase or decrease in their levels and few oscillations
before reaching new equilibrium points (see Table 5.3). Stability returns approximately 60 weeks
after the system was perturbed (response time). This represents 37.5% of the remaining time
horizon since the system was perturbed.

For each variable of interest, the new EP levels have moved from their previous value
(Table 5.2) almost in the same percentage that the corresponding change in customer orders. For
instance, for a 10% increase in customer orders the new EP of 59,927 reached by the Inventory

variable represents a 9.99% increment of its prior value of 54,482.22.

Table 5.3. I-W model: New equilibrium points for the variables of interest

Percentage change in New EP for New EP for
customer orders Inventory (Widgets) Labor (People)
-10% 49,031 1,080
-5% 51,756 1,139
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Percentage change in New EP for New EP for
customer orders Inventory (Widgets) Labor (People)
+5% 57,203 1,260
+10% 59,927 1,320

From Table 5.4 it is possible to conclude that the adaptation to the changes in customer
orders shows diverse types of amplifications for the two variables of interest. For the Inventory
variable the amplification effect (between 3% and 7%) is in a lower magnitude that the one
affected to the Labor variable (between 18% and 43%).

sensible to a sudden change in customer orders before reaching equilibrium again, with

amplifications 3 or 4 times the effect of the change.

This indicates that Labor is more

Table 5.4. I-W model: Amplification over/under the new equilibrium points

Percentage change in Amplification over/under | Amplification over/under
customer orders the new Inventory EP the new Labor EP
(Percentage) (Percentage)
-10% -6.95% -42.52%
-5% -3.30% -20.17%
+5% +2.97% +18.15%
+10% +5.68% +34.70%
17,000 Widgets
17,000 Widgets
17,000 Widgets
17,000 Widgets
8,000 Widgets
8,000 Widgets
8,000 Widgets
8,000 Widgets
0 20 40 60 80 100 120 140 160 180 200
Time (Week)
Customer Order Rate: -10% Widgets
Customer Order Rate: -5% Widgets
Customer Order Rate: +5% Widgets
Customer Order Rate: +10% Widgets

Figure 5.5. I-W model: Changes in the customer order rate to test policy robustness
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Time (Week)
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Figure 5.6. I-W model: Behavior of Inventory due to changes in customer orders
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Figure 5.7. I-W model: Behavior of Labor due to changes in customer orders
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5.2. Case Study B: The Mass Model

5.2.1. Description

Mass (Mass 1975) developed a nonlinear SD model to explore the economic processes
underlying business-cycle behavior. Business cycles are recurring fluctuations in the macro-
economy that affect total production, prices, employment, inventories and capital investment. A
better understanding of the causes of cyclic behavior is critical to the formulation of effective
stabilization policies by decision makers. The case study is a simplified version of the model
developed by Mass and was designed by Kampmann and Oliva (2006). It allows the analysis of
the role of labor-adjustment (hiring and termination) policies and capital-investment policies in
generating business cycles in a supply chain. The objective of this case study is to use the SADE
methodology to propose a stabilization policy for the three main state variables of the model:

Capital, Inventory and Labor.

5.2.2. SD Model

The model interrelates inventories, backlogs, employment and investment decisions to
provide a deeper understanding of the factors underlying intermediate-run (fifteen- to twenty-
year) economic cycles. It contains (1) a production sector plus two factors of production: (2) a
labor sector and (3) a capital sector. These sectors are described and depicted below.

Business cycles are characterized by amplification of demand in successive stages of
production. To represent these amplification effects on a SC, a model would need to represent
these sectors: consumer, retail, wholesale and production. In order to study the response to

incoming orders emanating from the consumer and retail sectors, these two sectors have been
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aggregated into one sector and the wholesale and production sectors into another sector. This
simplified system has been called the production management sector (Figure 5.8). Within this
sector a Desired Production Rate is calculated on the bases of an Average Production Rate and
Inventory and Backlog conditions. The sector can maintain a given Production Rate using
different combinations of capital and labor.

The labor sector (Figure 5.9) introduces the influence of labor availability on production
rate. Labor is a production resource whose lead time is affected by the tightness of labor markets
and by the length of any training delays. Variations in labor and over- or undertime change the
utilization of company’s capital equipment. The state variables in this model are Labor,
Vacancies and Average New Vacancy Creation. This last variable is defined as an exponentially
averaged value of New Vacancy Creation. The dependence of new hiring decisions on Average
New Vacancy Creation reflects the position that arises from reluctance to restrain recruitment
activities during temporary business slowdowns and from other factors.

The capital sector (Figure 5.10) allows incorporating the decisions played by capacity
expansion policies to determine how much to invest in production capacity. These decisions are
critical to match demand in long lead time resources such as capital equipment, balancing the
costs of shortfall against the costs of excess. The state variables in this model are Capital,
Capital on Order (which corresponds to an unfilled order backlog for capital goods), and

Average Orders for Capital that represents an exponential average of Orders for Capital.
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Figure 5.8. Mass model: Structure of production management sector
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Figure 5.9. Mass model: Structure of labor sector
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Figure 5.10. Mass model: Structure of capital sector

5.2.3. Current Policy and SC Instability

The set of parameters in Table 5.5 defines the current policy for this model.

Table 5.5. Mass model: Parameter values for the current policy

Parameter Value Unit
Normal Production Rate 3E06 Units/year
Initial Capital 7.5E06 Capital Units
Initial Labor 1500 People
Time to Average Production Rate 1 Years
Normal Inventory Coverage 0.5 Years
Time to Correct Inventory and 0.8 Years
Backlog

Normal Backlog Coverage 0.2 Years
Delay in Filling Vacancies 0.25 Years
Time to Average New Vacancy 0.5 Years
Creation

Time to Adjust Labor 0.5 Years
Normal Duration of Employment 2 Years
Time to Average Orders for 4 Years
Capital

Delivery Delay for Capital 2 Years
Time to Adjust Capital 4 Years
Normal Life of Capital 15 Years
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For a consumption rate of 1,400,000 units/year the system starts out of equilibrium. The
behavior of the three variables of interest is depicted in Figure 5.11. Variables Inventory and
Labor have several oscillatory fluctuations before they start to settle down. Capital shows a

decreasing rate for a long period and then a small increment before starting to settle down.

8 M Capital Units
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2,000 People

4 M Capital Units
4M Units
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0 Capital Units
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Time (year)

Capital Capital Units
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Labor People

Figure 5.11. Mass model: Behavior of variables of interest for the current policy
The new policy to eliminate these fluctuations is obtained from the optimization problem

formulated in the next section.

5.2.4. Optimization Problem
This optimization problem considers the simultaneous stabilization of the following state
variables: Capital, Inventory and Labor according to the equations described in section 3.1.2.
Equal weights (ws=0.33, s=1,..,3) were assigned to these variables. The time horizon (T)
considered was 40 years.

Let x,=Capital, x,=Inventory, x3=Labor
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Let ai=the new equilibrium point associated to the /" state variable (i=1,..,3)
dt}

x(t) =f(x(t),p) (This notation represents the SD model equations)

x,' =[7.5E06 1.5E06 1500]

1E06 < Normal Production Rate < 1EQ7

1E06 < Initial Capital < 1E07

1E02 < Initial Labor < 1E04

0.1 < Time to Average Product Rate <5

0.1 <Normal Inventory Coverage <5

0.1 < Time to Correct Inventory and Backlog <5
0.1 < Normal Backlog Coverage <5

0.1 < Delay in Filling Vacancies < 5

0.1 <Time to Average New Vacancy Creation < 5
0.1 < Time to Adjust Labor <5

0.1 < Normal Duration of Employment < 5

1 < Time to Average Order for Capital < 10

1 < Delivery Delay Capital < 10

1 < Time to Adjust Capital < 10

1 <Normal Lifetime of Capital <20

1E06 < a; < 1E07

SE05 <a; <5E06

1E02 <a3; < 1E04

X, () —a,

3 40
Minimize J(p) = > {0.33 |
p s=1 0

Subject to

5.2.5. Stabilization Policy
The stabilization policy is obtained after solving the optimization problem presented in
the previous section. The optimization algorithm was run at time 0 using the following settings:
swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5, iteration
lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2. It can be seen from Figure 5.12 that

the ADE does not converge, i.e., it is not showed as a horizontal line. Although the slope of the
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ADE curve is smooth, due to fact of no convergence there is not guarantee that the stabilization

policy obtained will be robust.

400,000

350,000

300,000
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Time (year)

ADE

Figure 5.12. Mass model: ADE curve
To obtain a new solution that satisfies the robustness condition, the optimization
algorithm will be run again using the following new settings: initial inertia weight = 0.1,
cognitive coefficient = 1, social coefficient = 1, neighborhood size = 5 particles. The other
settings remain the same. Moreover, to speed up the convergence it will be used the AEDE (see
Theorem 7 in chapter 4) in the objective function for small DE. This can be done by using a

tolerance factor L (s=1,..,3). When DE are above this factor, the objective function is calculated

normally using the ADE; otherwise the value of the AEDE is used in the objective function. The

optimization problem will change as follows:

3
Minimize J(p) =) _0.33J,(p)
P

s=1
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40

|
Js(P)=1%
J.e‘xsm_as‘ dt, if |xs(t)—aS
0

where L;=10, L,=5, Ls=1 are set for the variables Capital, Inventory and Labor
respectively.
The time to obtain the optimal policy (after 150 PSO iterations and 3,171 PHC iterations)
was 306 seconds.

The solution yielded the parameter values shown in Table 5.6. This table also includes

x (D—a|dt, if [x,()-a,[>L,

<L,

parameters a;, a,, a; which are the new equilibrium points for the state variables of interest.

Table 5.6. Mass model: Parameter values for the stabilization policy

Parameter Value Unit
Normal Production Rate 1,160,299 Units/year
Initial Capital 5,102,877 Capital Units
Initial Labor 7,630.05 People
Time to Average Production Rate 0.86 Years
Normal Inventory Coverage 0.42 Years
Time to Correct Inventory and 0.49 Years
Backlog

Normal Backlog Coverage 0.14 Years
Delay in Filling Vacancies 0.1 Years
Time to Average New Vacancy 0.61 Years
Creation

Time to Adjust Labor 0.15 Years
Normal Duration of Employment 0.54 Years
Time to Average Orders for 3 Years
Capital

Delivery Delay for Capital 1.17 Years
Time to Adjust Capital 1 Years
Normal Life of Capital 9.37 Years

a; (EP for Capital) 6,159,479 Capital Units
a, (EP for Inventory) 587,767.5 Units

a; (EP for Labor) 9,223.15 People
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Figure 5.13 shows that after applying the revised policy the system has reached
equilibrium in 14 years (response time). This figure also shows that the convergence of ADE has
caused the asymptotic stability of the three state variables of interest. This was achieved by
increasing the parameter values Initial Labor and Time to Average New Vacancy Creation and
decreasing several other parameter values including Normal Production Rate, Time to Correct

Inventory and Backlog, Time to Adjust Labor, and Time to Adjust Capital.
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1.7M

5.5M Capital Units
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0
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Time (year)
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Figure 5.13. Mass model: Behavior of variables of interest for the stabilization policy

5.2.6. Testing for Policy Robustness
The stabilization policy is tested by generating a linear change in the consumption rate
from year 10 to year 20. The consumption rate is increased or decreased to new levels calculated
as a percentage of its initial value (Figure 5.14). Figures 5.15, 5.16 and 5.17 depict the robust
behavior of the Capital, Inventory and Labor variables to the changes. The adaptation to the

changes is smooth with amplifications less than 2% over/under the new EPs for the three
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variables of interest. The values for the new EPs are shown in Table 5.7. Stability returns
approximately 15 years after applying the stabilization policy (response time). This represents
50% of the time horizon since the system was disturbed.

For each variable of interest, the new EP levels have moved from their previous value
(Table 5.6) almost in the same percentage that the corresponding change in the consumption rate.
For instance, for a 5% increase in the consumption rate the new EP of 9,685 reached by the

variable Labor represents a 5.01% increment of its prior value of 9,223.15.

Table 5.7. Mass model: New equilibrium points for the variables of interest

Percentage change in | New EP for Capital New EP for New EP for
consumption rate (Capital Units) Inventory (Units) Labor (People)
-10% 5,543,000 528,235 8,301
-5% 5,851,000 557,571 8,762
+5% 6,467,000 616,269 9,685
+10% 6,775,000 645,618 10,146
2M Units
2M Units
2M Units
2M Units
1M Units i i
1M Units
1M Units
1M Units
0 4 8§ 12 16 20 24 28 32 36 40
Time (year)
Consumption: -10% Units
Consumption: -5% Units
Consumption: +5% Units
Consumption: +10% Units

Figure 5.14. Mass model: Changes in the consumption rate to test policy robustness
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Figure 5.15. Mass model: Behavior of Capital due to changes in consumption
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Figure 5.16. Mass model: Behavior of Inventory due to changes in consumption
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Figure 5.17. Mass model: Behavior of Labor due to changes in consumption

5.3. Case Study C: The LSMC Model

5.3.1. Description

This is the case study involving a real electronics manufacturer, which is designated as
LSMC (Lertpattarapong 2002) to respect confidentiality. LSMC products are technological
gadgets and personal computer complementary products. LSMC is the major supplier of
companies like Compaq or Dell. The increasing competition in the market of personal computers
has caused fluctuations in the demand that resulted in oscillatory behavior of LSMC finished
goods inventory and capacity.

Since 1998, led by Dell, many original equipment manufacturers have changed their
strategies by aggressively eliminating slack in their inventories through a build-to-order
manufacturing and just-in-time processes. Further, because of fast dynamic changes in the

market of personal computers, the short lifecycle associated with them and other complementary
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products has also amplified coordination problems, which in turn have often caused excess
inventory and sometimes difficulties to keep up with demand. Moreover, the competition has
forced the company to introduce more product varieties at lower prices into the market to protect
its existing and potential market share. Production capacity is another factor that adds to supply
chain complexity because its long delays, huge investments, and new products with more
complex manufacturing processes than previous generations. In addition, these complementary
products are at the upstream of the supply chain for personal computers and their resulting
fluctuations are higher.

Given the complex and dynamic nature of the supply chain at LSMC, it is difficult for
LSMC to see how its policy decision might impact its performance or cause unexpected and
undesirable consequences. The objective in this case study is to use the SADE methodology to

propose a policy to eliminate instabilities in the finished goods inventory.

5.3.2. SD Model

This nonlinear SD model is based on the original work described on Lertpattarapong
(2002). It comprises three connected stock and flow submodels: (1) the market share and
shipment submodel, (2) the demand forecast and capacity submodel and (3) the production
submodel. These submodels are described and depicted below.

The market share and shipment submodel (Figure 5.18) comprises two parts: market-
share and inventory-backlog-shipping. The first part represents the links between orders filled,
market share, and demand. The second part represents the links between inventories and

customer orders, which are filled from the finished goods inventory and shipped to customers.
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The state variables in this model are Finished Goods Inventory, the Channel Order Backlog, and
Perceived Fraction Orders Filled. This last variable represents an “information delay” that
captures the customer’s perception regarding his/her order. This delay was forecasted using a
third order smoothing function.

The demand forecast and capacity submodel (Figure 5.19) represents the link between
demand and production capacity. The part of the model related to the demand forecast consists of
two state variables: Historical Demand and Perceived Present Demand, which are smooth
functions with the time horizon constant. The variable Unit Forecast Demand is then calculated
from the Historical Demand and Perceived Present Demand. An important state variable of the
capacity part of the model is Available Capacity which is a function of Capacity Acquisition (an
estimate of how fast LSMC can build a pre-assembly facility) and Capacity Obsolescence (an
estimate of an average life expectancy of a pre-assembly facility).

The production submodel (Figure 5.20) implements a push-pull strategy. The ‘push’ is
from the pre-assembly processes to the assembly process. The ‘pull’ is from the assembly
process to packaging and shipping. Inventories represent the principal variables in this model.
Three types of inventory were modeled and represented by the state variables: Pre-assembly
Inventory, Assembly Inventory and Finished Goods Inventory. The variable Expected Channel

Demand for LSMC is a smooth function of Channel Demand for LSMC Products.
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Figure 5.18. LSMC model: Market share and shipment submodel
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Figure 5.19. LSMC model: Demand forecast and capacity submodel
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Figure 5.20. LSMC model: Production submodel
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5.3.3. Current Policy and SC Instability
The current inventory policy is defined by five main parameters that are in control of the

supply chain managers. These parameters are shown in Table 5.8.

Table 5.8. LSMC model: Parameter values for the current policy

Parameter Value Unit

Manufacturing Cycle Time (MCTime) 2 Months
Minimum Order Processing Time (MOPTime) 0.25 Months
Time to Adjust Assembly Inventory (TAAI) 0.5 Months
Pre Assembly Adjustment Time (PAT) 2 Months
Time to Adjust Finished Goods Inventory (TAFGI) 2 Months

The system starts and remains at equilibrium for the following eight months. Then the
demand, which has a rate of five million units per month, is reduced by 20 percent.
The response of the supply chain to this increment in demand is a persistent ripple effect

on the Finished Goods Inventory variable. Figure 5.21 shows this oscillatory behavior.
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Figure 5.21. LSMC model: Behavior of the variable of interest for the current policy

A new policy to minimize these oscillations will be determined by solving the
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optimization problem presented in the next section.

5.3.4. Optimization Problem
This optimization problem considers the stabilization of the Finished Goods Inventory

state variable according to the equations described in section 3.1.2. The time horizon (T)

considered was 36 months.
Let x;= Finished Goods Inventory

Let a;=the new equilibrium point associated to the state variable x
36
Minimize J(p) = j [, (0 -a,|dt
p
0

Subject to

x(t) =f(x(t),p) (This notation represents the SD model equations)

xoT (Vector with initial values of all state variables)

1 < Manufacturing Cycle Time < 3

0.1 < Minimum Order Processing Time < 1

0.1 < Time to Adjust Assembly Inventory < 8

0.5 < Pre Assembly Adjustment Time < 10

0.5 < Time to Adjust Finished Goods Inventory < 10
SE05 <a; < 1E06

5.3.5. Stabilization Policy
After solving the optimization problem presented in the previous section, the stabilization
policy shown in Table 5.9 is obtained. It is important to note that the new equilibrium point for

the Finished Goods Inventory has decreased not significantly from its original value of 956,971

units.

The optimization algorithm used the following settings: swarm size = 30 particles,
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neighborhood size = 3 particles, initial inertia weight = 0.5, iteration lag = 5, cognitive
coefficient = 1.2, social coefficient = 1.2. The time to obtain the optimal policy (after 100 PSO

iterations and 79 PHC iterations) was 236 seconds.

Table 5.9. LSMC model: Parameter values for the stabilization policy

Parameter Value Unit

Manufacturing Cycle Time (MCTime) 2.37 Months
Minimum Order Processing Time (MOPTime) 0.31 Months
Time to Adjust Assembly Inventory (TAAI) 5.22 Months
Pre Assembly Adjustment Time (PAT) 3.11 Months
Time to Adjust Finished Goods Inventory (TAFGI) 0.5 Months
a; (EP for Finished Goods Inventory) 949,315 Units

Figure 5.22 shows the behavior of the Finished Goods Inventory when this improved
policy is applied at the eighth month. This variable reaches a stable level in the 10™ month

caused by the convergence of ADE. This represents a response time of two months.

1.2M Units
300,000

950,000 Units \

150,000

700,000 Units
0

0 4 8 12 16 20 24 28 32 36
Time (Month)

Finished Goods Inventory Units
ADE

Figure 5.22. LSMC model: Behavior of the variable of interest for the stabilization policy
An interpretation of the improved policy points out that to stabilize the system close to

the initial Finished Goods Inventory equilibrium point, it is necessary to increase the time to
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adjust assembly and pre assembly inventory. This means fewer inventory corrections will be
needed in response to the customer orders change. On the other hand, by decreasing the time to
adjust the finished goods inventory reduces the likelihood that this inventory will fall to

unacceptable levels.

5.3.6. Testing for Policy Robustness

To test the stabilization policy a sudden change in demand is generated in month 20. The
demand is increased or decreased to new levels calculated as a percentage of its initial value
(Figure 5.23). The system response is depicted in Figure 5.24. There, it is shown that in all cases
new EPs are reached to the variable Finished Goods Inventory. The values for these EPs are
presented in Table 5.10.

The new EP levels have moved from their previous value (Table 5.9) almost in the same
percentage that the corresponding change in the demand. For instance, for a 5% decrease in
demand the new EP of 901,849 reached by the variable Finished Goods Inventory represents a
5% decrease of its prior value of 949,315.

The adaptation to the equilibrium state is smooth and fast in the case where demand is
decreased. There are not amplifications under de EP. Stability returns approximately two weeks
after the system was disturbed (response time) which represents 12.5% of the remaining time
since the alteration. On the contrary, in the case where demand is increased it takes more time to
reach stability, about 6 or 8 months to reach the new equilibrium points. Amplifications are on

the order of 2% and 6% over the EPs for +5% and +10% increments in demand respectively.

157



Table 5.10. LSMC model: New equilibrium points for the variable of interest

Percentage change in New EP for Finished Goods
demand Inventory (Widgets)
-10% 854,383
-5% 901,849
+5% 996,771
+10% 1,044,216
6 M  Units
6 M  Units
6 M Units
6 M Units
[
|
\
|
2M Units
2M Units
2M Units
2M Units
0 4 8 12 16 20 24 28 32 36
Time (Month)
Channel Demand: -10% Units
Channel Demand: -5% Units
Channel Demand: +5% Units
Channel Demand: +10% Units

Figure 5.23. LSMC model: Changes in demand to test policy robustness

1.2M Units
1.2M Units
1.2M Units
1.2M Units

800,000 Units
800,000 Units
800,000 Units
800,000 Units

0 4 8 12 16 20 24 28 32 36

Time (Month)
Finished Goods Inventory: -10% Units
Finished Goods Inventory: -5% Units
Finished Goods Inventory: +5% Units
Finished Goods Inventory: +10% Units

Figure 5.24. LSMC model: Behavior of Finished Goods Inventory due to changes in demand
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5.3.7. Policy Comparison with another Method

This section compares the stabilization policies obtained by using two methods: (1) the

SADE method described in this dissertation and (2) the eigenvalue and elasticity analysis as

explained in Lertpattarapong (2002). A new scenario is presented to compare the policies. From

equilibrium, the LSMC model is disturbed by a 10% step increase in Channel Demand at the

sixth month. This causes an oscillatory behavior in the final inventory which is shown in Figure

5.25.

1.5M Units
9M Units/month

750,000 Units
6.5 M Units/month

E—

0 Units
4 M Units/month

0 4 8 12 16 20 24 28 32 36
Time (Month)

Finished Goods Inventory Units
Channel Demand Units/month

Figure 5.25. LSMC model: Oscillatory behavior of the Finished Goods Inventory

The stabilization policies to minimize this instability are presented in the next lines.

5.3.7.1. Stabilization Policy by using the SADE method

Using the same settings defined in 5.3.5., the optimization algorithm found the optimal

policy in 392 seconds (after 100 PSO iterations and 73 PHC iterations). The stabilization policy

is shown in the next table. The Finished Goods Inventory reaches the equilibrium level
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approximately in the 16" month (see Figure 5.26).

Table 5.11. LSMC model: SADE stabilization policy

Parameter Value Unit
Manufacturing Cycle Time (MCTime) 1 Months
Minimum Order Processing Time (MOPTime) 0.23 Months
Time to Adjust Assembly Inventory (TAAI) 6.69 Months
Pre Assembly Adjustment Time (PAT) 9.21 Months
Time to Adjust Finished Goods Inventory (TAFGI) 0.5 Months
a; (EP for Finished Goods Inventory) 968,448 Units
1.2M Units
500,000

R

800,000 Units
250,000

400,000 Units
0

0 4 8 12 16 20 24 28 32 36
Time (Month)

Finished Goods Inventory Units
ADE

Figure 5.26. SADE method: Stable behavior of the Finished Goods Inventory

5.3.7.2. Stabilization Policy by using the EEA method

Before applying the EEA method, Lertpattarapong (2002) first linearized the nonlinear
system at any point in time. Then, the eigenvalues and eigenvalue elasticity were calculated. This
information was used to identify which eigenvalues contributed to the oscillations and then
investigating the elasticities to determine which links and loops affected this oscillatory

behavior. This analysis revealed that Loop L1, composed by the variables Channel Order
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Backlog, Pre-assembly, Assembly and Finished Goods Inventory, caused the oscillation in the
supply chain model. The interpretation is that LSMC is building up backlog due to the increment
in demand. When the backlog occurs the order fulfillment ratio drops as well. This leads to a
reduction in the demand. However, the order to increase the production was already sent,
building up the inventory. When the inventory exceeds the backlog, LSMC will cut its
productions. However, with the decrease in production, the backlog will occur again.

Thus, policies for lessening or stopping the oscillations should involve Loop L1. In his
analysis, Lertpattarapong proposes to build up a safety stock to reduce backlog. He suggests
building up a 1-week or 0.25 month for Safety Stock Coverage. This stabilization policy makes
the Finished Goods Inventory to reach equilibrium around the 22™ month. This is depicted in the

next figure.

3iM
225M
1.5 M V
750,000
0
0 4 8 12 16 20 24 28 32 36
Time (Month)
Finished Goods Inventory Units

Figure 5.27. EEA method: Stable behavior of the Finished Goods Inventory
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5.3.7.3. Comparison of Stabilization Policies

Figure 5.28 shows clearly that the stabilization policy obtained by SADE has a better
response time and less amplification that the one obtained by EEA. This is due to the fact that
SADE policy is considering important parameters to adjust the inventory levels, while EEA
policy relies only in building up a safety stock to reduce the oscillations. Moreover, in terms of
costs the SADE policy is also more economical than its counterpart because it requires fewer

inventories.

3M Units
3M Units

1.75M  Units
1.75M Units

500,000 Units
500,000 Units

0 4 8 12 16 20 24 28 32 36
Time (Month)

Finished Goods Inventory - SADE Units
Finished Goods Inventory - EEA Units

Figure 5.28. Inventory behaviors after using SADE and EEA methods

To perform the robustness analysis it is generated a sudden change in demand in month
22. The demand is again increased by 10 percent. The system response is depicted in Figure
5.29. The SADE policy makes the Finished Goods Inventory to reach equilibrium around the
28™ month. The EEA policy starts stabilizing the system around the 35" month. The robustness
analysis also shows that the EEA policy generates more amplification than the SADE policy

before reaching the equilibrium state. Having lower levels of amplification keeps the inventory
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level closer to its new equilibrium point.

3M Units
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Finished Goods Inventory - EEA Units
Channel Demand Units/month

Figure 5.29. Policy robustness for SADE and EEA methods

The following table shows the comparison of the stabilization policies generated by the

SADE and EEA methods.

Table 5.12. Results of the analysis for the SADE and EEA methods

| SADE | EEA
Stability analysis
Response time as a percentage of the
remaining time since the stabilization 33.3% 53.3%
policy was applied
Amplification as a percentage 9.6% 58.3%
over/under the equilibrium point (over EP) (under EP)

Robustness analysis
Response time as a percentage of the

remaining time since the stabilization 42.9% 92.9%
policy was applied

Amplification as a percentage 2.7% 66.7%
over/under the equilibrium point (over EP) (under EP)

It can be concluded that the policy obtained by the SADE method is more efficient (faster

and smoother) and more economical to implement than the policy proposed by the EEA method.
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5.4. Case Study D: The PMOC Model

5.4.1. Description

PMOC Technologies Inc. is a manufacturer of optical solutions for medical, industrial,
communications, defense, test, and measurement applications. PMOC Technologies Inc. is an
integrator of families of precision molded aspheric optics, glass products, and high performance
fiber-optic collimators and isolators. The precision molded optics (PMO) process produces
lenses for industrial laser and other optical applications and is the focus of the simulation model.

PMOC Inc. has built its reputation on providing customized products to long-term
customers who have designed their equipment to use PMOC lenses. Lenses make up to 65% of
the company’s operations. It has a stable customer base of around 1,700 customers. With special
requirements in lenses in addition to high quality level of service and support, customers are
willing to pay relatively higher than traditional market prices. This has helped PMOC Inc.
maintain a stable market share over the past few years despite using an old manufacturing
technology with limited capacity.

Manufacturing equipment is utilized such that a maximum of 40% overtime is allowed.
And due to relatively long term plan to move the lenses operations to Asia, the company desires
to continue serving its customer base using existing workers and overtime; without hiring or
training more workers. Workers will be moved to new productions lines and trained.

The company depends for the remaining periods on its stable base of customers who
continue to rely on PMOC specially designed lenses until they upgrade to new technologies. The
company however, should minimize expenses in the form of scrape and maintain stable

operations. The goal of management is to find a policy that avoids large oscillations in the
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inventory if expected increase of customer orders on regular types of lenses occurs.

5.4.2. SD Model

The nonlinear SD model used in this case study is a subsystem of the enterprise system
developed by Helal (2008). It is focused on the production process of PMOC and is composed by
the following submodels: (1) supplier submodel, (2) labor management submodel and (3)
internal supply chain submodel. These submodels are described and depicted below.

The supplier submodel (Figure 5.30) represents how the capacity of the supplier affects
the rate at which the company orders raw materials (Parts Order Rate). To simplify the model it
is assumed that only one supplier provides raw materials to PMOC. The state variables of this
model are Supplier Production Capacity and Supplier Order Backlog.

The labor management submodel (Figure 5.31) estimates the required capacity level
(including overtime when necessary) based on the production rate obtained from the production
planning. The opening positions for recruiting new workers are represented in the state variable
Labor Being Recruited. Labor being recruited moves to become Labor (get hired) after some
hiring delay, according to the Labor Hiring Rate. Similarly, Labor can be fired o leave
voluntarily the company at the Labor Firing Rate.

The internal supply chain submodel (Figure 5.32) consists of two overlapping
constructs. The first construct is the materials ordering and inventory. The state variables for this
part of the model are Parts on Order, and Parts Inventory. The usage rate of parts (raw material)
being taken from Parts Inventory, to be converted into semi finished products (WIP inventory) is

given by the Production Start Rate. The second construct is the production planning. This part of
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the model regulates the WIP inventory at the Preforms and Presses departments to ensure smooth
production rate and the availability of the final products for shipping. The state variables of this

part of the model are Preforms WIP and Presses WIP and Finished Goods Inventory.

Supplier Time to Adjust Effect of Supplier
Production Capacity Capacity on Parts
; : Supplier Order Rate
Production
Supplier Change in Capacity
. . Production Capacit
Supplier Desired roduction L-apactty
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Production Rate
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Production Rate backlog
. Supplier Order T~
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Supplier Time to Average
Production Rate Supplier
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Figure 5.30. PMOC model: Supplier submodel
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Figure 5.31. PMOC model: Labor management submodel
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Figure 5.32. PMOC model: Internal supply chain submodel
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5.4.3. Current Policy and SC Instability

The set of parameters in Table 5.13 defines the current policy for this supply chain.

Table 5.13. PMOC model: Parameter values for the current policy

Parameter Value Unit

Desired Days Supply of Parts Inventory 2 Weeks
Time to Correct Parts Inventory 1 Weeks
Preforms Cycle Time 3 Weeks
Presses Cycle Time 3 Weeks
Time to Correct Inventory 1 Weeks
Supplier Delivery Delay 2 Weeks
Time to Adjust Labor 1 Weeks
Labor Recruiting Delay 5 Weeks

For a customer order rate of 5,000 units/week the system starts out of equilibrium. The
behavior of the four variables of interest is depicted in Figure 5.33. Variables Preforms WIP
Level, Presses WIP Level and Labor have several oscillatory fluctuations. Variable Finished

Goods Inventory is starting to settle down, although it has not reach equilibrium yet.

18,000 Units
23,000 Units
6,000 Units
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16,000 Units
21,000 Units
2,000 Units
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Time (week)

Preforms WIP Level Units
Presses WIP Level Units
Finished Goods Inventory Units
Labor People

Figure 5.33. PMOC model: Behavior of variables of interest for the current policy
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A new policy to minimize these oscillations will be determined by solving the

optimization problem presented in the next section.

5.4.4. Optimization Problem

This optimization problem considers the simultaneous stabilization of the following state
variables: Preforms WIP Level, Presses WIP Level, Finished Goods Inventory and Labor
according to the equations described in section 3.1.2.

Let x,;=Preforms WIP Level, x,= Presses WIP Level, x3= Finished Goods Inventory,
x4=Labor

Let ai=the new equilibrium point associated to the /" state variable (i=1,..,4)

The following weights were assigned: w;=0.4, w,=0.4, w3=0.1, w4=0.1 to represent the
concern of management in the inventory and considering that variables x; and x, exhibit higher

oscillations. The time horizon (T) considered was 30 weeks.

Minimize J(p) = i{o.43f|xs () -a,| dt} + i{o.fjo X, () -a,| dt}
s=1 0 =3 0

Subject to

x(t) =f(x(t),p) (This notation represents the SD model equations)

xoT (Vector with initial values of all state variables)

0.5 < Desired Days Supply of Parts Inventory <5
0.5 < Time to Correct Parts Inventory < 5
0.5 < Preforms Cycle Time < 3

0.5 < Presses Cycle Time <3

0.5 < Time to Correct Inventory < 5

0.5 < Supplier Delivery Delay <5

0.5 < Time to Adjust Labor <5

0.5 < Labor Recruiting Delay < 5

5000 < a; <50000

5000 < a, <50000

1000 < a3 < 50000
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10 <a4 <100

5.4.5. Stabilization Policy
The stabilization policy is obtained after solving the optimization problem presented in
the previous section. The optimization algorithm was run at time 0 using the following settings:
swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5, iteration
lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2. The time to obtain the optimal policy
(after 150 PSO iterations and 1,243 PHC iterations) was 89 seconds.
The solution yielded the results shown in Table 5.14. This table also includes parameters

aj, az, a3, a4 which are the new equilibrium points for the state variables of interest.

Table 5.14. PMOC model: Parameter values for the stabilization policy

Parameter Value Unit

Desired Days Supply of Parts Inventory 3.46 Weeks
Time to Correct Parts Inventory 2.79 Weeks
Preforms Cycle Time 1.36 Weeks
Presses Cycle Time 1.70 Weeks
Time to Correct Inventory 1.47 Weeks
Supplier Delivery Delay 2.93 Weeks
Time to Adjust Labor 1.24 Weeks
Labor Recruiting Delay 0.5 Weeks
a; (EP for Preforms WIP Level) 8828 Units
a, (EP for Presses WIP Level) 13739 Units
a3 (EP for Finished Goods Inventory) 3275 Units
a4 (EP for Labor) 44 People

Figure 5.34 shows the behavior of the state variables when this revised policy is applied.
The system has reached equilibrium approximately in 9 weeks (response time). This figure also
shows that the convergence of ADE has caused the asymptotic stability of the four variables of
interest. This was achieved mainly by increasing the parameter values Desired Days Supply of

Parts Inventory, Time to Correct Parts Inventory and Supplier Delivery Delay and decreasing
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several other parameter values including Labor Recruiting Delay, Preforms Cycle Time, and
Presses Cycle Time. This stabilization policy has been reached using the maximum production
capacity of 5,600 units/week as shown in Figure 5.35. This is due to the constraint in manpower

in the lenses manufacturing department.
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Figure 5.34. PMOC model: Behavior of variables of interest for the stabilization policy
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Figure 5.35. PMOC model: Maximum capacity of lenses manufacturing department
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5.4.6. Testing for Policy Robustness

To test the stabilization policy it is generated a sudden change in the customer order rate
in week 10. The customer order rate is increased or decreased to new levels calculated as a
percentage of its initial value. This is displayed in Figure 5.36. Moreover, Figures 5.37, 5.38 and
5.39 depict the robust behavior of the Preforms WIP Level, Presses WIP Level, and Finished
Goods Inventory variables to the changes in customer orders. The values for the new EPs are
shown in Table 5.15.

The EP levels of the three inventory variables remain the same for a 10% increment in
customer orders. The reason is simple; the stabilization policy was reached by using the
maximum production capacity and orders over the original customer order rate are considered
backlog and therefore they do not affect the production rates and the stability. Similarly, for a 5%
decrease in customer orders, production is working close to maximum capacity and the EPs
remain the same. In the case where customer orders are decreased by 10% and 15% the new EPs
are reduced too but in a lower percentage that the change in customer orders.

Stability returns approximately 10 weeks and 16 weeks after the system was disturbed
(response time) for -10% and -15% decrease in customer orders respectively. Amplifications are

on the order of 1% under the EPs for both -10% and -15% decrease in customer orders.

Table 5.15. PMOC model: Parameter values for the stabilization policy

Percentage change New EP for New EP for New EP for
in customer order rate Preforms WIP Presses WIP Finished Goods
Level (Units) Level (Units) Inventory (Units)
-15% 8377 13178 3045
-10% 8789 13691 3256
-5% 8828 13739 3275
+10% 8828 13739 3275

172



6,000 Units
6,000 Units
6,000 Units
6,000 Units

4,000 Units
4,000 Units
4,000 Units
4,000 Units

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (week)

Customer Order Rate: -15% Units
Customer Order Rate: -10% Units
Customer Order Rate: -5% Units
Customer Order Rate: +10% Units

Figure 5.36. PMOC model: Changes in customer orders to test policy robustness
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Figure 5.37. PMOC model: Behavior of Preforms WIP Level due to changes in customer orders
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Figure 5.38. PMOC model: Behavior of Presses WIP Level due to changes in customer orders
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Figure 5.39. PMOC model: Behavior of Finished Goods Inv. due to changes in customer orders

5.5. Summary of the Experimental Analysis

The following table presents a summary of the results for the stability and robustness

analysis as well as the values that show the performance of the optimization algorithm.
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Table 5.16. Summary of the stability and robustness analysis

Supply Chain Model
I-W | Mass LSMC PMOC
Model size
Number of variables of interest 2 3 2 4
Number of parameters (including EPs) 11 18 6 12
Stability analysis
Does the system start in equilibrium? Yes No Yes No
Type of Perturbation Gradual and Sudden Sudden Sudden
linear change change change change
Does system reach stability? Yes Yes Yes Yes
Concept used in objective function ADE ADE+AEDE ADE ADE
Response time as a percentage of the 15.4% 35% 7.1% 30%
remaining time since the stabilization
policy was applied
Optimization algorithm
Solution time (seconds) 206 306 236 89
PSO iterations 150 150 100 150
PHC iterations 1,393 3,171 79 1243
Robustness analysis
Type of Perturbation Sudden Gradual and Sudden Sudden
change linear change change change
Was the policy robust? Yes Yes Yes Yes
Are EPs changes proportional to the Yes Yes Yes No
disturbance change?
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CHAPTER SIX: CONCLUSIONS AND FUTURE RESEARCH

This research proposes the SADE methodology to reduce or eliminate instability in
supply chains. The method provides an effective tool for managers to react quickly to
unexpected events generating new policies and plans to cope with these changes in the business
dynamics. This chapter summarizes the conclusions and highlights the directions for future

research.

6.1. Summary of Research and Conclusions

We propose the SADE methodology that uses the concept of asymptotic stability to
minimize oscillatory behaviors of specific (state) variables of interest of the supply chain model.
If necessary stability can be extended to the whole SC system by using a weighted average
function that includes all state variables. This also allows higher weights to be assigned to those
variables considered more important. This approach does not require direct knowledge of the
internal structure of the model. It also does not require linearization of the system or eigenvalue
calculations. We argue that the simplicity of our approach makes it a powerful tool that can be
applied very easily for practitioners — especially when dealing with systems that exhibit highly
nonlinear oscillatory behavior.

We develop stability conditions based on the ADE. These conditions can be used as a
general procedure to stabilize supply chains represented by linear or nonlinear dynamic models.
We prove several theorems that show that ADE convergence of a state variable will make its
trajectory approach asymptotic stability. Achieving ADE convergence requires the solution of a

policy optimization problem. Moreover, we introduce the concept of AEDE to be used in
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problems where obtaining ADE convergence is not easy. AEDE is most beneficial for
amplifying small DE. Thus, expressing the objective function as a combination of ADE and
AEDE can improve the asymptotic stability of the state variables under study.

We propose a hybrid algorithm to obtain a quick convergence of the ADE. This
algorithm is based on a search engine that combines the advantage of PSO optimization to
determine the most promising regions of the search space and the properties of PHC algorithm to
accelerate locating the optimum that makes the ADE to convergence. Although it is not required
to find the global optimum to obtain a satisfactory reduction in instability, our hybrid algorithm
provides solutions that escape local convergence and lead to stabilization polices with few
oscillations and fast stability. This broader search to find more effective stabilization policies is
also possible due to the fact that we incorporate a theorem that allows finding the best
equilibrium levels that minimize the ADE.

We perform the experimental analysis over four case studies. These cases consist on one
linear model (I-W) and three nonlinear models (Mass, LSMC, PMOC) of the supply chain. The
methodology is applied to stabilize some variables of interest that show several oscillatory
fluctuations. The optimization algorithm generated stabilization policies in a few minutes. The
results show that our method makes the trajectory of these variables to achieve asymptotic
stability. For the I-W and LSMC models stability is reached in a very short time (less than one
fifth of the remaining time since the stabilization policy was applied). For the Mass and PMOC
models stability took some time longer, approximately one third of the time horizon. The Mass
model, which is highly nonlinear, required a combination of ADE and AEDE to obtain the

convergence of the objective function. For the LSMC model, we compared the stabilization
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policies obtained using our method (SADE) and the EEA method. Results show that the policy
generated with the SADE method is faster and smoother to reach the equilibrium state.
Moreover, the lower inventory level required by the SADE policy to stabilize the system makes
it more economical to implement than the policy proposed by the EEA method.

We conclude that the convergence of the ADE generates stabilization policies that are
robust. To test robustness on these policies we produced a perturbation in the stable system by
changing the value of an exogenous variable. The results show that the variables of interest reach
new equilibrium points after a period of adaptation to the alteration of the system. Moreover,
perturbations generated by sudden changes produce amplifications before reaching new EPs. The
experiments also show that in most cases the change of level in the EPs is proportional to the

change of the exogenous variable.

6.2. Research Contributions

This research contributes to the industrial engineering science by developing a novel
stabilization method that can be broadly applied to supply chains modeled as dynamic systems,
independently of their nature: linear or nonlinear. The stabilization policies obtained by the
method help to identify the impact of important parameters of the model in the behavior of the
system. This will also permit to advance the understanding on how the dynamic and complex
interactions of the supply chain components affect the behavior of the whole supply chain at the
strategic and tactical levels, creating conditions of constant disequilibrium and change.

The stabilization method presented in this research work is a more general and simpler

approach than the methods based on linearized models like eigenvalue optimization. Moreover, it
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is not limited to particular characteristics of the system like many of the methods used by
nonlinear control theory like Lyapunov functions. Due to the simplicity of the method that only
requires solving a policy optimization problem in order to obtain a stabilization policy, it can be
accessed not only by academics but also by practitioners. This is an important contribution
because managers often reject using complex approaches that they do not understand. They
prefer basic approaches that are simple to comprehend and easy to communicate with other
people.

This research advances the field of system dynamics with the development of stability
conditions based on the ADE that can be applied to several state variables of the system
simultaneously. We propose and prove new theorems that determine the conditions for (1) the
convergence of a state variable around its equilibrium point and (2) finding the best equilibrium
point that minimize instability. These theorems are incorporated into an optimization problem to
achieve stability. We show a simple way to add the objective function of the optimization
problem into any SD formulation.

This research presents and implements a framework to plan and design robust supply
chains. To facilitate the modeling activity, this framework was designed in such a way that can
simulate SD models created with Vensim, one of the leading producers of SD software. A PSO
solver was developed and incorporated into the framework to be used with the PHC optimizer
that comes with Vensim. The PSO solver is a tool that will allow SD users to solve policy
optimization problems associated with dynamic systems in general, expanding its use beyond the

supply chain cases.
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6.3. Directions for Future Research

There are several additional aspects that must be addressed and investigated for
enhancing this methodology. The proposed future research directions are outlined in the

following sections.

6.3.1 Controlling the Characteristics of Stability

Currently the concept to achieve stability relies on minimizing the deviations of
controlled variables from the equilibrium state. The stabilization policies obtained by solving the
optimization problem have the characteristic of asymptotic stability, which make them robust.
However, to improve our methodology it will be necessary to have control over the following
factors before reaching stability: (1) possible fluctuations appearance, (2) amplifications
magnitude, and (3) value of the response time.

The ideal stabilization policy will have a very short response time, no fluctuations, and no
amplifications before reaching stability. However, policies with shorter response times generally
show greater amplifications or fluctuations, making it difficult to obtain the ideal stability. One
idea that can help to minimize the fluctuation behavior of a policy is introducing in the objective
function a penalty every time the curve crosses the equilibrium point. It has to be demonstrated
that the convergence of this new objective function will still achieve asymptotic stability. In
addition, to control the amplification and response time factors, we should be able to add in the
optimization problem new constraints that represent the maximum and minimum tolerances for
these factors. This addition will help to adapt the resulting policy into a more desired shape.

Moreover, a modification in the solution algorithm will have to be made to check that the curve
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of the variable of interest is inside these tolerances.

6.3.2. Multi-level Stabilization Policy of the Supply Chain

Supply chains exhibit complex dynamics consisting of a hierarchical nesting of both
continuous and discrete dynamics. The discrete dynamics would represent activities at the
operational level where the status of individual items is traced (e.g. shop floor activities) while
continuous dynamics would represent aggregate flows and decisions at the tactical and strategic
level (e.g. aggregate production planning or new product market dynamics).

We plan to extend the stabilization policies obtained from the strategic and tactical levels
(higher levels) to the operational level (lower level). Thus, we will use SD and discrete event
simulation techniques to capture the different dynamics of the SC forming an integrated and
hybrid two-level simulation model. This hybrid simulation model will be used to develop a top-
down hierarchical stabilization methodology that will search for new supply chain configurations
to avoid instability. The top level does aggregate planning across the entire supply chain. The
aggregate level activities, which take place at the manufacturer, include planning and dispatching
decisions. These decisions are evaluated using system dynamics simulation. The stabilization
policies generated at this level will be based on the convergence of the ADE as stated in this
research work. The detailed bottom level activities, which take place at the manufacturer,
transporter, and retailer, include scheduling decisions and production activities. These are

evaluated using discrete-event simulation.
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6.3.3. Detecting Instabilities in the Supply Chain

Having the capability to detect instability (ripple effects) at a very early stage provides
companies enough time to design and implement stabilization policies. This capability should go
far beyond current monitoring systems, such as the popular dashboard, which can provide alerts,
but cannot predict the impact of those alerts.

Some preliminary work has been done to detect structural changes in the supply chain by
using neural networks (NNs) and system dynamics (Shah 2001). The method described in Shah’s
work uses pattern recognition analysis to map a set of inputs to the most likely future behavior of
the supply chain. Then it classifies possible behaviors of state variables of the SD model into
categories of similar graphs by using fuzzy art NNs. After that it uses backpropagation NNs to
predict the behavior of a variable of interest. Although this method has demonstrated to be
efficient capturing the behavior of a complex supply chain, still there is potential for extension of
this work. As the next step in this line of research, we propose to (1) investigate other
classification techniques to categorize the behavior of state variables, (2) determine which NN
topologies are the most appropriate to produce less training and testing errors, and (3)
encapsulate the detection capabilities into a monitoring agent.

When the monitoring system predicts the future occurrence of instability, a new
management strategy must be found. Therefore, the detection capability (behavior monitor
module) can be incorporated with the SADE methodology in order to predict ripple effects in the
supply chain at an early stage and then remove the instability or minimize its impact (see Figure
6.1). Finally, these two methodologies should be integrated in a framework for detecting and

modifying the behavior of SC models.
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APPENDIX A: ADDITIONAL LEMMAS
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Lemma A.1 The inverse matrix of the Jacobian J is given by

J;! 0
P B
0 J)
A —UR R e (DN
L U S I G ) I S
where J;' = : ,i=1,..,m
| 0 /A, |
J;! 0
J—l
Proof: First, it will be proved by contradiction that matrix J™' = : is not the
0 J.

inverse of the Jacobian J.

J;! 0
J
IfJ*' = : is not the inverse matrix of the Jacobian J then by the definition of
0 J!
inverse matrix it follows that JJ ' = 1. (A.1)

Multiplying matrices J andJ ™' yields
I, 0

JJ' = L
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where I, =JJ;' = , is the identity matrix of dimension n; (i=1,..,m)

is the identity matrix I of dimension n;+ny+...+ny,

J;! 0
1s not the inverse of the Jacobian J is false m

0 J!

m

Second, it will be proved using the Gauss-Jordan elimination method that

BVZVEES UV S VY SR €5 | KV
S VO S €S R

Jl’lz K : ,1=1,...m
0 1,

The method requires augmenting the original matrix J, by the identity, and then the form

[J. | 1] is obtained

Aol 01 0
Aol 1
A, 1
o1 .
0 A |0 1]

The following operations are performed to transform to the form [I | J [1]
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11/, 0 |1/, 0]
A1 1
Ao 1 Dividing the first row by A,
S :
0 M| 0 1
10 —UXN o 0 |l/A —UX e 0]
A 1 1 Multiplying the second row by
o 1
| —1/X° and adding it to the first row
0 M| 0 1
10 —UX o 0 |l/A —UX e 0
1 /A 1/,
A, 1 Dividing the second row by A,
S .
0 | 0 1
10 0 - 0|l -UX UX o 0
L1/, 1/ Multiplying the third row by 1/ 732
Ao 1
1 and adding it to the first row
0 M| 0 1
10 0 - 0|l -UX X - 0
Uk, =1¥ Multiplying the third row by —1/3>
Ao 1
| and adding it to the second row
0 | 0 1

After continuing with these operations until the final row is reached then the form [I | J i_l] is

obtained.
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Ua, -1/
1/,

0

0

xR
—1/

‘i

(=Dm/an ]
(—pm/an

1/A,

Thus, from the form [I | J i‘l] it is clear that

1/ 1N
/A,

0

Lemma A.2 (DeCarlo 1989) The matrix exponential of the Jacobian J is given by

et 0
Jot
oM — e
0 eJmt
B 2 At
. ¢ ter
et et
2
A A
" ettt et
where e’ =
0

Proof: By applying the property of the exponentiation of a diagonal matrix, the exponentiation

0

1/
-1/%

(=Dman ]

(=DHn? /k“ii"l
: ,1=1,..mm

1/,

tni—lek,t ]

(n, =1)!
tni—ZGK,t

(l'li —2)'

,1=1,..m

Mt

is calculated simply by exponentiating each of the diagonal elements;
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therefore

o1 0l 0] [o 1 0
o1 2, 0
J, = A, - A, + 0
1 . 1
0 Ml Lo A |0 0]
0 1 0]
0
Thus, making D, = 0 . then

J.=AI1+D,, fori=1,...m
After multiplying by “t” and exponentiating both sides
eJ,t — ekitIeDit (A.2)

Applying Definition 4 to the first factor on the right-hand side of (A.2)

© k 2 3
e““=§:gl—=1+(xﬂ)+(%ﬂ)-+04D T
& i 2! 3|

2 3
AO'T, 00T

=1+ (A + o 3
2 3
:(H(kit)mi_mw_m..)l
2! 3!
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=Ml

Applying Definition 4 to the second factor on the right-hand side of (A.2)

0 Dt k
eDit — Z ( i )
k=0

=1+ (D;t)+

DY’ DY

k! 2! 3!

The powers of matrix D; of dimension n; (i=1,..,m) are computed as follows

0 1 0] I
0
D = 0
10 0
D’ =0,p=n,
Replacing the powers o
_1
e =
10

Substituting (A.3), (A.5

J;t

el =M =

0 0 1 0] [0 0 0
0 0 0 0
,D? = 0 1|,...,D"" = 0
0
] 10 0 10
fD;in (A.4) gives
t2 tn'_l
t -
2 (n, -1)!
n; -2
1t !
(n,-2)!|,1=1,..,.m
1 -
) into (A.2) it is proved that
_ek,t tek,t tzex,t tni—lexit B
2 (n, —1)!
N " e .
(n,-2)!|,1=],..,m m
0 eiit
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Lemma A.3 (Fong and Wang 2000) If g and 4 are continuous functions on [a,0) and if

0<g(t) <h(t)forall te[a,«), then

1) _[ g(t) dt converges if Ih(t) dt converges

i1) _[h(t) dt diverges if I g(t) dt diverges

Proof: Refer to Fridy (2000) to see the proof of this lemma.

Lemma A.4 (Fong and Wang 2000) (Convergence of Infinite Series) If the series

Z‘Pi converges, then Lim'¥_ =0.

- m—> o
i=1

Proof: Let {S,,} be the sequence defined by
S]Z \Pl
Szz lPl + LPz

S;=¥, +¥, + ¥,

S =

m

Y

M-

1

It is known by the hypothesis that the sequence S, converges when m—oo, then

i‘l’i =LimS =L

° m—> oo
i=1

Note that if Lim S =L then LimS_, =L (A.6)
The m™ term of the series can be expressed as: ¥, =S_—S_ (A.7)
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Thus, from (A.6) and (A.7) results

Lim¥_ =Lim(S, -S, )

m— oo m-—> oo

=LimS, -LimS ,=L-L=0m

m— o0 m— o0

Lemma A.5 The integral J.tj'leRe(” dt converges only if Re(A) <0, for j>1.
0

Proof: Integrating J.tj'leRe(“ dt by parts
0

© et |® . 0
[tre™™ dt =t G- [t dt (A.8)
) Re(L)|, Re(h);
A Re(M)t |*
The term t'™ ;T converges to zero only if Re(A) <0. (A.9)
e

0
Otherwise the term and the whole integral go to infinity.

From (A.8) and (A.9) gives

0

J'tj-leRe(k) dt = (-1 J'tj—ZeRe(M dt (A.10)
0 —Re(M)

0

Integrating I t2e™™ dt by parts
0

e (=D
Re(M)|, Re(h)

[t dt =t [t7emm dt
0 0

eRe(x)t *®

Again, the term t'>———| converges to zero only if Re(L) <0 and
Re(M)|,
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o0

[2er gt = (G-2) th-sekem dt (A.11)
d —Re(M) 3

Substituting (A.11) into (A.10) yields

th-leke(k) dt = (J - 1)(] B 2) th-aeRe(A) dt
0 (—Re(M))* 3

After integrating by parts (j-1) times it follows that the integral I t"e®™ dt converges to
0

% if Re(L) <0 m
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APPENDIX B: STABILIZATION WITH A LOCAL SEARCH
ALGORITHM
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The SADE methodology does not require finding the global optimum to obtain
satisfactory reduction in instability. A local search algorithm can obtain a quick convergence of
the ADE in just few seconds. Although the time to find the optimal solution is an important
factor in selecting a search algorithm, the quality of such solution in terms of oscillation
reduction has to be analyzed. For that reason, in this appendix are compared the results obtained
by solving the optimization problem using the hybrid algorithm (PSO+PHC) with the one
obtained by using the local search algorithm (PHC). The case study to do the comparison is the
Mass model described in section 5.2.

Due to its highly nonlinear equations the Mass model complicates the task of finding a
good starting point for the local search algorithm. A simple way to choose the starting point will
use the parameter values of the current policy and consider the lower limits for the equilibrium

points, i.e., a;=1,000,000, a,=500,000 and a;=100. This is shown in the next table.

Table B.1. Mass model: initial point for the local search

Parameter Value Unit
Initial Labor 1500 People
Time to Average Production Rate 1 Years
Normal Inventory Coverage 0.5 Years
Normal Backlog Coverage 0.2 Years
Delay in Filling Vacancies 0.25 Years
Time to Average New Vacancy 0.5 Years
Creation

Normal Duration of Employment 2 Years
Time to Average Orders for 4 Years
Capital

Delivery Delay for Capital 2 Years
Time to Adjust Capital 4 Years
Normal Life of Capital 15 Years

a; (EP for Capital) 1,000,000 Capital Units
a, (EP for Inventory) 500,000 Units

a3 (EP for Labor) 100 People
Normal Production Rate 3E06 Units/year
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Parameter Value Unit
Initial Capital 7.5E06 Capital Units
Time to Correct Inventory and 0.8 Years
Backlog

Time to Adjust Labor 0.5 Years

Figures B.1, B.2 and B.3 show that although labor and inventory levels are similar in
both policies, the result obtained with the PHC algorithm requires much more capital to stabilize
the system. Moreover, the stabilization with the hybrid algorithm generates fewer fluctuations
before reaching the equilibrium level. The explanation relies on the characteristics of the PSO
method to perform a more expanded and deeper search of the space to find a better starting point

for the PHC algorithm.

8 M Capital Units
8 M Capital Units

6 M Capital Units
6 M Capital Units

4 M Capital Units
4 M Capital Units

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Capital: PSO+PHC Capital Units
Capital: PHC Capital Units

Figure B.1. Capital behaviors using the hybrid and local search algorithms
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2M Units
2M Units

1M Units
1M Units

0 Units
0 Units

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Inventory: PSO+PHC Units
Inventory: PHC Units

Figure B.2. Inventory behaviors using the hybrid and local search algorithms

25,000 People
25,000 People

12,500 People
12,500 People

0 People
0 People
0 4 8 12 16 20 24 28 32 36 40
Time (year)
Labor: PSO+PHC People
Labor: PHC People

Figure B.3. Labor behaviors using the hybrid and local search algorithms
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