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Abstract 

A connected graph G is defined to be k-1-insensitive if the 

domination number 1(G) is unchanged when an arbitrary set of k 

edges is removed. The problem has been solved fork= 1. This 

Ph.D. dissertation focuses on finding extremal k-1-insensitive 

graphs on p nodes, fork~ 2. A graph is extremal if it has the 

minimum number of edges. 

Two subproblems are considered. The first, which has been 

solved completely, specifies that the same set of nodes dominates 

each graph obtained from G by removing k edges. The second requires 

only that the graph G be connected. This is a much more difficult 

problem and represents the area of major contribution. 

Asymptotically correct values for the minimum number of edges e have 

been found for all k ~ 2 and all 1 ~ 2 by establishing lower and 

upper bounds fore. The difference in these bounds is 0(1k) and is 

independent of p. The general results are improved when k 2 and 1 

~ 3, and exact solutions are given when k - 1 = 2 and when 1 1 
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with k arbitrary. 

Considering applications for k-~-insensitive graphs, we 

introduce the G-network, a new topological design which is a 

suitable architecture for point-to-point and interconnection 

networks. We show that the G-network has the following desirable 

characteristics: efficient routing, simple connections, small 

number of links and fault tolerance. Significant improvement in 

terms of routing performance and the number of edges is shown when 

the G-network is compared to the popular Barrel Shifter, Illiac and 

Hypercube networks. 
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1. INTRODUCTION 

This dissertation is concerned with a theoretical problem in 

graph theory. In recent years graph theory has emerged as a useful 

tool in the modeling of a number of computer science problems , 

including network design, routing, algorithm design, compiler 

design , Petri nets, complexity theory, deadlock detection, VLSI 

design, and processor interconnections in multiprocessor systems. 

In his book, Graph Theory, Harary (1972), whom many recognize 

as the father of modern graph theory, links computer science to the 

growth in the interest in graph theory by establishing applications 

of graph theory in both communication science and computer 

technology. Harary's (1987) editorial in the Journal of Graph 

Theory stresses the importance of graph theory as a mathematical 

model in many scientific fields. However, he specifically 

spotlights computer science as follows: 

I have deliberately saved by far the currently most important 
area of application of graph theory for last. Of course I am 
referring to computer science . We are all aware that the 
computer/information revolution is only just beginning. It is 
not sufficiently emphasized that graph theory pervades all 
three major branches of computing: hardware, software, and 
theory. Among the topics within these three branches to which 
graph theoretic models are especially applicable are: computer 
languages, logic circuits and switching theory, computer 
networks and reliability, interconnection networks for 
parallel processors such as hypercubes, fault-tolerant and 
diagnostic graphs, VLSI (very large scale integration) design, 
and, of course, AI (artificial intelligence), in particular, 
semantic networks. (iv) 
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Tannenbaum (1981) devotes a chapter of his book, Computer 

Networks, to a direct application of graph theory in network 

design. A goal of network design is to connect desired sites with a 

minimum number of links in order to minimize costs. However, to 

achieve high reliability with unreliable components, the network 

must be redundant. Techniques from graph theory are paricularly 

useful in producing a minimum cost design that meets the specified 

requirements. Several books survey the applications of graph theory 

in different disciplines (Roberts 1978; Temperley 1981; Walther 

1984; Wilson and Beineke 1979). 

With an awareness of significant applications to computer 

science as well as to many other areas and an appreciation for the 

beautiful field of graph theory as motivation, we introduce the 

graph theoretical problem under investigation in this dissertation. 

All terms not specifically defined here can be found in Chartrand 

and Lesniak (1986). 

All graphs considered are finite and undirected with no loops 

or multiple edges. For a graph G (V,E) we denote the cardinality 

of Vas p. An edge joining nodes u and vis uv and the degree of 

node vis d 
V 

The set of nodes which are adjacent to vis node v's 

open neighborhood denoted N(v). A graph G is connected if every 

pair of its nodes are joined by a path. 

A subset of nodes D~V is a dominatin~ set for a graph G if 

every node of G is either in Dor is adjacent to some node of D. 

The domination number ~(G) is the minimum size of any dominating 
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set. A connected graph is edge domination insensitive, or just 

7-insensitive, if 1(G) - 1(G-e) for any edge e, where G-e is the 

graph obtained from G by removing e. Dutton and Brigham (1988) 

consider the problem of finding extremal graphs having the 

1-insensitive property. A 1-insensitive extremal graph on p nodes 

is one which has the minimum number of edges. 

In this dissertation we extend the notion of 1-insensitivity 

by considering the removal of more than one edge. Thus we define a 

connected graph G to be k edge domination insensitive, or just 

k-2-insensitive, if the domination number 1 is unchanged when an 

arbitrary set of k edges is removed. The problem has been solved 

fork - 1 (Dutton and Brigham 1988). This dissertation focuses on 

finding extremal graphs, that is, graphs having the smallest number 

of edges required for any k-1-insensitive graph on p nodes, fork~ 

2 . 

Several subproblems are possible. We consider two. The 

first insists that the same fixed set of 1 nodes dominate G no 

matter which set of k edges is removed. In the second the only 

restriction is the initial connectedness of G. 

According to Bollobas (1978) in his book Extremal Graph 

Theory. problems in the field of extremal graph theory tend to be 

difficult. The search for extremal k-1-insensitive graphs proved to 

be no exception. As a result, the scope of this research is limited 

to finding exact values in the special cases when 1 - 1 and k ~ 2 

and when 1 - 2 and k - 2. The minimum number of edges required in 
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these cases was determined by establishing relevant structural 

properties of extremal graphs. Using restrictions provided by these 

structural properties and extensive counting arguments, we obtain 

the solution for 1 - 2 and k - 2. The approach used for 1 - 2 and k 

- 2 breaks down for 1 ~ 3 and k ~ 2, and the exact result has proved 

elusive. Nevertheless, an asymptotically correct value, asp 

approaches infinity, for Ek(p,1) when k ~ 2 has been found. Upper 

and lower bounds for Ek(p,1) differing by 0(1k) establish the 

asymptotic result. Furthermore, the gap between the bounds is 

narrowed fork - 2 and 1 ~ 3 achieving tighter bounds for all values 

of p and exact results for some small values of p. 

One is always interested in possible applications of 

theoretical results. Network design represents one such area for 

the k-1-insensitive property. A network corresponding to an 

extremal graph will be fault tolerant in terms of domination when 

any k links fail, and will have the smallest number of links among 

all such networks. That is, a network which can be represented by 

an extremal k-1-insensitive graph has a minimized link cost and the 

property that some set of 1 nodes can communicate directly in one 

hop with the other p-1 nodes even after k links fail. 

We introduce a special 2-1-insensitive graph called the G

network which is a suitable architecture for point-to-point and 

interconnection networks. The G-network has the following desirable 

characteristics: efficient and simple routing, small number of links 

and high degree of fault tolerance. As a point-to-point network 
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with designated file servers, the G-network provides all nonisolated 

nodes with direct access to the file servers even if a node or up to 

two links fail. As an interconnection network, the G-network is 

more economical than each of the well-known Illiac Mesh, Barrel 

Shifter, and Hypercube networks in terms of the number of links 

(Hwang and Briggs 1984). Furthermore, the G-network shows a 

significant improvement over the others in the maximum number of 

routing steps required for any pair of nodes to communicate. Unlike 

most interconnection networks where the maximum number of routing 

steps required is dependent upon the number of processors (nodes), 

the maximum number of routing steps needed in the G-network is 

constant at four independent of the number of processors (nodes) and 

remains four when a single node or link fails . For massively 

parallel computation we construct a multilayered interconnection 

network by interconnecting copies of the G-network in parallel. 

The features of these networks are an integral part of the 

graph theoretic design and remain relatively intact in spite of 

faults in the system. We note that the inherent design was a by

product of our search for extremal 2-~-insensitive graphs. 

The remainder of this dissertation will be organized as 

follows. In Chapter 2, we present a literature survey with two 

major sections. The first section considers the general area of 

domination theory in graphs. The second section examines the 

specific problem of edge insensitive domination and presents results 
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from Dutton and Brigham's (1988) study of this concept. Chapter 3 

includes the results for the first subproblem, the fixed dominating 

set case, and presents a modified version of this subproblem. We 

k employ Ef(p,7) to represent the minimum number of edges required in 

this case. 

The major contributions of this dissertation result from the 

second subproblem and are contained in Chapters 4, 5, and 6. 

Ek(p.~) represents the minimum number of edges required for this 

subproblem where the only restriction is connectedness of the 

original graph. Chapter 4 presents the asymptotically correct 

k result for E (p,7) when k ~ 2 and the exact value when k ~ 1 when 1 

- 1. The exact results fork - 2 and 1 - 2 are in Chapter 5. 

k Chapter 6 tightens the bounds from Chapter 4 for E (p,7) when k - 2 

and~~ 3. 

Chapter 7 introduces the G-network and the multi-layered G

network as examples of applications of k-7-insensitive graphs. 

Related problems posed by Frank Harary (1988) are presented in 

Chapter 8. These problems consider when a graphical invariant 

changes or does not change due to the addition or removal of a node 

or an edge. Note that a l-7-insensitive graph is an extremal 

unchanging graph in terms of domination when an edge is removed. We 

present a survey of the known results along with our own research on 

the problem of changing and unchanging when the graphical invariant 

is the domination number 1(G). 
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Chapter 9 concludes the dissertation and outlines suggested 

future work. The appendix contains a catalog of all 2-7-insensitive 

graphs on p ~ 10 nodes. 



2. A SURVEY OF DOMINATION LITERATURE 

The work reported in this dissertation is a contribution to 

the general area of domination theory in graphs. The purpose of the 

first section of this literature survey is to highlight some of the 

recent developments in domination theory. However, our intent is 

not to give details of all aspects of domination; rather it is to 

provide a general background of domination that will set the stage 

for the second section's overview of edge domination insensitivity, 

which is the basis for our research. 

2.1. Theory of Domination 

The graphical invariant known as domination number, which is 

represented for graph G by the symbol ~(G), has been studied 

extensively. According to Hedetniemi and Laskar (1987), more than 

100 research articles on the subject of domination had been written 

in the four years prior to the publication of their paper. We shall 

present a brief survey of the literature on general domination 

theory in this section, which is subdivided into the following four 

subsections: applications, bounds on domination number, algorithms, 

and domination related concepts. Because of the volume of papers on 

domination theory and because our intent is to give just the flavor 

of the research in the general area of domination, we provide only a 

8 
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small sample of the current work for each of the subsections. 

2.1.1. Applications 

A graph having domination number~ corresponds to a network 

having p nodes where a minimum number, ~. of them can communicate 

directly (in one hop) with the remaining p-~ nodes. Additional 

examples of applications for domination are given by Cockayne and 

Hedetniemi (1977) . For example, they describe a situation in 

coding theory where the graphs have nodes which are n-dimensional 

vectors and two nodes are adjacent if they differ in exactly one 

component . Then the single error correcting codes correspond to the 

dominating sets of the graph which have certain additional 

properties. They also present the problem of keeping all nodes in a 

network under surveillance by a set of radar stations, the 

dominating set. 

Similarly, Roberts (1978) suggests an interesting application 

in nuclear power plants. The plants (nodes) are positioned in 

various locations, and an arc is placed from location x to location 

y if it is possible for a watchman at x to observe a warning light 

at location y. What is the minimum number of guards necessary and 

where should they be located? The answer to this question 

corresponds to a minimum dominating set of a directed graph . 

Hare, Hedetniemi, and Hare (1986) explore determining the 

domination of grid graphs. Grid graphs are frequently studied 

models of processor interconnections in multiprocessor VLSI systems. 
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A dominating set in such a graph represents a set of processors 

which can transmit to the remaining processors in one "hop." 

The examples presented here are a mere sampling of the 

possible applications of domination theory. For more detail of 

applications in a wide variety of fields, including communication 

theory, computer science, psychology and political science see 

Cockayne (1976); Cockayne, Dawes and Hedetniemi (1980); Cockayne and 

Hedetniemi (1977); Brigham and Dutton (1988b); Hedetniemi and Laskar 

(1987); Hedetniemi, Laskar and Pfaff (1985); Roberts (1978); and 

Tannebaum (1981). 

2.1.2. Bounds on the Domination Number 

Relationships between graphical invariants represent an 

important area of research. The literature includes several bounds 

on the domination number in terms of other invariants, and many of 

these are cited in Allan, Laskar, and Hedetniemi (1984); Brigham and 

Dutton (1988a); Cockayne and Hedetniemi (1977); Hedetniemi and 

Laskar (1987); Laskar and Walikar (1981); and Marcu (1985). We note 

only a few of the more common bounds listed in these references. 

Let G - (V,E) be a graph with domination number~, minimum degree o, 

and maximum degree~- Then 

1. p-e ~ 1 ~ p-~ 

2. e ~ (p-~)(p-~+2)/2 

3. p/(~+l) ~ 1 

4. If there are no isolated nodes, ~ ~ p/2 
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5. If there are no isolated nodes, ~ ~ (p-6-2)/2 . 

Fewer lower bounds than upper bounds exist for ~(G) (Hedetniemi and 

Laskar 1987). A recent paper by Brigham and Dutton (1988a) 

establishes both lower and upper bounds for ~(G). 

Some reports consider finding bounds on domination number 

which are valid only for a specific family of graphs . For example, 

Cockayne, Hare, Hedetniemi, and Wimer (1985) determined both upper 

and lower bounds for the domination number of grid graphs. They 

concluded that the problem of determining the domination number of 

an nXn grid graph is closely related to the open problem of 

determining the minimum number of queens which are required to 

dominate an nXn chessboard (See Section 2.1.4) . 

2 . 1 . 3. Domination Algorithms 

The problem of determining the domination number of an 

arbitrary graph is NP-complete (Garey and Johnson 1979). 

Hedetniemi and Laskar (1987) state that computing the domination 

number for several restricted classes of graphs, including planar, 

grid, perfect , chordal, split, bipartite, and line graphs, remains 

NP-complete . On the other hand, in the same paper they reference 

polynomial algorithms for finding the domination number of trees, 

forests and strongly chordal graphs . 

Furthermore, Hetdetniemi, Laskar, and Pfaff (1986) present a 

linear time algorithm for finding a minimum dominating set in a 

cactus. Booth and Johnson (1982) show that the dominating set 
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problem for chordal graphs and directed paths is NP-complete. 

However, they present a linear time algorithm that solves the 

problem for interval graphs. Moreover, Hedetniemi, Hedetniemi, and 

Laskar (1985) report that Gurevich, Stockmeyer, and Vishken have 

designed a polynomial time algorithm that is successful for graphs 

that differ from trees by only a fixed number of edges. Hare, 

Hedetniemi, and Hare (1986) solve the problem in polynomial time on 

kXn complete grids for any fixed k. 

Other polynomial algorithms and NP-completeness results for 

domination and domination related concepts appear in Hare, 

Hedetniemi, and Hare (1986); Hedetniemi, Hedetniemi, and Laskar 

(1985); Hedetniemi and Laskar (1987); Hedetniemi, Laskar, and Pfaff 

(1986); and Pfaff, Laskar, and Hedetniemi (1984). 

2.1.4. Domination Related Concepts 

The literature provides many alternative approaches to the 

concept of domination. According to Hedetniemi and Laskar (1987) 

approximately 30 different notions of domination are currently 

known and" ... many more can just as easily, and naturally, be 

defined" (18). 

Conditions can be imposed on both the dominating set and the 

dominated set to yield new concepts . Then, as with the standard 

notion of domination, one is usually interested in the minimum 

sized dominating sets of the prescribed types. We mention only a 

few of the possibilities in this section. 
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The edge domination number of a graph G, 1'(G), is the minimum 

number of edges in a set F such that every edge in E-F is adjacent 

to at least one edge in F. Like the node domination problem, the 

edge domination problem is NP-complete. For bounds and results 

involving 1'(G) see Hedetniemi, Hedetniemi, and Laskar (1985); and 

Laskar and Peters (1985). 

The independent domination number of a graph G, i(G), is the 

minimum cardinality of any dominating set in which all nodes of the 

dominating set are independent, that is, no edge joins any two of 

them. Independent domination is also NP-complete, and thus research 

has concentrated on establishing bounds for i(G) (Laskar and 

Walikar 1981) and in developing polynomial time algorithms to 

determine i(G) for certain families of graphs (Farber 1984; Pfaff, 

Laskar, and Hedetniemi 1984). 

The concept of dominating cliques requires that the 

dominating set induce a complete subgraph (clique). This notion is 

in some sense the opposite of independent domination. However , an 

independent dominating set always exists for a graph whereas a 

clique dominating set may not . The literature contains 

characterizations of graphs possessing dominating cliques, bounds 

for the clique domination number, 1k(G), and algorithms for 

determining 1k(G) (Cozzens and Kelleher 1986). This type of 

domination has possible applications in network and communications 

theory where each node in a designated set of nodes has the ability 

to communicate directly with every other node in the set. Further , 
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every node which is not in the set can communicate directly with at 

least one node in the set. In their paper Cozzens and Kelleher 

(1986) suggest that it might be important in setting up network 

links to provide this ability for a strong core group that needs to 

communicate directly with each other member of the core. 

Another notion of domination which places a restriction on 

the dominating set is called connected domination. As the name 

suggests, the dominating set must induce a connected subgraph. 

Although this concept is in a sense less restrictive than clique 

domination, it could be applicable in network design where members 

of the core group must be connected by a path in the core. Of 

course this concept is defined only for connected graphs. Laskar 

and Peters (1983) establish several bounds for the connnected 

domination number, ~ (G). 
C 

A well known problem involving a dominating set, the queens 

problem, is to determine the smallest number of queens which can be 

placed on a chessboard so that every square is dominated by at 

least one queen . Among the many solutions to this problem, one 

solution requires that every queen be dominated by at least one 

other queen (Allan, Laskar, Hedetniemi 1984). This solution 

suggests yet another domination concept called total domination. A 

set of nodes Dis a total dominating set if each node in Vis 

adjacent to some node in D. Notice that this definition demands 

that each node in the set D must be adjacent to another node in D. 

We note that clique dominating sets and connected dominating sets 
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having at least two nodes are total dominating sets. However, total 

dominating sets are not necessarily connected or clique dominating 

sets. Again we can speculate about the applications for this type 

of domination in a network which requires that each of the members 

of the core group has a direct link to at least one other member of 

the core group. Bounds involving total domination are given in 

Allan, Laskar, and Hedetniemi (1984); Cockayne, Dawes, and 

Hedetniemi (1980); and Krishnamoorthy and Murthy (1986). 

Two additional interesting domination concepts, dominating 

cycles and paths, are closely related to the existence of 

Hamiltonian cycles and paths in graphs. A dominating cycle(path) 

is a cycle(path) of G for which every node of G is incident to at 

least one node of the cycle(path). A D-cycle(D-path) is defined by 

substituting the word edge for node in the above definition. 

Research considering a D-cycle(D-path) as a generalization of a 

Hamiltonian cycle(path) is presented in Clark, Colburn, and Erdos 

(1985); and Veldman (1983). 

Brigham and Dutton (1988b) introduce the factor domination 

number. A graph H - (V,E) has at-factoring into factors G
1

, c
2

, 

... , Gt if each graph Gi - (Vi' Ei) has node set Vi - V and the 

collection {E
1

, E2 , ... ,Et} forms a partition of E. A factor 

dominating set is a single subset of nodes which dominates each of 

the t factors of a graph H. The factor domination number, 1f' is 

the size of a smallest such set. Observe that when t - 1 we can 

interpret 1f as the ordinary domination number of H. Brigham and 
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Dutton (1988b) suggest possible applications of the factor 

domination number in communication networks . For example, the graph 

H could be considered as a communication network composed oft 

subnetworks (the factors Gi). Determining the factor domination 

number of a graph Hand its factors representing such a structure 

yields the minimum number of "master" stations required so that a 

message can be transmitted from them to the remaining p-1f stations 

in one hop, as long as at least one subnetwork is active. That is , 

these "master" stations can communicate directly to all desired 

sites as long as not all the subnetworks fail. Their paper 

establishes bounds for 1f in terms of other graphical invariants. 

Finally, we consider the concept of domination critical 

graphs. A node vis critical if 1(G-v) < 1(G) and G is node 

domination critical if each node is critical. Brigham, Chinn, and 

Dutton (1988) envision applications in network theory : 

Such networks have the pleasant characteristics that (1) any 
processor can be in a minimum set of these "dominating" 
processors, and (2) the failure of any processor leaves a 
network which requires one fewer dominating processors. (2) 

Closely related to this study are the works of Bauer, Harary , 

Nieminien, and Suffel (1983); and Sumner and Blitch (1983). Sumner 

and Blitch (1983) studied graphs where the domination number 

decreases when any edge is added. On a related problem, Dutton and 

Brigham (1988) define the edge domination insensitive property , 

which is the basis for our research. We postpone discussion of this 

property to the next section. 
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For additional domination concepts and related parameters, 

including irredundance number, domination pair number, and domatic 

number, see Chung, Graham, Cockayne, and Miller (1982); Favaron 

(1986); Hedetniemi, Hedetniemi, and Laskar (1985); Hedetniemi and 

Laskar (1987); Hedetniemi, Laskar, and Pfaff (1985); and Rall and 

Slater (1984). 

2.2. Edge Domination Insensitivity 

In the previous sections we have described briefly different 

concepts in domination. We now return to the specific domination 

related problem under consideration in this dissertation. It was 

Dutton and Brigham's (1988) study of the edge domination 

insensitive problem that laid the theoretical foundation for the 

present work . Thus we devote this entire section to reporting the 

results from their paper, which is the only existing paper in the 

literature on edge domination insensitivity (Dutton and Brigham 

1988). 

2 . 2 . 1 . Problem Description and Applications 

A connected graph G is edge domination insensitive if 1(G) -

1(G-e) for any edge e of G. For brevity we shall say 1-insensitive. 

Dutton and Brigham (1988) consider the problem of finding extremal 

graphs having the 1-insensitive property. In this context graphs on 

p nodes are extremal if they have the smallest possible number of 

edges. In their quest to find extremal graphs, they define and 

solve three different subproblems . We shall present each of these 
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subproblems in Section 2.2.2. 

Since the same number of nodes dominate a 1-insensitive graph 

after removal of any edge, a network having the 1-insensitive 

property could be considered fault tolerant in terms of domination 

when a link goes down. In the words of Dutton and Brigham: 

It is interesting to speculate on applications for 
1-insensitive graphs. One can, for example, contemplate 
minimum link communication networks having p stations where 1 
of them can transmit a message to the remaining p-1 stations 
with no message traversing more than one communication link. 
For networks corresponding to 1-insensitive graphs this 
property is preserved whenever a single communication link 
fails. (2) 

2.2.2. Results for Extremal 1-insensitive Graphs 

The first subproblem considered by Dutton and Brigham (1988) 

insists that the same fixed set of 1 nodes dominates G and G-e for 

all edges e of G. In this case they let Ef(p,1) represent the 

minimum number of edges needed in an extremal graph. The major 

result for the fixed case is given in the following theorem. 

Theorem A (Dutton and Brigham 1988) 

{ 

2p-21 

undefined otherwise. 

The second subproblem no longer requires that the same fixed 

set of nodes dominates, merely that some set of 1 nodes will 

dominate G-e for any edge e of G. Letting E(p,~) represent the 

minimum number of edges required, we summarize their results for 
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this problem in the following theorem. 

Theorem B (Dutton and Brigham 1988) 

3p-6 if -y - 1 and p .!: 3 

p-1 if -y .!: 2 and 2-y s p s 3-y-2 
E(p '-y) -

p if -y .!: 2 and p - 3-y-l 

2p-3-y if -y ~ 2 and p .!: 3-y 

The final subproblem adds the restriction that G-e be 

connected for every edge e. Their results for this problem are 

summarized in the following theorem. 

Theorem C (Dutton and Brigham 1988) 

E(p,-y) - 3p-6 if -y - 1 and p .!: 3 

E(p,-y)+l - p if -y .!: 2 and p 3-y-2 

E (p,c) - E(p,-y) - p if -y ~ 2 and p 3-y-l or 3-y 
C 

E(p,-y)+l - p+2 if -y ~ 2 and p - 3-y+l 

E(p,-y) - 2p-3-y if -y .!: 2 and p .!: 3-y+2 

The results for this subproblem are still unknown for 2-y s p 

s 3-y-3. However, it is known that no -y-insensitive graphs exist 

when p s 3-y-3 if -y - 2, 3 or 4. 

The reader is referred to Dutton and Brigham (1988) for 

illustrations of extremal -y-insensitive graphs in each of the three 

subproblems and for proofs of the theorems presented here. 
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In this dissertation we consider the more general problem of 

graphs having the ~-insensitive property when more than one edge, 

say k edges, are removed. 



3. FIXED DOMINATING SET 

The first of the two subproblems to be considered insists that 

the same fixed set of~ nodes dominate G and G-E' for all sets E'CE 

where IE' I - k. Designate the fixed set of nodes by v1 - {a1 , a2 , 

... , a} and the remaining nodes by v2 - {b1 , b
2

, ... , b }. We 
~ p-~ 

first observe that~~ 2 since a single node which dominates the 

entire graph cannot dominate the graph obtained by removing any k 

edges incident to it. 

Lemma 3.1 defines characteristics of an extremal graph for 

this subproblem. 

Lemma 3.1 

Any extremal k-~-insensitive graph with fixed dominating set 

v1 and E~(p,~) edges is a bipartite graph with partite sets v1 and 

v
2

. Furthermore, each node of v2 has degree k+l. 

Proof 

v
1 

is a fixed dominating set. Dominance is unaffected by 

edges between two nodes of v
1 

or two nodes of v2 and therefore no 

such edge is necessary. Any node bifV2 must have degree at least 

k+l so it can still be dominated by v1 when k of its incident edges 

are removed. On the other hand, it is never necessary to have more 

21 
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than k+l edges incident to bi since bi can be dominated via any 

unremoved edge. ■ 

For 1 sis 1, define Ai to be those nodes of v 2 which are 

adjacent to a
1
.ev1 , i.e., A. - {b.la.b. is an edge of G} . 

l. J l.J 

Theorem 3.1 

The fixed dominating set problem has no solution fork~ 2 . 

Proof 

Suppose G is an extremal bipartite graph with partite sets v
1 

and v 2 such that v1 is a fixed dominating set and lv1 1 - 1· By 

Lemma 3.1 each node of v2 has degree k+l. Thus 1 ~ k+l and it is 

possible to label the nodes of V such that a1 , a 2 , ... , ak+l have a 

common neighbor, say b
1

. A complete bipartite subgraph is induced 

by {a1 , a 2 , ... , ak+l}u(A1M 2n ... ~+1). Nodes a1 and b1 dominate 

this subgraph. Any node bfV2-(A1M 2n .. ·~+l) must be dominated by 

some aieV1 , i > k+l, else it would be in the intersection . Thus 

- 1-k+l which is less than 1, and hence creates a contradiction, 

when k ~ 2. Therefore, the problem as stated has no solutions 

unless k - 1. ■ 

In view of Theorem 3 . 1, we consider a modified version of this 

subproblem where the fixed dominating set v1 is not required to be a 

minimum dominating set if k ~ 2. A graph is said to be k-edge 
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domination fixed, or simply fixed, if v
1 

will still dominate G when 

any k edges are removed. 

Since v1 can no longer be a fixed dominating set of size~. 

we select a fixed dominating set of size mf > ~- That is, we let 

k lv1 1 - mf and define Ef(p,mf) to be the minimum number of edges 

required in a k-edge domination fixed graph. The proof to the 

following lemma is identical to that of Lemma 3.1. 

Lemma 3,2 

Any extremal fixed graph is bipartite with partite sets v1 

and v
2

. Furthermore each node of v
2 

has degree k+l. 

The following theorem is an immediate consequence of Lemma 

3.2. 

Theorem 3,2 

k 
Ef(p,mf) - (k+l)(p-mf). 

Clearly mf ~ k+l since each node in v2 has degree k+l. This 

condition is sufficient in order for the revised problem to have a 

solution. 

Theorem 3.3 

Extremal graphs exist for each value of mf and k such that 
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Proof 

Let biiv2 be adjacent to any k+l nodes of v1 . ■ 

Before presenting Theorem 3.4, we introduce relevant 

definitions and notation. A matching M~E in G is a collection of 

edges no two of which share a common endpoint. Matching M saturates 

X~V if every node of Xis an endpoint of some edge in M. The open 

neighborhood of set S~ is N(S) - {xiVlx is adjacent to at least 

one siS}. 

We shall say that graph H - (V,E) hast k-edge diminished 

subgraphs c1 , c2 , ... , Gt' called remainders, if each graph Gi -

(Vi,Ei) has node set Vi - V and Ei - E-{e1 , e2 , ... ,ek} for some set 

of k edges, 1 sis t. Subset D of Vis a remainder dominating set r 

if D is a dominating set for each G., 1 sis t, and the remainder r i 

domination number 1 is the size of a smallest remainder dominating r 

set. The following lemma will be useful in the proof to Theorem 

3.4. 

Lemma (Hall) 

Let G - (X,Y,E) be a bipartite graph where X and Y form the 

bipartite partition of V. Then there is a matching which saturates 

X if and only if IN(S)I ~ Isl for all S ~ X. 

The final theorem shows that a fixed dominating set is 

uniquely determined once mf and k are specified. 
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Theorem 3.5 

Let H be a connected k-edge domination fixed graph having mf 

lv1 1 s lv21 and the minimum number of edges. Then ~r - mf and v1 

is the only minimum remainder dominating set. 

Proof 

By construction v1 is a remainder dominating set for the 

Now let D be a minimum r 

remainder dominating set different from v1 . See Figure 3.1. Every 

node biiv2-Dr has all k+l of its edges incident to v1nnr or there 

would be a remainder subgraph in which b. is not dominated by D . 
l. r 

It follows that all neighbors of ajiv1-Dr must be in v2nnr. Note 

that v
1

nDr contains all nodes ajiv1 of degree at most k since there 

is a remainder subgraph which isolates aj. Thus every node of v1 -Dr 

has degree at least k+l. Let X - v1 -Dr, Y - v2nDr, S be an 

arbitrary subset of X, E be the number of edges incident to S, and 
s 

be the number of edges incident to N(S). Then (k+l)IN(S)I -

E ~ (k+l)lsl implying IN(S)I ~ 
s Is I. By Hall's lemma there 

is a matching which saturates X. Thus ~r - IDrl - lv1nnrl+lv2nnrl 

~ lv1nnrl+lv1-Dr1 - lv1 1 - mf. Hence ~r - mf and it follows that 

lvl-Drl - lv2nDrl• 

Notice that the number of edges considered so far is at least 

which is the minimum number possible. All of these edges are 

between X and Y and between v1-x and v2-Y. Since the graph is 

extremal, these are the only edges. Because v2nDr ~ ¢, the graph is 
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Figure 3.1 
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disconnected. This establishes the contradiction which shows that 

v1 is the only remainder dominating set. ■ 

This completes discussion of the first subproblem . 



4. SOME GENERAL RESULTS 

In this chapter and the two following we consider the second 

subproblem described in Chapter 1 in which all that is required is 

that some set of 1 nodes dominate when an arbitrary set of k edges 

is removed. The specific 1 nodes which dominate will depend on the 

particular edges deleted . Formally, a connected graph G is k-1-

insensitive if 1(G) - 1(G-E') for all sets E'~E where IE' I - k. We 

k employ E (p,1) to represent the minimum number of edges for such 

graphs having p nodes . General results are presented in this 

chapter while Chapters 5 and 6 investigate special cases in greater 

detail. 

4.1. 
k The Exact Value of E (p,l) 

The case of 1 - 1 is solved easily. 

Theorem 4.1 

Let k ~ 1. Then Ek(p,l) - (2k+l)(p-k-l) if p > 2k and is 

undefined if p s 2k. 

Proof 

Let G be a k-1-insensitive graph having p nodes and 1 - 1. 

Removal of any k edges involves at most 2k nodes of G. Suppose G 

has at most 2k nodes of degree p-1. Then k edges can be removed in 

28 
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such a way that none of these nodes can dominate the resulting 

graph, implying that the original graph is not k-1-insensitive. 

Thus G must have at least 2k+l nodes with degree p-1, so Ek(p,1) ~ 

(1/2)[(2k+l)(p-l)+(p-2k-1)(2k+l)] - (2k+l)(p-k-1). Consider a graph 

with exactly 2k+l nodes of degree p-1 and no other edges. This 

graph is k-1-insensitive, so equality holds. ■ 

We note that Theorem 4.1 is a generalization of Dutton and 

Brigham's (1988) result fork - 1. 

4.2. k An Asymptotic Value for E (p.y) 

The remainder of the chapter is devoted to the derivation of 

an asymptotically correct value, asp approaches infinity, for 

k E (p,1) when k ~ 2. Section 4.2.1 demonstrates an upper bound for 

k E (p,1) by constructing a specific graph . Section 4.2.2 then 

develops some general properties of k-1-insensitive graphs which are 

k employed in Section 4.2.3 to compute a lower bound on E (p,1). The 

difference between the lower and upper bounds found will be 

independent of p, so the asymptotic result will be established. 

4.2.1. The Upper Bound 

To establish the upper bound we construct a family of k-1-

insensitive graphs under the assumption that 1 ~ k+l and p ~ 1(k+l). 

Let n - L<p-1)/kJ and r - (p-1) mod k. Notice that n ~ 1. Graphs 

G - (V,E) having the desired properties are created as follows : 
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(2) Each Bi , 1 sis n, induces a complete subgraph . 

(3) Each bij is adjacent to exactly two nodes of A, one of 

which is a
1

. The other is a for s ~ 2 subject to the 
s 

restriction that at least k distinct a for s ~ 2 are 
s 

adjacent to each Bi. 

(4) Every a , s ~ 2, is adjacent to ab .. for at least 1-k 
s ~ 

values of i. 

It is straightforward to verify that G is connected, that b . . and 
1J 

bit are adjacent to distinct as for s ~ 2 and is n-1, that the set 

of nodes b . are adjacent to at least k distinct a for s ~ 2, and 
nJ s 

that G has 2(p-1)+[l(p-1)/kj-l][k(k-l)/2]+[(k+r)(k+r-1)]/2 s 

2 (k+3)p/2-[(k+3)1-2kr-r +r)/2 edges . Figure 4.1 shows a graph having 

p - 17, 1 - 4 and k - 3 which has been constructed according to the 

above specifications. 

We must now show that G is k-1-insensitive, and the next lemma 

is a first step. 

Lemma 4,1 

Any graph G constructed as above has domination number 1 . 

Proof 

The set A dominates G so the domination number is at most 1. 

It remains to be shown that any dominating set D contains at least 1 

nodes. Certainly D contains at least 1 - l nodes since each as, 2 s s 
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Figure 4.1 
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S ~. must be dominated either by itself or by an adjacent b ... But 
l.J 

any bij can dominate only one such as. Thus if a1to, lol ~ ~-

Suppose then that a110 and that lol - ~-1. Let b1 , b 2 , ... , bq 

designate the b .. 'sin 0. Then these nodes of O can dominate at 
l.J 

All the remaining B.'s, and 
l. 

there must be at least one, have to be dominated by the b.'s. Thus 
l. 

we must have ~-q-1 ~ k so q ~ ~-k-1. Let at be a node of A 

dominated by the b.'s. By (4) of the construction there is an edge 
l. 

from at to at least ~-k B.'s so a is required to dominate at least 
l. t 

one of the Bi's not dominated by the bi's, a contradiction. ■ 

To facilitate proving the theorem which shows that G is k-~

insensitive, we introduce some terminology and a preliminary lemma. 

Consider removing an arbitrary set E' of k edges from G. Partition 

the edges of E' into E
1 

and E2 where the edges in E
1 

have an 

endpoint in A and the edges in E
2 

have both endpoints in 

Label the B.'s that have nodes incident to edges of 
l. 

E
1 

by s
1

, s2 , ... , St. Assume for now that b 1ts1 is incident to two 

edges of E
1

. For 1 ~ i ~ t let ni be the number of nodes in Si that 

are incident to edges of E1 and Si be the set of the ni nodes of Si 

which form the endpoints of these edges. Furthermore, let m. be 
l. 

the number of edges from E
2 

which are incident to nodes in Si· 

Define Ti to be set of nodes V£Si-s1, such that v dominates the 

nodes of S!. Observe that T. includes the nodes of S. which are not 
l. l. l. 

incident to edges of E
1 

or to the edges of E2 which are incident to 
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nodes of s:. Thus IT.I~ k-(ni+rn.). The following lemma states a 
1 1 1 

useful fact about the size of T .. 
1 

Lemma 4.2 

Under the circumstances outlined above, IT. I~ i for 1 sis 
1 

t. 

Proof 

Let i - 1 and recall that two edges of E1 are incident to 

h1es1 . Since a total of k edges are removed, m
1 

s k-(n
1
+1). Thus 

Consider n. and m. for 2 sis t. Since 
1 1 

k edges are removed and nj+mj edges have endpoints in Sj for 1 s j s 

i-1, the number of edges removed with endpoints in Si is 

i-1 

n1+m1 S k-1-I(nj+mj). 

j-1 

By definition n.+m. ~ 1 so 
J J 

i-1 I (nj+mj) ~ i-1. 

j-1 

(1) 

~ k-(n.+m.) ~ i . 
1 1 ■ 

We are now ready to present Theorem 4.2 which establishes the 

k upper bound for E (p,~). The previously defined terminology will be 

employed in the proof. 
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Theorem 4.2 

k 
Then E (p,1) ~ (k+3)p/2-[(k+3)1-Let 1 ~ k+l and p ~ 1(k+l). 

2 
2kr-r +r]/2 

Proof 

Let G be constructed as described above. By Lemma 4.1 G has 

domination number 1· Since G has the number of edges stated in the 

theorem, we need only show that G is k-1-insensitive. As before, we 

remove an arbitrary set E' of k edges, and now show the resulting 

graph still has domination number 1. If each b .. has at least one 
1.J 

edge to a node of A in G-E', then A dominates. Thus we need to 

consider only the situation where at least one bij' say b
1

€s
1

, has 

both edges between it and nodes in A removed. Notice that a
1 

can 

S.-S! have two edges to A so a
1 

will also dominate them. By Lemma 
1. 1. 

4.2, IT. I~ i for 1 ~ i ~ t. Thus T. has at least i nodes which are 
1. 1. 

not incident to edges of E'. That is, T
1 

has at least one node, say 

x
1

, that is adjacent to a
1 

and an ai' say ar. T
2 

has at least two 

such nodes. Observe that at least one node of T
2

, say x
2

, dominates 

as wheres~ 1, r. Continuing in this manner we have t nodes x
1

, 

xt such that each x. is adjacent to a different a., j ~ 2. 
1. J 

Let A' be the set of aj's, j ~ 2, dominated by (x1 , x 2 , ... , xt}. 

Then AU{x
1

, x
2

, ... , xt}-A' is a set of size 1 which dominates G-E', 

thereby showing G is k-1-insensitive. ■ 

The edge bound given by Theorem 4.2 is maximized when r is at 
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its largest value of k-1, which leads immediately to the following 

corollary. 

Corollary 4.1 

Let 1 ~ k+l and p ~ 1(k+l). 

3k2+Sk-2]/2. 

k Then E (p,1) s (k+3)p/2-[(k+3)1-

The corollary shows that for fixed k and 1 the bound is 

asymptotically equal to (k+3)p/2. Section 4.2.3 will establish a 

lower bound asymptotically equal to the same expression, and this 

will complete the proof of the major result of this chapter. 

4.2.2. Properties of k-1-insensitive Graphs 

The following theorems establish relevant structural 

properties which will be useful in Section 4.2.3 in developing the 

k lower bound for E (p,1). Let Ni be the maximum possible number of 

nodes v of degree at most k which can have i common neighbors in a 

k-1-insensitive graph, 1 sis k. The first theorem gives a bound 

Theorem 4.3 

Proof 

Suppose a
1

, a
2

, and a 3 are degree k nodes with common 

neighbors b
1

, b
2

, ... , bk. See Figure 4.2. Remove the k edges 
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Figure 4.2 
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incident to a
1

. Then a
1 

must be in the dominating set D. None of 

a 's i neighbors can be in D or D-(a1 } is a dominating set of size -y-

1, a contradiction. Hence a2 and a3 are in D. But (D-(a2 , a3}) 

U(b1 } is a dominating set of size -y-1 for G, a contradiction. ■ 

Theorem 4.4 

For 2 sis k, N. ls (-y-l)N.+1. 
i- i 

Proof 

Suppose a set S of Ni-l nodes of degree at most k have i-1 

common neighbors. Remove all edges from one of the nodes of S, say 

x. Then x along with -y-1 other nodes b1 , b2 , ... , b
1

_1 must 

dominate the remaining nodes of S. Any of the b.'s would be an i-th 
i 

common neighbor of those nodes of S which it dominates. Thus each 

of them can dominate at most Ni of the nodes of S. Hence Isl - Ni-l 

Let f(-y,k) be the nwnber of nodes in V-D with degree at most k 

where G is a k--y-insensitive graph with a minimum dominating set D. 

The following theorem gives an upper bound for f(-y,k). 

Theorem 4,5 

f(-y,k) s 2(-y-l)k+(-y-l)[((-y-l)k-l+l)/(-y-2)]+1. 

Proof 

From Theorem 4.4, N. 
1 

s (-y-l)N.+l for 2 sis k, and Nk s 2 
i- i 

by Theorem 4.3. It is straightforward to solve this recurrence for 
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k-1 k-1 N1 to get N1 ~ 2(1-l) +[((1-l) +l)/(1-2)]. 

Now suppose xis a node of degree at most k and remove all 

edges incident to it. Then x must be in the dominating set D along 

with 1-l other nodes. Each of these 1-l nodes can dominate at most 

N1 nodes with degree at most k. Thus f(1,k) ~ (1-l)N1+1. 

Simplifying yields the result. ■ 

4.2.3. k A Lower Bound for E {p,1) 

1 Dutton and Brigham (1988) prove that E (p,1) 

31 ~ 6. This result forms the basis for the lower bound for 

k E (p,1), so it will be necessary to understand a part of their 

approach, which will now be outlined. An arbitrary minimum 

dominating set D
0 

is selected and the remaining minimum dominating 

sets are ordered arbitrarily and labeled D1 , D2 , .•. ' D . m 
The nodes 

of V-D
0 

are partitioned into A0 whose nodes have exactly one 

neighbor in DO and A' whose nodes have at least two neighbors in D0 . 

It is clear that there are at least p-1+IA' I edges between D0 and V

D0. The count determined by Dutton and Brigham (1988) is obtained 

by finding one more edge associated with all nodes of A0 , except for 

those in a subset of size at most 1· This then adds at least IA0 1-1 

to the previous count to yield p-1+IA' l+IA0 1-1 - p-21+p-1 which 

gives the 2p-31. 

It is this last set of edges which provides the basis for the 

present work, and more detail about them must be described. Dutton 

and Brigham (1988) defined a partition of D0 by Xi - D0nD2n ... nDi_ 1 -
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D1 for 1 ~ i ~ m and xm+l - D0nD1n ... nDm. They then showed that for 

each node v of A
0 

which is not in the special subset there is a 

unique associated incident edge e having both endpoints in A0uA'. 

Two possibilities exist. Either vtD. for some i or the end node of 
i 

e other than vis in D. for some i. The following fact is immediate 
i 

upon examining Dutton and Brigham's (1988) proof, although they do 

not state it: the Di's in which at least one endpoint must be found 

are limited to those indices of i for which X. is nonempty. This 
i 

fact is one of the two key points to be employed below. The other 

arises from the structure of the subgraph G' of G obtained by 

including only those edges counted by Dutton and Brigham (1988). 

The only nodes of G' which are in A0uA'and also have degree three or 

more must either be in a D. where X. ~¢or must be the other 
i i 

endnode of an edge e associated with a node in such a D .. It 
i 

follows that the number of nodes of G' which are in A0uA' and also 

have degree three or more is at most twice the number which lie in 

Di where Xi~¢. 

Our next theorem uses the above information to establish a 

lower bound. Again we employ f(1,k) to represent the number of 

nodes in V-D having degree at most k where Dis a minimum dominating 

set. 

Theorem 4,6 

2 k 
Let k ~ 3, 1 ~ 3 and p ~ 1 +21+f(1,k). Then E (p,1) ~ 

(k+3)p/2-[2(k+2)1+(k-l)(1
2
+f(1,k))]/2. 



40 

Proof 

Any k-1-insensitive graph certainly must be l-1-insensitive, 

so the remarks preceding the theorem apply. The analysis used by 

Dutton and Brigham (1988) will be employed here, except that the 

dominating sets D1 , D2 , ... , Dm are indexed so that Xi~ 0 for 1 Si 

s n and Xi - 0 for n+l sis m. Thus the partition of D
0 

is into 

the sets x1 , x2 , ... , X, X 1 where X 1 may be empty. Now we n m+ m+ 

find the maximum number of nodes in dominating sets D1 , D2 , ... , Dn 

which can be in V-D
0

, since these nodes determine the maximum 

possible number of nodes having degree three or more in the G' 

subgraph discussed before. Since Xi - D0no1n ... nDi_ 1 -D1 , there is 

at least one node of Di in each of Xi+l' Xi+l' ... , Xn so there are 

at most 1-(n-i) nodes of Di in A
0

. Then in D1uD2 ... uDn-DO there are 

at most 

2 - n1-n +n(n+l)/2. 

Let f(n) - n1-n2+n(n+l)/2. The derivative f'(n) - 1-n+l/2 

implying f(n) is increasing when n < 1+1/2 and maximum when n - 1 + 

1/2. But n s 1 since the Xi's partition D
0

, so f(n) is maximum when 

2 2 2 2 
n - ~- Substituting we get f(~) - 1 -1 +(1 +1)/2 - (1 +1)/2 . Thus 

there are at most (12+1)/2 nodes in V-D0 which are in D1un2u ... uDn, 

and earlier remarks show that the number of degree three or higher 

2 
nodes in G' which are also in V-D

0 
is at most 1 +1. Therefore at 
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least p-1-(1
2
+1) nodes in V-D0 have degree at most two in G'. 

However, by Theorem 4.5 at most f(1,k) nodes of V-D0 have degree 

less than or equal to k. Thus p-1-(12+1)-f(1,k) nodes in V-D0 must 

have in Ga degree increased by at least k-1 over their degrees in 

G'. This 

2 expression is valid when p ~ 1 +21+f(1,k) and reduces to the 

result. I 

Since f(1,k) is independent of p, this lower bound is 

asymptotically equal to (k+3)p/2, the same asymptotic value as the 

upper bound of Theorem 4.2. From this we conclude the main result. 

Theorem 4.7 

k E (p,1) is asymptotically equal to (k+3)p/2 asp approaches 

infinity. 



5. THE EXACT VALUE OF E2(p,2) 

In the previous chapter an asymptotically correct result was 

k established for E (p,7). In this chapter structural properties of 

extremal 2-2-insensitive graphs make it possible for us to find 

k 
exact values for E (p,7) for the special case when k - 7 2. 

First an upper bound for E2(p,7) is presented in Section 5.1. Then 

Section 5.2 develops structural properties which are used in Section 

5.3 to determine the desired lower bound and hence equality for p ~ 

11. Finally, Section 5.4 reports results from a program which 

found all extremal 2-2-insensitive graphs on p ~ 10 nodes and 

summarizes the results for all values of p. 

The proofs tend to be lengthy, often requiring a multitude of 

cases where the same ideas, specialized to the situation under 

consideration, are repeated. To avoid excessive duplication in the 

narrative, we adopt a shorthand notation. Such notation will be 

introduced as needed. Furthermore, a large number of illustrations 

are necessary to clarify the proofs, and in order to sustain 

continuity in the text all figures will be located at the end of 

this chapter. 

5.1. 
2 

An Upper Bound for E (p,2) 

2 
Our first theorem establishes an upper bound for E (p,2) by 

42 
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constructing an appropriate 2-2-insensitive graph. 

Theorem 5.1 

2 
E (p,2) s L<Sp-10)/2J if p > 4. 

Proof 

Construct a graph G - (V,E) as follows: 

V - {a1 , a2 , b1 , b2 , ... , bp_ 2}, 

E -

{a1b., a2b. I 1 sis p-2} u {b.b. 1 I i - 1,3, ... ,p-3} 
1 1 1 1+ 

if p even. 

{a1bi I 1 Si S p-2} U {a2bi I 1 sis p-4} u {a2bp_ 2} 

u {bibi+l i - 1, 3, ... , p-6} u {bp_ 4bp_ 3 , bp_ 3bp_ 2} 

if p odd. 

Figure 5.1 illustrates the constructions. The graph has 2(p-2)+ 

(p-2)/2 edges when pis even and (p-2)+(p-3)+(p-1)/2 edges when pis 

odd. In either event, G has L<Sp-10)/2J edges. Clearly, {a
1

, a
2

} 

dominates G and l - 2. 

We now prove G is 2-2-insensitive by removing arbitrary edges 

e1 and e
2 

from G and showing the domination number remains two. Let 

D - {a
1

, a
2

}. There are three possibilities. 

Case 1 Both e
1 

and e
2 

are edges incident only to nodes in 

V-D. Then D dominates G-e1-e2 . 

Case 2 Edge e
1 

is incident only to nodes in V-D and e 2 is 

incident to both D and V-D. Then D dominates G-e1 -e2 unless pis 

odd and e
2 

- a
1

bp_
3

. In this case {a2 , bp_ 4 } dominates G-e1-e2 . 

Case 3 Both e
1 

and e
2 

have endpoints in D. Then D dominates 
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G-e1-e2 unless e1 and e2 have the same endpoint bieV-D, or pis odd 

and a1bp_ 3 is one of the edges. In these situations b . eN(b.) and 
J i 

5,2, Structural Properties of Extremal Graphs 

We turn our attention to establishing a lower bound for 

2 E (p,2). In this section we investigate useful structural 

properties of extremal graphs. 

Lemma 5,1 

If G is a 2-2-insensitive extremal graph on p ~ 9 nodes, then 

G has at most two nodes having degree one or two. 

Proof 

Let x , y, and z be three nodes of G having degree two or less, 

and G-e
1

- e
2 

be a graph where all the edges incident to x are 

removed. Then xis isolated and must be in the dominating set for 

G-e
1

-e
2

. Therefore some node v
1 

must dominate all nodes of G-x, so 

v
1 

has degree p-2. Furthermore, v1 is not adjacent to x since~~ 

1 . See Figure 5.2(a). Similarly there are nodes v2 and v3 having 

degree p-2 and dominating with y and z, respectively . Note that v1 , 

v
2 

and v
3 

are distinct since v1 fN(x), v2fN(y), and v3fN(z). See 

Figure 5 . 2(b). Thus E2(p,2) ~ 3(p-2)-3 - 3p-9 > l(5p-10)/~ when p 

~ 9 , a contradiction. ■ 

The proof to the next theorem is amenable to the employment of 
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the following notation, which also will be used elsewhere in this 

paper. G' will always refer to a graph under consideration which is 

obtained from the original graph G by the removal of two edges. 

(1) DS is to be read "degree sum" and refers to the sum of 

the degrees of all the nodes, i.e.,~ d. 
V 

(2) D(u,v) is to be read "Nodes u and v form a dominating 

set." 

(3) (D{b,u}, p-2) is to be read "Node u is isolated in G' and 

thus must be in the dominating set of G'. Also there 

exists a node b such that¾ - p-2 in G' and {b,u} 

dominates G'. Further, b'N(u) in G since -y ~ 1." 

(4) 

(5) 

R(e
1

,e2) is to be read "Remove edges e
1 

and e2. " The 

presence of e2 is optional. Thus R(e1) is to be read 

"Remove edge e
1

." 

R(aix'aiy n) is to be read "Remove the edges a.x and 
1 

aiy. Then ai or one of its neighbors must be in the 

dominating set. Since a.'s neighbor n dominates at 
1 

least the nodes that ai dominates, we may assume n is in 

the dominating set." 

Then v
1

, v
2

, ... , v become isolated nodes 
n 

and hence must be in the dominating set." 

(7) N(a,b : c) is to be read "Nodes a and b do not dominate 

G' because neither dominates c." 

Often the proof will require the selection of a node x having 
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a certain property. When the choice of a particular xis arbitrary, 

a specific node will be stated and marked with an"*" without 

further comment. 

We are now ready to state the next theorem which is crucial to 

2 establishing a lower bound for E (p,2). 

Theorem 5,2 

Let G be an extremal 2-2-insensitive graph on p ~ 11 nodes. 

Then d ~ 3 for all v£V. 
V 

Proof 

Since G is an extremal 2-2-insensitive graph, Theorem 5.1 

2 implies E (p,2) :S lJ5p-10)/~. Any situation leading to more edges 

will yield a contradiction. 

By Lemma 5.1, G has at most two nodes, say u and v, with 

degree one or two. There are five possible cases. 

Case 1 d 
u d - 1. 

V 

Removing the two edges incident to u and v isolates u and v 

thus forcing them to be in the dominating set of G', a contradiction 

when p ~ 3. 

Case 2 d - 1 and d - 2. 
U V 

LJ u is adjacent to v. Let x be v's other neighbor. 

R(vu,vx: (u,v}), a contradiction when p ~ 3. 

Ll u is not adjacent to v. Let x be u's neighbor. R(ux) 

implying (D{y,u}, p-2). Let w be v's other neighbor as shown in 

Figure 5.3(a). R(vw,vy) implying (D(z,v}, p-2). Since u has only 
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one neighbor, z x. Notice that this shows w ~ x. R(ux,vy : {u}) 

sou and either v or w must dominate G-ux-vy. It must be w which 

means dw - p-2. See Figure 5.3(b). Then DS ~ 3(p-2)+2+1+3(p-S) 

2 
6p-18 implying that E (p,2) ~ 3p-9 > Lssp-10)/~ when p ~ 9, a 

contradiction. 

Case 3 d - d - 2. 
U V 

3.a u is adjacent to v. Let x be u's other neighbor. 

R(ux,uv) implying (D{y,u), p-2). See Figure 5.4(a). Similarly 

R(vy,uv) implying (D{x,v), p-2). Note that x ~ y since x € N(v). 

Label the other nodes a1 , a2 , ... , ap_ 4 as shown in Figure 5.4(b). 

By Lemma 5.1 each a. has degree at least three . Any additional 
1 

nodes which can dominate both u and v are u and v themselves. Thus, 

without loss of generality, assume D(a2 ,v). 

3 and DS ~ 2+2+2(p-2)+(p-3)+3(p-5) - 6p-18. 

lJSp-10)/~, when p ~ 9. 

Hence a2 has degree p-

2 Thus E (p,2) ~ 3p-9 > 

3.b u is not adjacent to v. Let x and y be the neighbors of 

u. R(ux,uy) implying (D{w,u), p-2), where w ~ x and w ~ y. See 

Figure 5.S(a). Now remove the two edges incident to v and by a 

similar argument (D{z,v), p-2), z ~ w. Since z must be adjacent to 

u, we may without loss of generality assume z - x, as shown in 

Figure 5.S(b). Suppose vis not adjacent toy. R(ux,vw) implying 

that we may take y and the other neighbor of v, say t, as a 

dominating set. Then d +d ~ p since bothy and tare adjacent to x 
y t 

and w. Hence DS ~ 2(p-2)+p+2+2+3(p-6) - 6p-18. Thus E(p,2) ~ 3p-9 
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> l(Sp-10)/2J if p ~ 9. Therefore we assume vis adjacent toy. 

Label the nodes other than u, v, w, x, and y as a 1 , a 2 , ... , ap-s · 

See Figure 5.S(c) . Any additional edges are between the a.'s. 
i 

Now 

y is not adjacent to all ai's since 1 F 1 . Thus *a1 is not adjacent 

toy. R(a1x,a1w) implying a
1 

or *a
2 

e N(a
1

) must dominate with y 

since y is the only node which dominates both u and v. Thus DS ~ 

2+2+2(p-2)+p+3(p-6) - 6p-18 and E
2(p,2) ~ 3p-9 > l(Sp-10)/2J when p 

Case 4 d - 1 and all other nodes have at least degree three. 
u 

Let x be u's neighbor. R(ux) implying (D{y,u} , p-2), y F x. 

See Figure 5.6(a). R(ux, xy) implying (D{z,u}, p-2), z ~ y. See 

Figure 5.6(b). Since 1 F 1, there exists a node w that is not 

adjacent to x. R(yw,zw). Then we may assume x dominates with w or 

a neighbor of w, say n. In the former cased +d ~ p and in the 
X W 

latter d +d ~ p since x, w, and n are adjacent to bothy and z. 
X n 

Hence DS ~ 1+2(p-2)+p+3(p-5) - 6p-18. Thus e ~ 3p-9 > L<Sp-10)/2J 

if p ~ 9. 

Case 5 d - 2 and all other nodes have degree at least three. 
u 

Let x and y be the neighbors of u . R(ux,uy) implying (D{w,u}, 

p-2), w ~ x and w ~ y . Label the other nodes a 1 , a 2 , ... , ap_ 4 as 

shown in Figure 5 . 7. Note that each dominating set must include one 

of x, y and u in order to dominate u. R(wy,uy). We may assume xis 

the dominating set for G', so one of the following cases must hold: 

(a) D(x,w), (b) D(x,y) and xis adjacent toy , (c) D(x ,y) and xis 

not adjacent toy, (d) D(x,ai) and xis adjacent toy, and (e) 
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O(x,ai) and xis not adjacent toy. 

We now examine these cases individually. 

5.a O(x,w). Note that xy must be an edge. See Figure 5.8. 

R(wai 1 waj) where i ~ j and ai is not adjacent to x and aj is not 

adjacent toy or ai is not adjacent to both x and y. This must 

happen since~~ 1. Then some node z ~ w must dominate with one of 

x,y, and u. Since xis adjacent toy and u, we may without loss of 

generality assume O(x,z) where z - y or z - ~ for some h. Observe 

that in either case x and z dominate G-wy-uy. This implies that 

either Subcase S.b or Subcase 5.d must hold. Thus this case will 

be seen to lead to a contradiction once it is shown that both 5.b 

and 5.d do. 

5,b O(x,y) and xy an edge. Then d +d ~ p+2 since O{x,y), x 
X y 

is adjacent toy, and both x and y are adjacent to u and w. Thus 

OS~ 2+(p-2)+(p+2)+3(p-4) - Sp-10. Hence E
2

(p,2) ~ (Sp-10)/2 > 

l(Sp-10)/~ when pis odd, and represents a contradiction in this 

event. Furthermore, if the lower bound for the OS increases, we 

have a contradiction when pis even. Thus assume no increase. Then 

each ai has degree three and is adjacent to exactly one of x and y. 

As before, ~ ~ 1 implies that *a
1 

is not adjacent toy and *a2 is 

not adjacent to x, so a
1 

is adjacent to x and a2 is adjacent toy. 

R(a
1
w,a

1
x: aj) implying O(aj,x) or O(aj 1 y). First assume aj - *a3 

~ a
2

. See Figure 5.9(a). N(a
3
,x: a2 ) so O(a3 ,y). Thus y must be 

adjacent to all ai's except a1 and possibly a3 , as shown in Figure 

5.9(b). R(a
2
w,a

2
y: *a

4
) implying O(a4 ,x) or D(a4 ,y). But N(a4 ,y 
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a1 ) and N(a4 ,x: a5) so we must have aj - a
2

. Then a
2 

must 

dominate G-a1w-a1x with either x or y. Suppose O(a
2

,y). R(a
3
w,a

3
y 

: a4 ) implying O(a4 ,x) or O(a4 ,y). See Figure 5.9(c). Now N(a
4

,x 

a2) and N(a4 ,y: a1). By a similar argument (a
2

,x) does not 

dominate. Thus we have the desired contradiction. 

5.c O(x,y) and xis not adjacent toy. Then OS~ 

2+(p-2)+p+3(p-4) - Sp-12. Thus the lower bound for the OS can 

increase by at most two without contradicting Theorem 5.1 and we are 

restricted to one of the following possibilities: (i) x and y are 

both adjacent to at most two of the same a.'s, (ii) at most two a.'s 
1 1 

have degree four, (iii) one ai has degree five, and (iv) x and y are 

adjacent to the same aj and an ai has degree 4 (i may equal j). 

Note that any of the above situations can involve at most six a.'s. 
1 

In this context a node is "involved" if it is a node as described or 

is adjacent to such a node. Since p ~ 11 there exists at least one 

ai, say a
1

, which is not involved. Thus a1 has degree three and a1 

is not adjacent to both x and y nor is it adjacent to a node with 

degree four or to a node with degree five. Thus there is a node 

*a
2

fN(a
1

) which has degree three and hence is adjacent to exactly 

one of x and y. Remove a
1
w and the edge between a1 and (x,y). We 

may assume a
2 

dominates with one of u, x, and y. N(a2 ,u: a4 ). 

Suppose D(a
2

,x). Then a
2 

is adjacent toy and xis adjacent to all 

ai's except a
2 

and possibly a
1

. From possibility (i) above, there 

exist at least p-8 ~ 3 (since p ~ 11) a 1
1 s, i ~ 3, which are 

adjacent to exactly one of x and y which means these ai's are 
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adjacent to x and not adjacent toy. Let *a
3 

be such a node. See 

Figure 5.10. R(wa3 ,xa3) implying either a
3 

or *a4£N(a3) must 

dominate with one of u, x and y. N(u,a3 : a2), N(u,a4 : a2), N(x,a3 

: a2), N(x,a4 : a2) and N(y,a3 : x). Thus D(y,a4 ) which means y 

must be adjacent to all nodes that are not in the neighborhood of 

a4 . Let m be the number of ai's in the neighborhood of a4 . Then 1 

s ms 3 since a4 has degree less than or equal to five. Thus y is 

adjacent to at least p-4-2-(m+l) - p-7-m a. IS 
1 

l. 
i ~ 5. Hence xis 

adjacent to at least p-7-m of the same ai's as y is and DS is 

increased by m-l+(p-7-m) - p-8 ~ 3, a contradiction. An analogous 

argument yields a contradiction for D(y,a2) . 

.2...J! D(x,*a
1

) and xy an edge. See Figure 5.ll(a). R(ux,wx) 

implying we may take yin the dominating set so as to dominate u. 

If D(x,y), for this case, then D(x,y) for G-uy-wy which was shown 

impossible by Subcase 5.b. Similarly D(w,y) can be eliminated as 

in Subcase 5.a. Therefore D(y,a.) for some j. First assume that 
J 

aj ~ a
1

. Then DS ~ 2+(p-2)+(p-l)+(p-1)+3(p-6) - 6p-20 > Sp-10 if p 

~ 11, a contradiction. Therefore assume a
1 

.. a .. Then D(x,a
1

) and 
J 

D(y,a1) mean both x and y must be adjacent to all a. 's that are not 
l. 

adjacent to a1 . Let m be the number of a.'s which are adjacent to 
l. 

a
1

. Then OS~ 2+(p-2)+m+l+6+2(p-5-m)+3(p-5) - 6p-18-rn. A 

contradiction is avoided only when 6p-18-m s Sp-10, i.e., when m ~ 

p-8. By definition Os ms p-5 implies that p-8 s rn s p-5. Thus a1 

is adjacent to at least p-8 ~ 3 a. IS, 
l 

i ~ l, and both x and y must 

be adjacent to at most p-5-(p-8) - 3 a.' s, 
J 

2 :S j :S p-4. Let a 2 , a3 
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and a4 be the nodes which, in addition to a
1

, could possibly be 

adjacent to both x and y . Assume first that at least one of x and y 

is adjacent to each a., i ~ 1. Thus DS ~ (6p-18-m)+m > Sp-10 when p 
1 

~ 9 . Therefore neither x nor y is adjacent to at least one a. for i 
1 

~ 5 and a.EN(a.). Since the degree of a. is at least three and a. 
1 1 1 1 

is not adjacent to x or y, ai must be adjacent to~ for some h ~ 1. 

See Figure 5.ll(b). R(wa., a
1
a.). 

1 1 

dominate with one of x, y and u and we may as well assume x or y. 

Since both x and y dominate with a
1 

and they play symmetric roles, 

assume D(x,~) or D(x,ai). Note that x, y, ~• ai' and a1 are all 

adjacent tow so a dominating set containing two of these nodes 

will have a degree swn greater than or equal to p-1. Recalling that 

D(y,a
1

) we have DS ~ 2+(p-2)+2(p-1)+3(p-6) - 6p-20 > Sp-10 when p ~ 

11. 

~ D(x,*a
1

) and xis not adjacent toy. Then a1y must be 

an edge to dominate y. See Figure 5.12(a). Suppose a1 is adjacent 

to x. Then DS ~ 2+(p-2)+(p+1)+3(p-4) - Sp-11. If the lower bound 

for DS increases by more than one we have a contradiction. Thus at 

most one of y and the ai's, i ~ 1, can have degree four or a1 and x 

can both be adjacent to at most one of the same ai's. These 

conditions involve at most three ai's in addition to a1 . Since p ~ 

11 at least three ai's are not involved, so each of these has degree 

three and is adjacent to exactly one of a1 and x. Because of the 

above restrictions it is straightforward to show that there are at 

least two of these ai which are adjacent. Let a2 , a3 , and a4 be 
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three of these nodes and a
2

a
3 

be an edge. Remove a
2
w and the edge 

between a 2 and {x, a 1 }. Then, without loss of generality, a
3 

dominates with one of u, x, and y. N(u,a
3 

: a
4

), N(x,a
3 

: y) and 

N(y,a3 : ak for some k) since y is adjacent to at most one ai 

besides a
1 

and a
3 

has degree 3. 

Thus a1 is not adjacent to x. See Figure 5.12(b). Then DS ~ 

2+(p-2)+(p-1)+3(p-4) - 5p-13. Theorem 5.1 is contradicted if the 

lower bound for the sum increases by more than three. Therefore we 

can have only one of the following: (i) y can be adjacent to at most 

three ai's, i ~ 1, (ii) x and a
1 

can both be adjacent to at most 3 

of the same a.'s, and (iii) at most three in any combination of (i) 
l 

and (ii). Note that we do not exclude the possibility that some of 

the ai's have degree greater than three, with a maximum possible 

degree of six. At least p-8 ~ 3 a.'s are not involved in any of the 
l 

above conditions. Let a
2

, a
3 

and a4 be nodes not adjacent toy and 

adjacent to exactly one of x and a1 . Remove a 2w and the edge 

incident to a
2 

and {x,a
1

}. Then either a 2 

dominate with one of u, x and y. N(u,a2 : 

or ajeN(a2), j ~ 1, must 

w). If D(u,a.), then a. 
J J 

must be adjacent to p-5 a 's 
i 

and have degree at least p-5+1 - p-4 ~ 

7. Hence the DS lower bound increases by at least four, a 

contradiction. N(x,a
2 

: y). N(y,a2 : ~ for some k) since a 2 and y 

together dominate at most five a.'s and there are at least seven. 
l 

N(y,a.) since they dominate at most six of the p-6 
J 

a.'s 
l 

and there 

are at least seven. Therefore D(x,a.) and a.y and a.a1 must be 
J J J 

edges in order to dominate y and a1 . See Figure 5.12(c). Hence DS 
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~ 2+(p-2)+(p-1)+4+4+3(p-6) - 5p-ll. 

bound can increase by at most one. 

To avoid a contradiction the OS 

Thus a. can be adjacent to at 
J 

most one of a3 and a4 . Without loss of generality assume that a
3 

is 

not adjacent to aj. Then a3 must be adjacent to x and hence is not 

adjacent to a
1

. See Figure 5.12(d). R(wa
3

,xa
3

) implying either a3 

or akEN(a
3

) must dominate with one of x, y, and u. N(u,a
3 

: a1), 

N(u,ak: ¾ for some h), N(x,a3 : y) and N(y,a3 : x). Hence either 

O(x,ak) or O(y,ak). Suppose O(y,~). Then OS~ 2+(p-2)+(p-1)+4+ 

(p-1)+3(p-7) - 6p-19 ~ 5p-10 if p ~ 9. Thus O(x,~) requiring edges 

~y and ~a
1 

to dominate y and a1 . See Figure 5.12(e). Therefore 

OS~ 2+(p-2)+4+5+4+(p-1)+3(p-7) - 5p-9 > 5p-10, a contradiction. 

Each of the subcases resulted in a contradiction if p ~ 11, 

verifying that d ~ 3 for all vEV. ■ 
V 

Next we present a series of lemmas leading to Theorem 5.3 

which states that there is an extremal graph having two disjoint 

minimum dominating sets. 

Lemma 5.2 

Suppose a graph has at least two minimum dominating sets and 

any two such sets intersect. Then the dominating sets satisfy one 

of the following: 

(1) there are exactly three dominating sets (x,y}, 

{x,z} and {y,z}, or 

(2) all dominating sets contain a common node x, that is, 
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Proof 

Suppose no node appears in every dominating set. Let one 

dominating set be {x,y} and a second be {x,z}. Since (2) does not 

hold, there must be a third dominating set which does not include x. 

In order to intersect the first two, it must be {y,z}. It is clear 

no further dominating sets are possible. ■ 

The existence of at least two minimum dominating sets as required by 

Lemma 5.2 is met automatically in 2-2-insensitive extremal graphs. 

Lemma 5,3 

p ~ 5. 

Proof 

Situation (1) of Lemma 5.2 cannot hold for extremal graphs if 

Assume (1) of Lemma 5.2 holds and let b1 , b2 , ... , bp_ 3 be the 

nodes of G-(x,y,z). Each bi must be adjacent to all of x, y, and z 

so it can be dominated when two edges between it and (x,y,z) are 

removed. It follows that {x,b
1

} is a dominating set, which 

contradicts (1). ■ 

From this point on we assume we are discussing the situation 

described by (2) in Lemma 5.2. Let x, a1 , a2 , ... , at be the nodes 

which appear in dominating sets, with x being the common node . Of 

the remaining nodes let bl' b2, ... 'bm be adjacent to x and cl' c2' 
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... , c t 1 be not adjacent to x. Note that no edges between 
p- - -m 

nodes b1 , b 2 , ... , bm' c1 , c 2 , ... , cp-t-l-m are necessary in 

extremal graphs. Furthermore, t ~ 2 in such graphs. Some 

elementary facts can now be stated. 

Lemma 5.4 

For extremal graphs we have: 

(i) 

(ii) 

each a., 1 sis t, is adjacent to c
1

, c
2

, ... , c 
1 

, 
1. p-t- -m 

for any two nodes b., b. there is an a. adjacent to both. 
i J n 

Proof 

(i) D(x,a.). 
l. 

(ii) G-xbi-xbj must be dominated by {x,¾} for some h . • 

Lemma 5.5 

Let x be adjacent to r of the ai, say a1 , a2' ... ' 

(i) each ai, 1 s i s r, is adjacent to a., 
J 

r+l s j 

(ii) each ai, r+l s i s t is adjacent to every aj' j 

Proof 

(i) D(x,ai). 

(ii) Node ai is adjacent to a1 , a2 , ... , ar by (i). 

adjacent to a., r+l s j st, i ~ j, since D(x,ai). ■ 
J 

Lemma 5.6 

a Then r 

st, and 

.,,_ i. 

It is 

Situation (2) of Lemma 5.2 cannot hold if t - 2 and p ~ 5. 
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Proof 

In this case there can be no ci's and each bi must be adjacent 

to all of x, a 1 , and a2 . But then we arrive at a contradiction as 

in the proof of Lemma 5.3. ■ 

From now on we assume t ~ 3. 

Lemma 5,7 

Any extremal graph must have at least the following number of 

edges: pt-(t-3)m-t2/2-3t/2-r2/2+3r/2. 

h:.QQi 

Each b. has at least an edge to x and two edges to the a.'s 
]. J 

[3m edges]; each a. is adjacent to each c. [t(p-t-1-m] edges); xis 
]. J 

adjacent tor ai's [r edges]; ai' 1 sis r, is adjacent to aj' r+l 

S j St, [r(t-r) edges]; and ar+l' ar+2 ' ... , at form a complete 

subgraph [(t-r)(t-r-1)/2 edges]. Summing and simplifying yields the 

result. ■ 

Lemma 5,8 

No extremal graph satisfying (2) of Lemma 5.2 exists when t -

3 and p .!:: 9. 

Proof 

By Lemma 5.7 the number of edges required when t - 3 is 3p-9-

r2/2+3r/2 where Os rs 3. Now -r2/2+3r/2 ~ 0 in this interval so 

the number of edges is at least 3p-9 > l(5p-10)/2J if P ~ 9. ■ 
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Thus we may assume t 2:: 4. Since the expression of Lemma 5.7 

is minimized for largest m, we have the following result. 

Lemma 5.9 

The value of m should be selected to be as large as possible. 

In general Lemma 5.9 implies that m should be p-t-1 . However, 

we shall see later that there is one case where it must be p-t-2. 

Lemma 5.10 

No extremal graph satisfying (2) of Lemma 5.2 exists when r -

0, 1 and p 2:: 9 . 

2 If r - 0 the count of Lemma 5.7 reduces to pt-(t-3)m-t /2-

3t/2. By Lemma 5.9, m should be taken as p-t-1 so the minimum 

2 2 
number of edges is pt-(t-3)(p-t-l)-t /2-3t/2 - 3p+t /2-7t/2-3. This 

expression is smallest when t - 4 when it reduces to 3p-9 > 

l(5p-10)/~ if p 2:: 9. If r - 1 the count of Lemma 5.7 reduces to 

2 pt-(t-3)m-t /2-3t/2+1. By an argument analogous to the r - 0 case 

the number of edges is at least 3p-8 > l(5p-10)/2J if p 2:: 7. ■ 

Thus from now on we assumer 2:: 2. 

Lemma 5, 11 

The value of r should be selected to be as large as possible . 
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Proof 

The expression of Lemma 5.7 is a decreasing function of r if r 

::!: 2. ■ 

We cannot haver - t and m p-t-1 simultaneously since then x 

would have degree p-1 implying 1 - 1. Therefore there are two 

combinations of interest : (i) r - t-1, m - p-t-1 and (ii) r - t, m -

p-t-2. We shall deal with these separately. Let us first consider 

r - t-1 and m - p-t-1. In this case the count of Lemma 5.7 becomes 

2 2 
pt-(t-3)(p-t-l)-t /2-3t/2-(t-l) /2+3(t-l)/2 - 3p-t-5. 

Lemma 5.12 

No extremal graph satisfying (2) of Lemma 5.2 and having fewer 

than lJ5p-10)/2J edges exists when r - t-1 and m - p-t-1. 

Proof 

Suppose first that ts p/2 . Then the minimum number of edges 

is at least 3p-t-5 i:!: 3p-p/2-5 i:!: l(5p-10)/2J. Now let t > p/2. 

Suppose all b . 's have degree at least four. Then, since all nodes 
1 

have degree at least three by Theorem 5 . 2, we have DS ~ 4(p-t-

l)+[(p-t-l)+(t-1)]+3(t-l)+(t-l) - 5p-10 so the lemma is true in this 

case. Suppose, therefore, that at least one bi has degree three . 

Let it be adjacent to aj and ak. By Lemma 5.4(ii) every other bi 

must be adjacent to at least one of aj or ak. If these other b.'s 
1 

had degree three, at most (p-t-1)+1 ai's would be adjacent to at 

least one b., leaving at least (t-1)-(p-t) - 2t-p-l a.'s from {a1 , 
1 1 
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a2 , ... , at_ 1 }-{aj,ak} not adjacent to a bi. These all have edges 

to both x and at. To bring their degrees to at least three requires 

extra edges either between them or from bi's having degree greater 

than three. In any event it will take at least f(2t-p-l)/2l -

l(2t-p)/2J more edges. These must be added to the base count of 3p

t-5 to show that the number of edges is at least 3p-t-5+l(2t-p)/~ 

- L<5p-10) /~. ■ 

Lemma 5.13 

No extremal graph satisfying (2) of Lemma 5.2 and having fewer 

than l(5p-10)/2J edges exists when r - t-1, m - p-t-1, and p ~ 11. 

Proof 

Follows from Lemmas 6, 8, 10 and 12. ■ 

Now we consider r - t and m - p-t-2 for which the count of 

2 2 
Lemma 5.7 becomes pt-(t-3)(p-t-2)-t /2-3t/2-t /2+3t/2 3p-t-6. 

Note that for x not to have degree p-1 we must have p ~ t+2. 

Lemma 5.14 

There is no extremal graph satisfying (2) of Lemma 5.2 when r 

- t, m - p-t-2 and p ~ 5. 

Proof 

In the basic structure outlined previously the subgraph 

induced by x, a
1

, a
2

, ... , at is a star where xis the center node. 

Removal of any two edges of this star means that their two endpoints 
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ai and aj must either be adjacent to each other or both be adjacent 

to some third node~ in order to dominate them both. Recall that 

no bi is in a dominating set. Add on the minimum number of extra 

edges between the a.'s to ensure all are dominated no matter which 
1 

two edges of the star are removed. Consider the subgraph induced by 

Suppose this subgraph is disconnected, a. and a. 
1 J 

are in distinct components, and xa. and xa. are removed. Then it is 
1 J 

not possible for x and some a to dominate a. and a .. Hence the 
n 1 J 

induced subgraph is connected and has at least t-1 edges in addition 

to those already counted, implying a minimum edge count of 

(3p-t-6)+(t-1) - 3p-7 > l(5p-10)/2j if p:?: 5. ■ 

We are now ready for the disjoint dominating set theorem. 

Theorem 5,3 

When p:?: 11 there is at least one extremal graph having at 

least one pair of disjoint dominating sets. 

Proof 

From Theorem 5.1 we have an extremal graph with l(5p-10)/2J 

edges, which has two disjoint dominating sets {a1 ,bi} and {a2 ,bj}' 

i ~ j. It follows from the preceding lemmas that graphs without two 

disjoint dominating sets have at least l(5p-10)/2J edges. ■ 

While Theorem 5.3 tells us there is an extremal graph having 

at least two disjoint minimum dominating sets when p :?!: 11, Lemma 
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5.15 and Theorem 5 . 4 show there is an extremal graph having at most 

two. 

Lemma 5,15 

Let G be an extremal graph on p ~ 11 nodes. Then there do not 

exist four pairwise disjoint dominating sets. 

Proof 

Suppose there exist four pairwise disjoint dominating sets. 

Then OS~ 4(p-2)+4(p-8) 

p .!: 11. ■ 

Bp-40. Hence e :.!: 4p-20 > l(Sp-10)/2J when 

We introduce additional shorthand notation to aid in the proof 

to Theorem 5 . 4 . 

ONE(v
1

,v
2

, . . . ,vn){:u} is to be read" At least one of {v1 , 

... , v} must be in the dominating set for G' {so that u is 
n 

dominated}." The ":u" is optional. 

Theorem 5.4 

Proof 

(a) For p - 11 and p - 12 there is an extremal graph having at 

most two disjoint dominating sets, and 

(b) for each p :.!: 13 no extremal graph has three pairwise 

disjoint dominating sets. 

By Lemma 5.15 there exist at most three pairwise disjoint 

dominating sets. Assume there are three and call them o1 - {x1 , 
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•.. ' a 6' p- Then DS ~ 3(p-2)+3(p-6) - 6p-24. Thus e ~ 3p-

12. If it can be shown that an extremal graph requires at least one 

more edge, we will have e ~ 3p-ll > l(Sp-10)/2J when p ~ 13 and (b) 

will hold. Furthermore, 3p-ll - l(Sp-10)/2J when p - 11 or p - 12. 

Since the constructions of Theorem 5.1 yield graphs having at most 

two disjoint dominating sets and these graphs have L<Sp-10)/2J 

edges, one can conclude the validity of (a). It follows that the 

theorem will be proved if we can demonstrate the necessity of at 

least one more edge. 

Assume no additional edge exists. Since n1 , n2 and n3 are 

dominating sets, there must be six edges interconnecting them in 

such a way that each of the six nodes has degree two in the subgraph 

induced by n
1
uo

2
uo

3
. It follows that this subgraph is either 2C3 or 

c
6 

where the structure of the entire graph must be equivalent to (a) 

or (b) of Figure 5.13. Each node of o1uo2uo3 dominates exactly 

three nodes from o
1
uo

2
uo

3
: itself and its two neighbors. Since each 

a. has degree three and by Lemma 5.15 any dominating set must 
1 

include at least one node of o
1

uo
2
uo3 , each node in any dominating 

set must dominate at least three nodes in a row on a cycle of 

D1un2un3 . 

Case 1 The situation in Figure 5.13(a) exists. 

*a
1
). By the preceding argument a1 is adjacent 

to x
1

, y
1

, and z
1

. R(x
1

y
1

,a
1

z
1

) implying that ONE(x1 ,y1 ,a1):a1 . 

But each of x
1

, y
1

, and a
1 

can dominate at most two nodes of 



64 

o1uo2uo3 in G'-x1y1-a1z1 , a contradiction. 

Case 2 The situation in Figure S.13(b) exists. 

*a1). Then, since each dominating set must 

include one node of D1uo2uo3 , a
1 

must dominate the nodes in one of 

the following sets: (1) (x
1

,y
1

,z
1

}, (2) (x
2

,y
1

,z
1

} and (3) 

(x1 ,y1 ,z2}. Consider (1). Then D(a
1

,y2) and y
2 

is adjacent to all 

ai's except a1 as shown in Figure 5.14, R(x1a1 ,y1z 1). 

ONE(y1 ,z1 ,a1):a1 . This is a contradiction since each of these 

dominates at most two nodes in D1uo2uo3 . Sets (2) and (3) yield 

contradictions by analogous arguments. 

Since all cases yield contradictions, at least one additional 

edge is required and the theorem is proven. ■ 

It can be shown that there do not exist three pairwise 

disjoint dominating sets even for p - 11, 12. However, the proof is 

long and tedious. We omit it since Theorem 5.4 is sufficient for 

our needs, which are that the search for extremal graphs can be 

limited to ones having at most two disjoint dominating sets. 

5.3. 
2 A Lower Bound for E (p,2) 

2 
In this section a lower bound for E (p,2) is established which 

is equal to the upper bound of Theorem 5.1 when p ~ 11, thereby 

solving the problem for such p . A straightforward but not optimum 

lower bound is obtained first. 
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Lemma 5.16 

2 E (p,2) ~ (5p-16)/2 if p ~ 11. 

Proof 

If p ~ 11 , d ~ 3 for all nodes v by Theorem 5 . 2 and there is 
V 

at least one extremal graph having one pair of disjoint dominating 

sets by Theorem 5.3. Each of the disjoint dominating sets has at 

least p-2 incident edges, so DS ~ 2(p-2)+3(p-4) - 5p-16 . ■ 

The bound of Lemma 5 . 16 is within three of the Theorem 5.1 

result. We now show that at least three additional edges are 

required. Lemma 5 . 17 establishes a useful structural property. 

Lemma 5.17 

Let D
1 

- {u,v} and o2 - {x,y} be disjoint dominating sets of 

extremal graph G with connecting edges ux and vy, where G has fewer 

than lJsp-10) /?j edges, and let a
1

, a2 , ... , ap_ 4 be the nodes of G

(D1 uo2). If any two of uv, uy, xy and vx are also edges, then the 

degree of every ai is three and each ai, 1 ~ i ~ p-4, is adjacent to 

exactly two nodes in o1uo2 . 

Proof 

Suppose that two of uv, uy, xy and vx are edges and that m 

ai's have four edges to o
1

uo2 and n have three edges. Then the 

number of edges is at least (4+2(p-4)+2m+n+(p-4-m-n)/i] -

f5p/2-6+3m/2+n/2l ~ l(Sp-10)/2J if m > 0 or n > 0. Thus m - n - 0 , 

and all a.'s have degree three and exactly two edges to D1uo2 . ■ 
l 
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Before proceeding with the main theorem of this section, we 

introduce the following notation to facilitate the discussion. We 

continue to employ the shorthand notation introduced earlier. 

(1) R(a. : n) is to be read "Remove the two edges between a. 
i i 

Then a. or one of its neighbors must be in 
i 

the dominating set. Since a.'s neighbor n dominates at 
i 

least the nodes that ai does, we may assume n is in the 

dominating set." 

(2) I(b: v 1 ,v2 , ... ,vn) is to be read "If node bis in the 

dominating set, then the other node in the dominating 

set must dominate v
1

, v
2

, ... , V ." n 

Furthermore, in any context where it makes more sense, uv may 

be read "u is adjacent to v" instead of "uv is an edge." 

Theorem 5,5 

m,Qf 

Let G be an extremal graph with DS ~ 5p-12. By Theorem 5.3 G 

has at least two disjoint dominating sets D1 - {u,v} and D2 - {x,y} 

with the remaining nodes a
1

, a
2

, ... , ap_ 4 . By Lemma 5.16 G has at 

least 5p/2-8 edges. 

Consider the dominating set D for G-ux-vy. Since Theorem 5.4 

shows that we need to consider only graphs with exactly two 

disjoint dominating sets and the nodes in D1 and D2 play symmetric 

roles, we may without loss of generality assume that u£D. Then 
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there are five possibilities: (1) D - {u, v), (2) D = {u, x}, (3) D 

- {u, y), (4) D - {u, a.} with a. adjacent to u, and (5) D = {u, a.) 
l. l. l. 

with ai not adjacent to u. 

The discussion of the five cases assumes certain points 

without stating them explicitly. Specifically, the theorem is true 

when the graph under discussion has DS ~ 5p-ll since the number of 

edges is an integer implying that (5p-ll)/2 ~ lJ5p-10)/~. 

Furthermore, each case assumes an extremal graph with fewer than 

lJ5p-10)/~ edges and then searches for a contradiction. In a 

situation where DS - Sp-12, demonstration of a need for another edge 

yields the desired contradiction. 

Case 1 D(u,v) for G-ux-vy. 

Here we must have edges uy and vx in order for D to dominate x 

and yin G-ux-vy. Hence the edge count is increased to at least 

(Sp/2)-6 which, since e is an integer, yields the desired result 

when pis odd. If pis even and any additional edges exist, the 

result also holds. Thus assume pis even and the edges described so 

far are the only ones. By Lemma 5.17 all a.'s are of degree three 
l. 

and have exactly two edges to n
1
un

2
. R(a1 : *a2). By Theorem 5.4, 

ONE(u,v,x,y). Without loss of generality, we may assume D(u,a2). 

Consider the two possibilities: a 2 is adjacent to u and a 2 is not 

adjacent to u. 

If a
2
u, a

2 
is not adjacent to v since a 2 has exactly two edges 

to n
1
un

2
. Therefore neither a

2 
nor u dominates v unless there is an 

additional edge, in which case the result holds. 
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Suppose then that a 2 is not adjacent to u. Then a
2
v since 

Suppose D(v,a4). 

See Figure 5.lS(a). 

Then va. for i - 1, 2 and 5 sis p-4. 
1 

Also ua. 
1 

We have a 

contradiction since a 5 cannot be adjacent to both u and v. Suppose 

D(x,a
4

). If xa
4

, another edge is necessary to dominate y and the 

result follows. Thus we may assume a4 is not adjacent to x which 

means a4y. Then xai for i - 1, 2 and 5 s i s p-4. See Figure 

5.lS(b). R(a
5 *a6). Again ONE(u,v,x,y). N(u,a

6 a2)' N(v,a
6 

a
4
), N(x,a

6 
: a

4
) and N(y,a

6 
: a

2
) so we have a contradiction. A 

symmetric argument shows that the case D(y,a4 ) also yields a 

contradiction. 

Case 2 D(u,x) for G-ux-vy. 

At least two additional edges are required to dominate v and y 

in G-ux-vy. The possibilities are: (a) uv and uy, (b) uv and xy, 

(c) xv and uy, and (d) xv and xy. Observe that Subcases (a) and (d) 

are symmetric. Also, Subcase (c) and Case 1 are symmetric. To see 

this note that the proof to Case 1 used the fact that {u,v) 

dominates G-ux-vy, and this remains true in Subcase (c). Thus we 

need consider only Subcases (a) and (b). 

For both (a) and (b) Lemma 5.17 can be employed to establish 

that the degree of ai - 3 and each ai has exactly two edges to 

o
1

uo
2

. As before the result follows if another edge is necessary, 

so we assume we have only the edges described so far. 

2....1! Additional edges are uv and uy. 
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R(a1 : *a2). Since D(u,v), D(x,y), and D(u,x), a
2 

is adjacent 

to (1) both u and x, or (2) bothy and u, or (3) both v and x. 

2.a,1 There are edges a
2
u and a

2
x as shown in Figure S.16(a). 

ONE(u,v,x,y). Consider the four possible dominating sets. 

Then ua. for 2 sis p-4. 
l. 

p-1 and -y 1, a contradiction. Therefore a1v and a 1x since D(u,v) 

and D(u,x). See Figure S.16(b). R(a3 : *a4 ). ONE(u,v,x,y). 

N(u,a
4 

: a
1
), N(v,a

4 
: a

2
), N(x,a

4 
: v) and N(y,a

4 
: a

2
) yielding 

the contradiction. Thus D(a2 ,u) is not possible. 

(ii) D(a2 ,v). Then vai for 3 sis p-4. See Figure S.16(c). 

R(a
3 

*a
4
). ONE(u,v,x,y). N(u,a4 : as), N(v,a4 : a 2 ) and N(y,a4 

: a 2). Thus D(x,a
4

) implying a4y and xai for i - 1, 2 and S sis 

p-4. Now a
4

v implies that a4 is not adjacent to u and a4y implies 

that a
4 

is not adjacent to x. But D(u,x), so we have a 

contradiction. 

(iii) D(x,a2) is not possible since V is not dominated. 

(iv) D(y,a2). Then ya. for 3 sis p-4. D(u,x) implies that 
l. 

u must be adjacent to all a.'s which are adjacent to y. Therefore 
l. 

uai for 2 sis p-4. Note that u is not adjacent to a 1 since du~ 

p-1, so a
1
v. Also D(u,x) implies a1x. See Figure S.16(d). R(a3 : 

*a
4

). ONE(u,v,x,y). N(u,a
4

: a 1), N(v,a4 : a 2), N(x,a4 : as) and 

N(y,a
4

: a
1
). Thus D(y,a

2
) is not possible so Subcase 2.a.l cannot 

occur. 

2.a.2 There are edges a2u and a 2y. 

Again ONE(u,v,x,y). Then ua. for 2 sis 
l. 
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p-4. Note that u is not adjacent to a
1 

since du~ p-1. Then a
1
v 

and a1x since D(u,v) and D(u,x). See Figure 5.17. R(a3 : *a4 ). 

ONE(u,v,x,y). N(u,a4 : a1), N(v,a4 : a2), N(x,a4 a2) and N(y,a4 

: a1). Thus D(u,a2) is not possible. Neither is D(v,a
2

) since x 

is not dominated nor D(x,a
2

) since vis not dominated nor D(y,a
2

) 

since xis not dominated. Thus Subcase 2.a.2 is eliminated. 

2,a.3 There are edges a 2v and a2x. 

ONE(u,v,x,y). Consider the four possible dominating sets. 

(i) D(u,a2). Then uai for 3 sis p-4. See Figure 5.18(a). 

R(a
3 

*a
4
). ONE(u,v,x,y). N(u,a4 a2), N(v,a4 a5), N(x,a4 : 

v) and N(y,a
4 

: a
2

) yielding the contradiction. 

(ii) D(v,a2). Then vai for 2 s i S p-4. Since D(u,x), xai 

for 2 sis p-4. Now d ~ 3 implies y must be adjacent to at least 
y 

one ai, so a
1
y. Furthermore, D(u,x) implies a1u. See Figure 

5.18(b). R(a
3 

: *a
4

). ONE(u,v,x,y). N(u,a4 : a 2), N(v,a4 a 1 ), 

N(x,a
4 

: a
1

) and N(y,a
4 

a
2

) yielding the contradiction. 

(iii) N(x,a
2 

: y), a contradiction. 

(iv) D(y,a
2
). Then yai for 3 sis p-4. D(u,x) implies 

that u must be adjacent to all ai's that are adjacent toy. See 

Figure 5.18(c). R(a
3 

: *a
4

). ONE(u,v,x,y). N(u,a4 : a2), N(v,a4 

x), N(x,a
4 

: a
5

) and N(y,a
4 

: a
2

) yielding the contradiction which 

eliminates Subcase 2.a.3 and hence completes the contradiction of 

Subcase 2.a. 

2.....,Q Additional edges are uv and xy. 

R(a
1 

: *a
2
). ONE(u,v,x,y). The arguments for D(u,a2) and 
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D(x,a2) will be analogous as will the arguments for D(v,a
2

) and 

D(y,a2). Hence we consider only D(u,a
2

) and D(v,a
2
). Suppose 

D(u,a2). Then uai for 3 sis p-4 and a 2y. D(u,x) implies ua
2

. 

See Figure 5.19(a). R(a3 : *a4 ). ONE(u,v,x,y). Suppose D(u,a
4

). 

Then ua. for 1 Si S p-4. But Theorem 5.2 implies d ~ 3, so v must 
1 V 

be adjacent to at least one a. which is adjacent to u, a 
1 

contradiction. N(v,a4 : a
2

) and N(x,a4 : a2). Suppose D(y,a4). 

Then yai for i - 1, 2 and 5 s i S p-4. Since D(u,x), ua1 and ua2 so 

uai for 1 sis p-4. See Figure 5.19(b). Again the fact that d ~ 
V 

3 leads to a contradiction which completes the elimination of 

D(u,a2). Suppose D(v,a
2
). Thus vai for 3 s i S p-4, and a2x. Now 

D(u,x) implies that xis adjacent to all a.'s which are adjacent to 
1 

v. By Theorem 5.2 dy ~ 3, so ya1 . Furthermore, D(u,x) implies that 

See Figure 5.19(c). R(a3 : *a4). ONE(u,v,x,y). N(u,a4 

a
5
), N(v,a

4 
: a

1
), N(x,a

4 
: a

1
) and N(y,a4 : a2) yielding the 

contradiction which eliminates Subcase 2.b and thus all of Case 2. 

Case 3 D(u,y) for G-ux-vy. 

Then uv and xy. Notice that in this case the edges between u, 

v, x and y are the same as the edges between u, v, x and yin Case 

2.b. Furthermore, the D(u,x) in the Subcase 2.b is similar to the 

D(u,y) here. Thus this case can be treated in an analogous manner 

to Subcase 2.b. 

Case 4 D(u,*a
1

) for G-ux-vy where a1u is an edge. 

Then ax to dominate x in G-ux-vy. Neither v nor y is 
1 

dominated by {u,a
1

} in G-ux-vy unless additional edges exist. The 



72 

possibilities are (a) a1v and a
1
y, (b) uv and a

1
y, (c) a

1
v and uy 

and (d) uv and uy. 

4,a Additional edges are a1v and a1y. 

With the edges described so far, DS ~ Sp-13. This implies 

that the degree of a1 is at most five in any graph having fewer than 

l(Sp-10)/~ edges. Let a1 be adjacent to a2 if it is adjacent to 

In any event uai for i - 1 and 3 sis p-4. Since d ~ 3 v 
V 

is adjacent to some node in addition to a1 and y. It cannot be u or 

we would have Subcase 4.b and it cannot be x or DS ~ Sp-11. Thus it 

must be an ai. 

4.a,1 *a
3
v and vis not adjacent to a2 . See Figure 5.20(a). 

D(u,v) implies ua
2 

and DS ~ Sp-12. Node a 3 has three incident 

edges so it is not adjacent to any ai. R(a2 : *a4 ). ONE(u,v,x,y). 

v). Thus D(y,a4) implying 

a
4

x and yai for i - 1, 3 and 5 sis p-4. See Figure 5.20(b). R(a5 

: *a
6
). ONE(u,v,x,y). N(u,a6 : v), N(v,a6 : a4 ), N(x,a6 : a 3) and 

N(y,a
6 

: a
4

) so we have a contradiction. 

4,a,2 va
2

. See Figure 5.20(c). 

We may assume ua
2 

is not an edge or the situation reverts to 

the previous case with the roles of a2 and a 3 interchanged. D(u,a1) 

implies a
1

a
2

. Hence DS ~ Sp-12. R(a3 : *a4). N(u,a4 : a2), N(v,a4 

: a
5

) and N(x,a
4 

: v). Thus D(y,a4) implying a4x and yai, i - 1, 2 

and 5 sis p-4. See Figure 5.20(d). R(a5 : *a6). ONE(u,v,x,y). 

the contradiction. 
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4.b Additional edges are uv and a
1
y. 

DS ~ Sp-13 implying that the degree of a
1 

is at most four. 

Let a1 be adjacent to a 2 if it is adjacent to any ai. In any event 

ua. for i 
1 

1 and 3 5 i 5 p-4. Since d > 3, vis adJ'acent to some v-

other node. This additional neighbor of v must be an a. or DS would 
1 

be too large. 

4.b.l va
2 

and ua
2 

is not an edge. See Figure 5.21(a). 

D(u,a
1

) implies a1a 2 . Thus DS ~ Sp-12. R(a3 : *a4). 

ONE(u,v,x,y). N(u,a4 : a 2), N(v,a4 : a1 ) and N(x,a4 v). 

Therefore D(y,a
4

) implying a4x and yai, i - 1, 2 and 5 5 i 5 p-4. 

See Figure 5.2l(b). R(a
5 

: *a6). ONE(u,v,x,y). N(u,a6 a 2), 

N(v,a
6 

: a
1
), N(x,a

6 
: a

2
) and N(y,a6 : a4) so we have a 

contradiction. 

4.b.2 va. and ua. for some j. 
J J 

DS ~ Sp-12 so neither a
1 

nor aj is adjacent to any ai and 

there are no further edges to nodes of u, v, x and y. Hence ua2 . 

See Figure 5.21(c). Form G-uv-ux. No two of u, v, x and y dominate 

all of u, v, x and y so one of u, v, x, and y must dominate with 

some a .. It cannot be u since no a. dominates all of v, x and y. 
1 1 

It cannot be v since the a would have to dominate at least p-5 a.'s i 1 

which would make its degree too great. Suppose D(x,a.). Then i - j 
1 

and a.yin order for all of u, v and y to be dominated. 
J 

Furthermore, xai for i ~ j. See Figure 5.2l(d). R(a2 : *a3). 

ONE(u,v,x,y). N(u,a
3 

: y), N(v,a3 : a4 ), N(x,a3 : v) and N(y,a3 

a
4

) so we have a contradiction. Thus D(y,ai) where iE{l, *2, j}, j 
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~ 2, so yai for 4 ~ i ~ p-4 and i ~ j. See Figure 5.21(e). If 

Since d ~ 3 x and y have a second 
X 

common neighbor, a contradiction. Suppose D(y,aj) implying ya2 , 

ya3 , and ajx. Consider G-ux-uaj. The only pair of nodes from u, v, 

x and y which can dominate all of u, v, x and y is {v,x} and it 

cannot dominate G-ux-uaj without increasing DS. ONE(v,x,aj):aj. 

Neither v nor x can be selected since p ~ 11 implies there is an a. 
i 

which is not dominated. 

contradiction. See Figure 

G-ux-ua2 . As before no two of u, v, x and y 5.21(f). Consider 

dominate. ONE(x,*a
3
):a

2
. Note that since a3 can dominate at least 

the nodes that a
2 

can, perhaps by including the edge a 3x, we do not 

consider a
2

. Selecting x causes several ai's to not be dominated, 

so a
3 

is chosen. ONE(u,v,y) N(u,a3 : one of x and y) and N(v,a3 : 

a
1
). Thus D(y,a

3
) implying a

3
x. Consider G-ux-a1y. No two of u, 

v, x and y dominate. ONE(u,x,a
1
):a1 . Again selecting x causes 

several a.'s to not be dominated. If u is selected we have D(u,a.) 
i i 

for some i and ai must dominate x and y. But only a1 can do this 

and a
1

y is absent . N(v,a
1 

: a
2

) and N(y,a1 : a2) so we have a 

contradiction. 

4.c Additional edges are a1v and uy. 

DS ~ Sp-13 implying that the degree of a1 is at most four. 

In any event Let a1 be adjacent to 82 if it is adjacent to any a .. 
i 

uai for i 1 and 3 ~ i ~ p-4. 

4.c.1 ua2 
is not an edge. 



75 

D(u,v) implies va2 . D(u,a1 ) implies a
1

a
2 

and DS ~ Sp-12. See 

Figure 5.22(a). R(a3 : *a4). ONE(u,v,x,y). N(u,a4 : a2), N(v,a4 : 

a 5), N(x,a4 : v) and N(y,a4 : a1) yielding a contradiction. 

4,c,2 ua2 . 

Notice that node u is adjacent to all ai. Furthermore, since 

d ~ 3, v must be adjacent to some a. and DS ~ Sp-12. 
V J 

not an edge and we may as well assume j - 2. See Figure 5.22(b). 

R(a3 : *a4 ). ONE(u,v,x,y). N(u,a4 : v), N(v,a4 : a5), N(x,a4 : v) 

and N(y,a
4 

a
1

) so we have a contradiction. 

4,d Additional edges are uv and uy. 

1 and 3 s i 

s p-4. See Figure 5.23. Notice du - p-2 so ua2 is not an edge. 

a
1
), N(x,a

4 
: v) and N(y,a

4 
: a

1
) so we have a contradiction which 

eliminates Subcase 4.d and completes the contradiction of Case 4. 

Case 5 D(u,a
1

) and a
1 

is not adjacent to u. 

Then a
1

x to dominate x in G-ux-vy. Since D(u,v), a1v. Either 

u or a
1 

must dominate yin G-ux-vy so either a1y or uy . 

.i....£ a
1
y. DS ~ Sp-15 so the sum can increase _by at most 

three. Thus a
1 

can have degree at most six or at most three ai's 

can have degree ·exceeding three or, if i ~ 1, at most three ai's can 

have three edges to o
1
uo

2
. Therefore, since p ~ 11, there exist at 

least p-4-3-1 ~ 3 ai's, i ~ 1, which have exactly two edges to 

n
1
un

2
, have degree three and are not adjacent to a1 . Let a2 , a3 and 

a
4 

be three such nodes. Then D(u,a1) implies ua2 , ua3 and ua4 . 
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See Figure 5.24. R(a2 : aj for some j, 3 ~ j ~ p-4). Consider the 

possibilities for aj: 

edges to D1uo2 , (2) 

(1) a . has degree three with exactly two 
J 

aj has degree four with two or three edges to 

o
1
uo2 , (3) aj has degree five with two or three edges to n

1
un2 , and 

(4) aj has degree six with two edges to n1uo2 . In (3) a. cannot 
J 

have four edges to o1un2 and in (4) it cannot have three such edges 

since in either case DS would be too large. 

5.a.l a. has degree three with two edges to n
1

uo
2

. 
J 

Since the degree of a. is three, aj is not adjacent to ai, i ~ 
J 

2. Thus D(u,a1) implies uaj and hence a. is not adjacent to v . 
J 

See Figure 5.25 . Note that aj could be a3 or a4 . If it is either, 

assume without loss of generality that it is a3 . ONE(u ,v,x,y). 

(i) N(u,aj : a1 ). 

(ii) N(v,aj : a4). 

(iii) If D(x,aj), then additional edges are needed to 

dominate y and v. Recall that aj is not adjacent to v so xv. If xy 

DS ~ Sp-11, so ajy . D(x,aj) implies xai, i ~ 2, j . See Figure 

5 . 26 . OS~ Sp-13, so a
1 

can be adjacent to at most one ai, i ~ 2, 

3, 4, j. R(a
4 

a ) . 
m 

Note that m ~ j. ONE ( u, v, x , y) . N(v,a m 

a . ), N(x,a a.) and N(y,a a). There exists such an a since y 
J m J m r r 

can be adjacent to at most one ai, i ~ 1, that is adjacent to x or 

am can be adjacent to at most one additional ai for i ~ 1, 4. Thus 

p ~ 11 implies that at least p-10 ~ 1 nodes will not be dominated. 

Hence D(u,am). Then amal since a1 is not adjacent to u and DS ~ Sp-

11. Therefore {x,a.) does not dominate. 
J 
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(iv) The only remaining possibility is D(y,a.). Since a. has 
J J 

degree three yai for i ~ 2, j. Then a.x or yx to dominate x. 
J 

First assume yx. See Figure 5.27(a). Considering D(u,a
1

) and 

D(x,y), DS .!!:: Sp-12. Note that u and a1 cannot be adjacent to the 

same a. for i ~ 1, X and y cannot be adjacent to the same a., and 
l. l. 

each a. for i ~ 1 has degree three. Now d - 3 implies that v~ for 
l. V 

some h ~ 1, 2, 3, 4, j. Thus ua. for i ~ 1, h. 
l. 

See Figure 5.27(b). 

D(u,a1) implies either u~ or a1~. In either event, using D(u,v) 

and D(x,y) DS .!!:: Sp-12, so a 1 is not adjacent to another ai for i ~ 

contradiction. I(x u,v,ai for i ~ 1, 2, j), a contradiction. 

I(a1 : u,y,ai for i ~ 1, h), a contradiction. I(~ where a1~: 

u,x,ai for i ~ 1, h) and I(~ where u~: x,ai for i ~ h), both 

contradictions. Therefore xis not adjacent toy. 

The only alternative is that a.x must be the edge that 
J 

dominates x. Using D(u,a
1

) and D(x,y), DS ~ Sp-14. R(ua4 ,ya4 

a). See Figure 5.27(c). ONE(u,v,x,y). N(v,a : a.) and N(y,a 
m m J m 

aj). Suppose D(u,am). Then amal to dominate a1 . D(u,v) implies 

uv or av. If uv OS~ Sp-11, so av. See Figure 5.27(d). DS ~ Sp-
m m 

13. Thus there cannot be additional edges between u, v, x and y. 

Since D(u,a
1

) and D(u,am)' both a1 and am must be adjacent to the 

ai's that are not adjacent to u. Furthermore, OS increases by three 

for each such a
1 

sou must be adjacent to all a1
1 s except a1 and am. 

Now a
1 

can be adjacent to at most one other ai' i .!!:: 5 and i ~ j, m, 

or at most one ai' i .!!:: 5, can have three edges to D1uo2 , or am can 
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be adjacent to at most one other ai, i ~ 1, 4, in which case it 

cannot have a third edge to D1uo
2

. R(ux,ya
1
). ONE(v,x,a

1
,am) : 

a1 . I(v: u,x,a2 ,a4 ,aj)' a contradiction. I(x: u,v,y,a
4
,~ for 

some h since both x and y can be adjacent to at most one more a.), a 
:L 

contradiction. I(a1 : u,y,ai for i ~ 1, m), a contradiction. I(a 
m 

u,x,a2 ,aj) yielding the contradiction which eliminates D(u,am). 

Thus D(x,am). Then a2x since a2 is not adjacent to am' and 

either av or xv. Suppose xv. See Figure 5.27(e). Then DS ~ Sp
m 

13. Now x and a between them must be adjacent to p-9 ~ 2 
m 

additional a.'s. Since y is adjacent to all a.'s, i ~ 2, j, either 
:L :L 

both x and y are adjacent to an ai or am is adjacent to all the 

remaining a.'s. Either situation increases OS by one for each such 
:L 

ai for a total increase of at least two, a contradiction. Hence 

event DS ~ Sp-13. By the previous argument D(x,a) implies that the 
m 

DS increases by p-9 ~ 2, yielding the final contradiction which 

eliminates Subcase 5.a.l. 

5,a.2 Degree of aj is four and aj has two or three edges to 

Recall that each of a
2

, a
3

, and a4 has degree three and is 

adjacent to u. See Figure 5.28. Considering the degrees of D(u,a1 ) 

and D(x,y), DS ~ Sp-13. ONE(u,v,x,y). 

(i) N(v,a. at least one of a3 
and a4). 

J 

(ii) Suppose D(u,aj). Then ajal since u is not adjacent to 

a
1

. The degree of aj is four so aj is not adjacent to any other ai. 
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Hence ua. for i ~ 1, j. 
l. 

Furthermore, either uv or a.v to dominate v 
J 

and either uy or a.y to dominate y. If either uv or uy, DS ~ Sp-11. 
J 

Thus ajv and ajy. See Figure 5.29(a). R(a3 : ~• h ~ 1, 2, j). 

Thus 

D(y,~) and y must be adjacent to all ai's that are not adjacent to 

~• and either ~x or yx. If yx DS ~ Sp-11, so ~x. Then DS ~ Sp-

13. Thus~ can be adjacent to at most one other ai' say as' if 

any, where clearly s ~ 2, j and also s ~ 1 since this increases DS 

by two. Then ya. for i ~ 3, h, s. 
l. 

See Figure 5.29(b). Now a1 is 

adjacent to at most one additional ai' and this can occur only if~ 

is not adjacent to an a. Thus designate by a the extra node, if 
s s 

any, which is adjacent to either~ or a1 . Furthermore, if there is 

no such as' at most one ai, i ~ 1, can have three edges to n1un2 . 

R(ux,a
1
y). ONE(v,x,a

1
,aj) : a1 . I(v: u,x,a2), a contradiction. 

I(x: u,v,y,a
2
), a contradiction. I(a1 : u,y,ai for i ~ 1, j, s), a 

contradiction. I(aj : u,x,ai for i ~ 1, 2, j) yielding the 

contradiction for D(u,a.). 
J 

(iii) Next assume D(x,aj). Then v and y must be dominated by 

(x, aj}. If xy and xv, then DS ~ Sp-10. Suppose xy and ajv. Since 

D(u,a
1

) either uaj or a
1
aj. In either event, DS ~ Sp-11. Suppose 

ajy and xv. Then DS ~ Sp-12. Thus aj can have only two edges to 

o
1
un

2 
without increasing DS, so aj is adjacent to as' each ai has 

degree three for i ~ j, and xa1 for i ~ 2, j ands. 

3 or 4. If it is either, let it be 3. 

Notes could be 

ua., i 
l. 

~ 1. 

See Figure 5.30(a). R(a
4 

: ~)- ONE(u,v,x,y). N(u,~ : a1), 
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yielding the contradiction. 

Therefore ajy and ajv. D(u,a1) implies uaj or a1aj. Thus, 

since the degree of aj is four, D(x,aj) implies xai for i ~ 2, j. 

See Figure S.30(b). First assume uaj. See Figure 5.30(c). DS ~ 

Sp-13. R(a3 : ar where r ~ 2, j). ONE(u,v,x,y). N(v,ar : a
2
), 

at). There exists such an at since y can 

be adjacent to at most one additional ai which is also adjacent to x 

or a can be adjacent to at most one more a .. Since p ~ 11, there r i 

is at least one ai not dominated. Hence D(u,a ). r 

dominate a1 and DS ~ Sp-11. Thus a1aj 

See Figure 5.30(d). Then DS ~ Sp-13. 

and aj 

R(a
3 

: 

is not adjacent to u. 

a). ONE(u,v,x,y). 
r 

N(u,a : a.), N(v,a : a
2
), N(x,a : a.) and N(y,a for some h 

r J r r J r 

~ 4) yielding the contradiction which eliminates D(x,a.) as a 
J 

possibility. 

(iv) The only possibility still to consider is D(y,a.). Then 
J 

If u and x must be dominated by (y, aj}. If yu and yx, DS ~ Sp-10. 

either yx and aju or yu and ajx' then using D(u,a1) and D(x,y), DS ~ 

Sp-11. Thus aju and ajx. Since aj can be adjacent to at most one 

of a
3 

and a
4

, we may assume aj is not adjacent to a 3 . Then D(y,aj) 

implies ya
3

. See Figure 5.3l(a). R(a3u,a3y: at, t ~ 1, j). 

ONE(u,v,x,y). N(v,at : a2). 

Suppose D(u,at). Then atal to dominate a1 . D(x,y) implies 

atx or aty. If atx' then D(y,aj) implies ajat or yat. If yat DS ~ 

Sp-10. If a.a DS ~ Sp-11. 
J t 

Therefore a is not adjacent to x and 
t 
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hence aty. D(u,v) implies a u or t atv. If atu' using D(u,a1) and 

D(x,y), DS c!:: Sp-11, so atv. DS c!:: Sp-12. Thus a1 is not adjacent 

another ai' i "' t, so ua. for i"' 1, t. If a. has three edges to 
l. J 

n1un2 , DS increases. Therefore ajar for some r"' 1, t. D(y,a.) 
J 

to 

implies yai for i"' 2, j, r. See Figure 5.31(b). R(ux,a1y). 

ONE(u,v,x,y). I(u: v,x,y,a1), a contradiction. I(v: u,x,ai, i"' 

1, t), a contradiction. I(x: u,v,y,ai' i"' 1, 2, j, r), a 

contradiction. I(y: u,x,a1 ,aj)' a contradiction. Thus (u, at) 

does not dominate G-a3u-a3y. 

Suppose D(x,at). Then xy or aty to dominate y and xv or atv 

to dominate v. If xy and xv, DS c?:: Sp-10. If xy and atv' then atu 

or ata
1

. In either event, DS ~ Sp-10. Next assume aty and xv. See 

Figure 5.31(c). Since D(u,v), either uat or vat. However, vat (and 

not uat) implies a
1
at and DS ~ Sp-10. Thus uat. See Figure 

5.31(d). DS c!:: Sp-12. Hence no a., i "'1, is adjacent to both x and 
l. 

y, and each ai has degree three for i "'j. D(x,at) implies xai for 

i"' 3, t and D(y,a.) implies ya., i"' 2, r, j where a e N(a.), 
J l. r J 

showing x and y have a common neighbor a. for i ~ 2, a 
l. 

contradiction. Therefore aty and atv. See Figure 5.31(e). D(u,a1 ) 

implies uat or a
1
at. First assume a1at so DS ~ Sp-12. D(u,a1) 

implies uai for i "' 1, t, and each ai has degree three for i"' 1, j' 

t. Now a. cannot have another edge to o1uo2 , so a.a for some r "' 
J 

J r 

1, 2, 3, t. D(y,aj) implies yai for i "' 2' j' r. No ai' i "' 1, can 

be adjacent to both x and y. However, for some h "' 1, 2, 3' j' r, 

t, there is an ~ adjacent to neither a nor a .. Hence D(y,a.) and 
t J J 
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D(x,at) imply y~ and x~, a contradiction. Thus uat and DS ~ Sp-

12. Then no a. , i "'1, is 
1 

adjacent to both x and y. Furthermore al 

is not adjacent to any ai' so ua. for i ,. 1 and a.a for some r,. 1, 
1 J r 

2' 3' t. D(x,at) implies xa. for i ,. 3, t, and D(y, a.) implies yai 1 J 

for i,. 2, j, r . Hence there is an~• h ~ 2, adjacent to both x 

and y, yielding the contradiction which eliminates D(x,a ). 
t 

Therefore {y, at) must dominate ~-a3u-a3y, implying ataj or 

yaj. First let ataj. Then DS ~ Sp-12 using D(u,a1 ) and D(x,y). 

Thus at is not adjacent to another ai and each a. has degree three 
1 

for i ,. 
j ' t. D(u,a1 ) implies ua. for i ~ 2. D(y,at) implies ya. 

1 1 

for i ,. j ' t and atx . Now d - 3 implies that v must be adjacent 
V 

an ai' i ,. 1, and V is not adjacent to a2' a3, a4' a. and at, so 
J 

*~v. See Figure 5.3l(f) . R(ux,a1y). ONE(v,x,a1):a1 . I(v 

u,x,ai' i,. 1, h), a contradiction. I(x: u,v,y,a1 for i,. l, j, 

t), a contradiction. I(a
1 

: u,y,ai for i,. 1), a contradiction. 

Thus ataj is not an edge, so yaj. Then yat since D(aj,y). Again 

D(y,at) implies atx. See Figure 5.3l(g). Hence DS ~ Sp-11. 

Therefore {y, at} does not dominate, yielding the contradiction 

which eliminates Subcase 5.a.2. 

5.a.3 a. has degree five with two or three edges to D1uo2 . 
J 

Using D(u,a
1

) and D(x,y), DS ~ Sp-12. Thus all ai's, i,. 1, 

to 

j, have degree three and no ai, i,. 1, is adjacent to both x and y 

or both u and a
1

. Consider the possible dominating sets. 

Furthermore a.v and a.y since 
J J 

either uv or uy increases DS. If aju or ajx the DS increases. 
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Hence ajas for some s. Since as has degree three and is adjacent to 

one of u and v and one of x and y, as is not adjacent to a
1

. Thus 

D(u,a1) implies asu' and D(u,aj) implies uai for i ~ 1, j. See 

Figure 5.32. Therefore a1 is not adjacent to any additional ai 

since both uai and a1ai increase DS. Thus each a. for i ~ 1, 2, j, 
l. 

s has degree three, two edges to o1uo2 and a degree three neighbor 

I(v: u,x,a. for i ~ 1, 
l. 

j), a contradiction. I(x: u,v,y,aj)' a contradiction. I(a1 

u,y,a. for i ~ 1, j), a contradiction. 
l. 

I(aj : u,x,ai for i ~ 1, 2, 

j, s), a contradiction. Therefore (u, a.} does not dominate. 
J 

(ii) D(v,aj). Notice v has degree three and aj has degree 

five so only ten nodes are dominated, a contradiction for p ~ 11. 

Then a.y and a.v since either xy or xv would 
J J 

increase the DS. Note aj is not adjacent to x or DS increases, See 

Figure 5.33(a). D(u,a
1

) implies either uaj or a1aj to dominate aj. 

In either case DS ~ Sp-12, so no a1 , i ~ 1, is adjacent to both u 

and v. Then a.a for some r ~ 1. Notice that r could be 3 or 4. 
J r 

If it is either, let it be 4. In the original DS computed for 

Subcase 5.3 d is counted as three, so D(u,v) implies ua. for i ~ 1, 
V l. 

j. D(x,a.) implies xa. for i ~ 2, j, r. 
J l. 

See Figure 5.33(b). 

Recall that a
1 

and u are not adjacent to the same ai. R(a4 : am 

where m ~ 1, j, r). ONE(u,v,x,y). N(u,am: a1), N(v,am: a 2), 

N(x,a : a.) and N(y,a : a for some s ~ 1, 2, 4, j, m, r) yielding 
m J m s 

the contradiction which eliminates D(x,a.) as a possibility. 
J 

(iv) D(y,aj). Then aju and ajx since either yu or yx 
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increases OS. Since a. has degree five, it 
J 

See Figure 5.34(a). 

must be adjacent to two other nodes. Note that y cannot be one of 

these nodes since this would increase the initial OS count which 

used D(x,y). Thus either aj is adjacent to two ai's in addition to 

a2 or aj is adjacent to v and one ai in addition to a2 . First 

assume aj is not adjacent to v and ajar and ajat. Since ajal 

increases the OS, aj is not adjacent to a1 . Hence ar ~ a1 and at~ 

a
1

. Each ai has degree three for i ~ 1, j, implying aru and atu. 

See Figure 5.34(b). OS~ Sp-13, so a
1 

can be adjacent to at most 

one ai, say am' if any, where m ~ r, tor OS would increase. First 

suppose a1am and hence am is not adjacent to u. Thus av. 
m 

D(y,a.) 
J 

implies yai for i ~ 2, j, r, t. See Figure 5.34(c). DS ~ Sp-12. 

Recall that the original OS counted three ford, so vis not 
V 

adjacent to another a. and ua. for i ~ 1, m. R(ux,ya1). 
l l 

I(v: u,x,a. for i ~ 1, m), a contradiction. 
l 

l(x: u,v,y,ai for i ~ 1, 2, j, r, t), a contradiction. I(a1 

u,y,ai for i ~ 1, m), a contradiction. I(am: u,x,ai for i ~ 1, m), 

a contradiction. Therefore a
1 

has degree three and is not adjacent 

Again d - 3 implies v 
V 

is adjacent to an¾ in addition to a1 . Since¾ has degree three 

and is adjacent to u and v, ¾ is not adjacent to an ai. Hence 

D(y,aj) implies yai for i ~ 2, j, r, t. See Figure S.34(d). 

u,x,a. for i ~ h), a 
l 

contradiction. I(x : u,v,y,ai for i ~ 1, 2, j, r, t), a 

contradiction. I(al : u,y,ai for i ~ 1), a contradiction. Thus aj 
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is not adjacent to two nodes ar and at. 

Therefore a.v and a.a . OS~ Sp-12. 
J J r Thus a1 has degree three 

and is not adjacent to any ai's. Then D(u,a
1

) implies uai for i ~ 

1. Further D(y,aj) implies yai for i ~ 2, j, r. See Figure 

5.34(e) . Without loss of generality let ar - a
3 

if it is either a
3 

ONE(u,v,x,y). N(u,a 
m 

a 2), N(x,a : a for some s ~ 1, 2, j, r) and N(y,a 
m s m 

the contradiction which eliminates Subcase 5.a.3. 

5,a,4 aj has degree six with two edges to o1uo
2

. 

a1), N(v,am: 

a.) yielding 
J 

O(u,a1) and O(x,y) imply DS ~ Sp-11 yielding the contradiction 

which eliminates Subcase 5.a.4 and hence completes elimination of 

Subcase 5 . a . 

5,b uy . Recall a
1

x and a
1
v. Let m ai's have four edges to 

o1uo2 and n have three edges. Then the number of edges is at least 

3+2(p-4)+2m+n+(p-4-m-n)/2 - (5p-14+3m+n)/2 > l(Sp-10)/2J if m > 0 or 

n > 2. Therefore, if the edge count is smaller than l(Sp-10)/2J, 

at most two ai's can have three edges to o1uo2 and no ai has four 

edges to o
1

uo
2

, 1 ~ i ~ p-4. OS~ Sp-14. Thus OS can increase by 

at most two. It follows that a
1 

is adjacent to at most three ai's 

since degree three was counted for a1 in OS. Therefore u must be 

adjacent to at least p-8 ~ 3 ai's. The DS also implies that at most 

two ai's have degree four or at most one ai has degree five. Notice 

that any situation which adds two to OS involves at most six ai's. 

First consider the special case where a1 is not involved in 

increasing the degree sum and *a3 and *a6 have degree four. Then 
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uai, i ~ 1, h where¾ is a neighbor of a1 . Note that p must be at 

least twelve for this case to occur. See Figure 5.35. Then using 

either D(u,v) and D(x,y) or D(u,a1) and D(x,y), DS ~ Sp-12. Thus 

each ai for 1 ~ 3, 6 has degree three and all ai have exactly two 

edges to o1un2 . Furthermore, ~v since dv - 3 and u and v can have 

no common ai neighbor. R(ux,uy). ONE(u,v,x,y). No two of u, v, x 

and y dominate. I(u v,x,y), a contradiction. I(v: ai for i ~ 1, 

h), a contradiction. I(x: u,v,y), a contradiction. I(y: x,u,a
1

) 

yielding the contradiction for this situation. 

In all situations except the previous one, since p ~ 11, there 

exists *a2 which is not involved in increasing DS, and is not a
1 

or 

adjacent to a1 . Then a2 must have degree three and be adjacent to 

*a3 with degree three, where a 3 is not adjacent to a1 . If six a.' s 
l. 

were involved in increasing the DS by two or four a.'s were involved 
l. 

and a1 is not involved, pis forced to be at least twelve. D(u,a1 ) 

implies ua
2 

and ua
3

. See Figure 5.36(a). R(a2 : a3). 

ONE ( u IV' X ' y) . 

N(u,a3 : a1). 

Suppose D(v,a
3
). Then vai for i ~ 2, 3. Each ai' i ~ 1, must 

be adjacent to u or a
1

. Let m be the number of ai's which are 

adjacent to a
1

, 1 ~ m ~ 3. Then u must be adjacent to p-5-m ai's 

and hence both u and v are adjacent to p-5-m-2 of the same 

Then DS ~ 6p-22 ~ Sp-11 if p ~ 11. 

a. IS, 
l. 

Assume D(x,a
3

) implies xai for i ~ 2, 3 and vx since a3 is 

not adjacent to v. DS ~ Sp-12 implies each ai has degree three and 
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no ai can be adjacent to both u and v or both x and y. Hence a
1 

must be adjacent to exactly one a., 
1 

say *a4 , and D(u,a1) implies 

uai for i ~ 1, 4. Furthermore, a 3y since xis not adjacent toy. 

See Figure 5.36(b). R(a5 : *a6). ONE(u,v,x,y). N(u,a
6 

: a
1
), 

N(v,a6 : a 2 ), N(x,a6 : a 3) and N(y,a
6 

: a
4

) yielding the 

contradiction. 

Thus D(y,a3). Then ya
1 

to dominate a1 . Considering D(u,a
1

) 

and D(x,y), DS ~ Sp-12. Hence xis not adjacent toy, so a3x and 

yai for i ~ 2, 3. See Figure 5.36(c). 

adjacent to a.' 
J 

j > 3. 

Now d - 3 so v must be 
V 

First let 

uaj. Then DS ~ Sp-12. Thus each ai has degree three, no other ai 

can be adjacent to both u and v or both x and y, and a. is not 
J 

adjacent to an ai. Since a
1 

is not adjacent to an ai' D(u,a1) 

implies uai for i ~ 1. See Figure 5.36(d). R(a5 

ONE(u,v,x,y). N(u,a
6 

: a
1
), N(v,a6 : a2), N(x,a6 

*a6). 

aj) and N(y,a6 

: a
3
), a contradiction. Finally, assume ajal and aj is not adjacent 

to u. DS ~ Sp-12. Therefore no ai' i ~ 1, has three edges to D1un2 

and each ai, i ~ 1, has degree three. D(u,a1) implies uai for i ~ 

1, j. See Figure 5.36(e). R(a
5 

: *a6). ONE(u,v,x,y). N(u,a6 

a
1
), N(v,a

6 
: a

3
), N(x,a

6 
: aj) and N(y,a6 : a 3) yielding the 

contradiction which eliminates Subcase 5.b and hence completes 

elimination of case 5. 

All cases where an extremal graph might have fewer than 

l(Sp-10)/2J edges have been examined and each leads to a 

contradiction. Thus E2(p,2) ~ L<Sp-10)/~, if p ~ 11, and equality 
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follows from Theorem 5.1. ■ 

5.4. 2 
The Value of E (p.2) for All p 

2 Theorem 5.5 gives E (p,2) for p ~ 11. Since G is connected~ 

s p/2 (Marcu 1985), and hence the problem is undefined for p < 4. 

For 4 ~ p s 10 we utilized a magnetic tape supplied by R. C. Read 

from the University of Waterloo that catalogues all graphs on 10 

nodes or less. A program was written to search the tape to find 

extremal 2-2-insensitive graphs. Results from the search are shown 

in Figure 5.37 and indicate that the value of E
2(p,2) given by 

Theorem 5.5 actually holds for p ~ 9. For complete results from the 

search, see the appendix which lists the adjacency matrices of all 

2-2-insensitive graphs having p s 10 nodes. 

are now summarized in the following theorem. 

2 All values of E (p,2) 

Theorem 5,6 

undefined if p s 3 

4 if p - 4 

7 if p - 5 

2 
E (p,2) - 9 if p - 6 

11 if p - 7 

13 if p - 8 

L<5p-10)/2J if p ~ 9 
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Figure 5.1 
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Figure 5.lS(a) 
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Figure 5.16(a) 

Figure 5.16(b) 
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Figure 5.16(c) 
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Figure 5.17 
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Figure 5.18(b) 
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Figure 5.19(a) 

Figure 5 .19(b) 
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Figure 5.19(c) 



112 

Figure 5.20(a) 

Figure 5.20(b) 
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Figure 5.20(c) 

Figure 5.20(d) 



114 
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Figure 5.21(c) 
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Figure S.27(e) 
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Figure 5.29(a) 
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Figure 5 . 30(a) 
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Figure 5 . 36(c) 
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Program Results 
2 Number E (p,2) Examplft of Graphs 

< 4 undefined 0 

4 4 □ 1 

5 7 ~ 1 

6 9 ~ 6 

7 11 3 

8 13 1 

9 17 33 

10 20 57 

Figure 5 . 37 



6. 2 BOUNDS ONE (p,1) WHEN 1 ~ 3 

k In this chapter we improve the Chapter 4 bounds on E (p,1) for 

the special case when k - 2 and 1 ~ 3. In Chapter 5 we saw how 

restrictions imposed by the specific structural properties of 2-2-

2 insensitive graphs permitted us to obtain exact values for E (p,2). 

Here we similarly take advantage of the fact that k - 2 to develop 

properties which make it possible to compute lower and upper bounds 

on E2 (p,1) which are better than those in Chapter 4. Some of these 

structural properties are developed in Section 6.1. They will be 

used in Section 6.2 to obtain bounds for E2(p,1) when p ~ 1
2 and in 

Section 6.3 to facilitate determining either exact values or bounds 

2 2 for E (p,1) when p < 1 . Finally, Section 6.4 summarizes the known 

results for all p. 

Throughout we employ the notation G' - G-e1-e2 for arbitrary 

edges e
1 

and e
2 

and D will represent a minimum dominating set for 

the graph G' under discussion. Some of the shorthand of Chapter 5 

also will be employed. 

6,1. Structural Properties of 2-1-insensitive Graphs 

In this section we present structural properties of 2-1-

insensitive graphs G - (V,E) that will be useful in establishing 

values for E2 (p, 1 ) in the remaining sections. Let G - (V,E) be a 

139 
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2-1-insensitive graph. Then the following lemmas apply. 

Lemma 6.1 

If the two edges incident to a degree two node x are removed, 

then XfD and neither of its neighbors is in D. 

Proof 

Let x be a degree two node with neighbors u and v. R(xu,xv). 

Then xis isolated, so X€D. If either u or vis in D, then D-(x} is 

a dominating set for G having size 1-l, a contradiction. ■ 

Lemma 6.2 

A node VfV can have at most one degree one neighbor. 

Proof 

Suppose a and bare degree one nodes with common neighbor v, 

as shown in Figure 6.1. R(va,vb). Then a, b, and 1-2 nodes form a 

dominating set D. But (D-(a, b})U(v) is a dominating set for G 

with size 1-l, a contradiction. ■ 

Corollary 6 .1 

There are at most 1 degree one nodes. 

Proof 

By Lemma 6.2 each node of a dominating set dominates at most 

one node of degree one. ■ 
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J,.emma 6. 3 

No node is adjacent to both a degree one node and a degree two 

node. 

Proof 

Suppose xis adjacent to degree one node a and degree two node 

b, as shown in Figure 6.2. Let y be the other node adjacent to b. 

R(ax,by) . Then aeD and either x orb must be in D to dominate b 

and, since x dominates at least the nodes b does, we may as well 

assume xeD. Then D-{a) is a dominating set for G of size 1-l, a 

contradiction . ■ 

Lemma 6,4 

A degree one node cannot be adjacent to a degree two node. 

Suppose xy is an edge with d - 1 and d - 2. R(xy,yz) where 
X y 

z is y's other neighbor . Then x and y must be in D. But D-{x) is a 

dominating set for G of size 1-l, a contradiction. I 

Corollary 6, 2 

If y is adjacent to degree one node x, then dy ~ 3 and veN(y)-

{x) implies d ~ 3. 
V 

Lemmas 6 . 2, 6.3 and 6.4. ■ 
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.,.6....,,_.2...,, _ _..B:...oc.:.:u~n;.i.d~s~Wh~e~nL...J=p:......i:;:..-L-Y 2 

2 In this section we present upper and lower bounds for E (p,7) 

2 when p ~ 7 and 7 ~ 3. Section 6.2.1 demonstrates upper bounds by 

constructing appropriate graphs. These graphs evolved from a study 

of the restrictions placed on the structure of 2-7-insensitive 

graphs by the properties of Sections 4.1 and 6.1. In Section 6.2.2 

the structural properties are employed -directly to develop lower 

bounds which are better than the bound in Chapter 4. 

6.2.1. Upper Bounds 

2 
The first theorem provides an upper bound for E (p,7) when p -

2 7 and 7 ~ 3. 

Theorem 6,1 

2 2 E (p,7) ~ 2p-27 if p - 7 and 7 ~ 2. 

• 2 
We show that 2p-27 is an upper bound for E (p,7) by 

constructing 2-7-insensitive graphs G - (V,E) with 2p-27 edges as 

follows. 

Let A be a set of 7 nodes labeled a1 , a2 , •··, a . 
7 

For each 

pair of nodes in A add two degree two nodes adjacent to both of 

2 
them. The resultant graph has 7+(27(7-1))/2 - 7 nodes and 2((27(7-

1)/2) - 2p-27 edges. Figure 6.3 illustrates this construction for a 

graph having 7 - 4 and p - 16. 

We now show that G has domination number 7• Certainly A 
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Figure 6.3 
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dominates G, so the domination number is at most 1. To see that any 

dominating set D contains at least 1 nodes, observe that each pair 

of nodes of A and the two degree two nodes between them induce a c
4

. 

Furthermore, at least two nodes are required in the c
4 

itself to 

dominate the degree two nodes, and any such two nodes dominate a 

subset of the nodes dominated by the two a, IS 
l. 

in the c4 . Thus we 

may as well use them. It follows that A is a minimum dominating set 

and the domination number is 1. 

All that remains to be shown is that 1(G) - 1(G-e
1

-e
2

) for 

arbitrary edges e 1 and e2 . If e1 and e 2 are incident to different 

degree two nodes, then each degree two node has at least one edge to 

A and A dominates. Thus we need to consider only when e1 and e 2 are 

incident to the same degree two node, say b1 . Then A-(a., a. )U(b
1

, 
l. J 

b2} dominates G-e1-e2 where ai and aj are the special nodes adjacent 

to the degree two nodes b
1 

and b
2

. Hence G is 2-1-insensitive. • 
2 2 

Next we present an upper bound for E (p,1) when P > 1 . 

Theorem 6,2 

{ 
f(Sp-1

2
-41+2)/27 

2 
if p > 1 +1. 

2 
E (p,1) :S 

(Jsp-1
2

-41+2)/2J 
2 

if p 1 +1. 

r.tQQf 

Again we construct an appropriate family of graphs G - (V,E). 

Begin with the graph described in Theorem 6.1, with the two degree 

two nodes between a
1 

and a
2 

removed. 
2 

At this point, we have 1 -2 
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2 nodes and 21 -21-4 edges. Label the remaining nodes b. and add 
1 

edges 

When 

when 

a1bi' a 2bi for 1 s i 2 2 s p-1 +2. First consider p-1 > 1 . 
2 

p-1 is 

2 
p-1 is 

even add edges b.b for i - 1 3 S p-~2+1 and 
1 i+l ' ' ' '· · • 1 

odd add edges b.b. 
1 

for 
1 1+ 

2 i - 1, 3, . . . , p-~ and b b ' r r+l 

where r - p-1
2
+1 . This gives a total of 212-21-4+2(p-1

2+2)+ 

f<p-1
2
+2)/il edges, which reduces to the bound of the theorem. 

Figures 6.4(a) and 6.4(b) illustrate the construction for 1 - 4. 

2 
For the special case of p-1 - 1, the only remaining nodes are b

1
, 

b2 and b 3 and the only additional edge is b
1
b

2
. Thus b

3 
has degree 

two and G has l(Sp-1
2 

-41+2) /~ edges. Figure 6. 5 gives an example 

of this construction for p - 17 and 1 - 4. In the remainder of this 

proof we shall refer to this case as the exceptional case. 

Next we show that graphs constructed according to the above 

specifications have domination number 1 . Clearly, the set A of size 

1 dominates G. An argument identical to that in the proof to 

Theorem 6 . 1 shows that A is a minimum dominating set of the a.'s and 
1 

their connecting degree two nodes, and hence it is a minimum 

dominating set of all of G. 

It remains to be shown that 1(G-e1-e2) - 1(G) for arbitary 

edges e
1 

and e
2

. If each node in V-A has an edge to a node in A, 

then A dominates and the result follows. Thus we need to consider 

only cases where a node x has both its edges to A removed. 

Case 1 Suppose xis a degree two node with neighbors ai and 

aj, and x ~ b
3 

in the exceptional case . Then D - A-{a., a.}U{x, y} 
1 J 

dominates where y is the other degree two node adjacent to both ai 
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p- 1 2 even 

Figure 6.4(a) 
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b 2 b 2 
p-7 +1 p-7 +2 

p- 1 2 odd 

Figure 6.4(b) 
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Figure 6 . 5 
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and aj. Notice that D dominates all the bi's because at least one 

of a 1 and a 2 will be in D since there are no degree two nodes 

adjacent to both a1 and a2 , except b 3 in the exceptional case. 

Suppose x - b 3 and we are discussing the exceptional case. 

Then A-{a1 , a 2}u{b1 , b 3} dominates. 

node. 

Case 2 Suppose x - b. is a degree three or a degree four 
i 

Let b.eN(b.). 
J i 

Therefore G is 2-1-insensitive and the result follows. ■ 

We note that graphs constructed as described in the proof to 

Theorem 6.2 are generalizations of the extremal 2-2-insensitive 

graphs found in Chapter 5. Indeed, the bound of Theorem 6.2 reduces 

to l(Sp-10)/2J when 1 - 2 and pis even, and there is a difference 

of only one edge when pis odd. Although we have not been able to 

prove that the graphs from Theorem 6.2 are extremal, both the fact 

that they are generalizations of extremal 2-2-insensitive graphs and 

the asymptotic result derived in the next section imply they are 

promising candidates. 

6.2.2. Lower Bounds 

Substituting k - 2 into the general lower bound of Theorem 

4.6 gives E2 (p,1) ~ (Sp-12-81-f(1,2))/2 where f(1,2) - 21
2

-31+2 

when p ~ 312-1+2. Considering the upper bound from Section 6.2.1, 

we have (Sp-312 -51-2)/2 ~ E2(p 1 7) ~ f(Sp-1
2

-41+2)/il when P ~ 31
2

-

1+2 for a difference of at most 12+1/2+2. In this section we employ 
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the structural properties from Sections 4.1 and 6.1, along with 

others obtained below, to derive better lower bounds and hence 

narrow the above gap. 

First we develop the additional structural properties. Let 

N. be the maximum number of nodes having degree at most 2 which have 
1. 

i common neighbors in the 2-1-insensitive graph G, 1 sis 2. By 

Theorem 4.3, N
2 

S 2 and by Theorem 4.4, N1 s (1-l)N
2
+1 S 21-l. Our 

next lemma shows that this bound for N1 can be reduced by one. 

Lemma 6,5 

In any 2-1-insensitive graph, N1 s 21-2. 

Let v be adjacent tom nodes having degree at most two which 

are labeled a
1

, a
2

, ... , am and let b1 , b 2 , ... , bj be the other 

neighbors of the a.'s. 
1. 

Case 1 Node v has a degree one neighbor a1 . Then by 

Corollary 6.2 a
1 

is the only neighbor of v having degree at most 

two. 

Case 2 Assume some b
1

, say b
1

, is adjacent to two degree two 

nodes a
1 

and a
2 

as shown in Figure 6.6(a). R(a1v,a1b1). By Lemma 

6.1 a
1

ED and neither v nor b
1 

is in D. Hence a 2ED. Furthermore, 

each a. for j ~ 1, 2 or its neighboring bi must be in D. 
J 

Now D can 

include at most 1 -2 such nodes. The situation which maximizes the 

number of degree two neighbors of vis when each of the 1-2 nodes is 

a bi with two aj neighbors. In this case v has at most 2+2(1-2) -



152 

21-2 degree two neighbors. 

Case 3 Each bi has at most one degree two neighbor which is 

adjacent to v. See Figure 6.6(b). R(a
1
b

1
,a

1
v). Now a

1
ED and so is 

either each aj for 2 ~ j ~ m or its neighboring bj. There can be at 

most 1-l of these nodes implying at most 1 degree two neighbors of 

v. 

Since 1 ~ 3, the greatest possible count occurs in Case 2 so 

We shall be discussing the situation described in Case 2 of 

Lemma 6.5, and it will be convenient to let S - {v, a1 , a 2 , ... , 

... ' Observe that there are no degree one 

nodes in this situation. 

Lemma 6 1 6 

Let v have 21-2 degree two neighbors as described in Case 2 of 

Lemma 6.5. Then u is adjacent to at least two bi's for all uEV-S. 

Let v be adjacent to 21-2 degree two nodes as described in 

C 2 f L 6 5 S F. 6 7 Assume there is an XfV-S ase o ernma . . ee 1.gure . . 

which is adjacent to at most one bi' say b1 if any. R(alv'albl). 

By Lemma 6.1 a
1
in and neither v nor b1 is in D. Hence D - {a1 , a2' 

b b b } But then xis not dominated. Thus xis 
2' 3' ... , -y-1. 

adjacent to at least two b.'s. ■ 
l. 
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V 

Figure 6.6(a) 

V 

Figure 6.6(b) 
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Lemma 6.7 

Let v be adjacent to 2-y-2 degree two nodes as described in 

Case 2 of Lemma 6 . 5. Then the maximum possible number of degree two 

d . h t· h · 2 no es int e en ire grap is 1 -1. 

Proof 

By Lemma 6.6 each degree two node in V-S has two neighbors in 

b 1}. -y-

b 1). -y-

Furthermore, each a. has two neighbors in {v, 
i 

Since N2 ~ 2, the number of degree two nodes 

is maximized when each pair of nodes in {v, b
1

, b
2

, ... , b } has 
1- l 

two degree two nodes between them. Then there are at most 2((-y(-y-

2 
1))/2 - -y --y degree two nodes. ■ 

Notice that the graph described in the proof to Theorem 6.1 

achieves the bound of Lemma 6.7 . Our next theorem determines a 

lower bound for the number of edges in a 2--y-insensitive graph when 

at least one node is adjacent to 2-y-2 degree two nodes. 

Lemma 6 1 8 

Let G - (V,E) be a 2--y-insensitive graph and let v be adjacent 

to 2-y-2 degree two nodes as described in Case 2 of Lemma 6.5. Then 

IEI ~ (Sp-12 -4-y)/2 for p ~ ...,
2

. 

It follows from Lemma 6.6 that D - (v, b1 , b2 , ·· · • h1 _1} 

dominates G and each ueV-D has two edges into D. Lemma 6.7 implies 

there are at most ...,2 -..., nodes having degree at most two, so at leaS t 
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2 2 
p-1-(1 -1) - p-1 nodes in V-D must have degree at least three. 

2 2 2 2 Thus DS ~ 2(p-1)+2(1 -1)+3(p-1) - Sp-1 -41 implying IEI ~ (Sp-1 -

41)/2. ■ 

Lemma 6.9 gives another useful property of 2-1-insensitive 

graphs. 

Lemma 6,9 

A pair of adjacent nodes can have at most one degree two node 

as a common neighbor. 

Proof 

Suppose xis adjacent toy, and x and y have common degree two 

neighbors a and b. See Figure 6.8. R(ax,ay). By Lemma 6.1 atD and 

neither x nor y is in D. Then btD and D-(a,b}u(x} is a dominating 

set of size 1-l, a contradiction. ■ 

For the remaining portion of this section, we consider only 

graphs where no node is adjacent to 21-2 degree two nodes. The 

next lemma considers the situation where some node is adjacent to 

21-3 degree two nodes. 

Lemma 6.10 

Let G - (V,E) be a 2-1-insensitive graph in which no node has 

21-2 degree two neighbors but at least one node is adjacent to 21-3 

degree two nodes. Furthermore, this 
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X y 

a b 

Figure 6.8 
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situation cannot exist in extremal graphs when 1 ~ 10. 

Proof 

Suppose vis adjacent to 2-y-3 degree two nodes. Since N
2 

- 2, 

the only possibility is illustrated in Figure 6.9 where the set of 

degree two nodes adjacent to vis A - {a
1

, a
2

, 

other neighbors of the nodes in A are B - {b
1

, 

... , a
21

_3} and 

b2' ... ,b-y-1). 

the 

R(a1b1 ,a1v). Then a1 ,a2tD and v,b1fD. Now the -y-2 other nodes in D 

must dominate the nodes of (A-{a1 , a2 ))U(B-{b1}). Since vlD, any 

bjtB, 2 S j S -y-2, which is not in D implies that the two degree two 

nodes adjacent to both bj and v must be in D. Furthermore, one of 

a and b must be in D. In all cases there is no advantage in 
2-y-3 -y-1 

using the bi's so we may assume D - {a1 , a2 , b2 , • • • t b l} . -y-
Thus 

every node xtV-{v}-A-B has at least one neighbor in {b2 , ... , b
1

_1 ). 

we can Notice that if x's neighbor is in {b2 , ... , b
1

_2), say b2 , 

remove two edges to a
3 

and by an analogous argument to the one 

above, x must have a neighbor in B-{b2}. Thus any such x having a 

neighbor in {b
1

, b
2

, ... , b1'_
2

} must have at least two neighbors in 

B. 

Now we derive lower bounds for IEI. First assume that each 

X£V-{v}-A-B has a neighbor in B-{b 11, implying that every such x 
1-

has at least two neighbors in B. Let D' - Bu{v}. Then each node in 

V-D' has at least two edges to D'. Since N2 - 2 and by assumption a 

node is adjacent to at most 2-y-3 degree two nodes, there are at most 

2 
1(2-y-3)/2 degree two nodes in V-D'. Then at least (p-1-1 +3-y/2) -

P-12+1/2 nodes in V-D' must have degree at least three. Thus DS ~ 
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2 2 2 
2(p--y)+2(-y -31/2)+3p-31 +31/2 - Sp--y -71/2 implying IEI ~ 
(Sp-12 -71/2)/2. 

Next assume there exists at least one xtV-(v}-A-B adjacent to 

b
1

_1 and not adjacent to any other node of B. See Figure 6.lO(a). 

R(a21 _3b1 _1 ,a21 _3v). Then a
21

_3tD and v,b
1

_
1
/n. Since xis not 

adjacent to ab. for i ~ -y-1, D also must include some node to 
l. 

dominate x. Furthermore, D includes B-(b 
1

} to dominate a. for 1 s 
1- l. 

i S 2-y-4. Assume that xtD to dominate itself. Then x must also 

dominate v since vbi is not an edge for 1 Sis 1-2 by Lemma 6.9. 

See Figure 6 . lO(b). Since vis adjacent to at most 21-3 degree two 

nodes, d ~ 3. Notice that any node in V-{v, x}-A-B must either be 
X 

adjacent to x and b 1 or have two neighbors in B since -y-

D(a
21

_3 ,x,b1 ,b2 , .. . ,b
1

_2) and D(a
1

,a2 ,b2 , ... ,b
1

_
1
). Also observe 

that no degree two node y can be adjacent to both x and b 1 since 
1-

then we could have taken y as x and seen d ~ 3. Thus every degree 
y 

two node in V-{v}-B must have two neighbors in Bu{v} and as before 

2 
DS ~ Sp-1 -71/2. 

.. . , 

Now suppose that ytN(x) dominates x. Then D - {a
21

_3 , Y, b1 , 

b 
2

} dominates G-a
2 3

v-a2 3b 1 and yv is an edge to 
-y- -y- 1- 1-

dominate v, again because of Lemma 6.9. See Figure 6.lO(c). By 

reasoning similar to above every node of V-{v}-A-B must either be 

adjacent to both b and y or be adjacent to two nodes in B. Thus 
-y-1 

every degree two node has two neighbors in BU(v,y}, and there are 

no degree two nodes adjacent to bothy and bi for 1 Si S 1-2. 

First assume y is adjacent to b
1

_1 . Then Lemma 6.9 implies there 





V 
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is at most one degree two node adjacent to bothy and b 
1

. Since 
1-

no node is adjacent to 21-2 degree two nodes, there are at most 1 2-

31/2+1 degree two nodes in V-(Bu{v, y}). As before, we shall 

compute the degree sum. Notice that it must include a count of 4 in 

consideration of the edges vy and yb internal to BU{v, y}. Thus 
1-l 

2 2 2 OS~ 2(p-1-1)+4+2(1 -31/2)+2+3(p-1-l-7 +37/2-1) - Sp-7 -77/2-2 

implying IEI ~ (Sp-1
2

-71/2-2)/2. 

Finally assume y is not adjacent to b 
1

. Then y must be 
7-

adjacent to two b.'s and at most two degree two nodes can be 
1 

adjacent to bothy and b 1 . Again considering Bu{v, y}, OS~ 
7-

2 2 2 
2(p-1-1)+6+2(1 -37/2)+4+3(p-7-l-7 +37/2-2) - Sp-7 -77/2-1 implying 

IEI ~ f<sp-1
2

-71/2-1)/2]. 

Examining all the cases shows that always IEI ~ 

l(Sp-1
2

-71/2-2)/2] , which is the bound stated in the lemma. Notice 

that this exceeds !<sp-1
2

-41+2)/"'il when 1 ~ 10. By Theorem 6.2 

there is a 2-1-insensitive graph with this latter number of edges. 

Thus the situation under consideration cannot occur in an extremal 

graph if 1 ~ 10. ■ 

Next we consider the situation where a node is adjacent to at 

most 27-4 degree two nodes. The next theorem establishes lower 

bounds in this situation. 

Lemma 6.11 

Let G _ (V,E) be a 2-1 -insensitive graph in which no node has 
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more than 21-4 degree two neighbors. If any pair of nodes of G has 

two degree two nodes adjacent to both of them, then IEI ~ 

2 2 
(5p-31 -11)/2 for p ~ 31 -101+10. 

Proof 

Suppose a1 and a 2 are degree two nodes with common neighbors x 

and y. R(a1x,a1y). By Lemma 6.1 a1 tD and neither x nor y is in D. 

Thus a 2tD along with 1-2 other nodes. Hence the maximum number of 

nodes of degree at most two is 1+2+(1-2)(21-4) 

each degree two node must have a neighbor in D and at most one of x 

and y has degree two since G is connected. 

for f(1,k) in Theorem 4.6 and using IEI for 

(5p-312-ll)/2 when p ~ 31
2

-101+10. ■ 

Lemma 6.12 

2 Substituting 21 -81+11 

E2(p,1), we get IEI ~ 

Let G - (V,E) be a 2-1-insensitive graph in which no node has 

more than 21-4 degree two neighbors. If each pair of nodes of G has 

at most one degree two node adjacent to both of them, then IEI ~ 

2 2 
(5p-21 -61-2)/2 when p ~ 21 +2. 

Case 3 in the proof of Lemma 6.5 shows that any node can have 

at most 1 degree two neighbors. Suppose node v has 1 degree two 

neighbors a
1

, a
2

, ... , a
1 

and these neighbors are also adjacent to 

h
1

, b
2

, ... , b
1

, respectively. Suppose further that xeV-(v, a1 , 

a b b b } is adJ' acent to only one b 1., say b1 • ... ' 1' l' 2' ... ' 1 
See 

Fi b) Th D and neither v nor b1 is in D gure 6.11. R(a
1
v,a1 1 . en a1 t 
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implying that ai or bi is in D for 2 ~ i ~ 1· But then xis not 

dominated, a contradiction. Thus all nodes in V-{v, b1 , ... , b
1

} 

have at least two edges to {v, b
1

, ... , b
1

}, so there are at most 

(12+1)/2 degree two nodes. Then DS ~ 2(p-1-1)+2(12+1)/2)+3(p-1-l

(12+1)/2) - Sp-1
2
/2-111/2-5 implying IEI ~ (Sp-12/2-111/2-5)/2. 

Suppose next that no node is adjacent to 1 degree two nodes. 

Let degree two node a1 have neighbors v and b
1

. R(a
1
b

1
,a

1
v). 

Again Lemma 6.1 implies a1£D and neither v nor b1 is in D. Thus at 

most 1-l nodes are adjacent to degree two nodes in V-D, so there are 

2 at most 1 -21+2 degree two nodes. Substituting for f(1,2) into the 

lower bound of Theorem 4.6 and again replacing E
2

(p,1) by IEI, we 

get !El~ (Sp-212-61-2)/2 when p ~ 212+2. This is the smallest 

value and yields the result. ■ 

2 2 Let g(1) - max(21 +2, 31 -101+10). The conclusion drawn from 

the preceding lemmas is stated in the following theorem. 

Theorem 6,3 

Let p ~ g(-y) . 
2 

Then E (p,1) 

Let G - (V,E) be a 2-1-insensitive graph. Examination of 

Lemmas 6.8, 6.10, 6.11 and 6 . 12 shows that in any situation IEI ~ 

(Sp-31
2-11)/2 for all 1 ~ 3. However, the different bounds can be 

compared for only those values of p which enabled their calculation. 

Thus we must use the largest such value which is 21
2
+2 if 3 ~ 1 ~ 9 
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We now investigate the situation when p < g(1). The next two 

theorems provide a general although undoubtedly loose lower bound 

2 
for E (p,1) for all p. This bound will be employed in this section 

for the interval 1
2 ~ p < g(1) and in Section 6.3 when p < 12 

Theorem 6.4 

A tree cannot be 2-1-insensitive for 1 ~ 3. 

Proof 

Suppose tree Tis a 2-1-insensitive graph rooted at r. 

Consider leaf node v on the bottom level of T. Let u be v's parent. 

By Corollary 6.2 d ~ 3 and each of u's neighbors except v must have 
u 

degree at least three, a contradiction since vis on the bottom 

level of T. ■ 

Corollary 6, 3 

Any connected 2-1-insensitive graph has at least p edges when 

A connected graph must have at least p-1 edges and one with 

exactly p-1 edges is a tree. By Theorem 6.4 no tree is 2-1-

insensitive, so at least p edges are necessary. • 
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The next theorem uses Dutton and Brigham's (1988) result that 

E(p,1) - 2p-31 when p ~ 31 to establish a lower bound for E2(p, 1 ). 

Theorem 6,5 

Let p ~ 31 and 1 ~ 3. Then E2(p,1) ~ 2p-31+l. 

Proof 

Let G be a 2-1-insensitive graph on p ~ 31 nodes. Note that 

G-e must be l-1-insensitive for an arbitrary edge e. If G is 

connected for some edge e, then G-e must be a connected l-1-

insensitive graph. By Dutton and Brigham's result G-e has at least 

2p-31 edges, so G must have at least 2p-31+l edges. 

If G is disconnected for all edges e, then G must be a tree. 

But no tree is 2-1-insensitive, a contradiction. ■ 

6,3. 
2 

Bounds When p < l 

In this section we derive bounds for E
2

(p,1) when p < 1
2 

Since we require that a 2-1-insensitive graph G be initially 

connected, p ~ 21, which implies that E
2

(p,1) is undefined when p < 

21. From Corollary 6.3 we know that any connected 2-1-insensitive 

graph must have at least p edges. The next three theorems construct 

the only 2-1-insensitive graphs having exactly p edges. 

Theorem 6,6 

Let p - 21 with 1 ~ 3. 
2 

Then E (p,1) - P· 
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Proof 

By Corollary 6.3 any connected 2-1-insensitive graph must have 

at least p edges. It suffices to show such a graph having the 

insensitive property with p edges . Consider a cycle on 1 nodes 

with a pendant edge incident to each node on the cycle, as shown in 

Figure 6.12. The domination number of G is 1 since each degree one 

node or its neighbor must be in any dominating set. All that 

remains to be shown is that the domination number remains 1 when 

arbitrary edges e1 and e 2 are removed. In all situations a 

dominating set can be found using any isolated nodes along with the 

nodes on the cycle which, in G, are not adjacent to the nodes which 

have become isolated. ■ 

Theorem 6.7 

2 
Then E (p,1) - p. 

Proof 

Again Corollary 6.3 guarantees E
2(p,1) ~ p, so it suffices to 

demonstrate a 2-1-insensitive graph having p - 31-2 nodes and P 

edges . Consider the cycle on 31-2 nodes. Clearly G has P edges and 

domination number [{31 -2)/3'1 - 1· Remove two arbitrary edges e1 

d di · · t th P and P . where 1 :S i :S 1~/2 1 . an e
2 

to create sJoin pa s i p-i Lt' ~ 

Then fi/31 nodes dominate Pi and t(p-i)/3'1 nodes dominate Pp-i" 

can be shown that f i/3l+f(31-2-i)/3l - 1· Therefore G is 2-1-

insensitive. ■ 

It 
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Figure 6.12 
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Next we show that the graphs described in Theorems 6.6 and 6.7 

are the only 2-1-insensitive graphs having p edges, and thereby 

2 establish that p+l is a lower bound for E (p, 1 ) when p ~ 21 , 31-2 

and 1 ~ 3. 

Theorem 6.8 

Graphs on p - 21 and p - 31-2 nodes as described in the proofs 

of Theorems 6.6 and 6.7 are the only 2-1-insensitive graphs having p 

edges for p ~ 21 and 1 ~ 3. 

Proof 

Any graph having p edges must either be a cycle or have 

exactly one cycle subgraph with trees rooted at nodes on the cycle. 

Let G be a 2-1-insensitive graph having p edges and a cycle 

subgraph C , and let tree T be incident to node v on the cycle. No n 

node of T can be adjacent to any node of C other than v or to 
n 

another tree because then a second cycle would be formed. Suppose T 

has more than one level and consider a leaf node on the lowest 

level. An argument identical to that in the proof of Theorem 6.4 

shows that this leads to a contradiction. Therefore T has at most 

one level, implying Tis a pendant edge since Lemmma 6.2 shows a 

node can be adjacent to at most one degree one node. 

By Corollary 6.2 any neighbor of a degree one node cannot be 

adjacent to a degree two node, so either every node on the cycle is 

adjacent to a degree one node or no node on the cycle is adjacent to 

a degree one node. Since at least one endpoint from each pendant 
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edge must be in any minimum dominating set, the only situation where 

each node on the cycle is incident to a pendant edge is the graph on 

p - 21 nodes as described in Theorem 6.6. Therefore we consider 

only cycles C . If p < 31-2 or p > 31, the domination number is not 
p 

1, a contradiction. Suppose p - 31-l or 31, and remove two adjacent 

edges to form PlUPp-1 · This has domination number r113l+f<p-1)/3l 

- 1+1, a contradiction. ■ 

Corollary 6.4 

2 Then E (p,1) ~ p+l. 

2 Therefore E (p,1) is determined for p ~ 21 and p - 31-2. Next 

Theorem 6,9 

lliQf 

Construct a 2-1-insensitive graph G - (V,E) having 2p-21 

edges as follows. Let V - BuC where B - {b1 , b2 , ... , b ) and C -
1 

{ } Form a cycle on the nodes in C and let each c
1

, c
2

, ... , c . 
p-1 

b B be adjacent to one c. or to two adjacent c.'s such that no two 
if J J 

b 's are adJ·acent to the same c. and each c. has a neighbor in B. 
i J J 

Observe that this construction can always be carried out since 1+1 ~ 

It remains to be shown that G is 2-1-insensitive. Obviously B 
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dominates and since either b. or one of it's neighbor must be in any 
l. 

dominating set and each c. dominates exactly one b., l nodes are 
J l. 

necessary. Now we show that 1(G-e
1

-e
2

) - 1(G) for arbitrary edges 

e1 and e 2 . 

Case 1 If both e1 and e2 are on the cycle, then B dominates. 

Case 2 Suppose el is on the cycle and e
2 is incident to b. 

l. 

off the cycle. If e2 - b.c. where b. is a degree one node, then c. 
l. J l. J 

can be dominated by at least one neighbor in C. Hence C. 'S neighbor 
J 

on C and B-(bk) dominate, where bk is adjacent to cj. If e
2 

and bi has degree two, then l nodes on the cycle dominate. 

b.c. 
l. J 

Case 3 Both e1 and e2 are off the cycle. If e
1 

and e
2 

are 

incident to degree one nodes b. and b., then b., b. and 1-2 nodes on 
l. J l. J 

the cycle dominate. If e1 and e 2 are both adjacent to bi, then bi 

and 1-l nodes on the cycle dominate. If e1 is adjacent to a degree 

one node bi and e2 is adjacent to a degree two node, then bi and 1-l 

nodes on the cycle will dominate. If e1 and e2 are adjacent to 

distinct degree two nodes, then l nodes on the cycle dominate. 

Thus G is 2-1-insensitive and the result follows. ■ 

Corollary 6, 5 
2 Then E (p,1) - p+l when p - 21+1. 

Theorem 6.9 implies E2 (p,1) ~ 2p-21 - p+l and Corollary 6.4 

implies E2 (p,1) ~ p+l if l ~ 4. I 
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Next we develop an upper bound for the interval 31-l 

1. 

Theorem 6.10 

Let 31-l 

Proof 

2 
Sp S 1 -1. 

2 Then E (p,1) s 

We construct 2-1-insensitive graphs as follows. Form a cycle 

on 31-2 nodes labeled c1 , c2 , ... , c
31

_2 and from each node bitV 

that is not on the cycle place edges to the same three consecutive 

nodes on the cycle, say c1 , c
2

, and c
3

. See Figure 6.13 for the 

constructions when p - 31-l and p - 31. Then G has 31-2+3(p-31+2) 

- 3p-61+4 edges. Obviously, 1 nodes dominate G and 1 nodes are 

necessary since any node dominates at most three nodes on the cycle. 

To show G is 2-1-insensitive we consider the possible ways of 

removing two edges e1 and e2 . 

Case 1 Both e
1 

and e
2 

are on the cycle subgraph. By Theorem 

6.7 c
31

_
2 

is 2-1-insensitive, so 1 nodes, including at least one of 

c
1

, c
2 

and c
3

, dominate G. 

Case 2 Both e
1 

and e2 are incident to bi's. Then at least 

one of c
1

, c
2 

and c
3 

can still dominate all bi's and it, along with 

1-l other nodes of the cycle, dominate G-e1-e2 . 

Case 3 Edge e
1 

is incident to a bi and edge e2 is on the 

cycle. Then 1 nodes on the cycle, including one of c1 , c2 and c3 , 

dominate. 

Therefore G is 2-1-insensitive. ■ 
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6,4, Summary of Results for All p 

2 
Table 6 . 1 summarizes the results of this chapter for E (p.~) 

when~~ 3 and for all values of p . 
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C3r-2 

c3r-2 

Figure 6.13 



p 

< 2-y 

2-y 

2-y+l 

21+2 :S p :S 3-y- 3 

3-y-2 

3-y-l 

2 
3-y s p s 1 -1 

2 
"Y 

2 
"Y +l 

2 
"Y +l < p < g(-y) 

p ~ g(-y) 
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TABLE 6.1 

2 E (p,-y) Difference Between 
Lower and Upper Bounds 

undefined 

2-y 

2-y+2 

2 p+l :SE (p,-y) :S 2p-2-y 

3-y-2 

2 p+l s E (p,-y) :S p+2 

2p-3-y+l :S E
2(p,-y) :S 3p-6-y+4 

2 2p-3-y+l :SE (p,-y) :S 2p-21 

2p-3-y+l :S E2 (p,-y) :S L<Sp-/-4-y+2)/2J 

2p-3-y+l s E2(p,-y) :S f(Sp-1
2

-41+2)/il 

(Sp-312-11)/2 :S E2(p,-y) :S t(Sp-1
2

-41+2)/il 

0 

0 

0(1) 

0 

1 

0(12) 

0(-y) 

o(/) 

o(/) 

oc/) 



7. APPLICATIONS OF 2-1-INSENSITIVE GRAPHS IN NETWORK DESIGN 

A number of interesting network designs for large 

distributed/ multiprocessor systems have appeared in the literature 

(Akers 1987; Ciminiera and Serra 1986; Pradhan 1985; Yanney and 

Hayes 1986). Some of the key criteria considered in connecting the 

processors are connection complexity, multiple configuration 

flexibility, fault tolerance, cost, and simple yet fast routing 

(Pradhan 1985) . Techniques from graph theory are useful in 

producing minimum cost network designs that meet specified 

requirements (Tannenbaum 1981). 

Networks are represented by undirected graphs whose nodes 

denote processors and whose edges denote communication links. A 

graph G having p nodes with domination number 1 corresponds to a 

network having p processors where a minimum number, 1, of them can 

communicate directly (in 1 hop) with the remaining p-1 processors. 

A network with this property has a minimum sized core group that 

could function in a variety of ways, for example, as "masters" or as 

repositories for a global data base essential to the other nodes. 

It may be desirable that this property not be lost when a component 

fails. In such situations it is worthwhile to establish redundant 

network links or otherwise construct a topological design which 

179 
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preserves this property when one or more links or nodes fail. 

This chapter introduces a topological design which evolved 

from our search for extremal 2-1-insensitive graphs. Its 

characteristics make it a suitable architecture for point-to-point 

communication networks and for interconnection networks. We shall 

discuss both applications. The features of this architecture are an 

integral part of the design and meet most of the key requirements 

mentioned above . The network, which we call the G-network (the G 

for "gamma"), maintains its properties in the presence of faults in 

the system . In this context, a fault is interpreted as the failure 

of a single node or one or two links. 

The G-network is an extremal 2-1-insensitive graph, so 1 nodes 

will dominate G even after two links fail. Notice that the 

dominating set of 1 nodes is not fixed and may change in a way which 

depends on which links fail. It is beyond the scope of this 

dissertation to discuss protocols to reconfigure the network to 

reflect the switch to a different set of dominating nodes. Instead 

we concentrate on the "nice" properties of the G-network that are 

inherent from its basic structure . 

We begin by constructing the G-network and discussing its 

fault tolerant properties in a point-to-point network architecture. 

The design allows a core group of processors to communicate directly 

with the remaining processors. We treat the core group as file 

servers and analyze the performance of the network when a fault 

occurs. 
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Next we consider the G-network as a processor to processor 

interconnection and compare it to the mesh connected Illiac, Barrel 

Shifter, and Hypercube networks (Hwang and Briggs 1984) . The G

network shows a significant improvement over these popular networks 

in the maximum number of routing steps required for any two nodes to 

communicate . Moreover, the G-network has a relatively small number 

of links in comparison to these networks . 

Finally, we introduce a multi-layered G-network obtained by 

interconnecting copies of the G-network in parallel. This design is 

suitable for interconnection networks used in massively parallel 

computation . 

7,1. The G-network and Its Properties 

2 The G-network on p - 1 nodes is constructed as follows. 

Designate 1 nodes as "special" nodes and label them a1 , a 2 , ... , 

a
1

. For each pair {ai' aj}' i ~ j, add two degree two nodes 

adjacent to both ai and Label arbitrarily the degree two nodes 

b., 1 s i s 
l. 

2 
1 --y. Figure 7 .1 illustrates the G-network for 1 

and Figure 7 . 2 shows it for 1 - 4 . Clearly the 1 special nodes 

form a minimum dominating set for the graph. Notice that the G

network hasp - 1+2[ 1 (1 -1)/2] - 12 nodes, 1 special nodes with 

2 
degree 2-y-2 , 1

2 . 1 nodes with degree two, and e - 21 -2-y - 2p-2-y 

3 

links. This is one of the graphs discussed in Chapter 6 where it is 

shown to be 2--y-insensitive. 

Even if the G-network suffers the loss of up to two links, the 
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Figure 7.1 
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Figure 7.2 
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set of~ special nodes can still communicate directly with the 

remaining p-~ nodes, with the possible exception of a single 

isolated node. To see this consider the failure of two arbitrary 

links, e1 and e 2 . If e1 and e
2 

are incident to different degree two 

nodes, then each degree two node has at least one direct link to a 

special node. The only other situation is when e
1 

and e2 are 

incident to the same degree two node. Then all nodes except the 

isolated nodes have direct links to two special nodes. The last 

situation will be designated below as the "isolated node case." 

Another relevant property of the G-network is stated in the 

following theorem, whose proof is obvious from the construction. A 

graph is k-connected when every pair of nodes has k node disjoint 

paths between them . 

Theorem 7.1 

The G-network is 2-connected . 

7.1.1 . The G-network: A Point-to-Point Network 

We first consider the G-network as a point-to-point 

architecture where the~ special nodes are designated to serve the 

function of file servers. For discussion we refer to these special 

nodes as "file servers" and the others of degree two simply as 

"nodes." A file server is a processor that contains replicated 

software to provide a shared disk system. Access to the file 

servers in spite of link faults is important in order to ensure 
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continuous service. Thus the property of the G-network discussed in 

the previous section is an attractive feature in this application. 

Each degree two node can communicate directly (in one hop) with at 

least one file server even if one link fails and, except in the 

isolated node case, each degree two node can communicate directly 

with at least one file server when two links fail. Even in the 

exceptional case, all nonisolated degree two nodes still have direct 

access to some file server. The following connectivity observations 

follow immediately: 

(1) The G-network remains connected when any arbitrary link 

fails. 

(2) The G-network remains connected when any two arbitrary 

links fail with only the isolated node case as an 

exception. 

Consequently, the G-network has a high degree of fault 

tolerance with respect to at most two link failures. Theorem 7.2 

considers the failure of a node and is a consequence of Theorem 

7.1. 

Theorem 7.2 

Any single node or file server in the G-network can fail (the 

node and all links incident to it are removed) without disrupting 

the service to the remaining active nodes. 
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Proof 

First suppose the node that fails is a node with degree two. 

Then all other nodes with degree two are unaffected and each can 

still access two file servers. On the other hand, suppose a file 

server fails. Each degree two node still can access directly at 

least one file server. ■ 

Each pair of nodes in the core group (file servers) are 

connected by two paths of length two. If files are duplicated in 

two or more servers, then at least one set of files will be 

available to all nonisolated active nodes in spite of the faults 

under consideration. Furthermore, each nonisolated active node can 

access the files in at most three hops. 

7.1 . 2. The G-network: An Interconnection Network 

We turn our attention to the G-network as a model for a 

processor-to-processor interconnection network. The properties 

dicussed in this section are applicable when the G-network is any 

point-to-point network, but we shall limit our discussion to 

interconnection networks . The following theorem states a routing 

property of this configuration . 

Theorem 7,3 

The maximum number of routing steps (hops) required between 

any two nodes in the G-network is four. 
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Proof 

The worst case situation occurs when the source node and the 

destination node are both degree two nodes and are not adjacent to a 

common special node. The source node can reach either one of the 

two special nodes in its neighborhood with one hop. This special 

node can reach a special node adjacent to the destination node with 

two hops. One more hop reaches the destination. ■ 

Unlike other interconnection networks where routing steps are 

dependent on the number of processors, the G-network offers a 

constant maximum of four hops independent of p. This characteristic 

is an innate property of the design and is achieved without adding 

additional redundant links. 

Table 7.1 shows comparisons between the G-network and the 

2 Illiac network when p - 1 . The G-network has fewer links than the 

Illiac network while providing better routing. Furthermore, as 1 

approaches infinity, the speedup and the difference in the number of 

links approach infinity. 

Table 7.2 illustrates the comparisons between the G-network 

and the Barrel Shifter interconnection network. There is a 

significant difference in the number of links. Moreover, the 

routing performance of the G-network is an improvement over the 

Barrel Shifter network for p > 16. 

Table 7.3 gives the comparisons between the G-network and the 

Hypercube network with p - 1
2 Again for large networks as 1 
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TABLE 7.1 

A COMPARISON OF THE ILLIAC NETWORK AND THE G-NETWORK 

2 HERE p - -y 

MAXIMUM NUMBER OF HOPS 
p ILLIAC G-NETWORK SPEEDUP 

16 3 4 3/4 

64 7 4 7/4 

256 15 4 15/4 

1024 31 4 31/4 

2 -y-1 4 (-y-1)/4 1 

NUMBER OF LINKS 
ILLIAC G-NETWORK DIFFERENCE 

32 24 8 

128 112 16 

512 480 32 

2048 1984 64 

2 
2-y - 2p 2p-2-y - 2p-2Jp 2-y - 2Jp 
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TABLE 7.2 

A COMPARISON OF THE BARREL SHIFTER AND THE G-NETWORK 

Here p = 1
2 

= 22k, -y = jp = 2k, log
2
p = 2k. 

MAXIMUM NUMBER OF HOPS 
p BARREL SHIFTER G-NETWORK SPEEDUP 

16 2 4 1/2 

64 3 4 3/4 

256 4 4 4/4 

1024 5 4 5/4 
2 

(log2p)/2 4 (log2p)/8 -y 

NUMBER OF LINKS 
BARREL SHIFTER G-NETWORK DIFFERENCE 

56 24 32 

352 112 240 

1920 480 1440 

9728 1984 7744 

p(2log2p-1)/2 2p-21-2p-2jp O(p(log2p)) 



-y p 

4 16 

8 64 

16 256 

32 1024 

2 -y -y 

p 

16 

64 

256 

1024 

2 -y 
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TABLE 7.3 

A COMPARISON OF THE HYPERCUBE AND THE G-NETWORK 

Here p - ...,2 - 22k, -Y - Jp - 2k. 

MAXIMUM NUMBER OF HOPS 
k HYPERCUBE G-NETWORK SPEEDUP 

2 4 4 4/4 

3 6 4 6/4 

4 8 4 8/4 

5 10 4 10/4 

k log2p 4 (log2p)/4 

NUMBER OF LINKS 
HYPERCUBE G-NETWORK DIFFERENCE 

32 24 8 

192 112 80 

1024 480 544 

5120 1984 3136 

p((log
2
p)/2) 2p-2-y O(plog2p) 
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approaches infinity, so do the speedup and the difference in the 

number of links. 

In all these comparisons the G-network has fewer links while 

providing better routing. 

Our next theorem reflects the fault tolerance of the G-network 

with respect to routing. 

Theorem 7,4 

Any single link can fail in the G-network and the maximum 

number of routing steps required will remain four. 

Proof 

Let an arbitrary link fail and consider the worst case where 

two nodes in the graph under discussion are not adjacent to a common 

special node. From previous observations any node can still 

communicate directly with at least one special node after any link 

fails. The special node still has a least one path of length two to 

every other special node. Finally, at least one path to the 

destination remains. Thus, the maximum number of routing steps 

stays four in spite of any link failure. ■ 

The following theorem considers the failures of two links. 

Theorem 7,5 

The failure of two links results in one of the following 

situations: 
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(i) Every pair of special nodes is still connected by at 

least one path of length two. 

(ii) One pair of special nodes is not connected by a path 

of length two. 

In both situations the maximum number of routing steps required 

between any two nonisolated nodes remains four, with one exception. 

The exception occurs in situation (ii) when one or both of the nodes 

have degree one, in which case the maximum number of steps is six. 

Proof 

If at least one path of length two exists between each pair of 

special nodes, routing can occur as before (except possibly for one 

node if it has become isolated). Assume then that there exists a 

pair of special nodes, say a1 and a2, no longer connected by a path 

of length two. Let b1 and b 2 be the degree two nodes which were 

adjacent to both a
1 

and a2 prior to the link failures. By symmetry 

we need to consider only the following two possibilities: the 

faulty links are a
1
b

1 
and a

1
b 2 or a1b1 and a2b2 . If a1b1 and a1b2 

fail, a maximum of five hops is needed for routing between either 

b
1 

or b
2 

and a
1

. If ab and ab fail, the worst case requires six 
1 1 2 2 

hops to route between b1 and b 2. ■ 

We now consider the tolerance of the G-network with respect to 

a faulty node. 
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Theorem 7.6 

If any node in the G-network fails, the maximum number of 

routing steps required for any two active nodes to communicate 

remains four . 

Proof 

If a node with degree two fails, it is similar to case (i) of 

Theorem 7 . 5 where the node becomes isolated. If a special node 

fails, all degree two nodes can still reach at least one active 

special node in one hop and the result follows as before. ■ 

Theorems 7 . 4 and 7 . 6 show that this network can withstand a 

failure of either any single node or any single link and the 

maximum number of routing steps remains constant at four. 

7 . 2. A Multi-layered G-network for Massively Parallel Computation 

This section presents the Multi-layered G-network obtained by 

interconnecting copies of the G-network in parallel. The design is 

suitable for large interconnection networks and has the following 

desirable characteristics: efficient routing, small number of links 

and a high level of fault tolerance. 

Each layer of this network is a copy of the G-network where 

the -y special nodes in copy i are labeled 1. , 
l 

2., 
l 

... ' 'Y •• 
l 

Here i, 

0 :s i :s h-1, is the layer number. Each special node a. is connected 
l 

to a(i+l)mod h " Observe that the nodes a0 , a1 , ... ' induce a 

cycle subgraph . One layer of the Multi-layered G-network with 'Y 4 
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is shown in Figure 7.3, with connections to other layers indicated 

by dotted lines. Each layer has 12 nodes and 212-21 links. An 

additional 1h links are required to connect the layers, giving a 

2 2 total of 2h1 -h1 links. There are h(1 -1) degree two nodes and h1 

degree 21 nodes. 

The maximum number of routing steps (hops) required between 

any two nodes in the same layer is four since each layer is a G

network. This fact is independent of the number of processors in 

the network. 

Theorem 7.7 

The maximum number of hops required between any two nodes in 

the Multi-layered G-network is Lh/2J+4. 

Proof 

In the worst case situation a source node can reach a special 

node in the same layer in one hop. From that special node it takes 

at most Lh/2J hops to reach the layer containing the destination 

node. It then takes at most three additional hops to reach the 

destination node. ■ 

We note that the routing performance dependent only on the 

number of layers h. Given a fixed number of layers, h, the maximum 

number of routing steps required is constant. The following 

theorems demonstrate the network's fault tolerance by showing that 



1 (i+l)mod h 

3(i+l)mod h .... .... .... .... .... 

3(i-1)mod h 
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2(i+l)mod h 

4(i+l)mod h 

4(i-1)mod h 

Figure 7.3 
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this characteristic remains unchanged when any single link or node 

fails. 

Theorem 7.8 

Any single link can fail in the Multi-layered G-network and 

the maximum number of routing steps required remains Lh/2J+4. 

Proof 

Every node can still reach a special node. If the faulty link 

has both its endnodes in the same layer, then an argument similar to 

the one in the proof to Theorem 7.7 yields the result. If the 

faulty link is between layers, then in the worst case situations 

routing between layers still requires Lh/2J hops and the combination 

of routing steps on both the source and destination layers total at 

most four . ■ 

Theorem 7.9 

If any single node in the Multi-layered G-network fails, the 

maximum number of routing steps required for any two active nodes to 

communicate remains Lh/ 2J +4. 

Proof 

If a degree two node fails, each active node is either a 

special node or still has two links to special nodes, and each pair 

of special nodes on the same layer is still joined by at least one 

path of length two . If a special nodes fails, each active degree 

two node can still reach a special node in one hop and each pair of 
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active special nodes on the same layer is still joined by two paths 

of length two. Hence in either case routing between any two active 

nodes can be accomplished as before. ■ 

We note that the maximum degree of 2~ is independent of the 

total number of processors. Hence the Multi-layered G-network 

possesses the following desirable properties: fault tolerance, low 

cost, fast routing, and simple connections with a maximum degree 

dependent only on the number of processors per layer. Current 

research is comparing the performance of this network with other 

popular designs. 



8. CHANGING AND UNCHANGING DOMINATION 

In this chapter we present a problem posed by Frank Harary 

(1988) which is related to our research in insensitive domination. 

His general problem actually consists of six subproblems involving 

the changing or the unchanging of the domination number of a graph 

Gin three different situations: when deleting a node, when deleting 

an edge and when adding an edge. Formally, the six subproblems are 

to characterize those graphs G - (V,E) for which (1) 1(G-v) ~ 1(G) 

for all vtV; (2) 1(G-v) - 1(G) for all viV; (3) 1(G-e) ~ 1(G) for 

all eiE; (4) 1(G-e) - 1(G) for all eiE; (5) 1(G+e) ~ 1(G) for all 

eiE - E(G); and (6) 1(G+e) - 1(G) for all eiE - E(G). 

The insensitive domination problem is concerned with 

subproblem (4) where 1 does not change when a single edge is 

removed, and we have extended this subproblem to the removal of k > 

1 edges. Like our research, other reports in the literature have 

attacked the subproblems separately using varying terminology. The 

main objective of this chapter is to bring together current research 

in the form posed by Harary (1988). In addition, we include some 

new results. 

We investigate changing and unchanging of domination for each 

of the three situations in the remaining sections of this chapter. 

198 
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It will be useful to partition the nodes of graph G into three sets 

according to how their removal affects the domination number. Thus 

we define v0 
= {vfV I ~(G-v) 

- {vfV I ~(G-v) < ~(G)). V Throughout this chapter all the minimum 

dominating sets of Gare labeled by D
1

, D
2

, ... , Dn. 

8 . 1. Removal of a Node 

8.1.1. The Domination Number Is Changed 'When Any Node Is Removed 

Here the removal of any node from graph G changes the 

domination number, that is, 1(G-v) ~ 1(G) for all VfV. Clearly, the 

nodes of Gin this case are partitioned into V+ and V . We first 

state some elementary facts about these two sets. 

Lemma 8.1 

Proof 

+ If VfV , then vis in every minimum dominating set of G. 

Suppose VfV+ and v~D. for some i. Then vis dominated by a 
1 

neighbor xfD .. Now either xis necessary in D. to dominate some 
1 1 

node other than v in which case ~(G-v) - ~(G), or xis required to 

+ 
dominate only v and 1(G-v) - 1(G)-l. In either case, we see v/V , 

a contradiction. ■ 

Corollary 8.1 
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The proof to the following lemma is obvious. 

Lemma 8.2 

Any isolated node is in V-. 

Lemma 8,3 

+ If node V€V , then vis necessary in every D., for 1 sis n, 
1 

in order to dominate at least two non-adjacent nodes, other than v 

itself, not dominated by D.-(v}. 
1 

Proof 

+ Suppose V€V . Then by Lemmas 8.1 and 8.2 vis in every 

minimum dominating set and is not isolated. Let S be those nodes of 

N(v) which are not dominated by D.-(v} for an arbitrary minimum 
1 

dominating set Di. Suppose S forms a complete subgraph of G. Then 

D.-(v} along with any node of S if Sis nonempty or any neighbor of 
1 

v otherwise is a minimum dominating set not containing v, a 

contradiction. Hence vis required in Di to dominate at least two 

non-adjacent nodes. ■ 

Observe that d 
V 

+ 
~ 2 for VEV. We also note that the converse 

of Lemma 8.3 is not true. For a counterexample, consider graph G -

(V, E) with v - (v, a, b, c, d, e, f} and E - {va, vb, vc, vd, ea, 

ed, ef, fb, fc}. Obviously, 1(G) - 2. Although the conditions of 

the converse of Lemma 8.3 are met, {e, f} dominates G-{v} implying 

+ that vis not in V . 
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Corollary 8.2 

A node V€Di for 1 sis n if and only if v€V+ or vis isolated. 

Proof 

Sufficiency follows from Lemma 8.1 and the fact that an 

isolated node must be in every dominating set. To show necessity 

suppose non-isolated node vis in every minimum dominating set and 

consider the set Sin the proof of Lemma 8.3. If Sis empty or 

complete, v can be replaced by a neighbor to produce a minimum 

dominating set not containing v, a contradiction. Thus S must 

contain at least two non-adjacent nodes and the result follows from 

Lemma 8.3. ■ 

Theorem 8,1 

If X€V+ and y€V-, then xis not adjacent toy. 

Proof 

Let D be a minimum dominating set of G-y of size ~(G)-1. If 
y 

D contains x, D dominates G, a contradiction. On the other hand, 
y y 

if D does not contain x, then D U{y} dominates G and does not 
y y 

contain x, violating Corollary 8.2. ■ 

By Lemma 8.3 each veV+ has at least two neighbors in V-Di 

which are not dominated by D.-{v}, for 1 sis n. Since vis not 
1 

adjacent to a node in V and no nodes of V+ are in V-D., v has at 
1 

least two neighbors in v0 which are not dominated by Di-{v}. Hence 

we have the following corollary. 



202 
Corollary 8, 3 

For any graph lv01 ~ 21v+I. 

Theorem 8,2 

If graph G has the property that 1(G-v) ~ 1(G) for all VfV, 

then 1(G-v) < 1(G) for all v, implying V - V-. 

Proof 

Suppose 1(G-v) ~ 1(G) for all VfV. + Then V and V partition 

V, and from Theorem 8.1 we know that each component of G has node 

+ or V'Cv - If + set V'Cv XfV' then by the comment preceding 

Corollary 8.3 x has two neighbors 0 in V, a contradiction. Hence no 

component has V'Cv+, so V, Cv for each component of G . • 

Thus in any graph G, such that 1(G-v) ~ 1(G) for all VfV, it 

must be the case that 1(G-v) < 1(G). These are precisely the graphs 

which Brigham, Chinn and Dutton (1988) call vertex critical or just 

1-critical graphs. They state some basic properties of 1-critical 

graphs. We mention one of these which establishes when a graph G is 

not 1-critical. 

Lemma 8,4 (Brigham, Chinn and Dutton 1988) 

If G has a nonisolated node v such that N(v) is complete, 

then G is not 1 -critical (changing in terms of domination). 

According to Brigham, Chinn and Dutton attempts to 
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characterize 1-critical graphs have been unsuccessful, and the 

problem remains unsolved. Furthermore, they show it is not possible 

to characterize these graphs in terms of forbidden subgraphs. On 

the other hand, they successfully characterize 1-critical graphs 

having p - 1+6 nodes, the minimum number possible, in the following 

theorem. 

Theorem 8.3 (Brigham, Chinn and Dutton 1988) 

A graph G is 1-critical having p - 1+6 if and only if G has 

the form shown in Figure 8.1 where Bis the set of neighbors of a 

node of maximum degree 6 and 

(1) the 1-l nodes of Care independent, 

(2) every B node is adjacent to exactly one C node, 

(3) C forms the only set of 1-l nodes which dominates Bue, 

(4) for any bfB there is a set of 1-l nodes of BUC which 

dominates B-{b} and includes a node b'fB. 

8.1.2. The Domination Number Is Unchanged When Any Node Is Removed 

0 
In this problem 1(G-v) - 1(G) for all VfV, so V - V . Graphs 

having this property have not been characterized. Although our 

current research on this subproblem seems promising, the problem 

remains open. 
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V 

• C1-1 

B nodes C nodes 

Figure 8.1 
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8.2. Removal of an Edge 

8.2.1. The Domination Number Is Changed When Any Edge Is Removed 

Here we treat the case where removal of any edge from G 

results in a change in the domination number, i.e., 1(G-e) ~ 1(G) 

for all eEE. Clearly, the removal of an edge cannot decrease the 

domination number, so such graphs have the property that 1(G-e) > 

1(G) for all eEE. These graphs are easy to characterize and have 

been shown to be the union of stars, K (Bauer, Harary, Nieminen 
1,n 

and Suffel 1983). 

8.2.2. The Domination Number Is Unchanged When Any Edge Is Removed 

This problem is much more difficult than that of Section 

8.2.1. Here the removal of an arbitrary edge from G does not change 

the domination number. That is, 1(G-e) - 1(G) for all eEE. Dutton 

and Brigham (1988) define connected graphs with this property to be 

1-insensitive graphs. This problem is the topic of the research 

reported in this dissertation, which considers finding extremal 

graphs having the property. 

In general, graphs having this unchanging property seem to be 

difficult to characterize, and the problem remains open. 

8.3. Addition of an Edge 

8.3.1. The Domination Number Is Changed When Any Edge Is Added 

Just as the removal of an edge cannot decrease the domination 
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number 1, the addition of an edge cannot increase 1. Thus, in this 

problem, we look at those graphs G which for each u,veV, where uv is 

not an edge, 1(G+uv) < 1(G). 

This is a another hard problem. Sumner and Blitch (1983) 

studied such graphs. They were able to fully characterize them only 

in the cases where 1(G) - 1 or 2 and where 1(G) - 3 when p ~ 8. 

8.3.2. The Domination Number Is Unchanged When Any Edge Is Added 

In this problem 1(G+e) - 1(G) for all u,veV where uv is not an 

edge. A characterization of graphs having this property is 

straightforward. 

Theorem 8.5 

1(G+e) - 1(G) for all eeE(t) if and only if G contains no 

nodes in V-. 

Proof 

Suppose G is unchanging with respect to domination when any 

edge is added, and G contains a node xeV . Thus 1(G-x) < 1(G). Let 

D be a (1-l)-dominating set of G-x. Then adding an edge e between 
X 

x and any node of D shows 1(G+e) - 1(G)-l, a contradiction. 
X 

Suppose G has no nodes in V- and 1(G+uv) - 1(G)-l for some 

pair of nodes u and v. Then any (1-l)-dominating set D of G+uv must 

include exactly one of u or v, say u, and furthermore D must 

dominate G-v. Thus veV which is a contradiction. ■ 
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Theorem 8.5 relates this subproblem to the subproblem in 

Section 8.1.1 where ~(G-v) < ~(G) . 

8,4. Remarks 

It is interesting to note that straightforward 

characterizations were possible for subproblems (3) and (6). On the 

other hand, their counterparts (4) and (5), respectively, do not 

seem to lend themselves to useful characterizations, and much work 

remains in studying them . Furthermore, current research seems to 

indicate that subproblem (2) will be easier to solve than its 

counterpart (1) . 



9. CONCLUDING REMARKS 

In Chapter 1 we introduced the problem of finding extremal 

k-1-insensitive graphs and noted that according to Bollob~s (1978) 

problems in extremal graph theory tend to be difficult. Although 

the problem in k-1-insensitivity proved to be no exception, in this 

dissertation we have been able to attain exact values for Ek(p,1) 

in some cases and asymptotically correct values in general. 

Specifically, we solved the first of the two subproblems presented 

in the introduction which requires that the same fixed set of nodes 

dominate G when any set of k edges is removed. Significant results 

for the second of the two subproblems, where the only restriction is 

the initial connectedness of G, yielded asymptotically correct 

k bounds for E (p,1) for all k ~ 2. Moreover, structural properties 

2 
of extremal graphs allowed us to obtain exact values for E (p,2) and 

2 
to improve the upper and lower bounds for E (p,1) when 1 ~ 3. 

Applications in network design have been shown. We introduced 

a new network design, called the G-network, and demonstrated that 

the G-network has desirable characteristics for both point-to-point 

and interconnection networks while maintaining a high degree of 

fault tolerance. 

Many ideas for future research have arisen during the course 
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of this study and we conclude by listing some of them. 

1. 

2. 

3. 

2 Find exact values for E (p,1) with 1 ~ 3. 

Find exact values for Ek(p,1) when k ~ 3. 

Extend the definition of k-1-insensitivity by adding the 

restriction that the graph remains connected after any k 

edges are removed and find extremal graphs having this 

property. 

4. Study other applications of k-1-insensitive graphs in 

network design. 

5. Investigate the relationship between k-1-insensitivity and 

fault tolerance in networks. 

6. Determine routing algorithms for the G-network. 

7. Determine protocols to provide a method for the G-network 

to dynamically switch to a new dominating set after k 

links fail. 

8. Complete research on the Multi-layered G-network. 

9. Study popular network topologies to determine whether or 

not they are k-1-insensitive. If not, determine the 

the minimum number of additional links required to make 

them k-1-insensitive. 

10. Characterize graphs for the changing and unchanging 

domination subproblems (1), (4) and (5) which are 

described in Chapter 8. 

11. Study the changing and unchanging problem posed by Harary 

(1988) with respect to other graphical invariants. 



APPENDIX 

A CATALOGUE OF ALL 2-2-INSENSITIVE GRAPHS ON p ~ 10 NODES 
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p - 4 

0 0 1 1 
0 0 1 1 
1 1 0 0 
1 1 0 0 

p - 5 

0 0 0 1 1 
0 0 I I I 
0 I 0 I I 
I I I 0 0 
I I I 0 0 

p - 6 

0 0 0 0 1 1 
0 0 0 I 1 0 0 0 0 1 0 1 
0 0 1 0 1 1 0 0 0 1 1 0 
0 1 0 1 0 1 0 1 1 0 1 1 
1 0 1 0 0 1 1 0 1 1 0 1 
1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 

0 0 0 1 0 1 0 0 0 1 1 1 
0 0 1 0 1 0 0 0 0 1 1 1 
0 1 0 0 1 1 0 0 0 1 l 1 
1 0 0 0 1 1 l 1 1 0 0 0 
0 1 1 1 0 1 1 1 1 0 0 0 
1 0 1 1 1 0 l 1 1 0 0 0 

0 1 0 0 0 1 0 0 0 I 1 1 
1 0 0 0 1 0 0 0 l 0 l 1 
0 0 0 1 1 1 0 1 0 1 0 1 
0 0 1 0 1 1 1 0 1 0 l 0 
0 1 1 1 0 1 1 1 0 1 0 0 
1 0 1 1 1 0 l 1 1 0 0 0 



p - 7 

0 0 0 0 1 1 0 
0 0 1 1 0 0 1 
0 1 0 1 0 0 1 
0 1 1 0 0 0 1 
1 0 0 0 0 1 1 
1 0 0 0 1 0 1 
0 1 1 1 1 1 0 

0 0 0 0 1 1 1 
0 0 0 1 .o 1 1 
0 0 0 1 1 0 1 
0 1 1 0 0 0 1 
1 0 1 0 0 l 0 
1 1 0 0 1 0 0 
1 1 1 1 0 0 0 

O O O O 1 1 1 
O O 1 1 0 0 1 
O 1 0 1 0 0 1 
O 1 1 0 0 1 0 
1 0 0 0 0 1 1 
1 0 0 1 1 0 0 
1110100 

p - 8 

0 1 1 1 1 0 0 0 
1 0 0 0 0 1 1 1 
1 0 0 1 1 0 0 0 
1 0 1 0 1 0 0 0 
1 0 1 1 0 0 0 0 
0 1 O O O O 1 1 
0 1 O O O 1 0 1 
0 1 0 0 0 1 1 0 
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p - 9 
0 0 1 1 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 
1 1 0 0 1 1 1 0 0 
1 1 0 0 1 0 0 1 1 
0 1 1 1 0 0 0 0 0 
0 1 1 0 0 0 1 0 0 
0 1 1 0 0 1 0 0 0 
0 1 0 1 0 0 0 0 1 
0 1 0 1 0 0 0 1 0 

0 0 1 1 1 1 1 1 0 
0 0 1 1 1 1 1 1 1 
1 1 0 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 0 
1 1 0 0 1 0 0 0 0 
1 1 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 1 0 

0 1 1 1 1 0 0 0 0 
1 0 0 0 0 1 1 1 1 
1 0 0 1 1 1 1 1 1 
1 0 1 0 1 0 0 0 0 
1 0 1 1 0 0 0 0 0 
0 1 1 0 0 0 1 0 0 
0 1 1 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 1 
0 1 1 O O O O 1 0 

O 1 1 1 1 1 1 0 0 
1 O O 1 1 1 0 1 0 
1 O O 1 1 0 1 0 1 
1 1 1 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 
1 1 O O O O O 1 0 
1 O 1 O O O O O 1 
O 1 O O O 1 0 0 1 
O O 1 0 0 0 1 1 0 
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0 1 1 1 I I 1 0 0 0 0 0 1 1 I 1 1 1 
1 0 0 1 1 1 0 1 0 0 0 I 1 1 1 1 0 0 
1 0 0 1 0 0 1 1 1 0 1 0 I I 0 0 1 1 
1 1 I 0 0 0 0 0 0 I 1 1 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 
1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 
1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 I 
0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 

0 I 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 
1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 
1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 
1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 
1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 
1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 
0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 
0 1 1 0 0 0 0 1 0 0 I 0 1 0 0 0 1 0 

0 1 0 1 1 1 1 1 0 0 1 I 1 I 0 0 0 0 
1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 
0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 
1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 
0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 

0 0 0 1 1 1 1 1 1 0 1 1 1 I 0 0 0 0 

0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 

0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 

1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 

1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 

1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 
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0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 

0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 
1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 
0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 
1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 
1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 
0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 

0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 
1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 
1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 
0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 
1 1 1 0 0 0 0 0 0 1 I 0 I 0 0 0 0 0 
1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 
0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 1 0 1 1 I O 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 

0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 
1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 
1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 
0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 
1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 
1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 
0 1 1 1 0 0 0 0 0 I 0 0 0 1 1 0 0 0 
0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 
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0 1 0 0 1 1 1 0 0 
0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 
1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 
1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 
1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 

1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 
1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 
0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 
0 1 0 0 0 0 1 1 0 

0 1 0 0 1 1 1 0 0 
0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 
1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 
1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 
0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 
1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 
1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 0 
0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 
1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 
1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 
0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 1 1 0 1 O O O O 0 
0 1 1 1 O O O O 0 0 1 0 0 1 0 0 0 1 
0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 

0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 
1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 
1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 
1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 
1 1 I 1 O O O O 0 0 0 0 1 0 0 1 1 1 
1 0 O O O O O 1 1 1 1 1 0 0 0 0 0 0 
O 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 
0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 
0 0 0 0 0 1 I 1 0 O 1 0 1 1 0 0 0 0 
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0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 
1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 
1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 
0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 
0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 
1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 
1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 
0 1 0 1 1 0 0 0 0 

0 0 1 1 0 I 1 1 0 
0 0 1 0 1 I 1 0 1 
1 I 0 1 0 1 0 0 0 
1 0 I 0 0 0 0 1 1 
0 1 0 0 0 0 I I 1 
1 1 1 0 0 0 0 0 0 
1 1 0 0 1 0 0 0 0 
I 0 0 1 1 0 0 0 0 
0 1 0 1 1 0 0 0 0 

0 0 1 1 0 I 1 1 0 
0 0 1 0 1 1 1 0 1 
1 1 0 0 0 1 0 1 0 
1 0 0 0 1 0 0 1 I 
0 1 0 1 0 0 1 0 1 
1 1 1 0 0 0 0 0 0 
1 1 0 ,0 1 0 0 0 0 
1 0 1 1 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 

0 0 0 0 1 1 1 1 1 
0 0 1 1 1 0 0 0 0 
0 1 0 1 1 0 0 0 0 
0 1 1 0 1 0 0 0 0 
1 1 1 1 0 0 0 0 0 
1 0 0 0 0 0 1 1 1 
1 0 0 0 0 1 0 1 1 
1 0 0 0 0 1 1 0 1 
1 0 0 0 0 1 1 1 0 
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p - 10 

0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 

1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 

1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 

0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 

0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 

0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 

0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 

1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 

1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 

1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 

0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 

1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 

1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 

1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

0 , 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 

0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 

0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 

0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 

0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 

0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 

1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 

1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 

1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 

0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 

0 1 1 0 0 0 0 0 0 l 
0 1 1 0 0 0 0 0 0 1 

0 1 1 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 1 1 0 
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0 l l l l l l l 0 0 0 0 1 1 1 1 1 1 0 0 
1 0 0 1 1 1 0 0 1 1 0 0 1 l 1 1 1 1 1 1 
1 0 0 l 0 0 1 1 1 l 1 1 0 0 1 1 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
1 l 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
l 1 0 0 l 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 
1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 
0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 

0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 l l l 0 
1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 
1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 
1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 
1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 
1 0 1 0 0 0 0 0 0 1 1 l 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 1 0 0 1 1 l 0 0 0 0 0 l 0 0 
0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 
0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 
0 1 0 1 1 l 1 0 1 0 1 1 0 0 1 0 1 1 1 0 

1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 

1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

l 1 l 0 0 0 0 0 0 0 l 0 0 l 0 0 0 0 0 1 

1 1 1 0 0 0 0 0 0 0 0 l 1 1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 1 0 1 l 1 0 0 0 0 0 0 

l 0 1 0 0 0 0 0 0 1 0 1 1 l 0 0 0 0 0 0 

1 0 0 0 0 0 0 1 l 0 0 1 0 1 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 
0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 
0 1 0 1 1 1 0 0 1 1 1 l 0 0 1 1 0 l 1 0 
1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 l 1 1 
1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 
1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 1 0 0 l 0 1 0 0 1 0 0 0 
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0 1 1 1 1 0 0 0 0 0 0 l 1 0 1 1 0 0 0 0 
1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 
1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 
1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 1 1 l 0 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 
0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 

0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 
1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 
1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 
1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 

0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 
1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 
1 1 0 0 1 0 1 1 1 0 l 0 0 0 l 0 1 1 1 1 
0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 
1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 1 l 0 0 0 0 0 l 
0 0 0 1 1 1 0 0 0 0 0 0 l 1 0 0 0 0 1 0 

0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 
1 0 0 1 1 1 1 1 0 0 1 0 0 1 l 0 1 l 1 0 
1 0 0 1 1 1 0 0 1 1 1 0 0 l 0 l l l 0 1 
0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 l 1 1 
1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 l 
0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 
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0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 
1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 

0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 
1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 
0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 

0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 
1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 
0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 
0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 
1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 
0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 

0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 
1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 
0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 
0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 1 1 1 O O O O O 0 0 1 0 1 0 0 0 0 0 1 
0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 



221 

0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 

0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 l 0 0 0 0 0 1 0 1 0 0 1 1 1 l 0 0 1 0 0 0 l 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 l 0 0 1 1 1 1 0 0 0011111 1 1 0 0 0 1 1 1 0 l 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 l 0 0 1 1 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 

0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 l 1 0 0 
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 l 0 
1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 
1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 
1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 
1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 1 0 l 1 0 1 0 0 0 0 0 
0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 

0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 l 0 0 
1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 
1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 
0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 
0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 l 1 l l 
1 0 0 1 1 0 0 0 0 0 l 1 0 l 0 0 0 0 0 0 
1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 
1 0 0 0 1 0 1 0 0 0 1 0 0 l 1 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 0 1 1 0 l 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 l 1 1 0 0 0 0 0 
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0 l 0 0 0 l l l 1 0 0 1 1 1 l 0 0 0 0 0 l 0 1 0 0 l l O 0 0 l O l l 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 l 1 0 0 0 0 0 0 0 l 0 l 1 0 l l l 1 1 1 0 0 1 0 0 0 0 0 0 1 l 0 0 l l 1 1 l 1 l 0 0 0 1 0 0 0 l l 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 l 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 l O O 0 0 0 0 0 0 0 0 1 l 0 1 1 1 0 0 1 l O O 0 0 0 0 0 0 0 0 l l 1 0 l 0 0 1 l l O O 0 0 0 0 0 0 0 0 l 1 1 l 0 

0 0 0 1 1 1 1 1 0 0 0 1 l 1 l 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 l 0 l l l 0 0 0 0 0 0 l 0 0 1 0 0 0 1 1 1 l 0 1 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 1 1 l 0 0 1 0 0 0 0 
1 0 1 0 0 0 1 1 1 1 1 l o 0 0 0 l 1 0 0 
1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 
1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 
1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 l 1 1 0 1 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 l 1 1 1 0 

0 1 1 1 1 0 0 0 0 0 0 l 1 1 l 0 0 0 0 0 
1 0 0 0 0 1 1 1 0 0 l 0 l l 1 0 0 0 0 0 
1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 
1 0 0 0 0 1 0 1 1 0 1 l 0 0 0 1 0 1 0 0 
1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 
0 1 1 1 0 0 0 0 0 1 0 0 l l 0 0 0 0 1 1 
0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 l l 
0 1 0 1 l 0 0 0 0 1 0 0 0 1 1 0 0 0 l l 
0 0 l l 1 0 0 0 0 1 0 0 0 0 0 l 1 l 0 l 
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 l 1 0 

0 1 1 1 0 1 0 0 0 0 0 l 1 1 1 0 0 0 0 0 
1 0 1 1 0 1 1 1 0 0 1 0 1 l 0 1 0 0 0 0 
1 l 0 0 l 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 
1 l 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 l 0 0 
0 0 1 0 0 0 1 1 1 1 1 0 l l 0 0 0 0 1 0 
1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 l 1 0 l 
0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 
0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 l 1 1 1 0 



0 0 1 0 0 1 1 1 0 0 
0 0 1 1 1 1 0 0 1 1 
1 1 0 1 0 0 1 1 0 0 
0 1 1 0 1 0 0 0 1 1 
0 1 0 1 0 1 0 0 1 1 
1 1 0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 1 0 0 
1 0 1 0 0 0 1 0 0 0 
0 1 0 1 1 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 

0 1 1 1 0 0 1 1 1 0 
1 0 1 0 1 0 1 1 1 0 
1 1 0 0 0 0 0 0 0 1 
1 0 0 0 0 1 0 0 0 1 
O 1 0 0 0 1 0 0 0 1 
O O O 1 1 0 0 0 0 1 
1 1 0 0 0 0 0 1 1 0 
1 1 0 0 0 0 1 0 1 0 
1 1 0 0 0 0 1 1 0 0 
O O 1 1 1 1 0 0 0 0 

0 1 1 1 0 0 1 1 1 0 
1 0 0 0 1 1 1 1 1 0 
1 0 0 1 0 0 0 0 0 1 
1 0 1 0 0 0 0 0 0 1 
O 1 0 0 0 1 0 0 0 1 
O 1 O O 1 0 0 0 0 1 
1 1 0 0 0 0 0 1 1 0 
1 1 O O O O 1 0 1 0 
1 1 O O O O 1 1 0 0 
O O 1 1 1 1 0 0 0 0 

O 1 l 1 l O O O O 0 
1 O l 1 l O O O O 0 
1 1 O 1 1 0 0 0 0 0 
1 1 1 O 1 0 0 0 0 0 
1 1 1 1 O O O O O 0 
O O O O O O 1 1 1 1 
O O O O O 1 0 1 1 1 
O O O O O 1 1 0 1 1 
o O O O O 1 1 1 0 1 
O O O O O 1 1 1 1 0 
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0 0 1 1 1 1 1 0 0 0 
0 0 1 1 0 0 0 1 1 1 
1 1 0 1 1 1 1 0 0 0 
1 1 1 0 1 1 1 0 0 0 
1 0 1 1 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 
0 1 0 0 0 0 0 1 0 1 
0 1 0 0 0 0 0 1 1 0 

0 0 1 1 1 1 1 0 0 0 
0 0 1 1 0 0 0 1 1 1 
1 1 0 0 1 1 1 1 0 0 
1 1 0 0 1 1 · 0 0 1 1 
1 0 1 1 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 1 0 0 
0 1 1 0 0 0 1 0 0 0 
0 1 0 1 0 0 0 0 0 1 
0 1 0 1 0 0 0 0 1 0 

0 0 1 1 1 1 1 0 0 0 
0 0 1 1 0 0 0 1 1 1 
1 l O O 1 1 1 1 0 0 
1 l O O 1 0 0 1 1 1 
1 0 1 l O O O O O 0 
l O 1 0 0 0 l O O 0 
1 0 1 0 0 l O O O 0 
0 l l l O O O O O 0 
0 1 0 1 0 0 0 0 0 1 
0 l O l O O O O 1 0 

O 1 l 1 l O O O O 0 
1 O 1 1 O 1 0 0 0 0 
1 1 o O 1 0 1 0 0 0 
l 1 O O O 1 0 1 0 0 
1 o 1 O O O 1 0 l 0 
o 1 O 1 O O O l O l 
o o 1 O l O O O 1 1 
O O O 1 O 1 0 0 1 1 
o O O O 1 0 1 1 0 1 
o O O O O 1 1 1 1 0 
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