








Figure 6.2: Change in accuracy over time of motions instances from experiment set 1

Figure 6.3: Trajectories from experiment set 2 showing how the optical device tracks
accurately, when we move out of the range of the EM tracker, and the EM tracker
gives jittery data, optical device is shown in red and EM tracker in blue

Figure 6.4: Trajectories of large range motion instances from experiment set 3 in
outdoor and hallway settings
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Figure 6.5: Gesture Categories.
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CHAPTER 7: FUTURE WORK AND CONCLUSION

Future work includes improving the tracking accuracy by reducing the drift. A limitation

of the current system is that we are only able to recover 5 degree of freedom, and thus due

to the lack of absolute scale, we can see drift in the tracked motion. This can be overcome

if some loop closing mechanism is employed, like by making a database of feature point

descriptors of the environment and the system be able to recognize that it has returned to

a previously visited location by comparing the input image feature point descriptors to the

database.

Also analyzing the performance of the algorithm by dividing the image plane into more

than 4 regions. Dividing the image plane into 4 regions was a design decision we made.

But it would be interesting to look at the behavior of the algorithm by using more regions.

SFM and egomotion algorithms generally works well for certain motion parameters and

does not work so well for others. It would be interesting to characterize the error behavior

of the algorithm presented over a large range of possible motions.

In conclusion, we presented a markerless, real time, vision-based tracking system that

makes use of the novel concept of Polar Correlation of optical flow. Experiments show
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that the device has an average accuracy of 80% over 185 frames when compared to an

electromagnetic tracker. The prototype of the device is low cost, requires no setup and has

a large range span. We have also presented three different techniques for recovering

motion parameters at different levels of complete recovery, using optical flow from

opposing cameras. These techniques were applied to a gesture recognition application

using a simple classifier. The results show the Antipodal Regions technique achieved the

highest recognition accuracy level (90.7%) compared with the Pattern Matching and Polar

Correlations techniques. We recognize that their is more work to be done to improve the

gesture recognition accuracy, by examining more sophisticated gesture classification

algorithms and fine tuning our motion parameter recovery techniques. However, we

believe that these results provide a great starting point for using opposing cameras in

vision-based inside-looking-out systems in gesture recognition applications.
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