
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2010

Improving Performance And Programmer Productivity For I/o-Improving Performance And Programmer Productivity For I/o-

intensive High Performance Computing Applications intensive High Performance Computing Applications

Saba Sehrish
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sehrish, Saba, "Improving Performance And Programmer Productivity For I/o-intensive High Performance
Computing Applications" (2010). Electronic Theses and Dissertations, 2004-2019. 4292.
https://stars.library.ucf.edu/etd/4292

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4292?utm_source=stars.library.ucf.edu%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Improving Performance and Programmer Productivity for
I/O-Intensive High Performance Computing Applications

by

Saba Sehrish
BS Computer Systems Engineering, G.I.K Institute of Engineering Sciences and

Technology, Pakistan 2003
MS Computer Engineering, University of Central Florida, USA 2007

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2010

Major Professor:
Jun Wang

c© 2010 Saba Sehrish

ii

Abstract

Due to the explosive growth in the size of scientific data sets, data-intensive comput-

ing is an emerging trend in computational science. HPC applications are generating and

processing large amount of data ranging from terabytes (TB) to petabytes (PB). This

new trend of growth in data for HPC applications has imposed challenges as to what

is an appropriate parallel programming framework to efficiently process large data sets.

In this work, we study the applicability of two programming models (MPI/MPI-IO and

MapReduce) to a variety of I/O-intensive HPC applications ranging from simulations to

analytics. We identify several performance and programmer productivity related limita-

tions of these existing programming models, if used for I/O-intensive applications. We

propose new frameworks which will improve both performance and programmer produc-

tivity for the emerging I/O-intensive applications.

Message Passing Interface (MPI) is widely used for writing HPC applications. MPI/MPI-

IO allows a fine-grained control of assigning data and task distribution. At the pro-

gramming frameworks level, various optimizations have been proposed to improve the

performance of MPI/MPI-IO function calls. These performance optimizations are pro-

vided as various function options to the programmers. In order to write an efficient

code, they are required to know the exact usage of the optimization functions, hence

programmer productivity is limited. We propose an abstraction called Reduced Func-

tion Set Abstraction (RFSA) for MPI-IO to reduce the number of I/O functions and

provide methods to automate the selection of appropriate I/O function for writing HPC

simulation applications. The purpose of RFSA is to hide the performance optimization

functions from the application developer, and relieve the application developer from de-

iii

ciding on a specific function. The proposed set of functions relies on a selection algorithm

to decide among the most common optimizations provided by MPI-IO.

Additionally, many application scientists are looking to integrate data-intensive com-

puting into computational-intensive High Performance Computing facilities, particularly

for data analytics. We have observed several scientific applications which must migrate

their data from an HPC storage system to a data-intensive one. There is a gap between

the data semantics of HPC storage and data-intensive system, hence, once migrated, the

data must be further refined and reorganized. This reorganization must be performed

before existing data-intensive tools such as MapReduce can be effectively used to analyze

data. This reorganization requires at least two complete scans through the data set and

then at least one MapReduce program to prepare the data before analyzing it. Running

multiple MapReduce phases causes significant overhead for the application, in the form

of excessive I/O operations. For every MapReduce application that must be run in order

to complete the desired data analysis, a distributed read and write operation on the file

system must be performed. Our contribution is to extend Map-Reduce to eliminate the

multiple scans and also reduce the number of pre-processing MapReduce programs. We

have added additional expressiveness to the MapReduce language in our novel framework

called MapReduce with Access Patterns (MRAP), which allows users to specify

the logical semantics of their data such that 1) the data can be analyzed without running

multiple data pre-processing MapReduce programs, and 2) the data can be simultane-

ously reorganized as it is migrated to the data-intensive file system. We also provide a

scheduling mechanism to further improve the performance of these applications.

The main contributions of this thesis are, 1) We implement a selection algorithm

for I/O functions like read/write, merge a set of functions for data types and file views

and optimize the atomicity function by automating the locking mechanism in RFSA. By

running different parallel I/O benchmarks on both medium-scale clusters and NERSC su-

percomputers, we show an improved programmer productivity (35.7% on average). This

iv

approach incurs an overhead of 2-5% for one particular optimization, and shows perfor-

mance improvement of 17% when a combination of different optimizations is required

by an application. 2) We provide an augmented Map-Reduce system (MRAP), which

consist of an API and corresponding optimizations i.e. data restructuring and schedul-

ing. We have demonstrated up to 33% throughput improvement in one real application

(read-mapping in bioinformatics), and up to 70% in an I/O kernel of another application

(halo catalogs analytics). Our scheduling scheme shows performance improvement of

18% for an I/O kernel of another application (QCD analytics).

v

To the best parents in the world; Siddique and Khalida,

To the most amazing sisters and brother; Farah, Urva and Usman

vi

Acknowledgments

First of all I would like to thanks my committee members, Dr. Ronald DeMara, Dr.

Mark Heinrich, and Dr. Rajeev Thakur for their valuable feedback and suggestions to

improve my work. Thanks Dr. DeMara for your advice on course work and research,

thanks Dr. Heinrich for being there during my first steps toward research and thanks

Dr. Thakur for being a great help for my first conference publication.

Special thanks to my advisor, Dr. Jun Wang for his support all these years. I have

learned so much during this time, which will definitely benefit me in my work life. All

the motivation and constant encouragement kept me going and made me closer to my

goals. His advice has always been very valuable. He has helped me establish work

ties with the national labs collaborators and develop long-term networking, which will

be beneficial in my career. I also appreciate the guidance and support (in the High

Performance Computing area) from our collaborators at Argonne National Laboratory

and Los Alamos National Laboratory. I am thankful to all of my Professors and the

EECS staff at UCF.

This research work is supported in part by the US National Science Foundation un-

der grants CNS-0646910, CNS-0646911, CCF-0621526, CCF-0811413, US Department of

Energy Early Career Principal Investigator Award DE-FG02-07ER25747, and National

Science Foundation Early Career Award 0953946.

All these years in the PhD program, we come across many people who share our work

load, happy times and not so happy times. We find everlasting friendships in colleagues

working in our research group and also with the ones we just share our work space with. I

would like to say thanks to all of my friends and especially my lab mates Rosa, Rochelle,

Grant, Christopher and Pengju for making it a pleasant journey for me. Thanks for

vii

sharing the late night work sittings and group meals. Many thanks to my dearest friend

and roommate, Shafaq, for being the best roommate in the world and for keeping things

more fun and memorable. I will always cherish the time I spent at UCF. I am grateful to

the Women in EECS group for giving me the opportunity to work with them and their

support.

I want to say special thanks to my family. I would like to express my gratitude for

my parents for being so understanding and always being there for me. They have always

encouraged me to strive for better. Thanks Dad for sharing the PhD passion with me,

Thanks Mom for all your prayers and sweet talks to show willingness to do my work.

Thanks to my sisters Farah and Urva and brother Usman for keeping everything alive

for me, and for keeping me updated and sane. You guys rock!

viii

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xv

CHAPTER 1: INTRODUCTION . 1

1.1 Message Passing Interface . 3

1.1.1 Contributions of RFSA . 6

1.2 MapReduce . 7

1.2.1 Contributions of MRAP . 10

CHAPTER 2: BACKGROUND . 11

2.1 MPI/MPI-IO Background . 11

2.1.1 MPI File views and datatypes . 11

2.1.2 MPI I/O optimizations . 12

2.1.3 MPI Atomicity . 12

2.2 MapReduce Background . 13

2.2.1 MapReduce Programming Overview 14

2.2.2 Parallel and Distributed FileSystem - HDFS 15

ix

CHAPTER 3: RFSA - AN MPI-IO BASED REDUCED FUNCTION

SET ABSTRACTION TO SUPPORT I/O-INTENSIVE HPC SIMULA-

TIONS . 17

3.1 RFSA Read/Write Operations . 19

3.1.1 Merge Some Functions . 23

3.2 RFSA Atomicity Operation . 24

3.3 Implementation . 29

3.3.1 RFSA File Read/Write . 29

3.3.2 RFSA File set view . 30

3.4 Evaluating the Functions . 31

3.4.1 Programmer Productivity . 32

3.4.2 Performance . 33

CHAPTER 4: MRAP - A MAPREDUCE BASED FRAMEWORK TO

SUPPORT I/O-INTENSIVE HPC ANALYTICS WITH ACCESS PAT-

TERNS . 45

4.1 Introduction . 45

4.2 Motivation for developing MRAP . 49

4.2.1 Small I/O . 50

4.2.2 Data Locality . 51

4.3 Design of MRAP . 52

4.3.1 MRAP API . 53

4.3.2 MRAP Data Restructuring . 58

4.3.3 MRAP Scheduling . 61

4.4 Evaluation . 67

x

4.4.1 Testbed and Benchmarks Description 67

4.4.2 Demonstrating Performance for MRAP 70

4.4.3 Data Restructuring: . 74

4.4.4 MRAP Scheduling . 78

CHAPTER 5: RELATED WORK . 81

CHAPTER 6: CONCLUSION AND FUTURE WORK 87

6.1 RFSA - Conclusion . 87

6.2 RFSA - Future Work . 88

6.3 MRAP - Conclusion . 88

6.4 MRAP - Future Work . 89

LIST OF REFERENCES . 90

xi

LIST OF FIGURES

1.1 Research Work Overview . 1

1.2 Reduced Function Set Abstraction . 4

1.3 MapReduce with Access Patterns . 8

1.4 System Architecture with MRAP, and it’s components 9

2.1 Hadoop Architecture [reff]. 14

2.2 Flow of MapReduce operations [DG04]. 15

2.3 Hadoop Distributed File system (HDFS) [Bor]. 16

3.1 Flow Chart for Selection Algorithm . 22

3.2 Different Locking mechanisms can be performed depending on the outcome

of Conflict Detection. 25

3.3 MPI-Tile-I/O: Comparing I/O time and BW 34

3.4 MPI-Tile-IO: Comparing I/O time for non-overlapping and overlapping

regions with conflict detection and locks. 36

3.5 S3asim: Comparing I/O time when there are no-locks, conflict detection

with file locks, and file locks. 39

3.6 S3asim: Total execution time and worker I/O time 40

3.7 Communication and Computation Overhead of Conflict Detection for dif-

ferent Benchmarks . 42

xii

3.8 Noncontiguous Benchmark: Comparing Write Bandwidth on Franklin Su-

percomputer . 43

4.1 Steps performed in writing HPC analytics using both MapReduce and

MRAP. 47

4.2 High-Level System View with MRAP . 49

4.3 Overview of the distributed FoF algorithm using 4 MapReduce phases [KNG09]. 50

4.4 A detailed View of comparing MapReduce and MRAP for applications

that perform matching. 55

4.5 An example showing the reduction in number of chunks per map task after

data restructuring . 58

4.6 Flow of operations with data restructuring 60

4.7 Scheduling when multiple chunks are assigned to a map task. 64

4.8 a) Overview of the Read-Mapping Algorithm using 3 MapReduce cycles.

Intermediate files used internally by MapReduce are shaded [Sch09]. b)

Overview of the Read-Mapping Algorithm using 1 MapReduce cycle in

MRAP. 70

4.9 This graph compares the number of bytes accessed by the MapReduce and

MRAP implementation of Read-mapping, and shows that MRAP accesses

≈ 47% less data. 72

4.10 The graph compares the execution time of the Read-mapping algorithm

using MRAP and MapReduce (MR). 73

4.11 This graph shows the number of effective data bytes Read/Written using

MRAP and MR. MRAP only reads the requested number of bytes from

the system, as compared with MR, and shows ≈ 75% fewer bytes read in

MRAP. 73

xiii

4.12 The graph compares the execution time of an I/O kernel that read Astro-

physics data using MRAP and MapReduce. MRAP shows an improvement

of up to ≈ 14%. 75

4.13 This figure shows the performance penalties due to small I/O by running a

micro benchmark. The non-contiguous read operation with smaller stripe

sizes has more performance penalties because of the amount of excessive

data read and the number of I/O requests made. 75

4.14 This figure shows the execution time of the I/O kernel for halo catalogs,

with three implementations. MRAP API with data restructuring outper-

forms MR and MRAP API implementations. 77

4.15 This figure shows the benefits of Data Restructuring in the long run. Same

application with three different implementations (MR, MRAP, MRAP +

data restructuring) is run over a period of time. 78

4.16 This figure shows the benefits of creating virtual splits. 79

xiv

LIST OF TABLES

3.1 Characteristics of Blocking Read/write 19

3.2 Functions in MPI-IO and RFSA . 30

3.3 Programmer Productivity: MPI-IO Versus RFSA 33

3.4 S3asim Parameters . 38

3.5 Reduction in number of locks . 42

4.1 CASS Cluster Configuration . 68

xv

CHAPTER 1

INTRODUCTION

Current High Performance Computing (HPC) applications have seen tremendous growth

in data sets in recent years. These applications are generating and processing large

amounts of data ranging from terabytes (TB) to petabytes (PB). For example, state of

the art simulations in astronomy generate over 200 GB per checkpoint [SWJ05]. This

trend of increasing data shows that by the end of 2011, astronomers will utilize all 1.6

million CPU cores of the upcoming NCSA/IBM Blue Waters system [refb]. This will

potentially generate volumes exceeding 10 PB of data per run and 10 to 200 TB per

checkpoint, depending on the simulations. Similarly, the output from a single seismology

simulation may be as large as 47 terabytes of data and 400,000 files. When the LSST

was being designed, the detectors on the lens were simulated before manufacture. Each

detector had to be able to calculate 10,000 light cones through each simulated universe.

Each universe in the simulation was 30 TB of data and required heavy analysis in the

LSST simulator [refd]. These applications are I/O-intensive because they read/write

HPC Simulations
(communication and

computation intensive)

I/O Intensive HPC
Applications

HPC Analytics
(data parallel)

MPI/MPI-IO

RFSA
(Reduced Function

Set Abstraction)

MapReduce

MRAP
(MapReduce with
Access Patterns)

Figure 1.1: Research Work Overview

1

large data sets and also spend significant amount of time in performing I/O operations.

I/O-intensive HPC applications are either simulation-based applications, which perform

checkpoint writes or analytics-based applications, which process and analyze terabytes

and petabytes of data.

Much attention has been given to harness the computational and storage capabilities

of the supercomputing and cluster resources using various HPC parallel programming

frameworks. This effort has resulted in the programming models that achieve high per-

formance but become very complex for some applications. The complexity arises because

of the fine grain control given to the application developer for translating their algorithms

to parallel code and manually assigning data and task distribution e.g. in MPI (Mes-

sage Passing Interface) [GTL99], [TGL99b], [ref97]. MPI is widely used for writing the

simulation-based applications that are computation and communication intensive and is

accompanied with parallel file systems e.g. PVFS2 [reft], GPFS [SH02], PanFS [WUA08],

Lustre [refl], etc for high performance I/O operations. At the programming frameworks

level, various optimizations have been proposed to improve the performance of MPI/MPI-

IO function calls. For example, in MPI-IO collective I/O and data sieving are used to

convert the small I/O accesses to large contiguous requests, thereby improving the per-

formance [TGL99a].

In addition to the conventional programming abstractions, scientists are adopting

many data-intensive frameworks, e.g. MapReduce [DG04, Dea06] to develop analytics-

based HPC applications, which are data parallel. MapReduce is tightly coupled with a

parallel and distributed file system e.g. GFS [GGL03], HDFS [Bor], etc and is optimized

to read and process large volumes of data. Both MPI/MPI-IO and MapReduce cover

a wide range of I/O-intensive applications consisting of simulation-based and analytics-

based applications as we also show in the Figure 1.1.

In this dissertation work, we study the applicability of both of these programming

models to a variety of I/O-intensive HPC applications. We identify several performance

2

and programmer productivity related limitations of these existing programming models

and propose ways to assist application developers without compromising performance.

Figure 1.1 shows the proposed approaches as they are added to the current hierarchy

of the I/O intensive HPC applications. We consider both performance and programmer

productivity as we develop our approaches to build these new frameworks. We pro-

pose a Reduced Function Set Abstraction (RFSA) for MPI-IO, by reducing the

number of I/O functions. We abstract the existing methods (e.g. for reading, writ-

ing, locking) via automating the selection of appropriate I/O function. Our approach

improves programmer productivity without any performance penalties. Additionally, we

also propose a novel MapReduce based framework to better support HPC analytics appli-

cations. MapReduce lacks direct ways to express various common HPC access patterns.

Our approach, called MapReduce with Access Patterns (MRAP) provides extended

classes, templates and corresponding optimizations to add expressiveness of HPC data

access patterns in MapReduce. In the Sections 1.1 and 1.2, we introduce our approach

for MPI/MPI-IO and MapReduce respectively.

1.1 Message Passing Interface

MPI/MPI-IO (in C and Fortran) is the most widely used parallel programming model.

MPI not only provides the communication and computation functions but also I/O rou-

tines for transferring data to and from storage (MPI-IO). MPI-IO includes various I/O

access methods in which multiple processes read/write a file collectively or independently,

asynchronously or synchronously. It consists of a comprehensive set of functions with

very fine-grained communication and I/O optimizations that allow programmers to work

closely with the hardware for high performance. The programmers are required to know

the exact usage of a communication or I/O optimization before they use it. For example

MPI-IO provides blocking and non-blocking I/O operations. A blocking I/O operation

3

I/O, computation and
communication Intensive

Applications

PVFS 2

MPI-IO

RFSA

Figure 1.2: Reduced Function Set Abstraction

blocks the function call and no other functions can be performed in parallel with this

I/O call. A programmer can not use these optimizations unless she/he is fully aware of

the application behavior and I/O access patterns. This work is an effort to automate

the selection of these optimizations instead of an application programmer deciding which

specific function to use, the selection algorithm will decide appropriately. The idea is

to reduce the number of language concepts and function calls without any performance

penalty and is therefore named RFSA (Reduced Function Set Abstraction). We integrate

our approach in the existing MPI-IO library (ROMIO) [TGL99b] as shown in the Fig-

ure 1.2. We demonstrate the RFSA concept by implementing a selection algorithm for

blocking collective/non-collective reads and writes. Collective I/O operations are imple-

mented as an optimization to the non-contiguous access patterns. It is shown in [TGL99a]

that collective I/O out-performs independent I/O operations for a set of non-contiguous

access patterns. We identify those cases and use this optimization without being spec-

ified by the application developer. We evaluate our design using two metrics; one for

the programmer productivity and other for the performance. Programmer productivity

in the parallel programming community is very challenging to quantify, and in this work

we quantify it by measuring the writability of a parallel program, which depends on the

number of optimizations that can be successfully hidden from the programmer. In our

initial implementation, we are able to represent blocking reads and writes with a single

function each.

4

We extend the same concept of abstracting the optimizations from application devel-

opers to atomicity semantics and the locking mechanism in MPI-IO. Atomicity semantics

define the outcome of multiple concurrent I/O accesses, at least one of which is a write

to a shared or overlapping region. With the advent of parallel I/O libraries, data can be

accessed in various complex patterns by multiple processes. These access patterns can be

contiguous or non-contiguous, overlapping or non-overlapping depending upon the appli-

cation behavior. Locking mechanisms provided by the file system are used to ensure that

during a concurrent I/O access, shared data is not being violated. File locks, byte range

locks, list locks, and datatype locks are various locking mechanisms that are available

to guarantee the atomicity semantics. Adapted from the POSIX semantics, parallel file

systems such as GPFS [SH02] and Lustre [refl] provide a byte range locking mechanism.

Byte range locks provide an option for guaranteeing atomicity of non-contiguous opera-

tions. By locking the entire region, changes can be made by using a read-modify-write

sequence. However, this approach does not consider the actual non-contiguous access

pattern that may occur in a byte range and introduces false sharing. This approach also

limits the benefits of parallel I/O that can be gained, by unnecessarily serializing the

accesses. To address these particular cases, [ACT06] [CLC07] propose to lock the exact

non-contiguous regions within a byte range and maximize the concurrent I/O access.

An observation is that the locks are requested (e.g. file locks, byte-range locks, list

locks, and datatype locks) even if there are no overlaps, when locks are not needed. This

observation leads us to a very important question, whether it is possible to isolate the

cases where atomicity is required and where it is not, and optimize the locking mechanism.

5

1.1.1 Contributions of RFSA

We propose a scheme to identify the conflicts at the application level, by identifying

the concurrent access patterns and overlaps within an application. Our conflict detec-

tion algorithm, implemented at the MPI-IO level for independent I/O operations uses

file views and datatype decoding to determine the overlaps. RFSA is presented in de-

tail in Chapter 3. Our methods are designed to assist the application programmers by

selecting appropriate I/O functions (read/write) and determining the atomicity require-

ments. Here, we list our main findings and the performance improvements gained by our

approach.

• We have implemented a selection algorithm that transparently detects which block-

ing read/write function to use given a particular file view. The implementa-

tion is provided as a unified read/write function in MPI-IO. Our new functions

RFSA READ and RFSA WRITE provide an alternative to 6 MPI File read xxx and

6 MPI File write xxx functions respectively, and show an improved programmer

productivity by 35.7% on average for three different benchmarks [SW10].

• Our experiments with three MPI-IO bencmarks show that RFSA READ/WRITE

provides comparable performance benefits for different read- /write scenarios by

incuring an overhead of 2-5%, but showing an improvement of up to 17% for the

benchmarks with write requests requiring a combination of optimization functions

instead of one function [SW09, SW10].

• We have implemented a conflict detection algorithm that transparently identifies

the cases where atomicity is required and thereby acquires and releases locks in

MPI-IO. This functionality is provided as a part of file view function that is

called by all processes before reading/writing. If there is a conflict detected,

MPI File set atomicity is used to ensure the atomicity semantics. Our results show

6

that with our conflict detection algorithm performance improves by up to 59% if

byte range locks are used, and up to 72% if file locks are used and are requested

unnecessarily [SWT09]. The overhead of our conflict detection algorithm shows a

performance penalty of up to 3.6%.

1.2 MapReduce

HPC architectures consist of a compute cluster/supercomputer for performing complex

computations [refx, refw] and a storage cluster with parallel file systems [WUA08, SH02]

to store the results of these computations. Additionally, the storage cluster is also used

to store the data sets from other scientific equipments, for example telescopes, sensors,

etc. Several types of analysis operations are performed on these large data sets generated

from various sources.

Some of these applications access data in large chunks, matching well with the data

processing framework of Hadoop [reff], and MapReduce [DG04, Dea06]. However, there

are some other applications that access data in various patterns, with the strided access

pattern being the common scientific application pattern [BGG09]. These patterns are

derived by the nature of applications that generate the data sets, and the way this data

is laid out in the file system. For example, there can be a two-dimensional data set,

which is stored in row major order in the file system. Any column major access to

this data set will result in a strided access pattern. Similarly, there are some other

applications, like template matching on a large image data set that requires a tiled

access pattern. Adapting data models like MapReduce, which are capable of processing

large I/O requests for HPC data analytics, suffer from limited performance because of

various access patterns. These various access patterns may result in small non-contiguous

7

HPC Analytics
(I/O Intensive

Data parallel Applications)

HDFS

MapReduce

MRAP

Figure 1.3: MapReduce with Access Patterns

I/Os, which negatively impacts the performance due to excessive disk seeks resulting in

underutilized bandwidth.

If the access pattern is known in advance, then data can be laid out according to

the way it will be accessed. Hence, it is possible to convert the non-contiguous (strided)

access pattern to contiguous accesses. It can be achieved by storing all the contiguous

stripes that are separated by strides all together. We provide a framework called MRAP

- MapReduce with Access Patterns that consist of user API and templates to specify new

file access patterns, particularly non-contiguous strided accesses. Providing the support

for access patterns to the scientists for writing MapReduce applications is an attractive

approach because scientists are already familiar with these patterns. Given an easy-

to-use API and templates (that are configurable using a configuration file), they will

be able to write their data-intensive HPC applications. Since the API and templates

are built using MapReduce and HDFS as shown in the Figure 1.3, they are expected

to have performance penalties because HDFS does not perform well for non-contiguous

read operations (small I/O).

To mitigate this small I/O performance lag especially during an application run, we

use a concept called data restructuring. It converts non-contiguous access patterns to

contiguous accesses according to a specified access pattern to achieve high I/O perfor-

mance. Data restructuring can be performed at two levels, i.e. when data is initially

copied to the distributed file system (HDFS) using command copyFromLocal, or before

an application is run. In either case, a user specified configuration file is used to describe

8

Compute Cluster
Rich in Compute Power

No Storage

Commodity based
Storage Cluster
Some Compute

Power Rich in Storage

Data

D
at

a Data -Intensive HPC Applications

 Data Processing
Framework - MapReduce

 Parallel
and Distributed FS - HDFS

Compute + I/O Resources

Traditional Storage
Cluster

No Compute Power
Rich in Storage

Scheduling

Data Restructuring

API

Figure 1.4: System Architecture with MRAP, and it’s components

the access pattern. Our preliminary results for the implementation of latter level show

the performance gain of 70% when data is restructured. This performance gain is with

the assumption that the restructured file does not have to be restructured again when a

new application is run on the same data set. These small I/O requests result in mapping

to multiple DFS chunks and make it challenging to schedule map tasks (multiple DFS

chunks are assigned to a map task). We propose an efficient scheduling mechanism to

deal with these cases when access patterns result in mapping to multiple DFS chunks,

and these chunks have to be processed in a group. In Figure 1.4, we show the overall

architecture of the system where our framework, MRAP and its optimizations, will be

deployed. Current HPC systems consist of a compute cluster and a storage cluster. It

also consists of a setup to support offline HPC data analytics using commodity based

cluster. The cluster runs a data parallel framework e.g. MapReduce and Hadoop Dis-

tributed File System with our MRAP framework. MRAP framework supports various

HPC data access patterns and improves the performance of user applications by using

data restructuring and scheduling.

9

1.2.1 Contributions of MRAP

Our approach reduces the overhead of writing multiple MapReduce programs to pre-

process data before its analysis. The main contributions of our work are as follows:

• We provide extended classes and templates to specify the sequence matching and

strided (non-contiguous) access patterns for reading HPC data sets, such that ac-

cess patterns are directly specified in the map phase. We ran a real application

from bioinformatics and an astrophysics I/O kernel by using MRAP API and tem-

plates respectively. Our results show a maximum throughput improvement up to

33% [SMW10].

• HDFS is not designed to perform well for small I/O requests, hence we proposed

to use a scheme called data restructuring to improve the performance. When

a file is stored on HDFS, it is stored according to the specified access pattern

i.e. restructured. We also studied the performance penalties due to the non-

contiguous accesses (small I/O requests) and implemented data restructuring to

improve the performance. Data restructuring uses a user-defined configuration

file and reorganizes data in a file such that all non-contiguous chunks are stored

contiguously, and show a performance gain of up to 70% for the aforementioned

applications [SMW10].

• We implemented an improved scheduling scheme which selects an optimal node for

scheduling a map task which requires multiple chunks. We either create virtual

splits or use a weighted set cover approach to minimize the remote I/O requests.

Our initial results show a performance gain of 18% for data sets up to 85 GB

distributed on a 45 node cluster setup.

10

CHAPTER 2

BACKGROUND

In this chapter, we will briefly describe the relevant concepts in MPI/MPI-IO e.g. datatypes,

file views, collective I/O, etc. We will also discuss how MapReduce based framework

works, various classes for writing MapReduce program and how they work with dis-

tributed file system.

2.1 MPI/MPI-IO Background

2.1.1 MPI File views and datatypes

MPI datatypes are of two types, one is basic datatype e.g. MPI INT, MPI BYTE, etc.

and the other is derived datatype e.g. MPI TYPE VECTOR, MPI TYPE INDEXED,

MPI TYPE SUBARRAY, etc.

File views are used to describe the logical layout of a file. It is a collective oper-

ation called before a read/write call. File views are created by using either basic or

derived datatypes. The functions provided by MPI-IO to create and retrieve file views

are MPI File set view and MPI File get view respectively. When setting a file view

following parameters are used, the start of the view is set to MPI OFFSET disp; the

type of data is set to MPI datatype etype; the distribution of data to processes is set to

MPI datatype filetype; and the representation of data in the file is set to datarep. We

use file views to retrieve the data access pattern to determine the overlapping regions for

optimizing MPI File set atomicity operation.

11

2.1.2 MPI I/O optimizations

I/O optimizations which are most commonly referred in this work are data sieving

and collective I/O. These optimizations are used to improve the performance of small

I/O accesses. Numerous studies of the I/O characteristics of parallel applications have

shown that many applications need to access a large number of small, noncontiguous

pieces of data from a file. For good I/O performance, however, the size of an I/O request

must be large (In the order of megabytes). The I/O performance suffers considerably if

applications access data by making many small I/O requests. To reduce the effect of high

I/O latency, it is critical to make as few requests to the file system as possible. Instead of

accessing each contiguous portion of the data separately, a single contiguous chunk of data

starting from the first requested byte up to the last requested byte is read into a temporary

buffer in memory in data sieving. Similarly, collective I/O also allows a process to read

a large contiguous chunk of data but then using MPI’s communication framework, it

redistributes the data among multiple processes as required by them [TGL99a]. These two

techniques convert multiple non-contiguous small I/O accesses into fewer large contiguous

I/O requests.

2.1.3 MPI Atomicity

MPI-IO allows the programmer to define complex datatypes, hence creating complex file

views and access patterns. Since ROMIO implementation uses I/O APIs supported by

the file system, the guarantee of atomic mode indirectly relies on the file system. Some file

systems support POSIX semantics that work for contiguous access patterns but have no

control over non-contiguous access patterns. ROMIO uses fcntl locks for non-contiguous

access, and locks the range of the bytes encompassing the non-contiguous access patterns.

This approach serializes the accesses if there is no true overlapping of patterns. To deal

12

with this case, list locking and datatype locking is used that provides lock to the exact

non-contiguous regions with in a range. But if there is no overlapping at all even in non-

contiguous access, locking can be eliminated. Other file systems like PVFS and PVFS

do not provide atomicity and rely on the I/O library layer to provide these guarantees.

I/O atomicity is referred to as the outcome of the concurrent I/O access to overlapping

regions, both in the file and process’s memory. Atomicity semantics require that the

outcome should be defined by only one of the processes participating in the concurrent

write operation. MPI-IO provides a function, MPI File set atomicity to guarantee atomic

I/O operations. This function uses lock implementations provided by the parallel file

systems e.g. ROMIO implementation uses fcntl locks (byte range locks) where provided

by file systems, or does not support atomic mode for parallel file systems like PVFS and

PVFS2. In short, MPI-IO ’s atomicity semantics define the results of concurrent requests

(atleast one is write request) to overlapping regions by multiple processes.

2.2 MapReduce Background

MapReduce framework provides a large-scale data processing engine tightly coupled with

a distributed file system. In this section, we will briefly describe how a MapReduce pro-

gram works, and how it interacts with the file system. We use an open source imple-

mentation of MapReduce and distributed filesystem i.e. Hadoop [reff]. Its architecture

is shown in the Figure 2.1. Hadoop MapReduce is a software framework for writing

data parallel applications that process terabytes of data on large clusters of commodity

hardware. It consists of two major components, 1) a metadata server for the distributed

file system called as Name node, 2) an execution engine to run MapReduce jobs called as

JobTracker. Each node in the cluster runs a Data node and task tracker to serve individ-

ual map/reduce tasks. The main features offered by Hadoop framework are scalability,

13

MapReduce
Application

Name Node

Job Tracker

Data Node
Task Tracker

Data Node
Task Tracker

Data Node
Task Tracker

N nodes

Figure 2.1: Hadoop Architecture [reff].

resiliency, reliability and high performance read operations due to software replication

and data locality exploitation. Typically the compute nodes and the storage nodes are

the same, that is, the Map/Reduce framework and the Hadoop Distributed File System

are running on the same set of nodes. This configuration allows the framework to effec-

tively schedule tasks on the nodes where data is already present, resulting in very high

aggregate bandwidth across the cluster [reff].

2.2.1 MapReduce Programming Overview

Each MapReduce program consists of two phases as shown in Figure 2.2; a Map phase

and a Reduce phase. During the map operation, one data parallel operation is performed

and results are collected at the intermediate combine phase; and then another operation,

reduce, is performed before the output data becomes persistent storage. The MapReduce

framework works exclusively on <key,value> pairs. The map operation is expecting an

input of <key,value> and subsequently outputs a set of <key,value> pairs for the reduce

phase of the operation [reff]. From Figure 2.2 it is shown that all map and reduce

operations are tasks run on the tasktrackers in the Hadoop cluster. These individual

map and reduce tasks are monitored from inception to completion by the jobtracker.

During the combine phase of the map reduce operation, intermediate output data from

14

Task0

Task1

Task2

Task3

...

...

Task(n-3)

Task(n-2)

Task(n-1)

Taskn

Map

Map

Map

Map

Reduce Output File

Job Tracker

In
pu

t
Fi

le
s

Co
nt

ig
uo

us
 S

pl
it

s

Intermediate Files

Figure 2.2: Flow of MapReduce operations [DG04].

all map tasks on an individual tasktracker is written to local storage for the reduce phase.

This is a high-level view of the steps involved in a map reduce operation. There is no

interprocess communication between any map task during the map phase, and likewise

no communication between reducers. These two operations, map and reduce, allow for

a large parallel dataset to be operated upon very quickly with the assurance of task

resiliency.

2.2.2 Parallel and Distributed FileSystem - HDFS

HDFS consists of a metadata server, i.e. a Name node and a set of data nodes [reff].

It is based very closely on the Google file system [GGL03]. HDFS uses a scheme of

three-way software replication to ensure that the files stored are always intact in three

separate places across a Hadoop cluster. For example, two out of three replicas are

stored on the same rack and third replica is stored on a different rack. This software

replication approach allows for Hadoop to guarantee system resiliency. Figure 2.3 shows

the conceptual model of HDFS. As it can be seen from the figure that a client application

15

Name Node

Rack 1 Rack 2

Replication

Data Nodes Data Nodes

Client

Client

Metadata Ops

Read

Block ops

Write

Figure 2.3: Hadoop Distributed File system (HDFS) [Bor].

is accessing the file system. It first directs the file queries to the Namenode, the namenode

then directs the file request to the appropriate datanode(s) and the datanode(s) supply

the client application with the data. Figure 2.3 also shows the replication of the file across

servers in a rack and across server racks. When file chunks are written to datanodes across

the HDFS, namenode tries to group at least one replicated chunk on the same server

rack as the primary and then another chunk to an adjacent rack of datanodes, while also

ensuring that no two replications of a chunk are stored to the same datanode. In the

event of hardware failure of a server, the namenode takes an active role in re-establishing

the health of the cluster without need for intervention by the user [reff]. This feature

makes HDFS a suitable candidate for large-scale data processing applications.

16

CHAPTER 3

RFSA - AN MPI-IO BASED REDUCED FUNCTION SET
ABSTRACTION TO SUPPORT I/O-INTENSIVE HPC

SIMULATIONS

In this chapter, we provide methods to reduce the number of functions and abstract

the corresponding performance optimizations in MPI-IO. The motivation is that if we

keep the number of functions in MPI-IO closer to the number of I/O functions in any

sequential language e.g. C/C++, we can achieve better programmer productivity and

improved performance. These sequential languages provide four distinct functions for

file I/O operations i.e. open, close, read and write. On the other hand, MPI-IO has

12 different flavors only for read operations. The programmer productivity is directly

related to the writability of a programming language, which is defined by the number of

functions in a programming language [Seb02].

A programming language is evaluated on the basis of following measures; readability,

writability, reliability and cost [Seb02]. Programmer productivity is directly related to

the writability of a programming language, as it is a measure of how easily a language

can be used to create programs for a chosen problem domain. Furthermore, writability is

driven by the simplicity and orthogonality, support for abstraction and expressivity. In

the case of parallel programming languages, there is no direct way to measure simplic-

ity, orthogonality and expressivity. The “support for abstraction” means the ability to

define and use complicated operations by hiding the details. We can indirectly measure

support for abstraction by using the number of function calls and the number of concepts

concealed in those function calls.

17

Our approach reduces the number of functions by abstracting the performance opti-

mization functions without impacting performance. Hence, instead of giving the program-

mers the ability to use any optimization, the proposed methods select the appropriate

optimization. Our approach also avoids any performance penalties due to inappropriate

use of these functions. In short, we propose methods to automate the decision of when

to use MPI File write, MPI File write all, MPI File set atomicity, etc.

We represent MPI-IO as consisting of m different groups of function calls, where each

group represents a specific operation like a open/close, read/write, etc. Each group has

up to g number of options, some of them may be performance optimizations. In the

following notation, a function call is represented as F1 c1 that means a function F and

option c. F1 defines a group of functions e.g. read, write, etc and c∗ specifies the choices,

e.g. positioning, coordination, synchronization, etc. px represents the parameter list of

a particular function call. Formally, MPI-IO is represented as follows:

MPI − IO :





F1 c1(p11, p12, ..., p1j1)

F1 c2(p21, p22, ..., p2j2)

...

Fm c1(pm1, pm2, ..., pmjm)

...

Fm cg(pm1, pm2, ..., pmjm)

Now, in RFSA we take MPI-IO and provide a list of functions that wrap up the

comprehensive set of MPI-IO function calls and hide the optimizations from the applica-

tion programmer. Hence, some of the optimizations can be utilized transparently to the

application programmer. For example, in MPI-IO there are 6 different blocking write

functions but only one of them is used to perform a write at any time. These blocking

functions are differentiated on the basis of their positioning and coordination as shown

18

in the Table 3.1. Essentially, we provide a select procedure that makes the choice of a

specific function on behalf of the programmer.

Table 3.1: Characteristics of Blocking Read/write

Positioning Coordination
Explicit Offset(e) Collective(c)
Individual File Pointer(i) Non-

collective(nc)
Shared File Pointer(s)

We take a group of functions covering different concepts and categorize them as one

function RF1 in RFSA. RF1 will correspond to a group of functions, e.g. in MPI-IO

blocking reads are encapsulated in one RFSA function RFSA read.

RFSA :





RF1(p11, p12, ..., p1k1)

RF2(p21, p22, ..., p2k2)

...

RFn(pn1, pn2, ..., pnkn)

where m >> n and normally ji <= ki, (i = 1, 2, · · ·).

An important point to note here is that only the number of function calls within a

group is reduced, not the number of groups. For example read/write are also a part

of RFSA, but their 6 different options are represented as one function. The number of

parameters either remains the same or increases depending on the function type.

3.1 RFSA Read/Write Operations

MPI-IO provides a comprehensive set of read/write functions with performance opti-

mizations like collective, independent, blocking and non-blocking reads/writes. Only one

read/write function is used to serve the required read/write request, hence we provide a

19

selection procedure to make this choice transparent to the application programmer. In

many parallel applications, each process may need to access several non-contiguous por-

tions of a file, the requests of different processes are often interleaved and may together

span large contiguous portions of the file. If the user provides the MPI-IO implemen-

tation with the entire access information of a group of processes, the implementation

can improve I/O performance significantly by merging the requests of different processes

and serving the merged request. Such optimization is broadly referred to as collective

I/O [TGL99a]. However, it is left to the application developer to decide whether or

not collective I/O is required. Options like using these optimizations make it extremely

difficult to write an effective MPI/MPI-IO program. Our RFSA unified function auto-

matically decides whether or not collective I/O is required. This method comes with an

overhead of detecting the overall byte range being accessed by each participating process

and is already implemented in the current implementation of collective read/write.

We use the contiguous/non-contiguous access pattern and the percentage of overlap-

ping byte range provided as the selection criteria. Byte range is defined as the region

starting from the first file offset/process to the end offset/process., where end offset is the

last byte accessed by a process i.e. last (offset+ blocklength). If the byte ranges of all

processes depict a significant overlapping region with interleaving patterns, then the task

can be divided among all of them for collective I/O. Otherwise individual I/O operations

are used. The following steps are performed to make a decision.

1. Check if the file access pattern is non-contiguous.

2. Calculate the list of offsets and lengths in the file and determine the start and end

offsets.

3. Communicate the start and end offsets to other processes. This enables each process

to reach the same decision of either collective/non-collective.

20

4. Check if the accesses of different processes are overlapping. In case of overlapping

byte ranges, it is useful to perform a collective I/O operation. Assuming i− 1 and

i to be the ranks of two consecutive processes, a simple byte range overlap check

would be if (start offset(i) < end offset(i− 1), that means the accesses of these

two processes lie in the same range.

We calculate the percentage of byte overlap between two consecutive processes to

make sure that there is a significant overlap, the communication is minimal because each

process uses the information of its neighboring processes. The condition to select the

collective I/O is based on the non-contiguous access pattern in the overlapping byte range

among all participating processes as shown in the algorithm 3.1.1. In algorithm 3.1.1,

OP (i, b, c) corresponds to a collective, blocking operation with individual file pointers,

and OP can be a read/write function. Similarly, s in the function corresponds to a shared

file pointer, and e represents an explicit offset. nc corresponds to a non-collective I/O

operation. It is also shown in the algorithm 3.1.1 how positioning options are used in the

selection. If the offset parameter is not specified, it is assigned the value -1 and it follows

either the individual or shared file pointer option. The individual file pointer routines

have the same semantics as the data access with explicit offset routines except that offset

is defined to be the individual file pointer maintained by MPI. Individual/shared file

pointers are specified at the time file is opened. The routines with shared file pointers

only use and update the shared file pointer maintained by MPI and individual file pointers

are not used nor updated [ref97].

21

ST
A

R
T

G
et

 d
at

at
yp

e

D
at

at
yp

e
is

co

nt
ig

uo
us

Y
es

N
o

B
yt

e
R

an
ge

(o
ve

rl
ap

pi
ng

)
Y

es
N

o

N
o

, E
xp

lic
it

O
ff

se
t s

pe
ci

fi
ed

of
fs

et

=
 -

1?

O
P

(e
, b

,
nc

)

Y
es

, I
nd

iv
id

ua
l

/
Sh

ar
ed

 F
ile

po

in
te

r

In
di

vi
du

al
/

Sh
ar

ed

O
P

(i
, b

, n
c

)
O

P
(s

, b
, n

c
)

Y
es

N
o

N
o

, E
xp

lic
it

O
ff

se
t s

pe
ci

fi
ed

of
fs

et

=
 -

1?

O
P

(e
, b

, c
)

Y
es

, I
nd

iv
id

ua
l

/
Sh

ar
ed

 F
ile

po

in
te

r

In
di

vi
du

al
/

Sh
ar

ed

O
P

(i
, b

, c
)

O
P

(s
,

b
, c

)

Y
es

N
o

N
o

, E
xp

lic
it

O
ff

se
t s

pe
ci

fi
ed

of
fs

et

=
 -

1?

O
P

(e
, b

, n
c

)

Y
es

, I
nd

iv
id

ua
l

/
Sh

ar
ed

 F
ile

po

in
te

r

In
di

vi
du

al
/

Sh
ar

ed

O
P

(i
, b

, n
c

)
O

P
(s

, b
, n

c
)

Y
es

N
o

F
ig
u
re

3.
1:

F
lo
w

C
h
ar
t
fo
r
S
el
ec
ti
on

A
lg
or
it
h
m

22

Algorithm 3.1.1 Selection Algorithm for Read/Write coordination

1: if Data access pattern is not contiguous (i.e. MPI Datatype iscontig) then
2: if Byte ranges of participating processes overlap then
3: if offset is -1 then
4: if file pointer is individual then
5: return OP (i, b, c)
6: else
7: return OP (s, b, c)
8: end if
9: else
10: return OP (e, b, c)
11: end if
12: else
13: if offset is -1 then
14: if file pointer is individual then
15: return OP (i, b, nc)
16: else
17: return OP (s, b, nc)
18: end if
19: else
20: return OP (e, b, nc)
21: end if
22: end if
23: end if

It should be noted that it is impossible to provide a generic selection algorithm consid-

ering the complexity of non-blocking operations. Therefore, in our initial design we focus

on blocking collective/independent operations. Also, if we want to leverage the same idea

to MPI communication functions, a selection algorithm depending on number of source

and destination processes should be developed. The main idea presented in this paper is

to abstract the functions from the programmer that are performance optimizations.

3.1.1 Merge Some Functions

In this section, we briefly discuss some other functions that are not performance optimiza-

tions, but are potential candidates for inclusion in RFSA. We can merge some functions,

and reduce the number of functions in the original set. For example, MPI File open is

an explicit call to open a file, and has some additional checks to open file as read-only,

23

write-only, etc. MPI File open is made a part of MPI initialize, but this approach loses

the flexibility of MPI File open, and it does not affect performance. There is no universal

mode to set while opening a file. Similarly MPI File close is made a part of MPI Finalize.

Additional parameters for file name and file handler are required to open and close a file,

respectively. The argument for programmer productivity in both approaches is that

programmer will not have to worry about explicit open and close functions.

MPI-IO has a rich set of function calls to create data types, commit them and use

in the file views as shown in Listing 1. We abstract the explicit commit function from

the programmer and hide it inside MPI Type vector and other different data types. This

approach also reduces number of function.

Listing 1 MPI-IO: Setting File view

//Create a datatype .e.g. vector in this example

MPI_Type_vector(count, array_of_blocklengths,

array_of_displacements, etype, newtype);

//Commit the new datatype

MPI_Type_commit(&newtype);

//Set the file view

MPI_File_set_view(fh, disp, etype, newtype,

"native", MPI_INFO_NULL);

3.2 RFSA Atomicity Operation

MPI File set atomicity is used to ensure the atomicity semantics in the MPI-IO library.

The locking mechanisms provided by the underlying file system are used to guarantee

the atomicity specified by this function. The overhead of the locking mechanism appears

in three forms; first is the communication overhead that is generated while acquiring and

releasing the locks (sending the requests to lock server(s)), second is the storage space

overhead that is caused by storing the locks during their acquire and release time (a data

24

Requested regions are shown in the shaded area

Whole-File Locks

Byte-Range Locks

If
 t

he
 s

ha
de

d
ar

ea
 is

 n
ot

 s
ha

re
d

am
on

g
m

ul
ti

pl
e

pr
oc

es
se

s,
 t

he
re

 is

no
 n

ee
d

to
 u

se
 lo

ck
in

g
m

ec
ha

ni
sm

s

List Locks

Figure 3.2: Different Locking mechanisms can be performed depending on the outcome
of Conflict Detection.

structure is maintained to store the locks, and for fine-grained locks like list locks, this

structure can grow very large.), and the third is computation overhead to assign new locks

(i.e., the tree data structure is scanned to check if the same lock request is being held by

a different process). These overheads can be reduced by making sure that unnecessary

locking requests are not generated. An observation is that the locks are requested by

using MPI File set atomicity (e.g. file locks, byte-range locks, list locks and datatype

locks) even if there are no overlaps and locks are not needed. This observation leads us

to a very important question, whether it is possible to isolate the cases where atomicity

is required and where it is not, and optimize the locking mechanism.

We propose a conflict detection algorithm that should be performed before any lock-

ing mechanism as shown in the Figure 3.2. Our goal is to optimize the lock acquiring

process by providing an efficient conflict detection algorithm beforehand to identify the

overlapping regions, thereby requesting the locks only if there are overlapping regions.

The conflict detection algorithm presented in this paper is based on MPI datatypes and

file views. Typically, a file read/write request in any MPI-IO program consists of follow-

ing steps: 1) Create the Data types, 2) Create the File views, and 3) Read/Write Request.

The conflict detection is performed when a file view is created using (MPI File set view).

Since it is a collective call, each process can exchange their file views and determine the

25

overlapping regions by comparing offset/block length pairs. Each node acts as a conflict

detector for itself.

The file view is created using MPI File set view, and then each node decodes the

supplied MPI datatype. Decoding a datatype is not straightforward and is a two step

procedure using MPI-IO functions. The first step is getting the envelope of the datatype

using MPI Type get envelope which returns information such as number of displace-

ments and block lengths used to create the datatype. The second step is getting the

actual contents in the form of offset/block length using MPI Type get contents. The

decoded datatypes are exchanged using collective communication functions. The over-

head of conflict detection is based on the complexity and size of the datatype. For some

datatypes this overhead is as small as exchanging two long integer values, while for others

it can consist of a long list of offset/length pairs.

We categorize the derived datatypes in to two broader categories based on their

structure. The first category is a regular datatype; all the processes have the same

block size but a different displacement e.g. MPI Type vector, MPI Type subarray. In a

subarray, each process accesses a subarray that is defined by the number of dimensions

and the starting and ending offsets in each dimension. For a regular datatype, we need to

exchange the start and end offset in each dimension for each process. The second category

is irregular datatype; all the processes may access different block sizes, different patterns

and different displacements, e.g. MPI Type hindexed, where each process accesses a non-

contiguous region defined by a list of offsets and corresponding block lengths.

Regular Datatypes: In independent write operations, when there are overlaps

among different writes, only one process should perform the write at a time. For regular

datatypes, we take the example of MPI Type subarray. A subarray datatype is defined

by the number of dimensions, size of array in each dimension, sizes of subarrays in each

dimension and the start positions for each subarray. The start of each subarray and the

size in each dimension is used to identify the overlaps between any two consecutive tiles

26

or subarrays as shown in the following equations. A conflicting region is specified by

CR(CO,CL), where CO is the conflicting offset and CL is the conflicting length. The

displacement of the ith process is specified by dispi(x, y) for a two-dimensional subarray

and the corresponding block length is given by blkleni(x, y).

CO = max(dispi(x, y), dispj(x, y)) (3.1)

If both the displacements i.e. dispi and dispj are the same, the CL is given by eq. 3.2,

otherwise eq. 3.3 is used.

CL = min(blkleni(x, y), blklenj(x, y)) (3.2)

CL = [min(dispi(x, y) + blkleni(x, y),

dispj(x, y) + blklenj(x, y))]− CO (3.3)

Irregular Data types: For irregular datatypes, the offset/length pairs are required

because each non-contiguous region will be of a different size. Each process compares

its own offset/length list against the others. A conflicting region CR(CO,CL) is defined

by the following equations, where CO is the starting offset, and CL is the length of

the conflicting region. disp(i) is the displacement of the ith process and blklen(i) is the

corresponding block length.

CO = max(disp(i), disp(j)) (3.4)

27

If both the displacements i.e. disp(i) and disp(j) are the same, the CL is given by eq. 3.5,

otherwise eq 3.6 is used.

CL = min(blklen(i), blklen(j)) (3.5)

CL = [min(disp(i) + blklen(i),

disp(j) + blklen(j))]− CO (3.6)

Since, the exact displacement and block length values are used, false sharing is elim-

inated completely. There are more complex datatypes that we categorize as multi-level

datatypes, and MPI facilitates the creation of nested datatypes. For example in non-

contig benchmark, MPI Type contig, MPI Type vector and MPI Type struct are used

to create file views. In such cases, we perform multi-level decoding to determine the

conflicts. The overhead incurred by conflict detection is evaluated in Section 3.4 in terms

of communication and computation time. The communication overhead is determined

by the collective communication calls to exchange datatypes. The computation overhead

includes the time to generate and compare the datatypes. It depends on the datatype

or the size of the list to be compared. For each process, if the size of the list is N , it

will perform a linear compare of order N . The space required is equal to the size of the

datatype or the offset/length list.

28

3.3 Implementation

We have implemented all the functions using the ROMIO [TGL99b] library, and provide

these interfaces to the application developers. Table 3.2 summarizes these functions. The

implementation details are described in the following subsections.

3.3.1 RFSA File Read/Write

RFSA READ covers six blocking functions with combinations of offsets and collective/non-

collective options as shown in the Table 3.2. The interface provided to the application

developer is the same as a typical read at function because it includes the same parameter

list as read, read all, etc but with an additional parameter i.e. an offset. If the offset is

specified, it is treated as a explicit offset option for read/write, otherwise either individual

or shared file pointer options are selected on the basis of file handler properties.

The decision between collective read and independent read is made on the basis of

non-contiguous access pattern and the overlapping byte range, file pointer options do

not make any difference to the decision of collective and non-collective operation. The

I/O selection function is hidden in the implementation. The MPI-IO functions used in

the selection algorithm implementation are MPI Datatype iscontig to determine the

contiguous/non-contiguous access, and an existing byte range function to find the start

and end offset pairs for each process. In case there is a non-contiguous access per process

within same byte range, the set of processes can coordinate to perform a collective I/O

operation. In that case, developer will not have to specify a collective function denoted

by all explicitly. RFSA WRITE covers the corresponding write functions as RFSA READ

and maintains the same interface as write at.

29

Table 3.2: Functions in MPI-IO and RFSA

MPI-IO Functions RFSA
MPI File read

MPI File read all
MPI File read at RFSA read

MPI File read at all
MPI File read shared
MPI File read ordered

MPI File write
MPI File write all
MPI File write at RFSA write

MPI File write at all
MPI File write shared
MPI File write ordered

i n t RFSA READ/WRITE (MPI File fh , void ∗buf , i n t count , MPI Offset o f f s e t ,
MPI Datatype ftype , MPI Status ∗ s t a tu s)

3.3.2 RFSA File set view

We implement the self-detecting locking mechanism in ROMIO, by adding it to MPI File set

view as shown in the listing 2. We call the new function implementation RFSA File set view.

Listing 2 also shows how to use the conflict variable in the main program. The de-

coding process utilizes two function from MPI-IO library; MPI Type get envelope and

MPI Type get contents. Our initial implementation provides conflict detection support

for a few selected data types, MPI Type vector, MPI Type subarray, MPI Type hindexed.

Each process exchanges the view information using the MPI Allgather collective com-

munication function. Once the data is ready at each node, it performs the comparison

for the conflicts. Our current implementation is tested with PVFS2, which does not

support locking. We have used the algorithms presented in [RLG05] for file locks and

[TRL05] [PGK06] for byte range locks implementations with PVFS2. For byte range

locks, we determine the start and end offsets of the byte range accessed by each process

using an existing function in ROMIO i.e. ADIOI Calc my off len; it returns the start

and end offsets used by BR Lock acquire(br lock, ..).

30

MPI-IO write functions can be performed collectively or independently. The collec-

tive write operations do not require conflict detection because conflicts cannot occur in

collective operation. The independent write operations do not communicate with each

other to optimize the non-contiguous access and require locking to protect the shared data

regions. Our conflict detection implementation can be used with any locking mechanism

and independent write function.

Listing 2 Pseudocode for Conflict Detection
//Pseudocode for Conflict Detection

int Conflict_Detection(MPI_Datatype ftype) {

//Get the datatype envelope,

MPI_Type_get_envelope(ftype, &num_ints, &num_adds, &num_dtypes, &combiner);

//Get the actual contents of the datatype

MPI_Type_get_contents(ftype, num_ints, num_adds, num_dtypes,

array_of_ints, array_of_adds, array_of_dtypes);

//Gather datatypes from all other nodes

MPI_Allgather(array_of_ints, num_ints, MPI_INT, ai_all,

num_ints, MPI_INT, MPI_COMM_WORLD);

...

//Compare datatypes

switch(combiner){

case MPI_COMBINER_SUBARRAY:

// Compare the elements of ai_all, that contains array of

starts, and the block lengths are same for all blocks!

break;

case MPI_COMBINER_INDEXED:

case MPI_COMBINER_HINDEXED:

break;

...

}

return conflict;

}

3.4 Evaluating the Functions

In this section we will evaluate RFSA functions by quantifying programmer productivity

and performance. The main objective of RFSA is to improve the programmer produc-

tivity of MPI-IO programmers without compromising the performance. The former is

31

directly related to the complexity offered by a programming language. We discuss both

the programmer productivity and the performance of MPI programs in the following

subsections.

3.4.1 Programmer Productivity

Performance has always been the ultimate goal in HPC, and programmer productivity

has always been overlooked. Conceptual programming effort and empirical data analysis

have been used to measure programmer productivity as in [HCS05], [CYZ04], [PG08].

Programmer Productivity is a measure of ratio of output to input i.e. the rate at which

required functionality is implemented. In this paper, we use lines of code as an output and

the programmer’s effort required to write a parallel program as the input. Programmer’s

effort is quantified as the number of functions a programmer has to consider before

implementing a particular functionality. We decided to use this metric because all the

benchmarks used in this paper have already been developed, and there is no record of

person-hour/person-month efforts on these benchmarks.

We use a tool SourceMonitor to determine the lines of code and the number of dis-

tinct functions for MPI-IO and RFSA implementations for three different benchmarks.

The purpose of using the number of distinct functions is to determine the number func-

tions a programmer has to look at before implementing a particular functionality. For

example, if there are 100 lines of code, 8 distinct functions, one for initialization, open,

rank, size, read, write, close, finalize, then the programmer’s effort using MPI-IO will be

18. And the programmer productivity will be 5.55. Programmer’s effort using RFSA will

be 8, and the programmer productivity will be 12.5. Using three different MPI-IO bench-

marks, we determine the programmer productivity for MPI-IO and RFSA implementa-

32

tions. The results are presented in Table 3.3. It is shown that programmer productivity

by RFSA is 35.7% better than MPI-IO on average for the three tested benchmarks.

Table 3.3: Programmer Productivity: MPI-IO Versus RFSA
Input Productivity

Benchmark Output MPI-IO RFSA MPI-IO RFSA
Noncontig 1377 21 11 65.5 125.18

MPI-Tile-I/O 850 12 7 70.83 121.42
S3asim 6069 67 55 90.58 110.34

3.4.2 Performance

We have used three benchmarks, with contiguous and non-contiguous access patterns.

The experimental setup consists of a 16 node cluster, with PVFS2. Each node is a

Dell PowerEdge 2 CPU, dual core with 4GB memory and two 500 GB SAS hard drives.

PVFS2 has been setup on all 16 nodes, so all nodes serve as I/O nodes and the compute

nodes. The network connection is Intel Pro/1000 NIC, and the cluster network consist

of Nortel BayStack 5510-48T GigaBit switch. We have used PVFS2 version 2.7.0 and

MPICH2-1.0.7 in our experiments.

To show the efficacy of our selection algorithm in particular, we replaced the specific

set of code as shown in listing 1 and listing 2 with our function and gathered I/O time

and bandwidth results. The results are then compared with both choices (collective and

non-collective) to see the effectiveness of our approach. We evaluate the conflict detection

using three different benchmarks for both overlaps and no-overlaps in file access patterns.

We compare the time to determine conflicts combined with and without locks and also

show the overhead of conflict detection in terms of the communication and computation

time. In our experiments, we use the best case of a concurrent write access i.e. when

there are no locks, and all processes can perform a write operation concurrently. The

worst case used in the experiments is the whole file locks [RLG05], when all writes by

33

4 8 16 32
0

12

24

36

48

60

72

84

96

108

120
MPI−tile−IO I/O Time

I/O
 ti

m
e

in
 s

ec

Number of processes

Non−collective
RFSA
Collective

(a) I/O time

4 8 16 32
0

50

100

150

200

250

300

350

400

450

500
MPI−tile−IO Bandwidth

B
W

 in
 M

B
/s

ec

Number of processes

Non−collective
RFSA
Collective

(b) BW for overlapping regions

Figure 3.3: MPI-Tile-I/O: Comparing I/O time and BW

different processes become serial. Additionally, we have also used the byte range locks

as implemented in [TRL05] [PGK06].

We have also performed some tests of the selection algorithm on Franklin, NERSC

Cray XT4 system [refq]. Franklin is a massively parallel processing (MPP) system with

9,660 compute nodes. Each node has dual processor cores, and the entire system has

a total of 19,320 processor cores available for scientific applications. Each of Franklin’s

compute nodes consists of a 2.6GHz dual-core AMDOpteron processor with a theoretical

peak performance of 5.2 GFlop/sec. Each compute node has 4 GB of memory, and each

service node (e.g. login node) has 8 GB of memory. The full system consists of 102

cabinets with 39 TB of aggregate memory. The theoretical peak performance of Franklin

is about 101.5 TF lop/sec. The Parallel file system on Franklin is provided by Lustre [refl]

with approximately 350 TBytes of user disk space.

34

3.4.2.1 MPI-Tile-I/O

RFSA Read/WriteMPI-Tile-I/O performs a write operation after creating MPI Type

Subarray based file view, that logically divides a data file into a dense two dimensional

set (x, y) of tiles. The writes are non-contiguous and whether the number of elements will

overlap in either the x or y dimension is set on the command line. In our experiments,

we considered no-overlapping among different tiles and replaced the code as shown in

Listing 3 by our MPI RFSA write function and measured I/O time and bandwidth. The

problem size consists of an array of 4096× 8192 elements per process, where the size of

each element is 32 bytes. Each process writes 1 GB of data. We have tested with 4, 8,

16 and 32 processes, where the processes are arranged in panels of 2X2, 4X2, 8X2 and

16X2.

Listing 3 MPI-IO: Selecting Collective/Independent write

if(collective)

MPI_File_write_all(mpi_fh, buffer, count, offset,

dtype, &status);

else

MPI_File_write(mpi_fh, buffer, count, offset,

dtype, &status);

We have included the results for maximum write time and the bandwidth based on the

maximum write time (worst case). It can be seen in Figure 3.3 that independent writes are

performing better than collective writes and RFSA write function performs close to the

independent writes. The reason is that although the file access pattern is non-contiguous,

the byte ranges of all processes are not overlapping, and collective I/O converts to the

independent I/O. The only difference in the three bars is due to the synchronization and

communication in collective I/O and RFSA. Independent writes are performing the best

because, they have no communication. This explains why independent and collective

writes do not show significant differences in bandwidth and I/O time.

35

4 8 16 32
0

40

80

120

160

200

240

280

320

360

400
I/O

 ti
m

e
in

 s
ec

Number of processes

No−locks
File Locks with Conflict Detection
Byte Range Locks with Conflict Detection
Byte Range Locks without Conflict Detection
File Locks without Conflict Detection

(a) I/O time for non-overlapping regions

4 8 16 32
0

25

50

75

100

125

150

175

200

225

250

I/O
 ti

m
e

in
 s

ec

Number of processes

File Locks without Conflict Detection
File Locks with Conflict Detection
Byte Range Locks without Conflict Detection
Byte Range Locks with Conflict Detection

(b) I/O time for overlapping regions

Figure 3.4: MPI-Tile-IO: Comparing I/O time for non-overlapping and overlapping re-
gions with conflict detection and locks.

We also repeated the same procedure but specified the overlap parameter, so for

4096×8192 elements, 1024 was used as the overlap in x direction and 1024 in y direction.

Similar trends were observed for the tile I/O overlap option.

Conflict Detection MPI-Tile IO [refp] is used to write non-overlapping and overlap-

ping tiles. Non-overlapping Access : The number of dimensions for MPI Type subarray

is 2 in MPI-Tile-IO, and the array of starts gives the x and y position for each tile.

The array of sub-sizes returns the size of each tile in both dimensions. The problem size

consists of an array of 4096 X 8192 per process, where each element size is 32 bytes.

Each process writes 1GB of data, hence if there are 32 processes then the total amount

of data written will be 32GB. The 4, 8, 16 and 32 processes are arranged in 2x2, 4x2,

8x2 and 16x2 panels. The I/O time results are shown in Figure 3.4. I/O time includes

the time for MPI File set view (also the time for conflict detection), MPI File write

and waiting time if there are file locks or byte range locks.

There are five bars, the first bar shows the best case of no-locks, whereas the last bar

shows the worst case. The second and third bar shows the case when conflict detection

is performed, no conflicts are reported and the underlying file and byte range locking

36

is disabled as a result. The fourth bar performs byte range locks without using conflict

detection. We can see that file and byte range locks combined with conflict detection

performs close to the no-locks, i.e. an ideal case for the non-overlapping I/O accesses.

The overhead of conflict detection is minimal, because the datatypes exchanged in MPI-

Tile-IO consist of start and end offset of each tile accessed by a process. This overhead

increases with the number of processes, and the detailed overhead results are shown in

Figure 3.7. File locks have the worst performance because they introduce sequential

access and the I/O time increases with the increase in number of processes.

Overlapping Access : We used overlap-x and overlap-y options in MPI-Tile-IO to

generate the overlapped I/O access patterns. The problem size consists of an array of

4096× 8192 per process with an overlap of 512× 1024 in x and y direction respectively,

where each element size is 32 bytes. Each process writes 1GB of data with an overlapping

data of 16MB per process. The atomicity semantics guarantee that the 16MB overlapping

data will be defined by one process at a time and not contain any data from more than

one processes. We compare the I/O time for file locks and byte range locks with and

without conflict detection. No-locks results are not provided here, because the output in

the overlapping region is not defined without locks.

I/O time for the other four cases is shown in the Figure 3.4. It should be noted that

since there are overlaps, locks cannot be avoided, and the purpose of these results is to

demonstrate that if a conflict detection is performed before any locking mechanism, the

overhead is not significant. The major contribution of our work is for the cases when

there are no overlaps and locking is eliminated completely. These results also show that

conflict detection can be combined with any other locking mechanism.

37

3.4.2.2 S3asim

S3asim is a sequence similarity search algorithm simulator [CFL06], that uses a variety of

parameters to adjust the database total fragments, sequence size, query count, etc. The

search algorithm offers three different writing strategies. First, only the master process

performs all write operations. Second, workers perform collective writes and third, work-

ers perform non-collective writes. In our experiments we have used the aforementioned

method where only worker processes write. Additionally, we add the new MPI RFSA write

as a third option, where workers decide whether collective or independent writes should

be performed. We measure I/O time of the worker that includes the time of all write

operations to the output file.

Table 3.4: S3asim Parameters
Parameter Value
Database minimum sequence length 6 bytes
Database maximum sequence length 10 MB
Database fragments 128
Query Count 20
Maximum data per query 150 MB

After each worker finishes its query processing of its fragment, it sends its ordered

scores to the master process. The master process merges the ordered scores to its list and

once all fragments of an input query have been processed, it sends the locations in the

aggregate file to each worker to write the results. If the collective write option is set, all of

the workers synchronize to write their results collectively to the corresponding locations

sent by the master. The results are written to mutually exclusive locations in the file, so

the data is interleaved but not overlapping. If the independent write option is set, then

each worker writes the result data to the output file independently when it receives the

location from the master. Since, in collective write all participating processes are blocked

until synchronized, workers can not proceed onto the next query unlike independent

writes. The overhead of inherent synchronization time when the data access patterns are

38

2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

200

I/O
 ti

m
e

in
 s

ec

Number of processes

No−Locks
Conflict Detection
Locks

Figure 3.5: S3asim: Comparing I/O time when there are no-locks, conflict detection with
file locks, and file locks.

interleaved but non-overlapping significantly impact the overall application performance

as shown in Figure 3.6. This behavior also motivates us to automatically detect the best

option for writes. We used the configuration shown in Table 3.4 for the test runs. It can

be seen in Figure 3.6 that our RFSA performs better than non-collective writes by up

to 17%. The reason is that there are 20 queries performing a write operation, and they

can be either set to perform collective writes or independent writes. But our selection

algorithm in RFSA leads to a combination of collective/independent write operations,

hence every individual write is optimized resulting in better performance.

Conflict Detection The datatype used by workers is MPI Type hindexed, and is

defined by an array of block lengths and displacements. All the workers process different

segments of the database for query search, and a few of them write the results to a

shared file. Figure 3.5 shows three cases; no-locks i.e. none of the locking mechanisms

were applied, conflict detection i.e. conflict detection algorithm was run to determine

overlaps, and finally file locks. The conflict detection is performed only for the processes

that actually write, and on average it performs within 3.6% of the no-locks case. The

file locks show an increase in I/O time with an increase in the number of processes, since

39

4 8 16 32
0

40

80

120

160

200

240

280

320

360

400
S3asim Total Time

T
ot

al
 ti

m
e

in
 s

ec

Number of processes

RFSA
Non−collective
Collective

(a) S3asim: Comparing Total execution time

4 8 16 32
0

5

10

15

20

25

30

35

40

45

50
S3asim I/O Time

I/O
 ti

m
e

in
 s

ec

Number of processes

RFSA
Non−collective
Collective

(b) S3asim: Comparing worker I/O time

Figure 3.6: S3asim: Total execution time and worker I/O time

there are fewer writers as compared to the number of processes, and the line is not a steep

curve. Our conflict detection algorithm returns no conflict for the S3asim benchmark,

and this result is in accordance with [CFL06].

3.4.2.3 Conflict Detection Overhead:

In this section, we present the overhead incurred by our conflict detection algorithm.

Each process participates in two collective communication calls to gather the file view

and the starting offset. We measure the communication overhead as the time spent in

communicating the required information. This overhead depends on the datatypes and

the number of processes that actually perform the write operation. In Figure 3.7, we

show the communication overhead in different benchmarks. It is noted that in tile-io,

each process writes a tile/subarray that may or may not have overlapping regions, but

in S3asim only a few workers that find the match perform the write operation. This

explains the less communication time for S3asim as compared with tile-io. Non-contig

40

shows the maximum overhead because it has a multi-level datatype and, we need two

collective calls to communicate the two levels of datatypes.

After communicating the file views, each process computes the conflicts, which are

the results of the comparisons of its own file view with the received ones. The time spent

in computing the conflicts is quantified as the computation overhead. This overhead

depends on the datatypes and also the size of offset/length pairs generated from the file

views. In Figure 3.7, we also show the computation overhead in various benchmarks. It

can be seen that the overhead is minimal in tile-io, the reason being that tile-io writes

data logically in sub-arrays, and to perform the conflict detection we do not generate the

offset/length pairs and use the start and end offsets in each dimension to detect conflicts.

For S3asim, the overhead is also minimal because the actual number of workers writing

the results is less than the number of processes performing the search. For example, in

a 32p run, for certain queries only 4 or 5 processes write in the end. S3asim has a few

writers but its datatype is more complex and with the increase in the number of processes

it has more writers, so S3asim has greater overhead with increased number of processes.

Noncontiguous benchmark performs four different access patterns, i.e. contiguous/non-

contiguous in memory and contiguous/non-contiguous in file. We only present the results

when accesses are either non-contiguous in memory or in a file. A file size of 2GB is used

but we keep per process file size constant, the vector length i.e. the number of elements

in the vector datatype used is set to 32 and element count i.e. the number of elements

in a contiguous chunk to 128. The first derived datatype is MPI Type vector, and the

second derived datatype that is comprised of MPI Type vector is MPI Type struct. The

overhead of conflict detection for non-contig is shown in Figure 3.7. Non-contig has a

steady increase in computation overhead with the number of processes, it is a case of

multi-level datatype.

Number of Lock Requests: We emphasize that with conflict detection, if there are

no overlaps in the application access pattern, locking can be avoided. Otherwise, only the

41

4 8 16 32
0

0.034

0.068

0.102

0.136

0.17

0.204

0.238

0.272

0.306

0.34

C
om

m
un

ic
at

io
n

tim
e

in
 s

ec

Number of processes

MPI−Tile I/O (Overlap)
MPI−Tile I/O (No−Overlap)
S3asim
Non−contig

(a) Communication Time Overhead

4 8 16 32
0

0.54

1.08

1.62

2.16

2.7

3.24

3.78

4.32

4.86

5.4
x 10

−4

C
om

pu
ta

tio
n

tim
e

in
 s

ec

Number of processes

MPI−Tile I/O (Overlap)
MPI−Tile I/O (No−Overlap)
S3asim
Non−contig

(b) Computation Time Overhead

Figure 3.7: Communication and Computation Overhead of Conflict Detection for differ-
ent Benchmarks

overlapped region should be locked to guarantee the atomicity of concurrent operations.

Finally, we investigate the utilization of our scheme with the existing locking mechanisms.

Assuming that there are three locking implementations, i.e. whole-file, byte range and

list locks, we compare the number of locks per client in each case with and without

conflict detection. There is one lock per client for the file locks and the byte range locks,

Table 3.5: Reduction in number of locks
Approach Number of Locks/Client
Whole-File Locks 1
Byte-Range Locks 1
List Locks 64
Locks with Conflict detection No-0verlaps: 0

Overlaps: 1 (Whole-file),
1 (Byte-Range),

Number of CR (List)

but these are coarse-grained locks. The non-contiguous access patterns observe false

sharing with coarse-grained locks. We want to show that a locking mechanism combined

with our approach is effective in reducing the number of lock requests that will be issued

for any lock server that needs communication and space on the server to be stored.

Many scientific applications have patterns that would require hundreds of thousands of

42

64 128 256 512
0

50

100

150

200

250

300

350

400

450

500
Noncontiguous Write Bandwidth

W
rit

e
B

W
 in

 M
B

/s
ec

Number of processes

Collective
RFSA
Non−collective

Figure 3.8: Noncontiguous Benchmark: Comparing Write Bandwidth on Franklin Su-
percomputer

locks [CLC07]. In Table 3.5, we show a simple comparison of the number of locks (whole

file, byte-range and list) with and without using conflict detection. It should be noted

that the list locks and the datatype locks are very fine-grained locks. The lock acquiring

process is instigated by a client. The client first calculates which servers to access for the

locks; the saving from conflict detection will come in the form of either none or a fewer

number of requests. The implementation of conflict detection with list locks [ACT06] is

left for future work.

3.4.2.4 Scalability Testing on Franklin Supercomputer

We also ran Noncontiguous benchmark on the Franklin machine. We experimented with

64-512 processes, by setting the number of elements in the vector to 4096 and the el-

ement count for a contiguous chunk to 1024, and the file size is same for all runs. In

Figure 3.8, the bandwidth represents the cumulative bandwidth when the file access is

noncontiguous. We can see that the RFSA selection algorithm is performing a little

worse than collective write with the increase in number of processes. The reason is that

43

RFSA selection algorithm has an additional overhead of communicating its start and

end offset pairs to all processes. The byte range locks of the Lustre file system affect the

performance of individual writes, making the write accesses sequential. In the current

version of our selection algorithm, there is no criteria for checking the communication

overhead of redistribution of data as compared to performing individual I/O operations.

44

CHAPTER 4

MRAP - A MAPREDUCE BASED FRAMEWORK TO
SUPPORT I/O-INTENSIVE HPC ANALYTICS WITH

ACCESS PATTERNS

4.1 Introduction

In this chapter, we describe the MapReduce Framework for HPC Data Analytics with

non-contiguous access patterns. It consists of MapReduce-based functions and templates

that are provided for specifying the non-contiguous access patterns and various optimiza-

tions to improve the performance of the applications using theses methods.

Today’s cutting-edge research deals with the increasing volume and complexity of

data produced by ultra-scale simulations, high-resolution scientific equipment and ex-

periments. These datasets are stored using parallel and distributed file systems and are

frequently retrieved for analytics applications. There are two considerations regarding

these datasets. First, the scale of these datasets [refd, SWJ05] affects the way they are

stored (e.g. metadata management, indexing, file block sizes, etc). Second, in addition

to being extremely large, these datasets are also immensely complex. They are capable

of representing systems with high levels of dimensionality and various parameters that

include length, time, temperature, etc. For example, the Solenoidal Tracker at the Rel-

ativistic Heavy Ion Collider (STAR; RHIC) experiment explores nuclear matter under

extreme conditions and can collect seventy million pixels of information one hundred

times per second [refv]. The data generated by some astrophysics applications consist

of millions of objects in a three dimensional space where each object has its own unique

properties [refa, SKT00]. Such extraordinarily rich data presents researchers with many

45

challenges in representing, managing and processing (analyzing) it. Many data process-

ing frameworks coupled with distributed and parallel file systems have emerged in recent

years to cope with these datasets [reff, Dea06, DG04, GGL03].

However, the raw data obtained from the simulations/sensors needs to be stored to

data-intensive file systems in a format useful for the subsequent analytics applications.

There is an information gap because current HPC applications write data to these new

file systems using their own file semantics, unaware of how the new file systems store data,

which generate unoptimized writes to the file system. In HPC analytics, this information

gap becomes critical because the source of data and commodity-based systems do not

have the same data semantics. For example, in many simulations-based applications,

data sets are generated using MPI datatypes [GTL99] and self describing data formats

like netCDF [refr, LLC03] and HDF5 [refi, refs]. However, scientists are using frameworks

like MapReduce for analysis [EPF08, KNG09, refk, MTF08, Sch09] and require datasets

to be copied to the accompanied distributed and parallel file system e.g. HDFS [Bor].

The challenge is to identify the best way to retrieve data from the file system following

the original semantics of the HPC data.

One way to approach this problem is to use a high-level programming abstraction for

specifying the semantics and bridging the gap between the way data was written and the

way it will be accessed. Currently, the way to access data in HDFS-like file systems is

to use the MapReduce programing abstraction. Because MapReduce is not designed for

semantics based HPC analytics, some of the existing analytics applications use multiple

MapReduce programs to specify and analyze data [KNG09, Sch09]. We show the steps

performed in writing these HPC analytics applications using MapReduce in Figure 4.1

a). In Figure 4.1 a), N MapReduce phases are being used; the first MapReduce program

is used to filter the original data set. If the data access pattern is complex, then the

second MapReduce program will perform another step on the data and extract another

dataset. Otherwise, it will perform the first step of analysis and generate a new data

46

Input Data

MapReduce

MapReduce

Output Data

a) HPC Analytics in MapReduce b) HPC Analytics in MRAP

Write

Write / Read

Write /Read

Read

Input Data

MapReduce

MapReduce

Output Data

... ... MN

N > M

Figure 4.1: Steps performed in writing HPC analytics using both MapReduce and MRAP.

set. Similarly, depending on the data access pattern and the analysis algorithm, multiple

phases of MapReduce are utilized.

For example, consider an application that needs to merge different data sets followed

by extracting subsets of that data. Two MapReduce programs are used to implement

this access pattern. That is, the first program will merge the data set and the second

will extract the subsets. The overhead of this approach is quantified as 1) the effort to

transform the data patterns in MapReduce programs, 2) number of lines of code required

for MapReduce data pre-processing and 3) the performance penalties because of reading

excessive datasets from disk in each MapReduce program.

We propose a framework based on MapReduce, which is capable of understanding

data semantics, simplify the writing of analytics applications and potentially improve

performance by reducing MapReduce phases. Our aim in this project is to utilize the scal-

ability and fault tolerance benefits for MapReduce and combine them with scientific ac-

cess patterns. Our framework, called MapReduce with Access Patterns (MRAP),

is a unique combination of the data access semantics and the programming framework

(MapReduce), which is used in implementing HPC analytics applications. We have con-

sidered two different types of access patterns in the MRAP framework. The first pattern

47

is for the matching, or similar analysis operations where the input data is required from

two different data sets. These applications access data in smaller contiguous regions.

The second pattern is for the other types of analysis that uses data in multiple smaller

non-contiguous regions. The MRAP framework consists of two components to handle

these two patterns; The MRAP API and MRAP data restructuring.

The MRAP API is used to specify both access patterns. It is flexible enough to spec-

ify the data pre-processing and analytics in fewer MapReduce programs than currently

possible with traditional MapReduce as shown in the Figure 4.1 b). Figure 4.1 shows

that MRAP is utilizing M phases, and M < N , where N is the number of corresponding

phases in a MapReduce based implementation. With MRAP, M < N is possible because

it allows the users to describe data semantics (various access patterns based on different

data formats) in a single MRAP application. As mentioned in the previous example, two

MapReduce programs are used to describe an access pattern that requires merge and

subset operations on data before analyzing it. In MRAP, only one MapReduce program

is required, because data is read in the required merge pattern in the Map phase, and sub-

sets are extracted in the reduce phase. MRAP data restructuring reorganizes data with

the copy operation to mitigate the performance penalties resulting from non-contiguous

small I/O requests (second access pattern). Our prototype of the MRAP framework in-

cludes basic implementation of functions that allow users to specify data semantics and

data restructuring to improve the performance of our framework. Figure 4.2 shows the

high-level system view with MRAP. Our results with a real application in bioinformatics

and an I/O kernel in astrophysics, show up to 33% performance improvement by using

the MRAP API, and up to 70% performance gain by using data restructuring.

48

Scientific Data HPC Storage (PFS ,
GPFS)

Data Intensive file system (HDFS , GFS)

MapReduce MRAP API

Scientific Data
Intensive HPC

MRAP Data Restructuring

Figure 4.2: High-Level System View with MRAP

4.2 Motivation for developing MRAP

In this section we describe the motivation for developing MRAP. Data for analysis comes

in all types of formats, file semantics, and comes from many various sources; whether it

be weather data to high energy physics simulations. Within these patterns, we also need

to provide for efficient file accesses. Current approaches show that to implement these

access patterns, a series of MapReduce programs is utilized [KNG09, Sch09], also shown

in the Figure 4.1.

In a MapReduce program, the map phase always reads data in contiguous chunks, and

generates data in the form of (key, value) pairs for the reduce phase. The reduce phase

then combines all the values with the same keys to output the result. This approach works

well when the order and sequence of inputs do not affect the output. On the other hand,

there are algorithms that require data to be accessed in a given pattern and sequence. For

example, in some image pattern/template matching algorithm, the input of the function

must contain a part of the original image and a part of the reference image. Using

MapReduce for this particular type of analysis would require one MapReduce program

to read the inputs from different image files and then combine them in the reduce phase

for further processing. A second MapReduce program would then analyze the results of

the pattern matching. Similar behavior has been observed in two other applications as

49

Reduce
Write the

Intermediate

Output to the disk

Map
Read the

Input from

the disk

Map
Read the

Input from

the disk

Reduce
Write the final

Output to the disk

Map
Read the

Input from

the disk

Map
Read the

Input from

the disk

Reduce
Write the

Intermediate

Output to the disk

Reduce
Write the

Intermediate

Output to the disk

Partition Local Cluster Hierarchical Merge Relabel

Figure 4.3: Overview of the distributed FoF algorithm using 4 MapReduce
phases [KNG09].

shown in the Figure 4.3 and Figure 4.8 a). Figure 4.3 describes a distributed Friends-

of-Friends algorithm; the four phases are MapReduce programs [KNG09]. Figure 4.8

a) is discussed in the Section 4.4. Both these figures show the multi-stage MapReduce

applications developed for scientific analytics.

Using this multi-stage approach, all the intermediate MapReduce programs write data

back to the file system while subsequent applications read that outputted data as input

for their task. These excessive read/write cycles impose performance penalties and can

be avoided if initial data is read more flexibly as compared with traditional approach

of contiguous chunks read. Our proposed effort, MRAP API, is designed to address

these performance penalties and to provide an interface that allows these access patterns

to be specified in fewer MapReduce phases. Hence, the goal of the MRAP API is to

deliver greater I/O performance than the traditional MapReduce framework can provide

to scientific analytics applications.

4.2.1 Small I/O

Additionally, some scientific access patterns generally result in accessing multiple non-

contiguous small regions per task, rather than the large, contiguous data accesses seen in

MapReduce. Due to the mismatch in sizes of distributed file system (DFS) blocks/chunks

and the logical file requests of these applications, small I/O problem arises. The small

I/O requests from various access patterns impact the performance by accessing excessive

amount of data, when implemented using MapReduce. The default distributed file system

50

chunk used in current setup is either 64/128 MB. Most of the scientific applications store

data with each value comprising of a few KBs. Each small I/O region (a few KBs) in the

file may map to large chunks (64/128 MB) in the file system. If each of the requested

small I/O region is 64 KB, then a 64 MB chunk will be retrieved to process only 64 KB

making it extremely expensive.

A possible approach can be to decrease the chunk size to reduce the amount of extra

data accessed. These smaller chunks increase the size of metadata [refj]. Also, the

small I/O accesses also result in a large number of I/O requests sent to the file system.

In MapReduce framework, smaller chunks and large number of I/O requests become

extremely challenging because there is a single metadata server (NameNode) that handles

all the requests. These small I/O requires efficient data layout mechanisms because the

patterns can be used to mitigate performance impact. Hence, providing semantics for

various access patterns which generate small I/O requires optimizations at both the

programming abstraction and the file system levels of MapReduce.

4.2.2 Data Locality

The MapReduce framework runs in a commodity-based cluster environment, and the

compute and data nodes are co-located. That is the same set of nodes used for schedul-

ing map/reduce tasks are used to provide the required data sets. In the traditional

MapReduce setup, each map task is assigned a DFS block for processing. The existing

scheduling mechanism is optimized for the case when either a single chunk or multi-

ple chunks on the same DataNode are processed per map task. Hence, selecting nodes

for a given map task is locality-aware and generally results in the least amount of data

transfers.

51

Different access patterns result in accessing smaller regions of data as compared with

a complete chunk. These smaller regions are likely to be mapped to multiple chunks and

most likely multiple chunks per map tasks will be read. Hence, not only excess data will

be read but also overlapping of chunks may occur. The above-mentioned cases violate

data locality because now one chunk may be requested by multiple map tasks increasing

demand of a particular chunk. Also, multiple chunks that are scattered across nodes may

be requested by one map task. These cases require some ways to avoid data movements

to satisfy the chunk demand.

4.3 Design of MRAP

The MRAP framework consists of two components; 1) MRAP API, that is provided

to eliminate the multiple MapReduce phases used to specify data access patterns, and

2) MRAP data restructuring, that is provided to further improve the performance of

the access patterns with small I/O problem. Before we describe each component of the

MRAP framework, it is important to understand the steps that existing HPC MapReduce

applications perform in order to complete an analysis job. These steps are listed as

follows:

• Copy data from external resource (remote storage, sensors, etc) to HDFS/similar

data-intensive file system with MapReduce for data processing.

• Write at least one data pre-processing application (in MapReduce) to prepare data

for analysis. The number of MapReduce applications depends on the complexity

of initial access pattern.

– This data preparation can be a conversion from raw data to scientific data

format or in general filtering of formatted data.

52

• Write at least one MapReduce application to analyze the prepared datasets. The

number of MapReduce applications for analysis varies with the number of steps in

the analytics algorithm.

As compared with this existing MapReduce setup, our MRAP framework will allow

the following steps:

• Copy data from external resource to HDFS/similar file system (perform MRAP

data restructuring if specified by the user).

• Write an MRAP application to specify the pattern and subsequent analysis opera-

tion.

– If data was restructured at the copy time, then map/reduce phases will be

written only for the analysis operation.

We discuss the two components, i.e. MRAP API and MRAP data restructuring in detail

in the next subsections.

4.3.1 MRAP API

The purpose of adding this data awareness functionality is to reduce the number of

MapReduce programs that are used to specify HPC data access patterns. We provide

an interface for two types of data access patterns; 1) applications that perform match

operations on the data sets, and 2) applications that perform other types of analysis by

reading data non-contiguously in the files. At least one MapReduce program is used to

implement either 1 or 2. Note: There are some complex access patterns which consist

of different combinations of both 1 and 2. We first briefly describe how MapReduce

programs work, and why they require more programming efforts when it comes to HPC

access patterns.

53

A MapReduce program consists of two phases: a Map and a Reduce. The inputs and

outputs to these phases are defined in the form of a key and a value pair. Each map

task is assigned a split specified in InputSplit to perform data processing. A FileSplit and

a MultiFileSplit are the two implementations of the interface InputSplit. The function

computeSplitSize calculates the split size to be assigned to each map task. This approach

guarantees that each map task will get a contiguous chunk of data. In the example with

the merge and subset operations on data sets, two MapReduce programs will be used as

shown in the following.

• MapReduce1:

(inputA, inputB, functionA, outAB)

• functionA (merge)

map1(inputA, inputB, splitsizeA, splitsizeB,

merge, outputAB)

where merge has different criteria, e.g. merge on exact or partial match, 1-1 match of inputA and

inputB, 1-all match of inputA and inputB, etc.

reduce1(outputAB, sizeAB, merge all, outAB)

• MapReduce2:

(outAB, functionB, outC)

• functionB (subset)

map2(outAB, splitsizeAB,subset)

where subset describes the offset/length pair for each split of size splitsizeAB.

reduce2(subset, outC)

We now describe MRAP API, classes and functions, and how it allows the user to

minimize the number of MapReduce phases for data pre-processing. Then, we describe

the provided user templates that are pre-written MRAP programs. The user templates

are useful in the cases when the access patterns are very regular and can be specified

54

Output Data

a) HPC Analytics (Matching) in MapReduce

MapReduce

Write

...

Input A Input B

M1 M2 Mn

R1

*MapReuce Reads

Write

Analysis

b) HPC Analytics (Matching) in MRAP

Write

...

Input A Input B

M’1 M’2 M’n

*MRAP Reads

AnalysisR’1 R’2

Output Data

R2

*MRAP Reads = Multiple
sequential reads per map task

*MapReduce Reads = Single
sequential read per map task

Figure 4.4: A detailed View of comparing MapReduce and MRAP for applications that
perform matching.

by using different parameters in a configuration file e.g, a vector access pattern can be

described by the size of data set, size of a vector, number of elements to skip between two

vectors, and number of vectors in the data set.

In MRAP, we provide a set of two classes that implement customized InputSplits for

the two aforementioned HPC access patterns. By using these classes, users can read data

in one of these two specified patterns in the map phase and continue with the analysis in

the subsequent reduce phase. The first pattern for the applications that perform matching

and similar analysis is defined by (inputA, inputB, splitSizeA, splitSizeB, function).

inputA/inputB represents both single or multi-file inputs. Each input can have a different

split size, and then the function describes the sequence of operations to be performed

on these two data sets. The new SequenceMatching class implements getSplits(), such

that each map task reads the specified splitSizeA from inputA and splitSizeB from

inputB. This way of splitting data saves one MapReduce data pre-processing phase for

the applications with this particular behavior as shown in the Figure 4.4.

55

The second access pattern is a non-contiguous access, where each map task needs to

process multiple small non-contiguous regions. This pattern is defined as (inputA, (list of

offsets/maptaks, list of lengths/maptask), function) These patterns are more com-

plex to implement, because these patterns are defined by multiple offset/length pairs.

Each map task can either have the same non-contiguous pattern, or different pattern.

Current abstraction for getSplits() either return an offset/length pair or a list of file-

names/lengths to be processed by each map task. The new AccessInputFormat class

with our new getSplits() method implements the above-mentioned functionality to the

MapReduce API. These patterns are generally cumbersome to describe using MapReduce

existing split methods because the existing splits are contiguous, and require the pattern

to be transformed to the MapReduce (key, value) formulation.

The above mentioned access pattern that involved both merge and subset operations,

is specified in one MRAP program, as follows:

• (inputA, inputB, functionAB, outC)

• functionAB (merge, subset)

map1(inputA, inputB, splitsizeA, splitsizeB,

merge, outAB)

Read data from all sources in the required merge pattern

reduce1(outAB, sizeAB, subset, outC) Extract data of interest from the merged data

We now explain the user templates. User templates are pre-written MRAP programs

using new input split classes that read data according to the pattern specified in con-

figuration file. We provide template programs for reading the astrophysics data for halo

finding, and general strided access patterns. In the configuration file, we require type of

application, e.g. any MPI simulation, or astrophysics to be specified. Each of these dif-

ferent categories generate data in different formats and access data in different patterns.

56

By providing a supported application type, MRAP can generate a template configuration

file to the user. A sample configuration file for a strided access pattern is as follows.

<configuration>
Defining structure of the new file
<property>
<name>strided.nesting level</name>
<value>1</value>
<description>It defines the nesting levels. < /description>
<property>
<name>strided.region count</name>
<value>100</value>
<description>It defines the number of regions in a non-contiguous access pattern. < /description>
</property>
<property>
<name>strided.region size</name>
<value>32</value>
<description>It defines the size in bytes of a region, i.e. a stripe size. < /description>
</property>
<property>
<name>strided.region spacing</name>
<value>10000</value>
<description>It defines the size in bytes between two consecutive regions, i.e. a stride. <
/description>
</property>
</configuration>

We give a few examples of the access patterns that can be described in a configuration

file. A vector based access pattern is defined as if each request having the same number

of bytes (i.e. a vector) and is interleaved by a constant or variable number of bytes (i.e.

a stride) and number of vectors (i.e. a count). A slightly complex vector pattern is a

nested pattern, that is similar to a vector access pattern. However, rather than being

composed of simple requests separated by regular strides in the file, it is composed of

strided segments separated by regular strides in the file. That is, a nested pattern is

defined by two or more strides instead of one as in a vector access pattern. A tiled access

patterns is seen in datasets that are multidimensional, and are described by number of

dimensions, number of tiles/arrays in each dimension, size of each tile, size of elements

in each tile. An indexed access pattern is more complex, it is not a regular pattern and

describe a pattern using a list of offsets and lengths. There are many more patterns used

57

Logical file layout of
an example sequence

After data restructuring
all regions are packed
into one chunk

No data restructuring
results in accessing
four chunks

Chunk 1 Chunk 2 Chunk 3

Figure 4.5: An example showing the reduction in number of chunks per map task after
data restructuring

in HPC applications, but we have included the aforementioned patterns in this version

of MRAP.

4.3.2 MRAP Data Restructuring

MRAP data restructuring is provided to improve the performance of access patterns

which access data non-contiguously in small regions to perform analysis. Currently,

there is a little support for connectivity of HDFS to resources that generate scientific

data. In most cases, data must be copied to a different storage resource and then moved

to HDFS. Hence, a copy operation is the first step performed to make data available

to MapReduce applications. We utilize this copy phase to reorganize the data layout

and convert small I/O accesses to large by packing small (non-contiguous) regions into

large DFS chunks (also shown in the Figure 4.5). We implement data restructuring as an

MRAP copy operation that reads data, reorganizes it and then writes it to the HDFS.

It reorganizes the datasets based on user specification when data is copied to HDFS (for

the subsequent MapReduce applications). The purpose of this data restructuring when

copying data is to improve small I/O performance.

The MRAP copy operation is performed in one of two ways. The first method copies

data from remote storage to the HDFS along with a configuration file, the second method

58

does not have a configuration file. For the first method, in order to reorganize datasets,

MRAP copy expects a configuration file, defined by the user, describing the logical layout

of data to be copied. In this operation, the file to be transferred to HDFS and the

configuration file are submitted to MRAP copy. As the file is written to HDFS, MRAP

restructures the data into the new format defined by the user. When the copy operation

is completed, the configuration file is stored with the restructured data.

This configuration file is stored with the file because of a very important sub-case of

the MRAP copy operation, on-the-fly data restructuring during an MRAP application.

In this case, a user runs an MRAP application on a file that was previously restruc-

tured by the MRAP copy function. In this job submission, another configuration file is

submitted to define how the logical structure of the data in said file should look before

the current MRAP application can begin. As shown in Figure 4.6, the configuration

file stored with data during the initial restructuring is compared with the configuration

file submitted with MRAP application. If the two configuration files match, that is, the

logical data layout of the stored file matches what the MRAP application is expecting,

then the MRAP operation begins. Else, data restructuring occurs again and the MRAP

application runs once the file is restructured.

In the case of the second copy method, data is copied to HDFS from remote storage

without any file modification. This option would be used when the user wants to maintain

the original format in which the data was written. Hence, option two in MRAP will be

performed as a standard HDFS copy. As discussed in the paragraph above, this option

is amenable to use if the file in question is constantly being restructured. The approach

used to optimize file access for this case is discussed later in the section.

As mentioned earlier that MRAP copy operation performs data restructuring, we now

explain the data restructuring algorithm. The data restructuring converts small non-

contiguous regions to large contiguous regions, and can be formulated as a bin packing

problem where different smaller objects are packed in a minimal number of larger bins.

59

Use MR
Read operation is
already optimized

Use MRAP
Read operation
will be optimized

Configuration File
submitted with the

application

Configuration File
used with File

Copy

Reads

File layout
Match?

Yes

Original Data Reads

No

Data
Restructuring?

Data re -
organized in
contiguous

chunks

No

Use Copy with
Configuration

utility to organize
data in contiguous

chunks

Yes

Figure 4.6: Flow of operations with data restructuring

Definition: Given items with sizes s1, . . . , sn, pack them into the fewest number of bins

possible, where each bin is of size V .

This problem is a combinatorial NP-hard and there are many proposed heuristics to solve

this. In data restructuring each item from bin packing problem corresponds to a smaller

non-contiguous region, whereas each bin corresponds to a DFS chunk of size V . We use

First-fit algorithm to pack the smaller regions into chunks. The algorithm is as follows:

Algorithm 4.3.1 Data Restructuring Algorithm

Input: A set U which consist of all smaller region size required by a map task in a
MapReduce Application, U = {s1, s2, ..., sm}, where si corresponds to size of ith region,
and m is the number of non-contiguous regions requested the task. A set C of empty
chunks C = {c1, c2, ..., cp}, where capacity of each cx is V . p = V/s1 ×m when all si
are of the same size else p is unknown.
Output: Find minimal p such that all smaller regions are packed into p number of
chunks.
Steps:
for i is 1 to m, [Iterate through all the elements in set U]
∀cj ∈ C = empty, 0 < j < p
if
∑

i si ≤ V)
Add ith element to cj
else Add cj to C
increment j i.e. start a new chunk
end for
p = j, since j is keeping track of when a new chunk is added.

60

The time to perform data restructuring based on Algorithm 4.3.1 is determined by

the following: number of regions in the access patterns that are needed to be combined

into chunks is m, and size of each region is si. time to access each region TreadS, number

of chunks after restructuring p where size of each chunk is V , time to write one region to

the chunk is Tchunk and time to update metadata for the new chunk is Tmeta. The time

to perform data restructuring will be

Tdr = (m× TreadS) + (p× (V/si)× Tchunk) + (p× Tmeta).

We can also determine the execution time of the application with M tasks, that will

involve the time to read any access pattern (M ×m× TreadS) and processing time Tp,

Tcomp = Tp + (M ×m× TreadS).

Data restructuring will be not beneficial if Tdr > Tcomp. However, Tdr < Tcomp will result

in contiguous accesses, significantly improving the performance.

The benefit of data restructuring is that when an application is run multiple times and

requires only one data layout, the read operation has been highly optimized, making the

total execution time of the operation much shorter. It minimizes the number of chunks

required by a map task because after restructuring all smaller regions that are scattered

among various chunks are packed together as shown in the Figure 4.5. However, if each

application uses the file in a different way, that is, the file requires constant restructur-

ing, then data restructuring will incur more overhead as compared to the performance

benefits.

4.3.3 MRAP Scheduling

Scheduling is critical in our framework because some applications assign multiple chunks/-

multiple small files to each map task. As a result, selecting a node to schedule map task

with minimal network contention becomes challenging. We approach network contention

61

from the angle that with appropriate scheduling schemes we can reduce the chunk trans-

fers over the network. Our algorithm determines the nodes that are best for scheduling

map tasks based on the location of multiple chunks and minimal data transfer latencies

of these chunks.

In order to analyze the impact of data transfer latency on a map task, we quantify

the execution time of a map phase in an application with N map tasks as T = max(Ti),

where 1 < i < N , and Ti denotes the time taken by ith map task and is given by

Ti = Tcomputation + TdiskIO + Tnetwork transfer time. Tcomputation represents the computa-

tion time, TdiskIO represents the time needed for data transfer from the local disk, and

Tnetwork transfer time represents the time to transfer data over the network from a remote

host. Network latency can increase this time and will impact the performance. We try to

minimize the Tnetwork transfer time by carefully selecting the nodes for task execution and

data provision. If there are n chunks required by a map task, and m chunks are present

on the node selected for that map task, then m − n chunks will be transferred to the

primary selected node. There can be at least one node providing these m− n chunks. If

there are multiple nodes, then selection of the nodes for map task execution and nodes

for data transfer becomes challenging.

We identify two cases for our scheduling scheme as shown in the Figure 4.7. First,

the multiple chunks/files assigned to a map task can be processed independently, hence

we can create virtual splits for each map task. As shown in the figure, blocks 1 and

2 are assigned to map task 1, which was scheduled on Node D. Since, the blocks were

independent, blocks 1 and 3 were combined into a virtual split to minimize the number

of remote I/O requests.

Second, multiple chunks have to be processed together, hence tasks will be scheduled

after considering the location of multiple chunks. As we can see in the Figure 4.7, blocks

1, 2 and 3 are assigned to a map task. It is scheduled on Node D because, Node D

has maximum chunk/block contribution. Node D does not have any replicas of block 2,

62

hence the node with minimal transfer latency will be used to provide the missing chunks

(we used Node C as the one with minimal latency).

In the first case, the final outcome is not be affected by the order in which these

chunks are processed. Our frame work intelligently creates map tasks depending on the

chunks located on one node. Each task receives a list of splits. These splits are then

compared with the local chunks. If local chunks are different than the requested chunks,

we create a virtual split of local chunks. We keep the same number of map tasks and let

each map task process the same number of chunks if and only if these chunks are marked

as independent chunks in the initial configuration file.

We run a light weight scheduler with the MapReduce application. The purpose of

this scheduler is to determine In the current implementation, we assume that there is

only one copy of data set in the system, and also all the nodes are balanced with the

data chunk distribution. [We can always run a balancer program to make sure that all

nodes are evenly loaded.] In such a case, we have two options, either we launch a map

task with dummy splits or we actually use a scheduler which would launch the map tasks

after creating virtual splits.

In the second case, virtual splits can not be created because chunks have to be pro-

cessed together. If the chunks which need to be processed together are located on a single

node, then that particular node will be the best node to schedule. In the best case, there

may exist some nodes that contain all the chunks required by a particular process. In

the worst case, all the chunks are located across nodes. Hence, we need to determine the

node for scheduling the map task and nodes for providing the required data sets. We

take into account network topology and data transfer time from each node to select the

best node. The problem can be formulated as:

63

N
od

e
AN

od
e

D

N
od

e
C

D
FS

 b
lo

ck
 1

D
FS

 b
lo

ck
 3

 D
FS

 b
lo

ck
 2

D
FS

 b
lo

ck
 4

D
FS

 b
lo

ck
 2

N
od

e
B

D
FS

 b
lo

ck
 2

In
de

pe
nd

en
t D

at
a

bl
oc

ks
:

1
)

M
ap

 ta
sk

 1
 a

nd
 m

ap
 ta

sk
 2

 a
re

 s
ch

ed
ul

ed
 o

n
N

od
es

 C
 a

nd
 D

.
2

)
B

lo
ck

s
1

an
d

2
ar

e
as

si
gn

ed
 to

 th
e

m
ap

 ta
sk

 1
.

3
)

B
lo

ck
s

3
an

d
4

ar
e

as
si

gn
ed

 to
 th

e
m

ap
 ta

sk
 2

.
4

)
N

od
e

D
 h

as
 tw

o
bl

oc
ks

 (
1

an
d

3)
, w

he
re

as
 N

od
e

C
 h

av
e

bl
oc

ks
 (

2
an

d
4)

.
5

)
V

ir
tu

al
 s

pl
its

 w
ill

 b
e

cr
ea

te
d

fo
r

bo
th

 th
e

m
ap

 ta
sk

s
be

ca
us

e
 th

e

bl
oc

ks
 a

re
 in

de
pe

nd
en

t.
It

 w
ill

 im
pr

ov
e

th
e

pe
rf

or
m

an
ce

 b
y

m
ax

im
iz

in
g

th
e

nu
m

be
r

of
 lo

ca
l I

/O
 r

eq
ue

st
s.

V
ir

tu
al

 s
pl

it
w

ill
 b

e
cr

ea
te

d
fo

r
m

ap
 ta

sk
 1

 o
n

N
od

e
D

to

 p
ro

ce
ss

 b
lo

ck
s

1
an

 3
.

D
ep

en
de

nt
 D

at
a

bl
oc

ks
:

1
)

B
lo

ck
 1

, 2
, 3

ar
e

re
qu

ir
ed

 b
y

a
m

ap
 ta

sk
.

2
)

N
od

e
D

 h
as

 tw
o

bl
oc

ks
, w

he
re

as
 o

th
er

 n
od

es
 i.

e.
 A

, B

an
d

C
 h

av
e

bl
oc

k
2.

3

)
O

ur
 s

ch
ed

ul
er

 w
ill

 d
et

er
m

in
e

th
e

no
de

 w
ith

 m
in

im
al

la

te
nc

y
us

in
g

w
ei

gh
te

d
se

t c
ov

er
 a

pp
ro

ac
h.

 E
.g

. i
f

N
od

e

C
 is

 s
el

ec
te

d,
 th

en
 b

lo
ck

 2
 w

ill
 b

e
tr

an
sf

er
re

d
to

 th
e

N
od

e
D

fr

om
 th

e
N

od
e

C
.

V
ir

tu
al

 s
pl

it
w

ill
 b

e
cr

ea
te

d
fo

r
m

ap
 ta

sk
 2

 o
n

N
od

e
C

to

 p
ro

ce
ss

 b
lo

ck
s

2
an

d
4.

N
od

e
E

F
ig
u
re

4.
7:

S
ch
ed
u
li
n
g
w
h
en

m
u
lt
ip
le

ch
u
n
k
s
ar
e
as
si
gn

ed
to

a
m
ap

ta
sk
.

64

Assume there areN nodes in our system denoted as a set C = {node1, node2, ..., nodeN}.
Each I/O node contains a set of chunks, and at any given time a MapReduce application

requires to access chunks that will be a subset of chunks located on I/O nodes. If there

are M map tasks launched for an application then, there is a set U = {s1, s2, ..., sM}
such that si represents a data split consisting of multiple chunks and will be processed

by the ith map task. As it was mentioned earlier that a NameNode returns all the nodes

containing a chunk (including the replica nodes). For example, if there are three replicas

then three nodes will be returned for a specific chunk. In case of multiple chunks, the

total number of nodes returned is equal to three times the number of chunks. We call

this set K, and Ki will correspond to all the nodes that contain chunks from the split si.

Each node in Ki will contain at least one data chunk in the split si. We want to find a

set (A ⊂ K) of nodes, where one of the nodes is the primary node to host/schedule the

map task, and others are the secondary nodes and will provide the missing data to the

primary node. The cost of data transfer from the secondary nodes to the primary node

should be minimum.

This nodes selection problem is similar to theweighted set cover problem [CSR01],

which models many resource selection problems. A split and a node in scheduling prob-

lem exactly corresponds to an element and a set respectively in the weighted set cover

problem. The only difference is that “a split also represents a set of chunks, not a sin-

gle element”. Each node contains at least one of the chunks from a split. We need to

find the set of nodes for each split. The weighted set cover problem has been proven

to be NP-hard so that a heuristic and iterative algorithm is generally used to solve

it. Similar to the weighted set cover problem, we need to assign a weight to each of

the candidate nodes. The weight w corresponding to each node is the latency or data

transfer time of the chunks that it does not hold itself. For each node ni, we define:

price(ni) =
wi(ni)

|Chunk Contibution| . This price will determine which nodes are to be selected.

65

Algorithm 4.3.2 Pseudocode for scheduling using Weighted Set Cover Problem

subsection
Input: A set U which consist of splits required by map tasks in a MapReduce Application, U =
{si, sj , ..., sk, ...|0 < i, j, k < M}. A set C of nodes with the information that each node ni contains
data chunks, C = {n1, n2, ..., nN}.
Output: Find A for all splits in U such that Ai ⊆ C, and Ai has nodes that completely cover all the
chunks in split si.
Steps:
A = {Ai, Aj , ..., Ak,}, A and all Ax are empty, we will start computing each Ax and add it to the
set A.
For i is 1 to M , [Iterate through all the elements in set U]
Ai = empty
1) Compute Ki, This will be a list of nodes with required chunks. The chunks will be located on
multiple nodes.
2) Compute w for all the nodes in Ki. w is the weight assigned to each chunk as explain earlier. Also,
mark the nodes which will be used for the data transfer.
3) Find the Chunk contribution of each node in Ki.
4) Compute the price as w

|Chunk Contibution| for each node in Ki.

5) Sort the values in ascending order, the first value will correspond to the primary node. Add the
node to Ai.
6) Select the secondary nodes for a primary node based on the calculations in step 2. Add the nodes
to Ai.
7) A ← A ∪Ai

Chunk contribution is simple to quantify, it is the number of the required chunks present

on a node.

The algorithm starts by retrieving all the nodes containing the chunks from a split.

It then starts the iteration with an empty set, Ai, which denotes a collection of the nodes

selected until the last iteration. At each iteration, the algorithm selects a node ni, and

adds it to Ai. Nodes that are added to the set Ai are considered to be covering a part of

split si. The algorithm finishes iteration when all the chunks in the si are covered, and

then Ai gives a set of nodes, where the first one is used as a primary node and others as

secondary nodes. This algorithm is used for all map tasks, and determines the optimal

nodes for all map tasks belonging to one application.

66

4.4 Evaluation

In the experiments, we demonstrate how MRAP API performs for the two types of access

patterns as described in Section 4.3.1. The first access pattern performs matching oper-

ation on the data sets, whereas the second access pattern deals with the non-contiguous

accesses. We also show the performance improvement due to data restructuring for the

second access pattern.

The most challenging part of this work is to fairly evaluate MRAP framework using

various data access patterns against the same patterns used in the existing MapReduce

implementations. Unfortunately, most HPC analytics applications which could enunci-

ate the benefit from MRAP still need to be developed. Also, there are no established

benchmarks currently available to test our design. We have used one application from

the bioinformatics domain, an open source MapReduce implementation of the “read-

mapping algorithm”, to evaluate the MRAP framework. This application performs se-

quence matching and extension of these sequences based on the given criteria and fits

well with the description of the first access pattern. For the second access pattern, we

use both MRAP and MapReduce to read astrophysics data in tipsy binary format that

is used in many applications for operations like halo finding. In the next subsection, we

describe the testbed and the benchmark setup used to generate results.

4.4.1 Testbed and Benchmarks Description

There are 47 nodes in total with Hadoop 0.20.0 installed on it. The cluster nodes con-

figurations are shown in the Table 4.1. In our setup, the cluster’s master node is used

as the NameNode and JobTracker, whereas the 45 worker nodes are configured to be the

DataNodes and TaskTrackers.

67

Table 4.1: CASS Cluster Configuration
15 Compute Nodes and 1 Head Node

Make& Model Dell PowerEdge 1950
CPU 2 Intel Xeon 5140, Dual Core,

2.33 GHz
RAM 4.0 GB DDR2, PC2-5300, 667

MHz
Internal HD 2 SATA 500GB (7200 RPM) or

2 SAS 147GB (15K RPM)
Network Connection Intel Pro/1000 NIC
Operating System Rocks 5.0 (Cent OS 5.1),

Kernel:2.6.18-53.1.14.e15
31 Compute Nodes

Make& Model Sun V20z
CPU 2x AMD Opteron 242 @ 1.6 GHz
RAM 2GB - registered DDR1/333

SDRAM
Internal HD 1x 146GB Ultra320 SCSI HD
Network Connection 1x 10/100/1000 Ethernet con-

nection
Operating System Rocks 5.0 (Cent OS 5.1),

Kernel:2.6.18-53.1.14.e15
Cluster Network

Switch Make & Model Nortel Nortel BayStack 5510-
48T Gigabit Switch

The first application, CloudBurst consists of one data format conversion phase and

three MapReduce phases to perform read mapping of genome sequences as shown in the

Figure 4.8 a). The data conversion phase takes an “.fa” file and generates a sequence

file with a format following HDFS sequence input format. It breaks the read sequence into

64KB chunks and write sequence in the form of these pairs (id, (sequence, start offset, ref

/read)). The input files consist of a reference sequence file and a read sequence file.

During the conversion phase, these two files are read in to generate the pairs for “.br”

file. After this data conversion phase, the first MapReduce program takes these pairs

in the map phase and generates mers such that, the resulting (key, value) pairs are

(mers, (id, position, ref/read, left flank, right flank)). The flanks are added to the

pairs in the map phase to avoid random reads in HDFS. These key, value pairs are then

used in the reduce phase to generate SharedMers as (read id, (read position, ref id,

ref position, read left flank, read right flank, ref left flank, ref right flank)). The

second MapReduce program generates Mers per read, and group the pairs generated in

68

the first phase by read id. The Map phase does nothing and reduce phase groups by

read id.

In MRAP, this whole setup is performed such that there is one map phase and one

reduce phase as shown in the Figure 4.8 b). We do not modify the conversion phase in

generating the .br file. The first phase reads from both reference and read sequence files

to generate the SharedMers and they are coalesced and extended in the reduce phase.

The only reason we can allow a the map phase to read chunks from multiple files is

because, MRAP API allows for a list of splits per map task. Essentially, each mapper

reads from two input splits and generate (read id, (read position, ref id, ref position,

read left flank, read right flank, ref left flank, ref right flank)) for the shared mers.

The reduce phase aligns and extends them, resulting in a file containing every alignment

of every read with at most some defined number of differences.

In the second case, we perform a non-contiguous read operation on astrophysics data

set used in halo finding application, followed by the grouping of given particles. There

are two files in the downloaded data set: particles name, which contains the positions,

velocities and mass of the particles. In addition to the particles name file, an input data

file summarizing cosmology, box-size etc and halo catalogs (ascii-files), containing: mass,

position and velocity in different coordinates are also provided [refg, refh].

Finally, we used a micro benchmark to perform small I/O requests using MRAP to

show the significance of data restructuring. We use three configurable parameters to

describe a simple strided access pattern [CCC03]. These parameters are stripe, stride

and data set size. We show the behavior of changing the stripe size with various data

sizes, where the stride was dependent on the number of processes and stripe size. The

stripe size is the most important parameter for these experiments because it determines

the size and the number of read requests issued per process. We write a MapReduce

program to perform the same patterned read operation. In the map phase each process

69

Genome and Read
Sequences

Sorted Mers

Shared Mers

Mers per Read

Shared Seeds

Extended Seeds

Read Mappings

Map

Map

Map

Reduce

Reduce

Reduce

M
er

Re
du

ce
Se

ed
Re

du
ce

Ex
te

nd
Re

du
ce

Genome and Read
Sequence Data in .FA

Data Conversion

Genome and Read
Sequences

Shared Mers

Shared Seeds and Read
Mappings

Genome and Read
Sequence Data in .FA

Data Conversion

Map phase in MRAP

Reduce phase in MRAP

a) CloudBurst in MapReduce b) CloudBurst in MRAP

Figure 4.8: a) Overview of the Read-Mapping Algorithm using 3 MapReduce cycles.
Intermediate files used internally by MapReduce are shaded [Sch09]. b) Overview of the
Read-Mapping Algorithm using 1 MapReduce cycle in MRAP.

reads a contiguous chunk, and marks all the required stripes in that contiguous chunk.

In the reduce phase, all the stripes required by a single process are combined together.

4.4.2 Demonstrating Performance for MRAP

Bioinformatics Sequencing Application: We compare the results of MRAP and

the existing MapReduce implementation of the read-mapping algorithm. As shown in

70

the Figure 4.8, the traditional MapReduce version of the CloudBurst algorithm requires

three MapReduce applications in order to complete the required analysis as compared

with one MapReduce phase required in MRAP. Because the MRAP implementation

requires only one phase of I/O, we anticipate that it will significantly outperform the

existing CloudBurst implementation. We first show the total number of bytes accessed

by both MRAP and MapReduce implementations in the Figure 4.9. Each stacked bar

shows the number of bytes read and written by MRAP and MapReduce implementation.

The number of bytes read is more than the number of bytes written because reference

data sequences are being merged at the end of reduce phases. The number of bytes

accessed in the MRAP application are on average 47.36% less than the number of bytes

accessed in the MapReduce implementation as shown in Figure 4.9. This reduced number

of I/O accesses result in an overall performance improvement of upto 33%, as shown in

the Figure 4.10.

We were also interested in looking at the map phase timings because each map phase

in MRAP was reading its input from two different data sets. Further break down of the

execution time showed that map task took ≈ 55sec in each phase to finish, and there

were three map phases making this time equal to 2min, 45sec. In MRAP, this time

was ≈ 1min, 17sec, because MRAP reads both read and reference sequence data in the

map phase, as opposed to reading either read or reference sequence in the map phase.

Hence, the time of a single map task in MRAP is greater than the time of a single map

task in MapReduce, but the benefit comes from multiple stages in MapReduce based

implementation.

The MRAP implementation of CloudBurst application accesses multiple chunks per

map task. Multiple chunks per map task generate remote I/O requests if all the required

chunks are not present on the scheduled node. In this test, ≈ 7 − 8% of the total tasks

launched caused remote I/O accesses, slowing down the MRAP application. Hence,

supplemental performance enhancing methods, such as dynamic chunk replication or

71

0.5 GB 1 GB 2 GB 4 GB
0

1.25

2.5

3.75

5

6.25

7.5

8.75

10

11.25

12.5

B
yt

es
 A

cc
es

se
d

(G
B

)

Different Read Sequences

HDFS Bytes Read
HDFS Bytes Written

MRAP

MRAP

MRAP

MRAP

MR

MR

MR

MR

Figure 4.9: This graph compares the number of bytes accessed by the MapReduce and
MRAP implementation of Read-mapping, and shows that MRAP accesses ≈ 47% less
data.

scheduling multiple chunks, are required to be implemented with MRAP framework.

Since, this particular access pattern does not access data in non-contiguous manner,

data restructuring is not an appropriate optimization for it.

Astrophysics Data sets: We ran a set of experiments to demonstrate the per-

formance of MRAP over MapReduce implementation for reading non-contiguous data

sets. In this example, we use an astrophysics data set and show how MRAP deals with

non-contiguous data accesses. As described earlier the halo catalog files contains 7 at-

tributes, i.e. mass (mp), position (x, y, z) and velocity (Vx, Vy and Vz) for different

particles. In the setup, we require our test application to read these seven attributes for

only one particle using the given catalogs, and scan through the values once to assign

them a group based on a threshold value. Since MRAP only reads the required data

sets, we consider this case where less data as compared with total data set is required by

the application. The MapReduce application, reads through the data set and marks all

the particles in the Map phase. The reduce phase filters out the required particle data.

We assume that the data set has 5 different particles, and at each time step we have

72

0.5 GB 1 GB 2 GB 4 GB
0

7.5

15

22.5

30

37.5

45

52.5

60

67.5

75

E
xe

cu
tio

n
tim

e
in

 m
in

ut
es

Different Read Sequences

MRAP
MR

Figure 4.10: The graph compares the execution time of the Read-mapping algorithm
using MRAP and MapReduce (MR).

1.5 GB 2.5 GB 5 GB 10 GB
0

1.8

3.6

5.4

7.2

9

10.8

12.6

14.4

16.2

18

B
yt

es
 A

cc
es

se
d

(G
B

)

Size of Halo Catalogs (Ascii Files)

HDFS Bytes Read
HDFS Bytes Written

M
R

A
P

M
R

A
P

M
R

A
P

M
R

A
P

M
R

M
R

M
R

M
R

Figure 4.11: This graph shows the number of effective data bytes Read/Written using
MRAP and MR. MRAP only reads the requested number of bytes from the system, as
compared with MR, and shows ≈ 75% fewer bytes read in MRAP.

73

attributes of all the 5 particles. Essentially, the map phase reads entire data set, and

the reduce phase writes only 1/5th of the data sets. The second MapReduce application,

scans through this filtered dataset and assigns the values based on the halo mass. The

MRAP implementation, reads the required 1/5th data in the map phase, and assigns the

values in the reduce phase. We show the results in Figure 4.12 and 4.11 by testing this

configuration on different data sets.

The application has access to data sets from 1.5− 10 GB in the form ≈ 6.3 MB files,

and the data of interest is ≈ 0.3−2 GB. Figure 4.11 shows that amount of data read and

written in an MRAP application is ≈ 75% less than the MapReduce implementation. The

reason is that MRAP API allows to read the data in smaller regions, hence, instead of

reading the full data set only data of interest is extracted in the map phase. This behavior

anticipates significant improvement in the execution time of the MRAP application when

compared with MapReduce. The results are shown in Figure 4.12, and they only show

an improvement of ≈ 14%, because HDFS is not designed for small I/O requests. In the

next subsection, we further elaborate on the small I/O problem, and show the results of

proposed solution i.e. data restructuring.

4.4.3 Data Restructuring:

In the Section 4.4.2, we saw the performance benefits of MRAP for applications with

different data access patterns, where it minimized the number of MapReduce phases.

Some patterns e.g. non-contiguous accesses incur an overhead in the form of small I/O,

as we demonstrate in the Figure 4.13. We used random text generated data sets of 15

GB, 30 GB, 45 GB and 60 GB in this experiment to show that small I/O degrades

performance of read operations. We have used 15 map tasks, each map task reads 1, 2, 3

and 4 GB using small regions (stripe sizes) ranging from 1 KB to 1 MB. We choose this

74

1.5 GB 2.5 GB 5 GB 10 GB
12

18

24

30

36

42

48

54

60

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es

Size of Halo Catalogs (Ascii Files)

MRAP
MapReduce

Figure 4.12: The graph compares the execution time of an I/O kernel that read As-
trophysics data using MRAP and MapReduce. MRAP shows an improvement of up to
≈ 14%.

15 GB 30 GB 45 B 60 GB
0

1800

3600

5400

7200

9000

10800

12600

14400

16200

18000

E
xe

cu
tio

n
T

im
e

in
 s

ec
on

ds

Data Size

Contiguous Read
1 MB Stripe
256 KB Stripe
64 KB Stripe
32 KB Stripe
16 KB Stripe
1 KB Stripe

Figure 4.13: This figure shows the performance penalties due to small I/O by running a
micro benchmark. The non-contiguous read operation with smaller stripe sizes has more
performance penalties because of the amount of excessive data read and the number of
I/O requests made.

75

range for stripe sizes because 1) there are many applications that store images which are

as small as 1 KB [CLR09], 2) 64 KB is a very standard stripe size used in the MPI/IO

applications running on PVFS2 [reft] and 3) 1 MB to 4 MB is the striping unit used in

GPFS [SH02]. We have used the default chunk size of 64 MB in this experiment.

Figure 4.13 shows that smaller stripe sizes have larger performance penalties because

of the number of read requests that are issued for striped accesses. 1 KB depicts the

worst case scenario, where for 1 GB per map task will have 1,048,576 read calls which

results in much more calls for larger data sets. Figure 4.13 also shows the time it takes

to perform contiguous read for the same 1, 2, 3 and 4 GB per map task. Overall larger

stripe sizes tend to perform well because as they approach the chunk size, they issue less

read requests per chunk and they become contiguous within a chunk as the stripe size

becomes equal to or greater than the chunk size.

A contiguous read of 1 GB with 64 MB chunks will result in reading 16 chunks. On

the other hand, with 1 MB stripe size, there will be 1024 stripes in total for 1 GB set.

The upper bound of the number of chunks that eventually provides these 1024 stripes is

1024. Similarly, for 1 KB stripe size, there are 65536 stripes that generate as many read

requests, and may map to 65536 chunks in the worst case. In short, we could use some

optimizations to improve this behavior, such as data restructuring, which are studied in

this paper. We run a test by restructuring astrophysics data, and then read the data

to find the groups in the given particle attributes. We restructure data such that the

attributes at different time steps for each particle are stored together. In the example

test case, we run the copy command and restructure data. The overhead of running copy

command is shown in the Figure 4.14. After that we run the application to read the same

amount of data as it was reading in Figure 4.12 and show the time it took to execute

that operation. It should be noted that the amount of data read and written is the same

after data restructuring. Data restructuring organizes data to minimize the number of

I/O requests not the size of total requested data. In these tests, size of each request was

76

1.5 GB 2.5 GB 5 GB 10 GB
0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es

Size of Halo Catalogs (Ascii Files)

Data Copy Time
Application Execution Time

M
R

A
P

 +
 D

at
a

C
op

y

M
R

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y

M
R

 +
 D

at
a

C
op

y M
R

 +
 D

at
a

C
op

y M
R

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

Figure 4.14: This figure shows the execution time of the I/O kernel for halo catalogs,
with three implementations. MRAP API with data restructuring outperforms MR and
MRAP API implementations.

≈ 6.3MB, and the number of I/O requests generated, for example for a 10GB data set

is 1625. When data is restructured, 10 small regions each of 6.3 MB are packed into

a single chunk of 64 MB, and reduce the number of I/O requests by 10 times. In the

figure, we can see that data restructuring significantly improve the performance by up to

≈ 68.6% as compared with MRAP without data restructuring and ≈ 70% as compared

with MapReduce. The overhead of data restructuring includes time to read the smaller

regions, and put them into contiguous data chunks.

We would also like to describe that once restructured, subsequent runs with the same

access patterns will perform contiguous I/O and have further performance improvement

over non-restructured data. We present this case in the Figure 4.15, and show that data

restructuring is useful for the applications with repeated access patterns. For the same

configuration used in the Figure 4.14, we run the same application on 10 GB data set

after data restructuring. It is evident from the graph, that even with the overhead as

shown in Figure 4.14, data restructuring is giving promising results.

77

run1 run2 run3 run4 run5 run6 run7 run8 run9 run10
0

60

120

180

240

300

360

420

480

540

600

E
xe

cu
tio

n
tim

e
in

 s
ec

Different Runs for Reading Halo Catalogs

MRAP without Data Restructuring
MR
MRAP with Data Restructuring

Figure 4.15: This figure shows the benefits of Data Restructuring in the long run. Same
application with three different implementations (MR, MRAP, MRAP + data restruc-
turing) is run over a period of time.

4.4.4 MRAP Scheduling

In this section, we present our initial results for scheduling. We show the % reduction

in the number of remote I/O requests and % improvement in the I/O time for these

two cases. We use two applications representing each of the independent and dependent

chunks case. We use Adat to demonstrate the performance of creating virtual splits.

Adat is package for carrying out post production analysis of the data generated by QCD

simulations, and is written in C++ [refz]. The output of QCD (Quantum chromo-

dynamics lattice field theory) program appears in the form of key, value pairs and are

written to an XML file. ADAT is the analysis suite for the output of QCD simulation

code and analyzes the XML files (in the form of key, value pairs). It provides a variety of

analysis operations, we use one of these programs, i.e. the hadron spec strip analysis for

our independent chunk workload. This analysis application analyzes multiple XML files

(consisting of different Wilson Hadron measurements like forward propagation headers,

forward propagation correlations, various currents, etc.) independently, making it an ap-

78

5

10

15

20

25

0

1

2

3

4

5
100

200

300

400

500

600

700

Number of chunks/map task

Remote chunks/map task

I/O
 ti

m
e

Without Virtual Splits
With Virtual Splits

Figure 4.16: This figure shows the benefits of creating virtual splits.

propriate candidate to demonstrate the performance of virtual splits. It then generates

a set of output files which are almost 1/4th of the size of input data for ADAT.

We implemented a MapReduce based I/O kernel of one of the analysis operations

performed by adat suite, called hadron strip in the code. The original code reads XML

file(s) generated by QCD simulations, separates different measurements, analyzes them

and writes specifications of each measurement in a separate file. Each XML file is read and

processed sequentially and independently from each other. In the MapReduce version,

we assign a set of files to each map task. Each map task then generates another set of

files based on different measurements. The same measurements are combined together

in the reduce phase. In the experiments, we use the I/O kernel with and without virtual

splits. The maximum data set size used is ≈ 85 GB with a file size of ≈ 50 MB each.

We kept the number of map tasks constant (58 map tasks, where one rack of cluster has

14 nodes and hosts 2 map tasks each, and the second rack has 30 nodes and hosts one

map task each), but varied the number of chunks (files in our case) processed by each

map task from 5 to 25.

79

Figure 4.16 shows the I/O time (in sec) with virtual splits. It can be seen that

for smaller data size, starting with only 5 chunks per map task there is no significant

difference in time i.e. only 30 sec which is very small. But as the assigned split size

increases, more chunks are assigned to a map task. When more chunks are assigned to a

map task, it means that there are more chances of remote I/O requests. Also for larger

data sets, the chunks will be evenly distributed among all the nodes. For large size splits,

we expect more remote I/O requests but overall ratio of remote I/O requests may be the

same. For example, when 20 chunks are assigned to a map task, chances of all 20 chunks

being on the same node is less likely as compared with the case when only 5 chunks are

assigned to a map task.

As we can see in the Figure 4.16, the difference in the I/O time increases with the

increase in the number of chunks assigned to a map task. It also causes more remote

I/O requests. In our experiments, for 85 GB test 20% of the tasks were performing

remote I/O. On average, each task was requesting ≈ 4− 5 chunks remotely. By creating

virtual splits, we get 100% of local I/O tasks but there is an overhead to determine the

virtual splits. It includes the cost of determining which blocks of a particular file(s) are

residing locally on the node. On average, determining a chunk location and if it is a local

chunk takes ≈ 2 − 4 sec. Our experiments show that, on average for 25 chunks it took

≈ 85.8 sec. We also show the variation in the number of chunks transferred and I/O

time with the total number of chunks assigned to a map task in the Figure 4.16. The

best case is no transfer, which we achieve by using the virtual splits. This set of results

show that virtual splits is an effective way of minimizing the data transfers, and it shows

performance improvement of 18% for our experimental setup.

80

CHAPTER 5

RELATED WORK

In this chapter, we will discuss the research work done in parallel programming abstrac-

tions especially for I/O intensive HPC applications. We will describe the approaches

used in programming models to improve performance and programmer productivity.

Performance and Programmer Productivity: In MPI-IO, several techniques to

improve the performance of read/write and locking functions have been developed. MPI-

IO application patterns often result in small I/O requests. To improve the small I/O

problem, many approaches have been adopted in HPC community particularly for the

applications using MPI/MPI-IO. These techniques are supported both at the file system

and programming abstraction level. Data sieving allows the processes to read excessive

contiguous data set in a given range instead of making small I/O requests to multiple non-

contiguous chunks. The limitation of this approach is that each process reads excessive

amount of data. Similarly, collective I/O also allows a process to read a contiguous

chunk of data but then using MPI’s communication framework, it redistributes the data

among multiple processes as required by them [TGL99a]. Another implementation of

collective I/O is View-based [BIS08], and communicates file views instead of the exact

offset/length pairs and significantly reduces the communication cost. We do not propose a

new optimization to improve performance but rather a way for an automated combination

of the existing optimizations, if a read/write call is used repeatedly.

Many people feel that programming with MPI is too hard and they can prove it,

while others believe MPI is fine and they can also prove it [SHP08]. Programmers use

MPI because of its performance, completeness and ubiquity [refo]. Performance has

81

always been the ultimate goal in HPC, and programmer productivity has always been

overlooked. Conceptual programming effort and empirical data analysis have been used

to measure programmer productivity as in [HCS05], [CYZ04], [PG08]. These approaches

study and analyze the programmer productivity of parallel programming languages in

HPC community and do not study the ways of improving the programmer productivity

for HPC programmers.

MPI-IO Atomicity: Researchers have also contributed to provide atomicity se-

mantics both at application and file system level. Non-contiguous access patterns and

overlapping I/O patterns [CCC03, CCL02, LCC03] have been widely studied and the cus-

tomized locking schemes, process rank ordering and handshaking have been proposed.

List locks and datatype locks [ACT06] [CLC07] have maximum concurrency, but they

acquire and maintain locks for all regions accessed by a process. We provide conflict de-

tection to find the overlaps before lock requests are issued. The conflict check facilitates

the locking mechanism by providing a decision where locks are necessary to guarantee

atomicity.

Large scale data processing frameworks are being developed because of the informa-

tion retrieval for web scale computing. Many systems like MapReduce [Dea06, DG04],

Pig [ORS08], Hadoop [reff], Swift [RZD07, ZHC07], Dryad [IBY07, IY09, YIF08] and

many more abstractions are there that allow large scale data processing. Dryad has

been evaluated for HPC analytics applications in [EGF09]. However, our approach is

based on MapReduce, which is well-suited for the data parallel applications where data

dependence does not exist and applications run on a shared-nothing architecture.

In the Chapter 3, we present a case of using MapReduce for scientific analytics ap-

plications. Scientific applications use high level APIs like NetCDF [refr], HDF5 [refi]

and their parallel variants [LLC03, refs] to describe the complex data formats. These

APIs and libraries work as an abstraction with the existing most commonly used MPI

framework by utilizing the MPI File views [ref97]. NetCDF (Network Common Data

82

Form) is a set of software libraries and machine-independent data formats that support

the creation, access, and sharing of array-oriented scientific data [refr]. The data model

represented by HDF5 support very complex data objects, metadata and a completely

portable file format with no limit on the number or size of data objects in the collec-

tion [refi]. We develop ways of specifying access patterns similar to MPI datatypes and

MPI File views within MapReduce.

Data Restructuring: To improve small I/O, in large-scale systems with thousand of

processes, collective I/O with its two-phase is used for abstractions like MPI-IO [TGL99a].

Other approaches are for checkpointing applications like PLFS, which adds a layer be-

tween the application and the file systems and re-maps an application’s write access

pattern to be optimized for the underlying file system [BGG09]. DPFS provides striping

mechanisms that divides a file into small pieces and distributes them across multiple

storage devices for parallel data access [SC01]. Our approach of data restructuring is

significantly different from these approaches because we re-organize data such that pro-

cesses are not required to communicate with each other, and maintain shared-nothing

architecture for scalability.

Scheduling: Job and task scheduling in distributed systems has been researched

widely. The ultimate goal in all scheduling schemes is managing resources among multiple

jobs, while maintaining the performance of individual tasks and overall jobs. In large

scale distributed systems like Grids, the prominent scheduling schemes for data-intensive

applications are task-centric and worker-centric. Task-centric approach shows improved

performance by reusing the data on Grid computing sites but results in unbalanced

tasks because it does not consider the load on each individual worker. Decoupling data

and computation as proposed in [RF02], evaluates various task and data scheduling

mechanisms. They show the best results are obtained when a task is scheduled to a

site that has its input data already in place, combined with proactive replication of a

popular input data set to a random/least-loaded site. Many other systems like Falkon

83

aims to enable the rapid and efficient execution of many tasks on large compute clusters,

and to improve application performance and scalability using novel data management

techniques [RZD07]. They provide a scheduling mechanism to copy the data to the

resources acquired dynamically for a particular application and have many variants of

this approach with performance improvements [RZF08, RFZ09]. These ensure that data

is cached/diffused to the sites which will be selected for the task execution.

There are other schemes as well that considers localities like in storage affinity [SCB04],

spatial clustering [MAW06], dynamic scheduling [VVY04] etc. In worker-centric ap-

proach the workers are selected that have enough compute resources to execute a job and

then data is transferred to the worker nodes. A worker-centric approach which leads to

tremendous amount of data transfers for data-intensive applications because data has to

be moved to the resources that are chosen for executing the application [KMG07]. Our

approach is different because we are using clusters in a tightly coupled environment as

compared to a Grid, and the required data stays in the cluster and will not be moved

from the resources once an application finishes and resources are freed up.

In the systems where compute and data resources are co-located, these systems deal

with two levels of resource sharing one is sharing within an application and other is

sharing among applications [refe, refc, IPC09]. For a single application environment, it

uses “data-locality” aware scheduling based on the location of a single chunk [reff]. Our

scheduling schemes are derived from this architecture but are strongly impacted by the

application behavior of data-intensive HPC applications i.e. we deal with complex access

patterns that requires the scheduling of multiple chunks per map task. Improving MapRe-

duce performance in heterogeneous clusters involves a scheduling mechanism, Longest

Approximate Time to End, for speculative tasks that processes single chunks [ZKJ08].

Our focus is on the regular map tasks with multiple chunks, and their LATE approach

can be added to our scheduling scheme to further improve the performance.

84

Porting MapReduce to HPC File systems for HPC analytics Some works

include using MapReduce on existing parallel file systems, example systems include a

PVFS2 shim layer [refu, refy], GPFS [refn, AGP09], MapReduce CGL [EPF08], and

MapReduce/MPI [refm]. These systems decouple MapReduce from HDFS with an effort

to provide the same functionality using different file systems. PVFS2 shim layer does

provide for basic MapReduce functionality, but it does not provide the functionality of

specifying access patterns on MapReduce. Another approach with GPFS modifies the

file block size by providing meta blocks that are compatible with MapReduce processing

block size [AGP09]. Both these approaches decouple MapReduce from HDFS, and try

to snap a traditional parallel file system onto a data-intensive framework, whereas our

work provides for a data-intensive file system for a compute-intensive framework.

Our approach is significantly different from this work, we provide data semantics and

required optimizations to the MapReduce framework. Some of HPC data analytics match

well with MapReduce programming style and using MapReduce with existing HPC file

systems is an attractive approach but requires modification to the file system for sup-

porting larger blocks, etc. There are other applications that need additional API support

and optimizations to use MapReduce for high performance. Our goal is to support dif-

ferent HPC data analytics applications with data access patterns using enhanced APIs

in MapReduce rather than porting MapReduce to existing HPC file system.

Some other approaches like CGL MapReduce [EPF08] also propose a solution to

improve the performance of scientific data analysis applications developed in MapReduce.

However, their approach is fundamentally different from our work. In CGL MapReduce

they do not address decreasing the number of MapReduce phases, rather they mitigate the

file read/write issue by providing an external mechanism to keep read file data persistent

across multiple map reduce jobs. Their approach does not work with HDFS, and relies

on a NFS mounted source.

85

MPI/MR implementation is based on C++ and allows for interprocess communica-

tion via MPI. By providing a C based MapReduce, MR-MPI allows for control of memory

allocation in a MapReduce job [refm]. We provide support for MPI datatypes on MapRe-

duce, and do not use MPI communication functions. Zazen [TRM10] provides a new data

access method to overcome the I/O bottleneck for analytics applications after simulation

data has been obtained. They use an analysis cluster, but cache a copy of simulation

output files on local disks of analysis cluster and use a novel task-assignment protocol

to co-locate data access with computation. Our approach also use an analysis cluster,

exploits data locality but also supports HPC data access patterns.

86

CHAPTER 6

CONCLUSION AND FUTURE WORK

This proposed dissertation work is based on two parallel programming frameworks:

MPI/MPI-IO and MapReduce. We have developed a reduced function set abstraction

for MPI-IO and an HPC data access pattern aware MapReduce based framework. In

the following subsections, we summarize the findings of our current work and discuss the

future work.

6.1 RFSA - Conclusion

We have implemented a selection algorithm that transparently detects which blocking

read/write function to use given a particular file view. The implementation is provided as

a unified read/write function in MPI-IO. Our programmer productivity results show that

reducing the number of functions provided to the application programmer is an effective

way of improving the programmer productivity (35.7%). Our results show that for a

selected set of benchmarks, which perform multiple read/write operations, the selection

procedure performs 17% better than the function that performs best for a given particular

case.

We have proposed a scheme to perform conflict detection using file views, and in-

troduce lock free independent write operations if there are no conflicts. We have im-

plemented our algorithm in ROMIO. In MPI-IO applications atomicity guarantees rely

on the file system locks. Our Conflict detection algorithm is able to extract overlapping

regions from the file views (for independent operations) created by MPI-IO application

87

with a minimal overhead. It paves the way to the lock-free and scalable approaches of

MPI-IO atomicity support.

6.2 RFSA - Future Work

• We have abstracted the blocking I/O calls, in the future we would like to extend this

work to non-blocking function calls, and open/close function calls. We would also

like to study the applicability of RFSA to the communication functions provided

by MPI.

• We have tested the conflict detection algorithm on a cluster with 16 nodes, the

scalability testing of this algorithm will be studied. The current algorithm relies on

the MPI collective communication calls. The number of messages to be exchanged

for detecting overlaps increases with the number of processes and file size. We need

to extend the current algorithm to create different communication groups. As a

result, we can distribute the conflict detection task among a group of nodes rather

than using each node as a conflict detector for itself.

6.3 MRAP - Conclusion

We have developed an extended MapReduce framework to allow users to specify data

semantics for HPC data analytics applications. Our approach reduces the overhead of

writing multiple MapReduce programs to pre-process data before its analysis. We provide

functions and templates to specify the sequence matching, and strided (non-contiguous)

accesses in reading different data sets, such that access patterns are directly specified in

the map phase. For experimentation, we ran a real application from bioinformatics and

an astrophysics I/O kernel. Our results show a maximum throughput improvement up

88

to 33%. We also studied the performance penalties due to the non-contiguous accesses

(small I/O requests) and implemented data restructuring to improve the performance.

Data restructuring uses a user-defined configuration file and reorganizes data in a file such

that all non-contiguous chunks are stored contiguously, and show a performance gain of

up to 70% for the astrophysics data set. These small I/O requests also map to multiple

chunks that are assigned to a map task, and require schemes to improve performance by

selecting optimal nodes for scheduling map tasks on the basis of multiple chunk locations.

Our improved scheduling mechanism shows a performance improvement of up to 18%.

6.4 MRAP - Future Work

• We would like to implement more HPC analytics applications using MRAP. We

will also add more access patterns and support of formats like netCDF, HDF5 and

ADIOS like interfaces to MapReduce and make it more expressive for scientists.

• Data restructuring is implemented as a sequential HDFS copy operation. The

parallel version of this copy operation is only available for HDFS to HDFS copy

operation. We would like to implement a parallel copy operation with data re-

structuring to further improve the performance of this operation. (Parallel copy

operation from a remote storage to HDFS is not available in the HDFS API.)

• We would also like to study the scalability related issues of MRAP, because the

purpose of using MapReduce framework is to keep the scalability and resiliency

offered by the framework. Our initial tests use a 45 node cluster, we will run some

more experiments on large scale clusters in future.

• A multiuser environment with HPC analytics applications imposes more challenges

for scheduling. Our first effort was to optimize single application, and we will

extend our work to multiuser environments.

89

LIST OF REFERENCES

[ACT06] P. M. Aarestad, A. Ching, G. K. Thiruvathukal, and A. N. Choudhary. “Scal-
able Approaches for Supporting MPI-IO Atomicity.” In CCGRID ’06: Pro-
ceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid, pp. 35–42, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[AGP09] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar, M. Shah,
and R. Tewari. “Cloud Analytics: Do We Really Need to Reinvent the Storage
Stack?” In HotCloud ’09: Workshop on Hot Topics in Cloud Computing in
conjunction with the 2009 USENIX Annual Technical Conference, 2009.

[BGG09] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate. “PLFS: A Checkpoint Filesystem for Parallel
Applications.” In Supercomputing, 2009 ACM/IEEE Conference, Nov. 2009.

[BIS08] J. G. Blas, F. Isaila, D. E. Singh, and J. Carretero. “View-Based Collective
I/O for MPI-IO.” In CCGRID ’08: Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid (CCGRID), pp.
409–416, Washington, DC, USA, 2008. IEEE Computer Society.

[Bor] D. Borthaku. “The Hadoop Distributed File System: Architecture and De-
sign.”.

[CCC03] A. Ching, A. Choudhary, K. Coloma, W. keng Liao, R. Ross, and W. Gropp.
“Noncontiguous I/O Accesses Through MPI-IO.” In CCGRID ’03: Proceed-
ings of the 3st International Symposium on Cluster Computing and the Grid,
p. 104, Washington, DC, USA, 2003. IEEE Computer Society.

[CCL02] A. Ching, A. Choudhary, W. keng Liao, R. Ross, and W. Gropp. “Noncon-
tiguous I/O through PVFS.” In CLUSTER ’02: Proceedings of the IEEE In-
ternational Conference on Cluster Computing, p. 405, Washington, DC, USA,
2002. IEEE Computer Society.

[CFL06] A. Ching, W. Feng, H. Lin, X. Ma, and A. Choudhary. “Exploring I/O Strate-
gies for Parallel Sequence-Search Tools with S3aSim.” hpdc, 0:229–240, 2006.

[CLC07] A. Ching, W. keng Liao, A. Choudhary, R. Ross, and L. Ward. “Noncon-
tiguous locking techniques for parallel file systems.” In SC ’07: Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, pp. 1–12, New York,
NY, USA, 2007. ACM.

[CLR09] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig. “Small-
File Access in Parallel File Systems.” In Proceedings of the 23rd IEEE Inter-
national Parallel and Distributed Processing Symposium, April 2009.

[CSR01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

90

[CYZ04] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. “Productivity Analysis
of the UPC Language.” In 18th IEEE International Parallel and Distributed
Processing Symposium (IPDPS04), 2004.

[Dea06] J. Dean. “Experiences with MapReduce, an abstraction for large-scale com-
putation.” In PACT ’06: Proceedings of the 15th international conference
on Parallel architectures and compilation techniques, pp. 1–1, New York, NY,
USA, 2006. ACM.

[DG04] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large
clusters.” In OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, pp. 10–10, Berkeley, CA, USA,
2004. USENIX Association.

[EGF09] J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C. Poulain, N. Araujo,
and R. Barga. “DryadLINQ for Scientific Analyses.” In E-SCIENCE ’09:
Proceedings of the 2009 Fifth IEEE International Conference on e-Science,
pp. 329–336, Washington, DC, USA, 2009. IEEE Computer Society.

[EPF08] J. Ekanayake, S. Pallickara, and G. Fox. “MapReduce for Data Intensive Sci-
entific Analyses.” In eScience, 2008. eScience ’08. IEEE Fourth International
Conference on, pp. 277–284, 2008.

[GGL03] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File System.” In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles, pp. 29–43, New York, NY, USA, 2003. ACM.

[GTL99] W. Gropp, R. Thakur, and E. Lusk. Using MPI-2: Advanced Features of the
Message Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[HCS05] L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili. “Parallel Pro-
grammer Productivity: A Case Study of Novice Parallel Programmers.” In
SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
p. 35, Washington, DC, USA, 2005. IEEE Computer Society.

[IBY07] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: distributed
data-parallel programs from sequential building blocks.” EuroSys ’07: Pro-
ceedings of the ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pp. 59–72, 2007.

[IPC09] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.
“Quincy: Fair Scheduling for Distributed Computing Clusters.” In SOSP ’09:
Proceedings of 22nd ACM Symposium on Operating Systems Principles. ACM,
2009.

[IY09] M. Isard and Y. Yu. “Distributed data-parallel computing using a high-level
programming language.” In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data, pp. 987–994, New York, NY,
USA, 2009. ACM.

[KMG07] S. Y. Ko, R. Morales, and I. Gupta. “New worker-centric scheduling strategies
for data-intensive grid applications.” In Middleware ’07: Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware, pp. 121–
142, New York, NY, USA, 2007. Springer-Verlag New York, Inc.

91

[KNG09] Y. Kwon1, D. Nunley2, J. P. Gardner3, M. Balazinska4, B. Howe5, and
S. Loebman6. “Scalable clustering algorithm for N-body simulations in a
shared-nothing cluster.” Technical report, University of Washington, Seattle,
WA, 2009.

[LCC03] W. keng Liao, A. Choudhary, K. Coloma, G. K. Thiruvathukal, L. Ward,
E. Russell, and N. Pundit. “Scalable Implementations of MPI Atomicity for
Concurrent Overlapping I/O.” Parallel Processing, International Conference
on, 0:239, 2003.

[LLC03] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham,
A. Siegel, B. Gallagher, and M. Zingale. “Parallel netCDF: A High-
Performance Scientific I/O Interface.” In Supercomputing, 2003 ACM/IEEE
Conference, pp. 39–39, Nov. 2003.

[MAW06] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and I. Foster. “Planning spatial
workflows to optimize grid performance.” In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pp. 786–790, New York, NY, USA,
2006. ACM.

[MTF08] A. Matsunaga, M. Tsugawa, and J. Fortes. “CloudBLAST: Combining
MapReduce and Virtualization on Distributed Resources for Bioinformatics
Applications.” In ESCIENCE ’08: Proceedings of the 2008 Fourth IEEE In-
ternational Conference on eScience, pp. 222–229, Washington, DC, USA, 2008.
IEEE Computer Society.

[ORS08] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig latin:
a not-so-foreign language for data processing.” In SIGMOD ’08: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data,
pp. 1099–1110, New York, NY, USA, 2008. ACM.

[PG08] I. Patel and J. R. Gilbert. “An Empirical Study of the Performance and
Productivity of two Parallel Programming Models.” In IPDPS, pp. 1–7, 2008.

[PGK06] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Thakur, and W. D. Gropp.
“Formal Verification of Programs That Use MPI One-Sided Communication.”
In PVM/MPI, pp. 30–39, 2006.

[refa] “Advanced Particle Simulation for Computational Cosmology and Beam
Physics: Cosmology. http://t8web.lanl.gov/people/salman/icp/cos.
html.”.

[refb] “Blue Waters, Sustained Petascale Computing. http://www.ncsa.illinois.
edu/BlueWaters/.”.

[refc] “Capacity Scheduler. http://hadoop.apache.org/core/docs/r0.20.0/
capacity_scheduler.html.”.

[refd] “Data- Driven Computational Science and Future Architectures at
the Pittsburgh Supercomputing Center. http://www.cisl.ucar.edu/dir/
09Seminars/roskies20090130.ppt.”.

[refe] “Fair Scheduler. http://hadoop.apache.org/core/docs/r0.20.0/fair_
scheduler.html.”.

[reff] “HADOOP. http://hadoop.apache.org/core/.”.

92

http://t8web.lanl.gov/people/salman/icp/cos.html
http://t8web.lanl.gov/people/salman/icp/cos.html
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://hadoop.apache.org/core/docs/r0.20.0/capacity_scheduler.html
http://hadoop.apache.org/core/docs/r0.20.0/capacity_scheduler.html
http://www.cisl.ucar.edu/dir/09Seminars/roskies20090130.ppt
http://www.cisl.ucar.edu/dir/09Seminars/roskies20090130.ppt
http://hadoop.apache.org/core/docs/r0.20.0/fair_scheduler.html
http://hadoop.apache.org/core/docs/r0.20.0/fair_scheduler.html
http://hadoop.apache.org/core/

[refg] “Halo Catalogs. http://t8web.lanl.gov/people/heitmann/arxiv/codes.
html.”.

[refh] “Hashed Oct-Tree . http://t8web.lanl.gov/people/salman/icp/hot.
html.”.

[refi] “HDF5. http://www.hdfgroup.org/HDF5/.”.

[refj] “HDFS Metadata. https://issues.apache.org/jira/browse/
HADOOP-1687.”.

[refk] “Implementing WebGIS on Hadoop: A Case Study of Improving Small File
IO Performance on HDFS. http://www.cluster2009.org/47.pdf.”.

[refl] “Lustre Filesystem. http://www.lustre.org/.”.

[refm] “MapReduce-MPI Library. http://www.sandia.gov/~sjplimp/mapreduce.
html.”.

[refn] “MapReduce on GPFS. http://www.usenix.org/events/fast09/wips_
posters/ananthanarayanan_wip.pdf.”.

[refo] “MPI and High Productivity Programming. http://www.cs.uiuc.edu/
homes/wgropp/bib/talks/tdata/2007/mpiandhpl-osu.pdf.”.

[refp] “MPI-Tile IO. http://www.mcs.anl.gov/~thakur/pio-benchmarks.html.”.

[refq] “National Energy Research Scientific Computing Center. http://www.nersc.
gov/.”.

[refr] “netCDF. http://www.unidata.ucar.edu/software/netcdf/.”.

[refs] “Parallel HDF5. http://www.hdfgroup.org/HDF5/PHDF5/.”.

[reft] “Parallel Virtual File System version 2. http://www.pvfs.org/.”.

[refu] “PVFS2 Shim Layer. http://institute.lanl.gov/isti/irhpit/
projects/hdfspvfs.pdf.”.

[refv] “Relativistic Heavy Ion Collider. http://www.bnl.gov/rhic.”.

[refw] “Roadrunner. http://lanl.gov/news/index.php/fuseaction/home.
story/story_id/13602.”.

[refx] “Roadrunner. http://www.lanl.gov/roadrunner/.”.

[refy] “http://cmulargescalelunch.kyloo.net/files/hdfspvfs-pdlslides.
ppt.”.

[refz] “US Lattice Quantum Chromodynamics. http://www.usqcd.org/
usqcd-software/.”.

[ref97] “MPI-2: Extensions to the message-passing Interface. http://www.
mpi-forum.org/docs/.”, July 1997.

[RF02] K. Ranganathan and I. Foster. “Decoupling Computation and Data Schedul-
ing in Distributed Data-Intensive Applications.” In HPDC ’02: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed
Computing, p. 352, Washington, DC, USA, 2002. IEEE Computer Society.

93

http://t8web.lanl.gov/people/heitmann/arxiv/codes.html
http://t8web.lanl.gov/people/heitmann/arxiv/codes.html
http://t8web.lanl.gov/people/salman/icp/hot.html
http://t8web.lanl.gov/people/salman/icp/hot.html
http://www.hdfgroup.org/HDF5/
https://issues.apache.org/jira/browse/HADOOP-1687
https://issues.apache.org/jira/browse/HADOOP-1687
http://www.cluster2009.org/47.pdf
http://www.lustre.org/
http://www.sandia.gov/~sjplimp/mapreduce.html
http://www.sandia.gov/~sjplimp/mapreduce.html
http://www.usenix.org/events/fast09/wips_posters/ananthanarayanan_wip.pdf
http://www.usenix.org/events/fast09/wips_posters/ananthanarayanan_wip.pdf
 http://www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpiandhpl-osu.pdf
 http://www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpiandhpl-osu.pdf
http://www.mcs.anl.gov/~thakur/pio-benchmarks.html
http://www.nersc.gov/
http://www.nersc.gov/
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/PHDF5/
http://www.pvfs.org/
http://institute.lanl.gov/isti/irhpit/projects/hdfspvfs.pdf
http://institute.lanl.gov/isti/irhpit/projects/hdfspvfs.pdf
http://www.bnl.gov/rhic
http://lanl.gov/news/index.php/fuseaction/home.story/story_id/13602
http://lanl.gov/news/index.php/fuseaction/home.story/story_id/13602
http://www.lanl.gov/roadrunner/
http://cmulargescalelunch.kyloo.net/files/hdfspvfs-pdlslides.ppt
http://cmulargescalelunch.kyloo.net/files/hdfspvfs-pdlslides.ppt
http://www.usqcd.org/usqcd-software/
http://www.usqcd.org/usqcd-software/
http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/

[RFZ09] I. Raicu, I. T. Foster, Y. Zhao, P. Little, C. M. Moretti, A. Chaudhary, and
D. Thain. “The quest for scalable support of data-intensive workloads in
distributed systems.” In HPDC ’09: Proceedings of the 18th ACM interna-
tional symposium on High performance distributed computing, pp. 207–216,
New York, NY, USA, 2009. ACM.

[RLG05] R. B. Ross, R. Latham, W. Gropp, R. Thakur, and B. R. Toonen. “Imple-
menting MPI-IO atomic mode without file system support.” In CCGRID, pp.
1135–1142, 2005.

[RZD07] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. “Falkon: a Fast
and Light-weight tasK executiON framework.” In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pp. 1–12, New York, NY,
USA, 2007. ACM.

[RZF08] I. Raicu, Y. Zhao, I. T. Foster, and A. Szalay. “Accelerating large-scale data
exploration through data diffusion.” In DADC ’08: Proceedings of the 2008
international workshop on Data-aware distributed computing, pp. 9–18, New
York, NY, USA, 2008. ACM.

[SC01] X. Shen and A. Choudhary. “DPFS: A Distributed Parallel File System.”
Parallel Processing, International Conference on, 0:0533, 2001.

[SCB04] E. Santos-Neto, W. Cirne, F. Brasileiro, A. Lima, R. Lima, and C. Grande.
“Exploiting Replication and Data Reuse to Efficiently Schedule Data-intensive
Applications on Grids.” In Proceedings of the 10th Workshop on Job Schedul-
ing Strategies for Parallel Processing, pp. 210–232, 2004.

[Sch09] M. C. Schatz. “CloudBurst: Highly Sensitive Read Mapping with MapRe-
duce.” Bioinformatics, p. 236, April 2009.

[Seb02] R. W. Sebesta. Concepts of Programming Languages (Fifth Edition). Addison-
Wesley Publishing, 2002.

[SH02] F. Schmuck and R. Haskin. “GPFS: A Shared-Disk File System for Large
Computing Clusters.” In FAST ’02: Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies, p. 19, Berkeley, CA, USA, 2002.
USENIX Association.

[SHP08] S. Spetka, H. Hadzimujic, S. Peek, and C. Flynn. “High Productivity Lan-
guages for Parallel Programming Compared to MPI.” HPCMP Users Group
Conference, 0:413–417, 2008.

[SKT00] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner.
“Designing and mining multi-terabyte astronomy archives: the Sloan Digital
Sky Survey.” SIGMOD Rec., 29(2):451–462, 2000.

[SMW10] S. Sehrish, G. Mackey, J. Wang, and J. Bent. “MRAP - A Novel MapReduce-
based framework to support HPC Analytics Applications with Access Pat-
terns. .” In ACM High Performance Distributed Computing, June 2010.

[SW09] S. Sehrish and J. Wang. “Smart Read/Write for MPI-IO.” In The 14th Inter-
national Workshop on High-Level Parallel Programming Models and Support-
ive Environments(HIPS’09), in conjunction with the 23rd IEEE International
Parallel and Distributed Processing Symposium, May 2009.

94

[SW10] S. Sehrish and J. Wang. “Reduced Function Set Abstraction (RFSA) for MPI-
IO.” In Journal of Supercomputing, 2010.

[SWJ05] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas,
H. Couchman, A. Evrard, J. Colberg, and F. Pearce. “Simulations of
the formation, evolution and clustering of galaxies and quasars.” Nature,
435(70422):629–636, June 2005.

[SWT09] S. Sehrish, J. Wang, and R. Thakur. “A Conflict Detection Algorithm to Min-
imize Locking for MPI-IO Atomicity.” In Proceedings of the EuroPVM/MPI
2009, September 2009.

[TGL99a] R. Thakur, W. Gropp, and E. Lusk. “Data Sieving and Collective I/O in
ROMIO.” In FRONTIERS ’99: Proceedings of the The 7th Symposium on the
Frontiers of Massively Parallel Computation, p. 182, Washington, DC, USA,
1999. IEEE Computer Society.

[TGL99b] R. Thakur, W. Gropp, and E. Lusk. “On implementing MPI-IO portably and
with high performance.” In IOPADS ’99: Proceedings of the sixth workshop
on I/O in parallel and distributed systems, pp. 23–32, New York, NY, USA,
1999. ACM.

[TRL05] R. Thakur, R. B. Ross, and R. Latham. “Implementing Byte-Range Locks
Using MPI One-Sided Communication.” In PVM/MPI, pp. 119–128, 2005.

[TRM10] T. Tu, C. A. Rendleman, P. J. Miller, F. D. Sacerdoti, R. O. Dror, and
D. E. Shaw. “Accelerating Parallel Analysis of Scientific Simulation Data
via Zazen.” In USENIX conference on File and Storage Technologies, pp.
129–142, 2010.

[VVY04] S. Viswanathan, B. Veeravalli, D. Yu, and T. G. Robertazzi. “Design and
Analysis of a Dynamic Scheduling Strategy with Resource Estimation for
Large-Scale Grid Systems.” In GRID ’04: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, pp. 163–170, Washington, DC,
USA, 2004. IEEE Computer Society.

[WUA08] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka,
and B. Zhou. “Scalable Performance of the Panasas Parallel File System.”
In FAST’08: Proceedings of the 6th USENIX Conference on File and Storage
Technologies, pp. 1–17, Berkeley, CA, USA, 2008. USENIX Association.

[YIF08] Y. Yu, M. Isard, D. Fetterly, M. Budiu, lfar Erlingsson, P. K. Gunda, and
J. Currey. “DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language.” In R. Draves and R. van
Renesse, editors, OSDI, pp. 1–14. USENIX Association, 2008.

[ZHC07] Y. Zhao, M. Hategan, B. Clifford, I. T. Foster, G. von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde. “Swift: Fast, Reliable, Loosely
Coupled Parallel Computation.” In IEEE SCW, pp. 199–206, 2007.

[ZKJ08] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. “Improving
MapReduce Performance in Heterogeneous Environments.” In 8th Symposium
on Operating Systems Design and Implementation (OSDI’08), pp. 29–42, 2008.

95

	Improving Performance And Programmer Productivity For I/o-intensive High Performance Computing Applications
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Message Passing Interface
	1.1.1 Contributions of RFSA

	1.2 MapReduce
	1.2.1 Contributions of MRAP

	CHAPTER 2: BACKGROUND
	2.1 MPI/MPI-IO Background
	2.1.1 MPI File views and datatypes
	2.1.2 MPI I/O optimizations
	2.1.3 MPI Atomicity

	2.2 MapReduce Background
	2.2.1 MapReduce Programming Overview
	2.2.2 Parallel and Distributed FileSystem - HDFS

	CHAPTER 3: RFSA - AN MPI-IO BASED REDUCED FUNCTION SET ABSTRACTION TO SUPPORT I/O-INTENSIVE HPC SIMULATIONS
	3.1 RFSA Read/Write Operations
	3.1.1 Merge Some Functions

	3.2 RFSA Atomicity Operation
	3.3 Implementation
	3.3.1 RFSA_File_Read/Write
	3.3.2 RFSA_File_set_view

	3.4 Evaluating the Functions
	3.4.1 Programmer Productivity
	3.4.2 Performance

	CHAPTER 4: MRAP - A MAPREDUCE BASED FRAMEWORK TO SUPPORT I/O-INTENSIVE HPC ANALYTICS WITH ACCESS PATTERNS
	4.1 Introduction
	4.2 Motivation for developing MRAP
	4.2.1 Small I/O
	4.2.2 Data Locality

	4.3 Design of MRAP
	4.3.1 MRAP API
	4.3.2 MRAP Data Restructuring
	4.3.3 MRAP Scheduling

	4.4 Evaluation
	4.4.1 Testbed and Benchmarks Description
	4.4.2 Demonstrating Performance for MRAP
	4.4.3 Data Restructuring:
	4.4.4 MRAP Scheduling

	CHAPTER 5: RELATED WORK
	CHAPTER 6: CONCLUSION AND FUTURE WORK
	6.1 RFSA - Conclusion
	6.2 RFSA - Future Work
	6.3 MRAP - Conclusion
	6.4 MRAP - Future Work

	LIST OF REFERENCES

