Rise Time to Frequency Correlation of Crosstalk in Coupled Microstrip Lines

1988

Charles Michael Fletcher Jr.
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

Part of the Systems and Communications Commons

STARS Citation

https://stars.library.ucf.edu/rtd/4281

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
RISE TIME TO FREQUENCY CORRELATION
OF CROSSTALK IN COUPLED MICROSTRIP LINES

BY

CHARLES MICHAEL FLETCHER, JR.
B.S.E., University of Central Florida, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering
in the Graduate Studies Program
of the College of Engineering
University of Central Florida
Orlando, Florida

Summer Term
1988
ABSTRACT

An examination of forward crosstalk in microstrip transmission lines is presented through a computer simulation using SPICE. A non-resistive lumped L-C transmission line model is modified to include capacitive and inductive coupling from adjacent lines. Two adjacent microstrip transmission lines are modeled, and simulation results in both the time and frequency domains are shown.

The time domain or transient analysis looks at the effect of rise times on crosstalk. Rise times in the range of 100 to 1000 nanoseconds (ns) are considered. The frequency analysis shows the crosstalk frequency response over the range of 100 to 1600 kilohertz (kHz). The effects of line spacing to dielectric height ratios, line width to dielectric height ratios, and line terminations are shown.

A correlation of rise time to equivalent crosstalk frequency using crosstalk magnitude as a common point of reference is performed, and the line geometry and termination effects upon the correlation are explored.
 ACKNOWLEDGEMENTS

I would like to thank Mr. Robert Canright for his helpful suggestions. Many thanks also go to Dr. Parveen Wahid for her advice and recommendations. Special thanks go to my advisor, Dr. Madjid Belkerdid, for his help and guidance with the research and writing of this thesis.
TABLE OF CONTENTS

LIST OF TABLES ... v
LIST OF FIGURES ... vi

CHAPTER

I. INTRODUCTION ... 1
II. TRANSMISSION LINE THEORY 3
III. TRANSMISSION LINE MODELING 9
 Model Development 9
 Model Parameter Calculations 11
 Model Implementation 13
 SPICE Circuit Description 13

IV. ANALYTICAL PREDICTIONS OF CROSSTALK 18
 Rise Time to Equivalent Crosstalk Frequency Correlation ... 21

V. COMPUTER SIMULATION OF CROSSTALK 24
 Transient Analysis 24
 Frequency Analysis 25
 Transient Analysis Results 25
 Frequency Analysis Results 35

VI. RISE TIME TO EQUIVALENT CROSSTALK FREQUENCY CORRELATION ... 36

VII. CONCLUSIONS 41

APPENDICES ... 44
 A. FORTRAN Program for Calculating Microstrip Transmission Line Characteristics .. 45
 B. Samples of SPICE Transient Analysis Circuit Descriptions 50
 C. Samples of SPICE Frequency Analysis Circuit Descriptions 53
 D. Samples of Transient Simulation Results .. 56
 E. Frequency Simulation Results ... 79

REFERENCES .. 102
LIST OF TABLES

1. List of S/H and W/H Values for All Sets 15
2. Line Parameters for All Sets 16
3. Coupled Incremental Model Element Values for All Sets ... 17
4. Forward Crosstalk Amplitudes for $Z_T=Z_O$ 29
5. Forward Crosstalk Amplitudes for $Z_T=\text{OPEN}$ 30
6. Equivalent Crosstalk Frequencies for $Z_T=Z_O$ 37
7. Equivalent Crosstalk Frequencies for $Z_T=\text{OPEN}$ 38
8. Predicted Equivalent Crosstalk Frequencies 40
LIST OF FIGURES

1. Equivalent Circuit Model of a Microstrip Transmission Line Section 8

2. (a) Geometry of Two Adjacent Microstrip Transmission Lines. (b) Two, Coupled, Incremental Transmission Line Models of Length Δz 12

3. Physical Conceptualization of SPICE Setup 14

4. Graphical Representation of Crosstalk 23

5. 500 ns Rise Time Input Waveform for Active Line 27

6. (a) Example of Overshoot (Set 1, tr=200 ns, $Z_T=Z_0$) (b) Example of Ripple (Set 7, tr=700 ns, $Z_T=Z_0$) 28

7. Plot of Theoretical and Simulated Crosstalk Magnitude for Set 1 with $Z_T=Z_0$ 31

8. Plot of Simulated Crosstalk Magnitude for Set 1 with $Z_T=Z_0$ and $Z_T=\text{OPEN}$ 32

9. Plot of Simulated Crosstalk Magnitude vs S/H 33

10. Plot of Simulated Crosstalk Magnitude vs W/H 34

11. Plots of Correlated Simulation Measurements and Analytical Predictions of Frequency vs Equivalent Crosstalk Rise Time 39
CHAPTER I
INTRODUCTION

When two parallel lines are placed in close proximity, crosstalk can occur between them due to capacitive and inductive coupling. The problem of crosstalk noise in digital circuitry interconnections becomes significant with high density circuit packaging and short rise time pulses used in high speed circuits. Predicting the amount of crosstalk is complicated by the need to know characteristic impedances, coupling coefficients, and types of line terminations.

Work producing analytical predictions of crosstalk in the time domain has been done by many, such as DeFalco [1,2], Jarvis [3], and Feller et al. [4], in which differential equations describing the coupling between transmission lines are developed and then solved using the various line terminations as boundary conditions. This straightforward method can become quite complicated when the lines are driving non-linear loads (which can be distributed along the length of the line). Computer simulation can provide a convenient alternative to analytically obtaining crosstalk predictions.
In actual crosstalk measurements, the convenience and accuracy of automatic network analyzers make them an attractive test instrument. However, using test results from network analyzers to determine crosstalk for digital design engineers presents a problem. Network analyzers present crosstalk data as noise versus frequency. This is preferred by radio frequency engineers. Digital engineers prefer results in the time domain as crosstalk versus rise time.

The objective of this work is to provide a simple method to predict forward crosstalk due to signal rise time using crosstalk versus frequency information.
The work presented in this paper involves an investigation into transmission line behavior; therefore, a short derivation of transmission line equations is in order. This will show from where the transmission line model originates and that the model will support traveling waves. A transverse electromagnetic (TEM) propagation mode is assumed.

The electromagnetic properties of a microstrip transmission line are the self inductance per unit length \(L \), self capacitance per unit length \(C \), line resistance per unit length \(R \), and dielectric conductance from the line to the ground plane per unit length \(G \). The currents and voltages in the transmission line are expressed as functions of space \(z \) and time \(t \). The equivalent circuit model of a small, finite, transmission line section of length \(\Delta z \) and the corresponding voltages and currents are shown in Figure 1. The change in voltage and current, at one instant in time, across the model is expressed as
\[v(z, t) - v(z + \Delta z, t) = \left[R \Delta z + L \Delta z \frac{\partial}{\partial t} \right] i(z, t) \] \hspace{1cm} (2-1)\\
\[i(z, t) - i(z + \Delta z, t) = \left[G \Delta z + C \Delta z \frac{\partial}{\partial t} \right] v(z + \Delta z, t) \] \hspace{1cm} (2-2)\\

Or, with some rearranging, as

\[\frac{v(z, t) - v(z + \Delta z, t)}{\Delta z} = R i(z, t) + L \frac{\partial i(z, t)}{\partial t} \] \hspace{1cm} (2-3)\\
\[\frac{i(z, t) - i(z + \Delta z, t)}{\Delta z} = G v(z + \Delta z, t) + C \frac{\partial v(z + \Delta z, t)}{\partial t} \] \hspace{1cm} (2-4)\\

Letting the model length approach zero and using the definition of the partial derivative,

\[\lim_{\Delta z \to 0} \frac{f(z + \Delta z, t) - f(z, t)}{\Delta z} = \frac{\partial f(z, t)}{\partial z} \] \hspace{1cm} (2-5)
allows Equations 2-3 and 2-4 to be written as

\[\frac{\partial v(z,t)}{\partial z} = - R i(z,t) - L \frac{\partial i(z,t)}{\partial t} \quad (2-6) \]

\[\frac{\partial i(z,t)}{\partial z} = - G v(z,t) - C \frac{\partial v(z,t)}{\partial t} \quad (2-7) \]

Most microstrip lines can be considered approximately lossless. Hence, the resistive terms \(R \) and \(G \) can be safely neglected from the model and equations without losing much in the way of accuracy. This yields

\[\frac{\partial v(z,t)}{\partial z} = - L \frac{\partial i(z,t)}{\partial t} \quad (2-8) \]

\[\frac{\partial i(i,z)}{\partial z} = - C \frac{\partial v(z,t)}{\partial t} \quad (2-9) \]

Taking the partial derivative of 2-8 with respect to \(z \), and 2-9 with respect to \(t \),

\[\frac{\partial^2 v(z,t)}{\partial z^2} = - L \frac{\partial^2 i(z,t)}{\partial t \partial z} \quad (2-10) \]
\[
\frac{\partial^2 i(z,t)}{\partial t \, \partial z} = - C \frac{\partial^2 v(z,t)}{\partial t^2}
\] \hspace{1cm} (2-11)

and combining these to solve for the voltage gives,

\[
\frac{\partial^2 v(z,t)}{\partial z^2} = LC \frac{\partial^2 v(z,t)}{\partial t^2}
\] \hspace{1cm} (2-12)

\[
\frac{\partial^2 v(z,t)}{\partial z^2} - LC \frac{\partial^2 v(z,t)}{\partial t^2} = 0
\] \hspace{1cm} (2-13)

This is in the form of the one-dimensional wave equation

\[
\frac{\partial^2 f(z,t)}{\partial z^2} - \frac{1}{V_p^2} \frac{\partial^2 f(z,t)}{\partial t^2} = 0
\] \hspace{1cm} (2-14)

which has a solution of the form

\[
v(z,t) = F_1 \left(t - \frac{z}{V_p} \right) + F_2 \left(t + \frac{z}{V_p} \right)
\] \hspace{1cm} (2-15)

where \(V_p \) is the velocity of propagation \([(LC)^{-1/2}] \).
This indicates the total voltage is composed of arbitrary forward (F_1) and backward (F_2) traveling waveforms. Although this result assumes the transmission line is composed of an infinite number of incremental models of infinitesimal length dz, the line can be approximated with a finite number of models of length Δz. The required number of models for a close approximation is discussed in Chapter III.
Figure 1. Equivalent Circuit Model of a Microstrip Transmission Line Section.
CHAPTER III
TRANSMISSION LINE MODELING

Model Development

The geometry of two adjacent microstrip transmission lines is shown in Figure 2a. The lines are assumed to be lossless and of zero thickness (T). The items of interest are the line width (W), line spacing (S), height above the ground plane (H), and relative dielectric constant of the substrate board (ε_r). Using the S/H and W/H ratios and ε_r, values for the self inductance per unit length (L), self capacitance per unit length (C), mutual capacitance per unit length (C_M), inductive coupling constant (K_L), and characteristic impedance (Z_0) can be found via a numerical method used by Okugawa [5]. A FORTRAN program using this method is shown in Appendix A. These line parameters can then be used in two, coupled, incremental transmission line models [6] shown in Figure 2b.

When modeling a line of length y with lumped L-C elements, the line is divided into N discrete blocks of length Δz. As a rule of thumb, the propagation delay (T_d) caused by the element representing the length Δz should never be larger than one fifth the shortest rise time (τ_{MIN}) expected; a value of one twentieth the minimum rise
time, or less, allows the model to closely approximate the actual line [6]. The propagation delay is found by dividing the distance traveled, Δz, by the velocity of propagation as follows

$$T_d = \frac{\Delta z}{V_p} \quad (3-1)$$

$$V_p = (LC)^{-1/2} \quad (3-2)$$

$$T_d = \Delta z (LC)^{1/2} \quad (3-3)$$

using the previous condition of

$$T_d \leq \frac{\text{tr}_{\text{MIN}}}{20} \quad (3-4)$$

the required N can be determined as

$$\Delta z \leq \frac{\text{tr}_{\text{MIN}}}{20 (LC)^{1/2}} \quad (3-5)$$

$$\Delta z = \frac{Y}{N} \quad (3-6)$$
When \(N \) is found from Equation 3-7, it can be used in Equation 3-6 to find \(\Delta z \). The values of \(L, C, \) and \(C_M \) are then multiplied by \(\Delta z \) to obtain the values of the inductance, capacitance, and mutual capacitance, respectively, for use in each of the \(N \) incremental models.

Model Parameter Calculations

Eleven sets of 40 centimeter transmission lines were modeled. The \(S/H \) and \(W/H \) ratios were unique for each set so as to cover a range of layout geometries. Both \(S/H \) and \(W/H \) values ranged from 0.67 to 2.00. The values for \(S/H \) and \(W/H \) for each set, numbered 1 through 11, are listed in Table 1. Values of 5.3 and zero were used for \(\varepsilon_r \) and \(T \), respectively. Using this information, the FORTRAN program in Appendix A calculated the line parameters which are compiled in Table 2. Using \(L \) and \(C \) values in Table 2, 0.4 meters for \(y \), and \(\text{tr}_{\text{MIN}} \) of 100 ns in Equation 3-7, minimum values of \(N \) were found to be 5 or 6. A value of 8 was chosen for greater accuracy. Next, \(\Delta z \) was found, using Equation 3-6, to be 50x10^{-3} meters or 5 centimeters. From \(\Delta z \), the element values for each incremental model for each set were calculated and are listed in Table 3.
Figure 2. (a) Geometry of Two Adjacent Microstrip Transmission Lines. (b) Two, Coupled, Incremental Transmission Line Models of Length Δz.
Model Implementation

A physical conceptualization of the computer simulation setup is shown in Figure 3. A voltage source at \(z=0 \) with an internal resistance matched to the coupling influenced \(Z_O \) of the set being simulated is driving what will be called hereafter the active line. The active line is terminated with a resistance of \(Z_O \) at \(z=y \). The adjacent line, hereafter called the passive line, is terminated at \(z=0 \) with a resistance of \(Z_O \) and at \(z=y \) with a resistance \(Z_T \). The simulations are conducted with \(Z_T \) being set to a value of \(Z_O \) and infinity (open).

An item worth noting is that the impedance of the source is an external resistor above it. This resistor, and the one at the opposite end of the line, form a voltage divider of one half. Therefore, when a voltage value for the source is hereafter mentioned, the actual SPICE source is double this value.

SPICE Circuit Description

The above setup was translated into a SPICE circuit description. The main body of the circuit description includes the source, the terminations, and a call to a subcircuit in place of the lines. This subcircuit contains 8 calls to a second subcircuit which contains a circuit description of the coupled incremental model. Thus, 8 incremental models are, in effect, placed in the main body
of the circuit description. A sample of the circuit descriptions can be found in Appendices B and C.

Figure 3. Physical Conceptualization of Computer Simulation Setup.
TABLE 1

LIST OF S/H AND W/H VALUES FOR ALL SETS

<table>
<thead>
<tr>
<th>SET NUMBER</th>
<th>S/H</th>
<th>W/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>1.33</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>1.33</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>0.67</td>
<td>1.67</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>1.67</td>
</tr>
<tr>
<td>8</td>
<td>1.33</td>
<td>1.67</td>
</tr>
<tr>
<td>9</td>
<td>1.67</td>
<td>1.67</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>1.67</td>
</tr>
<tr>
<td>11</td>
<td>1.33</td>
<td>2.00</td>
</tr>
<tr>
<td>SET NUMBER</td>
<td>Z_0 (ohms)</td>
<td>L (nH/m)</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>74.998</td>
<td>486.54</td>
</tr>
<tr>
<td>2</td>
<td>76.783</td>
<td>488.04</td>
</tr>
<tr>
<td>3</td>
<td>77.437</td>
<td>490.10</td>
</tr>
<tr>
<td>4</td>
<td>64.279</td>
<td>412.80</td>
</tr>
<tr>
<td>5</td>
<td>55.636</td>
<td>360.76</td>
</tr>
<tr>
<td>6</td>
<td>48.147</td>
<td>319.05</td>
</tr>
<tr>
<td>7</td>
<td>48.746</td>
<td>320.33</td>
</tr>
<tr>
<td>8</td>
<td>49.095</td>
<td>321.39</td>
</tr>
<tr>
<td>9</td>
<td>49.318</td>
<td>322.29</td>
</tr>
<tr>
<td>10</td>
<td>49.457</td>
<td>323.01</td>
</tr>
<tr>
<td>11</td>
<td>41.794</td>
<td>289.05</td>
</tr>
</tbody>
</table>
TABLE 3
COUPLED INCREMENTAL MODEL ELEMENT VALUES FOR ALL SETS (CALCULATED FROM TABLE 2)

<table>
<thead>
<tr>
<th>SET NUMBER</th>
<th>L (nH)</th>
<th>C (pF)</th>
<th>C_M (pF)</th>
<th>K_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.327</td>
<td>4.2025</td>
<td>0.74475</td>
<td>0.28774</td>
</tr>
<tr>
<td>2</td>
<td>24.402</td>
<td>4.0730</td>
<td>0.36414</td>
<td>0.19112</td>
</tr>
<tr>
<td>3</td>
<td>24.505</td>
<td>4.0441</td>
<td>0.20022</td>
<td>0.14180</td>
</tr>
<tr>
<td>4</td>
<td>20.640</td>
<td>4.9202</td>
<td>0.42189</td>
<td>0.18495</td>
</tr>
<tr>
<td>5</td>
<td>18.038</td>
<td>5.7450</td>
<td>0.46217</td>
<td>0.17729</td>
</tr>
<tr>
<td>6</td>
<td>15.953</td>
<td>6.7205</td>
<td>0.89370</td>
<td>0.24569</td>
</tr>
<tr>
<td>7</td>
<td>16.017</td>
<td>6.6255</td>
<td>0.64820</td>
<td>0.20078</td>
</tr>
<tr>
<td>8</td>
<td>16.070</td>
<td>6.5785</td>
<td>0.49410</td>
<td>0.16992</td>
</tr>
<tr>
<td>9</td>
<td>16.115</td>
<td>6.5550</td>
<td>0.38777</td>
<td>0.14680</td>
</tr>
<tr>
<td>10</td>
<td>16.151</td>
<td>6.5450</td>
<td>0.31512</td>
<td>0.12977</td>
</tr>
<tr>
<td>11</td>
<td>14.453</td>
<td>8.1750</td>
<td>0.57800</td>
<td>0.16027</td>
</tr>
</tbody>
</table>
CHAPTER IV

ANALYTICAL PREDICTIONS OF CROSSTALK

The general expression \[4\] for the instantaneous forward crosstalk voltage induced anywhere on the passive line in Figure 3, when the active line is driven by the voltage \(V_{\text{in}}(t)\), is

\[
V(z,t) = K_f \ z \frac{d}{dt} \left[V_{\text{in}}(t - T_d \ \frac{z}{y}) \right] \tag{4-1}
\]

where \(K_f\) is the forward crosstalk constant, \(z\) is the distance along the line and \(y\) is the physical length of the coupled region (the entire length in this case). For forward crosstalk, the point of interest is at \(z=y\). Therefore,

\[
V_{\text{c}}(t) = K_f \ y \frac{d}{dt} \left[V_{\text{in}}(t - T_d) \right] \tag{4-2}
\]

When \(V_{\text{in}}(t)\) is a ramped pulse going from 0 to \(V_1\) volts in a rise time of \(t_r\) seconds, the prediction for the forward crosstalk voltage is a rectangular pulse, of duration \(t_r\) and
value V_2, whose appearance lags the source start time by T_d [1,2]. V_2 is expressed as

\begin{equation}
V_2 = - \left[K_L - \frac{C_M}{C} \right] (LC)^{1/2} \frac{Y}{2} \frac{V_1}{tr} \quad (Z_T=Z_0) \quad (4-3)
\end{equation}

\begin{equation}
V_2 = - \left[K_L - \frac{C_M}{C} \right] (LC)^{1/2} y \frac{V_1}{tr} \quad (Z_T=\text{open}) \quad (4-4)
\end{equation}

where V_1/tr is the derivative of $V_{in}(t)$ with respect to time. Therefore,

\begin{equation}
K_f = - \frac{1}{2} \left[K_L - \frac{C_M}{C} \right] (LC)^{1/2} \quad (Z_T=Z_0) \quad (4-5)
\end{equation}

\begin{equation}
K_f = - \left[K_L - \frac{C_M}{C} \right] (LC)^{1/2} \quad (Z_T=\text{open}) \quad (4-6)
\end{equation}

Using the above definitions, Equation 4-2 can be written as
\[
V_C = K_f y \frac{V_l}{tr} \tag{4-7}
\]

A graphical representation of this case can be seen in Figure 4. When solving for these equations, it is assumed that the coupling can be considered "weak" (the active line signal is not appreciably degraded by the passive line crosstalk waveform - one way coupling).

For the case of a sinusoidal input to the active line \([V_{in}(t) = V_l \sin(wt)]\), the solution of Equation 4-2 is

\[
V_C = -K_f y V_l w \cos(wt) \tag{4-8}
\]

The peak crosstalk voltage value for the sinusoidal case is

\[
|V_C| = |K_f| y V_l 2\pi f \tag{4-9}
\]

where \(f = w/2\pi\).
Rise Time to Equivalent Crosstalk Frequency Correlation

Given a rise time, an equivalent forward crosstalk frequency can be found by setting the magnitudes of the crosstalk values in Equations 4-7 and 4-8 to be equal. The result is

\[|K_f| y \frac{V_1}{tr} = |K_f| y V_1 2\pi f \quad (4-10) \]

Thus,

\[f = \frac{1}{2\pi tr} \quad (4-11) \]

or

\[tr = \frac{1}{2\pi f} \quad (4-12) \]

This shows that the rise time to equivalent crosstalk frequency correlation should have no dependency on line characteristics or the termination value of \(Z_T \). This correlation should allow a designer to predict crosstalk due to rise times by using noise versus frequency data obtained from measurements on a network analyzer.
Equation 4-12 is based on the assumption that the peak sinusoidal and transient pulse voltages are equal. Although most network analyzers have a low maximum peak sinusoidal voltage value, scaling can be performed to relate the results to a different transient pulse voltage by modifying Equation 4-12 to be

\[tr = \frac{V_t}{V_f \ 2 \pi f} \]

(4-13)

where \(V_t \) is the peak pulse voltage and \(V_f \) is the peak sinusoidal voltage.
Figure 4. Graphical Representation of Crosstalk.
CHAPTER V
COMPUTER SIMULATION OF CROSSTALK

A computer simulation of crosstalk was executed on a Microsoft Disk Operating System (MS-DOS) based computer (Intel 80286 microprocessor) equipped with a math co-processor (Intel 80287). A SPICE software package entitled "IS_SPICE" (from Intusoft Corporation, San Pedro, CA) was used to run transient and frequency response simulations on the coupled lines.

Transient Analysis
In the transient analysis, a programmable rise time voltage source going from 0 to 4 volts was used to drive the active line. Ten cases of rise times were simulated with \(t_r \) ranging from 100 to 1000 ns in 100 ns steps. A 500 ns rise time input waveform is shown in Figure 5. This was done for each case of \(Z_T \) in each of the eleven sets; thus, a total of 220 transient simulations were performed. Samples of the SPICE transient analysis circuit descriptions can be found in Appendix B.
Frequency Analysis

In the frequency analysis, a sinusoidal voltage source of 4 volts peak was used to drive the active line. This was done for each case of Z_T in each of the eleven sets. This produced a total of 22 frequency analysis simulations. A sample of the SPICE frequency analysis circuit descriptions can be found in Appendix C.

Transient Analysis Results

The forward crosstalk voltage results obtained from the transient simulation closely agreed with the analytical predictions. The crosstalk waveforms were negative going rectangular shaped pulses of tr in duration. However, for many of the sets, a sharp spike or overshoot appeared at the transitions of the rectangle and some sets had some ripple superimposed upon the pulse. This was due to ringing in the passive line model, since the rise time of the rectangular shaped waveform propagating through the model was violating the propagation delay to rise time relationship requirement from Chapter II; nevertheless, the overshoot quickly subsided. Samples of the crosstalk waveforms can be found in Appendix D. When taking voltage readings, the overshoots, when present, were neglected and the average value of the ripple, when present, was used. Examples of the overshoot and ripple can be seen in Figures 6a and 6b. The crosstalk amplitudes are shown in Tables 4 and 5. These amplitudes
consistently reached approximately 87% of the analytically predicted values. Plots of predicted values and simulation results for one simulation are shown in Figure 7. As predicted, the crosstalk amplitudes doubled when Z_T went from Z_0 to open as can be seen in Figure 8. The change in the crosstalk, due to variations in S/H and W/H ratios, is shown in Figures 9 and 10.
Figure 5. 500 ns Rise Time Input Waveform for Active Line.
Figure 6. (a) Example of Overshoot (Set 1, tr=200ns, \(Z_T=Z_0\)). (b) Example of ripple (Set 7, tr=700ns, \(Z_T=Z_0\)).
<table>
<thead>
<tr>
<th>SET</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.89</td>
<td>-2.45</td>
<td>-1.63</td>
<td>-1.22</td>
<td>-.977</td>
<td>-.815</td>
<td>-.699</td>
<td>-.611</td>
<td>-.544</td>
<td>-.489</td>
</tr>
<tr>
<td>2</td>
<td>-4.92</td>
<td>-2.46</td>
<td>-1.64</td>
<td>-1.23</td>
<td>-.984</td>
<td>-.820</td>
<td>-.703</td>
<td>-.615</td>
<td>-.546</td>
<td>-.492</td>
</tr>
<tr>
<td>3</td>
<td>-4.56</td>
<td>-2.28</td>
<td>-1.52</td>
<td>-1.14</td>
<td>-.912</td>
<td>-.760</td>
<td>-.651</td>
<td>-.570</td>
<td>-.506</td>
<td>-.456</td>
</tr>
<tr>
<td>4</td>
<td>-4.88</td>
<td>-2.44</td>
<td>-1.63</td>
<td>-1.22</td>
<td>-.976</td>
<td>-.813</td>
<td>-.697</td>
<td>-.610</td>
<td>-.542</td>
<td>-.488</td>
</tr>
<tr>
<td>5</td>
<td>-4.81</td>
<td>-2.41</td>
<td>-1.60</td>
<td>-1.20</td>
<td>-.963</td>
<td>-.802</td>
<td>-.686</td>
<td>-.602</td>
<td>-.535</td>
<td>-.481</td>
</tr>
<tr>
<td>6</td>
<td>-5.33</td>
<td>-2.66</td>
<td>-1.78</td>
<td>-1.33</td>
<td>-1.07</td>
<td>-.888</td>
<td>-.761</td>
<td>-.666</td>
<td>-.592</td>
<td>-.533</td>
</tr>
<tr>
<td>7</td>
<td>-5.05</td>
<td>-2.53</td>
<td>-1.68</td>
<td>-1.26</td>
<td>-1.01</td>
<td>-.842</td>
<td>-.722</td>
<td>-.632</td>
<td>-.562</td>
<td>-.505</td>
</tr>
<tr>
<td>8</td>
<td>-4.74</td>
<td>-2.37</td>
<td>-1.58</td>
<td>-1.19</td>
<td>-.949</td>
<td>-.791</td>
<td>-.678</td>
<td>-.592</td>
<td>-.527</td>
<td>-.474</td>
</tr>
<tr>
<td>9</td>
<td>-4.43</td>
<td>-2.22</td>
<td>-1.48</td>
<td>-1.11</td>
<td>-.887</td>
<td>-.739</td>
<td>-.633</td>
<td>-.554</td>
<td>-.493</td>
<td>-.443</td>
</tr>
<tr>
<td>10</td>
<td>-4.16</td>
<td>-2.08</td>
<td>-1.39</td>
<td>-1.04</td>
<td>-.831</td>
<td>-.693</td>
<td>-.594</td>
<td>-.519</td>
<td>-.462</td>
<td>-.416</td>
</tr>
<tr>
<td>11</td>
<td>-4.31</td>
<td>-2.15</td>
<td>-1.44</td>
<td>-1.08</td>
<td>-.862</td>
<td>-.718</td>
<td>-.615</td>
<td>-.538</td>
<td>-.479</td>
<td>-.431</td>
</tr>
</tbody>
</table>

TABLE 4

FORWARD CROSSTALK AMPLITUDES FOR $Z_T=Z_O$
TABLE 5

FORWARD CROSSTALK AMPLITUDES FOR \(z_T = \text{open} \)

<table>
<thead>
<tr>
<th>SET</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9.78</td>
<td>-4.89</td>
<td>-3.26</td>
<td>-2.45</td>
<td>-1.96</td>
<td>-1.63</td>
<td>-1.40</td>
<td>-1.22</td>
<td>-1.09</td>
<td>-0.979</td>
</tr>
<tr>
<td>2</td>
<td>-9.84</td>
<td>-4.92</td>
<td>-3.28</td>
<td>-2.46</td>
<td>-1.97</td>
<td>-1.64</td>
<td>-1.41</td>
<td>-1.23</td>
<td>-1.09</td>
<td>-0.984</td>
</tr>
<tr>
<td>3</td>
<td>-9.12</td>
<td>-4.56</td>
<td>-3.04</td>
<td>-2.28</td>
<td>-1.82</td>
<td>-1.52</td>
<td>-1.30</td>
<td>-1.14</td>
<td>-1.01</td>
<td>-0.912</td>
</tr>
<tr>
<td>4</td>
<td>-9.76</td>
<td>-4.88</td>
<td>-3.25</td>
<td>-2.44</td>
<td>-1.95</td>
<td>-1.63</td>
<td>-1.39</td>
<td>-1.22</td>
<td>-1.08</td>
<td>-0.946</td>
</tr>
<tr>
<td>5</td>
<td>-9.63</td>
<td>-4.81</td>
<td>-3.21</td>
<td>-2.41</td>
<td>-1.92</td>
<td>-1.60</td>
<td>-1.38</td>
<td>-1.20</td>
<td>-1.07</td>
<td>-0.962</td>
</tr>
<tr>
<td>6</td>
<td>-10.7</td>
<td>-5.33</td>
<td>-3.55</td>
<td>-2.66</td>
<td>-2.13</td>
<td>-1.78</td>
<td>-1.52</td>
<td>-1.33</td>
<td>-1.18</td>
<td>-1.07</td>
</tr>
<tr>
<td>7</td>
<td>-10.1</td>
<td>-5.05</td>
<td>-3.37</td>
<td>-2.53</td>
<td>-2.02</td>
<td>-1.68</td>
<td>-1.44</td>
<td>-1.26</td>
<td>-1.12</td>
<td>-1.01</td>
</tr>
<tr>
<td>8</td>
<td>-9.49</td>
<td>-4.74</td>
<td>-3.16</td>
<td>-2.37</td>
<td>-1.90</td>
<td>-1.58</td>
<td>-1.35</td>
<td>-1.19</td>
<td>-1.05</td>
<td>-0.948</td>
</tr>
<tr>
<td>9</td>
<td>-8.87</td>
<td>-4.43</td>
<td>-2.96</td>
<td>-2.22</td>
<td>-1.77</td>
<td>-1.48</td>
<td>-1.27</td>
<td>-1.11</td>
<td>-0.985</td>
<td>-0.887</td>
</tr>
<tr>
<td>10</td>
<td>-8.31</td>
<td>-4.16</td>
<td>-2.77</td>
<td>-2.08</td>
<td>-1.66</td>
<td>-1.39</td>
<td>-1.19</td>
<td>-1.04</td>
<td>-0.923</td>
<td>-0.831</td>
</tr>
<tr>
<td>11</td>
<td>-8.61</td>
<td>-4.31</td>
<td>-2.87</td>
<td>-2.15</td>
<td>-1.72</td>
<td>-1.44</td>
<td>-1.23</td>
<td>-1.08</td>
<td>-0.957</td>
<td>-0.861</td>
</tr>
</tbody>
</table>

Note: The values are in mv (millivolts).
Figure 7. Plot of Theoretical and Simulated Crosstalk Magnitude for Set 1 with $Z_T = Z_0$.
Figure 8. Plot of Simulated Crosstalk Magnitude for Set 1 with $Z_T=Z_0$ and $Z_T=\text{Open}$.
Figure 9. Plot of Simulated Crosstalk Magnitude vs S/H.
Figure 10. Plot of Simulated Crosstalk Magnitude vs W/H.
Frequency Analysis Results

The forward crosstalk voltage frequency response showed a linear dependency on frequency which agrees with the analytical predictions. However, the crosstalk voltage magnitudes consistently reached only 87% of the predicted values as in the transient analysis. The frequency response curves can be found in Appendix E.
 CHAPTER VI
RISE TIME TO EQUIVALENT CROSSTALK FREQUENCY CORRELATION

The rise time to equivalent crosstalk frequency correlation was performed by finding the frequency which gives the same crosstalk voltage magnitude as a particular rise time. This was done for each case of Z_T in all eleven sets and all ten values of t_r. The results, listed in Tables 6 and 7, are in agreement with the analytical correlation predictions of Equations 4-11 and 4-12 as can be seen in Figure 11. The frequency versus rise time values predicted by Equation 4-11 are shown in Table 8.
TABLE 6

EQUIVALENT CROSSTALK FREQUENCIES FOR $z_T = z_O$

<table>
<thead>
<tr>
<th>SET</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15,900</td>
<td>796</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>2</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>4</td>
<td>15,900</td>
<td>796</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>5</td>
<td>15,900</td>
<td>796</td>
<td>529</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>6</td>
<td>15,900</td>
<td>795</td>
<td>533</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>7</td>
<td>15,900</td>
<td>796</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>399</td>
<td>319</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>9</td>
<td>15,900</td>
<td>796</td>
<td>531</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>15,900</td>
<td>795</td>
<td>531</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>11</td>
<td>15,900</td>
<td>795</td>
<td>533</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>SET</td>
<td>RISE TIME (ns)</td>
<td>(kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>399</td>
<td>319</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>2</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>4</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>266</td>
<td>227</td>
<td>199</td>
<td>176</td>
<td>159</td>
</tr>
<tr>
<td>5</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>399</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>6</td>
<td>15,900</td>
<td>796</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>266</td>
<td>227</td>
<td>199</td>
<td>177</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>399</td>
<td>318</td>
<td>265</td>
<td>227</td>
<td>199</td>
<td>176</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>319</td>
<td>265</td>
<td>227</td>
<td>200</td>
<td>176</td>
<td>159</td>
</tr>
<tr>
<td>9</td>
<td>15,900</td>
<td>795</td>
<td>531</td>
<td>399</td>
<td>318</td>
<td>265</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>266</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
<tr>
<td>11</td>
<td>15,900</td>
<td>795</td>
<td>530</td>
<td>398</td>
<td>318</td>
<td>266</td>
<td>228</td>
<td>199</td>
<td>177</td>
<td>159</td>
</tr>
</tbody>
</table>
Figure 11. Plots of Correlated Simulation Measurements and Analytical Predictions of Frequency vs Equivalent Crosstalk Rise Time.
TABLE 8
PREDICTED EQUIVALENT CROSSTALK FREQUENCIES

<table>
<thead>
<tr>
<th>RISE TIME (ns)</th>
<th>FREQUENCY (KHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15,900</td>
</tr>
<tr>
<td>200</td>
<td>796</td>
</tr>
<tr>
<td>300</td>
<td>531</td>
</tr>
<tr>
<td>400</td>
<td>398</td>
</tr>
<tr>
<td>500</td>
<td>318</td>
</tr>
<tr>
<td>600</td>
<td>265</td>
</tr>
<tr>
<td>700</td>
<td>227</td>
</tr>
<tr>
<td>800</td>
<td>199</td>
</tr>
<tr>
<td>900</td>
<td>177</td>
</tr>
<tr>
<td>1000</td>
<td>159</td>
</tr>
</tbody>
</table>
CHAPTER VII
CONCLUSIONS

Both frequency and transient response crosstalk values were consistently 13% lower than the analytical predictions. This was due to the discrete nature of the simulation model. In this model, energy exchange between the active and passive lines was allowed at only 8 discrete points. In reality, energy is continuously being absorbed by the passive line over the entire length of the coupled region. This discretization error, which lowers the apparent forward crosstalk constant, can be reduced by increasing the number of incremental models at the expense of increasing the simulation time and, eventually, running out of computer memory. However, the forward crosstalk constant, K_f, is equally common to both the transient and frequency response. Therefore, as can be seen in the effects of Z_T, that which affects K_f, affects both responses equally. Equations 4-11 and 4-12 show that the forward crosstalk constant cancels out in the rise time to equivalent crosstalk frequency correlation; hence, the discretization error serves to point out the immunity of the correlation predictions against variances in coupling strength.
Reduction of crosstalk in the setup under consideration can be accomplished by the modification of three items: the rise time, the line parameters, and the line termination. Reducing the rise time will reduce the crosstalk; however, the thrust of modern digital circuit design is to increase the speed of operation leading to shorter data pulses and, consequently, shorter rise times. Therefore, in most cases, this is an unfeasible option. Increasing the W/H ratio tends to concentrate the electric and magnetic fields between the microstrip line and the ground plane, thereby reducing coupling somewhat. The S/H ratio controls the proximity coupling effect which is analogous to the near field region of an antenna. Here, the field strength is inversely proportional to various powers of the spacing. Increasing S and/or W, however, is contrary to the desire for denser packaging to meet the constant demand for more compact designs. The decreasing of the dielectric height would help, but this is limited by manufacturing techniques. In any case, the decrease in crosstalk due to varying S/H and W/H is small compared to the effect of line termination. Designing device input impedances to closely match the characteristic impedance of the microstrip lines appears to be a feasible option. This can reduce crosstalk values by as much as one half and also avoid reflections.

The rise time to equivalent crosstalk frequency correlation results show that it is possible to use forward
crosstalk noise versus frequency data obtained from a network analyzer to predict forward crosstalk versus rise time in a simple and accurate manner. This allows one to avoid tedious and error prone time domain tests where oscilloscope capacitive loading and bandwidth restriction can present considerable measurement problems when using short rise times.

There is an upper limit on the frequency range over which this correlation can be considered valid. A TEM propagation mode was assumed when developing the equations and model used in this study of crosstalk. This is a safe assumption up to a frequency of several gigahertz for most microstrip lines. At higher frequencies, however, the lines become dispersive due to the different dielectric constants of the air and the substrate board. The coupling to the passive line should still remain proportional to the derivative of the signal on the active line due to the nature of inductive and capacitive coupling. However, the ramped pulse signal on the active line is subject to distortion as it propagates when the rise times become very small and the derivative of this distorted signal will determine the resultant crosstalk waveform. Further work studying the effects of dispersive propagation on forward crosstalk may determine the upper frequency limit at which the correlation may be considered valid.
APPENDICES
APPENDIX A

FORTRAN PROGRAM FOR CALCULATING
MICROSTRIP TRANSMISSION LINE CHARACTERISTICS
COUPLED MICROSTRIP LINES

S - DISTANCE BETWEEN STRIPS
W - WIDTH OF STRIP
T - THICKNESS OF STRIP
H - THICKNESS OF DIELECTRIC
LT - LOSS TANGENT
ER - PERMITTIVITY OF DIELECTRIC
ERE - EFFECTIVE PERMITTIVITY
CE - EVEN MODE CAPACITANCE
CO - ODD MODE CAPACITANCE
CF - FRINGE CAPACITANCE
CP - CAPACITANCE BETWEEN STRIP AND GROUND PLANE
CFM - MODIFICATION OF CF DUE TO PRESENCE OF ANOTHER LINE
CGA - GAP CAPACITANCE IN AIR
CGD - GAP CAPACITANCE IN DIELECTRIC
CEA - EVEN MODE CAPACITANCE FOR AIR DIELECTRIC
COA - ODD MODE CAPACITANCE FOR AIR DIELECTRIC
LlS - SELF INDUCTANCE OF LINE
CIS - SELF CAPACITANCE OF LINE
LOM - MUTUAL INDUCTANCE OF COUPLED LINES
COM - MUTUAL CAPACITANCE OF COUPLED LINES
KL,KC - COUPLING COEFFICIENTS
ZOEM,ZOOM - CHARACTERISTIC IMPEDANCES OF COUPLED EVEN AND MODES
ZO - CHARACTERISTIC IMPEDANCE OF COUPLED LINE
FREQ - FREQUENCY AT WHICH ANALYSIS IS PERFORMED

CALCULATION OF EVEN AND ODD ORDER CAPACITANCES.

REF: GUPTA,GARG & BAHL -- MICROSTRIP LINES AND SLOT LINES. PG 337

CE=CP+CF+CFM CO=CF+CP+CGA+CGD

100 FORMAT(E11.1,4(F7.3))
102 FORMAT(2X,'FREQ=',E9.1,2X,'SBH=',F5.3,2X,'WBH=',*
 F5.3,2X,'T=',F5.3,12X,'ER=',F5.3/)
105 FORMAT(/5X,'WIDE STRIP ---- ER')
110 FORMAT(5X,'WIDE STRIP ---- AIR')
115 FORMAT(/5X,'NARROW STRIP ---- ER')
120 FORMAT(5X,'NARROW STRIP ---- AIR')
125 FORMAT(/5X,'ERE=',E12.5,2X,'ZOS=',E12.5/)
130 FORMAT(5X,'CP=',E12.5,2X,'CF=',E12.5,2X,'CFM=',E12.5)
135 FORMAT(/5X,'EVEN MODE CAPACITANCE CEF=',E12.5/)
140 FORMAT(5X,'CGA=',E12.5,2X,'CGD=',E12.5)
145 FORMAT(/5X,'ODD MODE CAPACITANCE COA=',E12.5/)
150 FORMAT(/5X,'LlS=',E12.5,2X,'LOM=',E12.5)
155 FORMAT(5X,'CIS=',E12.5,2X,'COM='E12.5/)
160 FORMAT(5X,'KL=',E12.5,2X,'KC=',E12.5/)
165 FORMAT(5X,'ZOEM=',E12.5,2X,'ZOOM=',E12.5,2X,
'ZO=',E12.6/)
REAL LT,K,K2,KG,KG,KL,KC,L1S,LOM,MUO,KP2,KLCP
DIMENSION Y(30)
PI=3.142
EO=8.854E-12
MUO=PI*4E-07
C
OPEN(9,FILE='INPUT.DAT',STATUS='OLD')
READ(9,100)FREQ,SBH,WBH,T,ER
CLOSE(9)
OPEN(11,FILE='OUT.DAT',STATUS='UNKNOWN')
WRITE(11,102)FREQ,SBH,WBH,T,ER
GO TO 80
C RATIO OF W/H > 2 -WIDE STRIP; W/H < 2 -NARROW STRIP
SBHI=1.0/SBH
WBHI=1.0/WBH
DO 30 I=1,2
IF(I.EQ.2)ER=1.0
ERPl=ER+1.0
ERMl=ER-1.0
IF(WBHI.LT.2.0)GO TO 10
C WIDE STRIP
IF(I.EQ.1)WRITE(11,105)
IF(I.EQ.2)WRITE(11,110)
CALL CDR(X,WBH)
D=1.0+SQRT(1.0+X**2)
A1=ALOG((D+X)/(D-X))
A21=0.358*D+0.595
A2=ALOG(A21+SQRT(A21**2-1.0))
A3=D*ER
Q=1.0-A1/D+0.732*(A1-A2)/A3+ERMl/A3*(0.386-0.5/(D-1))
ERE=1.0-Q+Q*ER
ZOS=377.0/SQRT(ER)*((WBH+0.883+ERP1/(PI*ER)*
*(ALOG(0.5*WBH+0.94)+1.451)+0.165*ERM1/ER**2)**(-1))
WRITE(11,125)ERE,ZOS
GO TO 15
10 CONTINUE
C NARROW STRIP
IF(I.EQ.1)WRITE(11,115)
IF(I.EQ.2)WRITE(11,120)
ERE=0.5*ERP1+0.5*ERM1*(ALOG(0.5*PI)+ALOG(4.0/PI)
*/ER)/ALOG(8.0*WBHI)
ZOS=377.0/(2.0*PI*SQRT(0.5*ERP1))*(ALOG(8.0*WBHI)
*+(0.5*WBH)**2/8.0-0.5*ERM1/ERP1*(ALOG(0.5*PI)+
*ALOG(4.0/PI)/ER))
WRITE(11,125)ERE,ZOS
GO TO 15
15 CONTINUE
VEL=3.0E+08
CP=EO*ER*WBH
A=EXP(-0.1*EXP(2.33-2.53*WBH))
CF=0.5*(((SQRT(ERE))/(VEL*ZOS)-CP)}
X=10.0*SBH
ATX=(EXP(X) - EXP(-X))/(EXP(X) + EXP(-X))
DEN=1.0 + A*SBHI*ATX
CFM=CF/DEN*SQR(ER/ERE)
WRITE(11,130) CP, CF, CFM
CEF=CP + CF + CFM
WRITE(11,135) CEF
IF(I.EQ.2) THEN
 CEA=CEF
ELSE
 CE=CEF
ENDIF
K=SBH/(SBH + 2.0*WBH)
K2=K**2
KP2=SQR(1.0 - K2)
KP=SQR(KP2)
IF((0.5.LE.K2).AND.(K2.LE.1.0)) GO TO 20
C FOR 0.0 <= K2 <= 0.5
CGA=(EO/PI)*ALOG(2.0*(1.0+SQR(KP))/(1.0-SQR(KP)))
GO TO 25
20 CONTINUE
CGA=PI*EO/ALOG(2.0*(1.0+SQR(K))/(1.0-SQR(K)))
25 CONTINUE
X=PI*SBH/4.0
ACX=(EXP(X) + EXP(-X))/(EXP(X) - EXP(-X))
CGD=EO*ER/PI*ALOG(ACX) + 0.65*CF*(0.02*SQR(ER)/SBH)**+ (1.0-1.0/ER**2))
WRITE(11,140) CGA, CGD
COF=CP + CF + CGA + CGD
WRITE(11,145) COF
IF(I.EQ.2) THEN
 COA=COF
ELSE
 CO=COF
ENDIF
30 CONTINUE
L1S = MUO*EO*(1.0/COA + 1.0/CEA)/2.0
LOM = MUO*EO*(1.0/CEA - 1.0/COA)/2.0
WRITE(11,150) L1S, LOM
C1S = 0.5*(CO + CE)
COM = 0.5*(CO - CE)
WRITE(11,155) C1S, COM
KL = LOM/L1S
KC = COM/C1S
WRITE(11,160) KL, KC
ZOEM = 1.0/(VEL*SQR(CEA*CE))
ZOOM = 1.0/(VEL*SQR(COA*CO))
ZO=SQR(ZOEM*ZOOM)
WRITE(11,165) ZOEM, ZOOM, ZO
80 CONTINUE
CLOSE(11)
STOP
END

SUBROUTINE CDR(XX,WBH)

DIMENSION Y(30)
PI=3.142
X=0.0
DO 100 I=1,10
F=X-ALOG(X+SQRT(X*X+1.0))-PI*WBH/2.0
FP=1.0-((1.0+X/SQRT(1.0+X*X))/(X+SQRT(X*X+1.0)))
IF(FP.EQ.0.0)FP=1.0E-05
Y(I)=X-F/FP
X=Y(I)
IF(F.EQ.0.01) GO TO 200
100 CONTINUE
200 X=XX
RETURN
END
APPENDIX B

SAMPLES OF SPICE TRANSIENT ANALYSIS CIRCUIT DESCRIPTIONS
** Model of 40 cm coupled lines constructed of 8
- cascaded 5 cm segments.
- INDUCTIVE AND CAPACITIVE COUPLING
- SET 1, \(t_r=100 \) ns, \(Z_T=Z_0 \).

```plaintext
* .OPTIONS ACCT LIST LIMPTS=1000
* .TRAN 1.0E-9 1.5E-7
* .PRINT TRAN V(5) V(4) V(2)
VIN 1 0 PULSE 0 8 0 1.0E-7 1.0E-7 3.0E-7
RIN 1 2 74.998
X1 2 3 4 5 TWOLINE1
RLOAD1 3 0 74.998
RLOAD2 4 0 74.998
RLOAD3 5 0 74.998
*
* .SUBCKT TWOLINE1 1 3 2 4
X1 1 3 5 6 TWOLINE2
X2 5 6 7 8 TWOLINE2
X3 7 8 9 10 TWOLINE2
X4 9 10 11 12 TWOLINE2
X5 11 12 13 14 TWOLINE2
X6 13 14 15 16 TWOLINE2
X7 15 16 17 18 TWOLINE2
X8 17 18 2 4 TWOLINE2
* .ENDS
*
* .SUBCKT TWOLINE2 1 3 2 4
* IN  OUT
L1 1 2 2.432699979960813E-008
C1 2 0 4.202449909067959E-012
* L2 3 4 2.432699979960813E-008
C2 4 0 4.202449909067959E-012
* CM2 2 4 7.447500192890482E-013
K12 L1 L2 .2877399921417236
* .ENDS
*
* .END
```
* Model of 40 cm coupled lines constructed of 8 cascaded 5 cm segments.
* INDUCTIVE AND CAPACITIVE COUPLING
* SET 2, tr=100 ns, ZT=OPEN.

OPTIONS
ACCT LIST LIMPTS=1000
.TRAN 1.0E-9 1.5E-7
.PRINT TRAN V(5) V(4) V(2)
VIN 1 0 PULSE 0 8 0 1.0E-7 1.0E-7 3.0E-7
RIN 1 2 76.783
X1 2 3 4 5 TWOLINE1
RLOAD1 3 0 76.783
RLOAD2 4 0 76.783

SUBCKT
X1 1 3 2 4
X2 5 6 7 8 TWOLINE2
X3 7 8 9 10 TWOLINE2
X4 9 10 11 12 TWOLINE2
X5 11 12 13 14 TWOLINE2
X6 13 14 15 16 TWOLINE2
X7 15 16 17 18 TWOLINE2
X8 17 18 2 4 TWOLINE2

SUBCKT
IN OUT
L1 1 2 2.440199900757065E-008
C1 2 0 4.072999984135883E-012
L2 3 4 2.440199900757065E-008
C2 4 0 4.072999984135883E-012
CM2 2 4 3.641400169728298E-013
K12 L1 L2 .1911199986934662

END
APPENDIX C

SAMPLES OF SPICE FREQUENCY ANALYSIS CIRCUIT DESCRIPTIONS
MODEL OF 40 CM COUPLED LINES CONSTRUCTED OF 8 CASCaded 5 CM SEGMENTS.

* INDUCTIVE AND CAPACITIVE COUPLING

SET 1, ZT=Zo.

.OPTIONS LIMPTS=1000
.AC LIN 512 100KHZ 1600KHZ
.PRINT AC VM(5) VM(4) VM(2)
VIN 1 0 AC 8
RIN 1 2 74.998
RLOAD1 3 0 74.998
RLOAD2 4 0 74.998
RLOAD3 5 0 74.998

SUBCKT X1 X2 X3 X4 X5 X6 X7 X8 TWOLINE1 1 3 5 6 TWOLINE2
X1 1 3 5 6 TWOLINE2
X2 5 6 7 8 TWOLINE2
X3 7 8 9 10 TWOLINE2
X4 9 10 11 12 TWOLINE2
X5 11 12 13 14 TWOLINE2
X6 13 14 15 16 TWOLINE2
X7 15 16 17 18 TWOLINE2
X8 17 18 2 4 TWOLINE2
.ENS

SUBCKT TWOLINE2 1 3 2 4
* IN OUT
L1 1 2 2.432699979960813E-008
C1 2 0 4.20249909067959E-012
L2 3 4 2.432699979960813E-008
C2 4 0 4.20249909067959E-012
CM2 2 4 7.447500192890482E-013
K12 L1 L2 .2877399921417236
.ENS

END
Model of 40 cm coupled lines constructed of 8 cascaded 5 cm segments.
INDUCTIVE AND CAPACITIVE COUPLING
SET 2, ZT=OPEN.

*OPTIONS LIMPTS=1000
.AC LIN 512 100KHZ 1600KHZ
.PRINT AC VM(5) VM(4) VM(2)
VIN 1 0 AC 8
RIN 1 2 76.783
X1 2 3 4 5 TWOLINE1
RLOAD1 3 0 76.783
RLOAD2 4 0 76.783

*SUBCKT TWOLINE1 1 3 2 4
X1 1 3 5 6 TWOLINE2
X2 5 6 7 8 TWOLINE2
X3 7 8 9 10 TWOLINE2
X4 9 10 11 12 TWOLINE2
X5 11 12 13 14 TWOLINE2
X6 13 14 15 16 TWOLINE2
X7 15 16 17 18 TWOLINE2
X8 17 18 2 4 TWOLINE2
.ENDS

*SUBCKT TWOLINE2 1 3 2 4
*IN OUT
L1 1 2 2.440199900757065E-008
C1 2 0 4.072999984135883E-012
*L2 3 4 2.440199900757065E-008
C2 4 0 4.072999984135883E-012
*CM2 2 4 3.641400169728298E-013
K12 L1 L2 .1911199986934662
*ENDS

*END

* Model of 40 cm coupled lines constructed of 8
* cascaded 5 cm segments.
* INDUCTIVE AND CAPACITIVE COUPLING
* SET 2, ZT=OPEN.
* .OPTIONS LIMPTS=1000
* .AC LIN 512 100KHZ 1600KHZ
* .PRINT AC VM(5) VM(4) VM(2)
* VIN 1 0 AC 8
* RIN 1 2 76.783
* X1 2 3 4 5 TWOLINE1
* RLOAD1 3 0 76.783
* RLOAD2 4 0 76.783
* .SUBCKT TWOLINE1 1 3 2 4
* X1 1 3 5 6 TWOLINE2
* X2 5 6 7 8 TWOLINE2
* X3 7 8 9 10 TWOLINE2
* X4 9 10 11 12 TWOLINE2
* X5 11 12 13 14 TWOLINE2
* X6 13 14 15 16 TWOLINE2
* X7 15 16 17 18 TWOLINE2
* X8 17 18 2 4 TWOLINE2
* .ENDS
* .SUBCKT TWOLINE2 1 3 2 4
* IN OUT
* L1 1 2 2.440199900757065E-008
* C1 2 0 4.072999984135883E-012
* L2 3 4 2.440199900757065E-008
* C2 4 0 4.072999984135883E-012
* CM2 2 4 3.641400169728298E-013
* K12 L1 L2 .1911199986934662
* .ENDS

APPENDIX D

SAMPLES OF TRANSIENT SIMULATION RESULTS
SET 1, $Z_T = Z_O$, $tr = 200$ ns.
SET 2, $Z_T = Z_0$, $tr = 100$ ns.

<table>
<thead>
<tr>
<th>CH 1 V(S) vs TIME</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td>VER</td>
<td>305PV</td>
<td>7.50UV</td>
<td>7.50UV</td>
</tr>
<tr>
<td>YZERO -2.20MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCLAE 20NSEC/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 100NSEC</td>
<td>HQR</td>
<td>4.00FSEC</td>
<td>150NSEC</td>
<td>150NSEC</td>
</tr>
</tbody>
</table>
SET 3, $Z_T=Z_O$, $t_r=300$ ns.
SET 4, $Z_T = Z_0$, $tr = 500$ ns.
SET 5, $Z_T = Z_0$, $tr = 400$ ns.
SET 6, $Z_T = Z_0$, $t_r = 600$ ns.
SET 7, \(Z_t = Z_0 \), \(tr = 700 \) ns.
SET 8, $Z_T = Z_0$, $t_r = 800$ ns.
SET 9, $Z_T = Z_0$, $tr = 200$ ns.

CH 1 V(5) vs TIME

<table>
<thead>
<tr>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>-0.00EOV</td>
<td>-4.69UV</td>
<td>-4.69UV</td>
</tr>
<tr>
<td>HOR</td>
<td>-5.33FSEC</td>
<td>299NSEC</td>
<td>299NSEC</td>
</tr>
</tbody>
</table>

YSCALE 500UV/DIV

YZERO -1.30MV

XSCALE 50NSEC/DIV

XZERO 250NSEC
SET 10, $Z_T = Z_0$, $tr = 1000$ ns.
SET 11, $Z_T = Z_0$, $tr = 300$ ns.
SET 1, $Z_T=\text{OPEN}$, $\text{tr}=1000$ ns.
SET 2, Z_T=OPEN, $tr=300$ ns.
SET 3, $Z_T=$OPEN, $tr=700$ ns.
SET 4, $Z_T=\text{OPEN}$, $tr=900\ \text{ns}$.
SET 5, \(Z_T = \text{OPEN} \), \(tr = 700 \text{ ns} \).
SET 6, $Z_T=$OPEN, $tr=600$ ns.

CH 1 V(5) vs TIME

CURSOR	LEFT	RIGHT	DIFFERENCE
YSCALE 500UV/ DIV | VER | 153PV | -3.44UV | -3.44UV
YZERO -1.10MV | | | |
XSCALE 100NS/ DIV | HOR | -10.7FSEC | 897NSEC | 897NSEC
XZERO 500NS/ | | | |

CH 1
SET 7, $Z_T=\text{OPEN}$, $tr=100\ \text{ns}$.

<table>
<thead>
<tr>
<th>CH 1 V(5) vs TIME</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 2MV/DIV</td>
<td>VER</td>
<td>-0.00E0V</td>
<td>15.0UV</td>
<td>15.0UV</td>
</tr>
<tr>
<td>YZERO -5.20MV</td>
<td>HOR</td>
<td>4.00FSEC</td>
<td>150NSEC</td>
<td>150NSEC</td>
</tr>
<tr>
<td>XSCALE 20NSEC/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 100NSEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph Image]
SET 8, $Z_T =$OPEN, $tr =$500 ns.

CH 1 V (5) vs TIME
YSCALE 500UV/DIV
YZERO -700UV
XSCALE 100NSEC/DIV
XZERO 500NSEC
CURSOR
LEFT
RIGHT
DIFFERENCE

Vert. position: -0.0000
Hor. position: -10.7FSEC
Difference: 747NSEC
SET 9, $Z_T=$OPEN, $tr=200$ ns.
SET 10, Z_T=OPEN, tr=400 ns.

CH 1 V(5) vs TIME

<table>
<thead>
<tr>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>-0.00E0V</td>
<td>-14.7UV</td>
<td>-14.7UV</td>
</tr>
</tbody>
</table>

YSCALE 500UV/DIV

YZERO -1.20MV

XSACLE 100NSEC/DIV

XZERO 500NSEC

HOR -10.7FSEC 597NSEC 597NSEC
SET 11, $Z_T=\text{OPEN}$, $tr=500$ ns.
APPENDIX E

FREQUENCY SIMULATION RESULTS
SET 1, $Z_T = Z_0$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VERTICAL</td>
<td>353UV</td>
<td>4.81MV</td>
<td>4.55MV</td>
</tr>
<tr>
<td>YZERO 2.60MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HORIZONTAL</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 2, $Z_T = Z_O$.

<table>
<thead>
<tr>
<th>CH 1 VM (5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VERT</td>
<td>354UV</td>
<td>4.93MV</td>
<td>4.58MV</td>
</tr>
<tr>
<td>YZERO 2.60MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HORIZ</td>
<td>120KHz</td>
<td>1.59MEG Hz</td>
<td>1.48MEG Hz</td>
</tr>
<tr>
<td>XZERO 1.12MEG Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 3, $z_T = z_O$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VER</td>
<td>328UV</td>
<td>4.57MV</td>
<td>4.24MV</td>
</tr>
<tr>
<td>YZERO 2.40MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HORA</td>
<td>120KHZ</td>
<td>1.59MEG</td>
<td>1.48MEG</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 4, \(z_T = z_0 \).
SET 5, $Z_T = Z_0$.

<table>
<thead>
<tr>
<th>CH 1 VM (5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VERT</td>
<td>347UV</td>
<td>4.82MV</td>
<td>4.48MV</td>
</tr>
<tr>
<td>YZERO 2.60MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td>HORIZ</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
</tbody>
</table>
SET 6, $Z_T = Z_0$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td>VER</td>
<td>384UV</td>
<td>5.34MV</td>
<td>4.96MV</td>
</tr>
<tr>
<td>YZERO 2.80MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HORIZ</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 7, $z_T = z_0$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VERT</td>
<td>364UV</td>
<td>5.07MV</td>
<td>4.70MV</td>
</tr>
<tr>
<td>YZERO 2.70MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HORIZ</td>
<td>120KHZ</td>
<td>1.59MEG赫兹</td>
<td>1.48MEG赫兹</td>
</tr>
<tr>
<td>XZERO 1.12MEG赫兹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 8, $Z_T = Z_O$.

CH 1 $VH(5)$ vs FREQuency
YSCALE 500UV/DIV
YZERO 2.50MV
XSCALE 200KHZ/DIV
XZERO 1.12MEGHZ

CURSOR LEFT RIGHT DIFFERENCE
VER 342UV 4.75MV 4.41MV
HOR 120KHZ 1.59MEGHZ 1.48MEGHZ
SET \(Z_T = Z_O \)
SET 10, $Z_T = Z_O$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/DIV</td>
<td>VER</td>
<td>299UV</td>
<td>4.16MV</td>
<td>3.87MV</td>
</tr>
<tr>
<td>YZERO 2.20MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td>HOR</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
</tbody>
</table>
SET 11, $z_T = z_O$.

<table>
<thead>
<tr>
<th>CH 1 VM (5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 500UV/Div</td>
<td>VER</td>
<td>310UV</td>
<td>4.32mV</td>
<td>4.01mV</td>
</tr>
<tr>
<td>YZERO 2.30mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/Div</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td>HORIZ</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
</tbody>
</table>
SET 1, $Z_T=\text{OPEN}$.
SET 2, Z_T=OPEN.

<table>
<thead>
<tr>
<th>CH</th>
<th>VM</th>
<th>FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
<td></td>
<td>1MV/DIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YZERO</td>
<td>709U</td>
<td>9.86M</td>
<td>9.15M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XSCALE</td>
<td>120K</td>
<td>1.59M</td>
<td>1.48M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XZERO</td>
<td>120K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 3, $Z_T=\text{OPEN}$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZERO 4.80MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	VER	657UV	9.14MV	8.48MV
	HOR	120KHZ	1.59MEGHZ	1.48MEGHZ
SET $4, \ Z_T=\text{OPEN}.$

<table>
<thead>
<tr>
<th>CH 1 VM (5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td>VER</td>
<td>703UV</td>
<td>9.78MV</td>
<td>9.08MV</td>
</tr>
<tr>
<td>YZERO 5.20MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HOR</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 5, $Z_T = \text{OPEN}$.
SET 6, $Z_T = \text{OPEN}$.
SET 7, $z_T=\text{OPEN}$.

<table>
<thead>
<tr>
<th>CH 1 VM (5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td>VER</td>
<td>684UV</td>
<td>9.51MV</td>
<td>0.82MV</td>
</tr>
<tr>
<td>YZERO 5.00MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSSCALE 200KHZ/DIV</td>
<td>HOR</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 8, \(Z_T = \text{OPEN} \).
SET 9, $Z_T = \text{OPEN}$.
SET 10, $Z_T = \text{OPEN}$.

<table>
<thead>
<tr>
<th>CH 1 VM(5) vs FREQ</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSCALE 1MV/DIV</td>
<td>VER</td>
<td>599UV</td>
<td>8.33MV</td>
<td>7.73MV</td>
</tr>
<tr>
<td>YZERO 4.40MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td>HOR</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
<tr>
<td>XZERO 1.12MEGHZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SET 11, $Z_T = \text{OPEN}$.

CH 1 VM(5) vs FREQ

<table>
<thead>
<tr>
<th>YSCALE 1MV/DIV</th>
<th>CURSOR</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZERO 4.60MV</td>
<td>VERT</td>
<td>621UV</td>
<td>0.63MV</td>
<td>8.01MV</td>
</tr>
<tr>
<td>XSCALE 200KHZ/DIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZERD 1.12MEGHZ</td>
<td>HORIZ</td>
<td>120KHZ</td>
<td>1.59MEGHZ</td>
<td>1.48MEGHZ</td>
</tr>
</tbody>
</table>
REFERENCES

