Char : the fire investigators aid the implementation of expert system

1988

Pamella M. Johnson
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Engineering Commons

STARS Citation

Johnson, Pamella M., "Char : the fire investigators aid the implementation of expert system" (1988). Retrospective Theses and Dissertations. 4294.
https://stars.library.ucf.edu/rtd/4294

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
CHAR: THE FIRE INVESTIGATOR'S AIDE
THE IMPLEMENTATION OF AN EXPERT SYSTEM

BY

PAMELLA M. JOHNSON
B.E.T., University of Central Florida, 1983

RESEARCH REPORT
Submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the Graduate Studies Program
of the College of Engineering
University of Central Florida
Orlando, Florida

Spring Term
1988
The purpose of this research is to determine the applicability of expert systems to fire investigation. This will be accomplished by:

a) using an expert systems building tool,

b) extraction and organization of the knowledge base,

c) application of the system to solve a real problem.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. DEFINITION OF THE PROBLEM</td>
<td>4</td>
</tr>
<tr>
<td>III. TOOLS FOR EXPERT SYSTEMS DEVELOPMENT</td>
<td>8</td>
</tr>
<tr>
<td>IV. THE CHAR SYSTEM</td>
<td>12</td>
</tr>
<tr>
<td>V. DEVELOPMENT AND APPLICATION</td>
<td>17</td>
</tr>
<tr>
<td>VI. RESULTS FOR SAMPLE RUN</td>
<td>23</td>
</tr>
<tr>
<td>VII. CONCLUSIONS</td>
<td>25</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Sample Problem</td>
<td>28</td>
</tr>
<tr>
<td>B. Knowledge Base Listing</td>
<td>33</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. COMPARISON OF ARTIFICIAL INTELLIGENCE WITH CONVENTIONAL PROGRAMMING 2
LIST OF FIGURES

1. Fire Investigation Context Tree 13
2. Person-years Required to Develop an Expert System . 26
I. INTRODUCTION

The advancements in the field of computer technology in parallel processing, microprogramming, co-processors, and fast memory chips have led to an increasing demand for more powerful and intelligent computer systems. During and since the 1960s, artificial intelligence has become a growing part of research and development in both government and private industry.

Artificial intelligence is the development of intelligent computer programs. The field of artificial intelligence includes the following areas:

Robotics
Expert Systems
Natural Language
Speech Processing and Synthesis
Machine Vision and Pattern Recognition

Intelligence refers to tasks that would require human knowledge and reasoning in order to perform them properly. These computer programs are heuristic in nature, involving complex symbolic manipulation and solutions that may be ambiguous. Table 1 shows a comparison between artificial
intelligent programming and conventional programming, which is more algorithmic in nature.

TABLE 1

COMPARISON OF ARTIFICIAL INTELLIGENCE WITH CONVENTIONAL PROGRAMMING

<table>
<thead>
<tr>
<th>ARTIFICIAL INTELLIGENCE</th>
<th>CONVENTIONAL PROGRAMMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primarily symbolic process</td>
<td>Often primarily numeric</td>
</tr>
<tr>
<td>Heuristic search (solution steps implicit)</td>
<td>Algorithmic (solution steps explicit)</td>
</tr>
<tr>
<td>Control structure usually separate from domain knowledge</td>
<td>Information and control integrated together</td>
</tr>
<tr>
<td>Usually easy to modify, update and enlarge</td>
<td>Difficult to modify</td>
</tr>
<tr>
<td>Some incorrect answers often tolerated</td>
<td>Correct answers required</td>
</tr>
<tr>
<td>Satisfactory answers usually acceptable</td>
<td>Best possible solution usually sought</td>
</tr>
</tbody>
</table>

(Hunt, 1986)
Expert systems are artificial intelligence programs that record and access the expertise of a human in a particular field. They use knowledge and inference techniques to solve problems which would otherwise require human intelligent reasoning. They possess the characteristics of artificial intelligence programs as listed in Table 1 above.

The mechanics of the design of an expert system involve:

a) an artificial intelligence programmer to design the system tool,

b) a domain expert to provide the knowledge, and

c) a knowledge engineer to interview the domain expert and translate the knowledge into rules.

The knowledge of one or more experts may be captured in an expert system. This makes it possible for the non-expert to obtain general advice or information when an expert is not present. Since the system contains more than one person's knowledge, it is more effective in its conclusions.
II. DEFINITION OF THE PROBLEM

Fires usually destroy most of their evidence and may be caused by any number of sources. Therefore, the field of Fire Investigation relies heavily on experience and heuristic methods of problem solving.

A tiresome task of the investigator is to collect all available pieces of information. The work involves going through piles of charred debris to collect all pertinent pieces of information. He should be very keen and be able to eliminate irrelevant data. After gathering the data, the next step is to determine the relationship between the data and the source of the fire. In most fires, the findings usually end up in a court case, so the fire investigator needs to be accurate in his findings. The evidence should be free from prejudice and unbiased. As the data increase, the accuracy may decrease if some are inherently omitted.

CHAR, the system proposed here, attempts to assist the experienced investigator in organizing his data, and to reinforce his conclusions. For the rookie officer, CHAR
will provide a tutorial guide to help him solve real or simulated fires provided by his superiors.

To determine the cause/source of a fire, the following must be determined:

(1) the source of ignition,

(2) the material first ignited, and

(3) the defect, act or omission which led to the source of ignition and the material first ignited creating a fire. (Dennettt, 1980)

Because of the vast amount of knowledge needed to determine all three, the expert system developed here is limited to solving the source of residential fires only. Thus, the sources are limited to:

- Electricity
- Gas
- Smoking materials
- Solar radiation
- Lightning
- Hot surfaces
- Spontaneous combustion

Electrical fires account for thirteen percent of all reported fires (Carroll, 1979), and may be caused by the overloading of a circuit or a malfunction in an appliance. Other causes of electrical fires may be the deliberate
substitution of a breaker with a higher ampere rating than the design rating of the circuit, short circuits, and incorrect wire size.

Gas fires start with an explosion. These explosions occur when the gas, usually from a leak, comes in contact with a flame.

Smoking materials: cigarettes, cigars and other such types, will cause a fire if smothered for about three to four hours. An example of this is, if a lighted cigarette is left in a sofa, it will produce a larger fire hours later.

Sunshine through a window, fish bowl, vase or any optical material that will converge rays, may cause a fire.

Lightning is one of the easiest sources to eliminate or detect. The activity of lightning in the area will be evident or recorded by the National Weather Service.

The class of hot surfaces includes fires caused by heat from heat producing objects such as hot water pipes, heaters, and the like.

Spontaneous combustion occurs from a chemical reaction which is exothermic. An exothermic reaction is one which gives off heat (Carroll, 1979). This may occur when oils
of high iodine value are soaked up in rags and left in a poorly ventilated area.

The sources mentioned above are limited and exclude burn pattern, flame color, and other miscellaneous causes.

The purpose of this research is to investigate the feasibility of procedures of an expert system that will assist a fire investigator on the job. The significant accomplishments of this work are the following:

a) feasibility of using expert systems techniques in fire investigation,

b) application of an expert system building tool, and

c) extraction and organization of the knowledge base.
III. TOOLS FOR EXPERT SYSTEMS DEVELOPMENT

The artificial intelligence programmer designs the inference engine and the environment in order for the knowledge engineer to develop the knowledge/data. When this design is such that it can be used to develop knowledge in more than one domain, it is called a system building tool.

As seen from Table 1, the control in the tool is usually separate from the knowledge, so the design time of an expert system can be reduced by using such a tool. It is also designed so that the knowledge engineer will not need to know much about the language in which it was designed. Instead, a type of knowledge engineering language is developed which does not require experience in LISP, Prolog or any other language. The programming tool reduces the coding and provides a support system for the finished package.

An expert system building tool contains an inference engine to perform reasoning, and a knowledge base builder and editor to aid the knowledge engineer in
recording the expertise. It usually exhibits the following characteristics:

- User friendly
- Makes use of confidence factors for uncertainty management
- Forward or backward chaining
- Designed in a language capable of symbolic processing.

Texas Instruments has developed a knowledge engineering language, Personal Consultant, which is the developmental tool used here. Personal Consultant was chosen as the tool because it has all the above features, may be used on International Business Machines (IBM) personal computers, and was available.

This tool employs backward chaining, but forward chaining rules may also be used. The knowledge is rule-based so that the rules are entered in the form of IF-THEN. The IF portion can be referred to as the antecedent and the THEN part as the consequent.

An example of the form of a rule is as follows:

a) In English,

RULE007 [CHARRULES]

If 1) a broken fuse, and 2) wire loose inside insulation,
Then there is strongly suggestive evidence (80%) that OVERLOAD.
b) In LISP,

RULE007 [CHARRULES]
PREMISE: \((\text{AND} \ (\text{SAME CNTXT BROKEN-FUSE YES})\)
\((\text{SAME CNTXT LOOSE-WIRE YES})\))
ACTION: \((\text{DO-ALL} \ (\text{CONCLUDE CNTXT OVERLOAD TALLY 800}))\)

Forward chaining uses facts to match IF-clauses. If all the IF-clauses are matched, then the rule is fired (Siegel, 1986). This is continued for all other facts until all rules are checked. Facts include the initial data, the requested data, and the THEN-clauses of fired rules.

In backward chaining the goals are matched with the THEN-clauses, and the IF-clauses of all those rules are matched with THEN-clauses until a rule is found with all IF-clauses as true (Siegel, 1986). That rule is fired and it continues to fire other rules in a forward direction.

In the rule above, to come to a conclusion, all rules containing BROKEN-FUSE and/or LOOSE-WIRE as the consequent are fired. For those rules to be fired, all the parameters in the IF-clauses must be available. If not, other rules are searched to determine if the present IF-clauses are contained in any THEN-clauses. Of course, if either is false, then the other is not checked. When a rule is designated as antecedent, the reasoning will
follow forward chaining; otherwise all inference in the Personal Consultant is backward chaining.

The structure of the Personal Consultant is such that a problem may be divided into sections, the main context and subcontexts. The main context will contain general knowledge about the area of expertise. During the solving of the problem, the information or data may need only a certain portion of the knowledge.

Dividing the problem into subcontexts not only helps with the organizational hierarchy of the system, but also provides an efficient way of accessing knowledge contained in the parameters and rules. Parameters are somewhat similar to variables in computer programs. Parameters may have values of "Yes," "No," or any other attribute that the designer may wish to assign to them. The attributes are set by the designer, but it is the user that determines the actual value that will be used at the time of execution. The user also determines the confidence factor. The section on development gives a clearer picture of the role of a parameter. Confidence factors are also described at that time.
IV. THE CHAR SYSTEM

Fire investigation is a field in which expertise is used to obtain solutions. This type of expertise uses a heuristic method which seems to be ideally suited for an expert system.

CHAR: THE FIRE INVESTIGATOR'S AIDE is developed to aid the fire investigator in determining the source of a fire. It may also be used as a teaching tool for new officers. In such instances the students may be given sample cases to solve, and then use the system to compare with their own solutions.

The knowledge of any expert is vast and not easily extracted and converted into computer language form. The use of rules is one way of representing knowledge to an expert system. A very large number of rules is usually needed to effectively capture any part of an expert's knowledge. CHAR contains ninety-eight rules.

Personal Consultant provides a way to divide the problem into sections that relate to different tasks of the problem. Each section or subcontext contains parameters and rules to solve that task. The subcontexts can also use rules and parameters from the main context.
In this research there is a main context and seven subcontexts. These rules and parameters are listed in Appendix B.

The structure of the context is as shown in Figure 2.

Figure 2. Fire Investigation Context Tree.
CHAR was developed on an IBM PC using Texas Instruments, Personal Consultant building tool. Expert opinion and information is being obtained from: a) Fire Investigation, M. F. Dennett; b) Fire Investigation, Paul L. Kirk; c) Physical and Technical Aspects of Fire and Arson Investigation, John R. Carroll; and d) Lt. John Hackett, Fire Investigator, Orlando Fire Department. Lt. Hackett was consulted during the project to provide expert input.

How does the system arrive at a conclusion such as spontaneous combustion? Spontaneous combustion is not frequently the cause of fire, but will always occur if the chemical and physical conditions are present.

For spontaneous combustion to occur, an oil with high iodine value, rags, and limited ventilation must all be present conditions. Some oils with high iodine value are linseed, cic, hemp-seed, perilla, stillinga, and tung.

A rule consists of three major parts:

a) the conditions,
b) the conclusion, and
c) the confidence factor.

The conditions are similar to those that a fire investigator will look for at the scene of a fire. There are many conditions by which a fire may be caused. These conditions, when combined in a multiplicity of ways, can
produce a large number of possible solutions. The rule structure to test for spontaneous combustion when linseed oil is present could be as follows:

RULE001 [SPON RULES]

If 1) Rags were present and
 2) Linseed oil was present
Then there is strongly suggestive evidence (90%) that there was spontaneous combustion.

To come to a conclusion, both 1) and 2) must be true. First the system will prompt for rags being present. If the response is negative or very low belief, then the possibility of spontaneous combustion is ruled out. With a positive response, the system will also try to find a positive response for the presence of linseed oil. But, before the user is prompted for a value, all the rules are searched to see if there is one that will say that linseed oil was present. A rule such as this will test for it:

RULE008 [SPON RULES]

If 1) Aroma of linseed oil was present, and
 2) Residue of linseed oil was present,
Then it is definite (100%) that linseed oil was present.

The system will prompt for a value for aroma and residue being present. With these two present, then the system will assume that linseed oil was present, and the user will not be prompted for linseed being present.
However, if linseed oil was not present, then, because rags were present, more rules containing other oils will be fired, such as:

RULE002 [SPONRULES]

If 1) Rags were present, and 2) Cic oil is present, Then there is strongly suggestive evidence (85%) that the cause of fire was spontaneous combustion.

RULE005 [SPONRULES]

If 1) Rags were present, and 2) Any oil with a high iodine content is present, Then there is strongly suggestive evidence (80%) that the cause of fire was spontaneous combustion.

Whenever a rule that concludes that there is spontaneous combustion is fired and is true, then no more rules from that context are fired. This process is similar for all contexts. However, when the source is determined, then the consultation will be completed.
V. DEVELOPMENT AND APPLICATION

It may seem redundant to design an expert system when books are available, but that is not the case. To obtain any information from the book, one must search through the entire book. On the other hand, an expert system would request only the necessary information, and then process that data to solve the problem.

Once rules are designed and debugged, they can be packaged so that the end user can employ them with minimum computer training. To use the system, the user should be prepared with all the information collected from the scene of the fire. On starting, the system will request data/facts by asking questions. The user will answer accordingly and may include a confidence factor depending on the level of belief placed on the knowledge.

The knowledge base consists of the main context and seven subcontexts as shown in Figure 2. The main context contains general knowledge about the domain and means by which the subcontexts may be instantiated. There are seven subcontexts, each containing knowledge about one of the following sources of ignition: electricity, gas,
smoking materials, solar radiation, lightning, hot surfaces/flames, and spontaneous combustion.

Two particularly useful characteristics of the design in this system are:

a) The rules for a context/subcontext are kept together in numerical sequence. This allows for easier editing, as well as for understanding the design of the system.

b) Each set of rules has a range of numbers allocated for it. Additional rules may be added without breaking the consecutive numbering. Ten or more rules may be added to each context type.

To allocate and access the range requires editing the knowledge base. Personal Consultant does not provide any means to omit numerical sequence. All rules are added by using the insert key and the system automatically numbers them sequentially. Also, once a rule is deleted, that number cannot be used again.

These inconveniences can be easily overcome by carefully studying the knowledge base, which is basically LISP code in a word processor editor. To allocate a range of numbers to a set of rules, the last line of the LISP coding, (SETQ RULENUM (QUOTE 23)), was edited to one less than the first number. (To start at rule number 160,
change 23 to 159.) Inserting a deleted rule would be similar in that the last line would be edited to one less than the rule number desired.

Although this seems to be a tiresome task, it creates a much more friendly environment for editing and documenting. Viewing the knowledge base in a word processor editor also provides easy access to edit rules that might have simple mistakes such as misspellings or omissions.

In order to design a heuristic system, the expertise has to be translated into a form that can be understood by a machine environment. The knowledge in this system was extracted by simulating the problem-solving techniques that are used by the expert. These solutions or conclusions were collected and recorded in the THEN portion of the rule.

Included with the conclusions are confidence factors. Confidence factors reflect the degree of belief that the solution is accurate. A fire investigator, however, does not normally speak in terms of confidence factors. He uses terms like "possibly," "definitely," and "not certainly." In this system, whenever these terms are encountered, they are translated into confidence factors.
Confidence factors, sometimes called certainty factors, range from 100% for most definitely, to -100% for definitely not.

The term "most definitely" was given a confidence factor range from 90% to 100%, "possibly" 75% to 89%, "not certain" 10% to 30%. Other confidence factors were assigned depending on the likelihood of their occurrence.

Each piece of information that is useful to the fire investigator is referred to here as a parameter. The solutions/conclusions are also included. The following example should give a clearer view of what a parameter is and how it is used:

```
APPLI-HEAT [CHAR-PARMS]

TRANS: (heat producing appliance)
PROMPT: (If there is an appliance near the point of origin, is it heat producing?)
USED-BY: (RULE010)
```

The parameter APPLI-HEAT has many features:

a) It may take on a value of YES or NO.

b) It has a translation which is an English phrase that describes the parameter. This is useful for referring to the parameter in a sentence for conclusions or when writing the rules in English form.
c) There is also an optional PROMPT feature that contains a sentence, usually a question, which will prompt the user for a value and confidence factor.

The structure of the context is such that its main part contains rules with parameters that will decide which of the subcontext groups needs to be instantiated to solve the problem quickly. The main context actually makes a preliminary conclusion of what the source may be. Thus, by instantiating the subcontext, which contains more rules with more detailed parameters, greater confidence may be placed on the solution.

To design the rules and the parameters, knowledge about fire investigation was obtained from the sources mentioned above. Lt. Hackett was very helpful and advised on the accuracy of some of the information. For example, breakers were to be substituted for fuses. He also recommended two of the three books and made himself available for interviews. However, most of the knowledge in the system was obtained from the books. They listed the different causes of fire and their detection. Using this information, rules were made. Since all cases are not covered in each book, the knowledge from each was combined to form a collective unit.
Early in the preliminary testing, there were two or more possible conclusions with confidence factors that were sometimes too close. This problem was overcome by including more detailed rules for each source.

The material first ignited and the action or accident that led to the fire are not covered due to the time limitation on this research.
VI. RESULTS FOR SAMPLE RUN

The conclusion of the system after a consultation will be one of the seven sources. In the cases where there is insufficient information to come to a definite conclusion, the system will respond as being unable to do so. A sample of the output is listed at the end of Appendix A.

The first three items are used to identify the consultation, and are entered at the very beginning of the session. The conclusions are translated as:

SPON -- Spontaneous combustion
HOT -- Flammable material touching a hot surface or flame
ELECT-- Electrical failure
GAS -- Failure in the gas supply system
SUN -- The sun's rays focused on the material first ignited
SMOKE-- A form of smoking material
LIGHT-- Lightning
Listed in Appendix A is a report of a real fire that was already solved by the fire investigators. To test CHAR, the information contained in the report was used by a person who had no prior background in fire investigation or expert system design. The reason such a person was selected was to protect the result from biased responses to the system. From understanding and knowing the conclusions, a fire investigator or the knowledge engineer may inherently respond to the question based on preconceived ideas. Using the information from the report, the novice was able to answer the questions from the system. Both the report and CHAR concluded that the fire was started by a flammable material coming in contact with a hot surface.

An output of the responses of the user and the conclusions are in Appendix A.
VII. CONCLUSIONS

Expert systems can be used to help determine the source of a fire. The sample case used here is listed in Appendix A. The results are described in Section VI. The conclusions of CHAR and that of the user were similar, proving that the system is capable of aiding fire investigation. CHAR is able to provide fairly accurate conclusions as to the source of building fires.

One of the major obstacles in designing an effective expert system is the amount of time it takes. Figure 2 appropriately illustrates the time in person-years it takes to design different types of systems. The shaded area shows the range of effort that may be required in each category. An expert system that will provide a high level of intelligent reasoning needs a large amount of time dedicated to it. Because Fire Investigation may be classified as a very difficult problem and the time was limited, the effectiveness of CHAR is restricted.
Figure 2. Person-years Required to Develop an Expert System. (Waterman, 1986)
The field of Fire Investigation is very much suited for expert systems application, as the conclusions are based on experience and heuristic reasoning. This system is limited in that it fails to address the area of arson investigation. Arson investigation and the approach in solving it involves:

i) interviewing persons near or at the scene of the fire,

ii) determining if there was reason for malicious intent against the owner or others associated with the building, and

iii) the mental state of the arsonist.

Such factors are not easily captured in a rule environment. However, CHAR is able to successfully determine the source of fires. The system can be used to aid fire investigators and as a training tool for new officers.
APPENDIX A

SAMPLE PROBLEM
This is a supplement report to Orlando Fire Department Alarm #678, a house fire at 1234 Ample Drive at 0244 hours.

I was notified by the OFD dispatcher at 0253 hours requesting me to respond to the above address. I arrived on the scene at 0316 hours and met with the OFD District Chief. The chief stated that upon their arrival they observed a large volume of fire coming out of the rear portion of the house as well as through the front living room area. He stated that a 1 3/4" line was advanced through the front door of this structure and extinguished the fire in the living room, dining room, kitchen and family room. The chief stated that the house was occupied and that the occupants had evacuated the house immediately prior to their arrival through the front.

At this time I interviewed the owner/occupant of this house. The occupant stated that she was in her bedroom sleeping with her husband when she awoke with difficulty breathing. She then stated that she woke her husband and two children and escaped the house through the front living room door. I then asked her where she observed the fire. She stated that she saw the main body of fire through the sliding glass doors in the West end of her family room. She stated that the house was already full of smoke when she woke, but the fire had not extended through the closed sliding glass doors until after she and her family escaped. I then asked her what she had been doing prior to the fire. The occupant stated that she had been ironing clothes in the East end of the family room until sometime after midnight. She then stated that she had given her husband some medication and sometime prior to 0100 hours she had unplugged her electric iron, turned off her kerosene heater, closed the glass sliding door to her family room and went to bed.

At this time I began my examination of the fire scene. The fire had caused severe fire damage in the living room, hallway, dining room, kitchen and family room. The three bedrooms had sustained serious heat and smoke damage. The fire had also extended into the attic region as well as the carport causing serious damage to these areas. Upon entering the structure through the front door I noticed that the fire damage in the living room, dining room and hallway was more serious at the higher levels. The furnishings sustained serious damage but were easily recognizable and obviously an extension of fire from another area of the house. As I walked from the living room to the dining room the fire damage got closer to the floor until it reached the floor level at the sliding glass doors separating the dining room from the family room.
The sliding glass doors had been in the closed position, but the glass had broken out and the glass was lying within the dining room. The aluminum framing on these doors was melted at the higher levels. At this time I entered the family room. This was a 10 x 20 wood frame addition to this house. The roof was constructed of 2 x 6, covered with plywood and the walls were constructed of 2 x 4 covered with plywood. All of these structural components were exposed and never covered with drywall or any other finishing covering. The fire had broken through the walls on the West end of the room. The roof was also more seriously damaged in the West end of this room. Upon checking this room for electrical wiring and receptacles I found only one electrical receptacle located in the existing South wall of this room. This receptacle had a television and lamp connected to it. These items were located along the East wall of this room. These were the only items in this room, which were plugged into an electrical receptacle. The fire damage in the East end of the room was all extension. The items in this area only had surface damage. I also found that the carpeting at the East end of the room was still intact. The furnishings at the West end of the room had sustained serious damage. In the Southwest corner of the room I found a washing machine. This washing machine was severely discolored on the North side. Immediately next to this washing machine I found springs and small pieces of wood, which appeared to be from a chair. Next to this chair on the North side I found a kerosene space heater. This space heater was severely discolored on the front and right side. The remainder of the space heater was also severely damaged. Behind the space heater was located several gallons of house paint. This house paint was severely damaged, but easily recognizable. Along the North wall of this room I found an electric range and small cabinets which had a door on top of them to utilize this area as a desk. The majority of the damage to these items was on the end facing the kerosene heater. The further East I traveled in this room during my examination I smelled a strong odor of kerosene. I found the source of this odor to be a melted plastic container containing the fuel in the East end of the room, near the television. The damage in this area was severe enough to believe that this kerosene had contributed to the damage within this area. Based on the examination of this room I feel that the fire originated in the area immediately in front of the kerosene space heater.
I checked the control knobs to this heater, but I was unable to determine whether it was on or off. I did observe that the heater had been located only approximately 3" from the adjacent chair, which had been totally consumed leaving only a few springs and small wooden parts where it had been.

Based on the results of this investigation, it is my opinion that this fire was accidentally caused when the space heater was either placed too close to the chair and was ignited by the operating heater or the heater malfunctioned and then ignited the adjacent chair. The ensuing fire then engulfed the entire family room before spreading through the sliding glass door and damaged a large portion of the remainder of the house.

This report presented with the compliments of John R. Hackett of the Orlando Fire Department, Investigator, Arson/Bomb Squad.
The name of the user is as follows: Jill Janak

Identification of the fire is as follows: OFD Alarm #678

Description of the fire is as follows: House fire at 1234 Ample Drive at 0244 hours.

The cause of the fire is as follows: HOT (97%) GAS (45%)
APPENDIX B

KNOWLEDGE BASE LISTING
Rule Group CHARLIES

RULE002 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT ELECT-SUPP YES})\)
\((\text{SAME CNIXT ELECT YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE ELECT TALLY 1000))

RULE003 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT GAS-SUPP YES})\)
\((\text{SAME CNIXT GAS YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE GAS TALLY 1000))

RULE004 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT SMOKER YES})\)
\((\text{SAME CNIXT SMOKE YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE SMOKE TALLY 1000))

RULE005 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT MATCHES YES})\)
\((\text{SAME CNIXT SMOKE YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE SMOKE TALLY 1000))

RULE006 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT ACTIVITY YES})\)
\((\text{SAME CNIXT LIGHT YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE LIGHT TALLY 1000))

RULE007 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT SUNCUT YES}) (\text{SAME CNIXT SUN YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE SUN TALLY 1000))

RULE008 [CHARLIES]

PREMISE: (\(\text{AND} (\text{SAME CNIXT SURFACE YES})\)
\((\text{SAME CNIXT HOT YES})\))
ACTION: (DO-ALL (CONCLUDE CNIXT SOURCE HOT TALLY 1000))
RULE009 [CHARRULES]
PREMISE: ($AND (SAME QNIXT FLAME YES) (SAME QNIXT HOT YES))
ACTION: (DO-ALL (CONCLUDE QNIXT SOURCE HOT YES 1000))

RULE011 [CHARRULES]
PREMISE: ($AND (NOTSAME QNIXT GAS-SUPP YES)
 (NOTSAME QNIXT ELEC-SUPP YES)
 (SAME QNIXT SPON YES))
ACTION: (DO-ALL (CONCLUDE QNIXT SOURCE SPON TALLY 1000))

RULE012 [CHARRULES]
PREMISE: ($AND (NOTSAME QNIXT ACTIVITY YES)
 (NOTSAME QNIXT SMOKY YES) (SAME QNIXT SPON YES))
ACTION: (DO-ALL (CONCLUDE QNIXT SOURCE SPON TALLY 1000))

RULE013 [CHARRULES]
PREMISE: ($AND (NOTSAME QNIXT SUNCUT YES)
 (NOTSAME QNIXT HOT YES) (NOTSAME QNIXT ANY YES)
 (SAME QNIXT SPON YES))
ACTION: (DO-ALL (CONCLUDE QNIXT SOURCE SPON TALLY 1000))

RULE200 [CHARRULES/antecedent]
PREMISE: ($AND (LESS* (MEASURE QNIXT SMOKY) 500))
ACTION: (DO-ALL (CONCLUDE QNIXT SOURCE ELECT TALLY 1000)
 (SERNIT "Way to go!!!"))
ANTECEDENT: T

RULE250 [CHARRULES]
PREMISE: ($AND (LESS* 500 (MEASURE QNIXT ELECT))
 (SAME QNIXT SECOND))
ACTION: (DO-ALL (CONCLUDE QNIXT AGAIN YES TALLY 1000))

RULE251 [CHARRULES]
PREMISE: ($AND (LESS* 500 (MEASURE QNIXT SUN))
 (SAME QNIXT SECOND))
ACTION: (DO-ALL (CONCLUDE QNIXT AGAIN YES TALLY 1000))
RULE252 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 500 \ (MEASURE1 \ CNIXT \ ANY)) \)
 \(\ (SAME \ CNIXT \ SECOND) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE253 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 500 \ (MEASURE1 \ CNIXT \ LIGHT)) \)
 \(\ (SAME \ CNIXT \ LIGHT) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE254 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 500 \ (MEASURE1 \ CNIXT \ HIGH)) \)
 \(\ (SAME \ CNIXT \ SECOND) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE255 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 500 \ (MEASURE1 \ CNIXT \ SECOND)) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE256 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 5000 \ (MEASURE1 \ CNIXT \ GAS)) \)
 \(\ (SAME \ CNIXT \ SECOND) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE257 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 500 \ (MEASURE1 \ CNIXT \ SMOKE)) \)
 \(\ (SAME \ CNIXT \ SECOND) \)

ACTION: (DO-ALL (CONCLUDE CNIXT AGAIN YES TALLY 1000))

RULE258 [CHARRULES]

PREMISE: \(\$ \land (LESSP \ast 700 \ (MEASURE1 \ CNIXT \ ELECT)) \)
 \(\ (SAME \ CNIXT \ ELECT) \)

ACTION: (DO-ALL (CONCLUDE CNIXT dummy YES TALLY 1000))
RULE259 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT SUN}))
\ (\text{SAME} \ \text{CNEXT} \ \text{SUN}))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE260 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{ANY}))))
\ (\text{SAME} \ \text{CNEXT} \ \text{ANY})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE261 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{LIGHT})))
\ (\text{SAME} \ \text{CNEXT} \ \text{LIGHT})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE262 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{HOT})))
\ (\text{SAME} \ \text{CNEXT} \ \text{HOT})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE263 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{FON})))
\ (\text{SAME} \ \text{CNEXT} \ \text{HOT})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE264 [CHAR Rules]

PREMISE: (AND
\ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{GAS})))
\ (\text{SAME} \ \text{CNEXT} \ \text{GAS})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))

RULE265 [CHAR Rules]

PREMISE: ($\text{AND} \ (\text{LESS} \ 700 \ (\text{MEASURE} \ \text{CNEXT} \ \text{SMOKE})))
\ (\text{SAME} \ \text{CNEXT} \ \text{SMOKE})))

ACTION: (DO-ALL \ (CONCLUDE \ \text{CNEXT} \ \text{DUMMY} \ \text{YES} \ \text{TALLY} \ \text{1000})))
RULE266 [CHARRULES/anthecedent]

PREMISE: (\$AND \((\text{CNEXT APPLI-FIRE-APPLIED YES})\))
ACTION: (DO-ALL (CONCLUDE CNEXT APPLI-FIRE-APPLIED YES TALLY 1000))

ANTHECEDENT: \(T \)

Rule Group ELECTRICITYRULES

RULE030 [ELECTRICITYRULES]

PREMISE: (\$AND \((\text{CNEXT APPLI-PRESENT YES})\) \((\text{CNEXT APPLI-CN YES})\) \((\text{CNEXT APPLI-HEAT YES})\))
ACTION: (DO-ALL (CONCLUDE CNEXT APPLI-PRESENT-CN HEAT YES TALLY 900))

RULE031 [ELECTRICITYRULES]

PREMISE: (\$AND \((\text{CNEXT APPLI-PRESENT YES})\) \((\text{CNEXT APPLI-CN YES})\) \((\text{CNEXT APPLI-HEAT YES})\))
ACTION: (DO-ALL (CONCLUDE CNEXT APPLI-PRESENT-CN HEAT YES TALLY 900))

RULE032 [ELECTRICITYRULES]

PREMISE: (\$AND \((\text{CNEXT APPLI-PRESENT YES})\) \((\text{CNEXT APPLI-PRESENT-BURAL YES})\) \((\text{CNEXT FLAM-NEAR-BU})\))
ACTION: (DO-ALL (CONCLUDE CNEXT APPLI-PRESENT-BURAL YES TALLY 1000))

RULE033 [ELECTRICITYRULES]

PREMISE: (\$AND \((\text{CNEXT APPLI-PRESENT YES})\) \((\text{CNEXT APPLI-PRESENT-BURAL YES})\))
ACTION: (DO-ALL (CONCLUDE CNEXT APPLI-PRESENT-BURAL YES TALLY 850))
RULE034 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-PRESENT YES)}\)
 \((\text{SAME CNIXT MOTOR-ON YES})\)
 \((\text{SAME CNIXT WINDING-MELTED YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT MOTOR YES TALLY 850))

RULE034 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-PRESENT YES)}\)
 \((\text{SAME CNIXT MOTOR-ON YES})\)
 \((\text{SAME CNIXT WINDING-MELTED YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT MOTOR YES TALLY 850))

RULE035 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-REDUCED-PARTIAL YES)}\)
 \((\text{SAME CNIXT FLAME-NEAR-END YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT MOTOR-REDUCED-PARTIAL YES TALLY 1000))

RULE036 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-PRESENT YES)}\)
 \((\text{SAME CNIXT MOTOR-ON YES})\)
 \((\text{SAME CNIXT MOTOR-BURNT-OUTSIDE YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT MOTOR-REDUCED-PARTIAL YES TALLY 1000))

RULE037 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-PRESENT YES)}\)
 \((\text{SAME CNIXT MOTOR-ON YES})\)
 \((\text{SAME CNIXT MOTOR-BURNT-OUTSIDE YES})\)
 \((\text{SAME CNIXT SHAFT-SEIZED YES})\)
 \((\text{SAME CNIXT WINDING-MELTED YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT MOTOR YES TALLY 1000))

RULE038 [ELECTRICITYRULES]

PREMISE: \((\text{AND (SAME CNIXT MOTOR-PRESENT YES)}\)
 \((\text{SAME CNIXT MOTOR-HIGHER-BREAKER YES})\)
 \((\text{SAME CNIXT OVERLOAD-PARTIAL YES}))\)

ACTION: (DO-ALL (CONCLUDE CNIXT OVERLOAD YES TALLY 900))
RULE039 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT MOTOR-PRESENT YES)
 (SAME CNXT MOTOR-ON YES)
 (SAME CNXT SHAFT-SEIZED YES))

ACTION: (DO-ALL (CONCLUDE CNXT MOTOR YES TALLY 950))

RULE039 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT MOTOR-PRESENT YES)
 (SAME CNXT MOTOR-ON YES)
 (SAME CNXT SHAFT-SEIZED YES))

ACTION: (DO-ALL (CONCLUDE CNXT MOTOR YES TALLY 950))

RULE040 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT MOTOR-RECOVERED-PARTIAL YES))

ACTION: (DO-ALL (CONCLUDE CNXT MOTOR-RECOVERED YES TALLY 850))

RULE041 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT APPLI-ON YES)
 (SAME CNXT OVERLOAD-PARTIAL YES)
 (SAME CNXT HIGHER-BREAKER YES))

ACTION: (DO-ALL (CONCLUDE CNXT OVERLOAD YES TALLY 900))

RULE042 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT WIRE-FAULTED YES))

ACTION: (DO-ALL (CONCLUDE CNXT SHORT YES TALLY 950))

RULE043 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT BRASS YES))

ACTION: (DO-ALL (CONCLUDE CNXT SHORT YES TALLY -800))

RULE044 [ELECTRICITYRULES]

PREMISE:
(SAND (SAME CNXT BRASS YES))

ACTION: (DO-ALL (CONCLUDE CNXT OVERLOAD YES TALLY -800))
RULED45 [ELECTRICITYRULES]

PREMISE: (\land (SAME CNIXT SMALL-COND YES))
ACTION: (DO-ALL (CONCLUDE CNIXT OVERLOAD YES TALLY 955))

RULED46 [ELECTRICITYRULES]

PREMISE: (\land (SAME CNIXT APPLIANCE YES)
 (SAME CNIXT APPLIANCE-PRODUCED YES))
ACTION: (DO-ALL (CONCLUDE CNIXT ELECT YES TALLY 1000))

RULED47 [ELECTRICITYRULES]

PREMISE: (\land (SAME CNIXT MOTOR YES)
 (SAME CNIXT MOTOR-PRODUCED YES))
ACTION: (DO-ALL (CONCLUDE CNIXT ELECT YES TALLY 1000))

RULED48 [ELECTRICITYRULES]

PREMISE: (\land (SAME CNIXT OVERLOAD YES) (SAME CNIXT SHORT YES))
ACTION: (DO-ALL (CONCLUDE CNIXT ELECT YES TALLY 1000))

Rule Group GASRULES

RULED60 [GASRULES]

PREMISE: (\land (SAME CNIXT LEAK YES)
 (SAME CNIXT NAKED-FLAME YES))
ACTION: (DO-ALL (CONCLUDE CNIXT GAS-PARTIAL YES TALLY 1000))

RULED61 [GASRULES]

PREMISE: (\land (SAME CNIXT VALVE-ON YES)
 (SAME CNIXT NAKED-FLAME YES))
ACTION: (DO-ALL (CONCLUDE CNIXT GAS-PART YES TALLY 1000))

RULED62 [GASRULES]

PREMISE: (\land (SAME CNIXT GAS-PARTIAL YES)
 (SAME CNIXT WELL-VENT YES))
ACTION: (DO-ALL (CONCLUDE CNIXT GAS YES TALLY 800))
RULE063 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PARTIAL YES)
(SAME CN1X1T VALUE-ON YES)
(SAME CN1X1T WELL-VENT YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 900))

RULE065 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PARTIAL YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 700))

RULE066 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PARTIAL YES)
(SAME CN1X1T GAS-SAFETY YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 800))

RULE067 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PART YES)
(SAME CN1X1T GAS-SAFETY YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 800))

RULE068 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PART YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 700))

RULE069 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PARTIAL YES)
(SAME CN1X1T VALUE-ON YES)
(SAME CN1X1T GAS-SAFETY YES)
(SAME CN1X1T WELL-VENT YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 1000))

RULE070 [GASRULES]

PREMISE: (\land (SAME CN1X1T GAS-PARTIAL YES)
(SAME CN1X1T VALUE-ON YES)
(SAME CN1X1T WELL-VENT YES))
ACTION: (DO-ALL (CONCLUDE CN1X1T GAS YES TALLY 950))
RULE071 [GASHUES]

PREMISE: ($AND (SAME CNXT SETTLE YES)
 (SAME CNXT GAS-PRESENT YES))
ACTION: (DO-ALL (CONCLUDE CNXT GAS YES TALLY 900))

Rule Group HUISURFACE/NAKEDFLAMERULES

RULE160 [HUISURFACE/NAKEDFLAMERULES]

PREMISE: ($AND (SAME CNXT HOIWATER YES)
 (SAME CNXT FLAMM-NEAR-BY YES))
ACTION: (DO-ALL (CONCLUDE CNXT HOT YES TALLY 800))

RULE161 [HUISURFACE/NAKEDFLAMERULES]

PREMISE: ($AND (SAME CNXT FIREPLACE YES)
 (SAME CNXT FLAMM-NEAR-BY YES))
ACTION: (DO-ALL (CONCLUDE CNXT HOT YES TALLY 850))

RULE162 [HUISURFACE/NAKEDFLAMERULES]

PREMISE: ($AND (SAME CNXT FIREPLACE YES)
 (SAME CNXT FLAMM-NEAR-BY YES)
 (SAME CNXT FAN-ON YES))
ACTION: (DO-ALL (CONCLUDE CNXT HOT YES TALLY 1000))

RULE163 [HUISURFACE/NAKEDFLAMERULES]

PREMISE: ($AND (SAME CNXT SPACEHEATER YES)
 (SAME CNXT FLAMM-NEAR-BY YES))
ACTION: (DO-ALL (CONCLUDE CNXT HOT YES TALLY 850))

RULE164 [HUISURFACE/NAKEDFLAMERULES]

PREMISE: ($AND (SAME CNXT SPACEHEATER YES)
 (SAME CNXT FLAMM-NEAR-BY YES)
 (SAME CNXT FAN-ON YES))
ACTION: (DO-ALL (CONCLUDE CNXT HOT YES TALLY 1000))
RULE165 [HOTSURFACE/NAKEDFLAMERULES]

PREMISE: (\$AND (SAME CNIXT SIOME-ON YES)
(SAME CNIXT FAN-ON YES)
(SAME CNIXT FLAM-NEAR-IV YES))

ACTION: (ID-ALL (CONCLUDE CNIXT HOT YES TALLY 900))

RULE166 [HOTSURFACE/NAKEDFLAMERULES]

PREMISE: (\$AND (SAME CNIXT GASSTOVE YES)
(SAME CNIXT FAN-ON YES)
(SAME CNIXT FLAM-NEAR-IV YES))

ACTION: (ID-ALL (CONCLUDE CNIXT HOT YES TALLY 1000))

RULE167 [HOTSURFACE/NAKEDFLAMERULES]

PREMISE: (\$AND (SAME CNIXT MATCHES YES)
(SAME CNIXT CHILD YES))

ACTION: (ID-ALL (CONCLUDE CNIXT HOT YES TALLY 950))

RULE168 [HOTSURFACE/NAKEDFLAMERULES]

PREMISE: (\$AND (SAME CNIXT MATCHES YES)
(SAME CNIXT CHILD YES)
(SAME CNIXT FLAM-NEAR-IV YES))

ACTION: (ID-ALL (CONCLUDE CNIXT HOT YES TALLY 950))

RULE169 [HOTSURFACE/NAKEDFLAMERULES]

PREMISE: (\$AND (SAME CNIXT MATCHES YES)
(SAME CNIXT CHILD YES)
(SAME CNIXT FLAM-NEAR-IV YES)
(SAME CNIXT UNDERCOVER YES))

ACTION: (ID-ALL (CONCLUDE CNIXT HOT YES TALLY 1000))

Rule Group LIGHTNINGRULES

RULE120 [LIGHTNINGRULES]

PREMISE: (\$AND (SAME CNIXT ACTIVITY YES)
(SAME CNIXT THUNDER YES))

ACTION: (ID-ALL (CONCLUDE CNIXT LIGHT YES TALLY 900))
RULE121 [LIGHTINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}NT \text{ACTIVITY YES}})
 (\text{SAME \text{CNI}NT \text{OZONE YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{LIGHT YES TALLY 900}))

RULE122 [LIGHTINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}NT \text{OZONE YES}})
 (\text{SAME \text{CNI}NT \text{THUNDER YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{LIGHT YES TALLY 900}))

RULE123 [LIGHTINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}NT \text{OZONE YES}})
 (\text{SAME \text{CNI}NT \text{ACTIVITY YES}})
 (\text{SAME \text{CNI}NT \text{THUNDER YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{LIGHT YES TALLY 1000}))

RULE90 [SMOKINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}XT \text{FURNITURE-BURNED-INSIDE YES}})
 (\text{SAME \text{CNI}XT \text{SMOKING-AREA YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{SMOKE YES TALLY 900}))

RULE91 [SMOKINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}XT \text{FURNITURE-BURNED-INSIDE YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{SMOKE YES TALLY 800}))

RULE93 [SMOKINGRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}XT \text{FURNITURE-BURNED-INSIDE YES}})
 (\text{SAME \text{CNI}XT \text{INCUBATION YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{SMOKE YES TALLY 1000}))

Rule Group SPONTANEOUSRULES

RULE190 [SPONTANEOUSRULES]

PREMISE: $(\text{AND} (\text{SAME \text{CNI}XT \text{VEGI YES}}))
ACTION: (DO-ALL (CONCLUDE \text{CNI}XT \text{SEON YES TALLY 800}))
RULE191 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG1 YES)})
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 600))

RULE192 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG2 YES)})
ACTION: (DO-ALL (CONCLUDE SPON YES TALLY 850))

RULE193 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG1 YES)}$)
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 950))

RULE194 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG2 YES)}$)
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 1000))

RULE195 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG2 YES)})
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 500))

RULE196 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG2 YES)}$)
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 750))

RULE197 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG1 YES)})
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 700))

RULE198 [SPONTANEOUSRULES]

PREMISE: ($\text{AND (SAME CNXT VEG1 YES)}$)
ACTION: (DO-ALL (CONCLUDE CNXT SPON YES TALLY 800))
RULE199 [SPONTANEOUSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT UGEP YES})
 (\text{SAME CNIXT VEG2 YES}) (\text{SAME CNIXT FAGE YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SPON YES TALLY 900))

Rule Group SUNFAVSRULES

RULE140 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT HULLSEME YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 900))

RULE141 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT CONCAME YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 900))

RULE142 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT FISHEOWL YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 800))

RULE143 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT GLASSVASE YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 800))

RULE144 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT DRINKGLASS YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 800))

RULE145 [SUNFAVSRULES]

PREMISE: ($\text{AND} (\text{SAME CNIXT SUNOUT YES})
 (\text{SAME CNIXT MIRROR YES}))
ACTION: (DO-ALL (CONCLUDE CNIXT SUN YES TALLY 900))
RULE146 [SUNRAYSRULES]

PREMISE: $(SAND (SAME CNIXT ELLISYE YES) (SAME CNIXT FISHBOWL YES))
ACTION: (TO-ALL (CONCLUDE CNIXT SUN YES TALLY 1000))

RULE147 [SUNRAYSRULES]

PREMISE: $(SAND (SAME CNIXT CONCAVE YES) (SAME CNIXT FISHBOWL YES))
ACTION: (TO-ALL (CONCLUDE CNIXT SUN YES TALLY 1000))

RULE148 [SUNRAYSRULES]

PREMISE: $(SAND (SAME CNIXT ELLISYE YES) (SAME CNIXT GLASSVASE YES))
ACTION: (TO-ALL (CONCLUDE CNIXT SUN YES TALLY 1000))

RULE150 [SUNRAYSRULES]

PREMISE: $(SAND (SAME CNIXT SUNCUT YES) (SAME CNIXT CONCAVE YES) (SAME CNIXT GLASSVASE YES))
ACTION: (TO-ALL (CONCLUDE CNIXT SUN YES TALLY 1000))

Parameter Group CHAR-PARMS

ACTIVITY [CHAR-PARMS]

TRANS: (Lightning in the area)
HINT: (Did the Weather Bureau record any lightning in the area?)
USED-BY: (RULE006 RULE120 RULE121 RULE123)

AGAIN [CHAR-PARMS]

UPDATED-BY: (RULE250 RULE251 RULE252 RULE253 RULE254 RULE255 RULE256 RULE257)

ANY [CHAR-PARMS]

TRANS: (other sources of ignition)
USED-BY: (RULE013 RULE010 RULE252 RULE260)
DESCRIPTION [CHAR-PARMS]

TRANS: (description of the fire)
HCMPT: (Give a brief description of the fire.)
PERCPT: (Give date, address, type of fire etc.)
ASKFIRST: T
EXACT: any
MULTIVALUED: ASK-ALL

ILMN [CHAR-PARMS]

UPDATED-BY: (RULE258 RULE259 RULE260 RULE261 RULE262 RULE263 RULE264 RULE265)

ELEC-SUPP [CHAR-PARMS]

TRANS: (electricity supplied to building)
HCMPT: (Was there an electrical supply to the residence?)
USED-BY: (RULE002)

ELECT [CHAR-PARMS]

TRANS: (the source of ignition was some electrical failure)
ANCESTOR-IN: (RULE266)
USED-BY: (RULE002 RULE011 RULE250 RULE258)
UNRELATED-BY: (RULE046 RULE047 RULE048)

FLAME [CHAR-PARMS]

TRANS: (open flame)
HCMPT: (Were there any open flames present, fire place, candles etc.)
USED-BY: (RULE009)

FLAM-NEAR-BY [CHAR-PARMS]

TRANS: (flammable material nearby)
HCMPT: (Was there any flammable material close to the origin of the fire?)
USED-BY: (RULE032 RULE035 RULE160 RULE161 RULE162 RULE163 RULE164 RULE165 RULE166 RULE168 RULE169)
GAS [CHAR-PARMS]

TRANS: (the source of ignition was from a failure in the gas supply)
INITIAL-RIA: NIL
GOALS: (GAS)
RULE-TYPES: (GAS-RULES)
PARAM-GROUP: GAS-PARMS
INDEX: GAS-
FROM-2ND: NIL
FROM-LIST: NIL
ASSOC-WITH: (CHAR)
USED-BY: (RULE03 RULE011 RULE256 RULE264)
UPDATED-BY: (RULE062 RULE063 RULE065 RULE066 RULE067 RULE068 RULE069 RULE070 RULE071)

GAS-SUPP [CHAR-PARMS]

TRANS: (gas is used in the residence)
FROM: (Was there a gas supply in the residence?)
USED-BY: (RULE003)

HOT [CHAR-PARMS]

TRANS: (the fire was caused by the material first ignited touching a hot surface or a flame)
USED-BY: (RULE013 RULE008 RULE009 RULE254 RULE262 RULE263)
UPDATED-BY: (RULE160 RULE161 RULE162 RULE163 RULE164 RULE165 RULE166 RULE167 RULE168 RULE169)

ID [CHAR-PARMS]

TRANS: (identification of the fire)
FROM: (Enter the case number or identification)
REFER: (The reference number of this investigation)
ASKFIRST: T
EXPECT: ANY
MULTIVALUED: ASK-ALL

LIGHT [CHAR-PARMS]

TRANS: (the source of ignition was lightning)
USED-BY: (RULE006 RULE012 RULE253 RULE261)
MATCHES [CHAR-BARS]

TRANS: (matches being used in area)
PROMPT: (Was anyone using matches in area?)
USED-BY: (RULE005 RULE168 RULE167 RULE169)

NAME [CHAR-BARS]

TRANS: (the name of the user)
PROMPT: T
PROMPT: (The name of the person using the system at present.)
ASKFIRST: T
EXPECT: ANY
MULTIVALUED: ASK-ALL

SECOND [CHAR-BARS]

TRANS: (other context)
PROMPT: (Do you wish to have further consultation?)
PROMPT: (Would you like to have the consultation terminated now, or do you wish to be questioned further?)
USED-BY: (RULE250 RULE251 RULE252 RULE254 RULE255 RULE256 RULE257)

SMOKE [CHAR-BARS]

TRANS: (the source of ignition was a form of smoking material)
ANTECEDENT-IN: (RULE200)
USED-BY: (RULE004 RULE105 RULE102 RULE257 RULE265)
UPDATED-BY: (RULE091 RULE093 RULE090)

SMOKER [CHAR-BARS]

TRANS: (a smoker in room of origin)
PROMPT: (Was there a smoker in the room at least 1 hour before the fire started?)
USED-BY: (RULE004)
SOURCE [CHAR-PARMS]

TRANS: (the cause of the fire)
LEGAL/ALIAS: (ELECT GAS SMKE MATCHES LIGHT HOT SUN ANY)
UPDATED-IN: (RULE200 RULE266)
UPDATED-BY: (RULE002 RULE003 RULE004 RULE005 RULE006
RULE007 RULE008 RULE010 RULE011 RULE012
RULE013 RULE009)

SEQN [CHAR-PARMS]

TRANS: (the source of ignition was spontaneous combustion)
USED-BY: (RULE011 RULE012 RULE013 RULE255 RULE263)
UPDATED-BY: (RULE190 RULE191 RULE193 RULE194 RULE195
RULE196 RULE197 RULE198 RULE199)

SUN [CHAR-PARMS]

TRANS: (the fire was caused from rays of sun focussing on the material first ignited)
USED-BY: (RULE007 RULE013 RULE145 RULE251 RULE259)
UPDATED-BY: (RULE140 RULE141 RULE142 RULE143 RULE144
RULE146 RULE147 RULE148 RULE150 SQRMARK
RULE145)

SUN CUT [CHAR-PARMS]

TRANS: (sun shining for at least 4 hours)
FROM: (Was there sunshine for at least 3 hours?)
USED-BY: (RULE007 RULE141 RULE140 RULE142 RULE143 RULE144
RULE150)

SURFACE [CHAR-PARMS]

TRANS: (hot surfaces)
FROM: (Were there any hot surfaces present?)
USED-BY: (RULE008)
Parameter Group CONTEXTTYPES

CHAR [CONTEXTTYPES]

TRANS: (the source of ignition)
OFFERING: (ELECTRICITY GAS SMOKE LIGHTNING SUNFRAYS HOISURFACE/NAKEDFLAME SPONTANEOUS MISCELLANEOUS)
UNIQUE: T
DISPLAYRESULTS: T
GOALS: (NAME ID DESCRIPTION SOURCE)
RULETYPES: (CHAR-RULES)
FARMGROUP: CHAR-FARMS
PRINTID: CHAR-
PROMPTIFIER: (CHAR aids the fire investigator in determining the source of residential fires. The user should have the fire report at hand to answer the questions that follow.)
INITIALDATA: (NAME DESCRIPTION ID)

ELECTRICITY [CONTEXTTYPES]

TRANS: (the fire was caused by some electrical failure)
INITIALDATA: NIL
GOALS: (ELECT)
RULETYPES: (ELECTRICITY-RULES)
FARMGROUP: ELECTRICITY-FARMS
PRINTID: ELECTRICITY-
PROMPT2ND: NIL
PROMPT1ST: NIL
ASSOCIWTH: (CHAR)

GAS [CONTEXTTYPES]

TRANS: (the source of ignition was from a failure in the gas supply)
INITIALDATA: NIL
GOALS: (GAS)
RULETYPES: (GAS-RULES)
FARMGROUP: GAS-FARMS
PRINTID: GAS-
PROMPT2ND: NIL
PROMPT1ST: NIL
ASSOCIWTH: (CHAR)
USED-BY: (RULE03 RULE11 RULE256 RULE264)
UPDATED-BY: (RULE03 RULE063 RULE065 RULE066 RULE067 RULE068 RULE069 RULE070 RULE071)
HDISURFACE/NAKEDFLAME [CONTEXTYPES]

TRANS: (the source of ignition was from a hot surface or a naked flame)
INITIALDATA: NIL
GOALS: (HOT)
RULETYPES: (HDISURFACE/NAKEDFLAME-RULES)
GROUP: HDISURFACE/NAKEDFLAME-RAMS
PRINITID: HDISURFACE/NAKEDFLAME-
PROMPT2ND: NIL
PROMPTIST: NIL
ASSOCIATED: (CHAR)

LIGHNING [CONTEXTYPES]

TRANS: (the cause of the fire was lightning)
INITIALDATA: NIL
GOALS: (LIGHT)
RULETYPES: (LIGHNING-RULES)
GROUP: LIGHNING-RAMS
PRINITID: LIGHNING-
PROMPT2ND: NIL
PROMPTIST: NIL
ASSOCIATED: (CHAR)
UPDATED-BY: (RULE120 RULE121 RULE122 RULE123)

MISCELLANEOUS [CONTEXTYPES]

TRANS: (other sources of ignition)
INITIALDATA: NIL
GOALS: (ANY)
RULETYPES: (MISCELLANEOUS-RULES)
GROUP: MISCELLANEOUS-RAMS
PRINITID: MISCELLANEOUS-
PROMPT2ND: NIL
PROMPTIST: NIL
ASSOCIATED: (CHAR)
SMOKING [CONTEXT TYPES]

TRANS: (the source of the fire was some smoking material)
INITIALDATA: NIL
GOALS: (SMOKE)
RULETYPES: (SMOKINGRULES)
FACTGROUP: SMOKING-PARMS
PRINTID: SMOKING-
HOMPT2ND: NIL
HOMPT3RD: NIL
ASSOCWITH: (CHAR)

SPONTANEOUS [CONTEXT TYPES]

TRANS: (the source of ignition is spontaneous combustion)
INITIALDATA: NIL
GOALS: (SPN)
RULETYPES: (SPONTANEOUSRULES)
FACTGROUP: SPONTANEOUS-PARMS
PRINTID: SPONTANEOUS-
HOMPT2ND: NIL
HOMPT3RD: NIL
ASSOCWITH: (CHAR)

SUNFRAY [CONTEXT TYPES]

TRANS: (the cause of the fire was from sun rays focussing on the material first ignited)
INITIALDATA: NIL
GOALS: (SUN)
RULETYPES: (SUNFRAYRULES)
FACTGROUP: SUNFRAY-PARMS
PRINTID: SUNFRAY-
HOMPT2ND: NIL
HOMPT3RD: NIL
ASSOCWITH: (CHAR)

Parameter Group ELECTRICITY-PARMS

APPLI-BURN-OUTSIDE [ELECTRICITY-PARMS]

TRANS: (appliance has more damage on outside than the inside)
HOMPT: (Was the appliance more damaged on the outside than the inside?)
USED-BY: (RULE531)
APPLI-FIRE-DAMAGED [ELECTRICITY-FARMS]

TRANS: (appliance burnt from inside)
HCMPT: (Was the appliance burnt from the inside?)
USED-BY: (RULE030)

APPLI-HEAT [ELECTRICITY-FARMS]

TRANS: (heat producing appliance)
HCMPT: (Was the appliance heat producing, running hot or usually heat-producing e.g. toaster?)
USED-BY: (RULE031)

APPLI-ON [ELECTRICITY-FARMS]

TRANS: (electrical appliance on)
HCMPT: (Were there any electrical appliances being used?)
REHCMPT: (Was the control switch on, or did anyone report it as being used prior to the fire?)
USED-BY: (RULE031 RULE030 RULE041)

APPLI-PRESENT [ELECTRICITY-FARMS]

TRANS: (electrical appliance present in residence)
HCMPT: (Were there any electrical appliances in the residence?)
USED-BY: (RULE032 RULE030 RULE033)

APPLIANCE [ELECTRICITY-FARMS]

USED-BY: (RULE046)
UPDATED-BY: (RULE030)

APPLIANCEPRODUCED [ELECTRICITY-FARMS]

USED-BY: (RULE033 RULE046)
UPDATED-BY: (RULE032 RULE033)

APPLIANCEPRODUCED-PARTIAL [ELECTRICITY-FARMS]

USED-BY: (RULE032 RULE033)
UPDATED-BY: (RULE031)
BRASS [ELECTRICITY-FARMS]

TRANS: (brass found near conductors)
PROMPT: (Was there any brass found near the burnt conductors?)
USED-BY: (RULE043 RULE044)

HIGHER-BREAKER [ELECTRICITY-FARMS]

TRANS: (circuit breaker of higher amperage substituted)
PROMPT: (Was a circuit breaker of higher rating substituted?)
USED-BY: (RULE038 RULE041)

MOTOR [ELECTRICITY-FARMS]

USED-BY: (RULE047)
UPDATED-BY: (RULE034 RULE037 RULE039)

MOTOR-BURNT-OUTSIDE [ELECTRICITY-FARMS]

TRANS: (appliance with motor burnt on the outside)
PROMPT: (Were there any signs of the motor being burnt on the outside?)
USED-BY: (RULE036)

MOTOR-ON [ELECTRICITY-FARMS]

TRANS: (motor of appliance running)
PROMPT: (Were there any motor powered machines being used prior to the start of the fire?)
USED-BY: (RULE034 RULE036 RULE037 RULE038 RULE039)

MOTOR-PRESENT [ELECTRICITY-FARMS]

TRANS: (appliance using motor present)
PROMPT: (Were there any appliances with motors present?)
USED-BY: (RULE034 RULE036 RULE037 RULE038 RULE039)

MOTOR-PREPRODUCED [ELECTRICITY-FARMS]

USED-BY: (RULE047)
UPDATED-BY: (RULE035 RULE040)
OVERLOAD [ELECTRICITY-PARMS]

USED-BY: (RULE048)
UPDATED-BY: (RULE038 RULE041 RULE044 RULE045)

OVERLOAD-PARTIAL [ELECTRICITY-PARMS]

USED-BY: (RULE038 RULE041)

SHAFT-SEIZED [ELECTRICITY-PARMS]

TRANS: (shaft seized to bearings)
HCMPT: (Was the shaft seized to the bearings in any of the electrical motors present?)
USED-BY: (RULE037 RULE039)

SHORT [ELECTRICITY-PARMS]

USED-BY: (RULE048)
UPDATED-BY: (RULE043 RULE042)

SMALL-COND [ELECTRICITY-PARMS]

TRANS: (undersized conductor)
HCMPT: (Was the electrical conductor too small for the load?)
USED-BY: (RULE045)

WINDING-MELTED [ELECTRICITY-PARMS]

TRANS: (winding is melted)
HCMPT: (Was the winding of any motor melted?)
USED-BY: (RULE034 RULE037)
WIRE-ROUNDED [ELECTRICITY-PARMS]

TRANS: (burnt conductors rounded and fused at ends)
HCMPT: (Were there burnt conductors, near switches, outlets and breaker box, with fused rounded ends?)
USED-BY: (RULE042)

Parameter Group GAS-PARMS

GAS-PART [GAS-PARMS]

USED-BY: (RULE067 RULE068)
UPDATE-BY: (RULE061)

GAS-PARTIAL [GAS-PARMS]

USED-BY: (RULE062 RULE063 RULE065 RULE066 RULE069 RULE070)
UPDATE-BY: (RULE060)

GAS-PRESENT [GAS-PARMS]

TRANS: (gas used in building)
HCMPT: (Was gas being supplied to the residence?)
USED-BY: (RULE071)

GAS-SAFETY [GAS-PARMS]

TRANS: (safety device)
HCMPT: (Did the safety device from the gas supply fail?)
USED-BY: (RULE066 RULE067 RULE069)

IFAK [GAS-PARMS]

TRANS: (gas leak)
HCMPT: (Were there signs of a gas leak or did anyone smell gas prior to the fire?)
USED-BY: (RULE060)
NAKED-FLAME [GAS-BARMS]

TRANS: (uncovered flame)

HCMPT: (Was there a naked flame in close proximity of the point of origin?)

USED-BY: (RULE060 RULE061)

SETTLE [GAS-BARMS]

TRANS: (building settling)

HCMPT: (Is there a possibility of the building settling?)

USED-BY: (RULE071)

VALVE-ON [GAS-BARMS]

TRANS: (valve to supply)

HCMPT: (Were the controlling valves to the gas supply on?)

USED-BY: (RULE061 RULE063 RULE069 RULE070)

WELL-VENT [GAS-BARMS]

TRANS: (area well ventilated)

HCMPT: (Was the area well ventilated?)

USED-BY: (RULE062 RULE063 RULE069 RULE070)

Parameter Group HOISURFACE/NAKEDFLAME-BARMS

CHILD [HOISURFACE/NAKEDFLAME-BARMS]

TRANS: (child present in room)

HCMPT: (Was there a child present in room prior to the fire?)

USED-BY: (RULE168 RULE167 RULE169)

FAN-ON [HOISURFACE/NAKEDFLAME-BARMS]

TRANS: (fan on)

HCMPT: (Was a fan on at the time of the fire?)

USED-BY: (RULE162 RULE164 RULE165 RULE166)
FIREPLACE [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: fireplace
HROMPT: (Was there a fireplace in the room?)
USED-BY: (RULE161 RULE162)

GASSTOVE [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: (gas stove)
HROMPT: (Was a gas stove on?)
USED-BY: (RULE166)

HOTWATER [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: (hot water pipe)
HROMPT: (Was there any hot surface present)
USED-BY: (RULE160)

SPACEHEATER [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: (space heater)
HROMPT: (Was there a space heater being used?)
USED-BY: (RULE163 RULE164)

STOVE-ON [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: (electric stove)
HROMPT: (Was an electric stove on?)
USED-BY: (RULE165)

UNDERCOVER [HOISURFACE/NAKEDFLAME-BARRS]

TRANS: (fire started in a secluded place, like under bed, in closet etc.)
HROMPT: (Did the fire start in a secluded place ,like under bed, in closet etc. ?)
USED-BY: (RULE169)
Parameter Group LIGHTNING-FARMS

LIGHTNING [LIGHTNING-FARMS]

TRANS: (the cause of the fire was lightning)
INITIALDATA: NIL
GOALS: (LIGHT)
RULETYPES: (LIGHTNINGRULES)
FRAGGROUP: LIGHTNING-FARMS
FRAGID: LIGHTNING-
FRAGMENT: NIL
ASSOCWITH: (CHAR)
UPDATED-BY: (RULE120 RULE121 RULE122 RULE123)

OZONE [LIGHTNING-FARMS]

TRANS: (ozone smell in area)
FRAGMENT: (Was there the smell of ozone in the area?)
UPDATED-BY: (RULE121 RULE122 RULE123)

THUNDER [LIGHTNING-FARMS]

TRANS: (thunder in area)
FRAGMENT: (Was thunder heard in the area?)
UPDATED-BY: (RULE120 RULE122 RULE123)

Parameter Group SMOKING-FARMS

FURNITURE-BURNED-INSIDE [SMOKING-FARMS]

TRANS: (furniture burned from the inside)
FRAGMENT: (Are there any signs that the furniture was burned from the inside?)
UPDATED-BY: (RULE91 RULE93 RULE90)

INOCULATION [SMOKING-FARMS]

TRANS: (inoculation period)
FRAGMENT: (Was there a period of at least 3 hours since the last smoker left the room?)
UPDATED-BY: (RULE93)
SMOKING-AREA [SMOKING-PARMS]

TRANS: (area where smoking is allowed)
PERMIT: (Was smoking allowed in the area of origin?)
USED-BY: (RULE190)

Parameter Group **SPONTANEOUS-PARMS**

RAGS [SPONTANEOUS-PARMS]

TRANS: (rag present)
PERMIT: (Were there any rags present?)
USED-BY: (RULE192 RULE193 RULE194 RULE196 RULE198 RULE199)

VEG1 [SPONTANEOUS-PARMS]

TRANS: (any of the following oils: Linseed, Cic, Perilla, Stillingia, Hemp-seed, or Tung)
PERMIT: (Were any of the following oils present: LINSEED, CIC, HEMP-SEED, PERILLA, STILLINGIA, OR TUNG?)
USED-BY: (RULE190 RULE193 RULE194)

VEG2 [SPONTANEOUS-PARMS]

TRANS: (oils with iodine value of 100 or more)
PERMIT: (Were there any of the following oils present: COD-LIVER, POPPY-SEED, SOYA-BEAN, SEAL, WHALE
(sperm), CASTOR, OR ANY OIL OF SIMILAR
COMPOSITION?)
USED-BY: (RULE192 RULE194 RULE191)

VEG1 [SPONTANEOUS-PARMS]

TRANS: (products containing Tung, Cic, Linseed, Perilla, Stillingia, or Hemp-seed)
PERMIT: (Were there any products containing any of these oils: HEMP-SEED, CIC, TUNG, STILLINGIA, PERILLA, OR LINSEED?)
USED-BY: (RULE197 RULE198 RULE199)
VEGETABLE [SPONTANEOUS-PARMS]

TRANS: (any product containing oils of iodine value of 100 or more)

PROMPT: (Were any products containing any of the following oils: POPPY-SEED, COD-LIVER, COTTON-SEED, SOYA-HAAN, SEAL, WHALE (sperm), WALES, MAIZE, OLIVE SESAME, OR CASTOR?)

USED-BY: (RULE195 RULE196 RULE199)

YES [SPONTANEOUS-PARMS]

UPDATED-BY: (RULE192)

Parameter Group SUNRAYS-PARMS

HUES [SUNRAYS-PARMS]

TRANS: (bull's-eye window)

PROMPT: (Are any of the windows in the room of origin of the bull's-eye type?)

USED-BY: (RULE140 RULE146 RULE148)

CONCAVE [SUNRAYS-PARMS]

TRANS: (concave type window)

PROMPT: (Are any of the windows near the point of origin concave?)

USED-BY: (RULE141 RULE147 RULE150)

DRINKGLASS [SUNRAYS-PARMS]

TRANS: (drinking glass)

PROMPT: (Was there a drinking glass in the room?)

USED-BY: (RULE144)

FISHBOWL [SUNRAYS-PARMS]

TRANS: (fish bowl)

PROMPT: (Was there a gold fish bowl in area?)

USED-BY: (RULE142 RULE146 RULE147)
GLASSVASE [SUNSFAYS-PARMS]

TRANS: (glass vase)
FROMT: (Was there a glass vase in the room?)
USED-BY: (RULE143 RULE148 RULE150)

MIRROR [SUNSFAYS-PARMS]

TRANS: mirror
FROMT: (Was there a mirror in the room?)
USED-BY: (RULE145)

System parameters

DOMAIN [SYSVARS]

Value: "CHAR: The Fire Investigator's aide"

TREEFOL [SYSVARS]

Value: CHAR

System parameters

CHARRULES [RULGROUPS]

CONTEXT: (CHAR)
SVAL: (char)
CIRANS: "chars"
Value: (RULE02 RULE03 RULE04 RULE05 RULE06 RULE07 RULE08 RULE09 RULE10 RULE11 RULE12 RULE13 RULE200 RULE250 RULE251 RULE252 RULE253 RULE254 RULE255 RULE256 RULE257 RULE258 RULE259 RULE260 RULE261 RULE262 RULE263 RULE264 RULE265 RULE266)

ELECTRICITYRULES [RULGROUPS]

CONTEXT: (ELECTRICITY)
SVAL: (electricity)
CIRANS: "electricitys"
Value: (RULE030 RULE031 RULE032 RULE034 RULE035 RULE036 RULE037 RULE038 RULE039 RULE033 RULE034 RULE039 RULE040 RULE041 RULE042 RULE043 RULE044 RULE045 RULE046 RULE047 RULE048)
GASRULES [RULEGROUPS]

CONTEXT: (GAS)
SVAL: (gas)
CIRANS: "gases"
Value: (RULE060 RULE061 RULE062 RULE063 RULE065 RULE066 RULE067 RULE068 RULE069 RULE070 RULE071)

HOISURFACE/NAKEDFLAMERULES [RULEGROUPS]

CONTEXT: (HOISURFACE/NAKEDFLAME)
SVAL: (hot surface/ naked flame)
CIRANS: "hot surface/ naked flames"
Value: (RULE160 RULE161 RULE162 RULE163 RULE164 RULE165 RULE166 RULE167 RULE168 RULE169)

LIGHTNINGRULES [RULEGROUPS]

CONTEXT: (LIGHTNING)
SVAL: (lightning)
CIRANS: "lightnings"
Value: (RULE120 RULE121 RULE122 RULE123)

MISCELLANEOUSRULES [RULEGROUPS]

CONTEXT: (MISCELLANEOUS)
SVAL: (miscellaneous)
CIRANS: "miscellaneouses"
Value: NIL

PAMRULES [RULEGROUPS]

CIRANS: "pams"
SVAL: (pam)
CONTEXT: (PAM)
Value: NIL

SMOKINGRULES [RULEGROUPS]

CONTEXT: (SMOKING)
SVAL: (smoking)
CIRANS: "smokings"
Value: (RULE090 RULE091 RULE093)
SPONTANEOUS RULES [RULEGROUPS]

CONTEXT: (SPONTANEOUS)
SVAL: (spontaneous)
CIRANs: "spontaneous"
Value: (RULE190 RULE191 RULE192 RULE193 RULE194 RULE195 RULE196 RULE197 RULE198 RULE199)

SUNSHINE RULES [RULEGROUPS]

CONTEXT: (SUNSHINE)
SVAL: (sunnys)
CIRANs: "sunnys"
Value: (RULE140 RULE141 RULE142 RULE143 RULE144 RULE145 RULE146 RULE147 RULE148 RULE150)

System parameters

CHAR-PARMS [PARAMGROUPS]

Value: (SOURCE NAME DESCRIPTION ID ELECT-SUPP ELECT GAS SMOKE LIGHT FLAMM-NEAR-BY SUN HOT SGN ANY GAS-SUPP SMOKE MATCHES ACTIVITY SQUIT SURFACE FLAME AGAIN SECOND LUNFY)

CONTEXTIVES [PARAMGROUPS]

Value: (CHAR ELECTRICITY GAS SMOKING LIGHTNING SUNSHINE SURFACE/NAKEDFLAME SPONTANEOUS MISCELLANEOUS)

ELECTRICITY-PARMS [PARAMGROUPS]

Value: (APPLI-FIRE-DAMAGED APPLI-ON APPLI-PRESENT APPLIANCE APPLI-BURNED-CUISIDE APPLI-HEAT APPLIANCERECOVED-PARTIAL APPLIANCERECOVED MOTOR-ON MOTOR-PRESENT MOTOR WINDING-MELTED MOTORRECOVED-PARTIAL MOTORRECOVED MOTOR-BURNED-CUISIDE SHAFT-SEIZED OVERLOAD-PARTIAL HIGHER-BREAKER OVERLOAD WIRE-RECOVED SHORT BRASS SWALL-COND)
GAS-FLAMES [FARMGROUPS]
Value: (NAKED-FLAME LEAK GAS-PARTIAL VALVE-ON WELL-VENT
(GAS-PRESENT GAS-PART GAS-SAFETY SETTLE))

HOISKERE/NAKEDFLAME-FLAME [FARMGROUPS]
Value: (HOIWEATF FIREPLACE FAN-ON SPACEHEATER STOVE-ON
GASSHOE CHILD UNCOVER)

LIGHTING-FIRMS [FARMGROUPS]
Value: (HUNDER LIGHTING OONE)

SMOKING-FIRMS [FARMGROUPS]
Value: (SMOKING-AREA FURNITURE-BURNED-INSIDE INCUBATION)

SPONTANEUS-FIRMS [FARMGROUPS]
Value: (VEG1 VEG2 RAGS YES VEG2 VEG3)

SUNFIRMS [FARMGROUPS]
Value: (BULLSEYE CONCAVE FISHCOWL GLASSWAS DRINKGLASS
MIRROR)
LIST OF REFERENCES

