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ABSTRACT 

In today’s world, supply chains are facing market dynamics dominated by strong global 

competition, high labor costs, shorter product life cycles, and environmental regulations. Supply 

chains have evolved to keep pace with the rapid growth in these business dynamics, becoming 

longer and more complex. As a result, supply chains are systems with a great number of network 

connections among their multiple components. The interactions of the network components with 

respect to each other and the environment cause these systems to behave in a highly nonlinear 

dynamic manner. 

Ripple effects that have a huge, negative impact on the behavior of the supply chain (SC) 

are called instabilities. They can produce oscillations in demand forecasts, inventory levels, and 

employment rates and, cause unpredictability in revenues and profits. Instabilities amplify risk, 

raise the cost of capital, and lower profits. To reduce these negative impacts, modern enterprise 

managers must be able to change policies and plans quickly when those consequences can be 

detrimental. 

This research proposes the development of a methodology that, based on the concepts of 

asymptotic stability and accumulated deviations from equilibrium (ADE) convergence, can be 

used to stabilize a great variety of supply chains at the aggregate levels of decision making that 

correspond to strategic and tactical decision levels. The general applicability and simplicity of 

this method make it an effective tool for practitioners specializing in the stability analysis of 

systems with complex dynamics, especially those with oscillatory behavior. 

This methodology captures the dynamics of the supply chain by using system dynamics 
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(SD) modeling. SD was the chosen technique because it can capture the complex relationships, 

feedback processes, and multiple time delays that are typical of systems in which oscillations are 

present. If the behavior of the supply chain shows instability patterns, such as ripple effects, the 

methodology solves an optimization problem to find a stabilization policy to remove instability 

or minimize its impact. The policy optimization problem relies upon a theorem which states that 

ADE convergence of a particular state variable of the system, such as inventory, implies 

asymptotic stability for that variable. The stabilization based on the ADE requires neither 

linearization of the system nor direct knowledge of the internal structure of the model. Moreover, 

the ADE concept can be incorporated easily in any SD modeling language. 

The optimization algorithm combines the advantage of particle swarm optimization 

(PSO) to determine good regions of the search space with the advantage of local optimization to 

quickly find the optimal point within those regions. The local search uses a Powell hill-climbing 

(PHC) algorithm as an improved procedure to the solution obtained from the PSO algorithm, 

which assures a fast convergence of the ADE. The experiments showed that solutions generated 

by this hybrid optimization algorithm were robust. 

A framework built on the premises of this methodology can contribute to the analysis of 

planning strategies to design robust supply chains. These improved supply chains can then 

effectively cope with significant changes and disturbances, providing companies with the 

corresponding cost savings. 
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CHAPTER ONE: INTRODUCTION 

During the last decade, manufacturing enterprises have been under pressure to compete in 

a market that is rapidly changing due to global competition, shorter product life cycles, dynamic 

changes of demand patterns and product varieties and environmental standards. In these global 

markets, competition is ever increasing and companies are widely adopting customer-focused 

strategies in integrated-system approaches. In addition, push manufacturing concepts are being 

replaced by pull concepts and notions of quality systems are getting more and more significant.  

Globalization of products and services and the rapid changes in technology have also 

resulted in fast-growing dynamic markets and greater uncertainty in customer demand. The 

process of managing and controlling the supply chain has become increasingly complex due to 

the geographic extension of the global operations between facilities. Moreover, competition has 

evolved from one company against other companies to one supply chain against other supply 

chains. 

Supply chain management (SCM) is seen as a mechanism that will allow companies to 

respond to these environmental changes and has become one of the top priorities on the strategic 

agenda of industrial and service businesses. The objective of SCM activities is to provide right 

quality of the right product at the right time. The attempt is to improve responsiveness, 

understand customer demand, control production or service processes, and align together the 

objectives of all partners in the supply chain. To achieve this goal, companies need the ability to 

provide improved management policies in order to react quickly to unexpected events taking 

place in the supply chain, eliminate the most undesirable effects if possible, and, minimize the 
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impact of those that can not be eliminated. 

In order to make investigations and to support decision-making about the impact of 

supply chain dynamics, system dynamics simulation models are suitable tools. “System 

dynamics is an approach for the modeling and simulation of nonlinear dynamic systems that 

aims at the understanding of a system’s structure and the deduction of the behavior from it. This 

focus on understanding is a great advantage of the system dynamics methodology as it is a 

requirement for the development of policies that lead to the improvement of the system’s 

performance. One important advantage of system dynamics is the possibility to deduce the 

occurrence of a specific behavior mode because the structure that leads to systems’ behavior is 

made transparent” (Schieritz and Größler  2003).  

Policy analysis1 as a method to generate stabilization policies in SCM can be addressed 

by getting a better understanding of the model structure that determines the SC behavior. The 

main idea behind this structural investigation is that the behavior of a SC model is obtained by 

adding elementary behavior modes. For linear models the eigenvalues2 represent these different 

behavior modes the superposition of which gives rise to the observed behavior of the system. For 

nonlinear systems the model has to be linearized at any point in time. Finding the connection 

between structure and behavior provides a way to discover pieces of the model where to apply 

policies to eliminate instabilities. However, other techniques are required to determine the best 

values of the parameters related to the stabilization policy. 

                                                 
1 In policy analysis, decisions are represented by a set of parameters, referred to as “policy parameters” (Grossmann 
2002). 
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SD models coupled with policy optimization techniques have proven to be a very 

powerful means for improving the behavior of dynamic systems. These methods are based on the 

optimization of a certain objective function to find the parameter values of the improved policy 

(Mohapatra and Sharma 1985). Choosing the objective function appropriately is critical for the 

effective change of the system behavior (Chen and Jeng 2004). 

The objective of this research is to develop a methodology that models and manages 

supply chains as dynamic systems3 and uses a policy optimization approach to modify the 

behavior of entire supply chains in order to achieve stability. 

1.1. Statement of the Problem 

As the world changes, supply chains have evolved to keep pace with the changing 

business dynamics, becoming longer and more complex. Today, supply chains are networks with 

an overwhelming number of interactions and interdependencies among different entities, 

processes and resources. These interactions of the system components with respect to each other 

and the environment create a highly nonlinear dynamic system. 

The classical way of managing a supply chain was to observe and analyze sales, demand, 

and inventory levels at the end of a certain pre-defined time and fill the required gap in it. That 

was based on the assumption that the supply and demand would remain linear, or at least stable, 

with no drastic fluctuations. This assumption was valid in a market dominated by the supplier’s 

                                                                                                                                                             
2 Eigenvalues (λ) are special set of scalars (real or complex numbers) associated with a linear system Jxx =& .  They 
are the roots of the characteristic equation Jr = λr , where J= ji xx ∂∂ /&  is a square matrix known as the Jacobian 
matrix, and r≠0 is called the eigenvector (AbdelGawad et al. 2005). 



 4 

perspective, not the consumer’s (Rabelo et al. 2004). However, due to the complexity of the 

current supply chains, for example, small fluctuations in customer demand can lead to 

instabilities that quickly ripple through the entire supply chain. These ripple effects can cause 

excessive inventory buildup, poor customer service, unnecessary capital investment, and 

dangerously low profits (Sterman 2006). 

 This research recognizes the difficulties and challenges for developing a methodology 

that will be based on a general concept that can be used to stabilize a great variety of supply 

chains, with emphasis on the ones with complex dynamic behaviors arising from nonlinearities 

and complicated interdependencies. 

1.2. Motivation of this Research 

This research is motivated by the large negative impacts of supply chain instabilities. 

Those impacts occur because instabilities can cause (1) oscillations in demand forecasts, 

inventory levels, and employment rates and (2) unpredictability in revenues and profits. These 

impacts amplify risk, raise the cost of capital, and lower profits. Modern enterprise managers can 

minimize these negative impacts by having the ability to determine alternative policies and plans 

quickly. 

This work proposes a methodology to reduce or eliminate undesirable behaviors by 

generating stabilization policies that focus on the aggregate levels of decision making that 

                                                                                                                                                             
3 A dynamic system is a model that captures the relevant changes among variables and parameters over time. For 
example, a simple pendulum is a system that actually evolves over time and can be modeled as a dynamic system. 
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correspond to the strategic and tactical levels4 of the SC. These policies will be obtained by 

redefining the relevant parameters of the SC at these levels. The proposed approach first uses SD 

to capture current dynamics. Then, a parameter optimization problem will produce policies that 

will remain stable for small variations5 in the system, providing the managers with an instrument 

to generate robust policies that eliminate instabilities in the SC. 

A supply chain model can be described by its structure and its parameters. Traditional 

approaches that relate model structure and behavior have relied upon sensitivity analysis and 

linearized models when exploring possible changes in complex systems. Although it is possible 

from the structure of the system to identify relevant parameters responsible for generating 

specific behaviors, it is hard to determine how much these parameters have to change 

simultaneously in order to obtain a desired overall behavior. While these methods can be used to 

obtain stable policies of the SC, the complexity of the associated mathematics makes them 

difficult to use for managers and practitioners. 

On the other hand, policy optimization methods have been used to optimally modify the 

parameters of dynamic systems to achieve certain objectives. However, these objectives are 

defined to meet particular characteristics of the system, implying that different systems require 

different objectives and settings.  

For the reasons presented above, there is a necessity for a methodology that, based on 

stability conditions obtained from the structure of a generic SC model, can produce robust 

policies to eliminate or reduce the impact of instabilities. It is the hope of the author of this 

                                                 
4 The different decision levels of the supply chain are explained in chapter two. 
5 Small variations represent a region close to the equilibrium state 
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research that this methodology will be able to provide a powerful and simple tool that can be 

used by practitioners and academics. 

1.3. Research Question 

Due to the non-existence and the need for a general methodology that can assist in the 

stabilization capabilities for supply chains, it is the primary focus of this research to answer the 

following question: 

 Can a methodology be developed that extends the current research findings in the 

engineering field to form the components of a framework that allows to eliminate or minimize 

the impact of supply chain instabilities?   

1.4. Research Objectives 

The objectives of this research include the following: 

1) Proposition of generic stability conditions, based on the accumulated deviations from 

equilibrium6, to produce robust policies that can be applied to a great variety of supply 

chain models.  

2) Formulation of an optimization problem, based on the conditions proposed in objective 1, 

to eliminate or minimize instability of the SC.  

3) Use of a simulation optimization method that combines SD with a hybrid search engine 

based on PSO and PHC algorithms, to model and solve the optimization problem stated 

                                                 
6 For a state variable of a SC model, the deviations from equilibrium at time “t” represent the absolute value of the 
difference between its value at time “t” and its value in the equilibrium state. The ADE are the summation of these 
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in objective 2. The efficiency of this hybrid method relies on the advantage of the PSO 

algorithm to provide a global view of the search space and the ability of the PHC to find 

the local optimum with high accuracy. 

4) Development and demonstration of the benefits of a computerized framework for 

modifying the behavior of SC models in order to achieve stability. The framework will 

use the conditions and methods presented in objectives 1 through 3. 

1.5. Research Contribution 

Companies are discovering that effective SCM is having a tremendous impact to increase 

profit and market share. On the contrary, inefficient SCM can cause numerous problems, such as 

ineffective production and transportation schedules, poor customer service and excessive 

inventory investment. These problems can cost companies millions of dollars. Here are some 

facts that show the magnitude of the costs: 

o The Wall Street Journal published an article (Chozick 2007) that explains that due to a 

delay in making deliveries of a piston ring costing $1.50 from a mayor supplier, nearly 

70% of Japan's auto production was temporarily paralyzed.  For instance, Toyota stopped 

production in its Japanese plants for at least one day and a half, causing a loss of output 

of at least 25,000 vehicles. 

o Instability around the world has cost U.S companies more than $300 billion in SC 

disruptions, according to a recent study by Aon Trade Credit (Karrenbauer 2006). 

                                                                                                                                                             
deviations for the time horizon considered in the SC model. The mathematical equation for the ADE is introduced in 
chapter 3. 
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o A fire in 2000 at a chip plant of the Dutch electronics giant, Phillips N.V., caused the 

shortage of millions of chips needed for the cell phone manufacturer Ericsson. It took a 

$2.34 billion loss in its mobile phone division (Bartholomew 2006). 

o According to the State of Logistics Report (Delaney and Wilson 2000), in 2000, the US 

companies spent $1 trillion (10% of GNP) on supply-related activities (movement, 

storage, and control of products across supply chains). 

o Compaq Computer estimated that it lost $500 million to $1 billion in sales in 1994 

because its laptops and desktops were not available when and where customers were 

ready to buy them (Henkoff 1994). 

o One study suggested that inefficiencies within a supply chain increase costs by as much 

as 25% (Kurt Salmon Associates 1993). 

o It is estimated that the grocery industry could save $30 billion per year (10% of operating 

cost) by using effective logistics strategies (Kurt Salmon Associates 1993). 

o Carlsson and Fullér (1999) claimed that demand variability along the SC would cost $17-

34 million euros per year to the forest products industry. 

Due to the dynamic changes in the business environment, managers today rely on 

decision technology7 more than ever to make decisions. In the area of supply chain, the top 

projected activities where decision technology applications have great potential of development 

are planning, forecasting, and scheduling (Poirier and Quinn 2006). 

This research work is proposing a methodology that from now on will be called 

stabilization based on the accumulated deviations from equilibrium (SADE). A framework built 
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on the base of this methodology will allow the analysis of planning strategies to design robust 

supply chains that can effectively cope with significant changes and disturbances, with the 

corresponding cost savings to the companies. 

1.6. Thesis Outline 

The remainder of this thesis is organized as follows. Chapter Two discusses the literature 

review of SD modeling in SCM, model structural analysis (MSA), policy optimization, stability 

analysis of the supply chain, PSO and PHC algorithms. Chapter Three presents the steps of the 

research methodology which considers the logic and the validation of the SADE methodology 

and its integration into a framework. Chapter Four provides the definitions and theorems that 

support the theoretical concepts of the stabilization methodology. Chapter Five discusses the 

application of the framework to several case studies and presents the results of the experimental 

analysis for the SADE methodology. Finally, Chapter Six presents the conclusions and 

contributions of this work and suggests directions for further research. 

                                                                                                                                                             
7 Decision technology adds value to network infrastructure and applications by making them smarter. 
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CHAPTER TWO: LITERATURE REVIEW 

This chapter discusses the definitions and technical aspects that are necessary for a 

conceptualization of a methodology of general applicability for stabilizing supply chains. Much 

of the literature that can be related to SCM control systems presents techniques for separated 

analysis of the SC related to specific problems, but does not discuss wider conceptual 

methodologies for stability analysis. 

This literature review focuses on presenting the scope and approaches behind the 

concepts of stability, system dynamics, eigenvalue analysis and optimization, as a facilitator to 

link some of these concepts to one another.  Applications of these concepts in the area of supply 

chain are provided when found in the literature; otherwise similar lines of development in 

engineering and business fields are presented. This chapter covers the following topics: 

1. System dynamics modeling in supply chain management. This topic presents the 

different decision levels of the supply chain and explains the use of SD modeling at 

the top level of the management hierarchy. 

2. Model structural analysis. This topic shows the use of the model structural analysis 

for identifying the connection between behavior and structure of dynamic systems. 

3. Policy optimization. This topic illustrates the use of optimization methods to find 

policies that modify the system behavior and when combined with simulation 

optimization represents the most general mean for achieving stability. 

4. Stability analysis of the supply chain. This topic shows how the stability of supply 

chains can be analyzed using different approaches such as control theory methods, 
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MSA and policy optimization. 

5. Particle swarm optimization. This topic presents the advantages of using a global 

search algorithm based on PSO to find optimal policies that can stabilize linear and 

nonlinear SD models. 

6. Powell hill-climbing algorithm. This topic shows how the benefits of hill-climbing 

algorithms can help to improve the searching capabilities of global search methods. 

As the final result of this review, the research gaps that justify the development of the 

proposed methodology are identified. 

2.1. System Dynamics Modeling in Supply Chain Management 

This topic is divided in two parts. The first introduces the definition of SCM and the 

decision levels involved in the SC. The second presents the SD methodology and its applications 

in supply chain management. 

2.1.1. Supply Chain Management and Decision Levels 

 In today’s business environment, companies can not expect to build a successful product, 

process, or service advantage if their strategies are not integrated with those of the supply chain 

systems in which they are interconnected (Ross 2003). Therefore, supply chain management is a 

mayor component of competitive strategy to enhance organizational productivity and 

profitability (Gunasekaran et al. 2004). 

 In order to understand the concept of supply chain management, firstly, it is necessary to 

define what a supply chain is. Several authors have proposed the following definitions for SC 
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and SCM: 

Handfield and Nichols (1999) define supply chain as encompassing: 

“all activities with the flow and transformation of goods from the raw materials 

stage (extraction), through to the end user, as well as the associated information 

flows. Material and information flow both up and down the supply chain”. 

 After that, supply chain management is defined as: 

“the integration of these activities through improved supply chain relationships to 

achieve a sustainable competitive advantage”. 

According to Ayers (2001), the supply chain is “more than the physical move of goods”. 

It is also information, money movement, and the creation and deployment of intellectual capital. 

He defines the supply chain as: 

“life cycle processes comprising physical, information, financial, and knowledge 

flows for moving products and services from suppliers to end users”. 

 Ayers then defines supply chain management as the: 

“design, maintenance and operation of supply chain processes for satisfaction of 

end user needs”. 

 Simchi-Levi et al. (2002) propose the idea of supply chain network in their definition of 

SCM. They state that “supply chain management is a discipline that focuses on the integration of 

suppliers, factories, warehouses, distribution centers, and retail outlets so that the items are 

produced and distributed to the right customers, at the right time, at the right place, and at the 

right price. It is important to do this in a way that minimizes costs while satisfying a certain level 

of service”. 
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 Having defined the concept of SCM, it is necessary to categorize the decisions associated 

with the planning and control activities of the supply chain. 

Anthony (1965) proposes a category where the decision process can be partitioned, to 

select adequate models and techniques to deal with the individual decisions at different 

hierarchical levels. He classifies decisions in three categories: strategic planning, tactical 

planning, and operations control. This hierarchical classification recognizes the distinct level of 

aggregation of the required information, and the time frame in which the decision is to be made. 

This classification has been incorporated into the SCM to support integrated decision making 

(Chang and Harris 2001; Surana et al. 2005; Huang et al. 2003; Beamon and Chen 2001; 

Gunasekaran et al. 2004).  

Strategic planning is concerned mainly with establishing managerial policies and with 

developing the necessary resources the enterprise needs to satisfy its external requirements in a 

manner consistent with its specific goals (Hax 1974). Strategic decisions consider the long term 

(time horizons up to several years in length), and the scope is corporate wide, requiring 

information to be processed in a very aggregate form. At this level, the performance of the SC is 

measured against corporate goals often reflecting broad based policies, financial plans, and 

competitiveness. Strategic level analysis includes location and capacity of warehouses and 

manufacturing plants, the flow of material through the supply network, inventory management 

policies, distribution strategies, outsourcing and procurement strategies, product design, etc. 

(Georgiadis et al. 2005). 

 Tactical planning is concerned with the effective allocation of resources to satisfy 

demand and technological requirements. Tactical decisions correspond to the medium term (time 



 14 

horizons up to several months in length), and the scope is at least regional or corporate wide. 

Some resources, such as the location of manufacturing facilities, are fixed. Tactical level analysis 

considers demand forecast, inventory control, production/distribution coordination, material 

handling and layout design. 

Operational planning is concerned with the very short term decisions made from day to 

day. This requires the complete disaggregation of the information generated at higher levels into 

the details consistent with the managerial procedures followed in daily activities. Resources are 

typically known and fixed. Analysis at this level considers routing, scheduling, workload 

balancing and inventory control. Performance measures of the SC at the operational level require 

accurate data and assess the results of low level managers’ decisions. 

2.1.2. System Dynamics and its Application in Supply Chain Management 

 Jay Forrester (1958, 1961) introduced SD in the late 50s as a model and simulation 

methodology for the analysis and long-term decision making of dynamic industrial management 

problems. System Dynamics has its origins in control engineering and management; the 

approach uses a perspective based on information feedback and delays to understand the 

dynamic behavior of complex physical, biological, and social systems (Angerhofer and 

Angelides 2000). The essential idea in SD is that all the objects in a system interact through 

causal relationships. These relationships are represented by feedback loops, which control the 

interactions between the system objects and cause the system behavior (Rabelo et al. 2003). 

 According to Lane (1997), Forrester (1958) proposes a whole new way to understand and 

model management problems. He summarizes that Forrester claims:  
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“… systems should be modeled as flow rates and accumulations linked by 

information feedback loops involving delays and nonlinear relationships. 

Computer simulation is then the means of inferring the time evolutionary 

dynamics endogenously created by such system structures. The purpose is to learn 

about their modes of behavior and to design policies which improve 

performance”. 

Supply chain is a dynamic process and involves the complex flow of information, 

material, and funds across multiple functional areas both within and among companies (Ahn et 

al. 2003). Surana et al. (2005) present some characteristics of supply chains: 

o Coexistence of competition and cooperation. The entities in a SC often have 

conflicting objectives. Competition abounds in the form of sharing and contention of 

resources. Global control over nodes is an exception rather than a rule; more likely is 

a localized cooperation out of which a global order emerges, which is itself 

unpredictable. 

o Nonlinear dynamics. Customers can initiate transactions at any time with little or not 

regard for existing load. The coordination protocols in the SC attempt to arbitrate 

among entities with resource conflicts, generating over- and under-corrections which 

contribute to the nonlinear character of the network. 

o Quasi-equilibrium: Supply chains can experience a structural change when they are 

stretched from equilibrium. At such a point, a small event can trigger a cascade of 

changes that eventually can lead to system-wide reconfiguration. One of the causes of 

unstable phenomena is that the information feedback in the system is slow relative to 
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the rate of changes that occur in the SC. 

o Emergent behavior: From the interaction of the simple entities, the organization of the 

overall SC emerges through a natural process order and spontaneity. Demand 

amplification and inventory swing are two undesirable emergent phenomena that can 

also arise. 

SD models use a system of differential equations to capture interactions between different 

subsystems and the impacts of delays in the SC. Because of the complexity of the system with 

nonlinearity, many times it is not possible to solve it analytically. In such cases, continuous 

simulation must be used to provide the solution. Therefore, simulation is the most versatile tool 

for dealing with complex dynamic systems like the supply chain. 

Since differential equations produce smooth outputs, they are not suited to the modeling 

of all levels of the supply chain. The system must be considered at an aggregate level, in which 

individual entities in the system (products) are not considered. Consequently, SD is not an 

appropriate technique to be used in production processes in which each individual entity has an 

impact on the fundamental state of the system, such as lot sizing and job sequencing problems 

(Riddalls et al. 2000). 

  Strategic supply chain management deals with a wide spectrum of issues and includes 

several types of decision-making problems that affect the long term development and operations 

of a firm. The data required at this stage is more aggregate than at subsequent levels (tactical and 

operational) and there are not fixed resources. Mathematical programming (optimization 

techniques) and SD have been two approaches used for the analysis and study of the strategic 

SCM models. However, SC optimization models may produce an optimal solution for a static 
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point in time, but this solution may not prove to be robust in dynamic environments (Blackhurst 

et al. 2005). 

Conversely, simulation is a well suited technique for studying dynamics in supply chains 

and generally proceeds based on SD models (Surana et al. 2005). Riddalls et al. (2000) conclude 

that global behavior of a supply chain can only be assessed by using dynamic simulation. 

Ashayeri et al. (1998) consider that SD is an adequate technique for the modeling and simulation 

of strategic systems. The reason proposed is that detailed information is not required to represent 

the relationships of the feedback loops used in SD models to represent the behavior of the 

system. Akkermans and Bertrand (1997) affirm that SD models are commonly characterized as 

especially successful in capturing strategic issues. However, this does not mean that SD models 

contain no links to tactical or operational processes in the SC (Baines and Harrison 1999). To 

build a SD model it is necessary to identify the main operational flows in an organization and the 

main stages in these flows: the flow of customer orders, of goods or services, of employees, etc. 

(Forrester 1961; Richmond 1994; Kleijnen 2005). 

System dynamic models represent the frequency domain more naturally than 

optimization models, providing a framework particularly suited to the study of systems in which 

oscillations are a main attribute. Through these models it is possible to investigate which factors 

determine how demand fluctuations may be amplified as they are passed along the supply chain 

(Riddalls et al. 2000). 

According to Akkermans (2005), SD is an approach that is able to model “implicit 

system boundaries explicitly”. For instance, “the presence of competitors is often only noticeable 

in elements like shortage costs (a customer who is not served well might go somewhere else)”. 
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However, “only in SD are these competitors considered to be within the system boundary when 

this is relevant for the problem at stake”. Moreover, modeling causal structures in feedback loops 

helps to provide an endogenous explanation of real system behavior. For example, the customer 

demand can be considered part of the SD model, something that is very rare in other quantitative 

approaches. Customer demand is not exogenous but endogenous, and is determined at least in 

part by the supply network (Akkermans and Dellaert 2005; Mandal and Sohal 1998). 

The application of SD modeling to SCM has its roots in Industrial Dynamics (Forrester 

1958, 1961). Forrester presents a three-level SC model consisting of a factory with a warehouse, 

a distributor and a retailer. He suggests that the main task of managers is the understanding and 

control of five types of flows that occur in industrial companies: “information, materials, money, 

manpower, and capital equipment”. Forrester examines how production and distribution 

procedures in a supply chain may result in an inadequate assessment of perceived demand, 

creating a demand amplification effect (see Figure 2.1). This effect, also know as the bullwhip 

effect, is the process by which small fluctuations in demand at the retailer end of SC are 

amplified as they proceed throughout the chain, causing increased inventory, irregular capacity 

utilization, and reduced service level (Chu 2003). 

More examples of practical applications of SD modeling to SCM will be presented in the 

following lines. 

Sterman (1989) uses a SD model of the Beer Distribution Game, which is a realistic 

simplification of the SC for beer manufacturer, to rigorously test the existence of the bullwhip 

effect in an experimental context. He provides evidence that the bullwhip effect exists and may 

be caused by chain member’s tendency to underweight inventory in the SC. Later, Sterman 
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(2000) introduces a generic SD model of the stock management structure which is used to 

explain the origin of oscillations in supply chains. He concludes that SC distortions can be 

amplified due to the existence of hard safety stock policies. Oscillations arise from the 

combination of time delays in negative feedbacks8 and failure of the decision maker to take the 

time delays into account. Villegas and Smith (2006) extend Sterman’s work by considering in 

the analysis the trade-off between production quantity oscillations and inventory oscillations. 

They show that this trade-off can be managed by a change to the planning policy to give more 

relevance to the forecast rather than the safety stock policy. 

Time Time Time

Consumers 
Demand

Retailers 
Demand

Distributors
Demand

Retailers Distributors Manufacturers

Variability in demand increases
 

Figure 2.1. Bullwhip effect in a supply chain 

Anderson Jr. et al. (2000) investigate demand amplification effects in the machine tool 

industry through a SD model. The SD methodology allows them to incorporate typical features 

of the capital equipment supply chains, such as feedback loops, delays and nonlinearities. Unlike 

other modeling studies which only concentrate on logistical decisions, these authors also 

                                                 
8 In SD theory, all dynamics arise from the interaction of just two types of feedback loops, positive (or self-
reinforcing) and negative (or self-correcting) loops. Positive feedbacks tend to reinforce or amplify whatever is 
 



 20 

investigate the effect of factors such as work force learning on supply chain dynamics. The study 

demonstrate that: (1) the (observed and simulated) extreme amplification is primarily due to the 

machine tool industry capacity in conjunction with investment accelerator effect, (2) the machine 

maker’s employee productivity decreases with increasing volatility, and (3) smoothing 

employment and product order policies can improve machine maker operations. They also 

identify the machine tool customers’ order forecast rules as important point for reducing 

volatility, which could be improved through closer collaboration between customers and 

suppliers in the machine tool industry (Angerhofer and Angelides 2000). 

Ashayeri et al. (1998) create a model for the distribution chain of Edisco – the European 

distribution arm of the US Company Abbott Laboratories. They propose a new conceptual 

framework for conducting a structured business process reengineering supported by SD 

simulation. The SD model is simulated in order to find out which strategies will result in the 

highest performance improvements and help a company to change toward its vision. Important 

conclusions obtained from the experiments are: (1) increase of production capacity (a structural 

change) does not guarantee a stable supply chain, (2) the higher the total lead-time, the bigger the 

degree of instability, and (3) although sufficient production capacity does not guarantee a stable 

supply chain, full scheduling of capacity is disastrous. 

Joshi (2000) builds a framework for improving visibility of information in the SC by 

reducing the delays in information flow. He analyzes the dynamics of a SC under different 

scenarios of information visibility and forecasting decisions with the help of SD simulation. 

                                                                                                                                                             
happening in the system. On the contrary, negative feedbacks counteract and oppose change (Sterman 2000). 
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The SD methodology has also been applied to the food industry supply chain. Minegishi 

and Thiel (2000) develop a model to improve the understanding of the complex logistic behavior 

of an integrated food industry. The model allows them to study the influence of different policies 

applied to the poultry production and processing, and to show the phenomena of instabilities and 

system controls in supply chains confronted with serious hazards in their customer demand. 

Georgiadis et al. (2005) present a holistic model to capture the extended food supply chain at a 

strategic level. They adopt the SD methodology as a modeling and analytical tool to tackle 

strategic issues for food supply chains. The model is used to identify effective policies and 

optimal parameters for various strategic decision making problems of single and multi-echelon 

supply chains. Finally, they demonstrate the applicability of the developed methodology on a 

multi-echelon network of a major Greek fast food chain. 

Design and development of close-loop supply chains9 have been analyzed using SD 

models. Spengler and Schröter (2003) use SD to model and evaluate different scenarios of a SC 

for the recovery of spare parts in the electronics industry. The scenario analysis allowed taking 

managerial decisions based on cost and production capacity. Georgiadis and Vlachos (2004) 

study long-term behavior of reverse SC with product recovery under various ecological 

awareness influences capacity planning policies. The behavior of the system is analyzed through 

a dynamic simulation model based on the principles of the SD methodology. They examine two 

main environmental issues, the green image effect on customer demand, and the effect of state 

                                                 
9 Close-loop supply chains include the return process in addition to the conventional activities of forward supply 
chains, where the customer is the end of the process. (Guide Jr. et al. 2003). 
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environmental protection policies, such as the state campaigns for proper disposal of used 

products. 

Higuchi and Troutt (2004) simulate the SC for the Japanese pet-toy called Tamagotchi 

using SD technique. They use a multi-echelon model that considers the simultaneous influences 

of several phenomena, such as the bullwhip effect, boom and bust, and multi-echelon decisions. 

The model contributes to decision-making such as the levels of manufacturing capacity and 

advertisement, as well as the timing to foreign market. Recommendations are derived about three 

important issues in the SC: the control of diffusion speed of new products, the importance of 

repeat purchasers as a buffer, and the identification of phantom demand. 

From the literature presented above, it is clear that SD is a well-proven technique for the 

modeling and analysis of supply chains in different industries. Because SD uses simulation to 

evaluate SC strategies, it provides more flexibility to deal with nonlinear dynamic systems than 

the mathematical analytical methods. However, the advantage of SD over other approaches that 

study the behavior of supply chains is that it uses feedback loops to capture the complex 

relationships of the system. Although SD has its origins in control engineering, it models 

feedback loops differently. SD uses causal loop diagrams, which makes it easy to identify and 

understand the causal-effect relationships that drive system behavior, extending the 

comprehension of the system from the engineering to the management levels. 

2.2. Model Structural Analysis 

One of the most challenging tasks in understanding the behavior of the supply chain 

model is uncovering the components (structure) responsible for generating such behavior, and to 
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what extent. In SD modeling, these important components are called dominant loops. Three 

analytical methods have been identified that help to find this relationship between the structure 

and behavior of the SD model. They are the following: the eigenvalue elasticity analysis (EEA), 

the pathway participation metric (PPM) method and the behavioral decomposition weights 

(BDW) analysis. 

The first method, the eigenvalue elasticity analysis, was introduced by Nathan Forrester 

(1982) in the context of analyzing stabilization policies in a macro-economic model. The method 

consists of linearizing the model under study at any point in time, calculating its eigenvalues and 

then noting how the eigenvalues change as link gains change10 (Güneralp 2005), that is, link 

elasticities11. The eigenvalues characterize different behavior modes (exponential growth, 

exponential decay, expanding oscillations, sustained oscillations, dampened oscillations) the 

superposition of which gives the rise to the observed behavior of the system. A large elasticity 

would indicate that the link gain (structural component) is in some sense “important” on 

generating the behavior mode associated with that eigenvalue. Forrester then extends this 

concept considering the loops elasticies12, which measure the overall importance of a loop to a 

behavior mode. Therefore, EEA, by forming a connection between the model structure and 

behavior, provides a means to figure out the dominant structure in the model. By governing these 

structural components, it is possible to influence the modes of behavior that govern the model 

behavior and thus manage the model (Saleh and Davidsen 2001). 

                                                 
10 The gain of the link between two variables is defined as the partial derivative of the output variable with respect to 
the input variable (Saleh 2006). 
11 )//()( / kkii gg∂∂= λλε , where ε is the elasticity of the eigenvalue λi with respect to the link gain gk  
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In a typical EEA study, only one behavior mode is regarded as dominant at each analysis 

time step. Thus, the resulting explanation on loop dominance would be based on that behavior 

mode. This approach fails when there is more than a single dominant behavior mode to explain 

the behavior of the selected variable. The EEA has been extended to consider several behavior 

modes affecting simultaneously the decision variables. The procedure proposed by Güneralp 

(2005) considers all behavior modes to the contribution of the behavior of the variable of interest 

at each time step and a conglomerate measure for loop dominance is devised based on this 

method.  

Saleh et al. (2005) focus the eigenvalue analysis on the contribution of both eigenvalues 

and eigenvectors on model behavior. They provide a computational method (implemented in 

Matlab) to calculate such influence. Recently, an analytical method to incorporate eigenvectors 

to the more traditional eigenvalue analysis has been proposed by Gonçalves (2006).  His work 

identifies the significant role of the eigenvector in the short term behavior of the system, while 

the behavior mode is more influenced by the eigenvalue in the long term. Eigenvalue and 

eigenvector sensitivities (i.e., the partial derivatives with respect to a link gain) are incorporated 

in the analysis to show how they work together to influence system behavior. A shortcoming to 

the method is that solutions to the system behavior equations are required to obtain the analytical 

results. 

Mojtahedzadeh (1997) proposes a second method that would aid in understanding 

structure behavior linkages. His method uses the so-called pathway participation metric to find 

                                                                                                                                                             
12 Similar to the link elasticity but instead of a link gain it uses a loop gain. The loop gain is given by the product of 
all link gains forming the loop (Gonçalves et al. 2000). 
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the structure that most influences the time path of a state variable (variable of interest). This 

measure is based on the loop dominance work proposed by Richardson (1995)13. PPM relies on 

the analysis of linkages or pathways between two state variables of a model as the primary 

building blocks of influential structure. Using a recursive heuristic systematic analysis, the PPM 

calculations always yield a reduced structure of a key feedback loop plus one or more pathways 

that contribute most to a given mode of behavior for the selected variable. PPM stands as the 

only approach whose features are implemented in an experimental piece of software, Digest 

(Mojtahedzadeh et al. 2004). A limitation of the current implementation of PPM is that it 

identifies only the single most influential pathway for a variable. The pathway searching 

algorithm does not capture the situation when more than one structure may contribute 

significantly to the model behavior and may miss alternative paths that could prove to yield a 

larger total value of the metric (Kampmann and Oliva 2006). Another problem about the PPM 

method is its somewhat myopic approach to structure-behavior relationship. In other words, by 

confining itself to a single path of dominance of the selected variable, the method could lead to 

“localized” explanations of the variable’s behavior. Thus, while the method has the advantage of 

being computationally simple it is not well suited for systems that oscillate, since the analysis is 

local and cannot capture global modes of behavior. 

The third approach, the behavioral decomposition weights analysis, is proposed by Saleh 

et al. (2007). This method explores the significance that each behavior mode has on the system 

state variables. This is achieved by decomposing the behavior of a variable into a sum of 

                                                 
13 Richarson proposed that the net time derivative of a state variable with respect to the state variable itself, i.e. 
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weighted reference modes observed in a linear system (represented by the eigenvalues). They 

propose that focusing on the weights, rather than on the eigenvalues, is a more efficient way to 

develop policy recommendations.  In other words, instead of aiming to change the characteristic 

of the behavior mode, the authors suggest that a more effective method to identify policies is 

adjusting the significance of a particular behavior mode. In order to identify the elements of 

model structure more responsible for the observed behavior, they define the elasticity of a weight 

to gain14. A routine developed in Mathematica is provided to calculate the eigenvalues and 

weights. The fact that weights and eigenvalues are not independently determined is perhaps one 

the shortcomings of the method.  

The literature shows that MSA methods provide a powerful mechanism for identifying 

the structural parts of the SD model that are responsible for certain behaviors of interest. This 

can help to concentrate the focus of the analysis on specific pieces of the model, reducing the 

number of parameters considered to stabilize the system. However, these approaches require the 

linearization of the system and they rely on the sensitivity analysis to determine the parameter 

values of the stabilization policy. 

2.3. Policy Optimization 

The policy optimization process uses methods based on mathematical programming and 

algorithmic search to find an improved policy. Several optimization methods have been used to 

obtain policies that modify system behavior. Burns and Malone (1974) express the required 

                                                                                                                                                             
xxxtx ∂∂=∂∂∂∂ //)/( & , can be an important measure of when a loop shifts dominance. The PPM approach calls 

xx ∂∂ /&  the Total Pathway Participation Measure. 
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policy as an open-loop solution (i.e., the solution function has not the variables from the system). 

The drawback of this method is that if the system fluctuates by some little impact, the open loop 

solution without information feedback can not adjust itself to the new state. Keloharju (1982) 

proposed a method of iterative simulation where each iteration consists of a parameter 

optimization. He suggests predefining the policy structure by allowing certain parameters of the 

model to be variables and by adding new parameters. However, the policies obtained with 

Keloharju’s method are not robust when subject to variations of external inputs because the 

policy structure was predefined and thereafter optimized (Macedo 1989). Coyle (1985) includes 

structural changes to the model, and applies the method to a production system. 

Kleijnen (1995) presents a method that includes design of experiments and response 

surface methodology for optimizing the parameters of a model. The approach treats SD as a 

black box, creating a set of regression equations to approximate the simulation model. The 

statistical design of experiments is applied to determine which parameters are significant. After 

dropping the insignificant parameters, the objective function is optimized by using the Lagrange 

multiplier method. The parameter values obtained through the procedure are the final solution. 

Bailey et al. (2000) extend Kleijnen’s method by using response surfaces not to replace the 

simulation models with analytic equations, but instead to direct attention to regions within the 

design space with the most desirable performance. Their approach identifies the exploration 

points surrounding the solution of Kleijnen’s method and the finds a set of real best-combination 

of parameters from them (Chen and Jeng 2004). 

                                                                                                                                                             
14 It is the ratio of the fractional change in the weight to the fractional change in the gain. 
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Grossmann (2002) uses genetic algorithms (GA) to find optimal policies. He 

demonstrates his approach in the Information Society Integrated System Model where he 

evaluates different objective functions. Another method that uses genetic algorithms to search 

the solution space is the one proposed by Chen and Jeng (2004). First, they transform the SD 

model into a recurrent neural network. Next, they use a genetic algorithm to generate policies by 

fitting the desired system behavior to patterns established in the neural network. Chen and Jeng 

claim their approach is flexible in the sense that it can find policies for a variety of behavior 

patterns including stable trajectories. However, the transformation stage might become difficult 

when SD models reach real-world sizes. 

In the area of optimal control applied to system dynamics, Macedo (1989) introduces a 

mixed approach in which optimal control and traditional optimization are sequentially applied in 

the improvement of the SD model. Macedo’s approach consists principally of two models: a 

reference model and a control model. The reference model is an optimization model whose main 

objective is to obtain the desired trajectories of the variables of interest. The control model is an 

optimal linear-quadratic control model whose fundamental goal is to reduce the difference 

between the desired trajectories (obtained by solving the reference model) and the observed 

trajectories (obtained by simulation of the system dynamic model).  

The drawback of the methods presented above is that the objective function has to be 

defined for each particular model and it is not easy to choose.  

2.4. Stability Analysis of the Supply Chain 

The main objective in stability analysis is to determine whether a system that is pushed 
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slightly from an equilibrium state (system variables do not change over time) will return to that 

state. If for small perturbations or disturbances from the equilibrium state the system always 

remains within a finite region surrounding that state, then this equilibrium state is stable. 

However, if a system tends to continue to move away from its original equilibrium state when 

perturbed from it, the system is unstable. 

Sterman (2006) states that “supply chain instability is a persistent and enduring 

characteristic of market economies”. As a result, company indicators such as demand forecast, 

inventory level, and employment rate show an irregular and constant fluctuation. Supply chain 

instability is costly because it creates “excessive inventories, poor customer service, and 

unnecessary capital investment” (Sterman 2006). 

 In dynamic complex systems like supply chains, a small deviation from the equilibrium 

state can cause disproportionately large changes in the system behavior, such as oscillatory 

behavior of increasing magnitude over time. The four main contribution factors to instability in 

SC have been identified by Lee et al. (1997), which are: 

o Demand forecast updating: when companies throughout the SC do not share 

information about demand, this have to be forecasted with the possible cause of 

information distortion. 

o Order batching: this means a company ordering a large quantity of a product in one 

week and not ordering any for many weeks, which will cause distortion on the demand 

forecast of other members of the SC, because it is based on orders rather than actual 

sales. 

o Shortage gaming: when a product demand exceeds supply, a manufacturer often rations 
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its product to customers, which will cause that customers exaggerate their orders to 

ensure that they receive enough amount of the required product. 

o Price fluctuations: when the price of a product changes significantly, customers will 

purchase the product when it is cheapest, causing them to buy in bulk (order batching 

problem). 

The stability of supply chains models can be analyzed using the vast theory of linear and 

nonlinear dynamic systems control. Disney et al. (2000) describe a procedure for optimizing the 

performance of an industrially design inventory control system. They quantify five desirable 

characteristics of a production distribution system by drawing in classical control techniques for 

use in a modern optimization procedure based on GA. They demonstrate that their procedure can 

improve the performance of a production or distribution control system by fully understanding 

the trade-off between inventory levels and factory orders. Riddalls and Bennett (2002) study the 

stability properties of a continuous time version of the Beer Distribution Game. They 

demonstrate the importance of robust stability, i.e. stability for a range a production/distribution 

delays, and how stock outs in lower echelons can create vicious circle of unstable influences in 

the supply chain. Nagatani and Helbing (2004) study several production strategies to stabilize 

supply chains, which is expressed by different specifications of the management function 

controlling the production speed in dependence of the stock levels. They derive linear stability 

conditions and carry out simulations for different control strategies. Ortega and Lin (2004) show 

that control theory can be applied to the production-inventory problem to address issues such as 

reduction of inventory variation, demand amplification, and ordering rules optimization. 

Linearization is frequently the quickest and easiest way to determine stability of an 
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equilibrium point (EP) for a nonlinear system. The linearization approach of nonlinear systems 

can be used to extend the stability concepts for linear systems (eigenvalue analysis15) to 

equilibrium points of nonlinear systems in which deviation from linear behavior can be 

presumed small. Mohapatra and Sharma (1985) apply modal control to analyze and improve a 

SD model of a manufacturing company that has two departments: manufacturing and 

distribution. The eigenvalues of the motion equations are used to synthesize new policy options. 

The main strength of using modal control theory is that new policy structures can be generated 

mathematically. Drawbacks of modal control theory include the amount of computation, and the 

design of realistic policies from the synthetically generated policies. 

Control theory has been combined with other approaches to determine stability 

conditions. Daganzo (2004) examines the stability of decentralized, multistage supply chains 

under arbitrary demand conditions. He uses numerical analysis for conservation laws to design 

stable policies.  His research looks for intrinsic properties of the inventory replenishment policies 

that hold for all customer demand processes and for policies with desirable properties. He 

discovers that a simple necessary condition for the bullwhip avoidance is identified in terms of a 

policy’s gain. Gain is defined as the marginal change in average inventory induced by a policy 

where there is a small but sustained change in demand rate. It is shown that all policies with 

positive gain produce the bullwhip effect if they do not use future order commitments. Perea et 

al. (2000) propose an approach for SCM that relies on dynamic modeling and control theory. 

The approach is based on two elements, a framework to capture the dynamics of the SC, and on 

                                                 
15 Eigenvalues in the right half of the complex plane cause instability, whereas eigenvalues in the left half of the 
complex plane determine stable systems. 
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the design of methodical procedures defined by control laws to manage the SC. They test several 

heuristic control laws and analyze their impact on the behavior of the SC. 

Model structural analysis methods have also been used to eliminate oscillatory behavior 

in SC models. Lertpattarapong (2002) and Gonçalves (2003) use EEA to identify the loops that 

are responsible for the oscillatory behavior of the inventory in the SC. Then they use the insights 

about the impact of feedback structures on model behavior to propose policies for stabilizing the 

system. These policies are based on inventory buffers or safety stock. Saleh et al. (2006) use the 

BDW analysis to identify relevant parameters that stabilize the inventory fluctuations in a linear 

inventory-force model. To explore the utility of the method in a SD nonlinear model they choose 

a medium-size economic model. In order to perform the BDW analysis, they linearize the model 

at a point in time, once the eigenvalues have become stable. The method provides a partial policy 

analysis as it studies the effects of changing individual policy parameters. Currently, the method 

does not consider the interactions due to changes in several parameters simultaneously. 

Forrester (1982) presents several policies for stabilizing dynamic systems. The first two 

approaches, reduction of the frequency of oscillations and increment in the rate decay of 

oscillations, represent a measure of behavior of the whole system and are covered by the linear 

system control theory. Other methods such as variance reduction and gain reduction are focused 

on the stability of a particular variable of the system. Therefore, they have to be extended to 

implement stabilizing policies of the entire system.  

Policy optimization provides an efficient method for obtaining SC stabilization policies. 

O’Donnell et al. (2006) employ GA to reduce the bullwhip effect and cost in the MIT Beer 

Distribution Game. The GA is used to determine the optimal ordering policy for members of the 
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SC. Lakkoju (2005) uses a methodology for minimizing the oscillations in the SC based on SD 

and GA. He applies the variance reduction criterion proposed by Forrester to stabilize the 

finished goods inventory of an electronics manufacturing company. 

The literature review on stability analysis of the SC shows that several techniques have 

been used to generate stabilization policies. Model structural analysis methods can provide some 

insights into how to tackle the behaviors that generate instability of supply chains modeled as 

dynamic systems through the identification of the loops responsible for them. However, these 

methods rely on sensitivity analysis to design the stabilization policies. Control theory can 

support the stabilization methodologies by providing theoretical concepts to stabilize dynamics 

systems. One problem with the approaches based on control theory is the mathematics involved 

in order to determine the analytical solution. Moreover, similar to the model structural analysis 

methods, they can require certain simplifications, such as the linearization of the system 

(Dangerfield and Roberts 1996). On the other hand, policy optimization based on algorithmic 

search methods that use simulation represent the most general mean for stability analysis of 

nonlinear systems, due to its effectiveness in handling the general cases and most of special 

problems that arise from nonlinearity. However, the objective functions are chosen to represent 

the stability conditions particular to each model. The use of a generic objective function applied 

to stabilize SC models independent of their linear or nonlinear structure has not been found in the 

literature surveyed so far. 

2.5. Particle Swarm Optimization 

Optimization techniques based on evolutionary algorithms belong to the class of direct 
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search strategies, where every considered solution is rated using the objective function values 

only. Therefore, no closed form of the problem and no further analytical information is required 

to direct the search process towards good or preferably optimal elements of the search space. For 

that reason, evolutionary search strategies are well suited for simulation optimization problems. 

Additionally, because of their flexibility, ease of operation, minimal requirements and global 

perspective, evolutionary algorithms have been successfully used in a wide range of 

combinatorial and continuous problems.  

Evolutionary algorithms differ from conventional nonlinear optimization techniques, 

such as tabu search and simulated annealing, in that they search by maintaining a population of 

solutions from which better solutions are created rather than making incremental changes to a 

single solution to the problem. In other words, they do not carry out examinations sequentially, 

but search in parallel mode using a multi-individual population (O’Donnell et al. 2006). 

Particle swarm optimization was invented in the mid 1990s by Kennedy and Eberhart 

(1995) as an alternative to genetic algorithms. PSO is based on a social simulation of the 

movement of flocks of birds. PSO performs a population-based search to optimize the objective 

function. The population is composed by a swarm of particles that represent potential solutions 

to the problem. These particles, which are a metaphor of birds in flocks, fly through the search 

space updating their positions and velocities based on the best experience of their own and the 

swarm. The swarm moves in the direction of “the region with the higher objective function 

value, and eventually all particles will gather around the point with the highest objective value” 

(Jones 2005). 

Among the advantages of PSO, it can be mentioned that PSO is conceptually simple and 



 35 

can be implemented in a few lines of code. In comparison with other stochastic optimization 

techniques like GA or simulated annealing, PSO has fewer complicated operations and fewer 

defining parameters (Cui and Weile 2005). PSO has been shown to be effective in optimizing 

difficult multidimensional discontinuous problems in a variety of fields (Eberhart and Shi 1998), 

and it is also very effective in solving minimax problems (Laskari et al. 2002). According to 

Schutte and Groenwold (2005), a drawback of the original PSO algorithm proposed by Kennedy 

and Eberhart lies in that although the algorithm is known to quickly converge to the approximate 

region of the global minimum; however, it does not maintain this efficiency when entering the 

stage where a refined local search is required to find the minimum exactly. To overcome this 

shortcoming, variations of the original PSO algorithm that employ methods with adaptive 

parameters have been proposed (Shi and Eberhart 1998, 2001; Clerk 1999). 

Comparison on the performance of GA and PSO, when solving different optimization 

problems, is mentioned in the literature. Hassan et al. (2005) compare the performance of both 

algorithms using a benchmark test of problems. The analysis shows that PSO is more efficient 

than GA in terms of computational effort when applied to unconstrained nonlinear problems with 

continuous variables. The computational savings offered by PSO over GA are not very 

significant when used to solve constrained nonlinear problems with discrete or continuous 

variables. Jones (2005) chooses the identification of model parameters for control systems as the 

problem area for the comparison. He indicates that in terms of computational effort, the GA 

approach is faster, although it should be noted that neither algorithm takes an unacceptably long 

time to determine their results. With respect to accuracy of model parameters, the GA determines 

values which are closer to the known ones than does the PSO. Moreover, the GA seems to arrive 
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at its final parameter values in fewer generations that the PSO. Lee et al. (2005) select the return 

evaluation in stock market as the scenario for comparing GA and PSO. They show that PSO 

shares the ability of GA to handle arbitrary nonlinear functions, but PSO can reach the global 

optimal value with less iteration that GA. When finding technical trading rules, PSO is more 

efficient than GA too. Clow and White (2004) compare the performance of GA and PSO when 

used to train artificial neural networks (weight optimization problem). They show that PSO is 

superior for this application, training networks faster and more accurately than GA does, once 

properly optimized. 

From the literature presented above, it is shown that PSO combined with simulation 

optimization is a very efficient technique that can be implemented and applied easily to solve 

various function optimization problems. Thus, this approach can be extended to the SCM area to 

search for policies using an objective function defined on a general stabilization concept like the 

one that is proposed in this research. 

2.6. Powell Hill-Climbing Algorithm 

Hill-climbing methods are heuristics that use an iterative improvement technique and are 

based on a single solution search strategy. These methods can only provide local optimum 

values, and they depend on the selection of the starting point (Michalewicz and Fogel 2000). 

Some advantages of hill-climbing-based approaches include: (1) very easy to use (Michalewicz 

and Fogel 2000), (2) do not require extensive parameter tuning, and (3) very effective in 

producing good solutions in a moderate amount of time (DeRonne and Karypis 2007). 

The Powell hill-climbing algorithm was developed by Powell (1964) and it is a hill-
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climbing optimization approach that searches the objective in a multidimensional space by 

repeatedly using single dimensional optimization. The method finds an optimum in one search 

direction before moving to a perpendicular direction in order to find an improvement (Press et al. 

1992). The main advantage of this algorithm lies in not requiring the calculation of derivatives to 

find an unconstraint minimum of a function of several variables (Powell 1964). This allows 

using the method to optimize highly nonlinear problems where it can be laborious or practically 

impossible to calculate the derivatives. Moreover, it has been shown that a hybrid strategy that 

uses a local search method such as hill-climbing can accelerate the search towards the global 

optimum, improving the performance of the searching algorithm (Yin et al. 2006; Özcan and 

Yilmaz 2007). 

2.7. Discussion of Research Gaps 

This chapter presented a review of the literatures that are related to the proposed 

methodology for stabilizing the SC. The following research gaps that require further research and 

implementation have been identified: 

1. The lack of a methodology that uses SD modeling, generic stability conditions and 

simulation optimization to eliminate instability of the SC and produce robust policies. This 

methodology has the potential to solve a wide variety of complex stabilization problems not 

only in SCM but also in many other fields. Previous attempts have been focused on few 

variables of interest and selected parameters for the optimization problem. Moreover, 

analytical methods in control theory have been restricted to particular cases. However, due to 

the complexity of generalizing the stability criterion for nonlinear dynamic systems, still 
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there is not a methodology capable of optimize the behavior of any SD model.  

2. The lack of a fully computerized framework for policy optimization that uses a hybrid PSO-

PHC based searching engine and works with SD models. 

 Table 2.1 summarizes the literature research done in the field of supply chain 

management for each of the four surveyed areas. It is clear from the table that methods based on 

a general stabilization concept (useful for linear and nonlinear models) that use an optimization 

engine based on PSO and PHC have not been applied to the supply chain. 

Table 2.1. Literature review for surveyed areas related to SCM 
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Akkermans and Dellaert (2005) √      
Anderson Jr. et al. (2000) √      
Angerhofer and Angelides (2000) √      
Ashayeri et al. (1998) √      
Daganzo (2004)   √    
Disney et al. (2000)   √   √
Forrester (1958, 1961) √      
Georgiadis and Vlachos (2004) √      
Georgiadis et al. (2005) √      
Gonçalves (2003) √ √ √    
Higuchi and Troutt (2004) √      
Huang et al. (2003) √      
Joshi (2000) √      
Lakkoju (2005) √   √  √
Lee et al. (1997)   √    
Lertpattarapong (2002)  √ √ √    
Minegishi and Thiel (2000) √      
Mohapatra and Sharma (1985) √  √   √
Nagatani and Helbing (2004)   √    
O’Donnell et al. (2006) √  √   √
Perea et al. (2000)   √    
Riddalls and Bennett (2002)   √    
Riddalls et al. (2000) √      
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Spengler and Schröter (2003) √      
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CHAPTER THREE: METHODOLOGY 

This chapter presents an overview of the research methodology, which is divided in three 

phases as shown in Figure 3.1.  
Phase II

Phase III

 
Figure 3.1. High level research methodology 

Phase I covers the identification of the research problem, question, objectives and 

contribution that justify the development of this dissertation. These issues were explained in 

chapter one. Moreover, this phase identifies the research gaps, related to the research question, 

that were found after reviewing the relevant literature. This information was presented in chapter 



 41 

two. 

Phase II covers the development of the theoretical aspects of the SADE methodology and 

the implementation of these concepts in a computerized framework. Section 3.1 provides a 

description of the functioning of the SADE methodology which considers the SD model, the 

optimization problem and the PSO solution algorithm. Justification of the stabilization properties 

of the objective function used in the optimization problem is discussed in chapter four. This 

justification involves the presentation of several theorems and their proofs. Section 3.2 presents 

the optimization framework. 

In Phase III the framework is used to perform the stability analysis of several case 

studies. Section 3.3 explains how to validate the SADE methodology based on the results 

obtained from the experiments performed in those case studies. 

If the research objectives are not achieved then Phase II has to be evaluated in order to 

see if it can be reformulated to meet the research goals. 

3.1. Description of the SADE Methodology 

The purpose of this dissertation is to develop a methodology that captures the dynamics 

of the supply chain and indicates potentials for modifications in the SC settings in order to avoid 

(or mitigate) the undesirable behaviors and performances. Figure 3.2 shows the different stages 

of the methodology and the general functioning is explained in the following lines. 

The supply chain environment represents the actual participants, structure, strategies, 

policies, objectives, variables, constraints and parameters that configure different scenarios of the 

supply chain over time. All configurations require making different decisions that when 
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implemented will produce changes in the behavior of the supply chain. Behavior in the supply 

chain is referred as observed patterns in the state variables (e.g. oscillatory behavior). 

 

 

Figure 3.2. General procedure of the SADE methodology 

The first step of the methodology uses a SD model to replicate the dynamic behavior of 

the supply chain. A SD model is chosen because it can capture the complex relationships, 

feedback processes, and multiple time delays necessary to track accurately the evolution of 

important endogenous variables. Section 3.1.1 provides a detailed description of the different 

type of variables, feedback structures and model equations used to represent a model in SD. 

If the current behavior of the SC does not show instability patterns, such as ripple effects, 

then no actions are needed to be carried out over the supply chain, otherwise a new management 

policy must be found to remove the instability or minimize its impact. 

The second step of the methodology uses a simulation optimization technique to find 
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such a policy.  This technique uses a hybrid algorithm that combines PSO and PHC methods to 

modify the set of parameters that constitute the current policy in order to minimize the ADE and 

thus achieve stability. In every iteration of the algorithm, the parameter set is sent to the SD 

model in order to calculate, through simulation, the value of the ADE (objective function). 

Simulation is used due to the difficulty of solving the complex dynamic equations by analytical 

methods. The optimization problem and the hybrid algorithm are described in sections 3.1.2 and 

3.1.3.  

Once the best setting of parameters (stabilization policy) is obtained, then it is 

implemented in the actual supply chain to ensure it is kept stable and robust. 

3.1.1. System Dynamic Model of the Supply Chain  

The dynamic relationships of the supply chain are represented by using a SD model that 

consists in feedback structures linked with stock and flow structures.   

The basic building block in the feedback structure is the feedback loop. The feedback 

loop is a path coupling decision, action, stock (or state) of the system, and information, with the 

path returning to the decision point (Forrester 1990) as shown in Figure 3.3. Causal relationships 

of the SC that tend to move the behavior toward a goal are modeled as negative feedback loops. 

In contrast, causal relationships that amplify disturbances in the system to create even higher 

variations in behavior are modeled as positive feedback loops. 
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Stock
Decision

Information

Action

 

Figure 3.3. Feedback loop 

Stocks and flows compose a substructure within feedback loops. The stock and flow 

structure consists in two types of variable elements: the stocks and the rates. The stock (or state) 

variables describe the condition of the system at any particular time. They accumulate the results 

of action within the system. On the other hand, the rate (action) variables tell how fast the levels 

are changing. They are the policy statements that describe action in the system. 

The feedback and stock and flow structures of the SD model are converted into 

mathematical equations. These equations can be classified into four categories: level, rate, 

auxiliary and initial-value equations. A description of each category is provided as follows: 

 Stock equations. They are equations of the form: 

∫ +−=
t

t
0

0

)t(Stockds)]s(Outflow)s(Inflow[Stock(t)  

These equations calculate the value of the stock variables as the accumulation over time of 

the difference between the inflows to a process and its outflows (Figure 3.4). For example, 

the inventory can be expressed as the integral of the difference between Production and 

Shipment rates as follows: 

∫ +−=
t

0

)0(Inventoryds)]s(Rate Shipment)s(Rate ductionPro[t)Inventory(  
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Inflow Outflow

 

Figure 3.4. Stock and flow diagram 

 Rate equations. They state how the flows within a system are controlled. Unlike, stock 

equations, rate equations have not standard form. Each rate equation represents an 

understanding of some process of change in a particular system. For example, the Production 

rate can be expressed as the sum of two terms:  

Time AdjustmentInventory 
t))Inventory(-Inventory (DesiredProduction DesiredRate Production +=  

The first term aligns the current production rate with its desired value. The second term 

modifies the production rate to keep the inventory in line with the desired inventory level. 

 Auxiliary equations. The auxiliary equations are merely algebraic subdivisions of the rates 

used with the purpose of providing more clarity and meaning to the rate equations. For 

instance, the auxiliary variable “Adjustment for Inventory” can be used to represent the 

second term in the Production Rate equation of the previous example. Thus, now there is a 

more simple and meaningful rate equation: 

Inventoryfor  AdjustmentProduction DesiredRate roductionP +=  

Along with the auxiliary equation: 

Time AdjustmentInventory 
t))Inventory(-Inventory (DesiredInventoryfor  Adjustment =  

 Initial-value equations. They are used to define initial values of all levels and initially to 

compute values of some constants from other constants. For example, the 
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expression: 100)0(Inventory = , sets the initial value of the inventory variable to 100 units. 

3.1.2. Optimization Problem 

The SD model can be described by an equation of the form ) ),t(((t) pxfx =& , where 

t)t((t) ∂∂= xx& , )t(x  is the vector of state variables (dimension n) and p is a vector of adjustable 

parameters (dimension np) with lower and upper bounds Lp and Up respectively. 

Using the results of Theorem 5 (see chapter 4) an optimization problem can be formulated to find 

the parameter vector *p  that causes the state variable sx  to become asymptotically stable around 

the equilibrium point )(xeq
s

*p . This optimal parameter vector can be found by minimizing the 

ADE for predetermined time horizon T and making use of Theorem 5.  That is, the optimization 

problem will find the vector that makes ADE converge16.  The optimization problem is then 

stated as 

∑ ∫
= ⎭

⎬
⎫

⎩
⎨
⎧

−=
m

1s

T

0

eq
sss dt x)t(xw)(J Minimize p

p
, where 1w

m

1s
s =∑

=

  (3.1) 

Subject to 

) ),t(((t) pxfx =&   (3.2) 

0(0) xx =   (3.3) 

UL ppp ≤≤  (3.4) 

  T][0, t, ,  , ,)t( ppp nUnLnn ∈∈∈∈∈ RRRR pp px  
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The objective function J(p) is defined as the weighted average value of the ADE. The 

term ∫ −
T

0

eq
ss dt x)t(x  is the mathematical expression of the ADE for the state variable sx , where 

the symbol |c| represents the absolute value of c. If necessary the time horizon T should be 

increased to obtain similar effects of convergence that when time goes to infinity, as stated in 

Theorem 5. 

The use of weights, ws, means that J(p) will support the simultaneous stabilization of any 

subset of m state variables )nm( ≤ .  Positive weights can be assigned to these variables in any 

way, provided the normalization constraint ( 1w
m

1s
s =∑

=

) is met. This allows higher weights to be 

assigned to the variables that are considered more important. 

If the equilibrium point eq
sx  is not known in advance, J(p) can be modified to include it as 

a variable ( sa ) and change to optimization of the problem17 as follows:  

∑ ∫
= ⎭

⎬
⎫

⎩
⎨
⎧

−=
m

1s

T

0
sss dt a)t(xw)(J Minimize p

p
, where 1w

m

1s
s =∑

=

  (3.5) 

This amounts to including sa (s=1,..,m) as part of the solution vector p. Theorem 6 (see 

chapter 4) guarantees that the values of sa  obtained from the optimization will, in fact, coincide 

with the equilibrium points eq
sx (s=1,..,m). 

                                                                                                                                                             
16 One way to check the convergence of ADE is by adding a new state variable to the model, called “ADE” (see 
Figure 3.5), and graphically verify that its graph becomes a flat line when time goes to T.  
17 For example, for an inventory variable, the interval of variation of its EP in the optimization problem would be 
based on the minimum and maximum levels of inventory determined by the production plan. 
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The objective function defined in (3.5) can be incorporated very easily into any SD 

formulation by adding a “stock and flow” piece to the model that is linked to the state variables 

of interest as illustrated in Figure 3.5. Then the variables DE(t) and ADE are defined as follows: 

{ }∑
=

−=
m

1s
sss a)t(xw)t(DE  

∫=
T

0

dt DE(t)ADE  

ADE
DE

....

a1 a2 am....

x1 x2 xm
 

Figure 3.5. Stock and flow diagram for the objective function 

3.1.3. Optimization Algorithm 

The method used to solve the optimization problem is a hybrid algorithm that combines 

the advantage of PSO optimization to determine good regions of the search space with the 

advantage of local optimization to find quickly the optimal point within those regions. In other 

words, the local search is an improvement procedure over the solution obtained from the PSO 

algorithm that assures a fast convergence of the ADE. 

The local search technique selected was the Powell hill-climbing algorithm. This method 

was chosen because: (1) it can be applied to solve multi-dimensional optimization problems, (2) 
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it is a relatively simple heuristic that does not require the calculation of derivatives. 

The general structure of the method is illustrated in Figure 3.6. This figure indicates that 

the solution to the optimization problem obtained by the PSO algorithm becomes the initial point 

to perform a local search using the PHC algorithm. Finally, if the ADE has converged then the 

solution provided by the PHC method is the stabilization policy; otherwise the parameter settings 

of the PSO algorithm have to be changed in order to improve the search that makes ADE to 

converge. 
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Figure 3.6. Optimization algorithm 

The details of the functioning of each algorithm are explained in the following lines. 

3.1.3.1. Global Search: PSO Algorithm 

The algorithm used is called “local best PSO” (Engelbrecht 2005) and is based on a 

social network composed of neighborhoods related to each particle. The algorithm maintains a 

swarm of particles, where each particle represents a candidate solution to the optimization 

problem. These particles move across the search space communicating good positions to each 
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other within the neighborhood and adjusting their own position and velocity based on these good 

positions. For this purpose, each particle keeps a memory of its own best position found so far 

and the neighborhood best position among all the neighbor particles. The goodness of a position 

is determined by using a fitness function. The stopping condition of the algorithm is when the 

maximum number of iterations has been exceeded. The basic elements of the algorithm are 

defined as follows: 

 Particle. A particle i is represented by a np-dimensional real-valued vector pi. This vector is 

composed of particle positions pij, i.e., ]p,..,p ,p[
pin2i1ii =p . Each particle position 

corresponds to one of the parameters of the parameter vector defined in the optimization 

problem 3.1.2. 

 Swarm size. It is the number of particles in the swarm, and it is denoted by N. 

 Fitness function. It is a mathematical function used to quantify how good the solution 

represented by a particle is. For a particle i the fitness function is the objective function J(pi) 

as defined in 3.1.2. 

 Personal best position. As a particle moves through the search space, it compares its fitness 

value at the current position to the fitness value it has ever attained so far, which is called the 

personal best position. For each particle i the personal best position can be expressed as the 

real-valued vector ]y,..,y ,y[
pin2i1ii =y , and it is determined so that N,..,1i  ),J()J( ii =≤ py . 

 Neighborhood size. Defines the extent of the social iteration within the swarm (Engelbrecht 

2005) and it is denoted by H. Selection of neighbors was done based on particle indexes. 

Each particle i has a neighborhood associated to, where Bi defines the set of indexes for the 
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particles neighbors. The neighborhood associated to particle i is composed by Bi = {i, i+1, 

i+2,…, i+H-1}. It can be noted that neighborhoods overlap. 

 Neighborhood best position. It is the best position among all the personal best positions in the 

neighborhood. It is denoted by the real-valued vector ]ŷ,..,ŷ ,ŷ[
pin2i1ii

ˆ =y  and it is 

determined so that iji Bj  ),J()ˆJ( ∈≤ yy . 

 Global best position. It is the best position among all the personal best positions achieved so 

far. It is denoted by the real-valued vector ]g,..,g ,g[
pn21=g and it is determined so that 

N,..,1i  ),J()J( i =≤ yg .  

 Particle velocity. It is the velocity of the moving particle i represented by the real-valued 

vector ]v,..,v ,v[
pin2i1ii =v . This vector reflects both the experiential knowledge of the 

particle and socially exchanged information from the particle’s neighborhood (Engelbrecht 

2005). The experiential knowledge of a particle is generally referred as the cognitive 

component, which quantifies the performance of particle i relative to past performances. It is 

represented by the term )c ii11 p(yr − . The socially exchanged information is referred as the 

social component of the velocity equation. It is represented by the term )ˆc ii22 py(r − . 

 Acceleration coefficients. The acceleration coefficients, c1 and c2, together with the random 

vectors r1 and r2, control the stochastic influence of the cognitive and social components on 

the overall velocity of a particle (Engelbrecht 2005). The constants c1 and c2 are also referred 

as trust parameters, where c1 expresses how much confidence a particle has in itself, while c2 

expresses how much a particle has in its neighbors. The random vectors are defined as 
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]r,..,r ,r[
pn112111 =r  and ]r,..,r ,r[

pn222212 =r , where r1j and r2j are uniformly distributed random 

numbers in [0,1]. 

 Inertia weight. It is a parameter “w” that is used to control the influence in the new velocity 

of a particle by its previous velocity (flight direction). Thus, it influences the tradeoff 

between the global and local exploration abilities of the particles (Shi and Eberhart 1998). 

For initial stages of the search process where global exploration is required, it is 

recommended to set a large inertia weight, while for the last stages, the inertia weight should 

be reduced for better local exploration. A decrement function for decreasing the inertia 

weight at the iteration k can be given by )'k(w)k(w α= , where α=0.98, and k’ is the last 

iteration when the fitness function was improved. A parameter “iteration_lag” is defined to 

set the number of iterations that are required to change the inertia weight if the fitness 

function has not been improved. 

The following empirical rules are recommended to guide the choice of selecting the 

initial values for the parameters of the PSO algorithm.  

Table 3.1. Empirical rules for selecting the PSO parameters 

Parameter Empirical rule of choice 
Swarm size From 20 to 40 (Clerc 2006) 
Inertia weight In ]0,1[ (Shi and Eberhart 1998) 
Cognitive coefficient Suggestion 1.43 (Clerc 2006) 
Social coefficient Suggestion 1.43 (Clerc 2006) 

 
The steps of the algorithm are described in the following lines. 

Step 1) Initialization: 

o Set iteration k=0 
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o Generate N particles )]0(p),..,0(p ),0(p[)0(
pin2i1ii =p , i=1,..,N; where pij(0) is 

randomly selected according to a uniform distribution in the interval ]p,p[ U
j

L
j ,  

j=1,..,np. 

o Generate velocities ]0,..,0 ,0[)0(i =v , i=1,..,N. 

o Evaluate the fitness of each particle using J(pi(0)) , i=1,..,N. 

o Set the initial value of the personal best position vector as )0()0( ii py = , 

i=1,..,N. 

o Determine the neighborhood best position vector (0)ˆ iy  using the formula 

iji Bj))},0(J(min{)(0)ˆJ( ∈= yy . 

o Determine the global best position (0)g  using the formula 

N,..,1i  ))},0(J(min{)(0)J( i == yg . 

o Set the initial value of the inertia weight )0(w . Set k’=0. 

Step 2) Iteration updating: Set k=k+1. 

Step 3) Weight updating: If k-1-k’≥ iteration_lag then update the inertia weight using: 

)'k(w)k(w α= .  

Step 4) Velocity updating: Calculate the velocity of particle i by using: 

)]k()k(ˆ)[k(c)]k()k()[k(c)1k()k(w)k( ii22ii11ii pyrpyrvv −+−+−=  

Step 5) Position updating: Based on the updated velocities, each particle changes its 

position according to the following equation: 

)1k()k( )k( iii −+= pvp  
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Step 6) Personal best updating: Determine the personal best position visited so far by 

each particle: 

o Evaluate the fitness of each particle using J(pi(k)) , i=1,..,N. 

o Set 
⎩
⎨
⎧

<
≥+−

=
1))-(kJ((k))J( if      )k(

1))-(kJ(1))(kJ( if       )1k(
 )k(

iii

iii
i ypp

ypy
y  

Step 7) Neighborhood best updating: Determine the neighborhood best position (k)ˆ iy  

visited so far by the whole swarm by using the formula 

iji Bj))},k(J(min{))k(ˆJ( ∈= yy  

Step 8) Global best updating: Determine the global best position (k)g visited so far by the 

whole swarm by using the formula  

))}k(J(min{)(k)J( iyg = , i=1,..,N. 

If  )1)-(kJ( )(k)J( gg <  then set k’=k 

Step 9) Stopping criteria: If the maximum number of iterations is achieved then stop, 

(k)gg* =  is the optimal solution; otherwise go to step 2. 

3.1.3.2. Local Search: Powell Hill-Climbing Algorithm 

PHC method basically uses one-dimensional minimization algorithms to solve 

multi-dimensional optimization problems. The procedure searches into a region by 

constructing a set of linearly independent, mutually “non-interfering” or conjugate search 

directions and applies linear minimization to move into each direction (Press et al. 1992).  

The number of conjugate directions coincides with the dimension of the search space and 
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their linear independence guarantees the whole search space can be covered. The use of 

conjugate directions has the advantage that minimization in one direction is not interfered 

by subsequent minimization along another direction, avoiding endless cycling through 

the set of directions. 

The steps of the algorithm are described in the following lines: 

Step 1) Initialization: 

o Set iteration k=0 

o Set the initial search point ]z,..,z ,z[
pn210 =Z  as the optimal solution of the 

PSO algorithm, i.e. *0 gZ =  

o Initialize directions ud to the basis vectors, i.e. ud=ed, d=1,..,np, where 

]1,..,0 ,0[],...,0,..,1 ,0[ ],0,..,0 ,1[
pn21 === eee  

Step 2) Define the iteration start point: Set k0 ZS =  

Step 3) Minimize objective function along direction ud 

 For every direction d=1,..,np 

o Find the value dγ that minimizes )J( dd1-d uS γ+  

o Set dd1-dd uSS γ+=  

Step 4) Update directions 

o Set ud = ud+1, d=1,..,np-1 

o 0nn pp
SSu −=  

Step 5) Iteration updating: Set k=k+1. 
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Step 6) Minimize objective function along direction 
pnu  

o Find the value γ  that minimizes )J(
pn0 uS γ+  

o Set 
pn0k uSZ γ+=  

Step 7) Stopping criteria: If )J()J( 1kk −> ZZ then stop, *
kZ  is the optimal solution; 

otherwise go to step 2. 

3.2. Optimization Framework 

The structure of the optimization framework is divided into the framework architecture 

and the framework interface. 

3.2.1. Framework Architecture 

The framework architecture consists of three components: the simulation, optimization 

and report modules. Figure 3.7 shows the interactions between these components.  

Input File Solver 
Engine Output File

ModelSimulation 
Engine

Optimization Module

Simulation Module

Report 
Module

 
Figure 3.7. Framework architecture 



 57 

The description of these components is explained in the following lines: 

 Simulation module. This module is composed by the model equations file and the simulation 

engine. Vensim DSS simulation package will be used to build the SD model and to run the 

simulations. The model and the simulation engine can be accessed from the optimization 

module by using the following functions incorporated in the Vensim Dynamic Link Library. 

o Vensim_command. This function is used to load the SD model, to pass values to the 

parameters selected in the optimization problem, to run the simulation and the PHC 

algorithm. However, before calling this function, the model file must be saved in 

binary format as a .vmf file. 

o Vensim_be_quiet. This function is used to turn off the work in progress dialog that 

Vensim displays during the simulation, and to prevent the appearance of “yes or no” 

dialogs. 

o Vensim_get_data. This function is used to retrieve the value of ADE from the 

simulation run. 

 Optimization module. This module is composed by the solver engine, the input and output 

files. The input file is a text file that contains the settings of the PSO algorithm, such as the 

inertia weight, social and cognitive coefficients, maximum number of iterations, etc. along 

with the parameter vector p. The output file is also a text file that displays the optimal value 

of p and the value of the best fitness. The solver engine follows the steps of the PSO and 

PHC algorithms defined in section 3.1.3. The code is built using the programming language 

Visual Basic from the Microsoft Visual Studio environment. The solver engine consists in a 

module file: Main.bas and five class files: SwarmType.cls, NeighborhoodType.cls, 
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ParticleType.cls, VensimCalculations.cls and RandomNumberType.cls.  

o Main.bas: This module controls the reading and writing of the input and output files, 

and runs the optimization algorithm. First the subroutine ReadOptData is called to 

read the values of the input file (previously loaded in the interface). Then the 

subroutine Algorithm performs the steps of the PSO algorithm by using the 

SwarmType class and the PCH algorithm by using the VensimCalculations class. The 

final solution is written in the output file which is immediately opened with the 

Notepad application. 

o SwarmType.cls: This class enables manipulation of the entire swarm by calling the 

methods and properties of the individual particles defined in the ParticleType class. 

Calculations for the neighborhoods of particles are also done here by using the 

NeighborhoodType class. 

o NeighborhoodType.cls: This class basically keeps the information of the best position 

for each neighborhood and the particle index associated to it. 

o ParticleType.cls: The methods used to calculate the position and velocity of each 

particle are defined in this class. 

o VesimCalculations.cls: This class contains the logic to load the SD model, pass the 

values of p to the model, simulate the model with these values, and retrieve the ADE 

value. Moreover, this class calls a function in the Vensim Dynamic Link Library to 

compute the PHC algorithm. The results are then passed to the Main.bas module. 

o RandomNumberType.cls: This class generates random numbers between a lower and 

upper limit. 
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 Report module. This module uses the class Report to build the solution and detailed reports. 

The solution report presents the values for the parameters of the stabilization policy (Figure 

3.8). Both the PSO and PHC solutions are provided. The detailed report presents information 

of each particle for every iteration of the PSO algorithm (Figure 3.9). Because this report 

presents a lot of information, it can be loaded in Excel and with the help of a macro extract 

only pertinent information such as the value of the ADE at each iteration of the algorithm. 

 

 
Figure 3.8. Solution report 
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Figure 3.9. Detailed report 

3.2.2. Framework Interface 

The interface consists of a window with a File menu, a Run option and three tabs: Model 

Parameters, PSO Settings and Vensim Settings. 

 File menu. This menu contains the commands to create, open and save a file with the settings 

and parameters used in the optimization algorithm. 

 Run option. This command is used to run the optimization algorithm using the settings 

defined in the three tabs. 

 Model Parameters tab. This tab is used to enter the list of model parameters to be searched 

over in the optimization. For each parameter it is required to enter the parameter name and its 

lower and upper bound (see Figure 3.10). 
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 PSO Settings tab. This tab is used to enter the parameter settings required by the PSO 

algorithm. The names of the solution report and detailed report can also be entered here (see 

Figure 3.11). 

 Vensim Settings tab. This tab is used to enter the parameter settings, the SD model and the 

data file required by Vensim DSS application to simulate the model. Moreover, the payoff 

file and the optimization parameter file used by the PHC algorithm are defined here (see 

Figure 3.12). The payoff file includes the variable that has to be optimized. The Vensim 

optimizer is designed to maximize the payoff, therefore to minimize the objective function 

the variable has to be entered as a negative expression in the payoff file. The optimization 

parameter file is built using the information entered in the Model Parameters tab. 

 

 
Figure 3.10. Model Parameters Tab 
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Figure 3.11. PSO Settings Tab 

 

 
Figure 3.12. Vensim Settings Tab 
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3.3. Validation of the Methodology 

The stabilization methodology will be validated by performing several experiments on 

the framework using the SC models of four case studies. 

3.3.1. Case Studies 

The validation process will be based on the effective application of the methodology to 

two academic case studies (see case studies A and B) and two case studies of real companies 

referred as LSMC and PMOC (see case studies C and D). A brief description of the case studies 

is presented in the following lines: 

 Case study A: the Inventory-Workforce model. 

This is a short case about a manufacturing supply chain that includes labor as an explicit 

factor of production.  Saleh et al. (2007) developed a linear SD model for this supply chain 

by modifying Sterman’s original model (2000). The interactions between inventory 

management policies and the labor adjustment policies are the main cause for the oscillatory 

behavior of the supply chain. 

 Case study B: the Mass model 

Mass (Mass 1975) developed a nonlinear SD model of a manufacturing supply chain to 

explore the economic processes underlying business-cycle behavior. Business cycles are 

recurring fluctuations that affect total production, prices, employment, inventories and capital 

investment. This case is designed to show how production, hiring and investment policies 

within a SC can interact to create fluctuations in inventory and employment that are 

characteristic of a business cycle. This model contains a production sector plus two factors of 
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production: labor sector and capital sector. 

 Case study C: the LSMC model.  

This case, which is based on the work of Lertpattarapong (2002), describes the operations of 

an actual electronics manufacturing company called LSMC. LSMC supplies products for 

personal computers to original equipment manufacturers such as Dell, Gateway, and 

Hewlett-Packard. Since 1998, many original equipment manufacturers have changed their 

strategies by adopting built-to-order and just-in-time processes. These changes in personal 

computers in addition to their short life cycles have amplified the coordination problems in 

the company’s supply chain, which in turn has caused excess inventories and sometimes 

difficulties to keep up with demand. LSMC was facing a problem of persistent oscillations in 

its finished goods inventory and desired capacity. 

 Case study D: the PMOC model.  

This case, which is based on the work of Helal (2008), describes the operations of a real 

industrial company (referred as PMOC) that produces various optical products. The case 

study focuses on the lenses production process which constitutes 65% of the company’s 

production. The SD model covers the production process of the enterprise system which is 

composed by the following sub-systems: internal supply chain, suppliers and labor. The goal 

of management is to find a policy that maintains the stocks at equilibrium through the setting 

of various parameters in the model.  

3.3.2. Experimental Analysis 

The dynamic behavior of the supply chain can be studied through experiments by 
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applying various types of inputs to the model and modifying its parameters to respond to those 

changes while keeping the supply chain stable (policy optimization).  

First, the model needs to be placed in balanced equilibrium when possible18. At the 

equilibrium, the model does not generate any dynamic behavior, i.e. nothing changes over time, 

and it lies at the equilibrium unless otherwise disturbed. This action facilitates the process of 

experimentation because the system is disturbed only by the inputs the tester chooses to impose 

avoiding confusion with the transient behavior induced by initial disequilibrium (Sterman 2000). 

Second, from equilibrium, the SC will be disturbed by various types of inputs affecting 

some variables of the model and generating different scenarios: 

 Scenario 1 (step input): This is a sudden, permanent increase/decrease in the input from one 

rate to another. It can serve to “excite” any mode of response that may be inherent in the 

system model. If the system has oscillatory behavior, the step input gives an immediate 

indication of the natural period of oscillation and the rapidity of damping or of growth of the 

oscillation (Forrester 1961). 

This input will be implemented by using the STEP function. For example, in the following 

equation the variable Sales returns the value 100 units/week until week 20, and then it 

changes to 110 units/week. 

Sales=100+STEP(10,20) 

 Scenario 2 (linear growth or decline input): These inputs contain underlying growth and 

decline trends on which the other variations are superimposed. Instead of being a one-shot 

                                                 
18 Many times it is difficult to calculate the equilibrium point of a system due to the complexity of the system 
equations. 
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change like the one obtained from the STEP function, this input represents continual changes 

of a fixed magnitude. 

This input will be implemented by using the RAMP function. For example, in the following 

equation the variable Demand increases linearly with rate of 20 units/week, beginning at 

week 2. 

Demand=RAMP(20,2) 

 Scenario 3 (combination of different inputs): This scenario is built by adding the effects of 

several inputs. 

Third, using the framework, several experiments will be performed with the result of 

stabilization policies created as a response to the inputs mentioned in the previous step. 

Robustness of the solutions then will be investigated after varying several parameters of the 

model. For small perturbations of the system (small variations in parameters of the model – 

typically they are chosen to be exogenous variables) the asymptotic stability of the SC must be 

kept. 

The effectiveness of the stabilization methodology will be demonstrated by the 

comparison of the stabilization policies obtained in the experimentation step against the base 

policy. The base policy is the one that has been disturbed after applying some of the inputs 

mentioned before. Although, it is possible to verify graphically if the application of a policy has 

made the system to achieve asymptotic stability, it is necessary other indicators to measure the 

characteristics of a stabilization policy. Two useful quantitative indicators are shown next. 

 Amplification of a variable. It is the maximum value in a variable of interest due to the 

change in a parameter. When testing robustness, a policy with lower amplification value may 
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indicate a more robust solution. 

 Response time. It is the time the system takes to achieve asymptotic stability. A policy with 

longer response times may indicate trouble in adjusting to growth or decline in business. 
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CHAPTER FOUR: DEVELOPMENT OF STABILITY CONDITIONS 

The direction of this chapter points toward the demonstration of the properties of the 

objective function used in the optimization problem presented in chapter 3, which is used to 

achieve stability of nonlinear dynamic systems. As it was explained in the previous chapters, this 

optimization problem relies on the concept that the minimization of the ADE will make the 

trajectory of the state variables to converge to the equilibrium point. Throughout this chapter it 

will be proved several lemmas and theorems that will facilitate the calculation of the state vector 

equation, and therefore the calculation of the ADE in order to lead to the conditions of 

convergence of a dynamic system. The challenge is to demonstrate the general applicability of 

the objective function to reach stability of any linear or nonlinear dynamic system formulated as 

a system of first-order differential equations. 

Two objectives are set for this purpose. The first is to define the concepts for stability of 

linear dynamic systems. The second is to extend these ideas to the nonlinear dynamic case.  

For the linear case, Theorems 1 through 3 provide different forms of expressing the state 

vector equation. From an equation stated in terms of the matrix exponential (see Definition 4) to 

a more simple form to operate, expressed in terms of eigenvalues and eigenvectors. This last 

form, which is more suitable for integration, is applied to find a bound for the ADE that is used 

to set the conditions for its convergence. Theorem 4 will guarantee that ADE convergence 

implies the restriction and convergence of the state variable trajectory, and thus asymptotic 

stability. 

For the nonlinear case, the system equations are approximated by an infinite number of 
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linear system equations defined at very small intervals of time. The ADE is calculated as the 

summation of the accumulated deviations of each of these linear systems. Expressing ADE in 

this form facilitates the use of the theory of convergence of an infinite series to establish the 

condition in which Theorem 5 is based on to prove asymptotic stability. Theorem 6 is presented 

to cover the cases when the EP is unknown, letting the optimization problem to decide which EP 

leads to fewer oscillations and faster stability. Finally, if the ADE convergence is close, but not 

achieved completely, it can be useful to amplify the deviations from the equilibrium point (DE) 

to accelerate the asymptotic stability of the variables of interest. Theorem 7 provides a 

mechanism to do that.  

4.1. Definition of the Concept of Stability 

The intuition for stability of a dynamic system captures the idea that if the system is 

started at a particular set of initial values near an equilibrium point (as stated in Definition 1), it 

will stay near that equilibrium point for all future time. 

Definition 1 (Khalil 1996) The point neq R∈x  is said to be an equilibrium point of the 

differential equation (t))((t) xfx =&  if it has the property that once the corresponding system 

reaches eqx  at time teq it will remain at eqx  for all future time; in other words, 0xf =)(t)(  for all t 

≥ teq. 

A more rigorous mathematical description for stability is given in the following 

definition.  

Definition 2 Consider the system defined by (t));((t) xfx =& 0(0) xx = ; where ;(t) nR∈x  
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[ ] [ ] n1,..,s , )t(x)t(x),..,t(x ),t(x(t) ;: s
T

n21
nn ===→ xf RR . The state variable sx  is defined to 

be stable (around the EP eq
sx ) if it is bounded, that is, there is a finite number Ms such that 

s
eq
ss Mx)t(x ≤− . If this condition holds for all state variables then the system is said to be 

stable. 

Because the notion of supply chain stability should consider also the reduction or 

minimization of oscillatory behavior, then the concept of asymptotic stability is preferred over 

the mere stability. A system is to be said asymptotically stable, if the system trajectory converges 

to the equilibrium point as time increases indefinitely. Next, the concept of asymptotic stability 

will be restated in a formal mathematical context. 

Definition 3 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where ;(t) nR∈x  

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR . The state variable sx  is defined to be asymptotically stable 

(around the EP eq
sx ) if it is both stable (satisfies Definition 2), and additionally, it satisfies 

( ) 0x)t(xLim eq
ss t

=−
∞→

. If these two conditions hold for all state variables then the system is said to 

be asymptotically stable. 

Definitions 2 and 3 were adapted from the formal definitions of stability and asymptotic 

stability used in control theory (Khalil 1996). The stability conditions used in this research work 

are defined in terms of “one state variable” and not in terms of “all state variables” like 

traditional control theory that uses the norm of the state vector. This facilitates performing the 

stability analysis of specific state variables of the system (e.g. finished goods inventory). If 

necessary, stability can be extended to the whole system by using a weighted average function 
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that includes all state variables. 

4.2. Stability of Linear Systems 

Stability analysis of linear systems is more tractable than the nonlinear case due to the 

well know structure of the system represented as a set of first-order linear differential equations. 

In section 4.2.1 it is found an equation for the solution of the linear system in terms of 

eigenvalues and eigenvectors that clear the path for justifying the notion of stability based on the 

convergence of ADE. This last step is presented in section 4.2.2. 

4.2.1. Solution of Linear Systems 

The structure of a linear dynamic system can be represented compactly as: 

0(0);(t)(t) xx  bAxx =+=& ; where 1n x n x nn   , , RRR ∈∈∈ bAx .  

The matrix (t)(t) xxA ∂∂= &  is commonly known as the Jacobian of the system. 

The solution of this system can be expressed in terms of the matrix exponential (Definition 4) as 

it is shown in Theorem 1. 

Definition 4 (Edwards and Penney 2001) For each matrix nn x R∈A , define the matrix 

exponential of At to be the matrix:  

L++++==∑
∞

=0k

32k
t

!3
t)(

!2
t)(t

k!
t)(e AAAIAA ; 

where R  t∈  and nn x   R∈I  is the identity matrix. 

Theorem 1 (Umez-Eronini 1999) Consider the system defined by  bAxx ;(t)(t) +=&  



 72 

0(0) xx = ; where ,(t) nR∈x 1n x n x n   , RR ∈∈ bA . The solution to this system is given by 

∫ τ+= τ−
t

0

)t
0

t dee(t) bxx A(A  

Proof: The solution to the system can be written as the sum of two terms: )t()t((t) ph xxx += , 

where the subscripts h and p denote homogeneous and particular.   

The homogeneous solution is the solution to the equation:  

0hhh (0)  (t);(t) xxAxx ==&  (4.1) 

The particular solution is the solution to the equation:  

0xbAxxp =+= (0)  ;(t)(t) pp&      (4.2)  

First, the homogeneous solution will be calculated. Equation (4.1) can be expressed as: 

(t)
dt

(t)d
h

h Axx
=  or dt

(t)
(t)d

h

h A
x
x

=  

Integrating: ∫∫ = dt
(t)
(t)d

h

h A
x
x   

It follows that Kt))t(ln( h += Ax , where K is a constant. 

Hence Kt
h ee)t( Ax = . Substituting the initial condition 0h (0) xx = , the homogeneous solution is 

given by 0
t

h e(t) xx A=  (4.3) 

Second, the particular solution (4.2) is calculated. Doing the following transformation: 

)t(e(t) p
txz -A=   (4.4) 

After taking the derivatives to both terms: 
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( ) )t(e)t(e)t(e)t( e
dt
d(t) p

t
p

t
p

t
p

t xxAxxz A-A-A-A- &&& +−=+=  (4.5) 

Substituting (4.2) into (4.5) 

[ ]bAxxAz -A-A ++−= (t)e)t(e(t) p
t

p
t&  

Simplifying: bz -Ate(t) =&  

Integrating both sides from 0 to “t” gives 

∫ τ= τ
t

0

de(0)-(t) bzz A-  

But 0xz -A == )0(e(0) p
0 , then 

∫ τ= τ
t

0

de(t) bz A-  (4.6) 

Substituting the transformation (4.4) into (4.6) 

∫ τ= τ
t

0
p

t de)t(e bx A-A-  

Solving for xp(t) in the above equation 

∫ τ= τ
t

0

t
p dee)t( bx A-A  

∫ τ= τ
t

0

)t de         b-A(  (4.7) 

Combining the homogeneous and particular solutions (4.3) and (4.7) into a total solution 

)t()t((t) ph xxx += , it is proved that 
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∫ τ+= τ−
t

0

)t
0

t dee(t) bxx A(A  ■ 

Example 1 Consider the manufacturing supply chain shown in Figure 4.1. The SD model 

is composed of three state variables: Inventory, Work in Process (WIP) Inventory and Expected 

Demand. The current level for these variables is 50, 70 and 0 units respectively. Inventory 

integrates the difference between production and shipments. Production starts to replenish 

inventory to its desired level and satisfy the expected demand. The expected demand is a smooth 

function of actual demand. Shipment rate depends on the current inventory level and the 

shipment delay. In this model it is assumed that demand is greater or equal to the shipment rate 

and all orders not immediately filled are lost as customers seek alternate suppliers. Obtain the 

trajectory equations for the state variables of this system knowing that the model equations are 

the following: 

Demand Average  toTime
))t(Demand ExpectedDemand(

t
)t(Demand Expected −
=

∂
∂  

Demand Average  toTime
Demand

Demand Average  toTime
)t(Demand Expected                                      +

−
=  

Delay Shipment
)t(Inventory

Delay Production
t)Inventory( WIP

t
)t(Inventory

−=
∂

∂  

Time Adjustment Production
))t(InventoryInventory Desired()t(Demand Expected

t
)t(Inventory WIP −

+=
∂

∂  

Delay Production
t)Inventory( WIP                                   −  

Time Adjustment Production
t)Inventory()t(Demand Expected                               −=  



 75 

Time Adjustment Production
Inventory Desired

Delay Production
t)Inventory( WIP                                   +−  

Table 4.1 shows the values for the demand, which is an exogenous variable, and the set of 

parameters that define the inventory management policy for this supply chain. 

Table 4.1. Parameter values for the supply chain of Example 1 

Parameter Value Unit 
Demand 2000 Units 
Production Delay 1 Weeks 
Shipment Delay 1/3 Weeks 
Desired Inventory 100 Units 
Production Adjustment Time  1 Weeks 
Time to Average Demand  10 Weeks 

 

WIP
Inventory

Inventory

Expected
Demand

Production
Start Rate

Production Rate Shipment Rate

Change in Expected
Demand

Production Delay

Shipment Delay

Production
Adjustment Time

Desired Inventory
Time to Average

Demand Demand
 

Figure 4.1. Manufacturing supply chain 

Solution: The model equations of this supply chain can be expressed as the linear system 

0(0);(t)(t) xx  bAxx =+=& , where 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

70
50
0

 ,
100

0
200

 ,
1-1-1

13-0
0010-

 ,
)t(Inventory WIP

)t(Inventory
)t(Demand Expected

(t) 0xbAx  

To obtain the solution of this model, first the matrix exponential has to be determined. 

For the given matrix A, the following terms are calculated 

etc. ,
16-321096
32-48152
0010000

,
412-110

1220-14-
001000-

 ,
0411-
4-81
00100

432

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= AAA  (4.8) 

By Definition 4, 

L+++++==∑
∞

= !4
t)(

!3
t)(

!2
t)(t

k!
t)(e

4

0k

32k
t AAAAIAA  

Substituting the values of (4.8) into the expression above it is obtained 

L++++
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

!3
1

34t312t-3110t

312t320t-314t-
0031000t-

!2
1

024t211t-

24t-28t2t
002100t

t-t-t
t3t-0
0010t-

100
010
001

teA

 (4.9) 

Let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211
t

aaa
aaa
aaa

eA   

Then by (4.9) and the theory of convergence of infinite series results that 

t10
32

11 e
!3

t1000
!2
t100t101a −=+−+−= L  

00000a12 =++++= L  

00000a13 =++++= L  
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8
te

64
e

64
et14t00a

t2t2t10
32

21

−−−

+−=+−++= L  

tee
!3
t20

!2
t8t31a t2t2

32

22
−− −=+−+−= L  

te
!3
t12

!2
t4t0a t2

32

23
−=++−+= L  

8
te

64
e7

64
e7

!3
t110

!2
t11t0a

t2t2t1032

31

−−−

++−=++−+= L  

te
!3
t12

!2
t4t0a t2

32

32
−−=+−+−= L  

tee
!3
t40t1a t2t2

3

33
−− +=+−+−= L  

Thus, the matrix exponential is given by 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−++−

−+−=

−−−
−−−

−−−
−−−

−

teete
8

te
64
e7

64
e7

tetee
8

te
64

e
64

e
00e

e

t2t2t2
t2t2t10

t2t2t2
t2t2t10

t10

tA  (4.10) 

It is know from Theorem 1 that, 

∫ τ+= τ−
t

0

)t
0

t dee(t) bxx A(A  

∫ τ+= τ
t

0

t
0

t deee      bx A-AA   (4.11) 

Substituting the matrix exponential obtained in (4.10) into (4.11) 
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+
⎥
⎥
⎥

⎦

⎤
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⎢
⎢

⎣
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⎥
⎥
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⎢
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⎡
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−

70
50
0

teete
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64
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e7

tetee
8

te
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e
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e
00e

(t)

t2t2t2
t2t2t10

t2t2t2
t2t2t10

t10

x  

∫ τ

−τ−τ
−τ

−τ−τ
−τ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−++−

−+−

−τ−−τ−−τ−
−τ−−τ−−τ−

−τ−−τ−−τ−
−τ−−τ−−τ−

−τ−

t

0
)t(2)t(2)t(2

)t(2)t(2)t(10

)t(2)t(2)t(2
)t(2)t(2)t(10

)t(10

d
100

0
200

)t(ee)t(e
8

)t(e
64

e7
64

e7

)t(e)t(ee
8

)t(e
64

e
64

e
00e

 

 (4.12) 

After applying matrix and integral operations to the expression in (4.12) and simplifying, the 

solution of the system is obtained. 
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⎥
⎥
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⎥

⎦
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⎢
⎢

⎣
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⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡
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−−−

−

2
te85

16
e355

16
e3590

2
te85

16
e325

16
e530

e2020

)t(Inventory WIP
)t(Inventory

)t(Demand Expected
(t)

t2t2t10

t2t2t10

t10

x  ■ 

It follows from Example 1 that the calculation of the matrix exponential involves the 

computation of several infinite series. However, this calculation can be simplified using the 

eigenvalue-eigenvector method. The essential idea in this method is to transform matrix A into a 

Jordan canonical form J (Definition 7) by using a transformation matrix T composed by 

generalized eigenvectors (Definition 6). The transformation 1−= TJTA  then leads to the 

equation 1tt ee −= TT JA , which is much simpler to compute than the formula given in Definition 

4 and can be used for any matrix A as it is stated in Lemma 1. First, it is necessary to provide the 
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following definitions required to understand the proof of this lemma. 

Definition 5 (Edwards and Penney 2001) For a matrix nn x R∈A , if the number C  ∈λ  

and nonzero vector n  C∈r  satisfy: rAr λ= , then λ is called an eigenvalue of A and r its 

corresponding eigenvector. 

Definition 6 (Edwards and Penney 2001) If C  ∈λ is an eigenvalue of matrix nn x R∈A , 

then a generalized eigenvector n  C∈u  with multiplicity k associated with λ satisfies: 

0uI-A =λ k)( . Ordinary eigenvectors as on Definition 5 are obtained for k=1. 

Definition 7 (Edwards and Penney 2001) A square matrix is in Jordan canonical form if 

it has a block decomposition in which all diagonal blocks are Jordan blocks iJ (i=1,..,m) and all 

other blocks are zero: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

m

2

1

J0

J
0J

J
O

  (4.13) 

where a Jordan block iJ  is a square matrix in which all diagonal entries are equal to a single 

eigenvalue λi, all entries immediately above the diagonal are one, and all other entries are zero: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

λ

=

i

i

i

i

i

0
1

1
01

O

OJ   (4.14) 

If the dimension of Ji is ni (i=1,..,m) then the dimension of J is n1+n2+…+nm 
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Definition 8 (Edwards and Penney 2001) A set of k-vectors },,,{ k21 uuu L  is called 

linearly independent when the equation 0uuu =α++α+α kk2211 L  is satisfied only by the 

trivial choice of scalars 0k21 =α==α=α L . 

Lemma 1 (Khalil 1996) For any matrix nn x R∈A  there is an invertible matrix T such 

that it is possible to find the following transformations: 

i)  1−= TJTA     

ii) 1tt ee −= TT JA    

where nn x   C∈J  is a matrix in Jordan canonical form and nn x   C∈T  is a matrix composed by 

generalized eigenvectors. 

Proof: Part i. Refer to Gel’fand (1977) to see the proof of this part. There, it is also proved that 

the generalized eigenvectors that compose T are linearly independent and they span n R . 

Moreover, matrix T has the form  

],, ,[ J
m

J
2

J
1 uuuT L=   (4.15)  

where  

][
iin2i1i

J
i uuuu L=   (4.16) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

iijn

2ij

1ij

ij

u

u
u

M
u  

 (4.17) 

J
iu denotes the group of generalized eigenvectors associated to the ith Jordan block. 
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uij denotes the jth generalized eigenvector of the ith Jordan block. 

uijs denotes the element of the sth row of the jth generalized eigenvector of the ith Jordan block. 

The generalized eigenvectors satisfy the following equations: 

i1ii1 uAu λ=  (4.18) 

1-ji,ijiij uuAu +λ= , if j>1 (4.19) 

Part ii. Using Definition 4 the expression for teA  is given by 

∑
∞

=

=
0k

k
t

k!
t)(e AA   (4.20) 

Solving for J in equation 1−= TJTA  

ATTJ 1−=  

Thus, now J2 can be calculated as 

TATATIATATTTATATTATTJ 21111112 )())(()())(()()( −−−−−− ====  

In a similar fashion, Jk is obtained as 

TATJ k1k −=  (for k=0 the expression J0 gives A0 = I) 

Therefore 

TATTATJJ k1kk1kkk t)(ttt)( −− ===   (4.21) 

Using Definition 4 the expression for teJ  can be written as 

∑
∞

=

=
0k

k
t

k!
t)(e JJ   (4.22) 

Substituting (4.21) into (4.22) yields 
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T AT TATJ
⎟⎟
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⎞
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∞

=

∞

=

−−

0k

k

0k

1
k

1t

k!
t)(

k!
t)(e   (4.23) 

Using (4.23) the expression 1te −TT J  can be expanded as  

∑∑
∞

=

−
∞

=

−− =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0k

k
1

0k

k
11t

k!
t)(

k!
t)(e  ATT ATTTT J   (4.24) 

From (4.20)  and (4.24) it is proved that 1tt ee −= TT JA  ■ 

Now it is possible to express x(t) in terms of the deviations from the equilibrium point of 

the system. To obtain the trajectory equation x(t) two cases have to be considered. The first case 

is when at least one of the eigenvalues of the Jacobian matrix of the system has real part equal to 

zero. Trajectory equations of this type cannot achieve asymptotic stability (Khalil 1996). The 

second case is when the Jacobian matrix has no eigenvalues with zero real part. These 

trajectories can be shaped to attain asymptotic behavior, and therefore the equations for x(t) will 

be derived based on this second case. The equations will be obtained by applying the results 

obtained in Lemma 1 to the solution provided in Theorem 1, where the DE can be written as a 

linear combination of the generalized eigenvectors associated with the eigenvalues of the 

Jacobian matrix, as shown in the following theorem. 

Theorem 2 Consider the system defined by 0(0);(t)(t) xx  bAxx =+=& ; where 

,(t) nR∈x 1n x n x n   , RR ∈∈ bA , then the solution to this system can be expressed as 

[ ] n1,..,s , )t(x(t) s ==x   

∑∑∑ ∑
= = =

λ
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⎪⎭
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h
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ss

i i
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i

e
)!1j(

tu
)(

)1(
x(t)x   (4.25) 
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where  

uijs is the element of the sth row of the generalized eigenvector uij associated to the nonzero 

eigenvalue of A R i ∈λ , and R ij ∈α , R ij ∈β  are constants, i=1,..,m; j=1,..,ni. 

Proof: From Lemma 1 it is known that:  

1tt ee −= TT JA   (4.26) 

From Theorem 1 the solution to the linear system is given by  

∫ τ+= τ−
t

0

)t
0

t dee(t) bxx A(A     (4.27)  

Substituting (4.26) into (4.27) 

∫ τ+= τ−−
t

0

1-)t
0

1t dee(t) bTTxTTx J(J  

bTTxTT J-JJ 1-
t

0

t
0

1t deee       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ+= ∫ τ−   (4.28) 

Because the number zero is not an eigenvalue of A (from the hypothesis) then J is invertible and 

from Lemma A.1 (see Appendix A): 
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 (4.29) 
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where 
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Moreover, from Lemma A.2 the matrix exponential is given by 
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where 
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Calculating the integral in (4.28) and simplifying 

[ ] bTIJTxTTx -JJJ -1t-1t
0

1t )e)((ee(t) −−+= −  

bTITJxTT JJ -1t-1
0

1t )e(e       −+= −  

bTTJbTTJxTT JJ -1-1-1t-1
0

1t ee       −+= −  

bTTJbTJTxTT JJ -1-1-1-1t
0

1t ee       −+= −  

( ) bTTJbTJxTT J -1-1-1-1
0

1te       −+= −   (4.33) 
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Making  
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where 
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J
i M

β  are column vectors of constants associated to the ith Jordan 

block.  (4.35) 

It therefore follows from (4.29) and (4.34)  that 
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Using (4.15), (4.32) and (4.36) the term ( )bTJxTT J -1-1
0

1te +−  can be written as 
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Expanding the terms of the summation by using (4.17), (4.30), (4.32), and (4.35) 
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After rearranging the terms of (4.38) around the common factor 
)!1j(

t 1j

−

−

 then 
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In view of Lemma 1, it is known that 1−= TJTA . This leads to the expression 

1-1-1 −= TTJA  

Multiplying both terms of the expression above by vector b yields 

bTTJbA 1-1-1 −=  (4.40) 

It is also known that the EP is determined by making 0bAxx =+= (t)(t)& , therefore 

bAx 1eq −−=  (4.41) 

Using (4.40) and (4.41) gives  

bTTJx -1-1eq −=  (4.42) 

Substituting (4.15), (4.29), and (4.34) into (4.42) gives 
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Expanding the terms of the summation by using (4.17), (4.30), and (4.35) 
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From (4.37), (4.39), (4.42) and (4.33), it is clear that  
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(t) uxx  (4.44) 

By expressing this equation in terms of each state variable (t)xs  of vector x(t) it is proved that 
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Example 2 Consider the manufacturing supply chain presented in Example 1. Assuming 

the same initial conditions and parameters shown in Table 4.1, obtain the trajectory equations for 

the state variables of this system using the results of Theorem 2. 

Solution: The model equations of this supply chain can be expressed as the linear system 

0(0);(t)(t) xx  bAxx =+=& , where 
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The real eigenvalues of A are: 2 ,2 ,10 321 −=λ−=λ−=λ ; thus there are two Jordan blocks 

(m=2); the first one of dimension n1=1 associated to eigenvalue 1λ and the second one of 

dimension n2=2 associated to eigenvalues 2λ and 3λ . The Jordan canonical form is given by 

⎥
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The matrix of generalized eigenvectors is: [ ]
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⎦
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The constants are found as follows: 
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The equilibrium point is calculated using (4.43), for m=2, n1=1, n2=2 
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 (4.45) 

Replacing the values of the eigenvalues and constants in (4.45) gives 
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The variables Expected Demand(t), Inventory(t) and WIP Inventory(t) are calculated replacing 

the corresponding values in (4.25), for m=2, n1=1, n2=2, s=1,..,3 
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The restriction of Theorem 2 is that requires the eigenvalues to be real numbers in order 

to obtain a vector (t)x  in the real space. However, knowing that the eigenvalues are complex 

numbers (real numbers are a subset of the complex numbers with a zero imaginary part), it is 

necessary to develop a state trajectory equation that considers all type of eigenvalues. In order to 

do that, first it has to be proved that the eigenvalues, eigenvectors and constants of expression 

(t)x  occur in conjugate pairs when they are complex numbers. This is done in Lemma 2. This 

facilitates the conversion of the state trajectory into an expression of pure real numbers as shown 

in Theorem 3. This new expression obtained in Theorem 3 decomposes (t)x  into several modes 

of behavior (exponential growth, exponential decay, expanding oscillations, etc.) each 



 90 

characterized by an eigenvalue. 

Lemma 2 Consider the system defined by 0(0);(t)(t) xx  bAxx =+=& ; where 

,(t) nR∈x 1n x n x n   , RR ∈∈ bA . If the complex eigenvalues of A, 'zz  and λλ  are a conjugate pair 

corresponding to the Jordan blocks 'zz  and JJ  respectively, then the following are conjugate 

pairs: 

i) j,'zj,z  and uu  

ii) j,'zj,z  and αα  

    j,'zj,z  and ββ  

iii) 1jk,z
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where C j,z ∈α , C j,z ∈β  are constants defined as in Theorem 2, and j,'zj,z  , uu are the 

corresponding generalized eigenvectors of 'zz  and λλ . 

Proof: Part i. Let iii jz,jz,j,zzz'zzzz    ,dc    ,dc qpu +=−=λ+=λ   (4.46) 

It has to be shown that ijz,jz,j,'z qpu −= , j=1,..,nz 

Case for j=1 

By equation (4.18) 

1,zz1,z uAu λ=   (4.47) 

Use of (4.46) for j=1 into (4.47) yields 

)()dc()( z,1z,1zzz,1z,1 iii qpqpA ++=+  

)()dc( z,1z,1zzz,1z,1 iii qpAqAp ++=+  
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z,1zz,1zz,1zz,1z ddcc                      qpqp −++= ii  

i)dc()dc(                      z,1zz,1zz,1zz,1z pqqp ++−=  

Then 

)dc( z,1zz,1zz,1 qpAp −=    (4.48) 

ii )dc( z,1zz,1zz,1 pqAq +=   (4.49) 

Subtracting (4.48) minus (4.49) 

iii z,1zz,1zz,1zz,1zz,1z,1 dcdc pqqpAqAp −−−=−  

z,1zzz,1zzz,1z,1 )cd()dc()( qpqpA iii +−−=−  

zz
2

zzz,1z,1 )cd()dc(                      qp iii +−−−=  

iii zzzzzz )dc()dc(                      qp −−−=  

)()dc(                      z,1z,1zz ii qp −−=  

It follows from (4.46) that izz'z dc −=λ , thus 

)()( z,1z,1'zz,1z,1 ii qpqpA −λ=−  

However, by comparing with equation (4.18) the term iz,1z,1 qp −  is the eigenvector 1,'zu  

associated to the eigenvalue 'zλ , therefore 

iz,1z,11,'z qpu −=  ■ 

Case for j>1 

By equation (4.19) 

1-jz,jz,ijz, uuAu +λ=  (4.50) 
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From (4.46) and (4.50) yields 

iiii 1-jz,1-jz,jz,jz,zzjz,jz, )()dc()( qpqpqpA ++++=+  

After some operations then 

1-jz,jz,zjz,zjz, )dc( pqpAp +−=  (4.51) 

iii 1-jz,jz,zjz,zjz, )dc( qpqAq ++=  (4.52) 

Subtracting (4.51) minus (4.52) 

iiii 1-jz,1-jz,jz,zjz,zjz,zjz,zjz,jz, dcdc qppqqpAqAp −+−−−=−  

After simplifying it is obtained 

iiii 1-jz,1-jz,jz,jz,zzjz,jz, )()dc()( qpqpqpA −+−−=−  

It follows from (4.46) that izz'z dc −=λ , thus 

)()()( 1-jz,1-jz,jz,jz,'zjz,jz, iii qpqpqpA −+−λ=−  

However, by comparing with equation (4.19) the term ijz,jz, qp −  is the generalized eigenvector 

j,'zu  associated to the eigenvalue 'zλ , therefore 

ijz,jz,j,'z qpu −=  ■ 

Part ii. First, it has to be shown that if 
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  (4.53) 
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, n
j,z C∈w are row vectors; then  (4.54) 
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zz nz,znz, wAw λ=   

1jz,jz,zjz, ++λ= wwAw , if j<nz  

From Lemma 1-part i, it follows 
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Substituting (4.14) and (4.54) into (4.55) gives 
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which implies that 

zz nz,znz, wAw λ=  (4.56) 

1jz,jz,zjz, ++λ= wwAw , if j<nz  (4.57) 



 94 

Similar to part i of this lemma, using (4.56) and (4.57), it can be shown that j,'zj,z  and ww  are a 

conjugate pair, if 'zz  and λλ  are a conjugate pair of eigenvalues of A   (4.58) 
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α  is a column vector of constants associated to zJ  (4.60) 

Substituting (4.53) into (4.59) yields 
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Thus  

}m,..,1{z ,0
J
z

J
z ∈= xwα  and {z}-m}{1,..,z' ,0

J
'z

J
'z ∈= xwα   (4.61) 

From (4.54), (4.60) and (4.61), it can be obtained 

0jz,jz,α xw=  and 0j,z'j,z'α xw=  (4.62) 

From (4.58) it is known that j,'zj,z  and ww  are a conjugate pair, then they can be expressed as: 

ijz,jz,j,z vgw += , ijz,jz,j,'z vgw −=   (4.63) 

Using (4.62) and (4.63) leads to 

i0jz,0jz,0jz,jz,α xvxgxw +==  
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i0jz,0jz,0j,z'j,z'α xvxgxw −==  

This means that j,z'jz, α and α  are a conjugate pair too ■ 

Similarly, 
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 is a column vector of constants associated to zJ  (4.65) 

Substituting (4.53) into (4.64) gives 
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Thus  

}m,..,1{z  ,0
J
z

J
z ∈= xwβ  and }z{}m,..,1{'z  ,0

J
'z

J
'z −∈= xwβ  (4.66) 

Substituting (4.54) and (4.65) into (4.66) yields 

0jz,jz, xw=β  and 0j,z'j,z' xw=β  

In a similar fashion that was proved that j,z'jz, α and α  are a conjugate pair it is possible to 

conclude that j,z'jz,  and ββ  are a conjugate pair too ■ 

Part iii. Let denote C∈y  the conjugate of C∈y  
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1jk,z

1kn

1h
h

z

1hk,z
1h

k,z

z

)(
)1(

+−

+−

=

−+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β−

+α ∑ u  

Because 'zz  , λλ  are conjugate pairs and by the property of complex numbers: ( ) ( )hh yy =   

then 

h
'z

h
z )(  and )( λλ  are a conjugate pair  (4.67) 

From (4.67) and because 1-hk,z'1-hkz,  , ++ ββ  are a conjugate pair (part ii of this lemma) and by the 

property of complex numbers: 0y ,yyy
y

221
2

1 ≠=⎟
⎠
⎞⎜

⎝
⎛  then 

h
z

1hk,z

)(λ
β −+  and h

z

1hk,'z

)(λ
β −+  are a conjugate pair  (4.68) 

From (4.68) and by the property of complex numbers: yccy = , c=constant then 

h
z

1hk,z
1h

)(
)1(
λ
β− −+

−

 and h
'z

1hk,'z
1h

)(
)1(
λ
β− −+

−

 are a conjugate pair  (4.69) 

From (4.69) and because k,'zk,z  and αα are a conjugate pair, and by the property of complex 

numbers: ( ) ∑∑ = yy  then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β−

+α ∑
+−

=

−+
−1kn

1h
h

z

1hk,z
1h

k,z

z

)(
)1(

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β−

+α ∑
+−

=

−+
−1kn

1h
h

'z

1hk,'z
1h

k,'z

'z

)(
)1(

 are a conjugate pair 

   (4.70) 

From (4.70) and because 1jk,'z1jk,z  , +−+− uu  are a conjugate pair (part i of this lemma), and by the 

property of complex numbers: ( ) 2121 y yyy =  then it can be deduced that 
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⎟⎟
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⎞
⎜⎜
⎝

⎛
λ
β−
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1kn
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h

'z

1hk,'z
1h
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'z

)(
)1(

+−

+−

=

−+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β−

+α ∑ u  are a conjugate 

pair ■ 

Theorem 3 Consider the system defined by 0(0);(t)(t) xx  bAxx =+=& ; where 

,(t) nR∈x 1n x n x n   , RR ∈∈ bA . If matrix A has nonzero eigenvalues, then the solution to this 

system can be expressed as  

[ ] n1,..,s , )t(x(t) s ==x   

{ } ( ){ }∑ ∑∑∑∑∑
∈ = =

λ−

∈ = =

λ− θ+λ++=
2

q q
q

1

i i
i

Hq

n

1j

n

jk

t)Re(1j
qjksqqjks

Hi

n

1j

n

jk

t)Re(1j
ijks

eq
ss ett)Im(sinvetwx(t)x  

where  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β−

+α= +−
+−

=

−+
−

∑ )!1j(
u

)(
)1(

Rew s,1jk,i
1kn

1h
h

i

1hk,i
1h

ikijks

i

 

)!1j(
u

)(
)1(

2v s,1jk,q
1kn

1h
h

q

1hk,q
1h

qkqjks

q

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
β−

+α= +−
+−

=

−+
−

∑ , being z  the modulus19 of C  z∈  

xs(t) denotes the state variable s of vector x(t), s=1,..,n 

λp and upj are the corresponding eigenvalues and generalized eigenvectors of the pth Jordan 

block, p=1,..,m; j=1,..,np 

Re(z) and Im(z) mean the real and imaginary parts of C  z∈  

                                                 
19 Given z=a+bi then 22 baz +=  
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⎠
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λ
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=
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−

∑

∑

s,1jk,q

1kn

1h
h

q

1hk,q
1h

qk

s,1jk,q

1kn

1h
h

q

1hk,q
1h

qk

qjks

u
)(

)1(
Im

u
)(

)1(
Re

antarc 
q

q

, expressed in radians 

H1 is a set of Jordan blocks Ji such that Im(λi) = 0 

H2 is a set of pair of Jordan blocks }J,J{ 'qq  such that Im(λq) ≠ 0, where q denotes the 

conjugate pair of eigenvalues qλ  and 'qλ , i.e. one index q represents two eigenvalues. 

Therefore, )Re()Re( 'qq λ=λ  and )Im()Im( 'qq λ=λ  

Proof: Dividing equation (4.25) in two parts associated to sets H1 and H-H1: 

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟⎟
⎠

⎞
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i

Hi

n
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i
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ss e

)!1j(
tu

)(
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x(t)x  

∑ ∑∑ ∑
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λ
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=
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−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
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}HH{i

n
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n
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t
1j

s,1jk,i

1kn

1h
h

i

1hk,i
1h
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1

i i
i

i

e
)!1j(

tu
)(

)1(
 (4.71) 

where H1 is defined as in the text of this theorem and H is the set of indexes that represent all the 

Jordan blocks of matrix J; thus H={1,..,m}. 

All the terms in the first summation of equation (4.71) are real numbers (which are a subset of 

the complex numbers); thus, summation 

 ∑∑∑ ∑
∈ = =

λ
−

+−

+−

=

−+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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i i
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i

Hi

n
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n
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t
1j
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ik e
)!1j(

tu
)(

)1(
 is equivalent to 

             ∑∑∑ ∑
∈ = =

λ−+−
+−

=

−+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⎟⎟
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⎞
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⎝
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λ
β−

+α
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i

Hi

n

1j

n

jk

t)Re(1js,1jk,i
1kn

1h
h

i

1hk,i
1h

ik et
)!1j(

u
)(

)1(
Re   (4.72) 
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Now it is necessary to obtain an expression in terms of pure real numbers for the complex 

numbers in the second summation of equation (4.71) (whose imaginary part is different from 

zero). 

Sets {H-H1} and H2 (as defined in the text of this theorem) point the same Jordan blocks; thus, 

the cardinality of {H-H1} is twice the cardinality of H2. 

For any index 2H∈q , the conjugate eigenvalues represented by q as can be expresses as 

îqqq dc +=λ  

îqq'q dc −=λ  

Also, as the terms ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
β−

+α ∑
+−

=

−+
−1kn

1h
h

q

1hk,q
1h

qk

q

)(
)1(

 and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
β−

+α ∑
+−

=

−+
−1kn

1h
h

'q

1hk,'q
1h

k'q

'q

)(
)1(

 are conjugates 

(by Lemma 2), the following terms can be written them as 

îqjksqjks
s,1jk,q

1kn

1h
h

q

1hk,q
1h

qk gf
)!1j(

u
)(

)1(q

+=
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
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+α +−
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=
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−

∑  
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∑  

Using the conjugate terms defined above, the summation 

∑ ∑∑ ∑
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 can be expressed as 

{ }∑ ∑∑
∈ = =

−−−+ −++
2

q q
qqqq

Hq

n

1j

n

jk

1jt)dc(
qjksqjks

1jt)dc(
qjksqjks te)gf(te)gf( îî îî  

( ) ( ){ }∑ ∑∑
∈ = =

−−− −++=
2

q q
qqqq

Hq

n

1j

n

jk

1jtdtc
qjksqjks

1jtdtc
qjksqjks tee gftee gf îî îî  
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By Euler’s formula (Spivak 1967) it is known that îî )sin()cos(e γ+γ=γ ; thus replacing this 

formula in the expression above: 

( ) ( ){ }∑ ∑∑
∈ = =

−− −+−−+++=
2

q q
qq

Hq

n

1j

n

jk
qq

1jtc
qjksqjksqq

1jtc
qjksqjks )tdsin()tdcos(te)gf()tdsin()tdcos(te)gf( îîîî

( ) ( ){ }∑ ∑∑
∈ = =

−− −−+++=
2

q q
qq

Hq

n

1j

n

jk
qq

1jtc
qjksqjksqq

1jtc
qjksqjks )tdsin()tdcos(te)gf()tdsin()tdcos(te)gf( îîîî  

Simplifying: 

( ){ }∑ ∑∑
∈ = =

− −=
2

q q
q

Hq

n

1j

n

jk
qqjksqqjks

1jtc )tdsin(g2)tdcos(f2te  

( ){ }∑ ∑∑
∈ − =

− −=
2

q q
q

Hq

n

1j

n

jk
qqjksqqjks

1jtc )tdsin(g)tdcos(fte2   (4.73) 

Making ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=θ

qjks

qjks
qjks g

f
arctan  then 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=θ

2
qjks

2
qjks

qjks
qjks

)g()f(

f
)sin(  and ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
=θ

2
qjks

2
qjks

qjks
qjks

)g()f(

g
)cos(   (4.74) 

Multiplying and dividing (4.73) by 2
qjks

2
qjks )g()f( +  and replacing the terms of (4.74) 

( ){ }∑ ∑∑
∈ = =

− θ+θ+=
2

q q
q

Hq

n

1j

n
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qqjksqqjks

1jtc2
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q q
q
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n
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n
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qjksq
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qjks

2
qjks )tdsin(te )g()f(2   (4.75) 

It is known that 
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Also, it is clear that  
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Thus, 
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From (4.72) making ⎟
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 and substituting this term 

and (4.77) into (4.71) it is demonstrated that 
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Example 3 Consider the manufacturing supply chain presented in Example 1. 

Considering the same initial conditions and the parameters shown in Table 4.2, obtain the 

trajectory equations for the state variables of this system using the results of Theorem 3. 

Table 4.2. Parameter values for the supply chain of Example 3 

Parameter Value Unit 
Demand 200 Units 
Production Delay 1 Weeks 
Shipment Delay 1 Weeks 
Desired Inventory 100 Units 
Production Adjustment Time 1 Weeks 
Time to Average Demand 1 Weeks 

 
Solution: The model equations of this supply chain can be expressed as the linear system 

0(0);(t)(t) xx  bAxx =+=& , where 

 
⎥
⎥
⎥
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)t(Inventory
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(t) 0xbAx  

The eigenvalues of A are: îî +−=λ−−=λ−=λ 1 ,1 ,1 321   (4.78) 

Thus, there are three Jordan blocks (m=3) of dimension ni=1 (i=1,..,3) associated to each of the 

eigenvalues. The Jordan canonical form is given by 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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−−

−
=

î
î
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J . 

The matrix of generalized eigenvectors is: 
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The constants are found as follows: 
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The following terms are obtained as follows: 
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⎢
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  (4.79) 
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⎥
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⎢
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⎥
⎥
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⎢
⎢
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⎥
⎥
⎥
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⎢
⎢
⎢

⎣

⎡

+−
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Let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)t(Inventory WIP
)t(Inventory

)t(Demand Expected

)t(x
)t(x
)t(x

(t)

3

2

1

x  

The equilibrium point is calculated using (4.43) and (4.80), for m=3, ni=1, i=1,..,3. 

31
3

31
21

2

21
11

1

11
m

1i

n

1j

j

1k
ik1kj

i

ij
kj

eq   
)(
)1(i

uuuux
λ
β

−
λ
β

−
λ
β

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ
β−

−= ∑∑∑
= = =

+−

−

 (4.81) 

Substituting the values above in (4.81) it is obtained 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
150
150
200

 
x
x
x

eq
3

eq
2

eq
1

eqx  

From (4.78) it is known know that { } { }2H ,1H 21 == . Variables Expected Demand(t), 

Inventory(t) and WIP Inventory(t) are calculated substituting the values above in the equation of 

Theorem 3, for n1=1, n3=1, s=1,..,3. 

Calculating Expected Demand(t) 

{ }∑∑∑
∈ = =

λ−+=
1

i i
i

Hi

n

1j

n

jk

t)Re(1j
1ijk

eq
1 etwxDemand(t) Expected

( ){ }∑∑∑
∈ = =

λ−θ+λ+
2

q q
q

Hq

n

1j

n

jk

t)Re(1j
1qjkq1qjk ett)Im(sinv                                          

( ) t)Re(
211122111

t)Re(
1111

21 et)Im(sinvew200Demand(t) Expected λλ θ+λ++−=  

where 

200uuRew 111
1

11
111111111 −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α=  

( ) 00arctan
g

farctan 0g ,0f
2111

2111
211121112111 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=θ⇒==  

0gf2v 2
2111

2
21112111 =+=  

Thus, 

te200200Demand(t) Expected −−=  ■ 

It can be verified that 

0200200Demand(0) Expected =−=  
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Calculating Inventory(t) 

{ }∑∑∑
∈ = =

λ−+=
1

i i
i

Hi

n
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n

jk

t)Re(1j
2ijk
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2 etwxt)Inventory(

( ){ }∑∑∑
∈ = =

λ−θ+λ+
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q q
q

Hq
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n
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t)Re(1j
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( ) t)Re(
211222112

t)Re(
1112
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where 
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1
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112111112 −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α=  

8961.0
4
5arctan

g
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⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=θ⇒−==  

0625.128gf2v 2
2112

2
21122112 =+=  

Thus, 

( )8961.0tsinte 0625.128te200150t)Inventory( +−−+−−=  ■ 

It can be verified that 

( ) 508961.0sin 0625.1282001500)Inventory( =+−=  

 

Calculating WIP Inventory(t) 

{ }∑∑∑
∈ = =

λ−+=
1

i i
i

Hi

n

1j

n

jk

t)Re(1j
3ijk

eq
3 etwx(t)Inventory WIP

( ){ }∑∑∑
∈ = =

λ−θ+λ+
2

q q
q

Hq
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n

jk

t)Re(1j
3qjkq3qjk ett)Im(sinv                                  

( ) t)Re(
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t)Re(
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21 et)Im(sinvew150t)Inventory( WIP λλ θ+λ++=  
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where 

0uuRew 213
1

11
113111113 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α=  
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5
4arctan

g
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2113
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⎠
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⎜
⎝
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⎠

⎞
⎜⎜
⎝

⎛
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=θ⇒−=−=  
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2
21132113 =+=  

Thus, 

( )6747.0tsinte 0625.128150t)Inventory( WIP −−−+=  ■ 

It can be verified that 

( ) 706747.0sin 0625.1281500)Inventory( WIP =−+=  

From the state variables equations the solution of the system is obtained 

( )
( ) ⎥

⎥
⎥

⎦

⎤
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⎣
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⎡
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)6747.0tsinte 0625.128150(
)8961.0tsinte 0625.128te200150(

)te200200(

)t(Inventory WIP
)t(Inventory

)t(Demand Expected
(t)x  ■ 

4.2.2. Conditions for linear stability 

In this section the concept of ADE is applied in order to achieve stability of linear 

systems. It is demonstrated that if ADE converge then the system is asymptotically stable. In 

order to do that, first, it is proved in Theorem 4 that the convergence of ADE assures the 

convergence of the state variable trajectory to the equilibrium point.  

Theorem 4 Consider the system defined by 0(0);(t)(t) xx  bAxx =+=& ; where 
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[ ] 1n x n x n
s

n   ,  n;1,..,s , )t(x(t) ,(t) RRR ∈∈==∈ bAxx . The state variable sx  is asymptotically 

stable (around the EP eq
sx ), if ∫

∞

−
0

eq
ss dt x)t(x  converges. 

Proof: As initial step, it will be proved by contradiction that if ∫
∞

−
0

eq
ss dt x)t(x  converges then the 

real part of all the eigenvalues of A has to be negative.   (4.82) 

Thus, assume to contrary that there is at least one eigenvalue of A with a real part greater than or 

equal to zero. 

Recalling the following equation for xs(t) from Theorem 3  

{ } ( ){ }∑ ∑∑∑∑∑
∈ = =

λ−

∈ = =

λ− θ+λ++=
2

q q
q

1

i i
i

Hq
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jk

t)Re(1j
qjksqqjks

Hi

n

1j

n

jk

t)Re(1j
ijks

eq
ss ett)Im(sinvetwx(t)x   

After rearranging terms 

 { } ( ){ }∑ ∑∑∑∑∑
∈ = =

λ−

∈ = =

λ− θ+λ+=−
2

q q
q

1

i i
i
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t)Re(1j
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ijks

eq
ss ett)Im(sinvetwx(t)x  

 (4.83) 

Taking absolute value in both sides and rearranging terms again 

{ } ( ){ } eq
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Hq
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1j

n

jk

t)Re(1j
qjksqqjks

Hi

n
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n

jk

t)Re(1j
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2

q q
q

1

i i
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∈ = =

λ−

∈ = =

λ−  

By the property of absolute value: baba +≤−  

{ } ( ){ } eq
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Hq
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Hi
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q q
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i i
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∈ = =
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Applying the inequality property ( ∑∑ −≤− ii aa ) to the second summation 



 108 

{ } ( ) eq
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λ−  

   (4.84) 

By applying the property: R∈∀≤ t ,1)tsin(  to the second summation 

( ) ∑ ∑∑∑ ∑∑
∈ = =
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∈ = =

λ− ≤θ+λ
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q q
q
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q q
q

Hq
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jk
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t)Re(1j
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Because 0t ,0etv t)Re(1j
qjks

q ≥∀≥λ−  then the absolute vale can be removed from the second 

summation 
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Multiplying by (-1) both terms 

{ } ( )∑ ∑∑∑ ∑∑
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q q
q
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t)Re(1j
qjks ett)Im(sinvetv   (4.85) 

From inequalities (4.84) and (4.85) it follows 

{ } { } eq
ss

Hq
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t)Re(1j
qjks
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jk
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λ−   (4.86) 

Making eq
ss x)t(x)t(h −=  and { } { }∑ ∑∑∑∑∑

∈ = =

λ−

∈ = =

λ− −=
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q q
q
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n

jk

t)Re(1j
qjks

Hi

n

1j

n

jk
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ijks etvetw)t(g  

satisfies the hypothesis of Lemma A.3, i.e. g(t) and h(t) are continuous functions on [0,∞), and 

)t(h)t(g0 ≤≤ . 

Integrating g(t) from zero to infinity 
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By the property of absolute value: ∫∫ ≥ dt )t(wdt )t(w  
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By the property of integrals: ∫∫∫ −=− dt bdt adt )ba(  
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Applying the property: ∫∫ ≥ dt )t(wdt )t(w  to the first summation and by the property of 

integrals: ( ) ( )∑ ∫∫ ∑ = ii aa  

 dt etv  dt etwdt )t(g
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Taking the constant terms out of the integrals 

 dt etv  dt etwdt )t(g
2

q q
q

1
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i
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qjks

Hi
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n
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∑ ∑∑ ∫∑∑∑ ∫∫
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∞
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∞
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⎭
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⎩
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⎧
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⎩
⎨
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≥   (4.87) 

By Lemma A.5 and the assumption that there is at least one eigenvalue of A with a real part 

greater than or equal to zero then there is at least one integral in (4.87) that diverges. This implies 

that ∞≥∫
∞

dt )t(g
0

. 
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Buy using part ii of Lemma A.3, it is concluded that dt x)t(xdt )t(h
0

eq
ss

0
∫∫
∞∞

−=  diverges because 

∫
∞

0

dt )t(g  diverges. But this is a contradiction to the hypothesis that says that ∫
∞

−
0

eq
ss dt x)t(x  

converges. Therefore, the assumption that the real part of at least one eigenvalue of A has to be 

greater or equal to zero is false. 

Now it will be shown that if the real part of all the eigenvalues of A is negative then 

     ( ) 0x)t(xLim eq
ss t

=−
∞→

  (4.88) 

Taking limits to both sides of equation (4.83) gives 

( ) { }+=− ∑∑∑
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By property of limits the first limit can be expressed as { }∑∑∑
∈ = =

λ−

∞→
1

i i
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Hi
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n

jk

t)Re(1j
ijkst

etwLim  

By using the L’Hospital rule and considering that 1i Hi ,0)Re( ∈∀<λ the first limit in (4.89) is 

calculated as follows 
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Taking the first derivative to the expression inside the limit 
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Taking the second derivative 

 [ ]∑∑∑
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Continuing in this fashion after taking (j-1) derivatives yields 
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 (4.90) 

The calculation of the second limit in (4.89) requires the use of the sandwich theorem. The 

function of the second limit can be bounded as follows by using (4.85):  

{ } ( ){ }≤θ+λ≤− ∑ ∑∑∑ ∑∑
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{ }∑∑∑
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t)Re(1j
qjks etv  

Similar to the results of (4.90) and considering that 2q Hq ,0)Re( ∈∀<λ it is known that 

 { } { } 0etvLimetvLim
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=⎟
⎟
⎠
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⎝
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Then by the sandwich theorem 
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  (4.91) 

Substituting the results of (4.90) and (4.91) into (4.89) gives ( ) 0x)t(xLim eq
ss t

=−
∞→
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From (4.82) and (4.88) it is clear that if ∫
∞

−
0

eq
ss dt x)t(x  converges then ( ) 0x)t(xLim eq

ss t
=−

∞→

 (4.92) 

Finally, Definition 2 will be used to prove that if ∫
∞

−
0

eq
ss dt x)t(x  converges then the state variable 

sx is stable.   (4.93) 

In view of (4.82), if ∫
∞

−
0

eq
ss dt x)t(x  converges then all the eigenvalues of A have a negative real 

part. 

By applying properties of absolute value in (4.83) 
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By applying the property: R∈∀≤ t ,1)tsin(  to the second summation 

∑ ∑∑∑∑∑
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By using calculus it is derived that the maximum value of the function t)Re(1j iet)t(f λ−= is in  
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From (4.94) and (4.95), it follows 
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⎤
⎢
⎣

⎡
λ
−−

≤−
2

q q

1

i i

Hq

n

1j

n

jk

)1j(

1j

q
qjks

Hi

n

1j

n

jk

)1j(
1j

i
ijks

eq
ss e

)Re(
)1j(ve

)Re(
)1j(wx(t)x  



 113 

Making ∑∑∑∑∑∑
∈ = =

−−

−

∈ = =

−−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λ
−−

+⎥
⎦

⎤
⎢
⎣

⎡
λ
−−

=
2

q q

1

i i

Hq

n

1j

n

jk

)1j(

1j

q
qjks

Hi

n

1j

n

jk

)1j(
1j

i
ijkss e

)Re(
)1j(ve

)Re(
)1j(wM   

then s
eq
ss Mx)t(x ≤− . This means that eq

ss x)t(x −  is bounded, implying that sx is stable. 

From (4.92), (4.93) and Definition 3, it is proved that the state variable sx  is asymptotically 

stable around the EP eq
sx  if ∫

∞

−
0

eq
ss dt x)t(x  converges ■ 

4.3. Stability of Nonlinear Systems 

The most difficult task for studying the stability of nonlinear systems is not having a well 

defined structure of the system like in the linear case. This problem can be overcome by the 

linearization of the system at infinite number of operating points. Using this approach it is 

obtained a linearized model, as presented in Definition 10, which makes easier to apply the 

conditions for stability derived for the linear system. 

4.3.1. Linearization of a Nonlinear System 

The linearization of the nonlinear system equations at an operating point can be 

accomplished using the Taylor series expansion, as it is shown in Definition 9. 

Definition 9 (Khalil 1996) Consider the nonlinear system defined by equation 

(t));((t) xfx =& 0(0) xx = ; where [ ] n1,..,s , )t(x(t);(t) s
n ==∈ x x R ; and function f is defined by 

[ ] n1,..,s , )(t)(f(t))( ;: s
nn ==→ xxff RR . The linear approximation (t)zs&  for the sth component 

of vector (t)x&  around the operating point ]x,,x ,x[ n21 θθθθ = Lx  is given by 
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∑
=

θθ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=∂

∂
+=

θ

n

1i
ii

i

s
ss )xz(

x
f)(f(t)z

xx
x&   (4.96) 

A nonlinear system can be approximated by linearizing the model around several 

operating points as shown in the following definition. 

Definition 10 Consider the nonlinear system defined by (t));((t) xfx =& 0(0) xx = ;  where 

nnn : ;(t) RRR →∈ fx .  The linearized model (t)z& of system (t)x&  around m operating points 

{z(tp-1), p=1,..,m; t0<t1<...<tm} is represented by the following equations 

)(t:condition Initial  

)(t:condition Initial
)t()(t:condition Initial             

;tt t,)t(

      ;tt t,)t(
       ;tt t,)t(

(t)

m

1

00

m1-mmm

2122

1011

z

z
xz

bzA

bzA
bzA

z
MM

&

=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤+

<≤+
<≤+

=   (4.97) 

where 1-m1,..,p ),t(Lim)(t p
t t

p
p

==
−→

zz   (4.98) 

This definition implies that trajectory x(t) is been approximated by trajectories z(t) of p 

linear systems. Note that z(t) is a continuous piecewise function. This is because z(t) is 

differentiable and therefore continuous in m1,..,p ),t,t[ p1p =− , and condition (4.98). 

Example 4 Consider the system defined by )11x(1
2

1
1

2e
30
x)1.1x1.0(

15
xx −−+−=& ; 

12 x01.0x =& ; )2,12(=0x . Obtain the linearized model (t)z& for the operating points: 

)1t( ),0t( == zz . 

Solution: To use equation (4.96) it is necessary to determine the initial values and first 

derivatives for function f. The following calculations are required to linearize the model around 

an operating point.  
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For the component )11x(1
2

1
1211

2e
30
x)1.1x1.0(

15
xx)x,x(f −−+−== & , it results: 

30
e

15
)1.1x1.0(

x
f )11x(

2

1

1
2 −

−
+−

=
∂
∂  

)11x(11

2

1 2e
30
x

15
x1.0

x
f −−

−
=

∂
∂  

Using equation (4.96) to calculate component (t)z1&  yields 

)2z(
)2,12(x

f)12z(
)2,12(x

f(12,2)f(t)z 2
2

1
1

1

1
11 −

=∂
∂

+−
=∂

∂
+=

xx
&  

Replacing values and simplifying: 

)2z)(08.0()12z(06.072.0(t)z 211 −−+−+=&  

16.0z08.0z06.0(t)z 211 +−=&   (4.99) 

For the component 12212 x01.0x)x,x(f == & , it results: 

01.0
x
f

1

2 =
∂
∂  

0
x
f

2

2 =
∂
∂  

Using equation (4.96) to calculate component (t)z2&  

)2z(
)2,12(x

f)12z(
)2,12(x

f(12,2)f(t)z 2
2

2
1

1

2
22 −

=∂
∂

+−
=∂

∂
+=

xx
&  

Replacing values and simplifying: 

)2z(0)12z(01.012.0(t)z 212 −+−+=&  
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12 z01.0(t)z =&   (4.100) 

From (4.99) and (4.100), (t)z&  can be expressed as the linear system 

1t0 ,)t((t) 11 <≤+= bzAz&   (4.101) 

where 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

001.0
08.006.0

1A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
16.0

1b  

In order to find the second operating point, it is required to solve (4.101) and obtain )1t( =z . The 

solution trajectory is given by equation (4.44). The terms of this equation are the following: 

The eigenvalues of A1 are: 02.0 ,04.0 21 =λ=λ , which are different and implies a Jordan 

canonical form decomposition of two Jordan blocks. 

The matrix of generalized eigenvectors is: [ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

4467.02427.0
8947.09701.0

 2111 uuT  

The constants are: 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
α
α

4986.4
5188.16

21

11  

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
β
β

1798.0
3308.0

21

11  

For m=2, n1=n2=1 equation (4.44) is simplified as  

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α+=
m

1i
1i

i

1i
1i

eq(t) uzz  (4.102) 

where 1i
i

1ieq uz
λ
β

−=  
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Substituting the terms above in (4.102) yields: 

⎥
⎦

⎤
⎢
⎣

⎡

−
−

= 0.02tt04.0

0.02tt04.0

e 0186.6e .01866
e 0546.12e 0546.24

(t)z  

For t=1, 2.12) (12.74,1)(t ==z . The following calculations are required to linearize the model 

around the operating point 2.12) (12.74, . 

By using equation (4.96) component (t)z1&  is calculated as 

)12.2z(
)12.74,2.12(x

f)74.12z(
)12.74,2.12(x

f2)(12.74,2.1f(t)z 2
2

1
1

1

1
11 −

=∂
∂

+−
=∂

∂
+=

xx
&  

Replacing values and simplifying: 

)12.2z)(085.0()74.12z(059.075.0(t)z 211 −−+−+=&  

18.0z085.0z059.0(t)z 211 +−=&   (4.103) 

By using equation (4.96) component (t)z2&  is calculated as 

)12.2z(
)12.2,12(x

f)74.12z(
)12.2,74.12(x

f2)(12.74,2.1f(t)z 2
2

2
1

1

2
22 −

=∂
∂

+−
=∂

∂
+=

xx
&  

Replacing values and simplifying: 

)12.2z(0)74.12z(01.01274.0(t)z 212 −+−+=&  

12 z01.0(t)z =&   (4.104) 

From (4.103) and (4.104) (t)z&  can be expressed as the linear system 

t1 ,)t((t) 22 ≤+= bzAz&    (4.105) 

where 
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⎥
⎦

⎤
⎢
⎣

⎡ −
=

001.0
085.0059.0

2A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
18.0

1b  

After combining (4.101) and (4.105) into one equation it is obtained the linearized model 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ −

<≤⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ −

=
t1 ,

0
18.0

)t(
001.0
085.0059.0

1t0 ,
0
16.0

)t(
001.0

08.006.0

(t)
z

z
z&  ■ 

4.3.2. Conditions for Nonlinear Stability 

In this section, it is extended the stabilization concept of ADE applied for the linear 

system to cover the nonlinear stability as well.  Theorem 5 shows that the condition for the ADE 

convergence of the nonlinear system (approximated by a linearized model) can be derived from 

the convergence of an infinite series of linear systems. This condition states that all eigenvalues 

of the mth linear system have to be negative when m goes to infinity, which assures asymptotic 

stability of the linearized model and therefore asymptotic stability of the nonlinear system. 

Theorem 5 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where ;(t) nR∈x  

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR . The state variable sx  is asymptotically stable (around the 

EP eq
sx ), if ∫

∞

−
0

eq
ss dt x)t(x  converges. 

Proof: First, it will be proved by contradiction that if ∫
∞

−
0

eq
ss dt x)t(x  converges the state variable 

sx  is stable around the EP eq
sx .  (4.106) 

Thus, it is assumed to contrary that state variable sx  is not stable, which by Definition 2 means 
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that eq
ss x)t(x −  is not bounded, i.e. 

s,Mx)t(xsuch that  t ,M s
eq
ssMs ∀>−∃∀  

Making eq
sss x)t(x)t(y −= , thus 

sMsMs M)t(ysuch that  t ,M >∃∀   (4.107) 

Expressing ∫
∞

0
s dt )t(y  as Riemann sums (Yuen and Yuan 2000)  

∑∫
∞

=

∞

Δ=
1i

iis
0

s t)(cy dt )t(y   (4.108) 

where ]t,t[c and ,ttt 1iii1iii −− ∈−=Δ  

By hypothesis it is known that the integral ∫
∞

−
0

eq
ss dt x)t(x  converges (i.e. it is bounded), and thus 

there is a number Ws such that s ,0t,Wdt x)t(x s
0

eq
ss ∀≥∀≤−∫

∞

 

Expressing the above statement in terms of )t(ys : there is a number Ws such that 

s ,0t,Wdt )t(y s
0

s ∀≥∀≤∫
∞

  (4.109) 

From (4.108) and (4.109) gives 

i,
t

W)(cyi,Wt)(cyWt)(cy 
i

s
issiis

1i
siis ∀

Δ
≤⇒∀≤Δ⇒≤Δ∑

∞

=

  (4.110) 

Because “t” is a continuous variable from 0 to infinity, then there is an index i=b such that 

Mb tc = . Moreover, condition (4.110) holds for every ic  and particularly for Mb tc = , therefore  
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b

s
Ms t

W)(ty 
Δ

≤   (4.111) 

Condition (4.107) holds for every sM  and particularly for 
b

s
s t

WM 
Δ

= , thus 

b

s
Ms t

W)(ty 
Δ

>   

But this is a contradiction to the statement in (4.111). Therefore, the assumption that the 

equilibrium point eq
sx is not stable is false. 

Second, it will be proved that if ∫
∞

−
0

eq
ss dt x)t(x  converges then ( ) 0x)t(xLim eq

ss t
=−

∞→
 

 (4.112) 

In order to do that, the nonlinear system has to be linearized around m operating points. It is 

important to note that the equilibrium points of these linear systems do not have to coincide with 

the equilibrium point of the nonlinear system. However, it will be shown that when the system is 

asymptotically stable the equilibrium points of the linear systems tend to converge to the 

equilibrium point of the nonlinear system when t goes to infinity. 

Making the transformation eq
sss x)t(x)t(y −= . The equilibrium point for the new nonlinear 

system will be the origin, i.e. 0xeq
s = , and therefore 

s, dt )t(ydt x)t(x
0

s
0

eq
ss ∀=− ∫∫

∞∞

 implying that 

if ∫
∞

−
0

eq
ss dt x)t(x converges then ∫

∞

0
s dt )t(y converges  (4.113) 

Applying Definition 10, it is possible to approximate (t)y&  by (t)z&  after linearizing the system 
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(t)y&  around m operating points {z(tp-1), p=1,..,m; t0<t1<...<tm} as follows: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤+

<≤+
<≤+

=

m1-mmm

2122

1011

tt t,)t(

tt t,)t(
tt t,)t(

(t)

bzA

bzA
bzA

z
M

&  

After considering m1,..,p   ,0hconstantttt 1ppp =>==−=Δ − , the interval of validity for each 

linear system is )ht,t[ 1p1p +−− . 

Now the integral ∫
∞

0
s dt )t(y  can be calculated as the sum of the integrals of m linear systems 

when m goes to infinity as follows 

∑ ∫∫
=

+

∞→

∞ −

−

=
m

1i

ht

t
s m

0
s dt )t(zLimdt )t(y

1i

1i

  (4.114) 

Making dt )t(z
ht

t
si

1i

1i

∫
+−

−

=Ψ  and ∑
=

Ψ=
m

1i
imS    (4.115)  

Replacing Sm in (4.114) results 

∑∫
∞

=
∞→

∞

Ψ==
1i

im m
0

s S Limdt )t(y   (4.116) 

From (4.113), it follows that ∫
∞

0
s dt )t(y converges and therefore from (4.116) it is obtained that 

∑
∞

=

Ψ
1i

i converges also. Therefore, 0 Lim m m
=Ψ

∞→
 (from Lemma A.4)  

Using (4.115) yields: 
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0dt )t(zLim 
ht

t
s m

1m

1m

=∫
+

∞→

−

−

  (4.117) 

From (4.86) it is known that for the system m1-mmm tt t,)t( <≤+= bzAz& , the following 

inequality holds: 

{ } { } eq
sms

Hq

n

1j

n

jk

t)Re(1j
qjksm

Hi

n

1j

n

jk

t)Re(1j
ijksm z)t(zetvetw

2

q q
qm

1

i i
im −≤− ∑ ∑∑∑∑∑

∈ = =

λ−

∈ = =

λ−  (4.118) 

Note that all the parameters on the left-hand side of the inequality have also a subindex m, 

denoting that they are dependant of the mth linear model. In other words, each linear model p 

(p=1,..,m) has its own parameters (constants, eigenvalues and eigenvectors). 

By the property of absolute value baba +≤−  and by (4.118) 

{ } { } eq
sms

Hq

n

1j

n

jk

t)Re(1j
qjksm

Hi

n

1j

n

jk

t)Re(1j
ijksm z)t(zetvetw

2

q q
qm

1

i i
im +≤− ∑ ∑∑∑∑∑

∈ = =

λ−

∈ = =

λ−  

Rearranging terms 

{ } { } )t(zzetvetw s
eq
sm

Hq

n

1j

n

jk

t)Re(1j
qjksm

Hi

n

1j

n

jk

t)Re(1j
ijksm

2

q q
qm

1

i i
im ≤−− ∑ ∑∑∑∑∑

∈ = =

λ−

∈ = =

λ−  

Integrating both terms of the inequality from tm-1 to tm-1+h 

{ } { } dt )t(zdt zdt etvetw
ht

t
s

ht

t

eq
sm

ht

t Hq

n

1j

n

jk

t)Re(1j
qjksm

Hi

n

1j

n

jk

t)Re(1j
ijksm

1m

1m

1m

1m

1m

1m 2

q q
qm

1

i i
im ∫∫∫ ∑ ∑∑∑∑∑

+++

∈ = =

λ−

∈ = =

λ−
−

−

−

−

−

−

≤−−  

Applying different properties of the absolute value and the integral results 

dt z dtetvdtetw
ht

t

eq
sm

Hq

n

1j

n

jk

ht

t

t)Re(1j
qjksm

Hi

n

1j

n

jk

ht

t

t)Re(1j
ijksm

1m

1m2

q q 1m

1m

qm

1

i i 1m

1m

im ∫∑ ∑∑ ∫∑∑∑ ∫
+

∈ = =

+
λ−

∈ = =

+
λ−

−

−

−

−

−

−

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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dt )t(z
ht

t
s

1m

1m

∫
+−

−

≤   (4.119) 

Integrating by parts the integral dtet
ht

t

t)Re(1j
1m

1m

im∫
+

λ−
−

−

 is calculated as 

∑∫
−

=
+−−

−
λ

−
−−

λ
+

λ−

⎭
⎬
⎫

⎩
⎨
⎧

λ
−+−

= −

−

−

1j

0c
1c)1j(

im

c
1m

h)Re(c
1m

c1j
t)Re(

ht

t

t)Re(1j

)Re(!c
])t(e)ht[()1(!nedtet

im
1mim

1m

1m

im  

Let define 

∑
−

=
+−−

−
λ

−
−−

λ
−

⎭
⎬
⎫

⎩
⎨
⎧

λ
−+−

= −

1j

0c
1c)1j(

im

c
1m

h)Re(c
1m

c1j
t)Re(

1m )Re(!c
])t(e)ht[()1(!ne)t(F

im
1mim  (4.120) 

Similarly 

∑∫
−

=
+−−

−
λ

−
−−

λ
+

λ−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ
−+−

= −

−

−

1j

0c
1c)1j(

qm

c
1m

h)Re(c
1m

c1j
t)Re(

ht

t

t)Re(1j

)Re(!c
])t(e)ht[()1(!nedtet

qm
1mqm

1m

1m

qm  

∑
−

=
+−−

−
λ

−
−−

λ
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λ
−+−

= −

1j

0c
1c)1j(

qm

c
1m

h)Re(c
1m

c1j
t)Re(

1m )Re(!c
])t(e)ht[()1(!ne)t(G

qm
1mqm  (4.121) 

Evaluating the integral dt z
ht

t

eq
sm

1m

1m

∫
+−

−

 

h zdt z eq
sm

ht

t

eq
sm

1m

1m

=∫
+−

−

   (4.122) 

Substituting (4.120-4.122) into (4.119) 

{ } { } h z )t(Gv)t(Fw eq
sm

Hq

n

1j

n

jk
1mqjksm

Hi

n

1j

n

jk
1mijksm

2

q q

1

i i

−− ∑ ∑∑∑∑∑
∈ = =

−
∈ = =

−  

dt )t(z
ht

t
s

1m

1m

∫
+−

−

≤   (4.123) 
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Taking the limit when m goes to infinity, and knowing that 

)(t)(t  )m( 1-m ∞→⇒∞→⇒∞→  results (4.124) 

{ } { } dt h z Lim)t(Gv)t(Fw Lim eq
sm mHq

n

1j

n

jk
1mqjksm

Hi

n

1j

n

jk
1mijksm t

2

q q

1

i i

1m ∞→
∈ = =

−
∈ = =

−∞→
−− ∑ ∑∑∑∑∑

−

 

dt )t(zLim
ht

t
s m

1m

1m

∫
+

∞→

−

−

≤  (4.125) 

However, by (4.117) it is known that 0dt )t(zLim
ht

t
s m

1m

1m

=∫
+

∞→

−

−

, and therefore the only way to satisfy 

this condition is if the terms on the left-hand side of inequality (4.125) are zero. 

The first term, { } { }∑∑∑∑∑∑
∈ = =

−
∈ = =

−∞→
−

−
2

q q

1

i i

1m Hq

n

1j

n

jk
1mqjksm

Hi

n

1j

n

jk
1mijksm t

)t(Gv)t(Fw Lim ,  can take two values 

when tm-1 goes to infinity: zero or infinity. The requirement for this term to be zero is that the 

real part of all the eigenvalues of mA  has to be negative. 

The second term, h z Lim eq
sm m ∞→

, will be zero only if eq
smz is zero (because h>0). Therefore, 

0zeq
sm = when m goes to infinity, which coincides with the equilibrium point of the nonlinear 

system )t(y  that is also zero. 

Following similar steps to (4.88-4.91) it can be shown that ( ) 0z)t(zLim eq
sms t

=−
∞→

. 

Considering that 0zeq
sm =  when ∞→m  and (4.124) the previous expression can be written as 

( ) 0)t(zLim s t
=

∞→
  (4.126) 

Because )t(z  is as an approximation of )t(y  and from (4.126) it is concluded that 
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( ) 0)t(yLim s t
=

∞→
 (4.127) 

But it is known that eq
sss x)t(x)t(y −= . Thus, taking limits to both sides when t goes to infinity 

and from (4.127) gives 

( ) ( ) 0x)t(xLim)t(yLim eq
ss ts t

=−=
∞→∞→

 (4.128) 

From (4.112-4.128) it follows that 

if ∫
∞

−
0

eq
ss dt x)t(x  converges then ( ) 0x)t(xLim eq

ss t
=−

∞→
 (4.129) 

Using (4.106), (4.129) and Definition 3 it is proved that the state variable sx  is asymptotically 

stable around the EP eq
sx  if ∫

∞

−
0

eq
ss dt x)t(x  converges ■ 

In complex models where the EP is difficult to estimate, it can be easily added as one 

more variable to calculate in the optimization problem. The following theorem guarantees that if 

the ADE of a state variable converge to a variable sa then the value of sa  is the EP of the state 

variable. 

Theorem 6 Consider the system defined by 0(0);))t(((t) xx  xfx ==& ; where ;(t) nR∈x  

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR . If ∫

∞

−
0

ss dt a)t(x  converges then eq
ss xa = . 

Proof: It will be proved by contradiction that if ∫
∞

−
0

ss dt a)t(x  converges then eq
ss xa = . 

Thus, it is assumed to contrary that eq
ss xa ≠ .  (4.130) 

Making sss a)t(x)t(y −= , thus (4.131) 
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s, dt )t(ydt a)t(x
0

s
0

ss ∀=− ∫∫
∞∞

 implying that 

if ∫
∞

−
0

ss dt a)t(x converges then ∫
∞

0
s dt )t(y converges   

From (4.130) and (4.131) it is derived that 0axy s
eq
s

eq
s ≠−=   (4.132) 

In view of Theorem 5, if ∫
∞

0
s dt )t(y converges then ( ) 0)t(yLim s t

=
∞→

, and this statement is satisfied 

independently of the initial conditions of the system ))t(((t) yfy =&   (4.133) 

By Definition 1, if the system ))t(((t) yfy =&  starts at the equilibrium point eq
sy  then 

t,y)t(y eq
ss ∀= , and thus  

( ) ( ) eq
s

eq
s ts t

yyLim)t(yLim ==
∞→∞→

  (4.134) 

From (4.132) and (4.134) yields 

( ) 0)t(yLim s t
≠

∞→
  

But this is a contradiction to the statement in (4.133). Therefore, the assumption that eq
ss xa ≠  is 

false ■ 

There are situations where achieving the convergence of the ADE is close but it is not 

totally obtained. This can happen when near the end of the time horizon the DE are small but in 

an increasing rate. To help accelerate the convergence of the objective function, which initially is 

expressed only in terms of the ADE (see section 3.1.2), these small DE have to be amplified. 

This is done by raising them to the exponential power. By summing these values (associated to a 

state variable) it is obtained a new term called accumulated exponential deviations from 
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equilibrium (AEDE). The mathematical expression of this term is provided in Definition 11. 

Definition 11 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where ;(t) nR∈x  

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR . For the state variable sx the accumulated exponential 

deviations from its EP eq
sx  is defined as  ∫

∞
−

0

x)t(x dt e
eq
ss . 

Similar to the ADE case, the following theorem states that the AEDE convergence of a 

state variable also guarantees the asymptotic stability of that variable. 

Theorem 7 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where ;(t) nR∈x  

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR . The state variable sx  is asymptotically stable (around the 

EP eq
sx ), if ∫

∞
−

0

x)t(x dt e
eq
ss  converges. 

Proof: First, it will be proved that 
eq
ss x)t(xe −  is greater than or equal to the term eq

ss x)t(x − , 

0t ≥∀ . 

By the property of the exponential function: 0t)(y ),t(ye )t(y ≥∀≥  

Making 0t 0,x)t(x)t(y eq
ss ≥∀≥−=  it follows 

0t ,x)t(xe eq
ss

x)t(x eq
ss ≥∀−≥

−   (4.135) 

Making 
eq
ss x)t(xe)t(h −

=  and eq
ss x)t(x)t(g −=  satisfies the hypothesis of Lemma A.3, i.e. g(t) 

and h(t) are continuous functions on [0,∞), and )t(h)t(g0 ≤≤ . 

From the hypothesis, it is known that dt edt )t(h
0

x)t(x

0

eq
ss∫∫

∞
−

∞

=  converges  (4.136) 
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Thus, by using part i of Lemma A.3. and (4.136) then 

dt x)t(xdt )t(g
0

eq
ss

0
∫∫
∞∞

−=  converges  (4.137) 

From Theorem 5 and (4.137) then the state variable sx  is asymptotically stable  (4.138) 

Finally, from (4.136) and (4.138), it is proved that the state variable sx  is asymptotically stable 

around the EP eq
sx  if ∫

∞
−

0

x)t(x dt e
eq
ss  converges ■ 
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CHAPTER FIVE: CASE STUDIES ANALYSIS AND RESULTS 

This chapter applies the SADE methodology to several case studies. For each case study 

it is provided a SD model that represents the structure of the supply chain, a description of the 

problem, and a description of the business if the case study was created based on a real 

manufacturing company (LSMC and PMOC models).  

A general optimization problem, following the guidelines of section 3.1.2., is formulated 

to test different scenarios and develop alternative stabilization policies. The analysis and results 

of these experiments are presented to demonstrate the quality and robustness of the policies 

obtained. 

5.1. Case Study A: The Inventory-Workforce Model 

5.1.1. Description 

The Inventory-Workforce (I-W) model is the case of a manufacturing supply chain that 

includes labor as an explicit factor of production. The purpose of this case study is to illustrate 

how production scheduling and hiring policies can interact to generate instability in the SC. 

Moreover, it is intended to illustrate how instability can feed back undermining trust among 

partners in a SC and leading to behavior that worsens the instability. The goal of management is 

to find a policy that maintains the finished goods inventory and labor at equilibrium. 

5.1.2. SD Model 

Saleh et al. (2007) developed a linear SD model for this supply chain by modifying 
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Sterman’s original model (2000). This linear model is divided in two sectors: (1) the inventory 

management sector and (2) the labor sector. These sectors are described and depicted below. 

The inventory management sector (Figure 5.1) is represented by two state variables: 

Inventory and Work in Process Inventory. The variable Work in Process Inventory represents all 

the stages of the production process where intermediate inventory is created. The variable 

Inventory represents the finished goods inventory. This model assumes that orders are filled as 

they arrive and the ones that cannot be filled immediately are lost as customers seek other 

sources of supply. 

The labor sector (Figure 5.2) is represented by two state variables: Vacancies and Labor. 

The stock of vacancies is the supply line or order of workers that have been placed but not yet 

filled. This states that workers cannot be instantly hired. Hiring takes time: positions must be 

authorized and vacancies must be created. The labor force is a stock of people, which is 

increased by the Hiring Rate and decreased by the Quit Rate. This last rate includes voluntary 

quits and retirements, excluding the possibility of layoffs. 
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Figure 5.1. I-W model: Structure of inventory management sector 
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Figure 5.2. I-W model: Structure of labor sector 

5.1.3. Current Policy and SC Instability 

The set of parameters in Table 5.1 defines the current policy for this supply chain.  

Table 5.1. I-W model: Parameter values for the current policy  

Parameter Value Unit 
Manufacturing Cycle Time 8 Weeks 
Inventory Adjustment Time 12 Weeks 
Average Duration of Employment 100 Weeks 
Average Time to Fill Vacancies 8 Weeks 
Labor Adjustment Time 19 Weeks 
Vacancy Adjustment Time 4 Weeks 
WIP Adjustment Time 6 Weeks 
Minimum Order Processing Time 2 Weeks 
Safety Stock Coverage 2 Widgets 

 
At time 0, the system starts at the equilibrium points: 40,000, 1,000, 80 and 8,0000 for 

the variables Inventory, Labor, Vacancies and WIP Inventory respectively. Customer orders are 

arriving at the rate of 10,000 widgets/week. After the system remains in equilibrium for the first 

five weeks, customer orders experienced a linear increment for the next twenty five weeks until 
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reaching 20 percent of their original value, where they remain constant. As a result, Figure 5.3 

shows sharp increases in the variables of interest: Inventory and Labor, follow by several 

oscillatory fluctuations.  
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Figure 5.3. I-W model: Behavior of variables of interest for the current policy 

In the next section an optimization problem is formulated to determine a new policy that 

can damp these fluctuations. 

5.1.4. Optimization Problem 

This optimization problem considers the simultaneous stabilization of the Inventory and 

Labor state variables according to the equations described in section 3.1.2. Equal weights 

(ws=0.5, s=1,2) were assigned to these two variables. The time horizon (T) considered was 200 

weeks. 

Let x1= Inventory, x2=Labor 

Let ai=the new equilibrium point associated to the ith state variable (i=1,2) 
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∑ ∫
= ⎭

⎬
⎫

⎩
⎨
⎧

−=
2

1s

200

0
ss dt a)t(x5.0 )(J Minimize p

p
 

Subject to 

) ),t(((t) pxfx =&   (This notation represents the SD model equations) 
[ ]8080000100040000T

0 =x  
1 ≤ Manufacturing Cycle Time ≤ 8 
1 ≤ Inventory Adjustment Time ≤ 50 
50 ≤ Average Duration of Employment ≤ 150 
1 ≤ Average Time to Fill Vacancies ≤ 50 
1 ≤ Labor Adjustment Time ≤ 50 
1 ≤ Vacancy Adjustment Time ≤ 50 
1 ≤ WIP Adjustment Time ≤ 50 
1 ≤ Minimum Order Processing Time ≤ 50 
1 ≤ Safety Stock Coverage ≤ 50 
10,000 ≤ a1 ≤ 150,000 
10 ≤ a2 ≤ 1,000 

5.1.5. Stabilization Policy 

The stabilization policy is obtained after solving the optimization problem presented in 

the previous section. The optimization algorithm was run at the fifth week using the following 

settings: swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5, 

iteration lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2. These settings were 

obtained after performing some initial experiments using the empirical rules defined in Table 

3.1. They will be used as the initial settings in the other case studies. The time to obtain the 

optimal policy (after 150 PSO iterations and 1,393 PHC iterations) was 206 seconds. 

The solution yielded the parameter values shown in Table 5.2. This table also includes 

parameters a1, a2 which are the new equilibrium points for the state variables of interest. 
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Table 5.2. I-W model: Parameter values for the stabilization policy  

Parameter Value Unit 
Manufacturing Cycle Time 5.02 Weeks 
Inventory Adjustment Time 2.53 Weeks 
Average Duration of Employment 50.14 Weeks 
Average Time to Fill Vacancies 1 Weeks 
Labor Adjustment Time 1 Weeks 
Vacancy Adjustment Time 1 Weeks 
WIP Adjustment Time 10.96 Weeks 
Minimum Order Processing Time 1 Weeks 
Safety Stock Coverage 3.54 Widgets 
a1 (EP for Inventory) 54,482.22 Widgets 
a2 (EP for Labor) 1,200.2 People 

 
Figure 5.4 shows the behavior of the state variables when this revised policy is applied at 

the fifth week. While there are, indeed, changes to these variables, their fluctuations have all but 

disappeared approximately in 30 weeks (response time) since the system was disturbed.  This 

figure also shows that the convergence of ADE has caused the asymptotic stability of the two 

state variables of interest. 
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Figure 5.4. I-W model: Behavior of variables of interest for the stabilization policy 
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An interpretation of the improved policy points out that to keep up with the increased 

customer orders is necessary to increase the production rate reducing the manufacturing cycle 

time and the time to adjust inventory. Because production and labor are directly proportional, 

decreasing the time to adjust labor and vacancies will help production to track the desired 

production rates more closely. 

5.1.6. Testing for Policy Robustness 

The stabilization policy is tested by generating a sudden change in week 40 in the 

customer orders and showing the system’s response to this change. The customer order rate is 

increased or decreased to new levels calculated as a percentage of its initial value (Figure 5.5). 

Figures 5.6 and 5.7 depict the robust behavior of the Inventory and Labor variables to the 

changes. These variables show a sharp increase or decrease in their levels and few oscillations 

before reaching new equilibrium points (see Table 5.3). Stability returns approximately 60 weeks 

after the system was perturbed (response time). This represents 37.5% of the remaining time 

horizon since the system was perturbed. 

For each variable of interest, the new EP levels have moved from their previous value 

(Table 5.2) almost in the same percentage that the corresponding change in customer orders. For 

instance, for a 10% increase in customer orders the new EP of 59,927 reached by the Inventory 

variable represents a 9.99% increment of its prior value of 54,482.22.  

Table 5.3. I-W model: New equilibrium points for the variables of interest 

Percentage change in 
customer orders 

New EP for 
Inventory (Widgets) 

New EP for 
Labor (People) 

-10% 49,031 1,080 
-5% 51,756 1,139 
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Percentage change in 
customer orders 

New EP for 
Inventory (Widgets) 

New EP for 
Labor (People) 

+5% 57,203 1,260 
+10% 59,927 1,320 

 
From Table 5.4 it is possible to conclude that the adaptation to the changes in customer 

orders shows diverse types of amplifications for the two variables of interest. For the Inventory 

variable the amplification effect (between 3% and 7%) is in a lower magnitude that the one 

affected to the Labor variable (between 18% and 43%).  This indicates that Labor is more 

sensible to a sudden change in customer orders before reaching equilibrium again, with 

amplifications 3 or 4 times the effect of the change. 

Table 5.4. I-W model: Amplification over/under the new equilibrium points 

Percentage change in 
customer orders 

Amplification over/under 
the new Inventory EP 

(Percentage) 

Amplification over/under 
the new Labor EP 

(Percentage) 
-10% -6.95% -42.52% 
-5% -3.30% -20.17% 
+5% +2.97% +18.15% 
+10% +5.68% +34.70% 
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Figure 5.5. I-W model: Changes in the customer order rate to test policy robustness 
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Figure 5.6. I-W model: Behavior of Inventory due to changes in customer orders 
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Figure 5.7. I-W model: Behavior of Labor due to changes in customer orders 
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5.2. Case Study B: The Mass Model 

5.2.1. Description 

Mass (Mass 1975) developed a nonlinear SD model to explore the economic processes 

underlying business-cycle behavior. Business cycles are recurring fluctuations in the macro-

economy that affect total production, prices, employment, inventories and capital investment. A 

better understanding of the causes of cyclic behavior is critical to the formulation of effective 

stabilization policies by decision makers. The case study is a simplified version of the model 

developed by Mass and was designed by Kampmann and Oliva (2006). It allows the analysis of 

the role of labor-adjustment (hiring and termination) policies and capital-investment policies in 

generating business cycles in a supply chain. The objective of this case study is to use the SADE 

methodology to propose a stabilization policy for the three main state variables of the model: 

Capital, Inventory and Labor. 

5.2.2. SD Model 

The model interrelates inventories, backlogs, employment and investment decisions to 

provide a deeper understanding of the factors underlying intermediate-run (fifteen- to twenty-

year) economic cycles. It contains (1) a production sector plus two factors of production: (2) a 

labor sector and (3) a capital sector. These sectors are described and depicted below. 

Business cycles are characterized by amplification of demand in successive stages of 

production. To represent these amplification effects on a SC, a model would need to represent 

these sectors: consumer, retail, wholesale and production. In order to study the response to 

incoming orders emanating from the consumer and retail sectors, these two sectors have been 
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aggregated into one sector and the wholesale and production sectors into another sector. This 

simplified system has been called the production management sector (Figure 5.8). Within this 

sector a Desired Production Rate is calculated on the bases of an Average Production Rate and 

Inventory and Backlog conditions. The sector can maintain a given Production Rate using 

different combinations of capital and labor. 

The labor sector (Figure 5.9) introduces the influence of labor availability on production 

rate. Labor is a production resource whose lead time is affected by the tightness of labor markets 

and by the length of any training delays. Variations in labor and over- or undertime change the 

utilization of company’s capital equipment. The state variables in this model are Labor, 

Vacancies and Average New Vacancy Creation. This last variable is defined as an exponentially 

averaged value of New Vacancy Creation. The dependence of new hiring decisions on Average 

New Vacancy Creation reflects the position that arises from reluctance to restrain recruitment 

activities during temporary business slowdowns and from other factors. 

 The capital sector (Figure 5.10) allows incorporating the decisions played by capacity 

expansion policies to determine how much to invest in production capacity. These decisions are 

critical to match demand in long lead time resources such as capital equipment, balancing the 

costs of shortfall against the costs of excess. The state variables in this model are Capital, 

Capital on Order (which corresponds to an unfilled order backlog for capital goods), and 

Average Orders for Capital that represents an exponential average of Orders for Capital. 
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Figure 5.8. Mass model: Structure of production management sector 
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Figure 5.9. Mass model: Structure of labor sector 



 141 

Capital
on Order

Delivery Delay
for Capital

Average
Orders for

Capital

Indicated Capital Orders
from Inventory and
Backlog Correction

Capital

Capital Ratio

Time to Adjust
Capital

Multiplier from Capital
Demand on Orders for

Capital

Average Lifetime
of Capital Normal Lifetime

of Capital
Multiplier of Capital

Demand on Lifetime of
Capital

Desired Capital
Intensity

Desired Capital
on Order

Desired
Capital

<Desired
Production Rate>

Multiplier from
Growth in Desired

Capital

<Expected Growth
Rate in Production>Time to

Average
Orders for

Capital Relative Desired
Orders for Capital

Normal Capital
Intensity

Initial Capital
Normal

Production Rate

Capital
Depreciation

chAOK

Orders for
Capital

Capital
Arrivals

-

<Delivery Delay
for Capital>

 
Figure 5.10. Mass model: Structure of capital sector 

5.2.3. Current Policy and SC Instability 

The set of parameters in Table 5.5 defines the current policy for this model.  

Table 5.5. Mass model: Parameter values for the current policy 

Parameter Value Unit 
Normal Production Rate  3E06 Units/year 
Initial Capital  7.5E06 Capital Units 
Initial Labor  1500 People 
Time to Average Production Rate 1 Years 
Normal Inventory Coverage 0.5 Years 
Time to Correct Inventory and 
Backlog  

0.8 Years 

Normal Backlog Coverage 0.2 Years 
Delay in Filling Vacancies 0.25 Years 
Time to Average New Vacancy 
Creation  

0.5 Years 

Time to Adjust Labor 0.5 Years 
Normal Duration of Employment 2 Years 
Time to Average Orders for 
Capital 

4 Years 

Delivery Delay for Capital 2 Years 
Time to Adjust Capital 4 Years 
Normal Life of Capital 15 Years 
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For a consumption rate of 1,400,000 units/year the system starts out of equilibrium. The 

behavior of the three variables of interest is depicted in Figure 5.11. Variables Inventory and 

Labor have several oscillatory fluctuations before they start to settle down. Capital shows a 

decreasing rate for a long period and then a small increment before starting to settle down. 
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Figure 5.11. Mass model: Behavior of variables of interest for the current policy 

The new policy to eliminate these fluctuations is obtained from the optimization problem 

formulated in the next section. 

5.2.4. Optimization Problem 

This optimization problem considers the simultaneous stabilization of the following state 

variables: Capital, Inventory and Labor according to the equations described in section 3.1.2. 

Equal weights (ws=0.33, s=1,..,3) were assigned to these variables. The time horizon (T) 

considered was 40 years. 

Let x1=Capital, x2=Inventory, x3=Labor 
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Let ai=the new equilibrium point associated to the ith state variable (i=1,..,3) 

∑ ∫
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⎬
⎫

⎩
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−=
3

1s

40

0
ss dt a)t(x33.0 )(J Minimize p

p
 

Subject to 

) ),t(((t) pxfx =&   (This notation represents the SD model equations) 
[ ]150006E5.106E5.7T

0 =x  
1E06 ≤ Normal Production Rate ≤ 1E07 
1E06 ≤ Initial Capital ≤ 1E07 
1E02 ≤ Initial Labor ≤ 1E04 
0.1 ≤ Time to Average Product Rate ≤ 5 
0.1 ≤ Normal Inventory Coverage ≤ 5 
0.1 ≤ Time to Correct Inventory and Backlog ≤ 5 
0.1 ≤ Normal Backlog Coverage ≤ 5 
0.1 ≤ Delay in Filling Vacancies ≤ 5 
0.1 ≤ Time to Average New Vacancy Creation ≤ 5 
0.1 ≤ Time to Adjust Labor ≤ 5 
0.1 ≤ Normal Duration of Employment ≤ 5 
1 ≤ Time to Average Order for Capital ≤ 10 
1 ≤ Delivery Delay Capital ≤ 10 
1 ≤ Time to Adjust Capital ≤ 10 
1 ≤ Normal Lifetime of Capital ≤ 20 
1E06 ≤ a1 ≤ 1E07 
5E05 ≤ a2 ≤ 5E06 
1E02 ≤ a3 ≤ 1E04 

5.2.5. Stabilization Policy 

The stabilization policy is obtained after solving the optimization problem presented in 

the previous section. The optimization algorithm was run at time 0 using the following settings: 

swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5, iteration 

lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2.  It can be seen from Figure 5.12 that 

the ADE does not converge, i.e., it is not showed as a horizontal line. Although the slope of the 
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ADE curve is smooth, due to fact of no convergence there is not guarantee that the stabilization 

policy obtained will be robust.  
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Figure 5.12. Mass model: ADE curve 

To obtain a new solution that satisfies the robustness condition, the optimization 

algorithm will be run again using the following new settings: initial inertia weight = 0.1, 

cognitive coefficient = 1, social coefficient = 1, neighborhood size = 5 particles. The other 

settings remain the same. Moreover, to speed up the convergence it will be used the AEDE (see 

Theorem 7 in chapter 4) in the objective function for small DE. This can be done by using a 

tolerance factor sL (s=1,..,3). When DE are above this factor, the objective function is calculated 

normally using the ADE; otherwise the value of the AEDE is used in the objective function. The 

optimization problem will change as follows: 

∑
=

=
3

1s
s )(J 33.0 )(J Minimize pp

p
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where L1=10, L2=5, L3=1 are set for the variables Capital, Inventory and Labor 

respectively. 

The time to obtain the optimal policy (after 150 PSO iterations and 3,171 PHC iterations) 

was 306 seconds. 

The solution yielded the parameter values shown in Table 5.6.  This table also includes 

parameters a1, a2, a3 which are the new equilibrium points for the state variables of interest. 

Table 5.6. Mass model: Parameter values for the stabilization policy 

Parameter Value Unit 
Normal Production Rate  1,160,299 Units/year 
Initial Capital  5,102,877 Capital Units 
Initial Labor  7,630.05 People 
Time to Average Production Rate 0.86 Years 
Normal Inventory Coverage 0.42 Years 
Time to Correct Inventory and 
Backlog  

0.49 Years 

Normal Backlog Coverage 0.14 Years 
Delay in Filling Vacancies 0.1 Years 
Time to Average New Vacancy 
Creation  

0.61 Years 

Time to Adjust Labor 0.15 Years 
Normal Duration of Employment 0.54 Years 
Time to Average Orders for 
Capital 

3 Years 

Delivery Delay for Capital 1.17 Years 
Time to Adjust Capital 1 Years 
Normal Life of Capital 9.37 Years 
a1 (EP for Capital) 6,159,479 Capital Units 
a2 (EP for Inventory) 587,767.5 Units 
a3 (EP for Labor) 9,223.15 People 
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Figure 5.13 shows that after applying the revised policy the system has reached 

equilibrium in 14 years (response time). This figure also shows that the convergence of ADE has 

caused the asymptotic stability of the three state variables of interest. This was achieved by 

increasing the parameter values Initial Labor and Time to Average New Vacancy Creation and 

decreasing several other parameter values including Normal Production Rate, Time to Correct 

Inventory and Backlog, Time to Adjust Labor, and Time to Adjust Capital. 
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Figure 5.13. Mass model: Behavior of variables of interest for the stabilization policy 

5.2.6. Testing for Policy Robustness 

The stabilization policy is tested by generating a linear change in the consumption rate 

from year 10 to year 20.  The consumption rate is increased or decreased to new levels calculated 

as a percentage of its initial value (Figure 5.14). Figures 5.15, 5.16 and 5.17 depict the robust 

behavior of the Capital, Inventory and Labor variables to the changes. The adaptation to the 

changes is smooth with amplifications less than 2% over/under the new EPs for the three 
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variables of interest. The values for the new EPs are shown in Table 5.7. Stability returns 

approximately 15 years after applying the stabilization policy (response time). This represents 

50% of the time horizon since the system was disturbed. 

For each variable of interest, the new EP levels have moved from their previous value 

(Table 5.6) almost in the same percentage that the corresponding change in the consumption rate. 

For instance, for a 5% increase in the consumption rate the new EP of 9,685 reached by the 

variable Labor represents a 5.01% increment of its prior value of 9,223.15. 

Table 5.7. Mass model: New equilibrium points for the variables of interest 

Percentage change in 
consumption rate 

New EP for Capital 
(Capital Units) 

New EP for 
Inventory (Units) 

New EP for 
Labor (People) 

-10% 5,543,000 528,235 8,301 
-5% 5,851,000 557,571 8,762 
+5% 6,467,000 616,269 9,685 
+10% 6,775,000 645,618 10,146 
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Figure 5.14. Mass model: Changes in the consumption rate to test policy robustness 



 148 

 
8 M Capital Units
8 M Capital Units
8 M Capital Units
8 M Capital Units

4 M Capital Units
4 M Capital Units
4 M Capital Units
4 M Capital Units

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Capital: -10% Capital Units
Capital: -5% Capital Units
Capital: +5% Capital Units
Capital: +10% Capital Units

 
Figure 5.15. Mass model: Behavior of Capital due to changes in consumption 
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Figure 5.16. Mass model: Behavior of Inventory due to changes in consumption 
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Figure 5.17. Mass model: Behavior of Labor due to changes in consumption 

5.3. Case Study C: The LSMC Model 

5.3.1. Description 

This is the case study involving a real electronics manufacturer, which is designated as 

LSMC (Lertpattarapong 2002) to respect confidentiality. LSMC products are technological 

gadgets and personal computer complementary products. LSMC is the major supplier of 

companies like Compaq or Dell. The increasing competition in the market of personal computers 

has caused fluctuations in the demand that resulted in oscillatory behavior of LSMC finished 

goods inventory and capacity. 

Since 1998, led by Dell, many original equipment manufacturers have changed their 

strategies by aggressively eliminating slack in their inventories through a build-to-order 

manufacturing and just-in-time processes. Further, because of fast dynamic changes in the 

market of personal computers, the short lifecycle associated with them and other complementary 
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products has also amplified coordination problems, which in turn have often caused excess 

inventory and sometimes difficulties to keep up with demand. Moreover, the competition has 

forced the company to introduce more product varieties at lower prices into the market to protect 

its existing and potential market share. Production capacity is another factor that adds to supply 

chain complexity because its long delays, huge investments, and new products with more 

complex manufacturing processes than previous generations. In addition, these complementary 

products are at the upstream of the supply chain for personal computers and their resulting 

fluctuations are higher. 

Given the complex and dynamic nature of the supply chain at LSMC, it is difficult for 

LSMC to see how its policy decision might impact its performance or cause unexpected and 

undesirable consequences. The objective in this case study is to use the SADE methodology to 

propose a policy to eliminate instabilities in the finished goods inventory. 

5.3.2. SD Model 

This nonlinear SD model is based on the original work described on Lertpattarapong 

(2002). It comprises three connected stock and flow submodels: (1) the market share and 

shipment submodel, (2) the demand forecast and capacity submodel and (3) the production 

submodel. These submodels are described and depicted below. 

The market share and shipment submodel (Figure 5.18) comprises two parts: market-

share and inventory-backlog-shipping. The first part represents the links between orders filled, 

market share, and demand. The second part represents the links between inventories and 

customer orders, which are filled from the finished goods inventory and shipped to customers. 
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The state variables in this model are Finished Goods Inventory, the Channel Order Backlog, and 

Perceived Fraction Orders Filled. This last variable represents an “information delay” that 

captures the customer’s perception regarding his/her order. This delay was forecasted using a 

third order smoothing function. 

The demand forecast and capacity submodel (Figure 5.19) represents the link between 

demand and production capacity. The part of the model related to the demand forecast consists of 

two state variables: Historical Demand and Perceived Present Demand, which are smooth 

functions with the time horizon constant. The variable Unit Forecast Demand is then calculated 

from the Historical Demand and Perceived Present Demand. An important state variable of the 

capacity part of the model is Available Capacity which is a function of Capacity Acquisition (an 

estimate of how fast LSMC can build a pre-assembly facility) and Capacity Obsolescence (an 

estimate of an average life expectancy of a pre-assembly facility). 

The production submodel (Figure 5.20) implements a push-pull strategy. The ‘push’ is 

from the pre-assembly processes to the assembly process. The ‘pull’ is from the assembly 

process to packaging and shipping. Inventories represent the principal variables in this model. 

Three types of inventory were modeled and represented by the state variables: Pre-assembly 

Inventory, Assembly Inventory and Finished Goods Inventory. The variable Expected Channel 

Demand for LSMC is a smooth function of Channel Demand for LSMC Products. 
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Figure 5.18. LSMC model: Market share and shipment submodel 
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Figure 5.19. LSMC model: Demand forecast and capacity submodel 
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Figure 5.20. LSMC model: Production submodel 
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5.3.3. Current Policy and SC Instability 

The current inventory policy is defined by five main parameters that are in control of the 

supply chain managers. These parameters are shown in Table 5.8. 

Table 5.8. LSMC model: Parameter values for the current policy 

Parameter Value Unit 
Manufacturing Cycle Time (MCTime) 2 Months 
Minimum Order Processing Time (MOPTime) 0.25 Months 
Time to Adjust Assembly Inventory (TAAI) 0.5 Months 
Pre Assembly Adjustment Time (PAT) 2 Months 
Time to Adjust Finished Goods Inventory (TAFGI) 2 Months 

 
The system starts and remains at equilibrium for the following eight months. Then the 

demand, which has a rate of five million units per month, is reduced by 20 percent.  

The response of the supply chain to this increment in demand is a persistent ripple effect 

on the Finished Goods Inventory variable. Figure 5.21 shows this oscillatory behavior. 
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Figure 5.21. LSMC model: Behavior of the variable of interest for the current policy 

A new policy to minimize these oscillations will be determined by solving the 
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optimization problem presented in the next section. 

5.3.4. Optimization Problem 

This optimization problem considers the stabilization of the Finished Goods Inventory 

state variable according to the equations described in section 3.1.2. The time horizon (T) 

considered was 36 months. 

Let x1= Finished Goods Inventory 

Let a1=the new equilibrium point associated to the state variable x1 

∫ −=
36

0
11 dt a(t)x )(J Minimize p

p
 

Subject to 

) ),t(((t) pxfx =&   (This notation represents the SD model equations) 
T

0x (Vector with initial values of all state variables) 
1 ≤ Manufacturing Cycle Time ≤ 3 
0.1 ≤ Minimum Order Processing Time ≤ 1 
0.1 ≤ Time to Adjust Assembly Inventory ≤ 8 
0.5 ≤ Pre Assembly Adjustment Time ≤ 10 
0.5 ≤ Time to Adjust Finished Goods Inventory ≤ 10 
5E05 ≤ a1 ≤ 1E06 

5.3.5. Stabilization Policy 

After solving the optimization problem presented in the previous section, the stabilization 

policy shown in Table 5.9 is obtained.  It is important to note that the new equilibrium point for 

the Finished Goods Inventory has decreased not significantly from its original value of 956,971 

units. 

The optimization algorithm used the following settings: swarm size = 30 particles, 
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neighborhood size = 3 particles, initial inertia weight = 0.5, iteration lag = 5, cognitive 

coefficient = 1.2, social coefficient = 1.2. The time to obtain the optimal policy (after 100 PSO 

iterations and 79 PHC iterations) was 236 seconds. 

Table 5.9. LSMC model: Parameter values for the stabilization policy 

Parameter Value Unit 
Manufacturing Cycle Time (MCTime) 2.37 Months 
Minimum Order Processing Time (MOPTime) 0.31 Months 
Time to Adjust Assembly Inventory (TAAI) 5.22 Months 
Pre Assembly Adjustment Time (PAT) 3.11 Months 
Time to Adjust Finished Goods Inventory (TAFGI) 0.5 Months 
a1 (EP for Finished Goods Inventory) 949,315 Units 

 
Figure 5.22 shows the behavior of the Finished Goods Inventory when this improved 

policy is applied at the eighth month. This variable reaches a stable level in the 10th month 

caused by the convergence of ADE. This represents a response time of two months. 

 
1.2 M Units

300,000

950,000 Units
150,000

700,000 Units
0

0 4 8 12 16 20 24 28 32 36
Time (Month)

Finished Goods Inventory Units
ADE

 
Figure 5.22. LSMC model: Behavior of the variable of interest for the stabilization policy 

An interpretation of the improved policy points out that to stabilize the system close to 

the initial Finished Goods Inventory equilibrium point, it is necessary to increase the time to 
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adjust assembly and pre assembly inventory. This means fewer inventory corrections will be 

needed in response to the customer orders change. On the other hand, by decreasing the time to 

adjust the finished goods inventory reduces the likelihood that this inventory will fall to 

unacceptable levels. 

5.3.6. Testing for Policy Robustness 

To test the stabilization policy a sudden change in demand is generated in month 20. The 

demand is increased or decreased to new levels calculated as a percentage of its initial value 

(Figure 5.23). The system response is depicted in Figure 5.24. There, it is shown that in all cases 

new EPs are reached to the variable Finished Goods Inventory. The values for these EPs are 

presented in Table 5.10.  

The new EP levels have moved from their previous value (Table 5.9) almost in the same 

percentage that the corresponding change in the demand. For instance, for a 5% decrease in 

demand the new EP of 901,849 reached by the variable Finished Goods Inventory represents a 

5% decrease of its prior value of 949,315. 

The adaptation to the equilibrium state is smooth and fast in the case where demand is 

decreased. There are not amplifications under de EP. Stability returns approximately two weeks 

after the system was disturbed (response time) which represents 12.5% of the remaining time 

since the alteration. On the contrary, in the case where demand is increased it takes more time to 

reach stability, about 6 or 8 months to reach the new equilibrium points. Amplifications are on 

the order of 2% and 6% over the EPs for +5% and +10% increments in demand respectively. 
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Table 5.10. LSMC model: New equilibrium points for the variable of interest 

Percentage change in 
demand 

New EP for Finished Goods 
Inventory (Widgets) 

-10% 854,383 
-5% 901,849 
+5% 996,771 
+10% 1,044,216 
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Figure 5.23. LSMC model: Changes in demand to test policy robustness 
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Figure 5.24. LSMC model: Behavior of Finished Goods Inventory due to changes in demand 
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5.3.7. Policy Comparison with another Method 

This section compares the stabilization policies obtained by using two methods: (1) the 

SADE method described in this dissertation and (2) the eigenvalue and elasticity analysis as 

explained in Lertpattarapong (2002). A new scenario is presented to compare the policies. From 

equilibrium, the LSMC model is disturbed by a 10% step increase in Channel Demand at the 

sixth month. This causes an oscillatory behavior in the final inventory which is shown in Figure 

5.25. 
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Figure 5.25. LSMC model: Oscillatory behavior of the Finished Goods Inventory 

The stabilization policies to minimize this instability are presented in the next lines. 

5.3.7.1. Stabilization Policy by using the SADE method 

Using the same settings defined in 5.3.5., the optimization algorithm found the optimal 

policy in 392 seconds (after 100 PSO iterations and 73 PHC iterations). The stabilization policy 

is shown in the next table. The Finished Goods Inventory reaches the equilibrium level 
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approximately in the 16th month (see Figure 5.26). 

Table 5.11. LSMC model: SADE stabilization policy 

Parameter Value Unit 
Manufacturing Cycle Time (MCTime) 1 Months 
Minimum Order Processing Time (MOPTime) 0.23 Months 
Time to Adjust Assembly Inventory (TAAI) 6.69 Months 
Pre Assembly Adjustment Time (PAT) 9.21 Months 
Time to Adjust Finished Goods Inventory (TAFGI) 0.5 Months 
a1 (EP for Finished Goods Inventory) 968,448 Units 
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Figure 5.26. SADE method: Stable behavior of the Finished Goods Inventory 

5.3.7.2. Stabilization Policy by using the EEA method 

Before applying the EEA method, Lertpattarapong (2002) first linearized the nonlinear 

system at any point in time. Then, the eigenvalues and eigenvalue elasticity were calculated. This 

information was used to identify which eigenvalues contributed to the oscillations and then 

investigating the elasticities to determine which links and loops affected this oscillatory 

behavior. This analysis revealed that Loop L1, composed by the variables Channel Order 
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Backlog, Pre-assembly, Assembly and Finished Goods Inventory, caused the oscillation in the 

supply chain model. The interpretation is that LSMC is building up backlog due to the increment 

in demand. When the backlog occurs the order fulfillment ratio drops as well. This leads to a 

reduction in the demand. However, the order to increase the production was already sent, 

building up the inventory. When the inventory exceeds the backlog, LSMC will cut its 

productions. However, with the decrease in production, the backlog will occur again. 

Thus, policies for lessening or stopping the oscillations should involve Loop L1. In his 

analysis, Lertpattarapong proposes to build up a safety stock to reduce backlog. He suggests 

building up a 1-week or 0.25 month for Safety Stock Coverage. This stabilization policy makes 

the Finished Goods Inventory to reach equilibrium around the 22nd month. This is depicted in the 

next figure.  
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Figure 5.27. EEA method: Stable behavior of the Finished Goods Inventory 
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5.3.7.3. Comparison of Stabilization Policies 

Figure 5.28 shows clearly that the stabilization policy obtained by SADE has a better 

response time and less amplification that the one obtained by EEA. This is due to the fact that 

SADE policy is considering important parameters to adjust the inventory levels, while EEA 

policy relies only in building up a safety stock to reduce the oscillations. Moreover, in terms of 

costs the SADE policy is also more economical than its counterpart because it requires fewer 

inventories. 
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Figure 5.28. Inventory behaviors after using SADE and EEA methods 

To perform the robustness analysis it is generated a sudden change in demand in month 

22. The demand is again increased by 10 percent. The system response is depicted in Figure 

5.29. The SADE policy makes the Finished Goods Inventory to reach equilibrium around the 

28th month. The EEA policy starts stabilizing the system around the 35th month. The robustness 

analysis also shows that the EEA policy generates more amplification than the SADE policy 

before reaching the equilibrium state. Having lower levels of amplification keeps the inventory 
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level closer to its new equilibrium point. 
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Figure 5.29. Policy robustness for SADE and EEA methods 

The following table shows the comparison of the stabilization policies generated by the 

SADE and EEA methods. 

Table 5.12. Results of the analysis for the SADE and EEA methods 

 SADE EEA 
Stability analysis 

Response time as a percentage of the 
remaining time since the stabilization 
policy was applied 

 
33.3% 

 
53.3% 

Amplification as a percentage 
over/under the equilibrium point 

9.6% 
(over EP) 

58.3% 
(under EP) 

Robustness analysis 
Response time as a percentage of the 
remaining time since the stabilization 
policy was applied 

 
42.9% 

 
92.9% 

Amplification as a percentage 
over/under the equilibrium point 

2.7% 
(over EP) 

66.7% 
(under EP) 

 

It can be concluded that the policy obtained by the SADE method is more efficient (faster 

and smoother) and more economical to implement than the policy proposed by the EEA method. 
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5.4. Case Study D: The PMOC Model 

5.4.1. Description 

PMOC Technologies Inc. is a manufacturer of optical solutions for medical, industrial, 

communications, defense, test, and measurement applications. PMOC Technologies Inc. is an 

integrator of families of precision molded aspheric optics, glass products, and high performance 

fiber-optic collimators and isolators. The precision molded optics (PMO) process produces 

lenses for industrial laser and other optical applications and is the focus of the simulation model.   

PMOC Inc. has built its reputation on providing customized products to long-term 

customers who have designed their equipment to use PMOC lenses. Lenses make up to 65% of 

the company’s operations. It has a stable customer base of around 1,700 customers. With special 

requirements in lenses in addition to high quality level of service and support, customers are 

willing to pay relatively higher than traditional market prices. This has helped PMOC Inc. 

maintain a stable market share over the past few years despite using an old manufacturing 

technology with limited capacity. 

Manufacturing equipment is utilized such that a maximum of 40% overtime is allowed. 

And due to relatively long term plan to move the lenses operations to Asia, the company desires 

to continue serving its customer base using existing workers and overtime; without hiring or 

training more workers. Workers will be moved to new productions lines and trained.  

The company depends for the remaining periods on its stable base of customers who 

continue to rely on PMOC specially designed lenses until they upgrade to new technologies. The 

company however, should minimize expenses in the form of scrape and maintain stable 

operations. The goal of management is to find a policy that avoids large oscillations in the 
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inventory if expected increase of customer orders on regular types of lenses occurs. 

5.4.2. SD Model 

The nonlinear SD model used in this case study is a subsystem of the enterprise system 

developed by Helal (2008). It is focused on the production process of PMOC and is composed by 

the following submodels: (1) supplier submodel, (2) labor management submodel and (3) 

internal supply chain submodel. These submodels are described and depicted below. 

The supplier submodel (Figure 5.30) represents how the capacity of the supplier affects 

the rate at which the company orders raw materials (Parts Order Rate). To simplify the model it 

is assumed that only one supplier provides raw materials to PMOC. The state variables of this 

model are Supplier Production Capacity and Supplier Order Backlog. 

The labor management submodel (Figure 5.31) estimates the required capacity level 

(including overtime when necessary) based on the production rate obtained from the production 

planning. The opening positions for recruiting new workers are represented in the state variable 

Labor Being Recruited. Labor being recruited moves to become Labor (get hired) after some 

hiring delay, according to the Labor Hiring Rate. Similarly, Labor can be fired o leave 

voluntarily the company at the Labor Firing Rate. 

The internal supply chain submodel (Figure 5.32) consists of two overlapping 

constructs. The first construct is the materials ordering and inventory. The state variables for this 

part of the model are Parts on Order, and Parts Inventory. The usage rate of parts (raw material) 

being taken from Parts Inventory, to be converted into semi finished products (WIP inventory) is 

given by the Production Start Rate. The second construct is the production planning. This part of 
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the model regulates the WIP inventory at the Preforms and Presses departments to ensure smooth 

production rate and the availability of the final products for shipping. The state variables of this 

part of the model are Preforms WIP and Presses WIP and Finished Goods Inventory. 
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Figure 5.30. PMOC model: Supplier submodel 
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Figure 5.31. PMOC model: Labor management submodel
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Figure 5.32. PMOC model: Internal supply chain submodel 
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5.4.3. Current Policy and SC Instability 

The set of parameters in Table 5.13 defines the current policy for this supply chain.  

Table 5.13. PMOC model: Parameter values for the current policy  

Parameter Value Unit 
Desired Days Supply of Parts Inventory 2 Weeks 
Time to Correct Parts Inventory 1 Weeks 
Preforms Cycle Time 3 Weeks 
Presses Cycle Time 3 Weeks 
Time to Correct Inventory 1 Weeks 
Supplier Delivery Delay 2 Weeks 
Time to Adjust Labor 1 Weeks 
Labor Recruiting Delay 5 Weeks 
 
For a customer order rate of 5,000 units/week the system starts out of equilibrium. The 

behavior of the four variables of interest is depicted in Figure 5.33. Variables Preforms WIP 

Level, Presses WIP Level and Labor have several oscillatory fluctuations. Variable Finished 

Goods Inventory is starting to settle down, although it has not reach equilibrium yet. 
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Figure 5.33. PMOC model: Behavior of variables of interest for the current policy 
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A new policy to minimize these oscillations will be determined by solving the 

optimization problem presented in the next section. 

5.4.4. Optimization Problem 

This optimization problem considers the simultaneous stabilization of the following state 

variables: Preforms WIP Level, Presses WIP Level, Finished Goods Inventory and Labor 

according to the equations described in section 3.1.2.  

Let x1=Preforms WIP Level, x2= Presses WIP Level, x3= Finished Goods Inventory, 

x4=Labor 

Let ai=the new equilibrium point associated to the ith state variable (i=1,..,4) 

The following weights were assigned: w1=0.4, w2=0.4, w3=0.1, w4=0.1 to represent the 

concern of management in the inventory and considering that variables x1 and x2 exhibit higher 

oscillations. The time horizon (T) considered was 30 weeks. 
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Subject to 

) ),t(((t) pxfx =&   (This notation represents the SD model equations) 
T

0x (Vector with initial values of all state variables) 
0.5 ≤ Desired Days Supply of Parts Inventory ≤ 5 
0.5 ≤ Time to Correct Parts Inventory ≤ 5 
0.5 ≤ Preforms Cycle Time ≤ 3 
0.5 ≤ Presses Cycle Time ≤ 3 
0.5 ≤ Time to Correct Inventory ≤ 5 
0.5 ≤ Supplier Delivery Delay ≤ 5 
0.5 ≤ Time to Adjust Labor ≤ 5 
0.5 ≤ Labor Recruiting Delay ≤ 5 
5000 ≤ a1 ≤ 50000 
5000 ≤ a2 ≤ 50000 
1000 ≤ a3 ≤ 50000 
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10 ≤ a4 ≤ 100 

5.4.5. Stabilization Policy 

The stabilization policy is obtained after solving the optimization problem presented in 

the previous section. The optimization algorithm was run at time 0 using the following settings: 

swarm size = 30 particles, neighborhood size = 3 particles, initial inertia weight = 0.5, iteration 

lag = 5, cognitive coefficient = 1.2, social coefficient = 1.2. The time to obtain the optimal policy 

(after 150 PSO iterations and 1,243 PHC iterations) was 89 seconds. 

The solution yielded the results shown in Table 5.14. This table also includes parameters 

a1, a2, a3, a4 which are the new equilibrium points for the state variables of interest. 

Table 5.14. PMOC model: Parameter values for the stabilization policy 

Parameter Value Unit 
Desired Days Supply of Parts Inventory 3.46 Weeks 
Time to Correct Parts Inventory 2.79 Weeks 
Preforms Cycle Time 1.36 Weeks 
Presses Cycle Time 1.70 Weeks 
Time to Correct Inventory 1.47 Weeks 
Supplier Delivery Delay 2.93 Weeks 
Time to Adjust Labor 1.24 Weeks 
Labor Recruiting Delay 0.5 Weeks 
a1 (EP for Preforms WIP Level) 8828 Units 
a2 (EP for Presses WIP Level) 13739 Units 
a3 (EP for Finished Goods Inventory) 3275 Units 
a4 (EP for Labor) 44 People 
 
Figure 5.34 shows the behavior of the state variables when this revised policy is applied. 

The system has reached equilibrium approximately in 9 weeks (response time). This figure also 

shows that the convergence of ADE has caused the asymptotic stability of the four variables of 

interest. This was achieved mainly by increasing the parameter values Desired Days Supply of 

Parts Inventory, Time to Correct Parts Inventory and Supplier Delivery Delay and decreasing 
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several other parameter values including Labor Recruiting Delay, Preforms Cycle Time, and 

Presses Cycle Time. This stabilization policy has been reached using the maximum production 

capacity of 5,600 units/week as shown in Figure 5.35. This is due to the constraint in manpower 

in the lenses manufacturing department. 
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Figure 5.34. PMOC model: Behavior of variables of interest for the stabilization policy 
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Figure 5.35. PMOC model: Maximum capacity of lenses manufacturing department 
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5.4.6. Testing for Policy Robustness 

To test the stabilization policy it is generated a sudden change in the customer order rate 

in week 10. The customer order rate is increased or decreased to new levels calculated as a 

percentage of its initial value. This is displayed in Figure 5.36. Moreover, Figures 5.37, 5.38 and 

5.39 depict the robust behavior of the Preforms WIP Level, Presses WIP Level, and Finished 

Goods Inventory variables to the changes in customer orders. The values for the new EPs are 

shown in Table 5.15. 

The EP levels of the three inventory variables remain the same for a 10% increment in 

customer orders. The reason is simple; the stabilization policy was reached by using the 

maximum production capacity and orders over the original customer order rate are considered 

backlog and therefore they do not affect the production rates and the stability. Similarly, for a 5% 

decrease in customer orders, production is working close to maximum capacity and the EPs 

remain the same. In the case where customer orders are decreased by 10% and 15% the new EPs 

are reduced too but in a lower percentage that the change in customer orders. 

Stability returns approximately 10 weeks and 16 weeks after the system was disturbed 

(response time) for -10% and -15% decrease in customer orders respectively. Amplifications are 

on the order of 1% under the EPs for both -10% and -15% decrease in customer orders. 

Table 5.15. PMOC model: Parameter values for the stabilization policy 

Percentage change  
in customer order rate 

New EP for 
Preforms WIP 
Level (Units) 

New EP for 
Presses WIP 
Level (Units) 

New EP for 
Finished Goods 

Inventory (Units) 
-15% 8377 13178 3045 
-10% 8789 13691 3256 
-5% 8828 13739 3275 

+10% 8828 13739 3275 
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Figure 5.36. PMOC model: Changes in customer orders to test policy robustness 
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Figure 5.37. PMOC model: Behavior of Preforms WIP Level due to changes in customer orders 
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Figure 5.38. PMOC model: Behavior of Presses WIP Level due to changes in customer orders 
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Figure 5.39. PMOC model: Behavior of Finished Goods Inv. due to changes in customer orders 

5.5. Summary of the Experimental Analysis 

The following table presents a summary of the results for the stability and robustness 

analysis as well as the values that show the performance of the optimization algorithm. 
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Table 5.16. Summary of the stability and robustness analysis 

 Supply Chain Model 
 I-W Mass LSMC PMOC 

Model size
Number of variables of interest 2 3 2 4 
Number of parameters (including EPs) 11 18 6 12 

Stability analysis 
Does the system start in equilibrium? Yes No Yes No 
Type of Perturbation Gradual and 

linear change 
Sudden 
change 

Sudden 
change 

Sudden 
change 

Does system reach stability? Yes Yes Yes Yes 
Concept used in objective function ADE ADE+AEDE ADE ADE 
Response time as a percentage of the 
remaining time since the stabilization 
policy was applied 

15.4% 35% 7.1% 30% 

Optimization algorithm 
Solution time (seconds) 206 306 236 89 
PSO iterations 150 150 100 150 
PHC iterations 1,393 3,171 79 1243 

Robustness analysis 
Type of Perturbation Sudden 

change 
Gradual and 
linear change

Sudden 
change 

Sudden 
change 

Was the policy robust? Yes Yes Yes Yes 
Are EPs changes proportional to the 
disturbance change? 

Yes Yes Yes No 
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CHAPTER SIX: CONCLUSIONS AND FUTURE RESEARCH 

This research proposes the SADE methodology to reduce or eliminate instability in 

supply chains. The method provides an effective tool for managers to react quickly to 

unexpected events generating new policies and plans to cope with these changes in the business 

dynamics. This chapter summarizes the conclusions and highlights the directions for future 

research. 

6.1. Summary of Research and Conclusions 

We propose the SADE methodology that uses the concept of asymptotic stability to 

minimize oscillatory behaviors of specific (state) variables of interest of the supply chain model. 

If necessary stability can be extended to the whole SC system by using a weighted average 

function that includes all state variables. This also allows higher weights to be assigned to those 

variables considered more important. This approach does not require direct knowledge of the 

internal structure of the model. It also does not require linearization of the system or eigenvalue 

calculations. We argue that the simplicity of our approach makes it a powerful tool that can be 

applied very easily for practitioners – especially when dealing with systems that exhibit highly 

nonlinear oscillatory behavior. 

We develop stability conditions based on the ADE. These conditions can be used as a 

general procedure to stabilize supply chains represented by linear or nonlinear dynamic models. 

We prove several theorems that show that ADE convergence of a state variable will make its 

trajectory approach asymptotic stability. Achieving ADE convergence requires the solution of a 

policy optimization problem. Moreover, we introduce the concept of AEDE to be used in 
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problems where obtaining ADE convergence is not easy. AEDE is most beneficial for 

amplifying small DE. Thus, expressing the objective function as a combination of ADE and 

AEDE can improve the asymptotic stability of the state variables under study. 

We propose a hybrid algorithm to obtain a quick convergence of the ADE. This 

algorithm is based on a search engine that combines the advantage of PSO optimization to 

determine the most promising regions of the search space and the properties of PHC algorithm to 

accelerate locating the optimum that makes the ADE to convergence. Although it is not required 

to find the global optimum to obtain a satisfactory reduction in instability, our hybrid algorithm 

provides solutions that escape local convergence and lead to stabilization polices with few 

oscillations and fast stability. This broader search to find more effective stabilization policies is 

also possible due to the fact that we incorporate a theorem that allows finding the best 

equilibrium levels that minimize the ADE. 

We perform the experimental analysis over four case studies. These cases consist on one 

linear model (I-W) and three nonlinear models (Mass, LSMC, PMOC) of the supply chain. The 

methodology is applied to stabilize some variables of interest that show several oscillatory 

fluctuations. The optimization algorithm generated stabilization policies in a few minutes. The 

results show that our method makes the trajectory of these variables to achieve asymptotic 

stability. For the I-W and LSMC models stability is reached in a very short time (less than one 

fifth of the remaining time since the stabilization policy was applied). For the Mass and PMOC 

models stability took some time longer, approximately one third of the time horizon. The Mass 

model, which is highly nonlinear, required a combination of ADE and AEDE to obtain the 

convergence of the objective function. For the LSMC model, we compared the stabilization 
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policies obtained using our method (SADE) and the EEA method. Results show that the policy 

generated with the SADE method is faster and smoother to reach the equilibrium state. 

Moreover, the lower inventory level required by the SADE policy to stabilize the system makes 

it more economical to implement than the policy proposed by the EEA method. 

We conclude that the convergence of the ADE generates stabilization policies that are 

robust. To test robustness on these policies we produced a perturbation in the stable system by 

changing the value of an exogenous variable. The results show that the variables of interest reach 

new equilibrium points after a period of adaptation to the alteration of the system. Moreover, 

perturbations generated by sudden changes produce amplifications before reaching new EPs. The 

experiments also show that in most cases the change of level in the EPs is proportional to the 

change of the exogenous variable. 

6.2. Research Contributions 

This research contributes to the industrial engineering science by developing a novel 

stabilization method that can be broadly applied to supply chains modeled as dynamic systems, 

independently of their nature: linear or nonlinear. The stabilization policies obtained by the 

method help to identify the impact of important parameters of the model in the behavior of the 

system. This will also permit to advance the understanding on how the dynamic and complex 

interactions of the supply chain components affect the behavior of the whole supply chain at the 

strategic and tactical levels, creating conditions of constant disequilibrium and change. 

The stabilization method presented in this research work is a more general and simpler 

approach than the methods based on linearized models like eigenvalue optimization. Moreover, it 
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is not limited to particular characteristics of the system like many of the methods used by 

nonlinear control theory like Lyapunov functions. Due to the simplicity of the method that only 

requires solving a policy optimization problem in order to obtain a stabilization policy, it can be 

accessed not only by academics but also by practitioners. This is an important contribution 

because managers often reject using complex approaches that they do not understand. They 

prefer basic approaches that are simple to comprehend and easy to communicate with other 

people. 

This research advances the field of system dynamics with the development of stability 

conditions based on the ADE that can be applied to several state variables of the system 

simultaneously. We propose and prove new theorems that determine the conditions for (1) the 

convergence of a state variable around its equilibrium point and (2) finding the best equilibrium 

point that minimize instability. These theorems are incorporated into an optimization problem to 

achieve stability. We show a simple way to add the objective function of the optimization 

problem into any SD formulation. 

This research presents and implements a framework to plan and design robust supply 

chains. To facilitate the modeling activity, this framework was designed in such a way that can 

simulate SD models created with Vensim, one of the leading producers of SD software. A PSO 

solver was developed and incorporated into the framework to be used with the PHC optimizer 

that comes with Vensim. The PSO solver is a tool that will allow SD users to solve policy 

optimization problems associated with dynamic systems in general, expanding its use beyond the 

supply chain cases. 
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6.3. Directions for Future Research 

There are several additional aspects that must be addressed and investigated for 

enhancing this methodology. The proposed future research directions are outlined in the 

following sections. 

6.3.1 Controlling the Characteristics of Stability 

Currently the concept to achieve stability relies on minimizing the deviations of 

controlled variables from the equilibrium state. The stabilization policies obtained by solving the 

optimization problem have the characteristic of asymptotic stability, which make them robust. 

However, to improve our methodology it will be necessary to have control over the following 

factors before reaching stability: (1) possible fluctuations appearance, (2) amplifications 

magnitude, and (3) value of the response time.  

The ideal stabilization policy will have a very short response time, no fluctuations, and no 

amplifications before reaching stability. However, policies with shorter response times generally 

show greater amplifications or fluctuations, making it difficult to obtain the ideal stability. One 

idea that can help to minimize the fluctuation behavior of a policy is introducing in the objective 

function a penalty every time the curve crosses the equilibrium point. It has to be demonstrated 

that the convergence of this new objective function will still achieve asymptotic stability. In 

addition, to control the amplification and response time factors, we should be able to add in the 

optimization problem new constraints that represent the maximum and minimum tolerances for 

these factors. This addition will help to adapt the resulting policy into a more desired shape. 

Moreover, a modification in the solution algorithm will have to be made to check that the curve 
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of the variable of interest is inside these tolerances. 

6.3.2. Multi-level Stabilization Policy of the Supply Chain 

Supply chains exhibit complex dynamics consisting of a hierarchical nesting of both 

continuous and discrete dynamics. The discrete dynamics would represent activities at the 

operational level where the status of individual items is traced (e.g. shop floor activities) while 

continuous dynamics would represent aggregate flows and decisions at the tactical and strategic 

level (e.g. aggregate production planning or new product market dynamics). 

We plan to extend the stabilization policies obtained from the strategic and tactical levels 

(higher levels) to the operational level (lower level). Thus, we will use SD and discrete event 

simulation techniques to capture the different dynamics of the SC forming an integrated and 

hybrid two-level simulation model. This hybrid simulation model will be used to develop a top-

down hierarchical stabilization methodology that will search for new supply chain configurations 

to avoid instability.  The top level does aggregate planning across the entire supply chain.  The 

aggregate level activities, which take place at the manufacturer, include planning and dispatching 

decisions.  These decisions are evaluated using system dynamics simulation. The stabilization 

policies generated at this level will be based on the convergence of the ADE as stated in this 

research work. The detailed bottom level activities, which take place at the manufacturer, 

transporter, and retailer, include scheduling decisions and production activities. These are 

evaluated using discrete-event simulation. 
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6.3.3. Detecting Instabilities in the Supply Chain 

Having the capability to detect instability (ripple effects) at a very early stage provides 

companies enough time to design and implement stabilization policies. This capability should go 

far beyond current monitoring systems, such as the popular dashboard,  which can provide alerts, 

but cannot predict the impact of those alerts. 

Some preliminary work has been done to detect structural changes in the supply chain by 

using neural networks (NNs) and system dynamics (Shah 2001). The method described in Shah’s 

work uses pattern recognition analysis to map a set of inputs to the most likely future behavior of 

the supply chain. Then it classifies possible behaviors of state variables of the SD model into 

categories of similar graphs by using fuzzy art NNs. After that it uses backpropagation NNs to 

predict the behavior of a variable of interest. Although this method has demonstrated to be 

efficient capturing the behavior of a complex supply chain, still there is potential for extension of 

this work. As the next step in this line of research, we propose to (1) investigate other 

classification techniques to categorize the behavior of state variables, (2) determine which NN 

topologies are the most appropriate to produce less training and testing errors, and (3) 

encapsulate the detection capabilities into a monitoring agent. 

When the monitoring system predicts the future occurrence of instability, a new 

management strategy must be found. Therefore, the detection capability (behavior monitor 

module) can be incorporated with the SADE methodology in order to predict ripple effects in the 

supply chain at an early stage and then remove the instability or minimize its impact (see Figure 

6.1). Finally, these two methodologies should be integrated in a framework for detecting and 

modifying the behavior of SC models. 
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Figure 6.1. SADE methodology with detection capability 
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APPENDIX A: ADDITIONAL LEMMAS 
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Lemma A.1 The inverse matrix of the Jacobian J is given by 
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The method requires augmenting the original matrix iJ  by the identity, and then the form 
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i
/1 λ−  
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After continuing with these operations until the final row is reached then the form [ ]1
iI −J  is 

obtained. 
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Lemma A.2 (DeCarlo 1989) The matrix exponential of the Jacobian J is given by 
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Proof: By applying the property of the exponentiation of a diagonal matrix, the exponentiation 

of 
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therefore 
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Thus, now the matrix exponential of the Jordan block iJ  has to be calculated. It is known that 
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After multiplying by “t” and exponentiating both sides 
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Applying Definition 4 to the first factor on the right-hand side of (A.2) 
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Itie                       λ=  (A.3) 

Applying Definition 4 to the second factor on the right-hand side of (A.2) 
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The powers of matrix Di of dimension ni (i=1,..,m) are computed as follows 
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Replacing the powers of Di in (A.4) gives 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

−

−

10

)!2n(
tt1

)!1n(
t

2
tt1

e i

2n
i

1n2

t

i

i

i

MO

MO

L

L

D , i=1,..,m  (A.5) 

Substituting (A.3), (A.5) into (A.2) it is proved that  
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Lemma A.3 (Fong and Wang 2000) If g and h are continuous functions on [a,∞) and if 

)t(h)t(g0 ≤≤ for all ),a[t ∞∈ , then 

i) ∫
∞

a

dt )t(g  converges if ∫
∞

a

dt )t(h converges 

ii) ∫
∞

a

dt )t(h  diverges if ∫
∞

a

dt )t(g  diverges 

Proof: Refer to Fridy (2000) to see the proof of this lemma.  

Lemma A.4 (Fong and Wang 2000) (Convergence of Infinite Series) If the series 

∑
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=Ψ

∞→
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It is known by the hypothesis that the sequence Sm converges when m→∞, then 
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i ==Ψ
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∞

=
∑     

Note that if LS Lim m m
=

∞→
then LS Lim 1-m m

=
∞→

  (A.6) 

The mth term of the series can be expressed as: 1mmm SS −−=Ψ   (A.7) 
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Thus, from (A.6) and (A.7) results 
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Otherwise the term and the whole integral go to infinity. 
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Substituting (A.11) into (A.10) yields 
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APPENDIX B: STABILIZATION WITH A LOCAL SEARCH 
ALGORITHM 
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The SADE methodology does not require finding the global optimum to obtain 

satisfactory reduction in instability. A local search algorithm can obtain a quick convergence of 

the ADE in just few seconds. Although the time to find the optimal solution is an important 

factor in selecting a search algorithm, the quality of such solution in terms of oscillation 

reduction has to be analyzed. For that reason, in this appendix are compared the results obtained 

by solving the optimization problem using the hybrid algorithm (PSO+PHC) with the one 

obtained by using the local search algorithm (PHC). The case study to do the comparison is the 

Mass model described in section 5.2.  

Due to its highly nonlinear equations the Mass model complicates the task of finding a 

good starting point for the local search algorithm. A simple way to choose the starting point will 

use the parameter values of the current policy and consider the lower limits for the equilibrium 

points, i.e., a1=1,000,000, a2=500,000 and a3=100. This is shown in the next table. 

Table B.1. Mass model: initial point for the local search 

Parameter Value Unit 
Initial Labor  1500 People 
Time to Average Production Rate 1 Years 
Normal Inventory Coverage 0.5 Years 
Normal Backlog Coverage 0.2 Years 
Delay in Filling Vacancies 0.25 Years 
Time to Average New Vacancy 
Creation  

0.5 Years 

Normal Duration of Employment 2 Years 
Time to Average Orders for 
Capital 

4 Years 

Delivery Delay for Capital 2 Years 
Time to Adjust Capital 4 Years 
Normal Life of Capital 15 Years 
a1 (EP for Capital) 1,000,000 Capital Units 
a2 (EP for Inventory) 500,000 Units 
a3 (EP for Labor) 100 People 
Normal Production Rate  3E06 Units/year 
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Parameter Value Unit 
Initial Capital  7.5E06 Capital Units 
Time to Correct Inventory and 
Backlog  

0.8 Years 

Time to Adjust Labor 0.5 Years 
 

Figures B.1, B.2 and B.3 show that although labor and inventory levels are similar in 

both policies, the result obtained with the PHC algorithm requires much more capital to stabilize 

the system. Moreover, the stabilization with the hybrid algorithm generates fewer fluctuations 

before reaching the equilibrium level. The explanation relies on the characteristics of the PSO 

method to perform a more expanded and deeper search of the space to find a better starting point 

for the PHC algorithm.  

8 M Capital Units
8 M Capital Units

6 M Capital Units
6 M Capital Units

4 M Capital Units
4 M Capital Units

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Capital: PSO+PHC Capital Units
Capital: PHC Capital Units

 
Figure B.1. Capital behaviors using the hybrid and local search algorithms 
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2 M Units
2 M Units

1 M Units
1 M Units

0 Units
0 Units

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Inventory: PSO+PHC Units
Inventory: PHC Units

 
Figure B.2. Inventory behaviors using the hybrid and local search algorithms 

 

25,000 People
25,000 People

12,500 People
12,500 People

0 People
0 People

0 4 8 12 16 20 24 28 32 36 40
Time (year)

Labor: PSO+PHC People
Labor: PHC People

 
Figure B.3. Labor behaviors using the hybrid and local search algorithms 
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