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Abstract

Three dimensional reconstruction of large macromolecules like viruses at reso-

lutions below 8 Å - 10 Å requires a large set of projection images and the particle

identification step becomes a bottleneck. Several automatic and semi-automatic

particle detection algorithms have been developed along the years. We present

a general technique designed to automatically identify the projection images of

particles. The method utilizes Markov random field modelling of the projected

images and involves a preprocessing of electron micrographs followed by image

segmentation and post processing for boxing of the particle projections. Due

to the typically extensive computational requirements for extracting hundreds

of thousands of particle projections, parallel processing becomes essential. We

present parallel algorithms and load balancing schemes for our algorithms.

The lack of a standard benchmark for relative performance analysis of particle

identification algorithms has prompted us to develop a benchmark suite. Further,

we present a collection of metrics for the relative performance analysis of particle

identification algorithms on the micrograph images in the suite, and discuss the

design of the benchmark suite.
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Dedicated to my parents.

On action alone be thy interest,

Never on its fruits.

Let not the fruits of action be thy motive,
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CHAPTER 1

INTRODUCTION

Progress lies not in enhancing what is, but in advancing toward what

will be.

— Khalil Gibran.

Over the past two decades cryo-transmission electron microscopy (Cryo-EM)

has emerged as an important tool, together with X-ray crystallography, NMR

spectroscopy, and electron crystallography, to examine the three dimensional

structures of macromolecules in their various conformational states. X-ray crys-

tallography has been used for more than six decades to elucidate the three di-

mensional structures of biological macromolecules. The structure of DNA was

discovered in part due to X-ray crystallography studies. The more recent tech-

niques of NMR spectroscopy and electron crystallography also provide equivalent

resolutions of 3D structures. However the following drawbacks inherent in these

techniques limit their application.

1. Sample preparation times for these techniques, which run in days and

months, are far longer than the few minutes required for preparation of

samples for Cryo-EM.
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2. Crystallographic techniques require preparation of crystals of the biological

sample under investigation. However many of the interesting macromole-

cules are difficult to crystallize.

3. All three techniques do not work for large macromolecules (> 100 MDa).

4. Crystallization of samples does not allow for collection of structure related

data of the samples in it’s various conformational states.

The medium to low resolution (8Å to 30Å) structures of biological molecules and

macromolecular complexes obtained from single particle technique can be com-

plemented by the high resolution structures of their constituents obtained from

X-ray crystallography, NMR spectroscopy, and electron crystallography. Cryo-

EM specimen preparation procedures permit viruses and other macromolecules

to be studied under a variety of conditions, which enables the functional proper-

ties of these molecules to be examined [2], [78], [82], sometimes dynamically [5].

This has resulted in an array of techniques for three dimensional high resolution

structural study of macromolecules which was not possible before. Figure 1.1

displays a high level schematic of the complete procedure of obtaining a three

dimensional density map of a macromolecule using Cryo-TEM.

1.1 Motivation and Goals

Structural studies for elucidation of three dimensional structure of macromole-

cules in their various conformational states allow biologists to better understand

the workings of biological macromolecules and complexes. Currently there exists

a a difference in resolution of about an order of magnitude between the struc-

2



Perform Multi reference alignment  using
selected class averages as references

Align the centers of selected particles

Select particle projections

Image the particles (and digitize the images using densitometry)

Calculate contrast transfer function
(CTF) and apply correction  (ideally)

Filter out the noise

Automatically classify  to obtain class averages

MSA and automatic classification to give new class averages

Angular reconstitution : Compute sinograms of class averages and
use sinogram correlation functions to determine the Euler angles of the

class averages
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class averages
and produce new
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Determine
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Densitometry not
required if imaged
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Figure 1.1: A schematic for the process of 3D reconstruction of macromolecules.

The emphasis of this work is the step depicted in the blue box. Adapted from

[64].
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tures routinely determined by crystallography methods vis-s-vis single particle

methods. Thus there is a need to bridge this gap.

As shown in Figure 1.1, the initial step in three-dimensional structural studies

of single particles and viruses after electron micrographs have been digitized is

the identification (boxing) of particles images. Traditionally, this task has been

accomplished by manual or semi-automatic procedures. However, the goal of

greatly improving the solution of structure determinations to 7 Å or better comes

with a requirement to significantly increase the number of images. Though 50

or fewer particle projections often suffice for computing reconstructions of many

viruses in the 20 Å - 30 Å range [2], the number of particle projections needed

for a reconstruction of a virus with unknown symmetry, at ∼ 5 Å may increase

by three orders of magnitude. Hence, the manual or semi-automatic particle

identification techniques create a burdensome bottleneck in the overall process

of three dimensional structure determination [50] [30]. It is simply unfeasible to

manually identify tens to hundreds of thousands of particle projections in low

contrast micrographs, and, even if feasible, the manual process is prone to errors.

In the case of particle identification being included in the feedback loop of three

dimensional reconstruction, it would be difficult to include a manual or semi

automatic technique as a part of the loop.

At high magnification, noise in cryo-TEM micrographs of unstained, frozen

hydrated macromolecules is unavoidable and makes automatic or semi-automatic

detection of particle positions a challenging task. Since biological specimens are

highly sensitive to the damaging effects of the electron beam used in cryo-TEM,

minimal exposure methods must be employed and this results in very noisy, low

contrast images.

4



1.2 Problem Formulation

High noise content, non uniformity in the pixel intensity distribution, and the

need for identifying projections of asymmetric particles are the major problems

to be addressed by any particle identification algorithm. Given an image f(x, y)

the objective is to ascertain the regions in f(x, y) that correspond to particle

projection. Since the step ”Reference free alignment to center particles” in Figure

1.1 computes the centers of the particles, an accurate centering of the particles

is not essential. The objective is to minimize both the false hit and false miss

rates though the emphasis is more on the former due to it’s effect on the 3D

reconstruction.

Due to the extensive computational needs of such algorithms [42], a parallel

version of the algorithm would have to be developed. There is currently a lack of

standard benchmark for relative performance analysis of particle identification al-

gorithms. A benchmark is essential for comparison of the performance of particle

identification algorithms. In addition of the benchmark, performance metrics are

required for a quantitative comparison. False hits and false misses are currently

used as the metrics. Their direct effect on the 3D reconstruction is not known

clearly. The performance of particle identification algorithms should be expressed

in a much richer set of metrics. For the projections identified by an automatic

identification algorithm, such metrics could be used in selection and rejection of

projections during the later stages based on the quality of the projections. It

would be possible to use only the certain best projections.

5



1.3 Organization of the Thesis

This work focuses on automatic methods for identification of biological macro-

molecular particle projections from electron micrographs. A description of the

process of three dimensional reconstruction of biological macromolecules using

single particle analysis is given in Chapter 2. This is followed by a survey of

current methods for particle identification. Chapter 3 presents the theoretical

foundations for the algorithms presented in the later part of the thesis. This

includes a description of hidden Markov random fields, expectation maximiza-

tion, and anisotropic diffusion based filtering. Chapter 4 gives a description of

model based method for particle identification where model refers to a very low

resolution 3D model of the macromolecule. Boxing strategies are also introduced

in Chapter 4 where we describe the techniques developed for identification of the

particle projections in the segmented images. We give some performance data of

our algorithm on a collection of images from our virtual workbench. A parallel

implementation of the algorithms is presented in section 4.4 and issues related

to load balancing are discussed. Details of the virtual workbench are presented

in Chapter 5. Characterization of micrographs and algorithms is described in

Chapter 6. We conclude with presenting the conclusions and a detailed list of

directions for future work.

1.4 Research Contributions

A list of the research contributions is given below.

6



• A new technique for particle identification from electron micrographs has

been proposed [72] and examined in the context of single particle analysis of

macromolecules. The technique involves a novel approach for segmentation

of micrographs after filtering them using non-linear anisotropic diffusion.

• Boxing methods based on prior knowledge about the size and/or a three

dimensional model of the macromolecule have been introduced. Parallel

implementation of these methods have been examined and issues related to

it are discussed.

• A web accessible workbench was developed that is generally accessible to

the researchers. The workbench consists of tools for characterization of

micrographs and algorithms for particle identification. Performance metrics

for particle identification algorithms were developed and incorporated in

software tools in order to make quantitative comparison between particle

identification algorithms over a class of micrographs.

7
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CHAPTER 2

BACKGROUND AND RELATED WORK

Freedom is not worth having if it does not include the freedom to make

mistakes.

— Mohandas K. Gandhi.

2.1 Particle Identification in Single Particle Analysis

Crystallographic data is obtained from crystals of the sample under investigation.

These crystals are arranged in an order thus boosting the signal over noise. Un-

fortunately, we are not afforded such luxury in single particle analysis where the

particles are randomly embedded in vitreous ice. Subsequent imaging of such ran-

domly oriented particles gives projections along randomly distributed directions.

Such lack of knowledge of particle orientation corresponding to each projection in

single particle techniques creates problems during the 3D reconstruction. These

problems are addressed by computational methods.

9



2.1.1 Single Particle Analysis

Single particle analysis of biological macromolecules is based on the idea of signal

boosting by averaging. Given a collection of closely related responses

fi(x, y), where i = 1 . . . n ,

that are noisy, noise being additive, the average f response has a boost in signal

by a factor of n1/2 [11]. Such signal boosting by averaging can be seen as a

way of trying to achieve the signal boosting by crystallization in crystallographic

techniques. Single particle analysis does not require crystals to be prepared as a

prerequisite at the cost of loss in resolutions achieved in the 3D reconstructions.

The steps that comprise single particle analysis as illustrated in Figure 1.1 are

briefly described below.

2.1.1.1 Specimen Preparation

Prior to imaging the macromolecules, they have to be processed in order to obtain

desirable images. The specimen preparation must avoid the collapse of structures

since the specimen are view in the vacuum of the electron microscope (EM). Bi-

ological samples are sensitive to electron bombardment which leads to ionization

where incident electron collide inelastically with the specimen, forming highly

reactive ions and free radicals. These may disrupt the bonds in the molecules.

For Cryo-EM imaging, the specimen is applied to a ”holey” carbon grid which is

glow-discharged to maintain it at a slightly hydrophillic level. The grid is then

blotted with filter paper and plunged into ethane maintained at liquid nitrogen

temperature. The thickness of ice is controlled by varying the blotting time. The

10



specimen is cryo-transferred to the microscope specimen holder. An interesting

development in this area was the development of a technique [5] for time resolved

imaging to capture images of macromolecules in their various conformation states.

In [5] an atomizer spray method was devised to spraying droplets of acetylcholine

along with ferritin, a marker, onto a grid containing ordered membrane arrays

of the nicotinic acetylcholine receptor just before it is plunged into the ethane.

The marker indicated the regions on the grid where droplets landed, so that only

membranes exposed to the spray could be selected for processing. The time res-

olution of the spray method is a few milliseconds, so that they were able to trap

the activated stated of receptor, which has a lifetime of 10ms.

2.1.1.2 Digitization and densitometry

Densitometry converts the information in EM film images into a digital form

so that it is suitable for computational processing. As per Shannon’s sampling

theorem [69], the images must be scanned at a sampling rate that is at least

half the desired molecular resolution at the specimen level. However usually the

images are digitized at quarter the desired molecular resolution at the specimen

level in order to contain the interpolation errors. A line scanner is preferred to

point scanner due to the speed of scans.

2.1.1.3 Contrast transfer function

The projections of particles on the micrographs are not the true projections of the

macromolecule at a particular direction of view. The EM, distorts the true repre-
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sentation by selective filtering of spatial frequencies during the imaging process.

The contrast transfer function (CTF) describes the fidelity with which the differ-

ent spatial frequencies are transmitted by the electron lenses.

The image formation process in the microscope can be modelled as a point

spread function h. The cryo image i obtained is a noisy version of the true

projection φ of the electron density potential function of an object convolved by

h.

i(r) = h(r)⊗ (φ(r) + nb(r)) + na(r), (2.1)

where r is a vector in R2 representing a real space point, nb, denotes noise before

image formation, and na, denotes noise after the image formation. The noise

terms h(rnb(r) + na(r) are combined and represented as n(r) and h(r is decom-

posed into a convolution of the contrast transfer function c(r and the envelope

function e(r. This leads to the following equation –

i(r) = c(r)⊗ e(r)⊗ φ(r) + n(r), (2.2)

Fourier transformation of expression 2.2 yields

I(ω) = C(ω)⊗ E(ω)⊗ Φ(ω) + N(ω), (2.3)

where ω is a vector representing the spatial frequency, and C represents the

CTF. C is a complicated parametric function, which takes into account the effects

of voltage, defocus and spherical aberration of the microscope, among others.

Under the weak phase and weak amplitude, the CTF can be expressed as –

C(ω) =
√

1− C2
a sin(χ(ω)) + Ca cos(χ(ω)) (2.4)

where χ(ω) is given as
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χ(ω) = πλ(∆fω2 − 1

2
Csω

4λ2). (2.5)

and Ca is the amplitude contrast, Cs is the spherical aberration constant of the

lens and ∆f is the defocus. The envelope function can be approximated with the

following parametric form called the B-factor [95].

E(ω) = e−Bω2

(2.6)

2.1.1.4 Particle identification

The particle projections present in the digitized micrographs have to be identified

for processing in the succeeding steps. The number of particles to be selected for

3D reconstruction at a specified resolution is a function of the specified resolution,

the noise content of the micrographs, and the symmetry of the particles. An

approximate location of particle projections in the micrograph generally suffices

since the centering done in the following step. A band pass filtering may be done

to lower the shot noise (high spatial frequency) and the gradual fluctuation in

the average pixel intensities across the image (low spatial frequency). Generally

gaussian based filters are used for band pass filtering to avoid introduction of

artificial artifacts due to filtering. A detailed review of particle identification

methods is given in section 2.1.2.
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2.1.1.5 Reference free alignment

The centering of particles is achieved by reference free alignment where the data

set of identified particles is compared to a rotationally averaged sum of band

passed filtered particles. The alignment is achieved using cross-correlation func-

tions (CCF). The CCF shows a peak at the position where a common motif in

two images overlap. The reference free alignment is repeated several times until

there is a nominal change in further alignment.

Each of the projected images collected after the particle identification step can

be considered to be a rotated, translated, and scaled noisy copy of the projection

of a true structure. Let us assume that there are N such images corresponding

to a particular direction of projection, the true structure is represented as T and

the noise is gaussian (G). Each projection can then be represented as –

proji = Zj T (θi) + Gi , i = 1...N (2.7)

where Zj is the scaling factor for the projection obtained from the jth micrograph,

θi is the rotational and translational version of the true structure T and Gi is

the gaussian noise with parameters µi, σi for the ith projection proji. The goal

of the reference free alignment step is to determine for each projection proji, the

parameters θi.

2.1.1.6 Multivariate statistical analysis (MSA)

Multivariate statistical analysis is used for classification of the centered particle

images. As a preliminary step, correspondence analysis step is used obtain the
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principal components of variation in the set of images. Each image of size x× y

is represented as a point in a xy dimensional space. A χ2 metric is used as the

distance between two images in this high dimensional space. The original high

dimensional space is converted into a lower dimensional space with the top few

(typically 5-10) eigenvectors as principal axes.

2.1.1.7 Classification and multireference alignment

For a specified number of classes automatic classification in the lower dimensional

space mentioned above (section 2.1.1.6) is done using unsupervised classification

algorithms such as k-means classification. Class averages are computed for each

class in order to boost the signal to noise ratio (SNR). Each class is further

processed for alignment within the class using the same procedure as section

2.1.1.6. Outliers may be rejected in this step to obtain a better SNR.

2.1.1.8 Angular Reconstitution

The views for the classes of projection images are obtained using angular recon-

stitution which is based on the common line projection theorem [81]. It states

that two 2D projections are of the same 3D object have at least one 1D line projec-

tion in common. In order to find this common line projection between the class

averages of two classes, the sinogram of each class average is computed. Sino-

gram correlation functions (SCF) are computed for each pair of class averages by

computing the correlation between each of the lines of the two sinograms.
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Figure 2.1: An illustration three dimensional reconstructions in terms of image

processing. Adapted from [78].
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For the sake of illustration, let us assume that we have a class averaged pro-

jection image classA obtained from the experiment and we have two projections

obtained from the tentative 3D model projB and projC with their corresponding

sinogram functions as sinoA, sinoB, and sinoC . The sinogram correlation func-

tions are obtained for each pair of the class averages by computing line by line

correlation of the corresponding sinograms i.e. SCFA,B is calculated by corre-

lating sinograms sinoA and sinoB, and SCFA,C by correlating sinograms sinoA

and sinoC . We can then assign euler angles to the class average A by finding the

global maximum in all its sinogram correlation functions SCFA,B and SCFA,C ,

with respect to projections B and C of the 3D model.

2.1.1.9 3D Reconstruction

The initial 3D reconstruction is obtained by back projection of the class averages

along their assigned Euler angles [28] with the use of the projection theorem

[12]. The projection theorem is illustrated in 2.2.The 3D reconstruction is then

reprojected along the Euler angles assigned to the class averages. Poor class

averages are removed from the dataset. The remaining class averages are used to

create the 3D reconstruction again. The 3D reconstruction is iteratively refined by

using the reconstructed model obtained in the preceding steps of the refinement.

The resolution of the 3D reconstruction is evaluated by measuring the Fourier

shell correlation (FSC) between two independent 3D reconstructions each based

on half of the class averages[83].
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Figure 2.2: An illustration of the projection theorem. Adapted from [12].
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2.1.2 Particle identification Methods

Over the past two decade the use of Electron Microscopy (EM) for studying

structures of large biological macromolecules has seen tremendous advancement

as evidenced by ever increasing resolution of 3D reconstructions of macromole-

cules. Such successful pursuits have utilized tens of thousands of images of par-

ticle projections to achieve higher resolutions. Particle identification is the first

step in processing of the micrograph images. Significant user interaction is re-

quired in identification of particle projections which are done either manually

using interactive graphics software or using computer assisted semi-automated

methods. Some of the commonly used methods for particle identification [49] are

reviewed below.

2.1.2.1 Template Matching Based Methods

In a typical template matching based method, a reference image, serving as a

template, is evaluated for a match within a given micrograph image for each

possible location of the reference over the micrograph. As illustrated in Fig.2.3,

f(x, y) i.e. image A and g(x, y) i.e. image B may, without loss of generality, be

assumed to be the micrograph and reference image respectively. As shown the

two images are assumed to be of the same size. The fact that the reference image

is almost always much smaller than the micrograph can easily be accommodated

by assuming that the support of g(x, y) extends over the size of support of f(x, y)

with the value of g(x, y) beyond it’s original support being 0. With the afore-

mentioned assumptions, the correlation map of image A and image B is given by

the cross correlation function c(x′, y′) defined as the following –

19



c(x′, y′) =
∑

x

∑
y

f(x, y)g(x + x′, y + y′) (2.8)

(x',y')

g(x,y)

f(x,y) c'(x',y')

Figure 2.3: An illustration of cross correlation. Scalar product of image A and

image B over the grey region corresponds to c(x’,y’). Adapted from [20].

The cross correlation map, which is the ordered set of values of the cross

correlation function over the support of the given micrograph, can be efficiently

computed by using the convolution theorem from Fourier transform theory. Fol-

lowing the theorem, the cross correlation function can be written as

c(x′, y′) = F−1{F{f(x, y)}F{g(x, y)}∗} (2.9)

where F indicates the Fourier transform operation, F−1, the inverse Fourier

transform operation and F{g(x, y)}∗, the conjugation operation on Fourier trans-

form of g(x, y). As can clearly seen, the term F{g(x, y)}∗ acts as a filter modifying

the Fourier transform of the original signal before transforming the product back

to the real space. In the reciprocal space i.e. the frequency space, F{g(x, y)}∗,
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a matched filter, may be represented as H(sx, sy). The matching locations of

g(x, y) in the image f(x, y) can be obtained by locating the peaks in the response

of image f(x, y) after it is filtered by a matched filter correspond to g(x, y). How-

ever, presence of noise in general, and in the case of micrographs shot noise and

noise in the form of non uniform variation of image intensity, can make peak

detection a difficult task. Another problem associated with particle identifica-

tion using cross correlation based methods is their high sensitivity to variations

in the projections due to rotations in the image plane. The alternative is to

use a gaussian function as a template. The problem of non uniform variation is

overcome using correlation coefficient instead of cross correlation function.

2.1.2.2 Low Level Feature Based Methods

Low level feature based methods are essentially methods that operate on low level

cues obtained by operations such as edge detection and image segmentation i.e.

pixel classification. An advantage that these methods, especially the edge based

methods, command over template based approaches is that they are immune

to noise in the form of non uniform variation in image intensity. This can be

attributed to their use of local neighborhood based computation for obtaining the

features. However the overwhelming presence of shot noise plagues these methods

too. Once the low level features are obtained, such methods are faced with the

problem of identifying the representations of objets i.e. particle projections from

a collection of features distributed over the support of the micrograph.

Edge detection Based Approaches An edge in an image is a boundary

or contour at which a significant change occurs in some physical aspect of an
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image, such as the surface reflectance, illumination, etc. [38]. For an image

function, edges can be defined as zero-crossings of the Laplacian or the maxima

of the gradient modulus in the gradient direction [9]. The edge detector proposed

by Canny [9] is the most commonly used edge detector. The image is initially

smoothed by Gaussian convolution with a kernel variance of σ. Then, a simple

2D first derivative operator is applied to the smoothed image to highlight regions

of the image with high-valued first spatial derivatives. Edges give rise to ridges

in the gradient magnitude image. A process known as non-maximal suppression

is then applied wherein the algorithm tracks along the top of these ridges and

sets to zero all pixels that are not actually on the ridge top, so as to give a

thin line in the output. The tracking process is controlled by two thresholds,

High > Low. Tracking can only begin at a point on a ridge higher than High.

Tracking then continues in both directions out from that point until the height of

the ridge falls below Low. This helps to ensure that noisy edges are not broken

up into multiple edge fragments. The effect of applying a Canny edge detector

with parameters Low = 0.03, High = 0.07, and σ = 3 to the image of frozen-

hydrated virus particles is illustrated in Figure 2.4. The parameters of the Canny

edge detector are selected on an ad hoc basis. Although the optimal values of

parameters required by the edge detection algorithm may not vary much from

one micrograph to another when the micrographs were collected under similar

experimental conditions, nevertheless the ad hoc selection of the parameters is

not very convenient. To address this issue, automatic selection of parameters for

the Canny edge detector have been developed [89]. However single scale approach

limits the quality of edges detected in the presence of high noise.

The low SNR of micrographs necessitates a pre-processing of the micrographs

prior to edge detection. Although gaussian filtering is commonly used, the

isotropic property of the filter leads to blurring of the particle projection bound-
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ba c

Figure 2.4: The use of Canny edge detector. a) Small field of view from an

electron microscope of frozen hydrated virus particles. b) Same as (a) after

application of Canny edge detector. c) The histogram of the pixel intensities in

(a) illustrates the narrow dynamic range of pixel intensities.

aries. In order to preserve the edges, non linear anisotropic diffusion and bi-

lateral filters provide an anisotropic smoothing [86] which smoothes the quasi-

homogeneous regions more than the regions of discontinuity in the image function.

The approach taken by [27] involves the initial step of detecting edges which is fol-

lowed by connected component labeling and symbolic processing. The technique

proposed in [94] also requires an edge map of the micrograph initially. The Hough

transform is used to spatially cluster the edges to represent particles. The Hough

transform is based upon a voting algorithm [26]. A generalized Hough transform

is used for particle projections with irregular geometric shapes. Since both the

techniques are based on edge detection, their performance is closely dependent on

the performance of the edge detection algorithm. Figure 2.5 shows the schematic

for the particle identification algorithm of [93]. A similar approach proposed

in [94] has been successfully used for particle identification from micrographs of

helical objects.
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Figure 2.5: A schematic for algorithm in [94].

The Signal to Noise Ratio (SNR), and in general the characterization of the

noise in a micrograph, are very important to determine the best technique for

automatic particle identification to be used for that micrograph. Noise estima-

tion could help the automatic selection of the parameters of an edge detection

algorithm.

Elder and Zucker [14] describe a method of automatic selection of the reliable

scales for the computation of the second order derivative of the intensity in the

image field. A scale is assigned to each pixel for the computation of the second

order spatial derivative. The noise is assumed to be additive white Gaussian. The

idea is to select scales for each pixel that, given the magnitude of the standard

deviation of the noise, are large enough to provide a reliable derivative estimate.

If the second order derivative estimate at a pixel for a particular scale is below a

threshold which is governed by the standard deviation of the noise, then the scale

is increased until the second order derivative at such a scale exceeds the threshold.

The only parameter required by this method is the standard deviation of the noise

content. Thus, a procedure for the estimation of the standard deviation of the
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noise in micrographs would lead to an automatic edge detection algorithm. Lee

and Hoppel [31] describe a fast method to compute the standard deviation of the

noise in an image. This method is based upon two assumptions (a) identically

distributed (i.i.d) noise, and (b) a linear noise model. This means zero mean

additive noise and unit mean multiplicative independent noise. Consider three

random variables representing Z(a,b) - the observed intensity at the pixel with

coordinates (a, b), X(a,b) - the noise free true intensity at the pixel with coordinates

(a, b), W - a random variable that represents a zero mean additive i.i.d. noise

with a standard deviation sw. V - a random variable that represents a unit mean

multiplicative noise with standard deviation sv. Then,

Z(a,b) = X(a,b)V + W (2.10)

For a homogeneous block

Z̄ = X̄ (2.11)

W̄ = 0 (2.12)

V̄ = 1 (2.13)

thus

var(Z) = s2
v ∗ Z̄2 + s2

w. (2.14)

Thus there is a linear relation between var(Z) and Z̄2 with the coefficients being

the variances of the respective linear noise types – additive with sw and multi-

plicative with sv. The algorithm to estimate sw and sv consists of the following

steps

1. Divide the image into blocks of a given size, e.g., 4x4 or 8x8 pixels.
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2. Compute the variance (i.e., var(Z)) and square of the means (i.e., Z̄2) of

the pixel intensities in each block.

3. Use a least squares method to approximate a linear relation between the

variances and the squares of the mean. A least square solution with negli-

gible slope is indicative of an additive noise.

2.1.2.3 Other Approaches

The method described in [43] identifies particle projections that are circular in

shape. The micrograph image is initially histogram equalized and sub-sampled.

Subsequently pixels belonging to the same object are identified by a double scan

technique. A schematic of the procedure is shown in Figure 2.6. A method for

identification of projections that are ring shaped is described in [35], which is

essentially a convolution of the normalized positive ring with a negative circle

placed in the center of the ring [24].

Image enhancement using
histogram equalization

Particle identification using a
double scan procedure and

clustering

Postprocessing

Cross-correlation based
refinement

Figure 2.6: A schematic for the crosspoint method proposed in [43].
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The method proposed in [59] uses Fischer discriminant analysis on textures

for identification. The user is initially required to train the algorithm with a few

truth samples. Based on nine features extracted from these samples, a Fischer

discriminant classifier is generated and is further used to identify regions in the

image that are similar to the training classes.

Recently, neural network methods have been applied to particle identification

[44]. Neural networks have the ability to take into consideration a great degree

of complexity for identifying projections of single particles. A schematic of the

particle identifications process using the neural networks is shown in Figure 2.7.

original
micrograph

filtering

detection of single
particle by the NN

hand pick up of learning
image (200 samples)

learning of NN

cut of the area
surrounding the

peak
selection of the cut image

creation of the
noise image

particle images

Figure 2.7: A schematic for the neural network based particle pickup method

proposed in [52].

2.1.3 Caveats

The goal of the single particle analysis is to obtain a faithful 3D representation

of macromolecular particles. The effect of identification of particles on 3D re-

construction is not completely understood. Hence, the performance of particle

identification algorithms can not be merely represented by simple metrics such
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as the false hit and false miss rates. The quality of the identified particles need

to be assessed alongside their effect on the final 3D reconstruction. This entails

the development of metrics for the quality of identified particles, techniques for

assessment of the effect that an ensemble of identified particles corresponding to

a projection have on the improvement in 3D reconstruction, and development of

programs for 3D reconstruction of macromolecules based on ”good” projections

of the particles, where ”good” is representative of the quality of the identified

projections. As an after thought, single particle techniques for 3D reconstruc-

tion may be improved by integrating the 3D structures of the constituents of

these macromolecules obtained using such techniques as X-ray crystallography

and NMR spectroscopy during the reconstruction process.

The performance of particle identification algorithms is heavily dependent on

the quality of micrographs and the geometry of the particle projections present in

the micrographs. However due to the lack of a standardized collection of dataset,

the comparison among the particle identification algorithms based on their per-

formance is not possible, a need that we try to a address with the workbench

as discussed in chapter 5 and chapter 6. Table 2.1 depicts the performance of a

few particle identification algorithms. However, since the performance results are

not available on the same set of data, a direct comparison is not possible. More-

over, the metrics ’false positives’ and ’false negatives’ are not sufficient enough

to judge the performance of the particle identification methods. More rigorous

metrics must be required. Some such metrics are discussed in section 6.2.1.

28



Table 2.1: A performance comparison of the particle identification algorithms is

given with the data obtained from the respective publications as indicated.

Sl. no. Publication Name False (%) False (%)

reference Positives Negatives

1 [43] crosspoint 4 11

2 [94] Zhu et. al. 21 12

3 [72] HMRF-EM 19 9

4 [39] EMAN 23.7 43.4

5 [61] FindEM 16.6 2.4

6 [71] Sigworth 4.5 23.2

2.2 Semi-automated systems for single particle analysis

Over the past few years, some automated system for single particle analysis have

been developed. However, none of the systems address the issue of compari-

son between several particle identification algorithms. Indeed the aim of all of

them is to further the automation of the process of three dimensional reconstruc-

tion of macromolecules rather than benchmarking and comparison of algorithms.

The automation systems can be broadly classified as those that aim toward au-

tomating the data acquisition process and those that aim toward automating

the analysis of the data once the data is available. One such suite is Leginon

([10]) which is currently the most comprehensive of the suites available for auto-

mated data collection for single particle analysis. Although, the primary aim of

Leginon is to automate the data acquisition process, it also features some rudi-

mentary semi-automated data analysis tools too. Leginon is a fairly general and

extensible suite for image image acquisition and data collection for automated

microscopy. The system consists of reusable modules called nodes. The nodes
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may be connected to create an application. A set of connected nodes commu-

nicate by generating events. Applications are designed by selecting the nodes

required for the application, the order of execution of the nodes and the event

semantics. Graphical tools simplify the task of creating new applications. Once

an application has been generated, it can be stored in the persistent storage and

reused later. A logging facility is provided to allow monitoring of progress. A

relational database is used to store data between runs. The application can be

distributed over several machines due to the availability of executable codes for

nodes on several types of machine configurations. The Figure 2.8 illustrates the

architecture of a Leginon application.

Leginon
node 1

Database
access
node

Data
processing

node

Leginon
client
node

Leginon
node 2

host C

host Bhost A network
logical

connection

Figure 2.8: A typical Leginon application which is constructed using pre-defined

modules called nodes. The logical connections shown in blue are called events.

The physical layout of the application is also shown. Adapted from [77]

Another system quite widely used in single particle analysis is EMAN [39].

In contrast to Leginon, EMAN (like Imagic [84], Spider [21] and XMIPP [76]) is
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a system for semi-automated data analysis. It is a collection of programs mainly

written in C ++. The process of three dimensional reconstruction is achieved us-

ing this collection of programs as illustrated in Figure 2.9. Particle identification

in EMAN is semi automatic and is done by a program called boxer. The program

is based on the concept of cross correlation (section 2.1.2.1). Traditionally cross

correlation methods have been based on generating a rotationally averaged refer-

ence image, generating a map (called cross correlation map) by cross correlating

the reference image with the micrograph. Boxer uses multiple references due to

the variation among the various projections for the same particle. A cross corre-

lation map is generated for which the value at each pixel is the maximum cross

correlation for any of the templates. In order to reduce the chance of duplicate

selections, low pass filtering is used. A peak searching algorithm extracts the

location of all recognized particles. The threshold for peak selection is controlled

by the user.

In addition to EMAN, Spider is also a system for semi-automated data analy-

sis. Just as EMAN, the spider system is also a collection of programs for single

particle analysis. It includes two methods for particle identification. The first

method is based on [59] and is a supervised learning based algorithm where the

user selects regions of the micrograph that are ’projections’, ’noise’, and ’junk’.

The algorithm then computes a discriminant function based on the characteris-

tics of these regions as per some statistically computed features. The particle

identification for the rest of the micrographs is done using this discriminant func-

tion. The second method is based on the local correlation function as described in

[60]. The local correlation function is a modification of the normalized correlation

function. The performance results of [60] is given in table 2.1.
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Figure 2.9: The process for three dimensional reconstruction in EMAN is shown

here. Adapted from [39]
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CHAPTER 3

THEORETICAL FOUNDATIONS

I know nothing except the fact of my ignorance.

— Socrates.

The algorithms described in Chapter 4 are based on image segmentation [26].

Image segmentation can be thought of as a labelling problem where the task is to

label the image pixels as belonging to one of several groups. Particle identifica-

tion amounts to a binary filtering operation, in that pixels are marked according

to whether they belong to the particle or the background. Hence, such a segmen-

tation could be thought of as labelling of the image field with labels picked up

from a binary set {0,1}. One of the popular methods of image segmentation is

based on modelling the image as a Markov random field. The realization of the

field is presumed to the true image. Here we provide a description of the theory

of Markov random fields.

The micrograph images have very low signal to noise ratio (SNR). Hence

before segmentation, the images have to be filtered to reduce the noise content.

Anisotropic diffusion, a novel technique developed by [57] is used to filter the

micrographs prior to segmentation. A description of this technique is presented.
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3.1 Markov Random Field Models

The distribution of intensities in an image exhibits a coherency in space. For

instance, in an image of a car, a pixel belonging to the car is highly likely to be

next to other pixels belonging to the car. Such contextual constraints restrict

the solution space for segmentation of an image which is to say that an image

with a random distribution of labels is unlikely to be the true segmentation of

the image. It is commonly accepted that the pixel intensities in a micrograph

exhibit high spatial statistical interdependence, i.e., background pixels have a

high probability of occurring next to other background pixels. Likewise, “par-

ticle” pixels generally lie adjacent to other “particle” pixels. Markov random

field (MRF) theory provides a basis for modelling such contextual constraints.

Further, it allows us to formulate particle identification as an optimization prob-

lem. A wealth of research done in the field of optimization has been extended

to solve the problem of image segmentation through the use of Markov Random

field models. We begin with a description of the notations used in the theory

of Markov random fields (MRF) and give an exposition of some basic assump-

tions made. We then give a definition of the MRF, provide a description of the

equivalent Gibbs random field. Potential functions, the core of MRF models are

presented here in. The specific model of the micrograph image is presented in the

next section. However, the segmented image and parameters of the image model

are not available initially. Expectation maximization, a technique to estimate

parameters for incomplete data, is shown next along with it’s use for our specific

problem. The high noise content of the images require that they be preprocessed

before any analysis. Anisotropic diffusion, one such method for reduction of noise

is presented next.
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3.1.1 Notations and Basic Assumptions

The task of particle identification may be abstracted as a labeling problem where

the aim of the image processing entity is to ascertain for each pixel whether it

belongs to the particle projection or the background i.e. assigning a label to each

pixel where the label identifies the pixel as either a part of the projection or not

a part of it i.e. background. Before we develop the algorithm, we must look at

some notations and definitions, and explore some basic assumptions. We use the

following notations 7.

L = {0, 1} - the set of labels. The elements of the set L are assigned to pixels

in the segmented image. The segmented image is represented as a realization of

field X.

D = {1, 2, . . . d} - the set of quantized intensities in the observation field, i.e., the

micrograph. The intensities of the pixels in the original micrograph are elements

of the set D. The original micrograph image is represented as realization of field

Y.

S = {1, 2, . . . M} - the set of indices. This set consists of elements that are used

to index sites in both X and Y fields.

R = {ri, i ∈ S} a family of random variables indexed by S. The fields X and Y

are two types of R with different constraints.

r - a realization of R. The fields X and Y have realizations x and y respectively.

As mentioned above, X and Y are random fields, where Y represents the

observed field i.e., the micrograph, and X represents the segmented image(Figure

7Some of the other notations are developed as they are encountered.
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a b

Figure 3.1: The assumption of Gaussian distribution of pixel intensities is sup-

ported by the experimental evidence from the histograms of pixel intensities be-

longing to the background and to particle projections. a) The distribution of the

background pixel intensities. All the pixels constituting the background should

ideally be assigned the same label. b) The distribution of the pixel intensities

inside the projections of virus particles. All the pixels constituting one projec-

tion should ideally be assigned the same label, different from the one assigned to

pixels from the background.
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Figure 3.2: The assumption of gaussian distribution of noise in the pixel intensi-

ties is supported by the qqplot of the pixel intensities of the background of one

of the micrographs
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3.5). A realization of a random field is a set of values for all the elements of the

field. For example, the realization of the field X consists of the set of labels (0

or 1) for every pixel. A realization of the field Y is the set of intensities for each

pixel. We denote by x and y a particular realization of the two respective fields.

Let X be the set of all realizations of the random field X, and similarly let Y

be the set of all realizations of the random field Y .

X = {x = (x1, ..., xM)|xi ∈ L, i ∈ S}

and

Y = {y = (y1, ..., yM)|yi ∈ D, i ∈ S}

The label assigned to the random variable xi determines the parameters of the

distribution for the observed random variable yi

P (yi|xi = `) = f(yi; θl), ∀` ∈ L (3.1)

The function f is assumed to be normally distributed with mean µ` and

standard deviation σ`, i.e.,

f(yi|xi = `) =
1√
2πσ2

`

exp {−(y − µ`)
2

2σ2
`

} (3.2)

The assumption of a Gaussian functional form of distribution of intensities

conditioned on pixel labels is based on the observations presented in Figure 3.1. A

histogram of intensities for portions of the background is shown in Figure 3.1(a).

Since MRF is used to model the spatial coherency of intensity distribution

in an image, it must have a representation for intensity distribution in a locality

and also a metric for the extent of coherence. The coherence is represented using
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neighborhood systems and potential functions are used as a metric for the extent

of coherence. Potential functions are presented in Section 3.1.2.1.

In an MRF, the sites in S are related to each other via a neighborhood system

N = {Ni, i ∈ S}

where Ni is the set of neighbors of i

Ni = {j ∈ S : d(i, j)2 ≤ r, j 6= i}

where d(i, j) is the distance between two sites. Note that a site is not a neighbor

of itself. An example of a second order neighborhood i.e., a neighborhood in

which vertically, laterally, and diagonally adjacent sites are mutual neighbors, is

presented in Figure 3.3. The pixel marked x represents the center relative to

which the neighborhood is defined.

Closely tied with the concept of neighborhoods is the concept of Cliques. The

concept of cliques comes naturally in order to model the fact that the dependent

of a site on it’s immediate neighbor is more than it’s dependence on a neighbor

that is farther hence providing a greater consideration to closer neighbors when

estimating the label at a site. A clique is a subset of sites in S. c ⊆ S is a

clique if every pair of distinct sites in c are neighbors. Single-site, pair-of-sites,

triplets-of-sites cliques, and so on, can be defined, depending upon the order of

the neighborhood.
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Figure 3.3: (a)First order neighborhood of x consists of {b, d, e, g} and second

order neighborhood consists of the set {a, b, c, d, e, f, g, h}. (b) The types of

cliques for first order and second order neighborhood.
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3.1.2 MRF Definition and Description

A random field X is said to be an MRF on S with respect to a neighbor system

N if and only if

P (x) > 0 ∀x ∈ X

and

P
(
xi|xS−{i}

)
= P (xi|xNi

) .

The local characterization of the MRF defined above simply states that the prob-

ability that site i is assigned label xi can be computed with the knowledge of only

the neighborhood of i. Any information more than the configuration of the neigh-

borhood is superfluous. The probability distribution P (x) is uniquely determined

by the conditional probabilities. However, it is computationally very difficult to

determine these characteristics in practice. We witness a computational explosion

as the neighborhood size is even moderately increased.

In order to compute the probabilities of occurrence of a realization of the

MRF, we need a way to link the local properties of the MRF with its global

properties. The Hammersley-Clifford theorem provides us with such a means.

The Hammersley-Clifford theorem establishes a relation between the MRF and

the Gibbs distribution. The Gibbs Distribution relative to neighborhood system

N has a probability measure given by

P (x) = Z−1 × e−
U(x)

T , (3.3)

where Z is the normalizing constant or partition function given by
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Z =
∑

∀xi∈L,∀i∈S

e−
U(x)

T , (3.4)

T is a constant called the temperature and U is the energy function

U(x) =
∑
c∈C

Vc(x), (3.5)

given by the sum of clique potentials over all possible cliques. C denotes the

set of all possible cliques given a neighborhood. The set C consists of all the

cliques corresponding to each site in the label field. It may be recalled that the

cliques have been defined as a part of Markov Random fields for incorporating

interaction between neighbors. As we shall see later, this may be used to ensure

a smoothness in the variation of the labels.

Now we need to compute the probability of a particular realization x of X.

As mentioned earlier, the Hammersley-Clifford theorem ensures us such a means.

It states that X is a MRF on S with respect to a neighbor system N if and only

if X is a Gibbs random field on S with respect to the neighbor system N [23].

This provides a simple way of specifying a joint probability for a realization with

just the knowledge of conditional probability for a neighborhood at the points.

The potential function Vc(x) mentioned in equation 3.5 can take on many forms

depending on the application.

3.1.2.1 Potential functions

First order neighborhood is the smallest size neighborhood to convey contextual

information. However due to the computational costs associated with higher
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order neighborhoods, higher that second order neighborhoods are rarely used.

We will consider only the first order neighborhood for description of potential

function models. For first order neighborhood, the types of cliques are illustrated

in Figure 3.3. For such cliques, the energy function is given by

U(x) =
∑

{i}∈C1

V1(xi) +
∑

{i,i′}∈C2

V2(xi, xi′). (3.6)

The most commonly used model are the so called auto models, where the

potential functions are given by

V1(xi) = xi Gi(xi) and V2(xi, xi′) = βi,i′ xi xi′ (3.7)

where Gi(·) are arbitrary functions and βi,i′ are constants for interaction between

pair of sites i and i′. An auto-model is said to be an auto-logistic model, if the xi’s

take on values in the discrete label set {0,1}. As we will see later, the objective is

to minimize the sum of energies of all the elements of the set of cliques, ensuring

that Xi, a particular realization of the field of labels X, is smooth. But the field

X representing the segmented image must be faithful to the measured data (the

micrograph). Hence, we define a model of the image that should be integrated

with the MRF model.

3.1.3 The Image Model

There are two random fields involved in the model of the image. The random

field Y represents the observed image. Y is a random field that does not exhibit

any neighborhood relationships, i.e., the random variables yi are independently

distributed. The micrograph is a realization y of Y .
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The random field X represents the segmented image and is assumed to exhibit

MRF properties. The state of X is not observable. Given the state of Y , we wish

to obtain the state of X. Furthermore, the two fields X and Y are coupled

through a dependency (called emission distribution) where the parameters of the

distribution of the random variable yi depend on the label assigned to the random

variable xi. It may be recalled that the relation between yi and xi is

f(yi|xi = `) =
1√
2πσ2

`

exp {−(y − µ`)
2

2σ2
`

} (3.8)

In general, the image model must capture the physical reality as much ana-

lytically and computationally as possible. The physical reality that is captured

by the image i.e. the particle projections exhibit a spatial coherence. In order to

address this aspect of the physical reality, the field X is assumed to be an MRF.

The image model must also capture adequately the noise that is introduced in

the image capture process. The model captures this by way of assuming the

emmission distribution as a normal distibution.

It is also assumed that given the label xi of Xi, the value taken up by the

random variable Yi is independent of the values of other Xi’s

P (y|x) =
∏
i∈S

P (yi|xi) (3.9)

Hence

p(yi|xNi
, θ) =

∑
`∈L

f(yi|xi = θ`) p(`|XNi
), (3.10)

where θ = {θ` = {µ`, σ`}, ∀` ∈ L}.

The Figure 3.4 illustrates the relationship between the label field X and the

image field Y . A further illustration of the image model is shown on a identified
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Figure 3.4: An illustration of the two fields involved in the image model. The field

on the left corresponds to the label field – X i.e. the segmented image and it’s

realization is not known i.e. hidden initially. The field on the right corresponds

to the image field Y – i.e. the original micrograph image. This field is visible.

The shaded areas are not known initially i.e. the field X and the parameters

µ0, σ0, µ1, σ1 of the emission distribution.
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Figure 3.5: A further illustration of the relation between the image field and

its corresponding label field as shown for a identified particle projections a) The

label field – X (hidden). b) The image field – Y (visible)

particle projection in the Figure 3.5 (a) and 3.5 (b). Labels from the set {0,1} have

been assigned to the pixels of X in Figure 3.4(a). For any pixel Xi in the label field

X the intensity at the corresponding pixel Yi in Y follows a Gaussian distribution

with its parameters indexed by the label. i.e. Xi “emits” Yi. Thus, the intensities

in the image field Y are distributed according to a Gaussian distribution with

parameters from the set {(µ0, σ0), (µ1, σ1)} depending whether Xi is 0 or 1.

3.1.4 MRF Estimation

The aim is to obtain the most likely realization of the segmentation field X given

the observed field Y (the micrograph). If we represent the true labelling of the

MRF X by x̂ and an estimate of it by x∗, then the Maximum A Posteriori (MAP)

estimate of x can be given by
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x̂ = arg max
x∈X

{P (y|x)P (x)} (3.11)

But we know that

P (x) =
1

Z
exp(−U(x)) (3.12)

and

P (y|x) =
∏
i∈S

p(xi|yi) =
1√
2π

exp (−(yi − µ`)
2

2σ2
`

− log(σxi
)) (3.13)

Hence maximizing P (y|x)P (x) is equivalent to minimizing

U(x) + U(y|x) (3.14)

where,

U(y|x) =
∑
i∈S

[
(yi − µxi

)2

2σ2
xi

+ log(σxi
)] (3.15)

Hence we need to find particular values for the field of random variables Xi

such that the above function is minimized. A semi optimal solution for minimiza-

tion of this expression is obtained using the iterated conditional modes(henceforth

I.C.M.) algorithm proposed by Besag [6]. The algorithm is based upon an iter-

ative local minimization strategy where given the data, y, and the other la-

bels x
(k)
S−i, the algorithm sequentially updates each x

(k)
i into x

(k+1)
i by minimizing

U(xi|y, xS−i).
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3.1.5 ICM

The ICM is an algorithm based on an iterative local maximization strategy [37].

For the data d and the other labels f
(k)
S−i, the algorithm sequentially updates each

f
(k)
i into f

(k+1)
i by maximizing P (fi|d, fS−{i}), with respect to fi. The assumptions

made in calculating P (fi|d, fS−{i}) are

1. The observation components d1, d2, . . . , dm are conditionally independent

given f and each di has the same known conditional density function p(di|fi)

dependent only on fi.

2. Markovianity of labels.

It follows from these assumptions that

P (fi|d, fS−{i}) ∝ p(di|fi) P (fi|fNi
) (3.16)

Maximizing equation 3.16 is equivalent to minimizing the corresponding posterior

potential using the following rule

f
(k+1)
i ← arg min

fi

V (fi|di, f
(k)
Ni

) (3.17)

where

V (fi|di, f
(k)
(Ni)

) =
∑
i′∈Ni

V (fi|f (k)
i′ ) + V (di|fi) (3.18)

The iteration continues until convergence. The convergence is guaranteed for the

serial updating [6]. The result obtained by ICM depends very much on the initial

estimator.
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3.2 Expectation Maximization

Our knowledge being incomplete as regards the realization of the label field X and

the parameters of the emission distribution µ0, σ0, µ1 and σ1. Expectation maxi-

mization [13] (henceforth EM) is a standard technique to estimate the parameters

of a model when the data available are insufficient or incomplete. The data is

clearly incomplete in image model as we do not know the realization of X and the

parameters of the emission distribution. We start with an initial guess-estimate

of the parameters and obtain an estimate of the “incomplete data” using these

parameters. Once the “complete data” (along with some artificial data points)

become available, the parameters of the model are estimated again to maximize

the probability of occurrence of the “complete data”. Successive iterations result

in increasingly more refined estimates of the parameters.

Figure 3.6: A schematic for expectation maximization algorithm.

Let θ(0) be the initial estimate of the parameters of the model. The E.M.

algorithm consists of two major steps [47]. Let Y denotes the sample space of

the observations, and let y ∈ Rm denote an observation from Y. Let Γ denote the

underlying space and let x ∈ Rn be an outcome from Γ with m < n. The data x

is referred to as the complete data. The complete data x is not observed directly,

but only by means of y, where y = y(x), and y(x) is many-to-one mapping. An

observation y determines a subset of Γ, which is denoted as χ(y). The probability
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density function (pdf) of the complete data is fX(x|θ), where θ ∈ Θ ⊂ Rr is the

set of parameters of the density. The pdf f is assumed to be a continuous function

of θ and appropriately differentiable. The Maximum Likelihood estimate of θ is

assumed to lie within the region Θ. The pdf of incomplete data is

g(y|θ) =

∫
Γ(y)

f(x|θ)dx (3.19)

let ly(θ) = g(y|θ) denote the likelihood function and let Ly(Θ) = log g(y|θ)

denote the log-likelihood function. The basic idea behind the EM algorithm is

that we should like to find θ to maximize log f(x|θ), but we do not have the

data x to compute the log-likelihood. So instead we maximize the expectation of

log f(x|θ) given the data y and our current estimate of θ. This can be expressed

in two steps. Let θ[k] be our estimate of the parameters at the kth iteration. For

the E-step compute :

Q(θ|θ[k]) = E[log f(x|θ)|y, θ[k]] (3.20)

It is important to distinguish between the first and the second arguments of the

Q functions. The second argument is a conditioning argument to the expectation

and is regarded as fixed and known at every E-step. The first argument conditions

the likelihood of the complete data. For the M-step let θ[k−1] be that value

of θ which maximizes Q(θ|θ[k]) : θ[k+1] = arg max
θ

Q(θ|θ[k]). It is important

to note that the maximization is with respect to the first argument of the Q

function, the conditioner of the complete data likelihood. The EM algorithm

consist of choosing an initial θ[k], then performing the E-step and the M-step

successively until convergence. Convergence may be determined by examining

when the parameters quit changing, i.e. stop when ‖θ[k] − θ[k−1]‖ < ε for some ε

and some appropriate norm ‖.‖.

In summary,
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Step 1 - Expectation – Calculate the expectation with respect to the unknown

underlying parameters using the current estimate of the parameters, con-

ditioned on the observations

Q(θ|θ[k]) = E[log f(x,y|θ)|y, θ[k]] =
∑
x∈X

f(x|y, θ[k]) log f(x,y|θ) (3.21)

Where, k is an variable representing a particular iteration of the algorithm,

Q is a function of the parameters set θ conditioned on the parameter set

obtained in the previous iteration and E(·) is the expectation function.

Step 2 - Maximization – Calculate the new estimate of the parameters

θ[k+1] = arg max
θ

Q(θ|θ[k]) (3.22)

3.2.1 EM for image model

The equations describing the application of E.M. to the image model are

µ
(k+1)
` =

∑
i∈S

P (k)(`|yi)yi∑
i∈S

P (k)(`|yi)
(3.23a)

and

(σ
(k+1)
` )2 =

∑
i∈S

P (k)(`|yi)(yi − µ`)
2∑

i∈S

P (k)(`|yi)
(3.23b)

where

P (k)(`|yi) =
g(k)(yi; θ`)P

(k)(`|xNi
)

p(yi)
(3.23c)

P (k)(`|xNi
) involves the MAP estimation as described earlier. The intermediate

steps are described in detail in [87].
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The refinement may be seen as an iterative optimization procedure where the

parameters, namely µ0, σ0, µ1, σ1, and labels of the label field X are estimated

using the E.M. algorithm. At this point it must be reemphasized that the iterative

step of E.M. includes I.C.M. [6] which, as described in section 3.1.5, is a local

optimization algorithm.
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CHAPTER 4

HMRF BASED SEGMENTATION

ALGORITHM AND PARTICLE BOXING

Be not ashamed of mistakes and thus make them crimes.

— Confucius.

Segmentation is a low level operation that is principally based on the pixel

level intensities. The aim of segmentation is to delineate those parts of an image

that correspond to distinct objects in the real world that are depicted in the

image. Intuitively this would require the use of any knowledge one has about

certain properties of the representation of the objects in the image that is be-

ing segmented. However, sometimes certain types of images can be segmented

successfully without much knowledge about the properties of the object’s repre-

sentation in the image. Segmentation must be decoupled from the higher level

particle recognition step i.e. particle boxing so that different particle boxing

methods can be used with various segmentation methods. This decoupling gives

us the flexibility of changing the particle boxing method as and when better algo-

rithms become available. However, segmentation methods that use the features

of the object that is being recognized achieve a better segmentation.

We begin by describing the preprocessing of micrographs using anisotropic

diffusion. This is followed by a description of a Markov random field based image
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segmentation algorithm. The particle boxing step is described in the concluding

section.

4.1 Preprocessing and segmentation

One of the trade-offs in imaging biological particles using cryo TEM is that of

using a high dosage of electrons vis-a-vis keeping the structure of the macromole-

cule intact. At high dosage levels (> about 12 e−/Å2) the particles incur damage

and the images thus obtained are of not much use. Hence, in order to minimize

the damage during the imaging process, micrographs are imaged at a very low

dosage (< about 10 e−/Å2). The use of such low dosage leads to a very low

signal to noise ratio (SNR) of the micrograph images. The SNR values of micro-

graphs typically vary from 0.3 to 0.08. Such low SNR values make the problem of

identification of the projections quite difficult. The segmentation step is severely

affected by such low SNR values. In order to achieve an improvement in the SNR

various filtering techniques, both during imaging and during the image processing

phase are commonly used. Here we describe the filtering, as a preprocessing step,

that is performed in the image processing phase.

4.1.1 Preprocessing

The preprocessing of micrographs is done so that the particle identification al-

gorithm that follows it would be able to perform better. The various filtering

techniques use low-pass filtering to allow only certain frequency to be passed to

the output. It is fairly assumed that the noise exists mainly at the higher fre-
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quencies. Techniques such as gaussian filtering and anisotropic diffusion etc. are

common. However, preprocessing comes at the cost of altering the signal since

that part of the signal that exists at higher frequencies is not present in the fil-

tered output due to attenuation of higher frequencies. The anisotropic diffusion

also shows such a behavior due to it’s equivalence to gaussian filtering which

essentially is a low pass filter.

4.1.2 Anisotropic Diffusion

Often, an automatic particle identification method involves a pre-processing step

designed to improve the signal to noise ratio of a noisy micrograph. Various

techniques, such as histogram equalization, and different filtering methods are

commonly used. Now we describe briefly an anisotropic filtering technique we

found very useful for enhancing the micrographs before the segmentation and

labelling steps.

While other pre-processing techniques such as histogram equalization, at-

tempt to increase the dynamic range of the low-contrast micrographs, the anisotropic

diffusion in fact reduces this dynamic range, as seen in Figure 4.1 (c). The aim of

anisotropic diffusion is to enhance the “edges” present in the image by smoothing

the regions devoid of ’edges’.

A diffusion algorithm is used to modify iteratively the micrograph, as pre-

scribed by a partial differential equations (PDE) [57]. Consider for example the

isotropic diffusion equation

∂I(x, y, t)

∂t
= div(∇I) (4.1)
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a

c

b

d

Figure 4.1: Anisotropic filtering. a) A portion of a micrograph of frozen-hydrated

Ross River virus particles. b) Histogram of the pixel intensities in the micrograph

displayed in (a). c) The image in (a) after 10 cycles of anisotropic filtering. d)

Histogram of the pixel intensities in the micrograph displayed in (c).
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Figure 4.2: The effect of the number of iterations of anisotropic diffusion on

segmentation, when all other parameters are kept constant. a) A portion of a

micrograph of frozen-hydrated Chilo Iridescent virus (CIV) particles. b) Seg-

mentation without anisotropic diffusion, c) 4 iterations of anisotropic diffusion

followed by segmentation d) 10 iterations of anisotropic diffusion followed by

segmentation
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In this partial differential equation t specifies an artificial time and ∇I is the

gradient of the image. Let I(x, y) represent the original image. We solve the

PDE with the initial condition I(x, y, 0) = I(x, y), over a range of t ∈ {0, T}. As

a result, we obtain a sequence of Gaussian filtered images indexed by t.

Unfortunately, this type of filtering produces an undesirable blurring of the

edges of objects in the image. Perona and Malik [57] replaced this classic isotropic

diffusion equation with

∂I(x, y, t)

∂t
= div[g(‖∇I‖)∇I] (4.2)

where ‖∇I‖ is the modulus of the gradient and g(‖∇I‖) is the “edge stopping”

function chosen to satisfy the condition g → 0 when ‖∇I‖ → ∞.

The modified diffusion equation prevents the diffusion process across edges.

As the gradient at some point increases sharply, signalling an edge, the value of

the “edge stopping” function becomes very small making ∂I(x,y,t)
∂t

effectively zero.

As a result, the intensity at that point on the edge of an object is unaltered

as t increases. This procedure ensures that the edges do not get blurred in the

process.

The result of applying ten iterations of anisotropic filtering to an electron

micrograph of frozen-hydrated dengue virus particles is illustrated in Figure 4.1.

The efficacy of anisotropic diffusion is ascertained by the illustration in Figure 4.2.

Clearly a higher number of iterations benefits segmentation. However increasing

the number of iterations is detrimental as it causes widespread diffusion resulting

in joining of nearby projections in the segmentation output.
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4.1.3 Segmentation

Following is a stepwise description of the micrograph segmentation algorithm

[72].

1. The image is split into rectangular blocks that are roughly twice the size

of the projection of a particle. This is done to reduce the gradient of the

background across each processed block. A high gradient degrades the

quality of the segmentation process carried out in Step 3. The gradient of

the background affects the algorithm in the following ways

(a) The initialization is based solely on intensity histogram which encode

only the frequencies of occurrence of any pixel intensity in the image.

Due to the presence of a gradient, the contribution to the count of

an intensity for example, may come from the background of a darker

region, as well as from the inside of a projection of a virus in a brighter

region. When the initialization is done for the entire image it performs

poorly, as seen in Figure 4.3.

(b) The parameters µ0, σ0, µ1, σ1 are fixed for an image. However, as

illustrated in Figure 6.1, they are not the true parameters for inten-

sity distribution across the whole image. The means and variances of

pixel intensities are significantly different across the image due to the

presence of the gradient. Cutting the image into blocks ensures a lack

of drift in these parameters across each block.

2. As a pre-processing step individual blocks are filtered by means of anisotropic

diffusion. Such filtering ensures that “edges” are preserved and less affected

by smoothing (see Figure 4.1(a) and 4.1(b)). The edge stopping function is
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g(∇I) = e−(‖∇I‖/K)2 (4.3)

For each block we run a few iteration of the algorithm. K = 0.2 to ensure

the stability of the diffusion process.

3. The blocks filtered through the anisotropic diffusion based filter are seg-

mented using the HMRF method. The following steps are taken for seg-

mentation

(a) The initialization of the model is done using a discriminant measure

based thresholding method proposed in [55]. The threshold is found

by minimizing the intra-class variances and maximizing the inter-class

variances. The resulting threshold is optimal [55]. Pixels with in-

tensities below the threshold are marked with the label 1 indicating

that they belong to the particle projection. The remaining pixels are

marked with the label 0. This initialization is refined using the MRF

based model of the image in Step 3(b).

(b) To refine the label estimates for each pixel within the MAP frame-

work, we use the expectation maximization algorithm. A second or-

der neighborhood, as the one in Figure 3.3, is used. To compute the

potential energy functions for cliques we use a Multi Level Logistic

(MLL) model. Four iterations of the algorithm are run for each block.

The result of the segmentation is a binary image with one intensity

for the particle projection and the other for the background.
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Figure 4.3: The effect of initialization for a micrograph with a pronounced gradi-

ent. a) A portion of an original micrograph of frozen-hydrated Ross River virus.

b) The micrograph after anisotropic diffusion. c) The effect of the initializa-

tion for the HMRF segmentation algorithm for the micrograph in (a). d) The

segmented micrograph.
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4.2 Boxing Strategies

The goal of particle identification from segmented images of micrographs is to

picking regions that correspond to the projections. Boxing means to construct

a rectangle with a center co-located with the center of the particle. Once the

segmented image is obtained, with or without the use of a low resolution 3D

structure of the macromolecule, any of the several boxing strategies detailed below

can be used to isolate the regions on the micrograph that correspond to a particle

projection. Boxing represents a crucial step in the particle identification process.

The decoupling of segmentation and boxing provides us with the advantage of

making any of the different combinations based on the structural properties under

consideration and quality of the micrograph.

Boxing particles with unknown symmetry is considerably more difficult than

the corresponding procedure for iscosahedral particles. First, the center of a

projection is well defined in case of icosahedral particle, while the center of the

projection of an arbitrary 3D shape is more difficult to define. Second, the result

of pixel labeling, or segmentation, is a shape with a vague resemblance to the

actual shape of the projection. Typically, it consists of one or more clusters of

marked pixels, often disconnected from each other, as we can see in Figure 3.5.

The post-processing of the segmented image to achieve boxing involves mor-

phological filtering operations of opening and closing [74]. These two morpho-

logical filtering operations are based on the two fundamental operations called

dilation and erosion. For a binary labeled image, dilation is informally described

as taking each pixel with value 1 and setting all pixels with value 0 in its neigh-

borhood to the value 1. Correspondingly, erosion means to take each pixel with

value 1 in the neighborhood of a pixel with value 0 and re-setting the pixel value
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to 0. The term ”neighborhood” here bears no relation to the ”neighborhood” in

the framework of Markov Random Field described earlier in section 3.1. Pix-

els marked say as ”1,” separated by pixels marked as ”0” could be considered

as belonging to the same neighborhood if they dominate a region of the image.

The opening and closing operations can then be described as erosion followed by

dilation and dilation followed by erosion, respectively.

The decision of whether a cluster in the segmented image is due to noise, or

due to the projection of a particle is made according to the size of the cluster.

For an icosahedral particle, additional filtering may be performed when the size

of the particle is known. Such filtering is not possible for particles of arbitrary

shape. A fully automatic boxing procedure is likely to report a fair number of

false hits, especially in very noisy micrographs.

4.3 Results

We present four images: the original, the image after preprocessing, the seg-

mented image, and the original image with the particles boxed.

Table 4.1: The quality of the solution provided by the HMRF particle identifica-

tion algorithm for a micrograph of the Chilo Iridescent virus (CIV)

Number of particles Number of particles False Positives False Negatives

detected manually detected by MRF

277 306 55 26

Automatic identification of particle projections from a micrograph requires

that the results be obtained reasonably fast. Hence, in addition to analysis perti-

nent to the quality of the solution, we report the time required by the algorithm
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for different size and number of particles in a micrograph. Table 4.2 lists the time

devoted to different phases of our algorithm and demonstrates that pre-processing

and segmentation account for 9799 % of the computing time.

Table 4.2: Time in seconds for the main processing steps of the of HMRF particle

identification algorithm

Image Size Anisotropic filtering MRF Segmentation Post-processing Total

1174 x 940 17 23 2 42

5457 x 6000 560 744 28 1332

8768 x 11381 2102 3012 142 5256

4.4 Parallelization

The aim of reaching atomic resolution limits with cyro-EM based single particle

analysis leads to the need for automatic methods for identification of hundreds of

thousands of particle projections. In general, the processing of micrographs for

particle identification for such huge numbers of projections is a highly computa-

tion intensive task. The performance data for the sequential algorithm reported

in section 4.3 indicate that the execution time of the segmentation process is

prohibitively large. Considering the fact that in future there may be a need

to process even larger micrographs and that we may need to improve the qual-

ity of the solution it becomes abundantly clear that we should consider parallel

algorithms for automatic particle identification ([42] and [73]).
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d

cb

fe

Figure 4.4: a) Portion of a micrograph of frozen-hydrated Ross River virus. b)

The histogram of the pixel intensities for the image in (a). c) The micrograph

after anisotropic diffusion filtering. d) The micrograph after the initialization

step of HMRF. e) Segmented micrograph. f) Boxed particles in the micrograph.
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Figure 4.5: a) A portion of a micrograph of frozen hydrated sample of Chilio

Iridescent virus (CIV). b) The histogram of the pixel intensities for the image in

(a). c) The micrograph after anisotropic diffusion filtering. d) Micrograph after

the initialization step of HMRF. e) Segmented micrograph. f) Boxed particles in

the micrograph.
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Figure 4.6: a) Portion of a micrograph of frozen-hydrated bacteriophage T4

prolate virus. The virus does not have icosahedral symmetry. b) The histogram

of the pixel intensities for the image in (a). c) The micrograph after anisotropic

diffusion filtering. d) Micrograph after the initialization step of HMRF. e) Seg-

mented micrograph. f) Boxed particles in the micrograph.
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4.4.1 Background

Parallel architectures have traditionally been classified using the Flynn taxonomy

[16] as SISD, SIMD, MISD, and MIMD. The MIMD category is very broad and

is typically further classified into categories based on memory organization.

4.4.2 Shared memory architecture

All processes share the same address space. The inter process communication

takes place via shared variables. There are two major classes of shared memory

systems.

• SMP (Symmetric multiprocessor) - All processors share a connection to

the common memory. The memory access speeds are equal for all the

processors. SMP systems do not scale well.

• NUMA (Non Uniform Memory Access) - NUMA systems exhibit a non

uniform access to the memory from the processors. Some blocks of memory

may be closer to some processors than others.

The SMP architecture affords an ease of programming for the programmer

when compared to the NUMA architecture. With the NUMA architecture, the

programmer needs to care about the locality of the data. In order to overcome

the non locality (and hence the non uniformity) of memory access, each processor

has a cache and an associated cache coherence protocol.
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Figure 4.7: Classification of MIMD parallel systems based on memory access.

The Symmetric Multiprocessor (SMP) architecture is depicted in (a) and the

non uniform memory access (NUMA) architecture is depicted in (b).

4.4.2.1 Distributed memory architecture

Each process has its own address space and the communication between processes

takes place through message passing.

. . .
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Figure 4.8: Classification of MIMD parallel systems based on memory access.

The Symmetric Multiprocessor (SMP) architecture is depicted in (a) and the

non uniform memory access (NUMA) architecture is depicted in (b).
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4.4.3 Design

The design of a parallel algorithm involves various factors regarding both the

problem at hand and the system for parallelization. Some of the things that

must be considered when designing a parallel algorithm are the following -

1. Dependence of operations for the given algorithm.

2. Architecture of the parallel system.

The problem of segmentation by the algorithm mentioned above is embarrass-

ingly parallel because there is almost no dependence of any computational step.

Hence the design of a parallel algorithm is fairly straightforward. A scheme for

parallelization of the algorithm is given in Figure 4.9.

4.4.4 Parallel Algorithm

For an algorithm designed for a cluster of PCs, we divide the image into blocks,

where the size of the blocks is roughly twice the estimated size of the particles.

The size of the particle is a user input parameter which needs to be provided at

only once. Let the image be divided into m by n blocks. Further, let there be p

processors. A pseudo code for the parallel algorithm for segmentation is shown

below.

if master node

then

divide the image into m by n blocks

for i = 0 to m-1
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Figure 4.9: Schematic of the parallel version of HMRF Segmentation algorithm.
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for j = 0 to n-1

send block(i,j) to node (i+j) mod p

end for

end for

receive the block/s from the master node

filter the block/s received using anisotropic diffusion

segment the block/s received

perform morphological filtering on the block/s

send the block/s to the master node

if master node

then

while not all blocks are received

receive the next block

end while

Stitch all the blocks into final segmented image

The computation was performed on a cluster of 44 dual processing (2.4 GHz

Intel™Xeon processors) nodes, each with 3 GB of main memory and intercon-

nected using 1 Gbps ethernet. The processing time significantly reduces with

an increase in processing nodes until about 20 nodes, after which the processing

time does not decrease significantly with an increase in the number of processing

nodes. The result of execution of the above algorithm on three different sizes of
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images viz. (in pixels) 680x750, 1356x1492 and 5424x5968 is shown in Figure

4.4.4. As can be seen from the figure, the speedup starts to level off with an in-

crease in the number of nodes reflecting the fact that communication costs start

playing a more significant role as the number of nodes is increased. However this

levelling off is not observed for the image of size 5424x5968 since communication

time becomes less significant as the image size, and hence the computation time

is increased. The vertical bars in Figures 4.10(b), 4.10(c) and 4.10(d) correspond

to the 95% confidence interval. The image of size 5424x5968 corresponds to the

image shown in Figure 4.5. The confidence intervals for the image of size 680x750

are very narrow indicating a high accuracy of the measurement. The experiments

were conducted on a cluster simultaneously with other unrelated processes run-

ning. We believe that the difference in size of confidence intervals for the mean

of the measured execution time for the three image sizes may be due to this fact.
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Figure 4.10: A plot of speedup vs Number of nodes for three different sizes of

micrograph images is shown in (a). Plots of Total Computation time Vs Number

of nodes for three different sizes of micrograph images (in pixels) 680 × 750,

1356 × 1492 and 5424 × 5968 are shown in (b), (c) and (d) respectively. The

computation was performed on 44 dual processing nodes (2.4 GHz Intel™Xeon)

each with 3Gb of main memory and connected using 1 Gbps. The vertical bars

indicate a 95% confidence interval, computed using 30 readings corresponding to

each value of Number of nodes.

74



CHAPTER 5

VIRTUAL WORKBENCH

Everything should be made as simple as possible, but no simpler.

— Albert Einstein.

5.1 Motivation

Automatic identification of particle projections in micrographs is critical for high-

resolution reconstruction in Transmission Electron Microscopy (TEM). Manual

identification of tens of thousands of particle projections is impractical, it is

time-consuming and prone to errors. A high-resolution reconstruction requires

not only a large number of particle projections, but also high-quality input data;

we have to minimize the number of false hits. A fair number of algorithms and

methods for automatic particle identification have been proposed. However, the

performance of these algorithms varies with various factors such as the contrast

of the image, the gradient of the background, the shape of the macromolecules,

and other factors related to the experimental setup used for data collection. Cur-

rently it is difficult to compare the quality of the solution produced by various

algorithms for automatic particle identification. We have developed, for the first

time, a collaborative tool for the cryo-TEM community, which in short term will
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allow the scientists to decide which algorithm performs best on a specific set of

micrographs. It is expected that one should be able to select the best algorithm(s)

automatically. Whenever the ground truth for a set of micrographs is available,

the system will allow one to make objective statements regarding the performance

of different algorithms. The performance of a particle identification algorithm has

traditionally been benchmarked against the ground truth i.e. manual pickings by

a trained human particle picker, although this metric is not universally accepted

[25] as the best method of comparison.

The system has been christened ’Virtual workbench’ to distinguish it from

traditional benchmarks. The traditional benchmarks consist of a closed (fixed)

set of algorithms/programs and input data. The goal of benchmarking a new

system is to establish if it is ’better’ than a set of existing systems; to do so

one would measure an objective performance indicator, e.g. the execution time,

without being concerned with ”fuzzier” attributes such as the quality of the

solution. Benchmarking is traditionally done by an organization on behalf the

user community only once, on a prototype system. The Virtual workbench is

open-ended, new algorithms and new data shall be included as they become

available. The system will be available to a large user community. As more

complex algorithms whose performance depends upon a set of parameters are

developed, the system will allow a scientist to determine the optimal parameters

for an algorithm on a particular set of input data. The system will facilitate the

development of new algorithms for automatic identification of particles, such as

those which exhibit icosahedral symmetry, as well as particle which exhibit other

symmetries and allow a scientist to compare objectively various algorithms and

programs.
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5.2 Functional Features

The Virtual benchmark essentially provides a service to the research community.

It enables, among other things such as collaboration, an ability to benchmark a

collection of particle identification algorithms over a representative set of micro-

graphs. The service must possess certain functional features in order to be of

utility to the targeted audience. Such functional features are described below.

5.2.1 Characterization

In order to provide the facility of benchmarking and to allow comparison among

the particle identification algorithms, the algorithms must essentially be char-

acterized by their performance. The performance of particle identification algo-

rithms is heavily dependent on the quality of the data that is input to them.

Hence the input data i.e. micrographs must also be characterized in order to ob-

tain a relation between the performance of particle identification algorithms with

the ’quality’ of the micrographs. Characterization of algorithms and micrographs

is discussed in detail in Chapter 6.

5.2.2 Visualization

Visualization is an essential component of the workbench. Numerous parameters

affect the performance of the particle identification algorithms. In order to allow

comparisons of the algorithms, visualization of the results of the algorithms and

micrograph characteristics must be provided.
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5.2.3 Collaborative environment

In addition to providing a benchmarking facility, the virtual workbench also pro-

vides a collaborative environment to its users. Such an environment consists

of virtual groups whose members can exchange data and results between them-

selves. In order to exchange data, users can simply allow access to their data

for the other members. Since the data is maintained in the virtual workbench, a

member to member transfer of data is not required. Nevertheless, access to the

micrographs and algorithms must be secure in order to protect the user’s data

and intellectual property rights.

5.2.4 Miscellaneous features

Apart from the features described above, the workbench also provides the users

with the ability to generate and share synthetic data. Moreover the algorithm

results can be tested over the synthetic data thus generated. Since the parti-

cle positions in the synthetically generated micrographs is known beforehand,

the task of estimation of the metrics for performance of the algorithms can be

automated. This provides an elegant way to both to test the algorithms and

to characterize them. Further details are given in section 6.2.2 of Chapter 6.

However since the synthetic data is not truly accurate representations of the

micrographs obtained by imaging of the macromolecules, the faithfulness of per-

formance of the algorithms on such data vis-a-vis real micrograph data is closely

tied to the process of creation of these synthetic micrographs. The process of

creating snthetic micrographs is given in section 6.2.2.
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5.3 Design

The workbench essentially consists of a collection of

1. Micrographs,

2. Particle identification algorithms provided by the users and the results of

these algorithms on a subset of the micrographs in the collection,

3. Ancillary algorithms for characterization, visualization and analysis,

4. Web accessible tools to explore the collections and selectively perform ac-

tions on these collections or some subset of it, and

5. Data regarding users and procedures to enable collaboration.

All micrographs and algorithms provided by the users and the results of these

algorithms (on a subset of the micrographs present in the workbench) have meta-

information associated with them. The table 5.11 gives a non-exhaustive list of

the meta-information regarding each micrograph stored in the workbench.

Other meta-information such as details about the research group/individual in-

volved in preparing the micrograph is also associated with the micrograph.

A non-exhaustive list of such metrics includes

1. The expected value and the variance of ratio of particle identified by the

method versus the number of ’true’ particles.

2. The expected value and the variance of the number of ’false positives’.

3. A measure of the quality of the solution, for example the average error in

determining the center of each particle.

1This is a sample of a larger set of micrograph meta-information in the actual implementation
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Table 5.1: For each micrograph this list of meta information is stored in the

database.

Micrograph meta-information

Size Size of the image in pixels

NumTrue True number of particles

NoiseMean Empirical mean of the noise

NoiseVar Empirical variance of the noise

EVolt Electron voltage of microscope

CoolMed Cooling medium (Liquid He or N)

DensType Type of densitometer (line or point)

DensResol Resolution of the densitometer

CTFAlgo Algorithm used to compute the CTF

EnvlParam Envelope function parameter

EnvlForm Functional form of the envelope function

DefocusMaj Defocus major

DefocusMin Defocus minor

SHTilt Specimen holder tilt

ImgFrmt Format of the image

ImgReader File for reading the image

ImgWriter File for writing the image to a file

MacromolProjShapeID ID for associating shapes with micrographs

isSynthetic Is the micrograph real or synthetic

FileLoc Path to the image file

isDirty Processed status of the micrograph

ParamsComputed None/Some/All parameters computed

MisPrivate Privacy of the micrograph
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Table 5.2: For each algorithm the given list of meta information is stored in the

database.

Algorithm meta-information

Name Size of the image in pixels

PID ID of the uploading account holder

AlgoFileLoc Location of the file

LibID ID for the libraries used

Publication Citation of any associated publication

AisPrivate Privacy of the algorithm

Table 5.3: For each result obtained by a run of an algorithm using a unique set

of parameters, the results are stored in a results table. A short list of fields of

this table is given.

Algorithm results meta-information

AlgoID ID of the algorithm

microgID ID of the micrograph

AlgoResFileLoc Location of the file

RunNum Run number of the result

PreProcParamList Parameter list for preprocessing

PostProcParamList Parameter list for postprocessing

ARisPrivate Privacy of the micrograph
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The contents of the benchmark suite can be visualized in a high dimensional

space where each axis represents a property of the micrographs or performance

results of the various algorithms. Then for a given micrograph, a researcher

would manually be able to pick the best particle identification method even with

a limited knowledge of the properties of the micrograph e.g., noise parameters

and CTF parameters. With proper metrics, this task may also be automated.

As suggested in [25], two sets of results may be kept; one for the results on a set

of freely available set of micrographs and the other for a set of micrographs that

are not revealed. The database in the image repository contains a collection of

tables. A non exhaustive list of these tables along with their corresponding fields

and their interrelationships is shown in Figure 5.2.

A schematic of the design of a virtual workbench is shown in Figure 5.3. A

description of the components of the workbench follows –

1. Client – The client is a Java2 based applet which provides a secure access to

the benchmark repository. Users can send requests for viewing images and

results, uploading an image, and uploading or updating the results obtained

on images in the repository by algorithms submitted by them. Access to

the repository is granted by an administrator by creating an account that

the user requests. When uploading micrographs, the users have to pro-

vide, in addition to the micrograph image, the information related to the

micrograph such as those mentioned in table 5.1 and a brief description of

macromolecule including keywords uniquely describing the macromolecule.

When submitting the results, the user provides the information mentioned

in 5.2. The users also have the choice of submitting results of running

the algorithms they have submitted to the workbench on the micrographs

2Java™ is a registered trademark.
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Figure 5.1: Design schematic of the internal of the Workbench application server
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present in the workbench. These algorithms may be executed offline at the

user’s site. The client also enables collaboration between the users by allow-

ing them to extend full/limited access to their micrographs, algorithms and

results to selected workbench account holders. Once the access is granted

these other members then have the ability to download those micrographs,

algorithm code/executables/libraries and/or run the algorithms remotely

at the workbench site.

2. Application Server – The server manages the user request for uploading

image and results of algorithms on images in the repository. When a request

for uploading an image, the request is received by the server, the image is

stored in the repository and a unique ID for the image is created and the

image is marked as ’not processed’ i.e. IsDirty (see table 5.1) is set to true.

When a request for updating the result for a specific image is received,

the image is marked as ’new result in repository’ and the result specific

parameters are updated in the repository.

3. Image Upload Watcher (IUW)– The image upload watcher periodically

looks into the repository for all the images that have been marked as ’not

processed’. Based on the resource availability and the number of images

to be processed, it spawns metadata extractors (ME) for extracting image

parameters. There are certain limitations that apply on the micrographs

before they can be automatically processed for metadata extraction e.g.

the availability of ’ground truth’ before the CTF noise and background

parameters can be extracted.

4. Metadata Extractor (ME) – The metadata extractor takes a single image

from the repository as indicated by the IUW and computes the relevant

image parameters for it’s characterization mentioned in Chapter 6. It then
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updates the repository with the computed parameters corresponding to the

image and marks it as ’processed’. Normally, each image goes through this

process only once. However the arbitrator may choose to run them more

than once.

5. Benchmark Repository Watcher (BRW) – The benchmark repository watcher

periodically looks for all the images that have been marked as ’processed’

or ’new result in repository’ and sends a formatted message (email) to the

arbitrator for review.

6. Arbitrator – The arbitrator is a human involved in the loop. Upon receiv-

ing a message (e.g. email) from the BRW, the arbitrator verifies all the

information related to the uploaded micrograph images, algorithms and/or

results of algorithms, and marks them as ’clean’/’invalid’. If any of the

data if deemed invalid by the arbitrator, the client who uploaded that data

is informed of an invalid data upload.

7. Benchmark Repository (BR) – The benchmark repository is a database of

metadata for micrograph , metadata for algorithms (code, executables and

libraries), and metadata for the results of the algorithms on micrographs

contained in the database. The micrograph images, algorithms (code, ex-

ecutables and libraries) and results of the algorithms are stored in the file

system.
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FileLoc
WebAddress

AlgoMicrogID

PK,FK1,FK2 AlgoID
PK ResultsID

MUserAccess

PK,FK1 PID
PK MicrogID

AUserAcess

PK,FK1 PID
PK AlgoID

ARUserAccess

PK ResultID
PK PID

Legend
PK = Primary Key
FK = Foreign Key

Figure 5.2: A schematic of the database tables and their interrelationships in the

virtual workbench. The fields shown are a subset of the list of fields present in

each of the tables.
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5.4 Implementation

The implementation of each of the components described in the section 5.3 is

given below. All the components of the system have been built using open source

software.

1. Client – The clients have been implemented using the Java. The client

interface is further described in section 5.4.1.

2. Server – The server consists of a web server and an application server. The

web server provides a web access to the users. The application server pro-

vides a mechanism for the user to execute tasks on their behalf on the

application server. The application server may spawn tasks on other sys-

tems as shown in Figure 5.3. The open source application server Apache3

Tomcat is used as the application server. It hosts the Java servlets4 which

are used to allow clients to remotely execute programs on the webserver

and the execution engines. The webserver integrated with the application

server serves the HTML pages to the users. The execution engines are back-

end machines that are used to run the algorithms and perform micrograph

characterization. These machines are accessible using the executables run

by the application server using the servlets as shown in Figure 5.4.

3. Image Upload Watcher (IUW) – The image upload watcher is implemented

using Perl5.

4. Metadata Extractor (ME) – The ME is written in Perl. The procedures

for computing the image statistics are implemented in C. The ME is a col-

3Apache©

4Servlets™
5Perl©
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Figure 5.3: Data flow in the virtual workbench.
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Figure 5.4: The interaction of servlets with other components in the workbench.

lection of calls to the C programs for computation of image statistics and

database method calls for insertion of the image parameters in the data-

base. For instance, the field MaxBackApproxIntensityVar is the maximum

variation in the background of the image and is computed by modeling

the background as a smoothing spline and computing the difference of the

maximum and minimum values of the function over the image. Such com-

putations are done using C. Invocation of the different C programs is done

through the servlets. After all the image parameters have been computed,

the ParamsComputed field of the record corresponding to the image is set

to true.The Metadata Extractor is a collection of calls to the C programs

for computation of image statistics and database method calls.

5. Benchmark Repository Watcher (BRW) – The benchmark repository watcher

is a Java servlet which is executed whenever any data is uploaded.
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6. Arbitrator – The arbitrator is a human involved in the loop.

7. Benchmark Repository (BR) – The open source database PostgreSQL6 is

used as the back-end data repository. The design of the database is depicted

in Figure 5.2.

5.4.1 Client Interface

The users access the workbench using the client which is the only point of interface

between the users and the workbench. The client is implemented as a Java

applet which allows the user to access the workbench using any Java enabled

web browser. The applet allows two levels of access to the users –

1. Semi-privileged access

2. Privileged access

The unprivileged level is the default access level. At this level of access, the

users are allowed to view and download micrographs, algorithms and algorithm

results that are available for public access. The privilege level is obtained by

requesting an account. The arbitrator creates the account on behalf of the user

requesting the account. The privileged level of access gives the users, in addition

to the services given at the unprivileged level, the following services –

1. Upload/Download of micrographs, algorithms and algorithm results.

2. Remote execution of algorithms.

6PostgreSQL©
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3. Characterization of private micrographs.

4. Maintain private database of micrographs, algorithms and algorithm results

for a limited time.

5. Extend access to private micrographs, algorithms and algorithm results to

other selected privileged users.

The main panel of the Java applet is shown in figure 5.5. The set of controls

marked (A) allow the user to connect to different databases, perform account

management for their account and access the help system of the applet. The

databases may be located at geographically different sites. The set of controls

marked (B) allow the user to explore the micrographs present in the workbench,

upload and download micrographs and perform characterization of the micro-

graphs uploaded. The set of controls marked (C) allow the user to access the

algorithms and results of the algorithms on micrographs in the workbench, visu-

alize the performance of the algorithms, and upload and download results of the

algorithms. The controls in (D) allow the user to control the zoom, contrast and

brightness level in the micrograph display. A thumbnail view of the micrograph

currently selected is shown in (E). Further details about the panels is shown in

Figures 5.6 and 5.7.

5.5 Conclusion

The virtual workbench is a tool to enable benchmarking current and future par-

ticle identification algorithms and promote collaboration between researchers for

the further development of automatic particle identification algorithms. The

91



Thumbnail view of image Image Display
Controls

Image Display

D

Main Applet

E

A

C

B

Figure 5.5: The main applet view is shown (bounded by yellow box) with views of

the panel. The applet allows the user to control the zoom, contrast and brightness

levels of the image displayed. A thumbnail view of the micrograph is provided.
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(a) (b)

(c) (d)

Figure 5.6: Various applet for micrographs are shown. (a) list of micrographs

in the workbench, (b) view information about the micrographs, (c) search for

micrographs based on various fields, and (d) usage information.
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(a) (b)

(c) (d)

Figure 5.7: Various applet panels for algorithms are shown. (a) List of algo-

rithms that have results for the selected micrograph/s in the workbench, (b)view

information about the algorithms, (c) view information about the results of the

selected algorithm on the selected micrograph/s (d) search for algorithms based

on various fields, and (e) remotely execute a selected algorithm on the workbench

for selected micrograph.
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workbench is web accessible and can be accessed using any browser enabled with

Java™. The system is open and the users of the system contribute to it’s con-

tent. Users have an ability to upload both micrographs, particle identification

algorithms and results of the selection of the particle identification algorithms.

The virtual workbench can be easily extended to address similar interests in the

single particle three-dimensional reconstruction research.
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CHAPTER 6

CHARACTERIZING MICROGRAPHS AND

ALGORITHMS

No amount of experimentation can ever prove me right; a single

experiment can prove me wrong.

— Albert Einstein.

An essential part of the virtual workbench is the quantitative characterization of

micrographs and the particle identification algorithms. Such quantitative charac-

terization facilitate comparisons and benchmarking. They also allow the users to

better understand the performance of the algorithms with variation in the ’types’

of the micrographs.
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6.1 Characterization of Micrographs

A characterization of the micrographs is an important aspect of the Virtual work-

bench if one wishes to explore the variation of the ’performance’ of particle iden-

tification algorithms with the different ’types’ of micrograph. Within the context

of such a characterization, a micrograph must be associated, among other things,

with a set of parameters that are closely associated with the imaging process.

Such parameters include the defocus level, lens current etc. There are some

other parameters that must be obtained by processing of the micrographs after

the imaging process is completed. We discuss some of these parameters in the

following.

The micrographs can be characterized by the following non exhaustive list of

parameters that are obtained by processing of the images.

1. Type of noise and it’s parameters.

2. Signal to noise ratio.

3. Contrast transfer function parameters.

4. Background.

In addition to the parameters mentioned above, the type/s of macromolecule

particle whose projections are captured by the micrograph is also used to char-

acterize the micrographs. The workbench also contains ancillary data associated

with each micrograph regarding the personnel involved in the imaging of the

micrograph, the date the images were captured and the group involved.

Many of the particle identification algorithms do not vary significantly in their

performance along certain parameters. However, due to the fact that the virtual
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workbench is an open system, algorithms added to it in the future may exhibit

a variation in their performance along those parameters. Hence although some

of the parameters do not seem to differentiate between the particle identification

algorithms, they are still kept for characterization because of their saliency. In

the following, each parameter is described.

6.1.1 Particle type

The type of symmetry of the particles, and more precisely, that of the projec-

tions sometimes affects the performance of some particle identification algorithms

that are designed for a particular type of projection shapes [43], [70], [90], and

[94]. Hence the particle projection shapes corresponding to each micrograph is

maintained. In some cases where a micrograph has a collection of projections

with more than one shapes, the micrograph may be associated with more than

one shape corresponding to the different projections [92] whether the projections

correspond to the same type of particle or not.

6.1.2 Noise and its parameters

The performance of particle identification algorithms depends, among other things,

on the noise characteristics of the micrographs. An estimation of the noise charac-

teristics helps explore the ”performance” of the particle identification algorithms

with the ”quality” of the micrographs. An assumption of an independent and

identically distributed (iid) gaussian noise has been made for the micrographs .

It has been validated in Figure. 3.1 and Figure 3.2. With this assumption of a
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gaussian noise, the parameters of the noise namely the mean and variance are

used to characterize a micrograph. The noise is not always spatially stationary

e.g as shown in Figure 6.1 the mean of the background pixel intensity varies along

the micrograph. Also, the variation of parameters over the same micrograph may

vary for different micrographs. Hence an average of the parameters is used to

characterize the noise content of the micrographs.

The parameters of the gaussian distribution can be easily estimated by com-

puting the sample mean and variance. With the background regions known, sec-

tions of the micrograph are extracted that correspond to the background. Sample

means and variances for each region is computed individually. The mean of these

sample means and variance is computed and stored as the noise parameters of

the gaussian noise in the micrograph.

6.1.3 Signal-to-noise ratio

For a given image, the signal-to-noise ratio can be defined as the variance of the

signal to the variance of the noise3.

For an image M `, the sample variance is defined as

var(M `) =
1

S − 1

m,n∑
i=1,j=1

[M `
i,j − M̄ `]

2

where,

M̄ ` =
1

S

m,n∑
i=1,j=1

M `
i,j

3The signal-to-noise ratio is sometimes defined as Power of the signal
Power of the noise . However here we use

the former definition
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mean = 115.7
std. deviation = 24.4

mean = 148.1
std. deviation = 25.1

mean = 106.1
std. deviation = 23.9

mean = 140.7
std. deviation = 25.6

mean = 120.1
std. deviation = 24.9

Figure 6.1: The variation of the mean intensity of the background pixels across

the micrograph image. The mean intensity of pixels within the projections of

virus have a similar variation.
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Measurement of the signal to noise ratio is a difficult task due to the variation

in the background, the method proposed in [18] can be utilized. The method is

based on computing the cross correlation coefficient of two images recorded for

the same area. If the images have sufficiently large number of pixels, the SNR

value can be computed using the cross correlation coefficient of the images. For

the two images pij and pkj, the cross correlation coefficient is given as

ρi,k =

∑J
j=1[pij− < pi >][pkj− < pk >]√∑J

j=1[pij− < pi >]2
∑J

j=1[pkj− < pk >]2

Although the condition of pij and pkj being the images of the same region of

the image is not satisfied as shown below, nevertheless we will use this method

for computing the SNR values using the following scheme.

Given : Micrograph M, s true locations of the particle projections

• Compute the C = sxs matrix where each entry (i,k) corresponds to the

cross correlation coefficient of the images pi and pk.

• For each row of C, find the maximum entry.

• Use the entry in step 2 to compute the SNR at each row.

• Add the SNR values for all the rows to get SSNR. Average SNR then

becomes sSNR/(2 ∗ s)

6.1.4 Contrast transfer function

The estimation of contrast transfer function plays an important role in the 3D

reconstruction of macromolecules within realm of cryoTEM. A brief description
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of the contrast transfer function is given in section 2.1.1.3 with further details

given below.

A micrograph image results from a combination of sample-induced elastic

and inelastic electron scattering. In general, inelastic scattering produces an al-

most featureless background in the image power spectrum that is high at low

resolution and falls off toward higher resolution. The amplitude contrast in mi-

crograph mainly arises from the removal of high-angle elastic scattered electrons

that are outside the objective aperture. The elastically scattered electrons that

pass through the objective aperture produce the phase contrast that contains

most of the structural information in cryoTEM of specimens. The amplitude and

phase contrast are modulated by the CTF of the microscope which is a function

of defocus, astigmatism, lens errors, electron wavelength, as well as temporal and

spatial coherence of the electron beam [95]. In general, the average of the power

spectra obtained from individual molecular images in one micrograph (which have

a nearly identical CTF) is used to determine the CTF parameters. Although a

precise determination of CTF based solely on the shape and position of the Thon

rings (or ellipses) is difficult as it would require knowledge of all parameters and

a better understanding of inelastic and multiple scattering, the oscillations due

to the CTF can be interpreted in a straight-forward manner. The phase reversals

can be roughly described by a simple oscillation function of constant amplitude,

determined by factors such as the defocus, astigmatism and spherical aberration

of the objective lens. A more accurate description requires this periodic function

to be multiplied by an envelope function which monotonically attenuates the CTF

toward higher spatial resolution and captures the effects of spatial and temporal

beam incoherence. The expression for the two-dimensional CTF is given by –

CTF =
√

1− A2 ∗ sin(θ) + A ∗ cos(θ)
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where

θ = 2π ∗ (∆f∗λ∗d2

2
− Cs∗λ3∗d4

4
).

A - The fractional amplitude contrast.

λ - The electron beam wavelength.

d - The spatial frequency related to the coordinate (h, k) in the Fourier domain.

Cs - A spherical aberration constant of the microscope’s objective lens.

∆f - The defocus is a function of minimum defocus, Da, maximum defocus, Db,

and the angle α of the main axis of the ellipse with the h axis as shown in figure

6.2

∆f = Dacos
2(φ− α) + Dbsin

2(φ− α)

h

k

Da

Db
 

 f
 

Figure 6.2: Parameters needed for CTF computation.

To account for the spatial and temporal coherence, the CTF is then multiplied

by two separate exponential decay functions Es and Et [91]: CTF = CTF ∗

Es ∗ Et. In our algorithms we apply the CTF correction and a single attenuation

correction factor, the inverse Temperature Factor (TF) to the Discrete Fourier
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Transform of each raw image before reconstruction:

FFTnew(h, k) =
FFTold(h, k)

(CTF (h, k) + WienerLike)
∗ 1

TF (h, k)
.

Our algorithm determines the defocus minor, Da, the defocus major, Db, the

angle α , and a temperature factor that takes into account several effects which

lead to an attenuation of the CTF. We compute a two-dimensional function to fit

the oscillations of the average power spectrum in two dimensions. The correlation

of the average power spectrum with a CTF pattern allows us to determine the

level of astigmatism and the temperature factor. Following is a brief sketch of

the algorithm –

Algorithm: CTF computation

1. Read the input data

(a) Read size of the DFT, pixelsize, A, Cs, voltage, image data file;

(b) Read initial estimates of: Da, Db, α , and the temperature factor;

2. Read each boxed image;

3. Calculate the 2D-DFT of each image; sum the 2D-DFTs together; calculate

the unweighted average of the DFT, the compute the modulus of the average

value (DFTavg)

4. Determine the angle using a multi-resolution refinement procedure;

(a) For a particular refinement step size (say 1) rotate clockwise DFTavg

and correlate the upper and the lower half, of DFTavg relative to

the h axis. Determine the angle α which maximizes the correlation

coefficient;
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(b) Refine the angle (say to 0.1, then 0.01) and continue the search around

the value obtained in 4a;

5. Estimate a background function and subtract the background from DFTavg.

6. Determine the defocus major, the defocus minor, and the temperature fac-

tor using the initial input parameters:

(a) For a given step size, resolution, and window size, create a set of CTF

patterns in the range of (Da ± w*r, Db ± w*r, temperature factor ±

w*r), with w - the window size, the range of the defocus major and

minor and the temperature factor.

(b) Compute the correlation coefficient of the DFTavg with these CTF

patterns. Find the maximum correlation coefficient and the corre-

sponding values for: Da, Db, and the temperature factor.

(c) If needed, slide the window w, and repeat steps 6a and 6b.

(d) Decrease the step size, repeat steps 6a - 6c and refine defocus major,

defocus minor, temperature factor.

7. Verify the convergence of the algorithm using a different set of input para-

meters.

The algorithm was tested with 198 particle projections from one micrograph,

each image being of size 255x255 pixels. Figure 6.3 (a) shows the DFTavg of these

images. We started with an initial guess: Da = 2.0µm, Db = 2.0µm, α = 0.0◦,

temperature factor = 100.0 Å2. The parameters produced by the algorithm: Da

= 2.503µm, Db = 3.288µm, α = 7.89◦, temperature factor = 723.0 Å2. Figure

6.3 (b) shows a superposition of the power spectrum and the CTF function of

Figure 6.3 (a). A match in the Thon rings with the ellipses gives a qualitative
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indication that the algorithm works well. We are also encouraged because: (a)

the correlation coefficient for the optimal set of parameters is better than of 0.99,

and (b) starting with a different set of initial guesses we reached the same optimal

parameter values.

  

(a) (b)

Figure 6.3: For an average CTF computed for 198 particle projections, (a) shows

the computed CTF and (b) shows that the Thon rings/ellipses match when com-

puted CTF is superposed with the average CTF that was used to compute the

CTF parameters

6.1.5 Image background

Cryo TEM micrographs generally contain, in addition to the noisy projections of

the imaged particles, some artifacts due to ice formation and other impurities.

The image scanning process also contributes to the creation of artifacts. Besides

these, there is a presence of a gradient in the background. An estimation of this

gradient has been used to characterize micrographs. A quantitative measure of

the background must be computed if we hope to use it as a parameter for micro-
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graph characterization. We do this by fitting a thin plate spline to a sub-sampled

version of the micrograph with projections and artifacts due to ice and impuri-

ties removed. The procedure is shown below along with a schematic illustrated

in figure 6.4.

1. From the given ground truth data, those portions of the micrograph that

correspond to particle projections, and artifacts due to impurities and ice

formation are removed.

2. The remaining micrograph is divided into contiguous blocks. The mean of

each block is computed.

3. A thin plate spline is fitted on a two dimensional array of these mean values.

Figure 6.4: Schematic for background estimation.

The procedure can be used for micrographs without the ground truth data.

Such micrographs are run through the particle identification algorithms and all

the regions that are classified as particle projections are removed from the micro-

graph before computing the background. However, such an automatic method

is closely tied to the automatic method used for identifying the projections. A

consensus based approach can also be taken where a collection of identification

algorithms are allowed to identify the particles and those particles that are voted

more than a threshold level are considered to be the valid projections and the

background is then computed after removing them from the micrograph image.
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6.2 Characterization of Algorithms

At the fundamental level, the aim of any particle identification algorithm is the

identification of the locations on the micrograph where projections of the par-

ticle/s under consideration are present. For micrographs containing projections

of only a single type of particle, the locations of projections of the particle on

each micrograph is sufficient. However when the projections due to more than

one type of particle are present on the micrographs, the type of particle that

each projection represents must also be determined by the particle identification

algorithm.

6.2.1 Performance metrics

The performance of particle identification algorithms is traditionally expressed as

the false hit rate and false miss rate, definitions of which are given below. Manual

identification of particle projections by a human expert is always considered as

the ground truth. Let us assume that for a given micrograph M ` (where ` ranges

over the collection of micrographs, in our case in the virtual workbench, that

have the ground truth available for them) containing projection of i = 1 to N

particles, the following is the ground truth.

1. The number of particle projections : k̂`
0,

2. The estimated location of particle projections :

{(x0,`
1 , y0,`

1 ), (x0,`
2 , y0,`

2 ), ...(x0,`

k̂
, y0,,`

k̂
)}, and

3. The type of particle for each projection : {t0,`
1 , t0,`

2 , ...t0,`

k̂
}.

where t0,`
j = i, j = 1 to k̂`

0, and i ∈ {1, ..., N}.
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Now in order to characterize a particle identification algorithm algA we need the

following data for each micrograph M `.

1. The number of particles are identified : k̂`
A,

2. The estimated location of particle projections :

{(xA,`
1 , yA,`

1 ), (xA,`
2 , yA,`

2 ), ...(xA,`

k̂`
A

, yA,`

k̂`
A

)}, and

3. The type of particle for each projection : {tA,`
1 , tA,`

2 , ...tA,`

k̂`
A

}.

where tA,`
j = i, j = 1 to k̂`

A, and i ∈ {1, ..., N}.

For fixed values of tolerances τx along the x axis and τy along the y axis, the

false positives rate anf false negative rate are defined as follows –

• False positive rate A false positive event occurs when the algorithm ”dis-

covers” false or unwanted particles (”junk”). Quite often the centers of the

particles are used to identify its location. However, when the particle pro-

jection is not circular, then either the center of mass can be used or one of

the predefined corners e.g. ’top-left’ of the bounding box will suffice as the

position of the projection. Number of positions on the micrograph where

the algorithm indicates the presence of a projection when there is none at

that position within a tolerance of τx along x axis and τy along y axis is the

number of false positive events.

Mathematically, the number of false positive events is given by

FPE =
∑

`

k̂`
A∑

p=1

Pos`
p

where Pos`
p is defined as,
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Pos`
p =

 0 if (|xA,`
p − x0,`

q | ≤ τx) and (|yA,`
p − y0,`

q | ≤ τy) for some q ∈ {1...k̂`}

1 otherwise

FPE is the number of false positive events for the algorithm algA on the

set of micrographs M `. The false positive rate (FPR) given by

FPR =
FPE∑

` k̂`

• False negative rate A false negative event occurs when the algorithm fails

to identify genuine particle projections. Number of positions on the micro-

graph where the algorithm does not indicate the presence of a projection

within a tolerance of τx along x axis and τy along y axis when there is a

projection at that position as per the ground truth is the number of false

negative events. The concept of tolerance is given in figure 6.5.

Center within
the tolerance

Center beyond
the tolerance

X 

Y 

Figure 6.5: An illustration of the concept of tolerance. The label X refers to τx

and Y refers to τy. These tolerances can be set by the user.

Mathematically, the number of false negative events is given by

FNE =
∑

`

k̂`
A∑

p=1

Neg`
p
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where Neg`
p is defined as,

Neg`
p =

 1 if (|xA,`
p − x0,`

q | > τx) and (|yA,`
p − y0,`

q | > τy) for all q ∈ {1...k̂`}

0 otherwise

FNE is the number of false positive events for the algorithm algA on the

set of micrographs M `. The false negative rate (FNR) given by

FNR =
FPE∑

` k̂`

Although the aforementioned metrics are most often used, some new metrics

can be defined as shown below.

1. Mean square error in estimating a location (ĒA)and

2. Variance of the error (V ar(EA)).

Here the error is the Euclidean distance between the location of a projection as

obtained by an algorithm and the true location (e.g. center of the projection) as

given by the ground truth data. Care must be taken to disregard those projections

that are at a distance of more than τx and τy from true locations.

6.2.2 Synthetic data

If the knowledge of the data generation process is available, the use of synthetic

data can be made for testing algorithms. Even in the case of a complete knowl-

edge not being available for the data generation process, the performance of the

algorithms over synthetic data can give insights towards the working of the algo-

rithms. Within the context of cryo TEM, the data generated through the imaging
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process can be approximated to generate synthetic micrographs. We start with

a three dimensional model of a macromolecule V (i, j, k), where i, j, and k vary

from 1 to s along, say a cartesian axis thus sampling the structure V at r3 points

in space. The sampling may also be done in polar coordinates or cylindrical

coordinates with i, j and k appropriately defined.

Using the given three dimensional model, radon transform is utilized to get

the projections pi of the model along different directions. A collection of such

projections is given in figure 6.6.

Figure 6.6: Radon transform of a 3D model along a set of 16 lines. The radon

transform is computed along 16 lines that pass through the center of the 3D

model. The direction of the lines is randomly distributed

The steps involved in creating a synthetic micrograph is given below –

• For each projection pi, it’s Fourier transform is performed to obtain Pi,

i ∈ 1...s
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• Pi is multiplied by the contrast transfer function at some set parameters to

get Qi

• Inverse Fourier transform is performed on Qi to get qi.

• Each qi is rotated at a random angle and distributed over the image plane

at random locations.

• Gaussian noise is added to the image to get the synthetic micrograph.

6.2.3 Analysis of performance

Analysis of the particle identification algorithms must give the users an insight

into the variation of performance of the algorithms with variation in values of the

parameters characterizing the micrographs. The users must be able to judge the

those parameters of the micrograph characterization that have a more prominent

impact on the performance of the identification algorithms than those that have

a less prominent impact.

In order to perform a qualitative analysis of the performance of the particle

identification algorithms, the following is done. For each of the four parameters

of the performance characterization of the algorithms viz. false positive rate,

false negative rate, mean square error and error variance, an individual plot is

generated against each parameter characterizing the micrographs. The user can

then view the plots and judge the parameters of micrograph characterization that

have the most affect on the performance of the identification algorithms.
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For each projection
p i obtain it's

Fourier transform P i .

Obtain C i by multiplying
Pi with the CTF

Gaussian noise is
added to the image to

obtain the synthetic
micrograph

Inverse Fourier transform

of each C i gives q i  .

Each q i   is rotated at a
random angle and

distributed over final
synthetic image randomly

Figure 6.7: A scheme for generation of synthetic micrographs.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

An education isn’t how much you have committed to memory, or even

how much you know. It’s being able to differentiate between what you

do know and what you don’t.

— Anatole France.

A summary of the main ideas developed is presented in the following section. Fur-

thermore the future work is described along with sketches of possible approaches

that might be taken.

7.1 Conclusions

A procedure based on the framework of hidden Markov random fields was de-

veloped for segmentation of micrographs. The anisotropic diffusion technique is

used to pre-process the micrographs. The hidden Markov random fields procedure

is based on a neighborhood of first order and it employs the expectation maxi-

mization algorithm. The optimization is achieved using the iterated conditional

modes algorithm. Any particle boxing method may be used on the segmented

image.
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The serial algorithm was parallelized in order to take advantage of the massive

computational power afforded by cluster of workstations. The parallel algorithm

was shown to perform better than the sequential version.

A web based open system called ”Virtual workbench” was developed in order

to facilitate comparisons and benchmarking of particle identification algorithms

and to provide a collaborative environment for analysis of particle identification

algorithms. A method based on splines for estimating the background of the

micrographs was also developed. Furthermore, some metrics based on statistical

estimation theory were introduced for algorithm characterization.

7.2 Future Work

There are three main focus areas along which the future work would be aligned.

The first area would be focused around development of more sophisticated particle

boxing algorithms. This would involve the use of the preliminary 3D model of the

macromolecule under consideration. The second area would be focused around

development of algorithms for automatic characterization the micrographs and

algorithms using sophisticated statistical tools. This would entail better estima-

tion of both the CTF and the noise parameters. The third area of focus would

be towards extension of the workbench to three dimensional reconstruction algo-

rithms.
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