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Abstract

A connected graph G is defined to be k-vy-insensitive if the
domination number y(G) is unchanged when an arbitrary set of k
edges is removed. The problem has been solved for k = 1. This
Ph.D. dissertation focuses on finding extremal k-y-insensitive
graphs on p nodes, for k =2 2. A graph is extremal if it has the
minimum number of edges.

Two subproblems are considered. The first, which has been
solved completely, specifies that the same set of nodes dominates
each graph obtained from G by removing k edges. The second requires
only that the graph G be connected. This is a much more difficult
problem and represents the area of major contribution.
Asymptotically correct values for the minimum number of edges e have
been found for all k =2 2 and all 4y = 2 by establishing lower and
upper bounds for e. The difference in these bounds is 0(7k) and is
independent of p. The general results are improved when k = 2 and v

> 3, and exact solutions are given when k = y = 2 and when v = 1



with k arbitrary.

Considering applications for k-y-insensitive graphs, we
introduce the G-network, a new topological design which is a
suitable architecture for point-to-point and interconnection
networks. We show that the G-network has the following desirable
characteristics: efficient routing, simple connections, small
number of links and fault tolerance. Significant improvement in
terms of routing performance and the number of edges is shown when
the G-network is compared to the popular Barrel Shifter, Illiac and

Hypercube networks.
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1. INTRODUCTION

This dissertation is concerned with a theoretical problem in
graph theory. In recent years graph theory has emerged as a useful
tool in the modeling of a number of computer science problems,
including network design, routing, algorithm design, compiler
design, Petri nets, complexity theory, deadlock detection, VLSI
design, and processor interconnections in multiprocessor systems.

In his book, Graph Theory, Harary (1972), whom many recognize
as the father of modern graph theory, links computer science to the
growth in the interest in graph theory by establishing applications
of graph theory in both communication science and computer
technology. Harary's (1987) editorial in the Journal of Graph
Theory stresses the importance of graph theory as a mathematical
model in many scientific fields. However, he specifically
spotlights computer science as follows:

I have deliberately saved by far the currently most important

area of application of graph theory for last. Of course I am

referring to computer science. We are all aware that the
computer/information revolution is only just beginning. It is
not sufficiently emphasized that graph theory pervades all
three major branches of computing: hardware, software, and
theory. Among the topics within these three branches to which
graph theoretic models are especially applicable are: computer
languages, logic circuits and switching theory, computer
networks and reliability, interconnection networks for
parallel processors such as hypercubes, fault-tolerant and
diagnostic graphs, VLSI (very large scale integration) design,

and, of course, AI (artificial intelligence), in particular,
semantic networks. (iv)
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Tannenbaum (1981) devotes a chapter of his book, Computer
Networks, to a direct application of graph theory in network
design. A goal of network design is to connect desired sites with a
minimum number of links in order to minimize costs. However, to
achieve high reliability with unreliable components, the network
must be redundant. Techniques from graph theory are paricularly
useful in producing a minimum cost design that meets the specified
requirements. Several books survey the applications of graph theory
in different disciplines (Roberts 1978; Temperley 1981; Walther
1984; Wilson and Beineke 1979).

With an awareness of significant applications to computer
science as well as to many other areas and an appreciation for the
beautiful field of graph theory as motivation, we introduce the
graph theoretical problem under investigation in this dissertation.
All terms not specifically defined here can be found in Chartrand
and Lesniak (1986).

All graphs considered are finite and undirected with no loops
or multiple edges. For a graph G = (V,E) we denote the cardinality
of V as p. An edge joining nodes u and v is uv and the degree of
node v is dv' The set of nodes which are adjacent to v is node v's
open neighborhood denoted N(v). A graph G is connected if every
pair of its nodes are joined by a path.

A subset of nodes DCV is a dominating set for a graph G if

every node of G is either in D or is adjacent to some node of D.

The domination number (G) is the minimum size of any dominating



3
set. A connected graph is edge domination insensitive, or just
y-insensitive, if y(G) = y(G-e) for any edge e, where G-e is the
graph obtained from G by removing e. Dutton and Brigham (1988)
consider the problem of finding extremal graphs having the
v-insensitive property. A y-insensitive extremal graph on p nodes
is one which has the minimum number of edges.

In this dissertation we extend the notion of y-insensitivity
by considering the removal of more than one edge. Thus we define a
connected graph G to be k edge domination insensitive, or just
k-y-insensitive, if the domination number y is unchanged when an
arbitrary set of k edges is removed. The problem has been solved
for k = 1 (Dutton and Brigham 1988). This dissertation focuses on
finding extremal graphs, that is, graphs having the smallest number
of edges required for any k-y-insensitive graph on p nodes, for k =
2

Several subproblems are possible. We consider two. The
first insists that the same fixed set of 7 nodes dominate G no
matter which set of k edges is removed. In the second the only
restriction is the initial connectedness of G.

According to Bollobas (1978) in his book Extremal Graph
Theory, problems in the field of extremal graph theory tend to be
difficult. The search for extremal k-y-insensitive graphs proved to
be no exception. As a result, the scope of this research is limited
to finding exact values in the special cases when vy = 1 and k > 2

and when vy = 2 and k = 2. The minimum number of edges required in
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these cases was determined by establishing relevant structural
properties of extremal graphs. Using restrictions provided by these
structural properties and extensive counting arguments, we obtain
the solution for v = 2 and k = 2. The approach used for y = 2 and k
= 2 breaks down for vy =2 3 and k 2 2, and the exact result has proved
elusive. Nevertheless, an asymptotically correct value, as p
approaches infinity, for Ek(p,y) when k 2 2 has been found. Upper
and lower bounds for Ek(p,y) differing by 0(7k) establish the
asymptotic result. Furthermore, the gap between the bounds is
narrowed for k = 2 and vy = 3 achieving tighter bounds for all values
of p and exact results for some small values of p.

One is always interested in possible applications of
theoretical results. Network design represents one such area for
the k-vy-insensitive property. A network corresponding to an
extremal graph will be fault tolerant in terms of domination when
any k links fail, and will have the smallest number of links among
all such networks. That is, a network which can be represented by
an extremal k-vy-insensitive graph has a minimized link cost and the
property that some set of y nodes can communicate directly in one
hop with the other p-y nodes even after k links fail.

We introduce a special 2-y-insensitive graph called the G-
network which is a suitable architecture for point-to-point and
interconnection networks. The G-network has the following desirable
characteristics: efficient and simple routing, small number of links

and high degree of fault tolerance. As a point-to-point network
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with designated file servers, the G-network provides all nonisolated
nodes with direct access to the file servers even if a node or up to
two links fail. As an interconnection network, the G-network is
more economical than each of the well-known Illiac Mesh, Barrel
Shifter, and Hypercube networks in terms of the number of links
(Hwang and Briggs 1984). Furthermore, the G-network shows a
significant improvement over the others in the maximum number of
routing steps required for any pair of nodes to communicate. Unlike
most interconnection networks where the maximum number of routing
steps required is dependent upon the number of processors (nodes),
the maximum number of routing steps needed in the G-network is
constant at four independent of the number of processors (nodes) and
remains four when a single node or link fails. For massively
parallel computation we construct a multilayered interconnection
network by interconnecting copies of the G-network in parallel.

The features of these networks are an integral part of the
graph theoretic design and remain relatively intact in spite of
faults in the system. We note that the inherent design was a by-
product of our search for extremal 2-y-insensitive graphs.

The remainder of this dissertation will be organized as
follows. In Chapter 2, we present a literature survey with two
major sections. The first section considers the general area of
domination theory in graphs. The second section examines the

specific problem of edge insensitive domination and presents results
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from Dutton and Brigham's (1988) study of this concept. Chapter 3
includes the results for the first subproblem, the fixed dominating
set case, and presents a modified version of this subproblem. We
employ E?(p,y) to represent the minimum number of edges required in
this case.

The major contributions of this dissertation result from the
second subproblem and are contained in Chapters 4, 5, and 6.
Ek(p,v) represents the minimum number of edges required for this
subproblem where the only restriction is connectedness of the
original graph. Chapter 4 presents the asymptotically correct
result for Ek(p,y) when k =2 2 and the exact value when k > 1 when 7y
= 1. The exact results for k = 2 and v = 2 are in Chapter 5.
Chapter 6 tightens the bounds from Chapter 4 for Ek(p,y) when k = 2
and v = 3.

Chapter 7 introduces the G-network and the multi-layered G-
network as examples of applications of k-y-insensitive graphs.

Related problems posed by Frank Harary (1988) are presented in
Chapter 8. These problems consider when a graphical invariant
changes or does not change due to the addition or removal of a node
or an edge. Note that a l-y-insensitive graph is an extremal
unchanging graph in terms of domination when an edge is removed. We
present a survey of the known results along with our own research on
the problem of changing and unchanging when the graphical invariant

is the domination number (G).



7
Chapter 9 concludes the dissertation and outlines suggested
future work. The appendix contains a catalog of all 2-y-insensitive

graphs on p < 10 nodes.



2. A SURVEY OF DOMINATION LITERATURE

The work reported in this dissertation is a contribution to
the general area of domination theory in graphs. The purpose of the
first section of this literature survey is to highlight some of the
recent developments in domination theory. However, our intent is
not to give details of all aspects of domination; rather it is to
provide a general background of domination that will set the stage
for the second section’s overview of edge domination insensitivity,

which is the basis for our research.

2.1. Theory of Domination

The graphical invariant known as domination number, which is
represented for graph G by the symbol y(G), has been studied
extensively. According to Hedetniemi and Laskar (1987), more than
100 research articles on the subject of domination had been written
in the four years prior to the publication of their paper. We shall
present a brief survey of the literature on general domination
theory in this section, which is subdivided into the following four
subsections: applications, bounds on domination number, algorithms,
and domination related concepts. Because of the volume of papers on
domination theory and because our intent is to give just the flavor
of the research in the general area of domination, we provide only a

8
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small sample of the current work for each of the subsections.

2.1.1. Applications

A graph having domination number 7y corresponds to a network
having p nodes where a minimum number, vy, of them can communicate
directly (in one hop) with the remaining p-y nodes. Additional
examples of applications for domination are given by Cockayne and
Hedetniemi (1977). For example, they describe a situation in
coding theory where the graphs have nodes which are n-dimensional
vectors and two nodes are adjacent if they differ in exactly one
component. Then the single error correcting codes correspond to the
dominating sets of the graph which have certain additional
properties. They also present the problem of keeping all nodes in a
network under surveillance by a set of radar stations, the
dominating set.

Similarly, Roberts (1978) suggests an interesting application
in nuclear power plants. The plants (nodes) are positioned in
various locations, and an arc is placed from location x to location
y if it is possible for a watchman at x to observe a warning light
at location y. What is the minimum number of guards necessary and
where should they be located? The answer to this question
corresponds to a minimum dominating set of a directed graph.

Hare, Hedetniemi, and Hare (1986) explore determining the
domination of grid graphs. Grid graphs are frequently studied

models of processor interconnections in multiprocessor VLSI systems.
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A dominating set in such a graph represents a set of processors
which can transmit to the remaining processors in one "hop."

The examples presented here are a mere sampling of the
possible applications of domination theory. For more detail of
applications in a wide variety of fields, including communication
theory, computer science, psychology and political science see
Cockayne (1976); Cockayne, Dawes and Hedetniemi (1980); Cockayne and
Hedetniemi (1977); Brigham and Dutton (1988b); Hedetniemi and Laskar
(1987); Hedetniemi, Laskar and Pfaff (1985); Roberts (1978); and

Tannebaum (1981).

2.1.2. Bounds on the Domination Number

Relationships between graphical invariants represent an
important area of research. The literature includes several bounds
on the domination number in terms of other invariants, and many of
these are cited in Allan, Laskar, and Hedetniemi (1984); Brigham and
Dutton (1988a); Cockayne and Hedetniemi (1977); Hedetniemi and
Laskar (1987); Laskar and Walikar (1981); and Marcu (1985). We note
only a few of the more common bounds listed in these references.
Let G = (V,E) be a graph with domination number 7y, minimum degree §,
and maximum degree A. Then

l. p-e =<y =<p-A

2. e = (p-7)(p-7+2)/2

3. nep ACARL) Sy

4. 1f there are no isolated nodes, vy < p/2
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5. 1If there are no isolated nodes, vy < (p-6-2)/2.

Fewer lower bounds than upper bounds exist for y(G) (Hedetniemi and
Laskar 1987). A recent paper by Brigham and Dutton (1988a)
establishes both lower and upper bounds for +v(G).

Some reports consider finding bounds on domination number
which are valid only for a specific family of graphs. For example,
Cockayne, Hare, Hedetniemi, and Wimer (1985) determined both upper
and lower bounds for the domination number of grid graphs. They
concluded that the problem of determining the domination number of
an nXn grid graph is closely related to the open problem of
determining the minimum number of queens which are required to

dominate an nXn chessboard (See Section 2.1.4).

2.1.3. Domination Algorithms
The problem of determining the domination number of an

arbitrary graph is NP-complete (Garey and Johnson 1979).
Hedetniemi and Laskar (1987) state that computing the domination
number for several restricted classes of graphs, including planar,
grid, perfect, chordal, split, bipartite, and line graphs, remains
NP-complete. On the other hand, in the same paper they reference
polynomial algorithms for finding the domination number of trees,
forests and strongly chordal graphs.

Furthermore, Hetdetniemi, Laskar, and Pfaff (1986) present a
linear time algorithm for finding a minimum dominating set in a

cactus. Booth and Johnson (1982) show that the dominating set
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problem for chordal graphs and directed paths is NP-complete.
However, they present a linear time algorithm that solves the
problem for interval graphs. Moreover, Hedetniemi, Hedetniemi, and
Laskar (1985) report that Gurevich, Stockmeyer, and Vishken have
designed a polynomial time algorithm that is successful for graphs
that differ from trees by only a fixed number of edges. Hare,
Hedetniemi, and Hare (1986) solve the problem in polynomial time on
kXn complete grids for any fixed k.

Other polynomial algorithms and NP-completeness results for
domination and domination related concepts appear in Hare,
Hedetniemi, and Hare (1986); Hedetniemi, Hedetniemi, and Laskar
(1985); Hedetniemi and Laskar (1987); Hedetniemi, Laskar, and Pfaff

(1986); and Pfaff, Laskar, and Hedetniemi (1984).

2.1.4. Domination Related Concepts

The literature provides many alternative approaches to the
concept of domination. According to Hedetniemi and Laskar (1987)
approximately 30 different notions of domination are currently
known and "...many more can just as easily, and naturally, be
defined" (18).

Conditions can be imposed on both the dominating set and the
dominated set to yield new concepts. Then, as with the standard
notion of domination, one is usually interested in the minimum
sized dominating sets of the prescribed types. We mention only a

few of the possibilities in this section.
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The edge domination number of a graph G, v'(G), is the minimum
number of edges in a set F such that every edge in E-F is adjacent
to at least one edge in F. Like the node domination problem, the
edge domination problem is NP-complete. For bounds and results
involving v'(G) see Hedetniemi, Hedetniemi, and Laskar (1985); and
Laskar and Peters (1985).

The independent domination number of a graph G, i(G), is the
minimum cardinality of any dominating set in which all nodes of the
dominating set are independent, that is, no edge joins any two of
them. Independent domination is also NP-complete, and thus research
has concentrated on establishing bounds for i(G) (Laskar and
Walikar 1981) and in developing polynomial time algorithms to
determine i(G) for certain families of graphs (Farber 1984; Pfaff,
Laskar, and Hedetniemi 1984).

The concept of dominating cliques requires that the
dominating set induce a complete subgraph (clique). This notion is
in some sense the opposite of independent domination. However, an
independent dominating set always exists for a graph whereas a
clique dominating set may not. The literature contains
characterizations of graphs possessing dominating cliques, bounds
for the clique domination number, 1k(G), and algorithms for
determining 1k(G) (Cozzens and Kelleher 1986). This type of
domination has possible applications in network and communications
theory where each node in a designated set of nodes has the ability

to communicate directly with every other node in the set. Further,
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every node which is not in the set can communicate directly with at
least one node in the set. In their paper Cozzens and Kelleher
(1986) suggest that it might be important in setting up network
links to provide this ability for a strong core group that needs to
communicate directly with each other member of the core.

Another notion of domination which places a restriction on
the dominating set is called connected domination. As the name
suggests, the dominating set must induce a connected subgraph.
Although this concept is in a sense less restrictive than clique
domination, it could be applicable in network design where members
of the core group must be connected by a path in the core. Of
course this concept is defined only for connected graphs. Laskar
and Peters (1983) establish several bounds for the connnected
domination number, VC(G).

A well known problem involving a dominating set, the queens
problem, is to determine the smallest number of queens which can be
placed on a chessboard so that every square is dominated by at
least one queen. Among the many solutions to this problem, one
solution requires that every queen be dominated by at least one
other queen (Allan, Laskar, Hedetniemi 1984). This solution
suggests yet another domination concept called total domination. A
set of nodes D is a total dominating set if each node in V is
adjacent to some node in D. Notice that this definition demands
that each node in the set D must be adjacent to another node in D.

We note that clique dominating sets and connected dominating sets
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having at least two nodes are total dominating sets. However, total
dominating sets are not necessarily connected or clique dominating
sets. Again we can speculate about the applications for this type
of domination in a network which requires that each of the members
of the core group has a direct link to at least one other member of
the core group. Bounds involving total domination are given in
Allan, Laskar, and Hedetniemi (1984); Cockayne, Dawes, and
Hedetniemi (1980); and Krishnamoorthy and Murthy (1986).

Two additional interesting domination concepts, dominating
cycles and paths, are closely related to the existence of
Hamiltonian cycles and paths in graphs. A dominating cycle(path)
is a cycle(path) of G for which every node of G is incident to at
least one node of the cycle(path). A D-cycle(D-path) is defined by
substituting the word edge for node in the above definition.
Research considering a D-cycle(D-path) as a generalization of a
Hamiltonian cycle(path) is presented in Clark, Colburn, and Erdos
(1985); and Veldman (1983).

Brigham and Dutton (1988b) introduce the factor domination
number. A graph H = (V,E) has a t-factoring into factors G1, G2,

i Ei) has node set Vi = V and the

collection (El, E2’ ...,Et) forms a partition of E. A factor

ol Gt if each graph Gi = (V

dominating set is a single subset of nodes which dominates each of
the t factors of a graph H. The factor domination number, Tgo is
the size of a smallest such set. Observe that when t = 1 we can

interpret Vg s the ordinary domination number of H. Brigham and
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Dutton (1988b) suggest possible applications of the factor
domination number in communication networks. For example, the graph
H could be considered as a communication network composed of t
subnetworks (the factors Gi)' Determining the factor domination
number of a graph H and its factors representing such a structure
yields the minimum number of "master" stations required so that a
message can be transmitted from them to the remaining P-7g stations
in one hop, as long as at least one subnetwork is active. That is,
these "master" stations can communicate directly to all desired
sites as long as not all the subnetworks fail. Their paper
establishes bounds for T in terms of other graphical invariants.

Finally, we consider the concept of domination critical
graphs. A node v is critical if y(G-v) < y(G) and G is node
domination critical if each node is critical. Brigham, Chinn, and
Dutton (1988) envision applications in network theory:

Such networks have the pleasant characteristics that (1) any

processor can be in a minimum set of these "dominating"

processors, and (2) the failure of any processor leaves a

network which requires one fewer dominating processors. (2)
Closely related to this study are the works of Bauer, Harary,
Nieminien, and Suffel (1983); and Sumner and Blitch (1983). Sumner
and Blitch (1983) studied graphs where the domination number
decreases when any edge is added. On a related problem, Dutton and
Brigham (1988) define the edge domination insensitive property,

which is the basis for our research. We postpone discussion of this

property to the next section.
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For additional domination concepts and related parameters,
including irredundance number, domination pair number, and domatic
number, see Chung, Graham, Cockayne, and Miller (1982); Favoron
(1986); Hedetniemi, Hedetniemi, and Laskar (1985); Hedetniemi and
Laskar (1987); Hedetniemi, Laskar, and Pfaff (1985); and Rall and

Slater (1984).

Edge Domination Insensitiv

In the previous sections we have described briefly different
concepts in domination. We now return to the specific domination
related problem under consideration in this dissertation. It was
Dutton and Brigham's (1988) study of the edge domination
insensitive problem that laid the theoretical foundation for the
present work. Thus we devote this entire section to reporting the
results from their paper, which is the only existing paper in the
literature on edge domination insensitivity (Dutton and Brigham

1988).

2.2.1. Problem Description and Applications
A connected graph G is edge domination insensitive if y(G) =
v(G-e) for any edge e of G. For brevity we shall say y-insensitive.
Dutton and Brigham (1988) consider the problem of finding extremal
graphs having the y-insensitive property. In this context graphs on
p nodes are extremal if they have the smallest possible number of
edges. In their quest to find extremal graphs, they define and

solve three different subproblems. We shall present each of these
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subproblems in Section 2.2.2.

Since the same number of nodes dominate a y-insensitive graph
after removal of any edge, a network having the y-insensitive
property could be considered fault tolerant in terms of domination
when a link goes down. 1In the words of Dutton and Brigham:

It is interesting to speculate on applications for

v-insensitive graphs. One can, for example, contemplate

minimum link communication networks having p stations where 7y
of them can transmit a message to the remaining p-y stations
with no message traversing more than one communication link.

For networks corresponding to y-insensitive graphs this

property is preserved whenever a single communication link

fails. (2)

2.2.2. Results for Extremal y-insensitive Graphs
The first subproblem considered by Dutton and Brigham (1988)
insists that the same fixed set of y nodes dominates G and G-e for
all edges e of G. In this case they let Ef(p,y) represent the

minimum number of edges needed in an extremal graph. The major

result for the fixed case is given in the following theorem.

Theorem A (Dutton and Brigham 1988)
2p-2y for y 2 2 and p = 3¢-2

Ef(P,v) -
undefined otherwise.

The second subproblem no longer requires that the same fixed
set of nodes dominates, merely that some set of 7y nodes will
dominate G-e for any edge e of G. Letting E(p,y) represent the

minimum number of edges required, we summarize their results for
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this problem in the following theorem.

Theorem B (Dutton and Brigham 1988)

3p-6 if y=1and p =2 3
p-1 if y2 2 and 2y <= p < 3y-2
E(p,7) = {
P if y= 2 and p = 34-1
2p-3y if y = 2 and p = 3y
\

The final subproblem adds the restriction that G-e be
connected for every edge e. Their results for this problem are

summarized in the following theorem.

Theorem C (Dutton and Brigham 1988)
E(p,y) = 3p-6 if y =1 and p = 3

E(p,y)+1 = p if y2 2 and p = 3y-2

Ec(p,c) = J E(p,y) = P if y>2 2 and p 3y-1 or 3y

E(p,y)+l = p+2 if v 2 2 and p = 3y+1

\ E(p,v) = 2p-3y if vy 2 2 and p = 3y+2

The results for this subproblem are still unknown for 2y < p
< 3vy-3. However, it is known that no y-insensitive graphs exist
when p < 3v-3 if v = 2, 3 or 4.

The reader is referred to Dutton and Brigham (1988) for
illustrations of extremal y-insensitive graphs in each of the three

subproblems and for proofs of the theorems presented here.
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In this dissertation we consider the more general problem of
graphs having the y-insensitive property when more than one edge,

say k edges, are removed.



3. FIXED DOMINATING SET

The first of the two subproblems to be considered insists that
the same fixed set of y nodes dominate G and G-E’ for all sets E'CE

where |E’| = k. Designate the fixed set of nodes by V1 = (a), a,,
2 = {bl, b2, TLE bp_‘y). We
first observe that y 2 2 since a single node which dominates the

S ay) and the remaining nodes by V

entire graph cannot dominate the graph obtained by removing any k
edges incident to it.
Lemma 3.1 defines characteristics of an extremal graph for

this subproblem.

Lemma 3.1
Any extremal k-y-insensitive graph with fixed dominating set
V1 and E?(p,y) edges is a bipartite graph with partite sets Vl and

V2. Furthermore, each node of V, has degree k+l.

2
Proof

V1 is a fixed dominating set. Dominance is unaffected by
1 OF two nodes of V2 and therefore no

such edge is necessary. Any node bieV2 must have degree at least

edges between two nodes of V

k+1l so it can still be dominated by V1 when k of its incident edges

are removed. On the other hand, it is never necessary to have more

21
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than k+l edges incident to b since bi can be dominated via any

i

unremoved edge. W

For 1 < i < v, define Ai to be those nodes of V2 which are

adjacent to a,eV., i.e., Ai - (bjla is an edge of G).

£ 1 ibj
Theorem 3.1

The fixed dominating set problem has no solution for k = 2.
Proof

Suppose G is an extremal bipartite graph with partite sets V

i

and V2 such that V1 is a fixed dominating set and |V1| = v. By

Lemma 3.1 each node of V2 has degree k+l1. Thus y = k+1 and it is
possible to label the nodes of V such that a1y @y, -.vs 8 have a
common neighbor, say bl' A complete bipartite subgraph is induced
by {al, 8y vy ak+1)u(AlnAzn e B nAk+1)' Nodes al and b1 dominate
this subgraph. Any node beVz-(AlnAzn...nAk+1) must be dominated by
some aievl, i > k+1, else it would be in the intersection. Thus
{bl)U(Vl-{az, 8y, - ak+1}) is a dominating set of size 2+(vy-k-1)
= vy-k+1l which is less than y, and hence creates a contradiction,

when k = 2. Therefore, the problem as stated has no solutions

unless k=1. B

In view of Theorem 3.1, we consider a modified version of this
subproblem where the fixed dominating set V1 is not required to be a

minimum dominating set if k 2 2. A graph is said to be k-edge



23

(o) tion ed, or simply fixed, if V., will still dominate G when

i
any k edges are removed.
Since V1 can no longer be a fixed dominating set of size v,

we select a fixed dominating set of size m_ > y. That is, we let

- 4
|V1| - mg and define E:(p,mf) to be the minimum number of edges
required in a k-edge domination fixed graph. The proof to the

following lemma is identical to that of Lemma 3.1.

Lemma
Any extremal fixed graph is bipartite with partite sets V1

and V2. Furthermore each node of V2 has degree k+l.

The following theorem is an immediate consequence of Lemma

3:2z

Theorem 3 ks

Eg(p.mg) = (k+1)(p-my).

Clearly me 2 k+1 since each node in V2 has degree k+1. This
condition is sufficient in order for the revised problem to have a

solution.

Theorem 3.3

Extremal graphs exist for each value of me and k such that

mf > k+1 and k = 2.
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Proof
Let bieV2 be adjacent to any k+l nodes of Vl. |
Before presenting Theorem 3.4, we introduce relevant
definitions and notation. A matching MCE in G is a collection of
edges no two of which share a common endpoint. Matching M saturates
XCV if every node of X is an endpoint of some edge in M. The open

neighborhood of set SCV is N(S) = (erIx is adjacent to at least

one seS).
We shall say that graph H = (V,E) has t k-edge diminished
subgraphs Gl’ GZ’ . S Gt’ called remainders, if each graph Gi -

(Vi’Ei) has node set V1 = V and Ei = E-(el, e2,

of k edges, 1 < i < t. Subset Dr of V is a remainder dominating set
i€ Dr is a dominating set for each Gi’ l <1i=<t, and the remainder

..,ek} for some set

domination number g is the size of a smallest remainder dominating
set. The following lemma will be useful in the proof to Theorem

3.4.

Lemma (Hall)
Let G = (X,Y,E) be a bipartite graph where X and Y form the

bipartite partition of V. Then there is a matching which saturates

X if and only if |N(S)| > |S| for &ll 8 & X.

The final theorem shows that a fixed dominating set is

uniquely determined once me and k are specified.



25
Theorem 3.5
Let H be a connected k-edge domination fixed graph having me
- |V1| < |V2| and the minimum number of edges. Then V. =R and V

£ 1

is the only minimum remainder dominating set.

Proof

By construction V1 is a remainder dominating set for the
bipartite graph H so v_ =< |Vl| = mg. Now let D_ be a minimum
remainder dominating set different from Vl. See Figure 3.1. Every
node bieVZ-Dr has all k+l of its edges incident to V1

would be a remainder subgraph in which bi is not dominated by Dr'

nDr or there

It follows that all neighbors of ajeV -Dr must be in V nDr. Note

1 2

that VlnDr contains all nodes a,eV, of degree at most k since there

3¢

is a remainder subgraph which isolates a Thus every node of V -Dr

A -
has degree at least k+l. Let X = Vl-Dr, Y = Vanr, S be an

arbitrary subset of X, Es be the number of edges incident to S, and

Ey(sy Pe the number of edges incident to N(S). Then (k+1) |N(S)| =

EN(s) 2 E_= (k+1)|S| implying |N(S)| = |S|. By Hall's lemma there
is a matching which saturates X. Thus y_ = IDr' - |VlnDr|+|V20Dr|

> IVlnDr|+|V1-Dr| - |V1| - m;. Hence y_ = m; and it follows that

£
[vy-D| = [vynD_|.

Notice that the number of edges considered so far is at least
(k+1)|V1-Dr|+(k+1)|V2-Dr| - (k+1)[|V2nDr|+|V2-Dr|] - (k+1)|V2|
which is the minimum number possible. All of these edges are

between X and Y and between Vl-X and V2-Y. Since the graph is

extremal, these are the only edges. Because Vanr » @, the graph is
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v,

=

D, = Yu(V, -X)

Figure 3.1
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disconnected. This establishes the contradiction which shows that

V1 is the only remainder dominating set. ®

This completes discussion of the first subproblem.



4. SOME GENERAL RESULTS

In this chapter and the two following we consider the second
subproblem described in Chapter 1 in which all that is required is
that some set of vy nodes dominate when an arbitrary set of k edges
is removed. The specific y nodes which dominate will depend on the
particular edges deleted. Formally, a connected graph G is k-v-
insensitive if y(G) = y(G-E’') for all sets E'CE where |E'| = k. We
employ Ek(p,y) to represent the minimum number of edges for such
graphs having p nodes. General results are presented in this
chapter while Chapters 5 and 6 investigate special cases in greater

detail.

4 The Exact Value of Ekgg,L2

The case of y = 1 is solved easily.

Theorem 4.1
Let k =2 1. Then Ek(p,l) = (2k+1) (p-k-1) if p > 2k and is
undefined if p =< 2k.
oo
Let G be a k-y-insensitive graph having p nodes and y = 1.
Removal of any k edges involves at most 2k nodes of G. Suppose G
has at most 2k nodes of degree p-1. Then k edges can be removed in

28
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such a way that none of these nodes can dominate the resulting
graph, implying that the original graph is not k-y-insensitive.
Thus G must have at least 2k+l nodes with degree p-1, so Ek(p,l) >
(1/2) [(2k+1) (p-1)+(p-2k-1) (2k+1)] = (2k+1)(p-k-1). Consider a graph
with exactly 2k+l nodes of degree p-1 and no other edges. This

graph is k-y-insensitive, so equality holds. B

We note that Theorem 4.1 is a generalization of Dutton and

Brigham's (1988) result for k = 1.

4 n As totic Value fo Ek

The remainder of the chapter is devoted to the derivation of
an asymptotically correct value, as p approaches infinity, for
Ek(p,y) when k 2 2. Section 4.2.1 demonstrates an upper bound for
Ek(p,y) by constructing a specific graph. Section 4.2.2 then
develops some general properties of k-y-insensitive graphs which are
employed in Section 4.2.3 to compute a lower bound on Ek(p,y). The
difference between the lower and upper bounds found will be

independent of p, so the asymptotic result will be established.

4.2.1. The Upper Bound
To establish the upper bound we construct a family of k-v-
insensitive graphs under the assumption that vy = k+l and p = y(k+l).
let n = [jp-y)/kj and r = (p-y) mod k. Notice that n = y. Graphs
G = (V,E) having the desired properties are created as follows:

(1) V = AUBIUBZU"'UBn where A = (al, 8y ey 87)' Bi =



30

(bil’ b12’ P bik) for 1 =1 = n-1 and Bn = {bnl’ bn2’

ik bn,k+r)'

(2) Each Bi’ 1l < i <n, induces a complete subgraph.

(3) Each bi is adjacent to exactly two nodes of A, one of

J

which is a,. The other is a_ for s =2 2 subject to the

restriction that at least k distinct as for s = 2 are
adjacent to each Bi‘

(4) Every a_, s > 2, is adjacent to a bi for at least vy-k

b
values of i.
It is straightforward to verify that G is connected, that bi and

j

bit are adjacent to distinct a for s 2 2 and i < n-1, that the set

of nodes bnj are adjacent to at least k distinct a_ for s 2 2, and
that G has 2(p-1)+[L(p-1)/k]-1][k(k-l)/2]+[(k+r)(k+r-1)]/2 <
(k+3)p/2-[(k+3)7-2kr-r2+r]/2 edges. Figure 4.1 shows a graph having
P=17, vy = 4 and k = 3 which has been constructed according to the
above specifications.

We must now show that G is k-y-insensitive, and the next lemma

is a first step.

Lemma & 2 l

Any graph G constructed as above has domination number ~.

Proof

The set A dominates G so the domination number is at most 7.
It remains to be shown that any dominating set D contains at least 7y

nodes. Certainly D contains at least y-1 nodes since each a_, 2= 8
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< 7, must be dominated either by itself or by an adjacent bij' But

any bij can dominate only one such a- Thus if aleD, |D| = s

Suppose then that alfD and that IDI = y-1. Let bl’ b2, 2@ s bq
designate the bij's in D. Then these nodes of D can dominate at
most q Bi’s and g+l ai's, including a. All the remaining Bi's, and

there must be at least one, have to be dominated by the bi's. Thus
we must have y-q-1 =2 k so q < y-k-1. Let a, be a node of A

dominated by the bi's. By (4) of the construction there is an edge

from a_ to at least y-k Bi's so a_ is required to dominate at least

one of the Bi's not dominated by the bi's, a contradiction. &

To facilitate proving the theorem which shows that G is k-+-
insensitive, we introduce some terminology and a preliminary lemma.
Consider removing an arbitrary set E’' of k edges from G. Partition
the edges of E’' into E, and E, where the edges in E

1 2 1
endpoint in A and the edges in E2 have both endpoints in

have an

BIUBZU"'UBn' Label the Bi's that have nodes incident to edges of

E1 by Sl’ 82, SRk St' Assume for now that bleS1 is incident to two
edges of El' For 1 < § =% let n, be the number of nodes in Si that
are incident to edges of El and Si be the set of the n, nodes of Si

which form the endpoints of these edges. Furthermore, let m, be

the number of edges from E2 which are incident to nodes in Si.

Define '1‘i to be set of nodes veSi-Si, such that v dominates the

nodes of Si. Observe that Ti includes the nodes of Si which are not

incident to edges of E1 or to the edges of E2 which are incident to



33

nodes of §;- Thus |T1| z k- (n +m The following lemma states a

i)'

useful fact about the size of Ti'

emma &

Under the circumstances outlined above, ITiI Hdofor 1 < s

=7
Proof
Let i = 1 and recall that two edges of E1 are incident to
blesl. Since a total of k edges are removed, my < k-(n1+1). Thus
m +n, < k-1 and |T1| =z 1. Consider n, and m, for 2.5 4 st. 8ince
k edges are removed and nj+mj edges have endpoints in SJ Eoss 1, Swip <
i-1, the number of edges removed with endpoints in Si is
i~1
n +m, < k-l-}:(nj+mj). (L)
j=1

By definition n +mj 21 so

J

i-1
E: (nj+mj) 2> i-1.
j=1

Therefore (1) implies n +m < k-1 so |7;| 2 k-(n;4m ) 2 1. ®

- |
We are now ready to present Theorem 4.2 which establishes the
upper bound for Ek(p,y). The previously defined terminology will be

employed in the proof.
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Theorem 4.2

Let v = k+1 and p = y(k+1l). Then Ek(p,y) < (k+3)p/2-[ (k+3)7y-
2kr-r2+r]/2 ;
Proof

Let G be constructed as described above. By Lemma 4.1 G has
domination number y. Since G has the number of edges stated in the
theorem, we need only show that G is k-y-insensitive. As before, we
remove an arbitrary set E' of k edges, and now show the resulting
graph still has domination number y. If each bij has at least one

edge to a node of A in G-E', then A dominates. Thus we need to

consider only the situation where at least one bij’ say blesl, has
both edges between it and nodes in A removed. Notice that a, can
dominate (BluBZU...UBn)-(Sluszu...USt). Furthermore, the nodes in

Si-Si have two edges to A so a; will also dominate them. By Lemma
4.2, lTi' =1 foxrl<i=x¢t. Thus Ti has at least i nodes which are
not incident to edges of E'. That is, T1 has at least one node, say

Xy, that is adjacent to a; and an a,, say a_. T2 has at least two

such nodes. Observe that at least one node of T2’ say x2, dominates

a_ where s # 1, r. Continuing in this manner we have t nodes Xy

Kpy ooy X such that each X; is adjacent to a different aj, go= 2.
Let A’ be the set of aj's, j =2 2, dominated by [xl, Xy ., xt}.
Then AU{xl, Koy vooy xt)-A' is a set of size y which dominates G-E’,

thereby showing G is k-y-insensitive. @&

The edge bound given by Theorem 4.2 is maximized when r is at
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its largest value of k-1, which leads immediately to the following

corollary.

Corollary 4.1
Let v 2 k+1 and p =2 y(k+l). Then Ek(p,y) < (k+3)p/2-[(k+3)vy-

3k245k-21/2.

The corollary shows that for fixed k and y the bound is
asymptotically equal to (k+3)p/2. Section 4.2.3 will establish a
lower bound asymptotically equal to the same expression, and this

will complete the proof of the major result of this chapter.

4.2.2. Properties of k-y-insensitive Graphs
The following theorems establish relevant structural
properties which will be useful in Section 4.2.3 in developing the
lower bound for Ek(p,v). Let N1 be the maximum possible number of
nodes v of degree at most k which can have i common neighbors in a
k-y-insensitive graph, 1 < i < k. The first theorem gives a bound

for Nk'

Suppose a,, a,, and a, are degree k nodes with common

neighbors bl' b2' o bk' See Figure 4.2. Remove the k edges
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incident to a;. Then a, must be in the dominating set D. None of

ai's neighbors can be in D or D-{al} is a dominating set of size +-

1, a contradiction. Hence a, and a, are 0. D..... But (D-(az, a3})

U{bl) is a dominating set of size y-1 for G, a contradiction. BN

Theorem 4.4

For 2 < i =< k, Ni-l < (1-1)Ni+1.

Yoo

Suppose a set S of N nodes of degree at most k have i-1

i-1
common neighbors. Remove all edges from one of the nodes of S, say

x. Then x along with -1 other nodes b must

10 By ceen By

dominate the remaining nodes of S. Any of the bi's would be an i-th
common neighbor of those nodes of S which it dominates. Thus each

of them can dominate at most N, of the nodes of S. Hence |S| = N

: i-1

=< (1-1)Ni+1. B

Let f(vy,k) be the number of nodes in V-D with degree at most k
where G is a k-y-insensitive graph with a minimum dominating set D.

The following theorem gives an upper bound for f(v,k).

Theorem 4.5
k k-1
£(v,k) < 2(y-1) +(y-1)[((y-1)" "+1)/(y-2)]+1.
Proof
From Theorem 4.4, Ni-l < (1-1)Ni+1 for, 2.5 4.2 k,, and Nk < 2

by Theorem 4.3. It is straightforward to solve this recurrence for
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N, to get Ny < 2(v-1)* M41((-D* Ty /(v-2)1.

Now suppose X is a node of degree at most k and remove all
edges incident to it. Then x must be in the dominating set D along
with 4-1 other nodes. Each of these y-1 nodes can dominate at most
N. nodes with degree at most k. Thus f(vy,k) =< (7-1)N1+1.

1
Simplifying yields the result. ®

4.2.3. A Lower Bound for Ek(p,'y)

Dutton and Brigham (1988) prove that El(p,1) = 2p-3y for p =
3y 2 6. This result forms the basis for the lower bound for
Ek(p,y), so it will be necessary to understand a part of their
approach, which will now be outlined. An arbitrary minimum
dominating set D0 is selected and the remaining minimum dominating
sets are ordered arbitrarily and labeled Dl’ D2, . Dm. The nodes

of V-D0 are partitioned into Ao whose nodes have exactly one

neighbor in D, and A’ whose nodes have at least two neighbors in D

0 0’
It is clear that there are at least p-y+|A’| edges between D0 and V-
Do. The count determined by Dutton and Brigham (1988) is obtained
by finding one more edge associated with all nodes of Ao, except for
those in a subset of size at most y. This then adds at least |A0|-1
to the previous count to yield p-1+|A'|+|A0|-1 = p-2y+p-vy which
gives the 2p-37.

It is this last set of edges which provides the basis for the

present work, and more detail about them must be described. Dutton

and Brigham (1988) defined a partition of D0 by Xi - Donbzn...nDi_l-
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Di for 1 < i <m and X 41~ Donbln...ﬂDm. They then showed that for

each node v of A0 which is not in the special subset there is a
unique associated incident edge e having both endpoints in AOUA'.

Two possibilities exist. Either veD1 for some i or the end node of

e other than v is in Di for some i. The following fact is immediate

upon examining Dutton and Brigham's (1988) proof, although they do

not state it: the Di's in which at least one endpoint must be found

are limited to those indices of i for which Xi is nonempty. This

fact is one of the two key points to be employed below. The other
arises from the structure of the subgraph G’ of G obtained by
including only those edges counted by Dutton and Brigham (1988).

The only nodes of G' which are in AOUA’and also have degree three or

more must either be in a Di where X, # @ or must be the other

 §

endnode of an edge e associated with a node in such a Di' It
follows that the number of nodes of G’ which are in AOUA' and also

have degree three or more is at most twice the number which lie in

Di where X, = @&.

g
Our next theorem uses the above information to establish a
lower bound. Again we employ f(v,k) to represent the number of

nodes in V-D having degree at most k where D is a minimum dominating

set.

eo 4
v 4 k
Let k2 3, vy 3 and p = v +2y+f(y,k). Then E (p,y) 2

(k+3)p/2-[2(k+2)7+(k-1)(12+f(7.k))]/2-
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Proof
Any k-y-insensitive graph certainly must be l-y-insensitive,
so the remarks preceding the theorem apply. The analysis used by
Dutton and Brigham (1988) will be employed here, except that the

dominating sets D

1’ D2, . Dm are indexed so that X, = @ for 1 < i

i

< n and Xi = @ for ntl < 1 < m. Thus the partition of D, is into

0

1’ X2, o Xn, Xm+1 where Xm+1 may be empty. Now we

the sets X

find the maximum number of nodes in dominating sets Dl’ D2,..., b

which can be in V-DO, since these nodes determine the maximum
possible number of nodes having degree three or more in the G’

subgraph discussed before. Since Xi = DonDln...nDi_l-Dl, there is

at least one node of Di in each of X1+1. Xi+1’ X Xn so there are

at most y-(n-1i) nodes of D, in A,. Then in D,UD ...UDn-D

i 0 1YP, there are

0

at most

n
}:(1-n+i) - my-ar st e,
t=1

Let f(n) = ny-n2+n(n+1)/2. The derivative f'(n) = y-n+l/2
implying f(n) is increasing when n < y+1/2 and maximum when n = vy +

1/2. But n < v since the X,'s partition Do, so f(n) is maximum when

i

- P 2
n = v, Substituting we gt £(y) = 7o-y #(7 47)/2 = (v°+1)/2. Thus
there are at most (12+1)/2 nodes in V-Do which are in D1UD2U...UDn,
and earlier remarks show that the number of degree three or higher

2
nodes in G’ which are also in V-D0 is at most ¥y +y. Therefore at



41

least p-y-(12+1) nodes in V-D, have degree at most two in G'.

0
However, by Theorem 4.5 at most f(vy,k) nodes of V-Do have degree
less than or equal to k. Thus p-y-(12+7)-f(1,k) nodes in V-D0 must

have in G a degree increased by at least k-1 over their degrees in
G'. Therefore Ek(p,y) > 2p-31+(k-1)[p-1-12-7-f(1,k)]/2. This
expression is valid when p 2 12+27+f(1,k) and reduces to the

result. N

Since f(vy,k) is independent of p, this lower bound is
asymptotically equal to (k+3)p/2, the same asymptotic value as the

upper bound of Theorem 4.2. From this we conclude the main result.

Theorem 4.7
Ek(p,y) is asymptotically equal to (k+3)p/2 as p approaches

infinity.



5. THE EXACT VALUE OF Ez(p,2)

In the previous chapter an asymptotically correct result was
established for Ek(p,y). In this chapter structural properties of
extremal 2-2-insensitive graphs make it possible for us to find
exact values for Ek(p,v) for the speciAI case when k = vy = 2,

First an upper bound for E2(p,7) is presented in Section 5.1. Then
Section 5.2 develops structural properties which are used in Section
5.3 to determine the desired lower bound and hence equality for p =
11. Finally, Section 5.4 reports results from a program which

found all extremal 2-2-insensitive graphs on p < 10 nodes and
summarizes the results for all values of p.

The proofs tend to be lengthy, often requiring a multitude of
cases where the same ideas, specialized to the situation under
consideration, are repeated. To avoid excessive duplication in the
narrative, we adopt a shorthand notation. Such notation will be
introduced as needed. Furthermore, a large number of illustrations
are necessary to clarify the proofs, and in order to sustain
continuity in the text all figures will be located at the end of

this chapter.

5.1. An Upper Bound for E°(p.2)

2
Our first theorem establishes an upper bound for E"(p,2) by

42
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constructing an appropriate 2-2-insensitive graph.

Theorem 5.1
EX(p,2) = [(5p-10)/2] if p > 4.
Proof

Construct a graph G = (V,E) as follows:

V = (al, a,, bl’ b2, b ah o _2},
({albi, ab, | 1sisp-2)uibd, ;| 1=1,3,... 93
if p even.
E=( (a)b, | 1=<i=<p-2)u (a,b, | 1=1i=<p-4)u (asz_z}
U (bb, . B o PRSI ¥ ¢ L {bp 4Pp-3° bp 3Pp.2)
\ if p odd.

Figure 5.1 illustrates the constructions. The graph has 2(p-2)+
(p-2)/2 edges when p is even and (p-2)+(p-3)+(p-1)/2 edges when p is

odd. In either event, G has L(Sp-lO)/QJ edges. Clearly, (al, a2}

dominates G and y = 2.

We now prove G is 2-2-insensitive by removing arbitrary edges

ey and e, from G and showing the domination number remains two. Let

D = {a There are three possibilities.

L o
Case 1 Both e and e, are edges incident only to nodes in

V-D. Then D dominates G- el-e2

Case 2 Edge e is incident only to nodes in V-D and e, is
incident to both D and V-D. Then D dominates G-el-e2 unless p is

odd and e2 = albp-3' In this case [a2, bp-4} dominates G- el-e2

ase 3 Both e and e, have endpoints in D. Then D dominates
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G-el-e2 unless e and e, have the same endpoint bieV-D, or p is odd
and albp_3 is one of the edges. In these situations bjeN(bi) and

one of a, and a, dominate G-el-ez. S
r Xtr a
We turn our attention to establishing a lower bound for
Ez(p,2). In this section we investigate useful structural

properties of extremal graphs.

emma

If G is a 2-2-insensitive extremal graph on p = 9 nodes, then
G has at most two nodes having degree one or two.
o0

Let %, y, and z be three nodes of G having degree two or less,
and G-el-e2 be a graph where all the edges incident to x are
removed. Then x is isolated and must be in the dominating set for
G-el-ez. Therefore some node v, must dominate all nodes of G-x, so
vy has degree p-2. Furthermore, Vi is not adjacent to x since vy =
1. See Figure 5.2(a). Similarly there are nodes v, and vy having
degree p-2 and dominating with y and z, respectively. Note that vy
v, and v, are distinct since vlfN(x), v2¢N(y), and VBfN(z). See
Figure 5.2(b). Thus Ez(p,2) > 3(p-2)-3 = 3p-9 > [(5p-10)/2| when p

> 9, a contradiction. 8

The proof to the next theorem is amenable to the employment of
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the following notation, which also will be used elsewhere in this

paper. G' will always refer to a graph under consideration which is

obtained from the original graph G by the removal of two edges.

(1)

(2)

(3

(4)

(5)

(6)

(7)

DS is to be read "degree sum" and refers to the sum of
the degrees of all the nodes, i.e., = dv'

D(u,v) is to be read "Nodes u and v form a dominating
set."

(D{b,u), p-2) is to be read "Node u is isolated in G' and
thus must be in the dominating set of G'. Also there
exists a node b such that db = p-2 in G' and (b,u)
dominates G'. Further, b¢N(u) in G since v = 1."
R(el,ez) is to be read "Remove edges e, and e,." The

1 2

presence of e, is optional. Thus R(el) is to be read

2

"Remove edge el."

R(aix,aiy : n) is to be read "Remove the edges a,x and

i
a.y. Then a; or one of its neighbors must be in the
dominating set. Since ai's neighbor n dominates at
least the nodes that a; dominates, we may assume n is in

the dominating set."

R(e vn)) is to be read "Remove edges

1,e2 : (vl, v2, Ay

e. and e2. Then v e vn become isolated nodes

1 ol
and hence must be in the dominating set."
N(a,b : c) is to be read "Nodes a and b do not dominate

G' because neither dominates c."

Often the proof will require the selection of a node x having
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a certain property. When the choice of a particular x is arbitrary,
a specific node will be stated and marked with an "*" without
further comment.
We are now ready to state the next theorem which is crucial to

establishing a lower bound for E2(p,2).

Theorem 5.2

Let G be an extremal 2-2-insensitive graph on p 2 11 nodes.
Then dv 2 3 for all veV.

Proof

Since G is an extremal 2-2-insensitive graph, Theorem 5.1
implies E2(p,2) < LSSp-lO)/%J. Any situation leading to more edges
will yield a contradiction.

By Lemma 5.1, G has at most two nodes, say u and v, with
degree one or two. There are five possible cases.

Case 1 du = dv - 1.

Removing the two edges incident to u and v isolates u and v
thus forcing them to be in the dominating set of G', a contradiction
when p = 3.

Case 2 du = 1 and dv = 2.

2.2 u is adjacent to v. Let x be v's other neighbor.
R(vu,vx : {u,v)), a contradiction when p = 3.

2.b u is not adjacent to v. Let x be u's neighbor. R(ux)
implying (D{y,u), p-2). Let w be v's other neighbor as shown in

Figure 5.3(a). R(vw,vy) implying (D(z,v}, p-2). Since u has only
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one neighbor, z = x. Notice that this shows w » x. R(ux,vy : {u))
so u and either v or w must dominate G-ux-vy. It must be w which
means dw = p-2. See Figure 5.3(b). Then DS = 3(p-2)+2+1+3(p-5) =
6p-18 implying that Ez(p,Z) > 3p-9 > |(5p-10)/2] when p = 9, a
contradiction.

Case 3 du m A 2.

3.a u is adjacent to v. Let x be u’'s other neighbor.
R(ux,uv) implying (D{(y,u}, p-2). See Figure 5.4(a). Similarly
R(vy,uv) implying (D{x,v}, p-2). Note that x = y since x e N(v).
Label the other nodes a1y @y, e ap_a as shown in Figure 5.4(b).
By Lemma 5.1 each a; has degree at least three. Any additional
edges must be between the ai‘s. R(alx,aly ; *a2). Now the only
nodes which can dominate both u and v are u and v themselves. Thus,
without loss of generality, assume D(az,v). Hence a, has degree p-
3 and DS = 2+2+2(p-2)+(p-3)+3(p-5) = 6p-18. Thus E2(p,2) = 3p-9 >
LSSp-lO)/gJ, when p = 9.

3.b u is not adjacent to v. Let x and y be the neighbors of
u. R(ux,uy) implying (D{w,u}, p-2), where w » x and w » y. See
Figure 5.5(a). Now remove the two edges incident to v and by a
similar argument (D(z,v), p-2), z # w. Since z must be adjacent to
u, we may without loss of generality assume z = X, as shown in
Figure 5.5(b). Suppose v is not adjacent to y. R(ux,vw) implying
that we may take y and the other neighbor of v, say t, as a

dominating set. Then dy+dt > p since both y and t are adjacent to x

and w. Hence DS = 2(p-2)+p+2+2+3(p-6) = 6p-18. Thus E(p,2) = 3p-9



48

> L(Sp-lO)/ZJ if p 2 9. Therefore we assume v is adjacent to y.

Label the nodes other than u, v, w, x, and y as a1, 8y, oo ap-S'
See Figure 5.5(c). Any additional edges are between the ai's. Now
y is not adjacent to all ai's since v # 1. Thus *a1 is not adjacent

tol ¥, R(alx,alw) implying a, or *a2 € N(al) must dominate with y
since y is the only node which dominates both u and v. Thus DS 2>
2+2+2(p-2)+p+3(p-6) = 6p-18 and Ez(p,Z) > 3p-9 > |(5p-10)/2| when p
=,

Case 4 du = 1 and all other nodes have at least degree three.

Let x be u’'s neighbor. R(ux) implying (D{y,u}, p-2), y = X.
See Figure 5.6(a). R(ux, xy) implying (D{z,u}, p-2), z = y. See
Figure 5.6(b). Since vy = 1, there exists a node w that is not
adjacent to x. R(yw,zw). Then we may assume X dominates with w or
a neighbor of w, say n. In the former case dx+dw = p and in the
latter dx+dn > p since x, w, and n are adjacent to both y and z.
Hence DS 2> 142(p-2)+p+3(p-5) = 6p-18. Thus e = 3p-9 > |(5p-10)/2]
o il R

Case 5 du = 2 and all other nodes have degree at least three.

Let x and y be the neighbors of u. R(ux,uy) implying (D{w,u},
P-2), w # x and w # y. Label the other nodes a;, a,, a1 ap_4 as
shown in Figure 5.7. Note that each dominating set must include one
of x, y and u in order to dominate u. R(wy,uy). We may assume x is
the dominating set for G', so one of the following cases must hold:
(a) D(x,w), (b) D(x,y) and x is adjacent to y, (¢) D(x,y) and x is

not adjacent to y, (d) D(x,ai) and x is adjacent to y, and (e)
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D(x,ai) and x is not adjacent to y.
We now examine these cases individually.
5.a D(x,w). Note that xy must be an edge. See Figure 5.8.
R(wai,waj) where i » j and a; is not adjacent to x and a, is not

j

adjacent to y or a; is not adjacent to both x and y. This must
happen since v # 1. Then some node z » w must dominate with one of
X,y, and u. Since x is adjacent to y and u, we may without loss of
generality assume D(x,z) where z = y or z = ay for some h. Observe
that in either case x and z dominate G-wy-uy. This implies that
either Subcase 5.b or Subcase 5.d must hold. Thus this case will
be seen to lead to a contradiction once it is shown that both 5.b
and 5.d do.

5.b D(x,y) and xy an edge. Then dx+dy 2vpt+2tsineé Dix,y)},"x
is adjacent to y, and both x and y are adjacent to u and w. Thus
DS = 2+4(p-2)+(p+2)+3(p-4) = 5p-10. Hence Ez(p,2) > (5p-10)/2 >
lﬂSp-lO)/%J when p is odd, and represents a contradiction in this
event. Furthermore, if the lower bound for the DS increases, we
have a contradiction when p is even. Thus assume no increase. Then
each a; has degree three and is adjacent to exactly one of x and y.
As before, vy » 1 implies that *al is not adjacent to y and *a2 is
not adjacent to x, so a; is adjacent to x and a, is adjacent to y.
28 B

1 J

# a,. See Figure 5.9(a). N(a3,x o az) so D(aa,y). Thus y must be

adjacent to all a

R(alw,a ) implying D(aj,x) or D(aJ,y). First assume aj = *a3

i‘s except a, and possibly a,, as shown in Figure

5.9(b). R(a,w,a,y : *a,) implying D(a,,x) or D(a,,y). But N(a,,y :
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al) and N(aa,x - as) so we must have aj - a,. Then a, must
dominate G-alw-alx with either x or y. Suppose D(az,y). R(a3w,a3y
2 aa) implying D(aa,x) or D(aa,y). See Figure 5.9(c). Now N(aa,x :
a2) and N(aa,y : al). By a similar argument (az,x) does not
dominate. Thus we have the desired contradiction.

3.¢ D(x,y) and x is not adjacent to y. Then DS 2>
2+(p-2)+p+3(p-4) = 5p-12. Thus the lower bound for the DS can
increase by at most two without contradicting Theorem 5.1 and we are
restricted to one of the following possibilities: (i) x and y are
both adjacent to at most two of the same ai’s, (ii) at most two ai's
have degree four, (iii) one a; has degree five, and (iv) x and y are
adjacent to the same a, and an a, has degree 4 (i may equal j).

j i

Note that any of the above situations can involve at most six ai's.

In this context a node is "involved" if it is a node as described or
is adjacent to such a node. Since p 2 1l there exists at least one

a;, say a,, which is not involved. Thus a; has degree three and a;

is not adjacent to both x and y nor is it adjacent to a node with
degree four or to a node with degree five. Thus there is a node

*azeN(al) which has degree three and hence is adjacent to exactly

one of X and y. Remove a,w and the edge between a; and (x,y). We

may assume a, dominates with one of u, x, and y. N(az,u : aa).

Suppose D(az,x). Then a, is adjacent to y and x is adjacent to all

ai's except a, and possibly a;. From possibility (i) above, there

exist at least p-8 = 3 (since p = 11) ai’s, i 2 3, which are

adjacent to exactly one of x and y which means these ai‘s are



51
adjacent to x and not adjacent to y. Let *a3 be such a node. See
Figure 5.10. R(was,xa3) implying either aj or *aaeN(a3) must
dominate with one of u, x and y. N(u,a3 X a2), N(u,a4 - a2), N(x,a3
2 a2), N(x,a4 ' a2) and N(y,a3 1 AR)VE) This D(y,aA) which means y
must be adjacent to all nodes that are not in the neighborhood of
a,. Let m be the number of ai's in the neighborhood of a,-

< m < 3 since a, has degree less than or equal to five. Thus y is

Then 1

adjacent to at least p-4-2-(m+l) = p-7-m ai's, .54 "Hence xris
adjacent to at least p-7-m of the same ai's as y is and DS is
increased by m-1+(p-7-m) = p-8 = 3, a contradiction. An analogous
argument yields a contradiction for D(y,az).

554 D(x,*al) and xy an edge. See Figure 5.11(a). R(ux,wx)
implying we may take y in the dominating set so as to dominate u.
If D(x,y), for this case, then D(x,y) for G-uy-wy which was shown
impossible by Subcase 5.b. Similarly D(w,y) can be eliminated as
in Subcase 5.a. Therefore D(y,a

J
Then DS = 2+4(p-2)+(p-1)+(p-1)+3(p-6) = 6p-20 > 5p-10 if p

) for some j. First assume that

a; ' a

j

> 11, a contradiction. Therefore assume a; = aj. Then D(x,al) and

1

D(y,al) mean both x and y must be adjacent to all ai‘s that are not
adjacent to a. Let m be the number of ai's which are adjacent to
a,. Then DS 2 2+(p-2)+m+1+6+2(p-5-m)+3(p-5) = 6p-18-m. A
contradiction is avoided only when 6p-18-m =< 5p-10, i.e., when m >
p-8. By definition 0 < m < p-5 implies that p-8 < m =< p-5. Thus a,

is adjacent to at least p-8 = 3 ai's, i » 1, and both x and y must

be adjacent to at most p-5-(p-8) =3 aj's, 2 <j=<p-4. Let a,, a,
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and a, be the nodes which, in addition to a)s could possibly be
adjacent to both x and y. Assume first that at least one of x and y
is adjacent to each a;, i~1. Thus DS = (6p-18-m)+m > 5p-10 when p
2 9. Therefore neither x nor y is adjacent to at least one a; for i

Since the degree of a, is at least three and a

i)' i i

is not adjacent to x or y, a; must be adjacent to ay for some h = 1.

= 5 and aieN(a

See Figure 5.11(b). R(wai,alai). Then either a; or aheN(ai) must
dominate with one of x, y and u and we may as well assume x or y.
Since both x and y dominate with a; and they play symmetric roles,
assume D(x,ah) or D(x,ai). Note that x, vy, a, a4, and a, are all
adjacent to w so a dominating set containing two of these nodes
will have a degree sum greater than or equal to p-1l. Recalling that
D(y,al) we have DS 2 2+(p-2)+2(p-1)+3(p-6) = 6p-20 > 5p-10 when p =
11,

S.e D(x,*al) and x is not adjacent to y. Then a,y must be
an edge to dominate y. See Figure 5.12(a). Suppose a, is adjacent
to x. Then DS = 2+(p-2)+(p+1)+3(p-4) = 5p-11. 1If the lower bound
for DS increases by more than one we have a contradiction. Thus at
most one of y and the ai's, i % 1, can have degree four or a, and x
can both be adjacent to at most one of the same a,'s. These
conditions involve at most three ai's in addition to a- Since p =
11 at least three ai's are not involved, so each of these has degree
three and is adjacent to exactly one of a, and x. Because of the

above restrictions it is straightforward to show that there are at

least two of these a; which are adjacent. Let a,, as, and a, be
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three of these nodes and aja, be an edge. Remove a,vw and the edge

between a, and (x, al). Then, without loss of generality, a,

dominates with one of u, x, and y. N(u,a3 : aa), N(x,a3 ¢ y)sand

N(y,a3 : ak for some k) since y is adjacent to at most one ai

besides a; and a, has degree 3.

Thus a; is not adjacent to x. See Figure 5.12(b). Then DS 2

24+(p-2)+(p-1)+3(p-4) = 5p-13. Theorem 5.1 is contradicted if the
lower bound for the sum increases by more than three. Therefore we
can have only one of the following: (i) y can be adjacent to at most

three ai's, i=1, (ii) x and a,

of the same ai's, and (iii) at most three in any combination of (i)

and (ii). Note that we do not exclude the possibility that some of

can both be adjacent to at most 3

the ai's have degree greater than three, with a maximum possible

degree of six. At least p-8 =2 3 a.,’'s are not involved in any of the

i
above conditions. Let a,, a8, and a, be nodes not adjacent to y and
adjacent to exactly one of x and a. Remove a,vw and the edge

incident to a, and (x,al). Then either a, or a eN(az), j = 1, must

J

dominate with one of u, x and y. N(u,a2 s m), '1f D{u,a,), then a

J h|
must be adjacent to p-5 ai's and have degree at least p-5+1 = p-4 2
7. Hence the DS lower bound increases by at least four, a
contradiction. N(x,a2 S N(y,a2 tay for some k) since a, and y
together dominate at most five ai's and there are at least seven.
N(y,aj) since they dominate at most six of the p-6 ai's and there

are at least seven. Therefore D(x,aj) and ajy and ajal must be

edges in order to dominate y and a,. See Figure 5.12(c). Hence DS
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2 2+(p-2)+(p-1)+4+4+3(p-6) = 5p-11. To avoid a contradiction the DS
bound can increase by at most one. Thus aj can be adjacent to at
most one of a, and a,. Without loss of generality assume that ay is
not adjacent to aJ. Then a, must be adjacent to x and hence is not
adjacent to a. See Figure 5.12(d). R(wa3,xa3) implying either a,
or akeN(aa) must dominate with one of x, y, and u. N(u,a3 . al),
N(u,ak s ah for some h), N(x,a3 : y) and N(y,a3 : X). Hence either
D(x,ak) or D(y,ak). Suppose D(y,ak). Then DS = 2+(p-2)+(p-1)+4+
(p-1)+3(p-7) = 6p-19 = 5p-10 if p =2 9. Thus D(x,ak) requiring edges
ay and aa, to dominate y and a . See Figure 5.12(e). Therefore
DS = 2+(p-2)+4+5+4+(p-1)+3(p-7) = 5p-9 > 5p-10, a contradiction.
Each of the subcases resulted in a contradiction if p = 11,

verifying that dv 2 3 for all veV. B

Next we present a series of lemmas leading to Theorem 5.3
which states that there is an extremal graph having two disjoint

minimum dominating sets.

Lemma 5.2
Suppose a graph has at least two minimum dominating sets and
any two such sets intersect. Then the dominating sets satisfy one
of the following:
(1) there are exactly three dominating sets (x,y),
{x,z) and (y,z}, or

(2) all dominating sets contain a common node x, that is,
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the dominating sets are (x,al), {x,az), dge; (x,at}.
Proof
Suppose no node appears in every dominating set. Let one
dominating set be (x,y) and a second be (x,z). Since (2) does not
hold, there must be a third dominating set which does not include x.
In order to intersect the first two, it must be (y,z). It is clear

no further dominating sets are possible. B

The existence of at least two minimum dominating sets as required by

Lemma 5.2 is met automatically in 2-2-insensitive extremal graphs.

Lemma 5.3

Situation (1) of Lemma 5.2 cannot hold for extremal graphs if

) S
Proof

Assume (1) of Lemma 5.2 holds and let bl’ b2, . 3 bp_3 be the
nodes of G-(x,y,z). Each b, must be adjacent to all of x, y, and z

L

so it can be dominated when two edges between it and {x,y,z} are
removed. It follows that (x,bl} is a dominating set, which

contradicts (1). B

From this point on we assume we are discussing the situation
described by (2) in Lemma 5.2. Let X, e LR be the nodes
which appear in dominating sets, with x being the common node. Of

the remaining nodes let b,, b,, ..., b, be adjacent to x and ¢,, c,,
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be not adjacent to x. Note that no edges between

o cp-t-l-m
nodes bl’ b2, 8y bm, C1v €y P, cp-t-l-m are necessary in
extremal graphs. Furthermore, t = 2 in such graphs. Some
elementary facts can now be stated.
Lemma 5.4
For extremal graphs we have:
(i) each a;, l<i=<t, is adjacent to cl, Cov wves cp-t-l-m’
(ii) for any two nodes bi' bj there is an ay adjacent to both.
Proof
(1) D(x,ai).
(L£) G-xbi-xbJ must be dominated by [x,ah) for some h. @
Lemma 5.5
Let x be adjacent to r of the a;, say a,, a,, y a. Then
(i) each a;, 1 <1i=<r, is adjacent to aj, r+l < j < t, and
(ii) each a;, r+l < i = t is adjacent to every aj, i O
Proof
(i) D(x,ai).
(ii) Node a; is adjacent to a;, a,, coay by*¢i) T+ Tteis
adjacent to a,, r+l < j < t, i » j, since D(x,ai). |

Lemma 5.6

j'

Situation (2) of Lemma 5.2 cannot hold if t = 24gndipra 5.
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Proof
In this case there can be no ci's and each bi must be adjacent
to all of x, aj, and a,. But then we arrive at a contradiction as

in the proof of Lemma 5.3. 3

From now on we assume t = 3.

Lemma 5.7

Any extremal graph must have at least the following number of
edges: pt-(t-3)m-t2/2-3t/2-r2/2+3x/2.
Proof

Each bi has at least an edge to x and two edges to the a,’'s

j

[3m edges]; each a, is adjacent to each cj [t(p-t-1-m] edges); x is

i

adjacent to r a,’'s [r edges]; a l1=<1is=<r, is adjacent to a,, r+l

i
< j=<t, [r(t-r) edges]; and a

- j

41’ 2ra2 oy oa form a complete
subgraph [(t-r)(t-r-1)/2 edges]. Summing and simplifying yields the

result. N

Lemma 5.8

No extremal graph satisfying (2) of Lemma 5.2 exists when t =
3 and p 2 9.

Proof
By Lemma 5.7 the number of edges required when t = 3 is 3p-9-

r2/2431/2 where 0 < r < 3. Now -r’/2+3r/2 = 0 in this interval so

the number of edges is at least 3p-9 > lﬂSp-lO)/%J ifp2 9, M
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Thus we may assume t = 4. Since the expression of Lemma 5.7

is minimized for largest m, we have the following result.

Lemma 5.9

The value of m should be selected to be as large as possible.

In general Lemma 5.9 implies that m should be p-t-1. However,

we shall see later that there is one case where it must be p-t-2.

Lemma 5.10

No extremal graph satisfying (2) of Lemma 5.2 exists when r =
Osudiandip = 9.
Proof

If r = 0 the count of Lemma 5.7 reduces to pt-(t-3)m-t2/2-
3t/2. By Lemma 5.9, m should be taken as p-t-1 so the minimum
number of edges is pt-(t-3)(p-t-l)-t2/2-3t/2 - 3p+t2/2-7t/2-3. This
expression is smallest when t = 4 when it reduces to 3p-9 >
|(5p-10)/2) if p 2 9. If r = 1 the count of Lemma 5.7 reduces to
pt-(t-3)m-t2/2-3t/2+1. By an argument analogous to the r = 0 case

the number of edges is at least 3p-8 > |(5p-10)/2| if p27. ®

Thus from now on we assume r = 2.

Lemma 5.11

The value of r should be selected to be as large as possible.
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Proof
The expression of Lemma 5.7 is a decreasing function of r if r

z.2., B

We cannot have r = t and m = p-t-1 simultaneously since then x
would have degree p-1 implying v = 1. Therefore there are two
combinations of interest: (i) r = t-1, m = p-t-1 and (ii) r = t, m =
p-t-2. We shall deal with these separately. Let us first consider
r = t-1 and m = p-t-1. In this case the count of Lemma 5.7 becomes

pt-(t-3)(p-t-l)-t2/2-3t/2-(t-1)2/2+3(t-1)/2 = 3p-t-5.

Lemma : 2 lz

No extremal graph satisfying (2) of Lemma 5.2 and having fewer
than L!Sp-lO)/%J edges exists when r = t-1 and m = p-t-1.
Proof

Suppose first that t < p/2. Then the minimum number of edges
is at least 3p-t-5 = 3p-p/2-5 = |(5p-10)/2|. Now let t > p/2.
Suppose all bi's have degree at least four. Then, since all nodes
have degree at least three by Theorem 5.2, we have DS = 4(p-t-
1)+[(p-t-1)+(t-1)]+3(t-1)+(t-1) = 5p-10 so the lemma is true in this
case. Suppose, therefore, that at least one bi has degree three.
Let it be adjacent to aJ and a - By Lemma 5.4(ii) every other bi
must be adjacent to at least one of aj or a, . If these other bi's
had degree three, at most (p-t-1)+1 ai's would be adjacent to at

least one b, leaving at least (t-1)-(p-t) = 2t-p-1 a,'s from (a,,
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8y cees at_l}-(aj,ak] not adjacent to a bi' These all have edges
to both x and a. To bring their degrees to at least three requires

extra edges either between them or from b,’'s having degree greater

g
than three. In any event it will take at least [(2t-p-1)/2] =
LﬂZt-p)/ZJ more edges. These must be added to the base count of 3p-
t-5 to show that the number of edges is at least 3p-t-5+[ﬂ2t-p)/gj

- |(5p-10)/2|. =

Lemma 5.13

No extremal graph satisfying (2) of Lemma 5.2 and having fewer
than [SSp-lO)/%J edges exists when r = t-1, m = p-t-1, and p = 11.
Proof

Follows from Lemmas 6, 8, 10 and 12. N

Now we consider r = t and m = p-t-2 for which the count of
Lemma 5.7 becomes pt-(t-3)(p-t-2)-t2/2-3t/2-t2/243t/2 = 3p-t-6.

Note that for x not to have degree p-1 we must have p = t+2.

Lemma 5.14

There is no extremal graph satisfying (2) of Lemma 5.2 when r
= t, m = p-t-2 and p = 5.
Proof

In the basic structure outlined previously the subgraph
induced by x, a1, 8y, - a, is a star where x is the center node.

Removal of any two edges of this star means that their two endpoints
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a, and aj must either be adjacent to each other or both be adjacent
to some third node a, in order to dominate them both. Recall that
no bi is in a dominating set. Add on the minimum number of extra
edges between the ai's to ensure all are dominated no matter which

two edges of the star are removed. Consider the subgraph induced by

a, a2, ceey 8. Suppose this subgraph is disconnected, a; and aj
are in distinct components, and xa, and xaJ are removed. Then it is
not possible for x and some a to dominate a; and aj. Hence the

induced subgraph is connected and has at least t-1 edges in addition
to those already counted, implying a minimum edge count of

(3p-t-6)+(t-1) = 3p-7 > |[(5p-10)/2] if p=25. ®
We are now ready for the disjoint dominating set theorem.

Theorem 5.3
When p = 11 there is at least one extremal graph having at

least one pair of disjoint dominating sets.

Proof

From Theorem 5.1 we have an extremal graph with [ﬂSp-lO)/@J
edges, which has two disjoint dominating sets (al,bi) and (az,bj},
i » j. It follows from the preceding lemmas that graphs without two

disjoint dominating sets have at least [(5p-10)/2] edges. ®

While Theorem 5.3 tells us there is an extremal graph having

at least two disjoint minimum dominating sets when p =2 11, Lemma
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5.15 and Theorem 5.4 show there is an extremal graph having at most

two.

emma

Let G be an extremal graph on p = 11 nodes. Then there do not
exist four pairwise disjoint dominating sets.
Proof

Suppose there exist four pairwise disjoint dominating sets.
Then DS > 4(p-2)+4(p-8) = 8p-40. Hence e = 4p-20 > [(5p-10)/2] when

p=11. B

We introduce additional shorthand notation to aid in the proof
to Theorem 5.4.

ONE (v ..,vn)(:u) is to be read " At least one of (vl,

1,v2,.
v2, IS LA vn} must be in the dominating set for G’ {so that u is

dominated)}." The ":u" is optional.

eor 4
(a) For p = 11 and p = 12 there is an extremal graph having at
most two disjoint dominating sets, and
(b) for each p = 13 no extremal graph has three pairwise
disjoint dominating sets.
Proof
By Lemma 5.15 there exist at most three pairwise disjoint

dominating sets. Assume there are three and call them D, = {x,,
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x2), D2 = (yl, y2), and D3 = (zl, 22}. Label the remaining nodes
81, 8, ey ap-6' Then DS 2 3(p-2)+3(p-6) = 6p-24. Thus e = 3p-
12. If it can be shown that an extremal graph requires at least one
more edge, we will have e > 3p-11 > |(5p-10)/2| when p = 13 and (b)
will hold. Furthermore, 3p-11 = |(5p-10)/2| when p = 11 or p = 12.
Since the constructions of Theorem 5.1 yield graphs having at most
two disjoint dominating sets and these graphs have lﬁSp-lO)/%J
edges, one can conclude the validity of (a). It follows that the
theorem will be proved if we can demonstrate the necessity of at
least one more edge.

Assume no additional edge exists. Since Dl’ D2 and D3 are
dominating sets, there must be six edges interconnecting them in
such a way that each of the six nodes has degree two in the subgraph
induced by D1UD2UD3. It follows that this subgraph is either 2C3

C6 where the structure of the entire graph must be equivalent to (a)

or

or (b) of Figure 5.13. Each node of D1UD2UD3 dominates exactly

three nodes from DIUDZUD3: itself and its two neighbors. Since each

a; has degree three and by Lemma 5.15 any dominating set must

include at least one node of D1UD2UD3, each node in any dominating

set must dominate at least three nodes in a row on a cycle of
DIUDZUD3'
Case 1 The situation in Figure 5.13(a) exists.
i . By the preceding argument a, is adjacent
R(X,y;,¥,2 * *a;). By thep g arg 1 J
to xl, yl’ and z)- R(xlyl,alzl) implying that ONE(xl,yl,al):al.

But each of X0 Ypo and a, can dominate at most two nodes of
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D1UD2UD3 in G “X1¥-8129, @ contradiction.
Case 2 The situation in Figure 5.13(b) exists.

R(x *a

1Y1:Y1%1 ¢ 1). Then, since each dominating set must
include one node of D1UD2UD3, al must dominate the nodes in one of
the following sets: (1) (xl,yl,zl), (2) [x2,y1,zl) and (3)
(xl,yl,zz). Consider (1). Then D(al,yz) and y2 is adjacent to all

a.,'s except a, as shown in Figure 5.14, R(xlal,ylzl).

;
ONE(yl,zl,al):al. This is a contradiction since each of these
dominates at most two nodes in DIUDZUD3' Sets (2) and (3) yield
contradictions by analogous arguments.

Since all cases yield contradictions, at least one additional

edge is required and the theorem is proven. @

It can be shown that there do not exist three pairwise
disjoint dominating sets even for p = 11, 12. However, the proof is
long and tedious. We omit it since Theorem 5.4 is sufficient for
our needs, which are that the search for extremal graphs can be

limited to ones having at most two disjoint dominating sets.

ow ound 2

In this section a lower bound for Ez(p,2) is established which
is equal to the upper bound of Theorem 5.1 when p = 11, thereby
solving the problem for such p. A straightforward but not optimum

lower bound is obtained first.
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emma 5.16
Ez(p,2) 2 (5p-16)/2 1if p 2 11.
Yoo
If p=4l, dv 2 3 for all nodes v by Theorem 5.2 and there is
at least one extremal graph having one pair of disjoint dominating
sets by Theorem 5.3. Each of the disjoint dominating sets has at

least p-2 incident edges, so DS = 2(p-2)+3(p-4) = 5p-16. ®

The bound of Lemma 5.16 is within three of the Theorem 5.1
result. We now show that at least three additional edges are

required. Lemma 5.17 establishes a useful structural property.

Lemma 5.17
Let D1 = {(u,v} and D2 = (x,y) be disjoint dominating sets of
extremal graph G with connecting edges ux and vy, where G has fewer

than lgSp-IO)/QJ edges, and let ay, 8, ..., a be the nodes of G-

P-4
(D1UD2). If any two of uv, uy, Xy and vx are also edges, then the

degree of every a, is three and each a;, 1l <1i < p-4, is adjacent to

i

exactly two nodes in D1UD2.

Proof

Suppose that two of uv, uy, Xy and vx are edges and that m
a,'s have four edges to D,UD, and n have three edges. Then the
number of edges is at least rz+2(p-4)+2m+n+(p-4-m-n)/f] -
pr/2-6+3m/2+n/i] > LﬁSp-lO)/@J ifm>00rn>0. Thus m=mn =0,

and all ai's have degree three and exactly two edges to DIUDZ' B
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Before proceeding with the main theorem of this section, we
introduce the following notation to facilitate the discussion. We
continue to employ the shorthand notation introduced earlier.
(1) R(ai : n) is to be read "Remove the two edges between a

i

and DIUDZ' Then a; or ome of its neighbors must be in

the dominating set. Since ai's neighbor n dominates at
least the nodes that a; does, we may assume n is in the
dominating set."

(2 < A big vl,vz,...,vn) is to be read "If node b is in the
dominating set, then the other node in the dominating
set must dominate Vis Vou oeeey vn."

Furthermore, in any context where it makes more sense, uv may

be read "u is adjacent to v" instead of "uv is an edge."

Theorem 5.5

Ez(p,2) = |(5p-10)/2| if p = 11.
Proof

Let G be an extremal graph with DS < 5p-12. By Theorem 5.3 G
has at least two disjoint dominating sets D1 = (u,v) and D2 = (x,y)

with the remaining nodes a,, 8y, ..., 8 By Lemma 5.16 G has at

p-4’
least 5p/2-8 edges.

Consider the dominating set D for G-ux-vy. Since Theorem 5.4
shows that we need to consider only graphs with exactly two

disjoint dominating sets and the nodes in D1 and D2 play symmetric

roles, we may without loss of generality assume that ueD. Then
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there are five possibilities: (1) D = {u, v}, (2) D = {u, x}, (3) D
= (u, y}, (4) D = (u, ai) with ai adjacent to u, and (5) D = (u, ai)
with a; not adjacent to u.

The discussion of the five cases assumes certain points
without stating them explicitly. Specifically, the theorem is true
when the graph under discussion has DS = 5p-11 since the number of
edges is an integer implying that (5p-11)/2 2 LﬁSp-lO)/gJ.
Furthermore, each case assumes an extremal graph with fewer than
L£5p-10)/gj edges and then searches for a contradiction. In a
situation where DS = 5p-12, demonstration of a need for another edge
yields the desired contradiction.

Case 1 D(u,v) for G-ux-vy.

Here we must have edges uy and vx in order for D to dominate x
and y in G-ux-vy. Hence the edge count is increased to at least
(5p/2)-6 which, since e is an integer, yields the desired result
when p is odd. If p is even and any additional edges exist, the
result also holds. Thus assume p is even and the edges described so
far are the only ones. By Lemma 5.17 all a,'s are of degree three
and have exactly two edges to DIUDZ' R(a1 - *a2). By Theorem 5.4,
ONE(u,v,x,y). Without loss of generality, we may assume D(u,a2).
Consider the two possibilities: a, is adjacent to u and a, is not
adjacent to u.

If a,u, a, is not adjacent to v since a, has exactly two edges

2

to D1UD2. Therefore neither a2 nor u dominates v unless there is an

additional edge, in which case the result holds.
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Suppose then that a, is not adjacent to u. Then a,v since

D(u,v) and ayx or a,y since D(x,y). See Figure 5.15(a). Also ua,

for 3 £ 4 X p~&. R(a3 3 *aa). ONE(u,v,x,y). N(u,a

4 % 8-
Suppose D(v,aa). Then va, for i =1, 2 and 5 <= i < p-4. We have a

a

contradiction since ag cannot be adjacent to both u and v. Suppose
D(x,aa). If5 xa, , another edge is necessary to dominate y and the
result follows. Thus we may assume a, is not adjacent to x which
means a,y. Then xa, for i =1, 2 and 5 = i < p-4. See Figure

3. 15> R(a5 2 *a6). Again ONE(u,v,x,y). N(u,a6 i a2), N(v,a

6
aa), N(x,a6 § aa) and N(y,a6 - a2) so we have a contradiction. A
symmetric argument shows that the case D(y,aa) also yields a

contradiction.

Case 2 D(u,x) for G-ux-vy.

At least two additional edges are required to dominate v and y
in G-ux-vy. The possibilities are: (a) uv and uy, (b) uv and xy,
(¢) xv and uy, and (d) xv and xy. Observe that Subcases (a) and (d)
are symmetric. Also, Subcase (c) and Case 1 are symmetric. To see
this note that the proof to Case 1 used the fact that {u,v)
dominates G-ux-vy, and this remains true in Subcase (c¢). Thus we
need consider only Subcases (a) and (b).

For both (a) and (b) Lemma 5.17 can be employed to establish
that the degree of a; = 3 and each a; has exactly two edges to
D1UD2. As before the result follows if another edge is necessary,
so we assume we have only the edges described so far.

2.a Additional edges are uv and uy.
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R(a1 : *a2). Since D(u,v), D(x,y), and D(u,x), a, is adjacent

to (1) both u and x, or (2) both y and u, or (3) both v and x.
2.a.1 There are edges au and ax as shown in Figure 5.16(a).
ONE(u,v,x,y). Consider the four possible dominating sets.

(i) D(az,u). Then ua, for 2 < i < p-4. If a.u, then du -

i : I
p-1 and vy = 1, a contradiction. Therefore a,v and ax since D(u,v)
and D(u,x). See Figure 5.16(b). R(a3 - *aa). ONE(u,v,x,y).
N(u,a4 : al), N(v,aa . a2), N(x,aa : v) and N(y,aa . a2) yielding

the contradiction. Thus D(az,u) is not possible.
(1i1) D(az,v). Then va, for 3 < i < p-4. See Figure 5.16(c).

R(a, : *a

3 ¢ 4).
- a2). Thus D(x,aa) implying a,y and xa, tor 1 =172 and' 5w 1"g

ONE(u,v,x,y). N(u,a4 - as), N(v,a4 - a2) and N(y,a4

P-4. Now a,v implies that a, is not adjacent to u and a,y implies
that a, is not adjacent to x. But D(u,x), so we have a
contradiction.

(19 D(x,az) is not possible since v is not dominated.

(iv) D(y,az). Then ya; for 3 < i < p-4. D(u,x) implies that
u must be adjacent to all ai's which are adjacent to y. Therefore
ua, for 2 < i < p-4. Note that u is not adjacent to a, since du »
P-1, so a,v. Also D(u,x) implies a,x. See Figure 5.16(d). R(a3 :
*84)' ONE(u,v,Xx,y). N(u,aa - al), N(v,a4 . a2), N(x,a4 - as) and
N(y.a4 : al). Thus D(y.az) is not possible so Subcase 2.a.l cannot
occur.

2.a.2 There are edges a,u and a,y.

Again ONE(u,v,x,y). Suppose D(u,az). Then ua; for 21 =
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p-4. Note that u is not adjacent to a; since du » p-1. Then a;v

and ax since D(u,v) and D(u,x). See Figure 5.17. R(a3 : *a4).

ONE(u,v,x,y). N(u,a4 $ al), N(v,a4 2 az), N(x,a4 . a2) and N(y,a4

5 al). Thus D(u,az) is not possible. Neither is D(v,a2) since x

is not dominated nor D(x,az) since v is not dominated nor D(y,a2)

since X is not dominated. Thus Subcase 2.a.2 is eliminated.

2.a.3 There are edges a,v and a,X.

o 2
ONE(u,v,x,y). Consider the four possible dominating sets.

(i) D(u,az). Then ua, for 3 < i < p-4. See Figure 5.18(a).
R(a3 2 *aa). ONE(u,v,x,y). N(u,a4 3 az), N(v,a4 s as), N(x,a4 :
v) and N(y,aa 2 a2) yielding the contradiction.

(1) D(v,az). Then va, for .2 €14 £ pzb.y Since Dl{u,x), xa

i
for 2 < i < p-4. Now dy > 3 implies y must be adjacent to at least

one a;, so ay. Furthermore, D(u,x) implies aju. See Figure

5.18(b). R(a3 ¥ *aa). ONE(u,v,Xx,¥). N(u,a4 : az), N(v.a4 : al),

N(x,a4 - al) and N(y,a4 : az) yielding the contradiction.

(iii) N(x,a2 : y), a contradiction.

(iv) D(y,az). Then ya; for 3 < i < p-4. D(u,x) implies
that u must be adjacent to all ai's that are adjacent to y. See

Figure 5.18(c). R(a3 1 *a ONE(u,Vv,X,y). N(u,a4 3 a2), N(v,a

4 4 "

x), N(x,a as) and N(y,a4 : 32) yielding the contradiction which

4"
eliminates Subcase 2.a.3 and hence completes the contradiction of
Subcase 2.a.

2.b Additional edges are uv and Xy.

R(a, : *a

1 2). ONE(u,v,x,y). The arguments for D(u,az) and
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D(x,az) will be analogous as will the arguments for D(v,a2) and
D(y,az). Hence we consider only D(u,az) and D(v,az). Suppose

D(u,az). Then ua, for 3 < i < p-4 and ay- D(u,x) implies ua

2

See Figure 5.19(a). R(a3 4 *84)' ONE(u,v,x,y). Suppose D(u,a

4)'
Then ua, for 1 <= i < p-4. But Theorem 5.2 implies dv > 3, so v must

be adjacent to at least one a, which is adjacent to u, a

i
contradiction. N(v,aA : a2) and N(x,a4 - a2). Suppose D(y,aa).

Then yai for i =1, 2 and 5 < i < p-4. Since D(u,x), ua, and ua, so

1 2
ua for 1 < i < p-4. See Figure 5.19(b). Again the fact that dv >
3 leads to a contradiction which completes the elimination of
D(u,a2). Suppose D(v,a2). Thus va, for 3 < i < p-4, and a)x. Now
D(u,x) implies that x is adjacent to all ai's which are adjacent to
v. By Theorem 5.2 dy & 35! so ya, - Furthermore, D(u,x) implies that

ua, . See Figure 5.19(c). R(a, : *a

3 4). ONE(u,v,x,y). N(u,a4 s

as), N(v,a4 . al), N(x,aa 3 al) and N(y,a4 ] az) yielding the
contradiction which eliminates Subcase 2.b and thus all of Case 2.

Case 3 D(u,y) for G-ux-vy.

Then uv and xy. Notice that in this case the edges between u,
v, x and y are the same as the edges between u, v, X and y in Case
2.b. Furthermore, the D(u,x) in the Subcase 2.b is similar to the
D(u,y) here. Thus this case can be treated in an analogous manner
to Subcase 2.b.

Case 4 D(u,*al) for G-ux-vy where a,u is an edge.

Then a.x to dominate x in G-ux-vy. Neither v nor y is

1
dominated by (u,al) in G-ux-vy unless additional edges exist. The
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possibilities are (a) a,v and a1y, (b) uv and a1y, (c) a,v and uy
and (d) uv and uy.

4.a Additional edges are a,v and a,y.

With the edges described so far, DS = 5p-13. This implies
that the degree of a; is at most five in any graph having fewer than
LgSp-IO)/gJ edges. Let a; be adjacent to a, if it is adjacent to
any a,. In any event ua, for i =1 and 3 < i < p-4. Since dv -
is adjacent to some node in addition to a, and y. It cannot be u or
we would have Subcase 4.b and it cannot be x or DS = 5p-11. Thus it
must be an a;.

4.a.l *a3v and v is not adjacent to a,. See Figure 5.20(a).

D(u,v) implies ua, and DS = 5p-12. Node ay has three incident

edges so it is not adjacent to any a. R(a2 i *a ONE(u,v,x,y).

4)'

N(u,a4 5 NN N(v,aa : as) and N(x,a4 : v). Thus D(y,aa) implying
a,x and ya; for i =1, 3 and 5 =< i < p-4. See Figure 5.20(b). R(a5
: *a6). ONE(u,v,x,y). N(u,a6 L B N(v,a6 : aa), N(x,a6 - a3) and

N(y,a6 : aa) so we have a contradiction.

4L.a.2 va,. See Figure 5.20(c).

We may assume ua, is not an edge or the situation reverts to
the previous case with the roles of a, and ay interchanged. D(u,al)

implies a Hence DS 2 5p-12. R(a, : *a,). N(u,a, : a,), N(v,a,

1y
- 35) and N(x,a4 : v). Thus D(y,aa) implying a,x and ya;, i=1, 2
and 5 < i < p-4. See Figure 5.20(d). R(a5 : *a6). ONE(u,v,x,y).

N(u,a a2), N(v,a6 : aa), N(x,a6 X a2) and N(y,a6 : aa) yielding

6 3

the contradiction.
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4.b Additional edges are uv and a;y.

DS = 5p-13 implying that the degree of a, is at most four.

1
Let a; be adjacent to a, if it is adjacent to any a,. In any event

ua, for i =1 and 3 < i < p-4. Since dv = 3, v is adjacent to some

other node. This additional neighbor of v must be an a, or DS would

be too large.
4.0 1) va, and ua, is not an edge. See Figure 5.21(a).

Thus DS = 5p-12. R(a, : *a

3 "
N(v,a4 -+ al) and N(x,a4 W)

D(u,al) implies alaz. 4).
ONE(u,v,x,y). N(u,a4 : a2),

Therefore D(y,aa) implying a,x and ya;, i=1, 2 and 5 =1i =< p-4.

See Figure 5.21(b). R(a5 . *a6). ONE(u,v,x,y). N(u,a6 < a2),

N(v,a6 : al), Ni{x @y a2) and N(y,a6 . aa) so we have a

contradiction.

6

4.b.2 vaj and uaj for some j.

DS = 5p-12 so neither a, mor aj is adjacent to any a; and
there are no further edges to nodes of u, v, x and y. Hence ua, .
See Figure 5.21(c). Form G-uv-ux. No two of u, v, x and y dominate
all of u, v, x and y so one of u, v, X, and y must dominate with
some a, . It cannot be u since no a; dominates all of v, x and y.
It cannot be v since the a; would have to dominate at least p-5 ai's
which would make its degree too great. Suppose D(x,ai). Then i = j
and ajy in order for all of u, v and y to be dominated.
Furthermore, xa; for i » j. See Figure 5.21(d). R(a2 s *a3).
ONE(u,v,x,y). N(u,a, : y), N(v,a, : a,), N(x,aq : v) and N(y,a,

84) so we have a contradiction. Thus D(y,ai) where ie{1l, *2, j}, j
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% 2, so ya; for 4 =1 < p-4 and 1 » j. See Figure 5.21(e). If
D(y,al) then yaj, ya, and yas. Since dx 2 3 x and y have a second
common neighbor, a contradiction. Suppose D(y,aj) implying ya,,
yas, and ajx. Consider G-ux-uaj. The only pair of nodes from u, v,
x and y which can dominate all of u, v, x and y is (v,x) and it
cannot dominate G-ux-ua_, without increasing DS. ONE(v,x,a

J e

Neither v nor x can be selected since p =2 11 implies there is an a;

Dia

which is not dominated. N(aj,u i y) and N(aJ,y : u) so we have a
contradiction. Thus D(y,az) implying ax and yaj. See Figure
5.21(f). Consider G-ux-uaz. As before no two of u, v, x and y
dominate. ONE(x,*a3):a2. Note that since a, can dominate at least

the nodes that a, can, perhaps by including the edge a,x, we do not

consider a,. Selecting x causes several ai's to not be dominated,

so a, is chosen. ONE(u,v,y) N(u,a3 : one of x and y) and N(v,a3 2

al). Thus D(y,a3) implying a,x. Consider G-ux-aly. No two of u,
v, X and y dominate. ONE(u,x,al):al. Again selecting x causes

several ai's to not be dominated. If u is selected we have D(u,a

for some i and ay must dominate x and y. But only a, can do this

and ay is absent. N(v,a1 : az) and N(y.a1 : a2) so we have a

i)

contradiction.

4.c Additional edges are a,v and uy.

DS > 5p-13 implying that the degree of a; is at most four.
Let a, be adjacent to a, if it is adjacent to any a,. In any event
ua, for i = 1 and 3 < i < p-4.

5.¢.1 ua, is not an edge.
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D(u,v) implies va,. D(u,al) implies a,a, and DS = 5p-12. See

Figure 5.22(a). R(a3 : *ah). ONE(u,v,x,y). N(u,aa s az), N(v,a4 .
as), N(x,a4 : v) and N(y,aa : al) yielding a contradiction.
4 en2 ua,.

Notice that node u is adjacent to all a Furthermore, since

i

dv 2 3, v must be adjacent to some a, and DS 2 5p-12. Thus a is

j 1%
not an edge and we may as well assume j = 2. See Figure 5.22(b).

R(a, : *a ONE(u,v,x,y). N(u,a4 = Vs N(v,aa $ as), N(x,a4 s )

nE

and N(y,a4 : al) so we have a contradiction.

3

4.d Additional edges are uv and uy.
DS = 5p-12. D(al,u) implies a,a, and ua, for i =1 and 3 < i
< p-4. See Figure 5.23. Notice du = p-2 so ua, is not an edge.

Hence va,. R(a3 . %*a ONE(u,v,x,y). N(u,a N(v,a4 :

2 W
al), N(x,a4 : v) and N(y,ah 3 al) so we have a contradiction which

4 : a2)»

eliminates Subcase 4.d and completes the contradiction of Case 4.
Case 5 D(u,al) and a, is not adjacent to u.

Then ax to dominate x in G-ux-vy. Since D(u,v), a,v. Either

u or a, must dominate y in G-ux-vy so either a;y or uy.

X
2.a a;y. DS = 5p-15 so the sum can increase by at most

three. Thus a; can have degree at most six or at most three ai's

can have degree ‘exceeding three or, if i » 1, at most three ai‘s can
have three edges to DIUD2. Therefore, since p =2 11, there exist at

least p-4-3-12 3 a_,'s, 1 » 1, which have exactly two edges to

i

DIUDZ’ have degree three and are not adjacent to a,. Let a,, a4 and

a, be three such nodes. Then D(u,al) implies ua,, ua, and ua, .
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See Figure 5.24. R(a2 1 aj for some j, 3 < j < p-4). Consider the
possibilities for aj: (1) aj has degree three with exactly two
edges to D1UD2, (2) aJ has degree four with two or three edges to
DIUDZ’ (3) aj has degree five with two or three edges to D1UD2, and
(4) ‘s,:l has degree six with two edges to D1UD2. Eana( 3 aj cannot

have four edges to D1UD and in (4) it cannot have three such edges

2
since in either case DS would be too large.
Digl aj has degree three with two edges to D1UD2.
Since the degree of aj is three, aj is not adjacent to a;, i
2. Thus D(u,al) implies uaJ and hence aJ is not adjacent to v.
See Figure 5.25. Note that aj could be ay or a,. If it is either,

assume without loss of generality that it is a,. ONE(u,v,x,y).

(1) N(u.aJ ; al).

(11) N(v,aj b aa).

(id 1)1 I E D(x,aj

dominate y and v. Recall that aJ is not adjacent to v so xv. If xy

), then additional edges are needed to

DS = 5p-11, so ajy. D(x,a,) implies xa,, i =2, j. See Figure

3

5.26. DS = 5p-13, so a, can be adjacent to at most one a,, i = 2,

1

4 " am). Note that m = j. ONE(u,v,x,y). N(v,am 3

aj), N(x,am -4

j

can be adjacent to at most one a,, i » 1, that is adjacent to x or

3, 4, j. R(a

4 ists such an a_ since
) and N(y,am < ar). There ex X y

a can be adjacent to at most one additional a; for i 1, 4. Thus

P 2 11 implies that at least p-10 = 1 nodes will not be dominated.

Hence D(u,a_). Then a a; since a; is not adjacent to u and DS = 5p-
m

11. Therefore (x,a,) does not dominate.

b
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(iv) The only remaining possibility is D(y,a,). Since a, has

J b

degree three yay for i » 2, j. Then a,x or yx to dominate x.

h|
First assume yx. See Figure 5.27(a). Considering D(u,al) and

D(x,y), DS = 5p-12. Note that u and a; cannot be adjacent to the

same a, for i » 1, x and y cannot be adjacent to the same a,, and

i’

each a; for i # 1 has degree three. Now dv = 3 implies that va, for
some h » 1, 2, 3, 4, j. Thus ua, for i » 1, h. See Figure 5.27(b).
D(u,al) implies either uah or alah. In either event, using D(u,v)
and D(x,y) DS = 5p-12, so al is not adjacent to another ay for i =
h R(ux,aly). ONE(v,x,al,ah):al. B(ve u,x,a, for jesd 1) h)i @&
contradiction. I(x : u,v,ai for d »i11p 2, 4); acontradiction.
I(a1 s u,y,a; for i » 1, h), a contradiction. I(ah where a;a
u,x,ai for i » 1, h) and I(ah where ua, P x,a, for i » h), both
contradictions. Therefore x is not adjacent to y.

The only alternative is that ajx must be the edge that
dominates x. Using D(u,al) and D(x,y), DS = 5p-14. R(uaa,yaa 3
am). See Figure 5.27(c). ONE(u,v,x,y). N(v,am - aj

a,). Suppose D(u,am). Then a 8, to dominate a,. D(u,v) implies

h
uv or a v. If uv DS 2 5p-11, so av. See Figure 5.27(d). DS = 5p-

) and N(y,am :

13. Thus there cannot be additional edges between u, v, x and y.
Since D(u,al) and D(u,am), both a, and a must be adjacent to the

ai's that are not adjacent to u. Furthermore, DS increases by three

for each such a; sou must be adjacent to all ai's except a; and a -

Now a, can be adjacent to at most one other a., fsgrfcand fow-§, m,

or at most one a i > 5, can have three edges to D1UD2, or a can

il
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be adjacent to at most one other a;, ix1, 4, in which case it
cannot have a third edge to D1UD2. R(ux,yal). ONE(v,x,al,am)
a. (% ; “'x’32’84’aj)' & contradiction:, I(x.: u,v,y,a,,a for
some h since both x and y can be adjacent to at most one more ai), a
contradiction. I(a1 : u,y,ai for i » 1, m), a contradiction. I(am
3 u.x,az,aj) yielding the contradiction which eliminates D(u,am).

Thus D(x,am). Then a2x since a, is not adjacent to a and
either a v or xv. Suppose xv. See Figure 5.27(e). Then DS = 5p-
13. Now x and a between them must be adjacent to p-9 = 2
additional ai’s. Since y is adjacent to all a

both x and y are adjacent to an a

i's, i=2, j, either

§ °F ay is adjacent to all the

remaining ai's. Either situation increases DS by one for each such
ai for a total increase of at least two, a contradiction. Hence
av. See Figure 5.27(f). D(u,al) implies ua or a,a . In either
event DS = 5p-13. By the previous argument D(x,am) implies that the
DS increases by p-9 2 2, yielding the final contradiction which
eliminates Subcase 5.a.l.

5.a.2 Degree of aj is four and a, has two or three edges to

b
D1UD2'
Recall that each of a,, as, and a, has degree three and is
adjacent to u. See Figure 5.28. Considering the degrees of D(u,al)

and D(x,y), DS = 5p-13. ONE(u,v,x,y).

(1) N(V,aj : at least one of a, and a,).
. Then a.,a, since u is not adjacent to
(ii) Suppose D(u.aj) 321
a,. The degree of aj is four so aj is not adjacent to any other a,.
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Hence ua, for i » 1, j. Furthermore, either uv or a,v to dominate v

j

and either uy or ajy to dominate y. If either uv or uy, DS = 5p-11.

Thus aJv and ajy. See Figure 5.29(a). R(a3 ta, h et i, 2008

ONE(u,v,x,y). N(u,ah : aj), N(v,ah 3 a2) and N(x,ah o &, ) i Thus

j

D(y,ah) and y must be adjacent to all ai‘s that are not adjacent to

a ., and either a X or yx. If yx DS = 5p-11, so a x. Then DS = 5p-

13. Thus a, can be adjacent to at most one other a,, say a_, if

i’

any, where clearly s » 2, j and also s » 1 since this increases DS

by two. Then ya; for i » 3, h, s. See Figure 5.29(b). Now a; is

adjacent to at most one additional a;, and this can occur only if ay
is not adjacent to an a_. Thus designate by a_ the extra node, if
any, which is adjacent to either a or a,. Furthermore, if there is
no such a, at most one a;, i #» 1, can have three edges to D1UD2.

R(ux,aly). ONE(v,x,a TCv = u,x,az), a contradiction.

1,aj) : a,.
Fix u,v,y,az), a contradiction. I(a; : u,y,a; for i =1, j, 8), a

contradiction. I(a

J

contradiction for D(u,a

Pu,x,a for i » 1, 2, j) yielding the

30

(iii) Next assume D(x,aj). Then v and y must be dominated by

(x, aj). If xy and xv, then DS = 5p-10. Suppose Xy and ajv. Since

D(u,a,) either ua, or a8, In either event, DS 2 5p-11. Suppose

J

aJy and xv. Then DS = 5p-12. Thus a, can have only two edges to

j

DIUDZ without increasing DS, so aj is adjacent to a_, each a; has
degree three for i » j, and xa; for i » 2, j and s. Note s could be
3 or 4. 1If it is either, let it be 3. D(u,a;) implies ua,;, i = 1.

See Figure 5.30(a). R(a, : ). ONE(u,v,x,y). N(u,a : a,),
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N(v,ah 3 a2), N(x,ah y) and N(y, 8yt ag where ag is not ah)

yielding the contradiction.

Therefore ajy and aJv. D(u, al) implies ua or a Thus,

1%

since the degree of aj is four, D(x,aJ) implies xa, for i » 2, j.

o &

See Figure 5.30(b). First assume uaj. See Figure 5.30(c). DS =

5p-13. R(a3 5 a where r » 2, j). ONE(u,v,x,y). N(v,ar . a2),

N(x,ar : aj) and N(y,ar s at). There exists such an a, since y can

be adjacent to at most one additional ay which is also adjacent to x

or ar can be adjacent to at most one more a Since p =2 11, there

i
is at least one ai not dominated. Hence D(u,ar). Then alar to
dominate a, and DS = 5p-11. Thus alaj and aj is not adjacent to u.

See Figure 5.30(d). Then DS 2 5p-13. R(a3 - ar). ONE(u,v,x,y).

N(u,ar = A6 N(v,ar N(x,ar :a

a,),
3 2) j
2 4) yielding the contradiction which eliminates D(x,a ) as a

]

) and N(y,ar Day for some h

possibility.
(iv) The only possibility still to consider is D(y,aj). Then
u and x must be dominated by (y, aJ). If yu and yx, DS = 5p-10. If

either yx and a,u or yu and ajx, then using D(u,al) and D(x,y), DS =

j

5p-11. Thus a,u and a.,x. Since aj can be adjacent to at most one

b J

of a, and a,, we may assume aj is not adjacent to as. Then D(y,aj)

4!

implies ya See Figure 5.31(a). R(aju,a;y : a,, t~ 1L, 1.

3
ONE(u,v,x,y). N(v,at . 32).

Suppose D(u,a ). Then a.a; to dominate a;. D(x,y) implies

t
5p-10. If a

a,x or ay. If'=s X then D(y, aj) implies aja or ya_ If ya, DS >

a_ DS = 5p-11. Therefore a, is not adjacent to x and

%t
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hence ay. D(u,v) implies auorayv. If a.u, using D(u,al) and

D(x,y), DS = 5p-11, so av. DS = 5p-12. Thus al is not adjacent to

another a;, inE ¢ 86 ua, 6 Eay IYTEL *1F aj has three edges to

D1UD2, DS increases. Therefore a.,a for some r = 1, t. D(y,aj)

ir
implies yai for i » 2, j, r. See Figure 5.31(b). R(ux,aly).

ONE (u, vix5y)"ETCu ; v,x,y,al), a contradiction. I(v : u,x,a,, i

1, t), a‘eontradiction: WE(xR * u,v,y,a,, fUwaly ., 2995 ;7Y% @&

contradiction. I(y : u,x,a ), a contradiction. Thus (u, at}

17%

does not dominate G-a3u-a3y.
Suppose D(x,at). Then xy or ay to dominate y and xv or av

to dominate v. If xy and xv, DS = 5p-10. If xy and av, then a.u

or a.a,. In either event, DS = 5p-10. Next assume ay and xv. See

Figure 5.31(c). Since D(u,v), either ua_ or va However, va, (and

e
not uat) implies aa and DS = 5p-10. Thus ua_ . See Figure
$.31(d) . "'D8 '2"5p-12. 'Hemce no as, i » 1, is adjacent to both x and

y, and each a; has degree three for i = j. D(x,at) implies xa, for

i=3, t and D(y,a,) implies ya;, 1w 2, - ¥, ") where a ¢ N(aj),

j

showing x and y have a common neighbor a, for i 2 2, a

contradiction. Therefore a.y and a v. See Figure 5.31(e). D(u,al)

implies ua_ or aa . First assume a,a  so DS = 5p-12. D(u,al)

implies ua, for i » 1, t, and each a; has degree three for i = 1, j,

i

t. Now aj cannot have another edge to DIUDZ' so ajar for some r =
| T L LT D(y,aj) implies ya, for i#2, j, r. Noa, i 1, can
be adjacent to both x and y. However, for some N g Y 3:7%) r,

t, there is an a adjacent to neither a_ mnor v Hence D(y,aj) and
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D(x,at) imply ya, and xa , a contradiction. Thus ua_ and DS > 5p-

12. Then no a;, i =1, is adjacent to both x and y. Furthermore a;

is not adjacent to any a;, so ua, for i » 1 and a.a_ for some r = 1,

1
23 r ¥, D(x,at) implies xa; for T3, ¢, “and D(y,aj) implies ya;
for i » 2, j, r. Hence there is an a., h =2 2, adjacent to both x
and y, yielding the contradiction which eliminates D(x,at).
Therefore (y, at} must dominate G-a3u-a3y, implying ataj or
yaj. First let ataj. Then DS = 5p-12 using D(u,al) and D(x,y).

Thus a is not adjacent to another a; and each a; has degree three
for 1. » 5. D(u,al) implies ua, for 4 & 2% D(y,at) implies ya;
for 1 » j, t and a x. Now dv = 3 implies that v must be adjacent to

an ai, i =1, and v is not adjacent to a2, a3, aa, a, and a so

J t’
*ahv. See Figure 5.31(f). R(ux,aly). ONE(v,x,al):al. I(v ;

u,x,a i»1, h), a contradiction. I(x : u,v,y,a; fox: ey, j,

i
t), a contradiction. I(a1 : u,y,ai for i » 1), a contradiction.
Thus ataJ is not an edge, so yaJ. Then ya, since D(aj,y). Again
D(y,at) implies a x. See Figure 5.31(g). Hence DS = 5p-11.
Therefore (y, a ) does not dominate, yielding the contradiction
which eliminates Subcase 5.a.2.

2.8.3 aj has degree five with two or three edges to D,uUD,.
Using D(u,al) and D(x,y), DS = 5p-12. Thus all ai's, i1,

j, have degree three and mo a,, 1 # 1, is adjacent to both x and y

or both u and a;. Consider the possible dominating sets.

(i) D(u,a.) implies ajal. Furthermore aJv and ajy since

J

either uv or uy increases DS. If aju or ajx the DS increases.
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Hence ajas for some s. Since a_ has degree three and is adjacent to

one of u and v and one of x and y, a_ is not adjacent to a. Thus

D(u,al) implies au, and D(u,aj) implies ua, for i » 1, j. See

Figure 5.32. Therefore a; is not adjacent to any additional a;

since both ua, and a,a, increase DS. Thus each a; for i wylae2, 3.

s has degree three, two edges to D1UD2 and a degree three neighbor

in V-DluDz. R(ux,aly). ONE(v,x,a

j), a contradiction. I(x : u,v,y,aj), a contradiction. I(a

1,aj):al. i 6" S u,Xx,a, for i = 1,

1 :

u,y,ai for.1 »:1,.J), aycontradiction. If(a. s u,x,ai for. i, 1..2,

j

j, s), a contradiction. Therefore (u, a,) does not dominate.

J

). Notice v has degree three and a, has degree

J J

five so only ten nodes are dominated, a contradiction for p = 11.

(11) -D(w;a

(iii) D(x,a,). Then ajy and ajv since either xy or xv would

J

increase the DS. Note a, is not adjacent to x or DS increases. See

3

Figure 5.33(a). D(u,al) implies either ua, or a,a, to dominate a,.

J 1] j

In either case DS 2 5p-12, so no a i %1, is adjacent to both u

il

and v. Then a.a for some r » 1. Notice that r could be 3 or 4.

i -
If it is either, let it be 4. In the original DS computed for

Subcase 5.3 dv is counted as three, so D(u,v) implies ua, for i = 1,

j. D(x,a,) implies xa, for i » 2, j, r. See Figure 5.33(b).

j .

Recall that a, and u are not adjacent to the same a,. R(a4 ey

where m » 1, j, r). ONE(u,v,x,y). N(u,a : a)), N(v,a : a)),

N(x,a : aj) and N(y,a : & for some s ¥ 1, 2, 4, j, m, r) yielding

the contradiction which eliminates D(x,aj) as a possibility.

(iv) D(y,aJ). Then e and 8% since either yu or yx
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increases DS. See Figure 5.34(a). Since a, has degree five, it

J

must be adjacent to two other nodes. Note that y cannot be one of
these nodes since this would increase the initial DS count which

used D(x,y). Thus either a, is adjacent to two a,’s in addition to

J i

is adjacent to v and one a, in addition to a,. First

3 2
is not adjacent to v and a @ s 8ince a 8
3 ] 3 R 371

increases the DS, aj is not adjacent to a. Hence a_ #a and a_

a,. Each ay has degree three for i » 1, j, implying au and a.u.

See Figure 5.34(b). DS = 5p-13, so a; can be adjacent to at most

a, or a

? ]

assume a ar and a

one a,, say a , if any, where m » r, t or DS would increase. First

i’
suppose alam and hence am is not adjacent to u. Thus amv. D(y,aj)
implies ya; for i » 2, j, r, t. See Figure 5.34(c). DS = 5p-12.

Recall that the original DS counted three for dv’ so v is not

adjacent to another a, and ua, for i » 1, m. R(ux,yal).

i i

ONE(V.x.al,am) I(v : u,x,a, for i » 1, m), a contradiction.

. al.

I(x : u,v,y,a, for i » 1, 2, j, r, t), a contradiction. I(a1 :

i
u.y.a, for i » 1, m), a contradiction. I(am P ou,x,a, for i 1, m),
a contradiction. Therefore a; has degree three and is not adjacent
to any ai's. D(u,al) implies ua, for i » 1. Again dv = 3 implies v
is adjacent to an a, in addition to a,. Since a, has degree three
and is adjacent to u and v, ap is not adjacent to an a,. Hence
D(Y.aj) implies ya, for i #» 2, j, r, t. See Figure 5.34(d).
R(Ux.aly). ONE(v,x,al) :oag. I(v : u,x,8; for i » h), a

contradiction. I(x : u,v,y,a; for i =1, 2, j, r, t), a

contradiction. 1(31 D u,y,ay for i » 1), a contradiction. Thus aj
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is not adjacent to two nodes a. and a,.

Therefore ajv and ajar. DS = 5p-12. Thus a; has degree three

i
1. Further D(y,aj) implies ya

and is not adjacent to any a,’'s. Then D(u,al) implies ua, for i =
1 for i » 2, j, r. See Figure

5.34(e). Without loss of generality let a = a, if it is either a,

or a R(aa $ am, m»1l, r). ONE(u,v,x,y). N(u,am ¢ al), N(v,am

4

a2), N(x,am . a for some s » 1, 2, j, r) and N(y,am : a,) yielding

j

the contradiction which eliminates Subcase 5.a.3.

5.5,& aj 1

D(u,al) and D(x,y) imply DS = 5p-11 yielding the contradiction

has degree six with two edges to D UD2.
which eliminates Subcase 5.a.4 and hence completes elimination of
Subcase 5.a.

2.b uy. Recall ax and a;v. Let m ai's have four edges to
DluD2 and n have three edges. Then the number of edges is at least
3+2(p-4)+2m+n+(p-4-m-n) /2 = (5p-14+3min)/2 > |(5p-10)/2| if m > 0 or
n > 2. Therefore, if the edge count is smaller than |(5p-10)/2],
at most two ai's can have three edges to D1UD2 and no a; has four
edges to D1UD2, 1 <1i=<p-4. DS = 5p-14. Thus DS can increase by
at most two. It follows that a; is adjacent to at most three ai's
since degree three was counted for a; in DS. Therefore u must be
adjacent to at least p-8 2 3 ai's. The DS also implies that at most
two ai's have degree four or at most one a, has degree five. Notice
that any situation which adds two to DS involves at most six ai's.

First consider the special case where a, is not involved in

increasing the degree sum and *a, and *ag have degree four. Then
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ua,, i %1, h where a, is a neighbor of a;. Note that p must be at
least twelve for this case to occur. See Figure 5.35. Then using
either D(u,v) and D(x,y) or D(u.al) and D(x,y), DS = 5p-12. Thus
each a; for 1 » 3, 6 has degree three and all a; have exactly two

edges to D1UD2. Furthermore, av since dv = 3 and u and v can have

no common a, neighbor. R(ux,uy). ONE(u,v,x,y). No two of u, v, x

and y dominate. I(u : v,X,y), a contradiction. I(v : a; for i = 1,

h), a contradiction. I(x : u,v,y), a contradiction. I(y : x,u,al)

yielding the contradiction for this situation.
In all situations except the previous one, since p = 11, there

exists *az which is not involved in increasing DS, and is not a, or

1
adjacent to a,. Then a, must have degree three and be adjacent to

*a3 with degree three, where a, is not adjacent to a,. I eix a.’s

3 i

were involved in increasing the DS by two or four ai's were involved

and a, is not involved, p is forced to be at least twelve. D(u,al)

1
implies ua2 and ua,. See Figure 5.36(a). R(a2 ; a3).
ONE(u,v,x,y).

N(u,a3 : al).

Suppose D(v,a3). Then va, for %.» 2, 3. " Each a;, i= 1, must
be adjacent to u or a,. Let m be the number of ai's which are
adjacent to a, 1 <m< 3. Then u must be adjacent to p-5-m ai's

and hence both u and v are adjacent to p-5-m-2 of the same ai's.
Then DS > 6p-22 = 5p-11 if p 2 11.
Assume D(x,a3) implies xa; for i » 2, 3 and vx since a, is

not adjacent to v. DS 2 5p-12 implies each a, has degree three and
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no a, can be adjacent to both u and v or both x and y. Hence a,
must be adjacent to exactly one a;, say *84’ and D(u,al) implies

ua, for i » 1, 4. Furthermore, azy since x is not adjacent to y.

See Figure 5.36(b). R(aS 2 *a6). ONE(u,v,x,y). N(u,a6 - al),

N(v,a6 - a2), N(x.a6 g a3) and N(y,a6 : a4) yielding the
contradiction.

Thus D(y,a3). Then ya, to dominate a. Considering D(u,al)
and D(x,y), DS = 5p-12. Hence x is not adjacent to y, so a;x and

yay for i » 2, 3. See Figure 5.36(c). Now dv = 3 so v must be

adjacent to a,, j > 3. D(u,al) implies ua, or a First let

j j Py

uaj. Then DS 2 5p-12. Thus each ay has degree three, no other a;

can be adjacent to both u and v or both x and y, and aj is not
adjacent to an a. Since a, is not adjacent to an a;, D(u,al)
implies ua, for i » 1. See Figure 5.36(d). R(a5 2 *a6).
ONE(u,v,x,y). N(u,a6 : al), N(v,a, : az), N(x,a. : aj) and N(y,a,

g a3), a contradiction. Finally, assume ajal and aj is not adjacent

to u. DS = 5p-12. Therefore no a;, i % 1, has three edges to DluD2

and each a, i » 1, has degree three. D(u.al) implies ua, for i =
1, j. See Figure 5.36(e). R(ag : *a,). ONE(u,v,X,y). N(u,a. :

a,), N(v,a, : a,), N(x,a; : aJ) and N(y,a, : a,) yielding the

6
contradiction which eliminates Subcase 5.b and hence completes
elimination of case 5.

All cases where an extremal graph might have fewer than

lﬂ5p'10)/2J edges have been examined and each leads to a

contradiction. Thus Ez(p,2) = lj5P'10)/2J» if p = 11, and equality



88

follows from Theorem 5.1. B

5.4, The Value of E*(p.2) for All p

Theorem 5.5 gives Ez(p,Z) for p 2 11. Since G is connected vy
< p/2 (Marcu 1985), and hence the problem is undefined for p < 4.
For 4 < p < 10 we utilized a magnetic tape supplied by R. C. Read
from the University of Waterloo that catalogues all graphs on 10
nodes or less. A program was written to search the tape to find
extremal 2-2-insensitive graphs. Results from the search are shown
in Figure 5.37 and indicate that the value of E2(p,2) given by
Theorem 5.5 actually holds for p 2 9. For complete results from the
search, see the appendix which lists the adjacency matrices of all
2-2-insensitive graphs having p < 10 nodes. All values of Ez(p,2)

are now summarized in the following theorem.

Theorem 5.6
/ undefined if p<3
4 i W%
7 if Pp=35
E(p,2) =( 9 if p=6
11 it pe=9
13 I s=*

\ | (5p-10)/2] if p29
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p even:

p odd:

b, @b, & b—u'b 0 Wb: * bo

Figure 5.1
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6. BOUNDS ON Ez(p,y) WHEN v > 3

In this chapter we improve the Chapter 4 bounds on Ek(p,v) for
the special case when k = 2 and vy 2 3. In Chapter 5 we saw how
restrictions imposed by the specific structural properties of 2-2-
insensitive graphs permitted us to obtain exact values for E2(p,2).
Here we similarly take advantage of the fact that k = 2 to develop
properties which make it possible to compute lower and upper bounds
on Ez(p,y) which are better than those in Chapter 4. Some of these
structural properties are developed in Section 6.1. They will be
used in Section 6.2 to obtain bounds for Ez(p,y) when p 2 72 and in
Section 6.3 to facilitate determining either exact values or bounds
for Ez(p,v) when p < 12. Finally, Section 6.4 summarizes the known
results for all p.

Throughout we employ the notation G' = G-el-e2 for arbitrary
edges e and e, and D will represent a minimum dominating set for
the graph G’ under discussion. Some of the shorthand of Chapter 5

also will be employed.

6.1. Structural Properties of 2-y-insensitive Graphs

In this section we present structural properties of 2-9-
insensitive graphs G = (V,E) that will be useful in establishing
values for E2(p,1) in the remaining sections. Let G = (V,E) be a

139
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2-y-insensitive graph. Then the following lemmas apply.

Lemma 6.1

If the two edges incident to a degree two node X are removed,
then xeD and neither of its neighbors is in D.
Proof

Let x be a degree two node with neighbors u and v. R(xu,xv).
Then x is isolated, so xeD. If either u or v is in D, then D-(x) is

a dominating set for G having size y-1, a contradiction. ®

Lemma 6.2

A node veV can have at most one degree one neighbor.
Proof

Suppose a and b are degree one nodes with common neighbor v,
as shown in Figure 6.1. R(va,vb). Then a, b, and y-2 nodes form a
dominating set D. But (D-{a, b))u(v) is a dominating set for G

with size -1, a contradiction. ®

Corollary 6.1
There are at most y degree one nodes.
Proof
By Lemma 6.2 each node of a dominating set dominates at most

one node of degree one. B
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Lemma 6.3

No node is adjacent to both a degree one node and a degree two

node.
Proof

Suppose x is adjacent to degree one node a and degree two node

b, as shown in Figure 6.2. Let y be the other node adjacent to b.
R(ax,by). Then aeD and either x or b must be in D to dominate b

and, since x dominates at least the nodes b does, we may as well

assume xe¢D. Then D-(a) is a dominating set for G of size y-1, a

contradiction. N

Lemma 6.4

A degree one node cannot be adjacent to a degree two node.
Proof

Suppose Xy is an edge with dx = 1 and dy = 2. R(xy,yz) where
z is y's other neighbor. Then x and y must be in D. But D-(x) is a

dominating set for G of size y-1, a contradiction. i

Corollary 6.2
1f y is adjacent to degree one node X, then dy 2 3 and veN(y)-
{x) implies dv = 3.

Proof

Lemmas 6.2, 6.3 and 6.4. N
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Figure 6.1

Figure 6.2
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In this section we present upper and lower bounds for E2(p,1)

2
when p 2 v~ and v 2 3. Section 6.2.1 demonstrates upper bounds by

constructing appropriate graphs. These graphs evolved from a study
of the restrictions placed on the structure of 2-y-insensitive
graphs by the properties of Sections 4.1 and 6.1. In Section 6.2.2

the structural properties are employed directly to develop lower

bounds which are better than the bound in Chapter 4.

6.2.1. Upper Bounds

The first theorem provides an upper bound for Ez(p,y) when p =

12 and v = 3.

Theorem 6.1

E2(p,y) < 2p-2y if p = v> and v = 2.
Proof

We show that 2p-2y is an upper bound for Ez(p,y) by
constructing 2-y-insensitive graphs G = (V,E) with 2p-2y edges as
follows.

Let A be a set of vy nodes labeled 81, 8y oes ay. For each
pair of nodes in A add two degree two nodes adjacent to both of
them. The resultant graph has y+(2v(y-1))/2 = 72 nodes and 2((2vy(vy-
1)/2) = 2p-2v edges. Figure 6.3 illustrates this construction for a
graph having v = 4 and p = 16.

We now show that G has domination number vy. Certainly A
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dominates G, so the domination number is at most y. To see that any

dominating set D contains at least y nodes, observe that each pair

of nodes of A and the two degree two nodes between them induce a C,-

Furthermore, at least two nodes are required in the Ca itself to
dominate the degree two nodes, and any such two nodes dominate a

subset of the nodes dominated by the two ai's in the CA‘ Thus we

may as well use them. It follows that A is a minimum dominating set
and the domination number is «.

All that remains to be shown is that y(G) = 1(G-e1-e2) for
arbitrary edges e and e, TE e and e, are incident to different
degree two nodes, then each degree two node has at least one edge to

A and A dominates. Thus we need to consider only when ey and e, are

2
incident to the same degree two node, say bl. Then A-{ai, aj}u(bl,

b2) dominates G-el-e2 where a; and aj are the special nodes adjacent

to the degree two nodes b1 and b2. Hence G is 2-y-insensitive. B

2
Next we present an upper bound for Ez(p,y) when p > v .

Theorem 6.2

2
2 [(sp-v-47+2)/2]  if p > v +1.

Proof
Again we construct an appropriate family of graphs G = (V,E).
Begin with the graph described in Theorem 6.1, with the two degree

2
two nodes between al and a2 removed. At this point, we have vy -2
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2
nodes and 27 -2y-4 edges. Label the remaining nodes b, and add

i

edges albi’ aZbi for 1 <i < p-72+2. First consider p-12 b 2
2 2

When p-7y~ is even add edges bibi+1 for i =1, 3,5, ..., p-y°+1 and

2 2
L i dd - -
when p-7vy s o add edges bibi+1 for i 1, 3, ..., p-7" and brbr+1

where r = p-12+1. This gives a total of 272-21-4+2(p-12+2)+
fip-72+2)/§] edges, which reduces to the bound of the theorem.
Figures 6.4(a) and 6.4(b) illustrate the construction for vy = 4.
For the special case of p-12 = 1, the only remaining nodes are bl'
b2 and b3 and the only additional edge is b1b2’ Thus b3 has degree
two and G has LﬂSP'72’47+2)/%j edges. Figure 6.5 gives an example
of this construction for p = 17 and v = 4. In the remainder of this
proof we shall refer to this case as the exceptional case.

Next we show that graphs constructed according to the above
specifications have domination number ¢. Clearly, the set A of size
7 dominates G. An argument identical to that in the proof to
Theorem 6.1 shows that A is a minimum dominating set of the ai's and
their connecting degree two nodes, and hence it is a minimum
dominating set of all of G.

It remains to be shown that 7(G-e1-e2) = v(G) for arbitary
edges e and e,- I1f each node in V-A has an edge to a node in A,
then A dominates and the result follows. Thus we need to consider
only cases where a node x has both its edges to A removed.

Case 1 Suppose x is a degree two node with neighbors a; and

- and x » b, in the exceptional case. Then D = A-{a,, aj}u{x, y)

3

dominates where y is the other degree two node adjacent to both ai
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and aJ. Notice that D dominates all the bi's because at least one
of a; and a, will be in D since there are no degree two nodes
adjacent to both a, and a,, except b3 in the exceptional case.
Suppose x = b3 and we are discussing the exceptional case.
Then A-{aq, az)u(bl, b3) dominates.
Case 2 Suppose x = bi is a degree three or a degree four

node. Let bjeN(bi). Then A-(az)utbj} dominates.

Therefore G is 2-vy-insensitive and the result follows. B

We note that graphs constructed as described in the proof to
Theorem 6.2 are generalizations of the extremal 2-2-insensitive
graphs found in Chapter 5. Indeed, the bound of Theorem 6.2 reduces
to L(Sp-lO)/gJ when v = 2 and p is even, and there is a difference
of only one edge when p is odd. Although we have not been able to
prove that the graphs from Theorem 6.2 are extremal, both the fact
that they are generalizations of extremal 2-2-insensitive graphs and
the asymptotic result derived in the next section imply they are

promising candidates.

6.2.2. Lower Bounds
Substituting k = 2 into the general lower bound of Theorem
4.6 gives EX(p,v) 2 (Sp-a2-8y-£(7,2))/2 where £(v,2) = 27°-3142
when p 2 372-7+2. Considering the upper bound from Section 6.2.1,
ve have (5p-3y2-57-2)/2 < E2(p,v) = [(5p-7°-4y+2)/2] vhen p 2 R

7+2 for a difference of at most 12+1/2+2. In this section we employ
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the structural properties from Sections 4.1 and 6.1, along with
others obtained below, to derive better lower bounds and hence
narrow the above gap.
First we develop the additional structural properties. Let
Ni be the maximum number of nodes having degree at most 2 which have
i common neighbors in the 2-y-insensitive graph G, 1 < i < 2. By

Theorem 4.3, N2 < 2 and by Theorem 4.4, N1 < (1-1)N2+1 < 24-1. Our

next lemma shows that this bound for N1 can be reduced by one.

Lemma 6.5

In any 2-y-insensitive graph, N1 < 24-2.
Proof

Let v be adjacent to m nodes having degree at most two which
are labeled al. 81 +ee a, and let bl' b2, o bj be the other
neighbors of the ai's.

Case 1 Node v has a degree one neighbor a. Then by
Corollary 6.2 a, is the only neighbor of v having degree at most
two.

Case 2 Assume some bi' say bl' is adjacent to two degree two
nodes a, and a, as shown in Figure 6.6(a). R(aIV,albl). By Lemma
6.1 ach and neither v nor b1 is in D. Hence azeD. Furthermore,
each aJ for j » 1, 2 or its neighboring bi must be in D. Now D can
include at most y-2 such nodes. The situation which maximizes the
number of degree two neighbors of v is when each of the y-2 nodes is

a b, with two a, neighbors. In this case v has at most 2+2(y-2) =

J
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2v-2 degree two neighbors.

Case 3 Each bi has at most one degree two neighbor which is

adjacent to v. See Figure 6.6(b). R(albl,alv). Now aleD and so is

either each ‘j for 2 < j < m or its neighboring bj. There can be at

most y-1 of these nodes implying at most y degree two neighbors of

v.

Since v = 3, the greatest possible count occurs in Case 2 so

N1 < 2v-2. §&

We shall be discussing the situation described in Case 2 of

Lemma 6.5, and it will be convenient to let S = (v, a;, a,,

Rgu-2"

nodes in this situation.

bl' b2, e by-l)' Observe that there are no degree one

Lemma 6.6

Let v have 2y-2 degree two neighbors as described in Case 2 of
Lemma 6.5. Then u is adjacent to at least two bi's for all ueV-S.
Proof

Let v be adjacent to 2y-2 degree two nodes as described in
Case 2 of Lemma 6.5. See Figure 6.7. Assume there is an xeV-S
which is adjacent to at most one bi’ say b1 if any. R(alv,albl).

By Lemma 6.1 a,eD and neither v nor b1 is in D. Hence D = (al, a,,

) §
b2, b3. iie5 D 1}. But then x is not dominated. Thus x is
v-

adjacent to at least two bi's. |
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Lemma 6.7

Let v be adjacent to 2y-2 degree two nodes as described in

Case 2 of Lemma 6.5. Then the maximum possible number of degree two

nodes in the entire graph is 12-1.

Proof

By Lemma 6.6 each degree two node in V-S has two neighbors in

(bl, b2, o5 iy bv-l)' Furthermore, each a; has two neighbors in (v,

bl' b2, o by-l)' Since N2 < 2, the number of degree two nodes

is maximized when each pair of nodes in (v, bl’ b2, dogyeb 1) has
‘Y-
two degree two nodes between them. Then there are at most 2((y(y-

1))/2 = 72-7 degree two nodes. B

Notice that the graph described in the proof to Theorem 6.1
achieves the bound of Lemma 6.7. Our next theorem determines a
lower bound for the number of edges in a 2-y-insensitive graph when

at least one node is adjacent to 2vy-2 degree two nodes.

Lemma 6.8

Let G = (V,E) be a 2-y-insensitive graph and let v be adjacent
to 2v-2 degree two nodes as described in Case 2 of Lemma 6.5. Then

2 2

|E] 2 (5p-v-4v)/2 for p 2 7",
Proof

It follows from Lemma 6.6 that D = (v, b, by, ..., b7_1)
dominates G and each ueV-D has two edges into D. Lemma 6.7 implies

there are at most 12-1 nodes having degree at most two, so at least
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2 2
P-7-(y -v) = p-y nodes in V-D must have degree at least three.

2
Thus DS = 2(p-v)+2(y ‘1)+3(P'72) - 5p-12-47 implying |E| 2 (5p-72-
4v)/2. 1

Lemma 6.9 gives another useful property of 2-y-insensitive

graphs.

Lemma 6.9

A pair of adjacent nodes can have at most one degree two node

as a common neighbor.
Proof

Suppose X is adjacent to y, and x and y have common degree two
neighbors a and b. See Figure 6.8. R(ax,ay). By Lemma 6.1 aeD and
neither x nor y is in D. Then beD and D-(a,b)u(x) is a dominating

set of size y-1, a contradiction. B

For the remaining portion of this section, we consider only
graphs where no node is adjacent to 2y-2 degree two nodes. The
next lemma considers the situation where some node is adjacent to

27-3 degree two nodes.

Lemma 6.10
Let G = (V,E) be a 2-y-insensitive graph in which no node has
2y-2 degree two neighbors but at least one node is adjacent to 2v-3

degree two nodes. Then |E| 2 (5p-12-71/2-2)/2. Furthermore, this
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Figure 6.8
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situation cannot exist in extremal graphs when vy > 10.

Proof

Suppose Vv is adjacent to 2v-3 degree two nodes. Since N2 =2,

the only possibility is illustrated in Figure 6.9 where the set of

degree two nodes adjacent to v is A = (al, az, 8 g a2 3) and the
‘1-

other neighbors of the nodes in A are B = {bl, b2, . 1).
-w,-

R(albl,alv). Then al,azeD and v,bliD. Now the y-2 other nodes in D

must dominate the nodes of (A-{al, a2))U(B-{b1)). Since v¢D, any

bJeB, 2 < j < -2, which is not in D implies that the two degree two
nodes adjacent to both bj and v must be in D. Furthermore, one of

821-3 and b.'_1 must be in D. In all cases there is no advantage in

using the bi's so we may assume D = (a a, b2, P ) Thus

3 y-1'"

every node xeV-(v)-A-B has at least one neighbor in {bz, A bv—l}'
Notice that if x's neighbor is in (b2, B b7'2)' say b2, we can
remove two edges to a, and by an analogous argument to the one
above, x must have a neighbor in B-(bz). Thus any such x having a
neighbor in (bl, b2, o b7_2) must have at least two neighbors in
B.

Now we derive lower bounds for |E|. First assume that each
xeV-(v)-A-B has a neighbor in B-(by-l)' implying that every such x
has at least two neighbors in B. Let D' = BU(v). Then each node in

V-D' has at least two edges to D'. Since N, = 2 and by assumption a

2

node is adjacent to at most 2y-3 degree two nodes, there are at most
2

v(2y-3)/2 degree two nodes in V-D'. Then at least (p-vy-v +3v/2) =

p-72+1/2 nodes in V-D’ must have degree at least three. Thus DS 2=
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2(P"1)+2(‘72'3’7/2)+3P'3‘12+31/2 - 5p-72-7'y/2 implying |E| >
(5p-1°-71/2)/2.

Next assume there exists at least one xeV-{v)-A-B adjacent to
b7-1 and not adjacent to any other node of B. See Figure 6.10(a).
R(a27_3b7_1,a27_3v). Then a21-3eD and v,b1_1¢D. Since x is not
adjacent to a bi for i » y-1, D also must include some node to
dominate x. Furthermore, D includes B'(by-l) to dominate a; for 1 <
i < 2y-4. Assume that xeD to dominate itself. Then X must also
dominate v since vbi is not an edge for 1 < i < y-2 by Lemma 6.9,
See Figure 6.10(b). Since v is adjacent to at most 2y-3 degree two
nodes, dx 2 3. Notice that any node in V-(v, x)-A-B must either be
adjacent to x and b_y_1 or have two neighbors in B since
D(a21_3,x,b1,b2,...,b1_2) and D(al'a2'b2""'b1-1)' Also observe
that no degree two node y can be adjacent to both x and b1'1 since
then we could have taken y as x and seen d_ 2 3. Thus every degree
two node in V-{v)-B must have two neighbors in Bu{v) and as before
DS 2 5p-12-77/2.

Now suppose that yeN(x) dominates x. Then D = (327_3, Y, bl’
b2, " b7_2) dominates G-a27_3v-a21_3b7_1 and yv is an edge to
dominate v, again because of Lemma 6.9. See Figure 6.10(c). By
reasoning similar to above every node of V-{v}-A-B must either be

adjacent to both b‘7 and y or be adjacent to two nodes in B. Thus

-1
every degree two node has two neighbors in BU(v,y), and there are
no degree two nodes adjacent to both y and bi for 1 £ 1 = y-2.

First assume y is adjacent to by-l' Then Lemma 6.9 implies there
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is at most one degree two node adjacent to both y and b7_1. Since
no node is adjacent to 2y-2 degree two nodes, there are at most 12-
37/2+1 degree two nodes in V-(Bu(v, y}). As before, we shall
compute the degree sum. Notice that it must include a count of &4 in
consideration of the edges vy and yb'y_1 internal to BU{v, y)}. Thus
DS > 2(p-7-1)+4+2(72-37/2)+243(p-v-1-72437/2-1) = Sp-42-7v/2-2
implying |E| 2 (5p-—12-7-1/2-2)/2.

Finally assume y is not adjacent to by-l' Then y must be
adjacent to two bi's and at most two degree two nodes can be
adjacent to both y and by-l' Again considering Bu(v, y), DS >
2(p-7-1)+6+2(72-37/2) Hit3 (p-7-1-72437/2-2) = Sp-v2-77/2-1 implying
lE|] = r(5p-72-7'y/2-1)/2-‘.

Examining all the cases shows that always |E| 2
rZSp-12-71/2-2)/§1, which is the bound stated in the lemma. Notice
that this exceeds rFSp-12-47+2)/§1 when y = 10. By Theorem 6.2
there is a 2-y-insensitive graph with this latter number of edges.

Thus the situation under consideration cannot occur in an extremal

graph if v > 10. ®

Next we consider the situation where a node is adjacent to at
most 2y-4 degree two nodes. The next theorem establishes lower

bounds in this situation.

a 11

Let G = (V,E) be a 2-y-insensitive graph in which no node has
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more than 2vy-4 degree two neighbors. If any pair of nodes of G has
two degree two nodes adjacent to both of them, then |E| >
(5p-3v2-11)/2 for p = 3v2-10v+10.
Proof

Suppose a, and a, are degree two nodes with common neighbors x

and y. R(alx,aly). By Lemma 6.1 aleD and neither x nor y is in D.

Thus azeD along with y-2 other nodes. Hence the maximum number of
nodes of degree at most two is 1+2+(y-2)(2vy-4) = 212-81+11 since

each degree two node must have a neighbor in D and at most one of x

and y has degree two since G is connected. Substituting 272-81+11
for f£(v,k) in Theorem 4.6 and using |E| for Ez(p,y), we get |E| =

(5p-372-11)/2 when p = 3y2-104+10. ®

Lemma 6.12

let G = (V,E) be a 2-y-insensitive graph in which no node has
more than 2v-4 degree two neighbors. If each pair of nodes of G has
at most one degree two node adjacent to both of them, then |E| >
(5p-272-67-2)/2 when p 2 27°+2.
Proof

Case 3 in the proof of Lemma 6.5 shows that any node can have

at most y degree two neighbors. Suppose node v has vy degree two

neighbors 8y, 8y, .oy 8 and these neighbors are also adjacent to
bl’ b2. ..., b, respectively. Suppose further that xeV-{v, a,,
¥ §
s 81.b1, byy ey b1) is adjacent to only omne b,, say b,. See

Figure 6.11. R(alv,albl). Then aleD and neither v nor b1 is in D
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Figure 6.11
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implying that a, or b1 is in D for 2 < i < y. But then x is not

dominated, a contradiction. Thus all nodes in V-{v, bl' ciy DY
T

have at least two edges to (v, bl' ..., b}, so there are at most
i |

(12+1)/2 degree two nodes. Then DS 2> 2(p-1-1)+2(12+1)/2)+3(p-1-1-
2 2
(v247)/2) = 5p-7°/2-117/2-5 implying |E| = (Sp-1/2-11v/2-5)/2.
Suppose next that no node is adjacent to y degree two nodes.

Let degree two node a, have neighbors v and bl' R(albl,alv).

Again Lemma 6.1 implies alcn and neither v nor b1 is in D. Thus at
most y-1 nodes are adjacent to degree two nodes in V-D, so there are
at most 12-21+2 degree two nodes. Substituting for f(v,2) into the
lower bound of Theorem 4.6 and again replacing E2(p,1) by |E|, we
get |E| > (5p-212-61-2)/2 when p 2 212+2. This is the smallest

value and yields the result. B

Let g(vy) = max(212+2, 372-101+10). The conclusion drawn from

the preceding lemmas is stated in the following theorem.

Theorem 6.3

Let p 2 g(vy). Then Ez(p.v) > (5p-312-11)/2.
Proof

Let G = (V,E) be a 2-y-insensitive graph. Examination of
Lemmas 6.8, 6.10, 6.11 and 6.12 shows that in any situation |E| =
(5P'372-11)/2 for all v = 3. However, the different bounds can be
compared for only those values of p which enabled their calculation.

2
Thus we must use the largest such value which is 29742 if3svy=<9
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and 312-107+10 if y210. =

We now investigate the situation when p < g(v). The next two
theorems provide a general although undoubtedly loose lower bound

2
for E"(p,y) for all p. This bound will be employed in this section

2
for the interval v~ =< p < g(y) and in Section 6.3 when p < 12.

Theorem 6.4

A tree cannot be 2-y-insensitive for v > 3.
Proof

Suppose tree T is a 2-y-insensitive graph rooted at r.
Consider leaf node v on the bottom level of T. Let u be v's parent.
By Corollary 6.2 du 2 3 and each of u's neighbors except v must have

degree at least three, a contradiction since v is on the bottom

level of T. 0

Corollary 6.3

Any connected 2-y-insensitive graph has at least p edges when
vy = 3.
Proof

A connected graph must have at least p-1 edges and one with
exactly p-1 edges is a tree. By Theorem 6.4 no tree is 2-v-

insensitive, so at least p edges are necessary. 1)
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The next theorem uses Dutton and Brigham’'s (1988) result that

E(p,y) = 2p-3vy when p 2 3y to establish a lower bound for Ez(p,y).

Theorem 6.5

Let p = 3y and v > 3. Then E>(p,v) > 2p-3v+1.

Proof

Let G be a 2-y-insensitive graph on p > 3y nodes. Note that
G-e must be l-y-insensitive for an arbitrary edge e. If G is
connected for some edge e, then G-e must be a connected 1l-v-
insensitive graph. By Dutton and Brigham’s result G-e has at least
2p-3y edges, so G must have at least 2p-3y+l edges.

If G is disconnected for all edges e, then G must be a tree.
But no tree is 2-y-insensitive, a contradiction. B

6.3, is Wl " 2

In this section we derive bounds for Ez(p,y) when p < 12.
Since we require that a 2-y-insensitive graph G be initially
connected, p = 2v, which implies that Ez(p,y) is undefined when p <
2y. From Corollary 6.3 we know that any connected 2-vy-insensitive
graph must have at least p edges. The next three theorems construct

the only 2-v-insensitive graphs having exactly p edges.

Theorem 6.6

2
Let p = 2y with y = 3. Then E"(p,7) = P-
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Proof

By Corollary 6.3 any connected 2-y-insensitive graph must have

at least p edges. It suffices to show such a graph having the

insensitive property with p edges. Consider a cycle on <y nodes

with a pendant edge incident to each node on the cycle, as shown in
Figure 6.12. The domination number of G is y since each degree one
node or its neighbor must be in any dominating set. All that
remains to be shown is that the domination number remains vy when
arbitrary edges ey and e, are removed. In all situations a
dominating set can be found using any isolated nodes along with the

nodes on the cycle which, in G, are not adjacent to the nodes which

have become isolated. B

Theorem 6.7

Let p = 3y-2 and v 2 3. Then Ez(p,y) = p.
Proof

Again Corollary 6.3 guarantees Ez(p,v) 2 p, so it suffices to
demonstrate a 2-vy-insensitive graph having p = 37-2 nodes and p
edges. Consider the cycle on 3y-2 nodes. Clearly G has p edges and
domination number r231-2)/§] = v. Remove two arbitrary edges ey
and e, to create disjoint paths P, and Pp-i where 1 < i < [p/gj.
Then [i/3] nodes dominate P, and rZP-i)/i] nodes dominate Pp-i' It
can be shown that [1/3]+r(31-2-i)/3] = y. Therefore G is 2-7-

insensitive. &
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Figure 6.12
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Next we show that the graphs described in Theorems 6.6 and 6.7
are the only 2-y-insensitive graphs having p edges, and thereby

establish that p+l is a lower bound for Ez(p,y) when p » 2y, 3vy-2

and v = 3.

Theorem 6.8

Graphs on p = 2y and p = 3y-2 nodes as described in the proofs

of Theorems 6.6 and 6.7 are the only 2-y-insensitive graphs having p

edges for p = 2y and y 2= 3,
roo

Any graph having p edges must either be a cycle or have
exactly one cycle subgraph with trees rooted at nodes on the cycle.
Let G be a 2-y-insensitive graph having p edges and a cycle
subgraph Cn’ and let tree T be incident to node v on the cycle. No
node of T can be adjacent to any node of Cn other than v or to
another tree because then a second cycle would be formed. Suppose T
has more than one level and consider a leaf node on the lowest
level. An argument identical to that in the proof of Theorem 6.4
shows that this leads to a contradiction. Therefore T has at most
one level, implying T is a pendant edge since Lemmma 6.2 shows a
node can be adjacent to at most one degree one node.

By Corollary 6.2 any neighbor of a degree one node cannot be
adjacent to a degree two node, so either every node on the cycle is
adjacent to a degree one node or no node on the cycle is adjacent to

a degree one node. Since at least one endpoint from each pendant
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edge must be in any minimum dominating set, the only situation where

each node on the cycle is incident to a pendant edge is the graph on

P = 2y nodes as described in Theorem 6.6. Therefore we consider

only cycles Cp. If p < 3y-2 or p > 3y, the domination number is not

v, a contradiction. Suppose p = 3y-1 or 3y, and remove two adjacent

edges to form VR 1 This has domination number [1/3]+[(p-v)/3]

= y+1, a contradiction. B8
Corollary 6.4

Let p » 2y, 3v-2. Then Ez(p,y) > p+l.

Therefore Ez(p,y) is determined for p < 2y and p = 3y-2. Next

we consider the range 2y+l < p < 34-3.

Theorem 6.9

Let 2441 < p < 37-3. Then E2(p,7) = 2p-27.
Proof

Construct a 2-y-insensitive graph G = (V,E) having 2p-2y
edges as follows. Let V = BUC where B = {bl, b2, s %lal bV) and C =

ey eor wvns ). Form a cycle on the nodes in C and let each

c
P-Y
bicB be adjacent to one cj or to two adjacent cj's such that no two
b 's are adjacent to the same ey and each e has a neighbor in B.
Observe that this construction can always be carried out since v+l =<

P-Y < 2v-3.

It remains to be shown that G is 2-y-insensitive. Obviously B
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dominates and since either bi or one of it's neighbor must be in any

dominating set and each cj dominates exactly one bi’ y¥ nodes are

necessary. Now we show that 1(G-e1-e2) = v(G) for arbitrary edges

and e,.

€1 2

Case 1 1If both e and e, are on the cycle, then B dominates.

Case 2 Suppose e is on the cycle and e, is incident to b

i

off the cycle. 1If ., = bicj where b1 is a degree one node, then cj

can be dominated by at least one neighbor in C. Hence cj's neighbor

on C and B-{bk) dominate, where bk is adjacent to c If e

g 9 2 bicj
and bi has degree two, then y nodes on the cycle dominate.
Case 3 Both e, and e, are off the cycle. If e and e, are

incident to degree one nodes bi and bj' then b,, b. and y-2 nodes on

- ey
the cycle dominate. If e and e, are both adjacent to bi' then bi
and -1 nodes on the cycle dominate. If e is adjacent to a degree

one node b1 and e, is adjacent to a degree two node, then bi and -1
nodes on the cycle will dominate. If e and e, are adjacent to
distinct degree two nodes, then y nodes on the cycle dominate.

Thus G is 2-y-insensitive and the result follows. B

Corollary 6.5

Let p = 2y+l1 and v 2 4. Then Ez(p,y) = p+l when p = 2y+1.
Proof
Theorem 6.9 implies Ez(p,y) < 2p-2y = p+l and Corollary 6.4

implies Ez(p,y) >ptl if y24. H
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Next we develop an upper bound for the interval 3v-1 < p =< 12-

Theorem 6.10

2
Let 3y-1 < p < v -1. Then Ez(p,y) < 3p-6v+4.
Proof

We construct 2-y-insensitive graphs as follows. Form a cycle

on 3vy-2 nodes labeled ¢c., ¢,, ..., ¢ and from each node b,eV
1* 2 3v-2 i

that is not on the cycle place edges to the same three consecutive
nodes on the cycle, say C1s Co» and Cq- See Figure 6.13 for the
constructions when p = 3y-1 and p = 3y. Then G has 3y-2+3(p-3v+2)
= 3p-6y+4 edges. Obviously, y nodes dominate G and y nodes are
necessary since any node dominates at most three nodes on the cycle.

To show G is 2-vy-insensitive we consider the possible ways of

removing two edges e and e,-

Case 1 Both e and e, are on the cycle subgraph. By Theorem
6.7 037_2 is 2-y-insensitive, so y nodes, including at least one of
cl, c2 and c3, dominate G.

Case 2 Both e and e, are incident to bi's. Then at least

one of ok c

v-1 other nodes of the cycle, dominate G-e,-e,.

2 and Cqy can still dominate all bi's and it, along with

Case 3 Edge el is incident to a bi and edge e, is on the
cycle. Then vy nodes on the cycle, including one of ¢;, ¢, and c,,
dominate.

Therefore G is 2-y-insensitive. ®
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ary of Results
Table 6.1 summarizes the results of this chapter for E2(p,1)

when v = 3 and for all values of p.
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TABLE 6.1
P E2(P.1) Difference Between
Lower and Upper Bounds

< 29 undefined S

2y 2y 0

29+1 2y+2 0
2942 < p < 3v-3 p+l < EX(p,7) = 2p-2v o)

3y-2 39-2 0

3y-1 p+l =< Ez(p,y) < p+2 1
Yo i p = poel 2p-3y+1 < E>(p,7) < 3p-6v+b 0(+%)
¥ 2p-37+1 < EX(p,7) < 2p-2 oy)
41 2p-37+1 < E2(p,7) S |(5p-v2-471+2)/2] )
1241 < p < g(M) 2p-37+1 < E2(p,v) = [(Sp-a2-6m2)/2]  0(+D)
P2 gly) (5p-312-11)/2 < Ez(p,y) < rZSp-12-61+2)/i] 0(12)

Here g(v) = max(2y>+y, 37°-107+10).



7. APPLICATIONS OF 2-v-INSENSITIVE GRAPHS IN NETWORK DESIGN

A number of interesting network designs for large
distributed/ multiprocessor systems have appeared in the literature
(Akers 1987; Ciminiera and Serra 1986; Pradhan 1985; Yanney and
Hayes 1986). Some of the key criteria considered in connecting the
processors are connection complexity, multiple configuration
flexibility, fault tolerance, cost, and simple yet fast routing
(Pradhan 1985). Techniques from graph theory are useful in
producing minimum cost network designs that meet specified
requirements (Tannenbaum 1981).

Networks are represented by undirected graphs whose nodes
denote processors and whose edges denote communication links. A
graph G having p nodes with domination number 7y corresponds to a
network having p processors where a minimum number, vy, of them can
communicate directly (in 1 hop) with the remaining p-y processors.
A network with this property has a minimum sized core group that
could function in a variety of ways, for example, as "masters" or as
repositories for a global data base essential to the other nodes.
It may be desirable that this property not be lost when a component
fails. 1In such situations it is worthwhile to establish redundant

network links or otherwise construct a topological design which
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preserves this property when one or more links or nodes fail.

This chapter introduces a topological design which evolved
from our search for extremal 2-y-insensitive graphs. Its
characteristics make it a suitable architecture for point-to-point
communication networks and for interconnection networks. We shall
discuss both applications. The features of this architecture are an
integral part of the design and meet most of the key requirements
mentioned above. The network, which we call the G-network (the G
for "gamma"), maintains its properties in the presence of faults in
the system. In this context, a fault is interpreted as the failure
of a single node or one or two links.

The G-network is an extremal 2-y-insensitive graph, so 7y nodes
will dominate G even after two links fail. Notice that the
dominating set of y nodes is not fixed and may change in a way which
depends on which links fail. It is beyond the scope of this
dissertation to discuss protocols to reconfigure the network to
reflect the switch to a different set of dominating nodes. Instead
we concentrate on the "nice" properties of the G-network that are
inherent from its basic structure.

We begin by constructing the G-network and discussing its
fault tolerant properties in a point-to-point network architecture.
The design allows a core group of processors to communicate directly
with the remaining processors. We treat the core group as file
servers and analyze the performance of the network when a fault

occurs.
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Next we consider the G-network as a processor to processor
interconnection and compare it to the mesh connected Illiac, Barrel
Shifter, and Hypercube networks (Hwang and Briggs 1984). The G-
network shows a significant improvement over these popular networks
in the maximum number of routing steps required for any two nodes to
communicate. Moreover, the G-network has a relatively small number
of links in comparison to these networks.

Finally, we introduce a multi-layered G-network obtained by
interconnecting copies of the G-network in parallel. This design is

suitable for interconnection networks used in massively parallel

computation.

7.1. The G-network and Its Properties

The G-network on p = 72 nodes is constructed as follows.
Designate vy nodes as "special" nodes and label them al, ay;
31' For each pair {ai, aj), i » j, add two degree two nodes
adjacent to both a; and aj. Label arbitrarily the degree two nodes
bi' 1<1=s 72-7. Figure 7.1 illustrates the G-network for v = 3
and Figure 7.2 shows it for y = 4. Clearly the vy special nodes
form a minimum dominating set for the gra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>