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ABSTRACT

3D human models play an important role in computer graphics applications from a wide range

of domains, including education, entertainment, medical care simulation and military training. In

many situations, we want the 3D model to have a visual appearance that matches that of a specific

living person and to be able to be controlled by that person in a natural manner. Among other uses,

this approach supports the notion of human surrogacy, where the virtual counterpart provides a

remote presence for the human who controls the virtual character’s behavior.

In this dissertation, a human modeling pipeline is proposed for the problem of creating a 3D dig-

ital model of a real person. Our solution involves reshaping a 3D human template with a 2D

contour of the participant and then mapping the captured texture of that person to the generated

mesh. Our method produces an initial contour of a participant by extracting the user image from

a natural background. One particularly novel contribution in our approach is the manner in which

we improve the initial vertex estimate. We do so through a variant of the ShortStraw corner-

finding algorithm commonly used in sketch-based systems. Here, we develop improvements to

ShortStraw, presenting an algorithm called IStraw, and then introduce adaptations of this improved

version to create a corner-based contour segmentatiuon algorithm. This algorithm provides signifi-

cant improvements on contour matching over previously developed systems, and does so with low

computational complexity.

The system presented here advances the state of the art in the following aspects. First, the human

modeling process is triggered automatically by matching the participant’s pose with an initial pose

through a tracking device and software. In our case, the pose capture and skeletal model are

provided by the Microsoft Kinect and its associated SDK. Second, color image, depth data, and

human tracking information from the Kinect and its SDK are used to automatically extract the
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contour of the participant and then generate a 3D human model with skeleton. Third, using the pose

and the skeletal model, we segment the contour into eight parts and then match the contour points

on each segment to a corresponding anchor set associated with a 3D human template. Finally, we

map the color image of the person to the 3D model as its corresponding texture map.

The whole modeling process only take several seconds and the resulting human model looks like

the real person. The geometry of the 3D model matches the contour of the real person, and the

model has a photorealistic texture. Furthermore, the mesh of the human model is attached to

the skeleton provided in the template, so the model can support programmed animations or be

controlled by real people. This human control is commonly done through a literal mapping (motion

capture) or a gesture-based puppetry system.

Our ultimate goal is to create a mixed reality (MR) system, in which the participants can manipulate

virtual objects, and in which these virtual objects can affect the participant, e.g., by restricting their

mobility. This MR system prototype design motivated the work of this dissertation, since a realistic

3D human model of the participant is an essential part of implementing this vision.
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CHAPTER 1: INTRODUCTION

1.1 Background

3D modeling from real world data has received a great deal of attention, resulting in many existing

systems to generate 3D models of small static objects or to reconstruct scenes. However, most

of the 3D human models in current applications are still created by artists empirically. Some

applications need a 3D model that looks like one specific real person, such as a sport game that

needs 3D models of real players, a medical care application that may want the doctor to look like

a typical doctor or a system that supports remote presence through a look-alike human surrogate.

The artists normally use one photo of the real person or multiple photos from different view points

as references. How close the model and the real person end up looking depends on the skills of and

tools available to the artists. Furthermore, creating these models is time consuming and expensive.

If we want to create a 3D human model for a specific participant in the application, it is currently

challenging to get one quickly, e.g., in a few minutes.

In scene or object reconstruction systems, 3D scanners or time-of-flight (ToF) cameras are nor-

mally used to collect real world data. In order to reconstruct an object with 3D data only, scans

from different view angles of the object are required to collect all the necessary data. Three tech-

niques are normally used for the data collecting process: the first is to set up a multiple scanning

device system and collect the data simultaneously; the second approach is to move the device

around the object; and the last is to move the object. However, unlike buildings and other kinds

of static objects, the human body is complicated and has many moving parts. Since a participant

will not be able to hold the same pose during the data collecting process, it is a challenge to align

the real world data from different view points. Even with a perfect alignment algorithm, the re-

constructed 3D human model is just a 3D surface without skeleton, so users cannot control the
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generated model by mapping the skeleton of the model and corresponding tracking data.

Our goal is to create a 3D model, which looks like a specific participant and can follow the par-

ticipant’s movement. The motivation is to create a 2-way inside interaction mixed reality system,

in which the displayed participant can manipulate the virtual world and the virtual object(s) can

affect the participant. In order to achieve this MR system, the first and essential stage is to generate

the 3D human model of the participant in the scene. A photorealistic 3D model with a skeleton

of the participant can provide precise collision detection, be controlled by the participant, and be

rendered naturally in the MR scene.

In this dissertation, we present a novel 3D human modeling technique for using depth data and

human tracking data from a Microsoft Kinect and the associated SDK to deform a 3D human tem-

plate. There are existing techniques that are able to create 3D models of an object from 2D input,

but they need user input for their modeling algorithms, like drawing the contour or providing a

trimap of the object on top of an image. Our method is able to get the contour of a participant by

automatically generating the trimap from the Kinect human tracking result and applying a natural

matting algorithm that takes this trimap as input. The human template deformation is driven by

matching each anchor vertex on the template to a point on the 2D contour. In order to improve the

accuracy of the matching process, the anchor vertices are grouped into eight sets and the contour is

segmented into eight corresponding segments before establishing correspondences between points

on each segment and vertices in each anchor set. After acquiring the 3D geometry of the partic-

ipant, we can add texture to the human model from the texture map provided by the color image

from the camera. The proof of concept is developed using the Microsoft Kinect, but the algorithms

and processes developed here can be employed with any device having similar capabilities.
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1.2 Definition

Participants are a special group of users, who will be displayed inside the scene. They can interact

with the virtual object(s) naturally by moving their body. This means that the participant(s) is part

of the system, rather than being external to it, and can therefore interact with the virtual world with

his/her own body instead of through some extra input device, like keyboard or mouse. Our system

will generate 3D human models for these users.

Human Tracking includes human whole-body tracking and face tracking. The whole-body track-

ing is the overall tracking of the participant and the movement capture of the head, torso, and

limbs. The face tracking contains facial feature tracking as well as the orientation and position of

the whole face. What is not included by the above definition is hand gestures.

Mixed Reality (MR) merges the real and the virtual worlds into one visual display, and falls

somewhere along a virtuality continuum[59]. The virtuality continuum covers concepts from a

purely real environment to a totally virtual one.

2-way inside interaction refers to the interaction between the participant in the MR scene and the

virtual world. What we are talking about is not the interaction between the MR world and users

beyond the system, such as a user who moves a virtual object without being displayed in the scene.

The inside interaction is 2-way, since not only can the participant manipulate the virtual world, but

also virtual objects are able to affect the participant.

Trimap is a mask map used for the image matting algorithm. The map is made up of three tones:

black, white and gray. Normally, black represents the known background pixels; white represents

the known foreground pixels; and gray represents the unknown pixels to be determined by the

matting result.
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Anchors are special vertices on the template models. The new position of these points is inputted

by the user or matched to some real world data at the beginning of the deforming process. For

example, some approaches require the user to drag the anchors to the target manually. The locations

of the rest of the vertices are determined by the new positions of the anchors and the reshaping

algorithm.

1.3 Objectives and Difficulties

People like being involved in a mixed reality (MR) system and interacting with the virtual world

naturally with their own bodies. During our experience testing MR applications, we have encoun-

tered many users, especially young children, who love to enter the MR scene and try to interact

with the virtual objects. In these simple MR tests, there is no detailed human tracking system,

which means these participants can only be in the background or foreground of the virtual objects.

Therefore, many unnatural situations happen, like a virtual animal floating on the participant’s

body or a virtual car passing through the participant. The users find these odd scenes funny but

distracting, since the rules in our real world are violated in the MR experience. Despite the momen-

tary humor, we do not want users to observe these unnatural situations, as they disrupt the user’s

sense of presence in the MR world. The initial motivation for choosing this dissertation topic is

that we want to achieve a 2-way interaction between the participants and the virtual objects, so

they can be seamlessly merged in the MR scene.

With current devices and techniques, we can track real objects and register them within the virtual

world to determine whether the real objects will be background or foreground as well as whether

there are any collisions between the real and the virtual objects. Real-time video matting algo-

rithms are able to composite the real and the virtual objects into one scene. Improved illumination

methods are created for MR specifically in order to generate correct shadows and lighting between
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the real and the virtual worlds. Therefore, a real object can stand in front of or hide behind the vir-

tual object(s), partially or wholly occluding or being occluded, based upon their relative positions,

and participants can manipulate the virtual object(s) as well.

However, no existing techniques work well for complex objects, like human beings. The complex

shape, different body parts and dynamic articulated movements of a person cause lots of problems

that won’t occur with static rigid objects. For example, a participant might hold a virtual ball in

his/her hands, which might be in the foreground of the ball while the body is in the background

of the ball. Without a precise 3D model, skeleton tracking, and matting of the participant, you

will see parts of the fingers inside the ball, or the ball floating without being attached to the hands.

Furthermore, there is still one missing requirement to fill the gap between the real and the virtual

world. How could the virtual object(s) affect the participant in the display? At the moment, you

can program the animal and the car to avoid the kids in the scene with human tracking and collision

detection methods. How about a participant walking towards a virtual wall? How does one avoid

the collision?

One possible solution is to create a 3D model of the participant that represents the participant in

the scene. When there is no conflict between the participant’s movement and the virtual world,

the generated 3D human model is controlled by the participant. When there is conflict, the human

model won’t follow the participant’s movement, but move based upon the constraints of the whole

scene. The simplest case is that, when the participant comes to a virtual wall and keeps moving

forward, the 3D model will stop in front of the virtual wall instead of walking through it. With this,

we can keep the presence of the participant without breaking any physical rule. There are other

possible schemes to achieve 2-way interaction in MR system, but the first stage is always creating

3D human models of the participants. Although introducing a participant into an interactive MR

scene is the initial motivation, the usage of our research in this paper is not limited to MR applica-

tions. 3D human models are also used in the wide domain of virtual-only applications. You may
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want to be Michael Jordan or be yourself in a basketball video game, or see your colleagues as 3D

models in a remote conference.

This dissertation will focus on the automatic 3D human modeling, so our first objective is to finish

the whole process automatically without any need for a user to retouch the input data. The next ob-

jective is to convince the users that the generated 3D human model is real. According to Ferwerda

[31], three varieties of realism are considered in Computer Graphics: physical realism, photore-

alism, and functional realism, so we need to consider the following problems for each aspect of

realism.

• The idea of physical realism is that the geometry of the 3D model and the shape of the participant

are identical in different poses from different view angles. However, this is imposible without pre-

cise simulation of the human muscles, since the human body is not a rigid object and the different

poses will cause shape change. The 3D model geometry generated by our system matches the

contour of the participant in the initial pose from the view point of the Kinect color camera and is

close to the participant’s real body from other view points.

• After including the human model, the resulting scene needs to look natural. The virtual object(s)

must not stand out from other objects. Our system will process the color image of the participant

and set it as the texture map of the generated 3D human model. With the assumption that the

lighting is consistant and unchanged when we create the human model and render it, the rendering

result will be identical to the real participant because of the image texture.

• Functional realism requires natural interaction between the 3D human model and other objects

in the scene. The human template used in our modeling pipeline has a skeleton and all the vertices

are attached to the skeleton. The model reshaping process not only changes the vertices’ positions

but also keeps the relationship between the vertices and the skeleton, so the human model can be

animated by moving the skeleton. Furthermore, we can match the model’s skeleton to the Kinect

tracked human skeleton, so the 3D human model can be naturally controlled by a participant.
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The thesis posed in this dissertation is that the contour of a 3D human model is a critical element

for people to believe that the model represents a specific person when placed in a virtual world;

moreover, we pose that contour techniques originally designed to smooth hand drawn sketches

provide an excellent basis for developing precise body contours from imprecise approximations

provided by low-cost 2D scanners.

1.4 Structure of Dissertation

This dissertation has seven chapters in total. The remaining six chapters will be organized in the

following manner.

Chapter Two LITERATURE REVIEW: This chapter examines technologies related to the disser-

tation, including morphable 3D human models, human modeling, matting algorithms, and human

tracking.

Chapter Three IMPLEMENTED ALGORITHMS: Here we present existing technologies em-

ployed in this dissertation along with the researcher’s theoretical assumptions. This chapter will

begin with an overview of the principles of choosing these approaches, and be followed by de-

tailed descriptions of these technologies, including human tracking, single image matting, contour

matching, and 3D model reshaping.

• Human Tracking presents the devices and detailed techniques of human skeleton and face track-

ing used in this dissertation.

• Single Image Matting describes the natural image matting algorithm to get the contour of the

participant.

• Contour Matching is about the matching between the contour points of a participant and the an-

chors of the 3D human template.
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• 3D Model Reshaping presents the algorithm that is able to deform a 3D template based upon

moving anchors, while keeping the salient features of the template.

Chapter Four ISTRAW: This chapter reviews the IStraw [96] corner finding algorithm, which will

be used for the contour segmentation process to improve the matching between the contour and

the anchors. IStraw is developed upon ShortStraw algorithm, so we review ShortStraw at the

beginning. We then discuss the issues that motivated and the changes that were implmented to

create the IStraw algorithm. Finally, we present an evaluation process and the results that support

our claims that IStraw is a significant improvment over ShortStraw.

Chapter Five METHODOLOGY: This chapter presents novel algorithms developed as part of the

research contributions of our human modeling system. The most novel result here is the develop-

ment of efficient algorithms to create a 3D human model of a participant correctly and automati-

cally with a new human segmentation algorithm based upon modified IStraw.

Chapter Six EVALUATION: This chapter presents the interface design of our system, test process,

and the evaluation results. We compare the 3D models generated from our human modeling system

with the results from Kraevoy’s [48] to justify the advantages of our system.

Chapter Seven CONCLUSIONS: In this final chapter, we summarize the contributions of the re-

search associated with this dissertation and provide suggestions for possible future work, including

ones that might improve on our human modeling result and those that might result in the develop-

ment of associated MR applications.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

3D human modeling is the problem of creating a 3D human model from real world data of a

specific person. There are a number of existing approaches to solve the problem with a variety

of devices and techniques. In this chapter, we will review the existing devices and techniques for

human modeling. As we do so, we will put these other efforts into context as regards the method

presented in this dissertation. Our approach deforms a human form template model based upon

real-world data collected by the Kinect. To do so, we need three fundamental components: one or

more templates of 3D human models; real-world data of the participant; and a reshaping algorithm

for fitting the real-world data to the template. Different approaches can be used to get and process

these datas.

In this chapter, we will review research related to addressing the following problems, which are

essential to the success of the methodology used in this dissertation.

• human shape capture devices – What are the available devices that can collect the real world data

of the participant for shape deformation?

• human modeling approaches – How do we process the collected real world data to generate the

3D human model? The features of the collected real world data will determine the approaches that

can be used for human modeling.

• morphable human models – How do we model a human face and body to enable human anima-

tion? How do we represent a digital human model that is able to be reshaped based upon real world

data?

• human tracking – How do we track the participant in real-time? Human tracking information is

important for both the data collecting and model reshaping process.
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• matting algorithms – How do we get the silhouette of the participant to distinguish her/him from

the background? Results from matting can provide contour information for model reshaping.

• reshape algorithms – How do we change the geometry of a 3D template by changing some con-

trolling points or parameters? 3D model reshaping algorithms are one kind of human modeling

approach.

2.2 Human Shape Capture Devices

The real-world data used for human modeling can be roughly divided into three groups: images

from several unsynchronized devices, a number of synchronized camera images, or a monocular

image. The first group needs to set up multiple cameras to cover the whole object from different

points of view, and all the images from the cameras must be taken at the same time. The second

group only needs one camera/scanner and the device (scanner) will move around the participant or

the participant will move in front of the device (camera) to get different views. The last group also

only needs one camera, but it only takes one image of the object. These three different kinds of

devices for data capturing can be divided by the price range, data quality, and data type.

The first kind of device is a high quality 3D scanner, which uses either laser beams or structured

light. The 3D laser scanner measures distance with controlled steering of laser beams. As shown

in Figure 2.1, the structured light 3D scanner projects light patterns onto the scanned object and

captures it with a camera system to measure the 3D shape of the object. These 3D scanners can

provide good quality, high resolution 3D information, but they have limitations and shortcomings.

Traditional scanning devices based on structured light or laser scan often cost around $50,000 and

require professional operation. The scanning process will take several minutes or even longer.

During the scanning process, the participant needs to stand still, and the 3D scanner will move
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around the participant to get the 3D point cloud from different views. Generally, the human face

only needs to be scanned once, such as [19]. However, multiple views are required for a whole-

body scan, and some extra marker will be introduced to track the human pose, like the process in

[5][6]. Rocchini et al. [70] built a low cost 3D scanner based on structured light, but the device

needs precise system settings. Furthermore, it can only scan objects located approximately at 1.3

meters from the artifact, which means the scanned object size is limited to approximately 1 meter.

Their results showed that only one side of the upper body, excluding the head, can be scanned, so

a larger and more complicated system will be needed for human whole body scanning.

The second group of devices are traditional color cameras only. [3][10][83][37] use data from

multiple cameras to capture human pose and shape at the same time. Some research, like Pighin

et al. [65], has taken images simultaneously from different views to create face models. Unlike

a 3D scanner, these approaches can track human performance, which means the participant can

move freely in front of the cameras. The limitation of these methods is that these images have

no hint of depth information. Therefore, the background must be monochrome or static during

the data capture process to distinguish the background from the participant. Some techniques use

monocular image to get 3D body pose and body shape. Guan et al. [35] used the SCAPE database

[6] and a single image to compute the initial pose, light direction, shape and segmentation of a

person. Recently, Zhou et al. [105], using the approach in [48], were able to generate a 3D human

model from a single image. These techniques also need monochrome background, else they require

one to manually mark the background and the foreground.

The last group of devices are depth cameras, which are distance measuring hardware as the first

group, but the cost is much lower and the quality of the data is lower as well. For example, Beeler

et al. [15] used a consumer binocular-stereo camera to capture the 3D geometry of a human face.

At the moment, the most popular one is the Microsoft Kinect, which dominates other devices with

its price of only $250. The Kinect sensor provides more accurate depth map in closer range and
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the related SDK has real-time face tracking feature, so some recent research [107][39] focused on

automatic reconstruction of a human face from a single color image and its corresponding depth

map from the Kinect. Weiss et al. [92] used SCAPE model and one single Kinect to estimate the

human body shape. Tong et al. [82] developed a scanning system with multiple Microsoft Kinects

for capturing 3D full body models.

2.3 Human Modeling Approaches

2.3.1 Introduction

There are many existing systems that are able to create 3D model of static artifacts, like furniture,

buildings, etc. Human modeling is a special case of 3D modeling or reconstruction and it takes

advantages of previous work to model human beings. Based upon whether the collected real world

data is 3D or 2D, the human modeling approaches can be grouped into two categories. Those

employing the first kind of approach process 3D points and use a triangulation algorithm to create

a mesh. While the second category uses the 2D data to extract the contour of the participant and

then deforms a template human model with the 2D contour.

This section explores the previous work in each category and their pros and cons. The ideal ap-

proach should be low cost, fast at data collecting and processing, as well as precise with respect to

the ground truth. However, there is no silver bullet, so how to tradeoff the price and the accuracy

is based upon the requirement of a specific application. In our case, we prefer an affordable, fast,

and reasonably accurate method.
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2.3.2 3D data input

In order to get the complete 3D data of a human being, the device(s) must collect 3D data from

different point of views. These systems can be set up in three ways to cover the whole body. The

first is moving one device around the participant, the second is setting up multiple devices around

the participant, and the last is asking the participant to move in front of the device.

Some devices, such as laser scanners and depth cameras, can move around an object to get data

from different views and then align these 3D points. Theoretically, we can move a laser scanner to

surround a participant and collect precise 3D point cloud of the person. However, the participant

cannot move during the whole scanning process. Normally, it takes at least one minute to run one

scan and 2 minutes between each scan. If we took three scans to cover the whole body, the process

needs 7 minutes at least. It is impossible to require a participant to hold a pose for 7 minutes, so

it is impractical to use a laser scanner for real people. Dr. Paul Debevec mentioned in [69] that

his lab at USC only takes two seconds to scan a face by using a structured light system, but it only

works for front surface and limited scale. If we use this system to scan a human body, it requires

at least 10 scans to cover the front surface and 3 point of views to cover the whole body. Suppose

it takes 2 seconds to move the participant to the right location, the whole scanning process at least

need 2 minutes. Microsoft Research has the KinectFusion project [40], which is able to move the

Kinect through space and perform high quality 3D surface reconstructions. Although KinectFusion

is easier to move and scans much faster than a laser scanner, the participant still needs to hold the

pose for a while during the scanning process. Furthermore, these approaches need precise tracking

of the device.

The second way is setting up multiple devices in the environment to scan the participant at the same

time. Compared to previous methods, these approaches can save scanning time. The problem is

that the overlapped scanning area will cause problems. Like a laser scanner, the Kinect also emits
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laser beams, and multiple devices mean that one device will receive signals from the other devices.

However, unlike the laser scanner, which gets distance by computing the time interval between the

laser beam emission and receiving, the Kinect uses the pattern of the signals to measure the depth

information. Schroder et. al. [73] introduce the revolving disks to rotate the Kinects in order to

get rid of the interference. Some systems [23][8] set the Kinects far away and with sertain facing

direction to minimize the interference between the devices. Theoretically, it is also possible to set

up a super structured light system around the participant with a large number of lights and several

cameras. However, this body scanning system will be very expensive, and hard to set up.

The last kind of approaches requires the participant to move instead of the device. In order to track

the human pose during the movement, Allen et al. [5] and Auguilov et al. [6] used extra markers

in a structured light system or laser scanner for whole-body modeling. The system created by Cui

et al. [30] uses a single Kinect and requires the participant to turn around 360 degrees for 20 to 30

seconds while maintaining an approximate ”T” pose. They use overlapping areas for registration

and then reconstruct the 3D human model from the depth data. Li et al‘[52]. used similar approach,

but generated seamless global textures using Poisson blending. Tong et al. [82] set up three Kinects

around the participant. Like some previous work for object scanning, they ask the participant to

stand on a turntable and get depth information from different view points, since the turntable can

simplify the scanning point alignment. There is no overlap area between the Kinects, so essentially,

this system belongs to the third group. This multi-Kinect system is able to get more precise depth

data by putting the sensor closer to the participant.

Overall, human models created from 3D data input are accurate, but the data collection process

is hard for the participants. They need to hold a pose for at least from 20 seconds to 7 minutes

based upon the system design. Furthermore, these models are impossible to be controlled by users,

since they have no skeleton to which the vertices can attach. Therefore, they can only be used in

applications that do not need any interaction between the human model and other objects.
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2.3.3 2D data input

2D real world data for human modeling are the silhouette(s) of the participant from color image

or depth data. Based upon the usage of the 2D data, there are two types of modeling approaches.

The first type is called Shape-From-Silhouette (SFS), which constructs a 3D shape estimate of an

object using silhouette images of the object. The second type is reshaping based approaches, which

deform an existing 3D model based upon the silhouette.

In 1971, Baumgart first introduced the idea of using silhouettes for 3D reconstruction in his PhD

dissertation [12]. Cheung et al. [25] summarized a large number of research projects in computer

vision that use multiple silhouettes from different view points to generate the model. Like results

from 3D data input modeling, the human models generated by these approaches have no skeleton

for animation.

For the second group of approaches, the silhouette vertices of a 3D human template are matched

to the captured silhouette points and a deforming algorithm reshapes the geometry of the template

to meet the real person. Some approaches use one color image or depth map to get one silhouette

of the human body. In the system created by Kraevoy et al. [48], users can draw the contour on the

color image of a person and then get the 3D human model of the person by deforming a 3D template

with skeletons. Other systems use multiple silhouettes to address the ambiguity problem of using

one silhouette. Weiss et al. [92] created a body scanning system with a single Kinect, requiring

the participant to rotate in front of the sensor. This system works much slower than Kraevoy’s

system, since it needs longer scanning time and extra silhouette extracting time. Furthermore, the

participant needs to hold the pose during the scans and follow the correct movement.
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2.4 Morphable 3D Human Models

Morphable 3D human models have been studied for a long time in both the computer graphics and

computer vision fields. In 1972, Parke [64] did pioneering research on 3D face models, which are

cartoon faces with facial expression animation by analyzing a set of real face images. Thereafter, a

large number of face models and whole-body models have been developed. Morphable 3D models

for human face and body are the fundamental components of the reshaping process and human

animation. After changing some parameters of these models, the shape and the pose of the models

is deformed automatically but still keep some features of the original model.

There are two different classes of morphable human models based upon the generating process of

the model: empirical knowledge-based and statistical learning-based. The models from the first

class are created by artists with their experience and some reference images. Whether the model

and the animation look real relies on the skill of the artists. This kind of model digitizes a 3D mesh

through geometric units representing muscles, tissues, and skin. One of the prevalent models is the

surface model developed by Magnenat-Thalmann and Thalmann [81] in 1987. It is a conceptually

simple but powerful model, that contains a skeleton and outer skin. In order to support animation,

the vertices on the skin mesh are attached to the skeletons, so the skin will deform corresponding

to the movement of the skeleton. Some reshaping algorithms [66][102][6] use these face or body

models for geometric change by fitting some vertices to corresponding real-world data.

The model in the second class contains a 3D mesh and a mathematical function generated with

statistical learning of real human beings with different appearances. The features of human beings

are obtained during the statistical learning process and set as input parameters of the function.

Animations are enabled by changing these parameters, which control the 3D mesh to present the

result. During the reshaping process, these parameters are extracted from the real-world data,

including 3D geometry and texture information collected by laser scanners or multi-camera system.
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One of the most famous face database examples is developed by Blanz and Vetter [19]. They

created a multidimensional morphing function by analyzing statistics of a large dataset of 3D

face scans with both geometry and texture data, and derived some face attributes such as gender,

fullness, ”hooked” noses or the weight of the person.

Unlike face models, which can support different expressions and appearances at the same time

by changing the shape of a template face, statistical learning-based whole-body models are more

complicated, because of the combination of various poses and shapes. Allen et al. [5] analyzed

the whole-body range scans of a wide variety of individuals, and demonstrated consistent parame-

terization of the 250 models. Kraevoy and Sheffer [47] created a mean-value geometry encoding

algorithm to encode any 3D model by setting some anchor points. The encoded model can be

deformed by decoding with changed anchor points, and the result will fit the new anchor points

and keep the shape feature of the template model.

2.5 Human Tracking

2.5.1 Whole-body Tracking

Human tracking includes whole-body tracking and face tracking. Whole-body tracking is also

known as human motion capture, which refers to tracking the overall human body as well as a

skeleton structure with a number of joints. The term ”whole-body tracking” is used instead of ”hu-

man motion capture” to distinguish it from small scale body movements, such as facial expressions

and hand gestures. A whole-body tracking system consists of two subsystems: a sensing system

and a processing system, and the complexity of these subsystems is related. Typically, if one of

the subsystems is highly complex, the other will be correspondingly simple.

There are two classes of sensing subsystems: passive sensing, which is based on natural signals,
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like visual light or other electromagnetic wavelengths; active sensing, which places devices on the

tracked object and/or in the surroundings to transmit or receive signals. Passive sensing normally

uses RGB cameras to get natural signals, and sometimes attaches markers to the participant to ease

the processing subsystem. Markers are not as intrusive as the devices used in active sensing, since

they do not produce any signal by themselves. Active sensing is used for applications situated in

well-controlled environments, and the corresponding processing subsystem is simpler than what is

used with passive sensing.

Generally, passive sensing approaches are computer vision-based by analyzing one or multiple

video sequences from RGB cameras. Moeslund and Granum summarized these human body track-

ing approaches in the survey [61] and proposed a general structure of a motion capture system for

videos as four steps: initialization, tracking, pose estimation, and recognition.

• Initialization step covers the actions needed for a correct interpretation of the current environ-

ment, like offline camera calibration, scene characteristics calculation, the model representing the

subject, and the initial pose of the subject. Moeslund et al. [62] reviewed the approaches for the

initialization of kinematic structure, human shape, and appearance. These intializations are essen-

tial to the pose estimation, and many algorithms still use a manually initialized generic model and

pose. Some model-based approaches need the participant starting with an initial pose, specifying

the pose of the first frame, or labeling the poses of key frames. Some systems try to find the initial

pose automatically, such as [71], [77]. The problem of fully automatic initialization for human

pose estimation with monocular image sequences remains open.

• Tracking step refers to establishing coherent relations of the subject between frames to extract

specific image information for the next step, pose estimation. In [62], there are two processes in

tracking: figure-ground segmentation and temporal correspondences. The former is the process of

extracting the humans from the background, and the latter will associate the detected humans from

frame to frame.
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• Pose estimation is the process of identifying the configuration of the underlying kinematic or

skeletal articulation stucture of a person and it can be broken into three class: model-free (i.e.

points, boundary boxes), indirect model use (i.e. aspect ratio between limbs, pose recognition),

and direct model use (3D mophable human models). A large number of research efforts over the

last half decade [10] [4] [41] use 3D morphable human model(s) to reshape and track the human

simultaniously.

• Recognition step is a post processing phase to classify the captured motion as one type of action.

There are different ideas and approaches depending on the goal of the researcher and applications

for activity recognition.

Active sensing systems can collect more information with active sensors, and they can be classified

into two groups based on with or without on-body active sensors. Some systems set external sen-

sors in the environment and attach sensors to the human body in order to collect movement infor-

mation. There are different categories of on-body sensors, which can be categorized as mechanical,

inertial, acoustic, radio, and magnetic based sensors. These sensors have their own advantages and

limitations for different environments. For example, some augmented reality systems use inertial

sensors and vision tracking for registration (i.e. [101]), or glove-based devices for analysis of hand

gestures (i.e. [22]). The second group of systems only set up active sensors in the environment

without any on-body sensors. Microsoft started a revolution in this area by introducing the Kinect

on November 4th, 2010 and the free official SDK for non-commercial use on June 16th, 2011. The

depth camera in Kinect uses projected infrared signals to generate depth images, and the Microsoft

Kinect SDK can provide real-time human body and face tracking. Microsoft researchers, Shotton

et al., introduced real-time human pose recognition from single depth images in [76]. Some re-

search projects, like [16][100]citeAsteriadis13, tried to set up a multi-Kinect system to improve

the human motion tracking acuracy.
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2.5.2 Face Tracking

Face tracking, also known as facial performance capture, includes the tracking of the head as well

as the facial expression. The head tracking information can be obtained from whole-body capture

results, but extra facial features can improve the accuracy of estimating the orientation, scale and

transform of the head. Like whole-body tracking, there are also two kinds of facial performance

capture devices: passive sensors and active sensors. A large number of previous research uses

these devices for applications in many domains. These applications have different requirements,

such as high accuracy, robustness, or real-time execution.

Generally, passive sensing systems use a single or multiple RGB cameras, and can be classified

into two categories: marker-based and marker-free systems. Marker-based techniques (i.e. [36],

[53], [57]) are designed for greatest possible accuracy for movie production. However, these ap-

proaches cannot provide natural texture of the subject because of the markers on the face. These

systems can only track 2D feature points and require that the markers be carefully placed. For the

realistic modeling of the human face, marker-free techniques (i.e. [103], [20], [56], [15], [21]) use

multiple color cameras or structured light 3D scanner to get depth information of the human face.

These systems need a specified setup and work better under controlled environments, such as the

structured light system needing to be operated in a dark room to get rid of extra lights.

Active sensors used for face tracking are set in the environment instead of some on-body devices.

One reason is that active sensors are too big or heavy to be attached to the face, and the other is

that the subtle movement of the face is hard to be detected by on-body devices. Microsoft Kinect

has both a passive sensor provided by an RGB camera and an active sensor system consisting of an

infrared laser projector combined with a monochrome CMOS sensor,. The current Kinect sdk also

has a face tracking engine that takes both color images and depth images as input for face tracking.

Some applications take advantage of the this face tracking. For example, Weise et al. [91] tracked
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the facial expressions of the participants with the Kinect in real-time and mapped these to control

a digital character.

2.6 Matting

2.6.1 Introduction

Matting algorithms extract a foreground object from an image by estimating the opacity of the

object at each pixel, and the generated opacity data is typically called an alpha map. With an

alpha map, the foreground object can be composited with another background. Our system uses

different matting algorithms to get the silhouette of the participant for modeling and to render

a mixed reality scene. For example, if a virtual object appears behind the participant, he/she

should be distinguished from the background and the virtual object should be rendered between the

participant and the background. Based upon the usage, the requirements for the matting algorithms

are different. Human modeling will be preprocessed at the beginning of running the system and

the matting result determines the accuracy of the human model. Therefore, this matting algorithm

needs to provide a precise silhouette, and the computational complexity is not that important. On

the other hand, matting algorithms for composing an MR scene must be run in real-time, and be as

accurate as possible.

In 1984, Porter and Duff [67] introduced the alpha channel and the most common compositing

equation:

Ci = αFi + (1− α)Bi, (2.1)

where Ci, Fi, and Bi are the composite, foreground, and background colors of each pixel. The

quantity α is the pixel’s foreground opacity, and its value is between 0 and 1. This is a severely

under-constrained problem since for a three-channel color image, there are three equations, one for
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each channel, and seven unknowns at each pixel.

In order to extract foreground element from a natural background, extra inputs are necessary for

the initial ground truth of some known pixels as 1 for foreground and 0 for background. A large

amount of research efforts [17], [72], [28], [33], [80], [34] start with manually segmenting the

image into three regions: foreground, background, and unknown, which is known as a trimap, and

then estimating Fi, Bi, and α for the pixels in the unknown region. Some approaches [84], [34],

[87], [50] use a sketch-based interface for interactive matting, and only a few strokes indicating

the background and foreground pixels are needed as input instead of a trimap. Other approaches,

such as [90], [55], [13], and [14], take advantage of depth information to generate the trimap

automatically.

2.6.2 Single Image Matting

Matting techniques for a single image try to solve the matting problem of one color image with

additional constraints in the form of user input, like trimaps or scribbles, to identify known fore-

ground (i.e. α = 1) and background (i.e. α = 0). Wang and Cohen [89] classified these methods

into three classes: color sampling, pixel affinities, or a combination of the two.

Color sampling methods use sample points of known foreground and background to estimate the

α value of the unknown area. According to the image statistics, the color of an image is locally

smooth. Therefore, the true foreground and background colors are close to samples of nearby

known foreground and background. There are two subclasses [89]: parametric sampling methods

and nonparametric sampling methods. Once samples are collected, the former methods usually fit

low order parametric statistical models to the samples, such as Bayesians [28] and Gaussians [72].

These models work well for images with smooth regions and distinct foreground and background

colors, else it will generate large fitting errors. Some previous work, like [60], [17], [84], [34],
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[86], and [87], uses nonparametric methods to estimate the alpha of unknown pixels with the

nearby samples. He et al. [38] proposed a new nonparametric sampling-based matting algorithm,

which considers global samples to avoid missing true samples.

To avoid misclassification of color samples in a complex scene, another way of using local image

statistics is proposed by defining various affinities between immediately connected pixels or pixels

in a 3x3 window. A large number of recent research results use different affinities to deal with

complex images. For example, poisson matting [79], random walk matting [33], geodesic matting

[9], fuzzy connectedness for matting [104], closed-form matting [50], and spectral matting [49].

These approaches focus on estimating alpha values first instead of estimating alpha, foreground,

and background of unknown pixels jointly. Another problem is that the alpha matte is estimated in

a propagation fashion, so small errors can produce more significant errors.

The last class of methods use energy functions to combine sampling and affinities and can be clas-

sified into two sub-classes based upon the optimization methods: non-closed-form optimization

and closed-form optimization. Wang and Cohen [84] developed the iterative matting approach

by modeling the matte as a Markov Random Field (MRF), a non-closed-form optimization. The

second sub-class includes newly proposed approaches, such as the Easy Matting system [34], the

Robust Matting system [86], real-time Shared Sampling system [32]. By combining sampling-

based methods (more accurate) and affinity-based methods (more robust), it is able to achieve a

good trade-off between accuracy and robustness.

2.6.3 Video Matting

Video matting is the process of extracting a dynamic foreground element against a background.

The same techniques for a single image can be transferred to video matting by processing each

frame. This sub-section will only focus on methods for video matting with a natural background.
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All techniques for the natural image matting can be extended to video matting by hand-marking

each frame with either a trimap or scribbles. However, this naive approach is time-consuming for

a long video sequence and the matting results are temporal incoherence. At the same time, videos

have some advantages, like a more complete background model, as in [7], and easier to determine

edges, by comparing neighboring frames.

A larger number of approaches applied a two-step framework: the first step is generating a trimap

for each frame, and the second step uses the trimaps and a matting algorithm to refine the fore-

ground boundary. To address the temporal incoherence problem, most techniques perform spatio-

temporal optimizations during the trimap generation. Chuang et al. [29] use optical flow [18]

to propagate user specified trimaps on a few keyframes to all other frames, and then adopt the

Bayesian matting algorithm [28] for each frame. Some video matting systems applied a keyframe-

based rotoscoping system [1] for trimap generation. Graph-cut optimization is widely used in

video matting system due to its efficiency for spatio-temporal video object segmentation. There

are two successful techniques, the video object cut and paste [51] and the interactive video cutout

[85]. Bai and Sapiro [9] extended their geodesic segmentation and matting approach to video se-

quences. Beato presented a real-time video matting algorithm using modified Shared Sampling

algorithm [90] in his dissertation [14].

2.6.4 Matting with Extra Information

Since matting for a single image or video is a severely under-constrained problem, any extra infor-

mation of the unknown variables will significantly reduce the size of the solution space. In order to

result in more accurately estimated mattes, there are many different kinds of approaches proposed,

such as controlled background, flash matting, compositional matting, matting with camera arrays,

and matting with depth information.
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Some early matting techniques capture each foreground element in front of a controlled back-

ground, like a blue screen, or other known background. Blue screen matting systems [78] [60] set

the background color to be constant, normally blue or green. Vlahos [98][99] introduced some

constraints between green and blue channels in his patents to make the problem tractable. Smith

and Blinn [78] summarized these constraints nicely, but their approach requires an expert to tune

the parameters. In order to get rid of the tuning process. Mishima [60] sampled the foreground and

background to calculate the alpha map. Unlike blue screen matting, the background of difference

matting is a non-constant color but still a known one. The foreground element can be extracted

by taking the difference between the image with and without the element. For example, Qian and

Sezan [68] determined α to be 0 or 1 based on a threshold, and the mattes are jagged without some

smoothing process, which still cannot compensate for gross errors.

If the background scene is far enough away from the foreground element, the most noticeable

difference between the flash image and the non-flash image of the same scene is in the foreground

element. Sun et al. [80] created the flash matting approaches to process flash and non-flash image

pairs based upon this principle. This approach works for complex foregrounds and backgrounds,

but the system will fail if the scene is moved or the appearance of the foreground is not dramatically

changed by the flash.

Generally, matting approaches treat the matting and compositing processes separately: estimating

a foreground matte at first, and then recomposing the foreground element onto a new background.

In [88], the compositional matting system is proposed, and it is the first approach to integrate

matting and compositing into one optimization process. There are some similar systems, like the

photomontage system [2] and the drag-and-drop pasting system [42]. These systems will carry

some original background to the composed novel image, therefore they only work well when the

new background has regions that are similar to those in the original one.
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McGuire et al. [58] created a multi-sensor camera to capture three synchronized video streams with

different focuses, and this approach can generate the trimap automatically. Instead of using multi-

sensor camera, another approach [43] applied a camera array to extract high quality foreground

mattes from video streams by capturing foreground with different parts of the background scene.

A large number of approaches capture the scene with both color and depth cameras. The depth

image will provide initial segmentation of the foreground element, and then generate the trimap

automatically. During the natural image matting process, Wang et al. [90] use the depth informa-

tion along with the Bayesian or Poisson matting in the error minimization step to get rid of the

undesirable artifacts. Beato [13] [14] improved Wang’s work in [90] to get better performance

and also make the algorithm more tolerant to video matting. Depth information is combined with

other alpha matting approaches, such as the closed form matting approach [106] [46] [27], robust

matting approach [26], and for both single image and video matting. Cho et al. [27] developed

an adaptive method to generate trimaps instead of morphological operations to grow unknown re-

gions. Previous techniques need accurate user-specified thresholds for the segmentation and/or

accurate depth map. Lu and Li [55] proposed an image matting system using the Kinect with the

depth image enhancement techniques in [24] to remove the unavoidable noise and holes in the

depth image.

2.7 Reshaping Algorithms

After getting a human template and the real-world data of the participant, some reshaping algorithm

is required to fit these data to the template and optimize the generated new model. Currently, the

techniques for human reshaping fit the scanned 3D point cloud or silhouette to a 3D template mesh.

Depending on the input real-world data, there are three different kinds of approaches for human

reshaping: 3D-based, image-based, and a combination of the previous methods.
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3D-based human reshaping technologies use 3D point clouds scanned by high quality 3D scanners

or cheaper depth cameras. Allen et al. [5] formulated an optimization problem for fitting high-

resolution template meshes to detailed human body range scans, 3D geometry data, with sparse

3D markers. This approach only works for individuals under the same pose, Anguelov et al.

[6] introduced the SCAPE model, which covers variations in both human shape and pose. They

used markers for pose deformation with a non-rigid surface deformation function, and data from

a laser scanner for a non-rigid and a rigid component of the shape deformation. The approach

created by Zhang et al. [102] is able to reflect the shape and behavior of a human face with data

from a constructed light scanner system. These approaches normally need expensive devices and

computationally-expensive optimization algorithms to get photorealistic models. Rocchini et al.

[70] created a cheaper constructed light system to capture geometry of objects with limited size.

Image-based methods fit the template to silhouette or other features from one or several 2D images.

A large number of approaches [45][3] in the computer vision area use images from a single or

multiple cameras to get both the pose and shape of a human body by extracting a human silhouette

from these images. Kraevoy et al. [48] introduced a fast reshaping algorithm to fit a contour

drawing to an encoded model [47]. Beyond silhouette and feature points, some research, like

Kemelmacher-Shlizerman and Basri [44], tries to use shading information in the image(s) to create

more accurate 3D face or body models.

The last group of methods combine 3D geometry data and silhouettes from images to create bet-

ter models. A great deal of related work created algorithms for new devices, which are able to

provide both depth data and color images, such as Beeler et al. [15] use of a stereo camera, and

Hernandez et al. [39] use of the Microsoft Kinect for face modeling. These devices provide both

3D geometry point cloud as well as color image(s), which contains the human silhouette, facial

features, and shading information. Other approaches integrate different technologies vertically to

take advantage of human model databases created by previous work. Since most of the time con-
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suming preprocess work has been done during database construction, these approaches can get

more accurate result with noisy input by matching the input data to a model in the database. For

example, [10][11][35][105] obtained both human shape and pose by fitting the SCAPE model [6]

to video(s) or a single image. Recently, there are a large number of research efforts [92][82], that

use SCAPE model and Kinect(s) to generate human whole-body model.
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Figure 2.1: A low cost structured light 3D scanner [70].
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CHAPTER 3: IMPLEMENTED ALGORITHMS

3.1 Introduction

Our system will extract one silhouette of the participant and then reshape an existing 3D human

template based upon the silhouette. The disadvantage of this 2D real world data based human

modeling approach is that the contour from one view point will bring ambiguity to the generated

model. However, we still choose this method based upon the following properties.

• Fast – Our approach is fast for both data collection and 3D model creation. Collecting 3D points

or multiple silhouettes of the participant take extra time.

• Easy – The whole process can be finished by the participant alone. Using laser scanner or Kinect-

Fusion requires extra help to setup devices or collect real world data to cover the whole body. With

these other approaches, the participant needs to carefully hold a pose for several minutes or rotate

in front of the device during the data collecting process, .

• Flexible – The 3D human model created with reshaping algorithms will be similar to the initial

template, so it is able to have skeletons and be controlled by the participant or other users. How-

ever, models created from 3D point clouds only have triangular surfaces and need extra manual

work to set up a skeleton for animation.

We took advantage of existing techniques, like human tracking, matting algorithms, and model

reshaping. This chapter concludes all the previous work that we have implemented within our

system and the reason why we choose these algorithms. The process of human modeling requires

complex optimization and there is no real-time algorithm so far to generate a photorealistic 3D

human model. In our system, the 3D human model can be created in a minute and controlled by

the participant later. It is inappropriate for the participant to wait a while to see his/her 3D model
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in the MR scene. Therefore, a trade-off between accuracy and efficiency needs to be considered.

One example of the trade-off is the tracking subsystem in our system. The Microsoft Kinect and

its related SDK are used for real-time human body and face tracking, and provide acceptable but

non-perfect human tracking. The Kinect cannot track body details (i.e. fingers) since the accuracy

of the depth information varies according to the distance between the subject and the sensor. The

locations of the feet tracked by the Kinect are not precise since it is hard to distinguish the feet

from the floor in the depth image. Other limitations of the Kinect include its practical tracking

range of around 3x3 square meters and the environment lighting, which cannot have too much

infrared light or be too dark for the color camera. Nonetheless we still use the Kinect for human

tracking, because it is inexpensive, easy to set up, has free SDK for research projects, and provides

reasonable results.

Natural image matting is another time-consuming process. A single image matte of the foreground

element provides a silhouette of the participant, the accuracy of which is essential to the success

of the human body modeling, so the chosen matting approach needs to be accurate without the

requirement of real-time execution. On the other hand, video matting is used to render the par-

ticipant in front of any virtual object. Therefore, the matting algorithm must be fast and output a

spatio-temporal foreground participant.

3.2 Human Tracking

3.2.1 Introduction

Tracking a real object in a MR system will register the real object in the virtual world, and enable

the tracked object to interact with the virtual objects. The goal of our system is to make the two-

way interaction between a real human and virtual objects possible. Therefore, human whole-body
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tracking and face tracking are important to the success of this system for the following reasons:

•When the system starts, the tracked skeleton of the participant will be compared with the initial

pose as in Figure 3.1. Once the pose matches, the system will trigger the process of 3D human

modeling.

• The body tracking information is necessary to generate the trimap automatically for the matting

algorithm, which is required for human modeling and the MR scene rendering.

• The face tracking can provide feature points of the participant’s face, and these points will be

fitted to the vertices on the human template during the 3D human face modeling process.

•Under the real mode, the tracked skeleton is used to control the virtual representative by matching

the skeleton from the Kinect to the skeleton of the 3D human model. Although the virtual repre-

sentative won’t be displayed in the scene during the real mode, it will be used to detect whether

there is any interaction between the participant and the virtual objects. If the virtual force is so

strong that it should affect the movement of the participant, the virtual representative will replace

the real representative and be displayed in the scene.

• Furthermore, tracking is required to determine when the system should switch the participant

from the virtual representative to the real representative by comparing the skeleton of the 3D hu-

man model and the tracked model. During the virtual mode, the human skeleton is compared with

the skeleton of the virtual representative to check the proximity between the virtual and the real

representatives. Once the user moves back to the right position and pose, the system will switch

back to the real mode

We use the Microsoft Kinect sensor for human tracking, because the device is inexpensive, ro-

bust and easy to setup in the environment. Another important reason is that Microsoft provides

free non-commercial licenses to the Kinect SDK, which can track human body and face in real-

time. Microsoft also offers some sample codes to show how to use the SDK to get raw data from

Kinect (i.e. color images), processed data (i.e. depth images), and tracking result (i.e. skeleton
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Figure 3.1: The initial pose of the 3D human prototype (left) and the matching Kinect skeleton
(right)

information of the tracked body, feature points of the tracked face).

3.2.2 Tracking Devices

Microsoft published Kinect for their game station XBox 360 in 2010, and then published the

official SDK to enable the device for personal Windows-based computers. Currently, Microsoft

distinguishes the Kinect: one version for XBox 360 ($90) and the other for Windows ($250). The

SDK only works with Kinect for Windows now. The price of a Kinect is affordable to everyone

who wants to play with a depth camera. Figure 3.2 shows the structure of the Kinect sensor, which

is a horizontal bar connected to a stable base. The three round objects on the bar, from left of to

the right, are the infrared laser projector, the RGB camera, and the monochrome CMOS sensor (IR

camera). The depth sensor of Kinect is composed of the infrared laser projector, which will emit

infrared pattern signals to the space, and the CMOS sensor, which will capture all infrared signals
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in the environment. By analyzing the pattern in the captured infrared image, the depth sensor can

generate the depth video data under any ambient light conditions.

Figure 3.2: Kinect sensor.

The default resolution of the RGB video stream is 640 x 480 pixels, but its highest capable reso-

lution is 1280 x 1024 pixels at a lower frame rate. The monochrome depth sensing video stream

is 640 x 480 pixels with 11-bit depth, which provides 2,048 levels of sensitivity, but the depth data

is not linearly proportional to the depth in the real world. The IR camera can provide raw infrared

image data as well. The suggested practical range of the Kinect is from 1.2 meters to 3.5 meters,

but the Kinect can recognize standing users between 0.8 meters and 4.0 meters. The angular field

of view is 57◦ horizontally and 43.5◦ vertically, while the motorized tilt can rotate the bar up or

down up to 27◦.

3.2.3 Tracking Techniques

The Kinect software can simultaneously recognize up to six people in real-time, including two

active users with motion analysis. These two users have 3D skeleton data with 20 joints per user as

shown in the right figure in Figure 3.1. Microsoft researchers, Shotton et al., discussed the method

used in Kinect for human body tracking in the paper [76]. This technique is capable of predicting
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3D positions of body joints from a single depth image in real-time. This pose recognition system

runs at 200 frames per second, but the bottleneck of the Kinect human tracking is the frame rate of

the sensors, which is around 30 frames per second with 640 x 480 resolution.

Figure 3.3: Overview of the Kinect human pose recognition system [76].

Microsoft Kinect SDK human body recognition system takes depth images from the Kinect, such

as the single user example and multiple users example in the left part of Figure 3.3. Each depth

image is segmented into dense probabilistic body parts, which are labelled for each pixel (see

two examples in the middle of Figure 3.3). Then the inferred body parts are reprojected into world

space to localize spatial modes of each part distribution. In the right part of Figure 3.3, local modes

of this signal are estimated to give high-quality estimates for the 3D locations of each skeletal joint.
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Figure 3.4: Feature points of Kinect face tracking (from Microsoft msdn website).

The Kinect enables face recognition in real-time since the publication of Kinect for Windows SDK

1.5 and 1.6. The tracking quality is affected by the input image quality and the distance between

the face and the Kinect. Their face tracking engine analyzes RGB images and depth images input

from the Kinect sensor, and provides the 3D head pose, 2D shape points, animated unites (AUs),

and shape unites (SUs). The head pose includes head scale, rotation, and translation. These 2D

points are feature points on the face, and are defined in the coordinate space of the RGB image as

shown in Figure 3.4. In addition to the 87 points in the Figure, there are 13 more points, including

the center of the eyes, the corners of the mouth, the center of the nose, and a bounding box around

the head. There are six AUs expressed as a numeric weight varying between -1 and 1 to present the

expression of the user. The eleven SUs, expressed as a 3D vector, include head height, eyebrows

vertical position, eyes vertical position, eyes width, eyes height, eye separation distance, nose

vertical position, mouth vertical position, mouth width, eyes vertical difference, and chin width.
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3.3 Single Image Matting

Our system needs a robust and fast single image matting algorithm to extract the participant’s

silhouette from a Kinect color image. In order to get real-time data from the Kinect, we choose the

low resolution setting 640 × 480 for 30 frames per second. The frame rate is only 12 for the high

resolution setting 1280×960, so it is impossible to give the participant good feedback in the system.

This low resolution color image will introduce a significant amount of noise, especially along

the edges with obvious color changing. We also use the Kinect depth data to generate a trimap

automatically and this process introduces extra noise or even errors. In 2011, He et al. [38] created

a new sample based matting algorithms to consider global samples instead of limited samples

within a window. This algorithm is fast, works better for low resolution input image, and handles

noise.

3.3.1 Sample Selection Criteria

The criteria in [38] to select the sample pairs, whose linear combination will explain the unknown

pixels, are based on both color and spatial distance between the samples and the unknown pix-

els. The alpha value α̂ of an unknown pixel I can be estimated with foreground sample F i and

background sample Bj as:

α̂ =
(CI − CBj)(̇CF i − CBj)

|CF i − CBj |2
, (3.1)

where CI , CF i , and CBj are the color (in RGB space) of the unknown pixel, the ith sample from

the foreground boundary, and the jth sample from the background boundary.

The color cost εc is used to describe how good a sample pair (F i, Bj) fits the unknown pixel I and

can be computed as:

εc(F
i, Bj) = |CI − (α̂CF i + (1− α̂)CBj)|. (3.2)
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The color cost is the absolute value of the distance between the color of the unknown pixel I and

the color combined with α, F i, and Bj .

The spatial cost εs of F i is represented as:

εs(F
i) =

|XF i −XI |
MF

, (3.3)

where XF i and XI are the coordinates of the foreground sample and the unknown pixel. The term

MF = mini|XF i − XI | is the nearest distance between the unknown pixel and the foreground

boundary. The spatial cost of Bj is defined similarly.

Depth information from the Kinect can provide another cost to increase the accuracy of the global

sampling method. The depth cost εd is defined as the minimum depth distance from the unknown

pixel to F i or to Bj:

εd(F
i, Bj) = min(|DF i −DI |, |DBj −DI |), (3.4)

where DI , DF i , and DBj are the depths of the unknown pixel, the foreground sample, and the

background sample.

Our final sample selection cost ε is a linear combination of the color cost, the spatial cost, and the

depth cost:

ε(F i, Bj) = wcεc(F
i, Bj) + wsεs(F

i) + wsεs(B
j) + wdεd(F

i, Bj), (3.5)

where wc, ws, and wd are the weight of different costs, and the sum, wc + 2ws + wd, is equal to 1.
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3.3.2 SampleMatch Algorithm

First of all, all the foreground samples F and the background samples B are sorted based upon their

color. He et. al [38] denoted them as ordered sets F i|i = 1, 2, ..., nF and Bj|j = 1, 2, ..., nB. The

goal is to find a sample pair (F i, Bj) with the lowest cost for each unknown pixel I(x, y). This

current optimal sample pair is represented as Φ(x, y) = (F i, Bj). Unlike [38], which initializes

Φ(x, y) by a random point in the FB search space, we choose the spacially closest foreground and

background samples.

The following process tries to find the best sample pair in the FB search space by iterating be-

tween two steps: propagation and random search. Propagation is the process to update Φ(x, y)

of the unknown pixel I(x, y) by finding the sample pairs Φ(x′, y′), which provide the smallest

cost. (x′, y′) is in the first order neighborhood of (x, y) and includes (x, y). This step can improve

the efficiency of random search, because generally neighboring pixels tend to have similar sample

pairs. Random search will test a sequence of random trials, (F ik , Bjk |k = 0, 1, 2, ..., on the FB

search space, and this sequence is defined as:

(ik, jk) = (i, j) + ωβkRk, (3.6)

where Rk is a uniform random number in [−1, 1]× [−1, 1], β = 0.5, and ω is the size of the search

space. This search will go on until the search window radius ωβk is below 1. Φ(x, y) will be set to

the new pair (F ik , Bjk) if it has a smaller cost.
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3.4 Contour Matching

Before deforming the human prototype with the contour information, we need to match each an-

chor vertex of the human prototype to one point on the contour path. The anchor points of the

template will then move to the correct locations based upon the participant’s silhouette and the rest

of the vertices will be deformed. In order to align these two point sets properly, we consider all the

possible matching results to get the minimum cost. If we solve the problem in a straightforward

manner, one mismatch may cause the following errors. In [48], a Hidden Markov Model (HMM)

can be used to describe this problem and the existing dynamic programming approach can solve it

by testing different matching possibilities.

3.4.1 Match Criteria

Figure 3.5: Human right shoulder contour matching case. Blue points are anchors of the 3D human
template and black points are sampled contour points. (a) Correct contour matching results marked
with green lines. (b) Incorrect matching results marked with red lines.

40



The Euclidean distance between one contour point and the corresponding anchor vertex is an im-

portant feature to determine the cost of one match. However, using these distance criteria alone

is not good enough to provide an accurate result, especially around the contour part with sharp

curves. Take a human shoulder for example (Figure 3.5), the anchor vertex vi on the shoulder will

be matched to the contour point pj+2, since pj+2 is the closest point to vi based upon Euclidean

distance. However, pj+2 is located on the participant’s arm instead of shoulder. The correct match-

ing pair should be vi and pj , since it is the connection between the shoulder and the arm. Extra

criteria are required to compute the cost.

Kraevoy et. al [48] considered two components to defining the cost metric of matching template

model vertex v to contour point p. The first component is proximity dP = (px− vx)2 + (py − vy)2,

which measures position difference between v and p in the image plane, and the second is normal

difference dN = npṅv, where np is the normal to the contour at p (lifted to 3D using z = 0) and nv

is the mesh normal at v. Since continuous contour points should map to continuous paths on the

3D model, they add one metric of continiuty dC = ‖vi − Vi−1‖2/‖pi − Pi−1‖2, where vi and vi−1

are the matching vertices of pi and pi−1.

3.4.2 HMM Model

The goal of HMM is to infer the corresponding hidden states that are most likely to have generated

the input observations. The HMM requires emission probabilities, the possibility of a given hidden

state producing the input observed states, and transition probabilities, the possibility from the

previous hidden state to the current one. In [48], the contour matching problem was described as a

HMM by setting the sorted contour points as observed states and anchor vertices as hidden states.
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The emission probability is computed as:

P (pj|vi) ∝ e
− 1

2
(
dP
σP

)2
e
− 1

2
(
dN−1

σN
)2
, (3.7)

where σP = 0.5 and σN = 1. The transition probability is computed as:

P (vi|vi−1) ∝ e
− 1

2
(
dC−1

σC
)2
, (3.8)

where σC = 0.05.

This HMM problem is solved by the Viterbi algorithm, which is a dynamic programming approach

to find the most likely sequence of hidden states, called trellis. The result may cause several contour

points to match to one mesh vertex, so a post-processing pass guarantees a one to one match,

determined by the emission probability, between the contour points and the anchor vertices.

3.5 3D Model Reshaping

3.5.1 Introduction

The 3D model reshaping algorithm in our system uses the Kraevoy’s mean-value encoding and

decoding approach [47], which is able to generate a 3D human model with skeletons. The approach

is simple and robust, so the participant won’t feel frustrated during the data collecting process. This

approach is composed of two steps, encoding and decoding. The first step can be pre-computed,

so we only need to create the model by decoding with the real world data and the pre-saved data

from the first step.

In order to deform the template 3D model based upon real-world data, the relationship among
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connected vertices of the discrete geometric model needs to be analyzed and this process is done

by encoding. In our system, the 3D human prototype is encoded with the Mean-Value Geometry

approach [47] and the encoding data is output to an XML file. This step is only needed once for

each prototype model, which means that we can reuse the encoding data for any system using the

same 3D human prototype, once we have previously generated it. We can then deform the proto-

type based upon the encoding data and the contour path, which is different from the prototype’s

contour.

First of all, the 3D template is loaded into the system and form a map to represent the connection

between the vertices. We then need to decide the anchor vertices of the template, which will

be matched to the real-world data directly and used as the control mechanism. This can be, for

example, the vertices on the outline of the initial pose. After we get the adjacency relationship

among vertices and the modified anchors, we are able to establish the new position in 3D space for

the rest of the vertices with one encoding and decoding of discrete geometry models.

3.5.2 Mean-value Encoding One Vertex

Given a 3D human template with vertices V and edges E, the mean-value encoding for one vertex

vi ∈ V is computed from the Euclidean coordinates of the vertex and its m neighbor vertices

vj , where (i, j) ∈ E. These neighbor vertices are enumerated counter-clockwise around vi as

vji ,...,vjm .

For each vertex vi we define a corresponding local projection plane, Pi = nxx + nyy + nzz + di,

using the normal, ni = (nx, ny, nz). The normal ni is computed as

ni =

∑m
k=1(vjk+1 − l)× (vjk − l)

‖∑m
k=1(vjk+1 − l)× (vjk − l)‖

(3.9)
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where

l =
1

m

∑
(i,j)∈E

vj. (3.10)

We use the averaged normal to a local Laplacian mesh as the normal of the projection plane of

the vertex vi. This enables us to achieve much better results for decoding vi in terms of stability,

speed, and shape preservation. The average distance from origin di is computed as:

di = − 1

m

∑
(i,j)∈E

ni · vj. (3.11)

Given ni and di, the shape encoding of the vertex coordinates is separated into a tangential com-

ponent computed in the projection plane and a normal component based on the vertex offset from

the plane. First, we project vi and its neighbors vj onto the projection plane Pi:

vi
′ = vi − (di + (vi · ni))ni (3.12)

vj
′ = vj − (di + (vj · ni))ni (3.13)
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Figure 3.6: Mean-value encoding [47]: (a) The 3D mesh is shown in black, the normal ni is shown

as a vertical vector, the projected mesh in the local projection plane is shown in gray. (b) the values

(δij , γij , lij) used to compute mean-value weight wij .

We then compute the mean-value weights of vi′ with respect to vj ′:

wij =
wij
′∑

(i,k)∈E wij ′
(3.14)

wij
′ = tan(γij/2)+tan(δij/2)

lij

The angles γij , δij , and the lengths lij are shown in Figure 3.6.

To represent the normal component of vi with respect to the local frame, we calculate and store the

cotangent of the angle between each edge and the normal

bij =
cij√

1− cij2
, (3.15)
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where

cij =
(vi − vj) · ni
‖vi − vj‖

(3.16)

The encoding of the entire model consists of the set of coefficients wij and bij defined for each

half-edge (note that wij 6= wji and bij 6= bji).

3.5.3 Mean-value Decoding One Vertex

In this section, we review how to use the encoding to explicitly obtain the 3D coordinates of one

vertex from those of the adjacent vertices. The 3D positions of the neighbor vertices vj and the en-

coding coefficients wij and bij uniquely define the position of the vertex vi in the Euclidean space.

We now sketch the numerical derivations leading to the explicit formulation for vi (Equation 3.19).

Using the mean-value weights wij, we obtain vi′ (Equation 3.12) from vj
′

vi
′ =

∑
(i,j)∈E

wijvj
′ =

∑
(i,k)∈E

wij(vj − (di + (vj · ni))ni) (3.17)

where ni and di are calculated using Equation 3.9 and Equation 3.11 respectively. Since the mean-

value weights sum, given vi′ and using the coefficients bij , the new vi is given by

vi = vi
′ +

∑
(i,j)∈E

wij(‖vi′ − vj ′‖bij + (vj − vj ′) · ni)ni. (3.18)

We can rewrite this as a function of the rest of the vertices using the encoding coefficients wij , and

bij ,

vi = Fi(V ) =
∑

(i,j)∈E
wij(vj + ‖Ni

∑
(i,k)∈E

wik(vk − vj)‖bijni) (3.19)
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where Ni is the 3× 3 matrix (column notations)

Ni = I3 − niniT , (3.20)

where I3 is a 3 × 3 identity matrix. This formula uniquely defines vi, for any set of neighbor

vertices and any mean-value encoding.

3.5.4 Encoding and Decoding of Models

To uniquely encode 3D models, we must eliminate the degrees of freedom provided by rigid trans-

formation and global scaling. Hence, in addition to the mean-value encoding of each vertex (wij

and bij), the full encoding must contain the 3D Euclidean coordinates of the anchor vertices Va.

To decode a 3D model from the encoding above, we formulate and solve the following non-linear

least squares minimization problem

argminV ′G(V ′) =
1

2

∑
vi∈V

(vi − Fi(V ))2 (3.21)

where V ′ = V Va, all the non-anchor vertices. Note that while we only need to compute the

coordinates of non-anchor vertices, the sum on the right-hand-side of the formula runs over all

the vertices in the mesh. If the anchor vertex positions are unchanged, the set of original vertex

positions is clearly a solution to the minimization problem.

This problem can be solved by using standard non-linear least-squares minimization techniques.

Since the original model is available in our system, the original coordinates can always be used

to provide the initial guess for the optimization. The solution requires 9 iterations to converge.

In [47], Kraevoy and Sheffer need real-time editing interaction using this solution approach, so

they incorporated a multi-resolution structure into the encoding and decoding procedures. This
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approach makes the encoding slightly more time consuming, but dramatically speeds up the de-

coding. In our system, the encoding can be done once as a pre-processing step for one human

template, while decoding is performed repeatedly for different participants in the scene. There-

fore, the hierarchical approach is very suitable for our human modeling process.

The multi-resolution hierarchical approach removes the non-anchor vertices one by one, until only

a base mesh connecting the anchors remains. When selecting the edge to be half-edge collapsed,

we use a mixture of volume preservation (see Lindstrom and Turk [54]) and minimal angle max-

imization metrics in order to preserve the mesh shape and to avoid degenerate configurations

throughout the hierarchy. Before each collapsed vertex is removed from the model, the mean-value

encoding of the vertex in the current mesh is computed and stored for reconstruction purposes.

At the beginning of the decoding process, anchor vertices are placed at the specified location based

upon the real-world data. The subsequent decoding procedure involves two major operations:

vertex split and optimization. The former is reversing the simplification order; collapsed vertices

are added to the mesh one at a time at the location computed with Equation 3.19. If the anchor

positions are unchanged or a rigid transformation of the original position, this placement gives

the exact desired position of the vertex in 3D. Otherwise, each split introduces some error; hence

G(V ′) (Equation 3.21) is not optimized. To get minimum G(V ′), after performing a sequence of

vertex splits, we use a Gauss-Newton minimization procedure combined with line-search. The

minimum is obtained when the Jacobian of G(V ′) is zero. The rows of the Jacobian are:

∂G

∂vi
= vi − Fi(V )−

∑
(i,j)∈E

(vj − Fj(V ))
∂Fj(V )

∂vi
(3.22)

Defining the Jacobian of G(V ′) as J , the vector of the functions Fi as F, and the matrix of partial
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derivatives ∂Fj(V )

∂vi
as ∆F , the system can be rewritten in matrix format as

J(V ′) = (I ′ −∆F )T (V ′ − F ) = 0 (3.23)

where I ′ is an |V | × |V ′| sparse matrix with 1’s on the diagonal. Using Gauss-Newton method we

ignore the second order terms in the Hessian, defining

H = (I ′ −∆F )T (I ′ −∆F ) (3.24)

Thus at each iteration of the procedure, we solve the linear system

Hδ = −J(V ′) (3.25)

and update V ′ = V ′ + αδ(0 ≤ α ≤ 1). We use standard bisection line-search to compute α. We

perform numerical derivation to compute the matrix of partial derivatives ∆F for the three coordi-

nates x, y, and z. We use the conjugate gradient method to solve the linear system (Equation 3.25).

From Kraevoy and Sheffer’s experience [47], it is sufficient to perform optimization only once for

3% of the vertices and execute 7 iterations for each optimization. For extreme deformations, after

the model is fully reconstructed, they applied several Gauss-Seidel iterations, typically four, to-

ward solving Equation 3.23. The Gauss-Seidel procedure uses Equation 3.22 (equating it to zero)

to set the value for vi. This optimization step will remove the clearly visible error of intermediate

mesh introduced by performing edge-splits.
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CHAPTER 4: ISTRAW

4.1 Introduction

IStraw is a corner finder based upon the ShortStraw algorithm [93]. This algorithm was first

introduced by Xiong and LaViola in [95], and later improved in [96]. Corner finding algorithms

are used in sketch-based systems as the initial step for gesture recognition.

In our human modeling system, the contour of the participant is segmented before the anchor

matching process to improve the matching accuracy. Corners, like armpits, on the human contour

are important references for segmentation. We choose IStraw for the corner finding process for

two reasons. The first is that IStraw works better for strokes that have noisy data and the human

contour is such a noisy object as it is not smooth. The second reason is that IStraw provides the

best all-or-nothing accuracy, which means that the result has minimum positive and negative false

results. Missing any corner or finding any unnecessary corner will cause false segmentation, so the

matching result will be totally wrong and the generated model won’t look like the real participant

at all. To fit IStraw into our system, we make some changes based upon features of the human

contour. The details of these changes are presented in Section [?].

In this chapter, We review the ShortStraw algorithm and its limitations, discuss the details of

IStraw’s improvement based upon ShortStraw, as well as the evaluation results of IStraw and other

corner finding algorithms.
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4.2 ShortStraw Review

ShortStraw is an accurate polyline corner finder that is easy to understand and implement [93].

After resampling the input data, ShortStraw finds corners using both a bottom-up and top-down

approach. In this system, users can draw polylines free-form while achieving a high total corners

and all-or-nothing accuracy rate. Furthermore, the algorithm can be quickly integrated into sketch-

based interfaces. However, there is still room to improve its accuracy and to extend the technique

to deal with polyline ink strokes containing arcs and curves. In this section, we will discuss the

implementation of ShortStraw and its shortcomings.

4.2.1 ShortStraw Implementation

The first pass of ShortStraw involves resampling the input data, an important component for achiev-

ing high corner finding accuracy using Wolin et al.’s approach. The resampling algorithm used by

ShortStraw is based upon [97], but uses a different interspacing distance between points. The in-

terspacing distance is defined by the diagonal distance of the stroke’s bounding box divided by

40.

ShortStraw then finds corners with two steps, one bottom-up and the other top-down. First, Short-

Straw defines the concept of ”straws” from primitive information. A straw for a point at resampled

point pi is computed as:

strawi = ||pi−W , pi+W || (4.1)

where W is a constant window equal to 3 and ||pi−W , pi+W || is the Euclidean distance between the

resampled points pi−W and pi+W . The shorter the straw, the more likely the point will be a corner.
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The initial corner set is taken from the resampled stroke points whose straw lengths are a local

minimum below a threshold t , defined by the median of the computed straw list.

Figure 4.1: An example of a collinear test between two adjacent corners A and B: the initial

corners (left) and the corners after the collinear test (right).

After the bottom-up approach, some higher-level processing is used to find missed corners and

remove false positives. ShortStraw checks to see whether two adjacent corners pass a collinear

test. Take Figure 4.1 for example, corners A and B are not on a line, so there must be additional

corners between them. The point with the minimum straw value, C in the figure, will be added

to the possible corner set. Then the next collinear test will be between points A and C. The

process is repeated until all of the stroke segments between pairs of consecutive corners are lines.

Another collinear check is then run on subsets of triplets, consecutive corners like A, B, and C in

Figure 4.2. If the two corners A and C are collinear, then B, the possible corner between A and C,

is not a real corner and should be removed from the corner set.

Figure 4.2: An example of a triplet collinear test of corner B between three consecutive corners
A, B, and C: the initial corners (left) and the corners after the triplet collinear test (right).
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4.2.2 ShortStraw Limitations

Although ShortStraw achieves outstanding accuracy compared to other previous corner finding

algorithms, there are still some issues left unaddressed by Wolin et al. [93]. The distortion between

the resampled stroke and the original stroke causes some real corners to be missed. During the

bottom-up approach of ShortStraw, the first three and last three resampled points do not have straw

values, given that the window size W = 3 is constant. In addition, timing information can be

useful for corner finding, since users prefer to slow down on the corner, but ShortStraw does not

take advantage of the speed change.

In the top-down step, the triplet collinear check will be unreliable if some corners are missed be-

tween these points and may lead to a false deletion of a correct corner. Another issue with the

ShortStraw approach is the way in which the threshold is set for a collinear check. The constant

threshold used by ShortStraw is not robust in the presence of some shapes. In addition, noise

caused by resampling or hooks presents an issue, and sometimes the corner found is not the resam-

pled point closest to the real corner of the input stroke.

Finally, ShortStraw only works well for polyline ink strokes, but not for ink strokes with curves

and arcs. Since complex free-hand shapes are needed in most sketch-based interfaces, effective

corner finding must involve the removal of false positive corners resulting from curved parts of the

sketch.

4.3 IStraw Algorithm

IStraw is a new corner finding approach to improve the accuracy and extend the scope of Short-

Straw. We analyzed the issue listed above and developed techniques to address each deficiency.
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4.3.1 Straws

The original ShortStraw algorithm uses a window size W = 3, resulting in the straws of the first

three and last three resampled points to not be computed, but remain a default number, 0. Thus,

these resampled points might be selected as corners during a post processing step. We can set

values for the straws for these points. Given the indices of the resampled points pi where i goes

from 0 to N − 1, the computations are shown as:

straws1 = ||p0, p1+W || ×
2W

(W + 1)

straws2 = ||p0, p2+W || ×
2W

(W + 2)

strawsN−2 = ||pN−1, pN−2−W || ×
2W

(W + 1)

strawsN−3 = ||pN−1, pN−3−W || ×
2W

(W + 2)

whereW is the window size and ||pi, pj|| is the Euclidean distance between the resampled points pi

and pj . Since the definition of strawsi where i goes fromW toN−W−1 is the Euclidean distance

between pi−W and pi+W , there are 2W interspacing distances between these two points. We use the

Euclidean distance between p0 and p1+W to compute straw1, but there are onlyW+1 interspacing

distances, so we multiply ||p0, p1+W || by 2W and divide by W + 1 as the straw associated with p1.

The same approach is applied to the other three straws. Note that having the straws for the start

point p0 and end point pN−1 be zero is acceptable, since these two points will always be chosen as

corners.
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4.3.2 Timing Information

By using timing information we can obtain missing corner candidates due to the observation that

users are more likely to slow down while coming to a corner [74]. When resampling the ink stroke,

we define the time for each resampled point as the difference between the time stamp of the raw

point just prior to the current resampled point, and the time stamp of the raw point just prior to

the previous resampled point. Then during the bottom-up step, we look for the maximum time

tmax between two adjacent corners. If tmax is larger than the the threshold 2 ×meanTime, then

that point will be added to the corner list. Note that if this condition holds true, we also change the

threshold used during the second pass of the triplet collinear test, explained further in Section 4.3.3.

4.3.3 Dynamic Threshold for the Collinear Test

The collinear test of two points pa and pb checks whether the ratio of the Euclidean distance and

the path distance between the two points is below a threshold. The equation for the collinear ratio

is:

r =
||pa, pb||∑b−1

i=a ||pi, pi+1||
(4.2)

where 0.0 ≤ r ≤ 1.0, since the path distance is always greater than the chord distance. We use the

ratio of distances in the collinear test, so the interspacing distance of the resampled points will not

affect its decision.
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Figure 4.3: The length of a segment will affect the corner decision: a longer segment (left) and a

shorter segment (right).

During our initial exploration of ShortStraw, we found, for example, that the point on the left

stroke in Figure 4.3 is more likely to be a corner than the point on the right stroke in Figure 4.3,

even if the angles between the two line segments for both strokes are equal. Thus, the threshold

for the collinear test should change based on line segment length. Another factor in changing the

threshold is timing information, since the candidate corner with slower speed is more likely to be

a real corner.

During the second collinear pass on any three consecutive corners, we set the threshold based on

the length of the segment and timing. Based on empirical observations, if the difference between

the first and third corner indices is larger than ten, we increase the threshold by 0.0053. In addition,

if the timestamp of this point or its adjacent points is larger than 2×meanTime, then we increase

the threshold by 0.0066. For more detail on these thresholds, see Section 4.3.9.

4.3.4 Consecutive False Corners Avoidance

Consecutive false corners is a special case defined as missing a correct corner, caused by failing

to detect a corner or falsely removing one, bringing about the false deletion of subsequent corners.

This phenomenon occurs because the missing corner decreases the reliability of the triplet collinear
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test in the top-down component of ShortStraw.

Figure 4.4: An example of consecutive false corner deletion.

Consider Figure 4.4. Points A to E are all the correct corners and point F is a false candidate

corner. Since F is close to B, the Euclidean distance and the path distance from A to F have

so little difference that B is defined as a wrong corner. The existence of F can lead to the false

deletion of point B, then the triplet collinear check of point F will be between A and C instead

of B and C. In this case, the system will leave F as a correct corner and go on to the next corner

candidate C. Without deleting F , corner C will face the same problem as B and be identified as

an unwanted candidate corner.

To avoid this situation, it is necessary to delete F before the triplet collinear check of point B. We

solve this problem by passing all the candidate corners through the triplet collinear pass twice. The

first pass has a higher threshold, and then we relax the threshold for the second. This dual pass

approach will remove a false corner whose collinear ratio is too large (e.g., removing F in Figure

4.4).
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4.3.5 Adjusting Corners

Sometimes a smaller straw value does not necessarily mean a resampled point is closer to the

corner. From Figure 4.5, we can see that the straw value |AB| of point Ci is larger than |DE|,

the straw of point C ′i, so C ′i will be chosen as the corner instead of Ci, which is closer to the real

corner. This will not affect the result for the polyline corner finder using straws and collinear tests.

However, our curve detection approach, using angle information (discussed in Section 4.3.7), will

often define the point C ′i as a incorrect corner and delete it.

Figure 4.5: An example that the point closer to the real corner has larger a straw value than its
adjacent point.

To make sure a corner is the resampled point closest to the real corner, we need to adjust each

possible corner to move it to the right point. Normally, the adjustment is made based on whether it

is before or after the corner initially found. We use the angle value of the three adjacent points to

make the decision, since the point closer to the real corner will have a smaller angle between itself

and its two adjacent points. As in Figure 4.5, α is smaller than β, so we should change the corner

to point Ci.
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4.3.6 Sharp Noise Avoidance

Sharp noise manifests itself in two situations. The first situation occurs in the start or end of the

stroke (e.g. Figure 4.6 (left)). As we take the beginning and the end resampled points as corners,

the hooks in a stroke normally will cause unwanted corners close to these points. The second

situation exists with corners with sharp angles (e.g. Figure 4.6 (right)). This case is induced by the

distortion of the stroke after resampling, which might change the shape from one sharp angle to

two angles (e.g. Figure 4.7). Both situations can result in incorrect corners.

Figure 4.6: Two examples of sharp noise: caused by a hook (left) and caused by a sharp angle
(right).

Figure 4.7: A properly resampled sharp angle(left) and an improperly resampled sharp angle
(right).

Often, two close resampled points, ones where the difference between their indices in the point

array is one or two, are both treated as corners. However, it is impossible for a user to draw a

stroke with two corners so close together. Therefore, we can take one of the two resampled points
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as the correct corner to avoid sharp noise. In our system, the first or the last point is left as a corner

to get rid of hooks, and we choose the one of two adjacent points that has the smaller straw value

to handle sharp angles.

4.3.7 Curve Detection

Thus far, we have focused on strategies for improving the ShortStraw algorithm that works well

for polyline-based ink strokes. However, these methods do not work well when strokes contain

curves and arcs, finding many unnecessary corners on the curve. Therefore, we need an approach

to decrease the false positives caused by the curves and arcs.

4.3.7.0.1 General Approach

To remove unwanted corners, it is necessary to be aware of the difference between a real corner

and a incorrect one. Ideally, a candidate corner Ci is the vertex of an angle defined by two rays

generated from Ci and a resampled point on each side of the vertex starting at the right place.

Assuming a correct shift value and a real corner Ci, this angle will not significantly increase by

choosing rays using other resampled points closer to the vertex. However, if Ci is on a curve, this

angle will get larger. This approach requires finding all possible angles from the resampled point

data.
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Figure 4.8: The difference between the corner and the curve: the angle does not change with a

real corner as the vertex (left) and the angle will increase with a false corner on a curve (right).

Figure 4.9: The difference between α and β based upon the value of α: α is small (left) and α is
large (right).

Instead of comparing all the possible angles, we can pick two representative angles for comparison

to enhance efficiency. As in Figure 4.8, the farther angle α is formed by Ci with the two resampled
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points A and B, whose indices are equal to the index of Ci plus/minus a shift value. The two

points, D and E, for the closer angle β, hav indices equal to the index of Ci plus/minus the shift

value divided by 3. If β is below the threshold ta, then Ci is a correct corner, otherwise it is a point

on the curve. In our approach, ta is set dynamically based on the value of α.

As with handling polyline strokes, falsely deleting a correct corner may cause sequential problems,

and we use the approach discussed in Section 4.3.4 by having all possible corners go through the

curve detection pipeline twice to avoid consecutive false corner deletion. During the first pass, we

set ta to be 36 + 0.85 × α and 26.1 + 0.93 × α for the second pass. From Figure 4.9, we can

see the angle β will be larger if α increases. The details for choosing the thresholds are given in

Section 4.3.9.

4.3.7.0.2 Shift Value

The term, shift, is defined as the array index difference between corner Ci and point A, and Ci

and B. Setting the shift value is crucial to the reliability of this approach. If shift is too small,

it is hard to tell the difference between α and β. On the other hand, a large shift value may also

cause problems. The left image of Figure 4.10 shows one possible case where a real corner will be

deleted since the β is much larger than α with the wrong shift value. Another example is that an

incorrect corner on the curve will result in a poorly chosen shift value, as shown in the left image

of Figure 4.11. To make the correct decisions, we need to move points, A, B, D and E, closer to

the corner Ci.
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Figure 4.10: Example 1 of unwise shift value: β − α is large even though Ci is a correct corner

(left) and a smaller shift value which moves point B closer to Ci is needed to make the right

decision (right).

Figure 4.11: Example 2 of unwise shift value: β − α is small even though Ci is a incorrect

corner (left) and a smaller shift value which moves point B closer to Ci is needed to make the right

decision (right).

If the candidate is a real corner, its best shift value should enable α to be the local maximum angle

of this candidate (see Figure 4.10). On the other hand, if the candidate is on a curve, its best shift
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value should enable α to be the local minimum angle (see Figure 4.11). Performing an exhaustive

search for these local maxima and minima will sacrifice the simplicity of the algorithm. Thus,

we make an approximation by choosing shift = 12, determined from a training dataset with the

approach described in Section 4.3.9. However, if the previous corner Ci−1 is too close to Ci, we

change shift to the difference between the indices of these two corners and do the same for the

corner Ci+1.

4.3.7.0.3 Special Cases

On some curves, adjacent possible corners might be too close to tell the difference between the

angles α and β. During the first pass of curve detection, we test only the angle of the candidate

corner and its adjacent points, if the difference between the indices of this candidate and one of the

adjacent corners is less than three.

Another case that will cause problems is the incorrect corner on an S shape curve. As in Fig-

ure 4.12, α and β are almost the same for the corner Ci, an incorrect corner. To determine whether

it is an S shaped curve, we first need to make sure that the two stroke segments CiA and CiB are

curves using a collinear test. Second, we test the difference between the direction change from
−−→
CiA to −−→CiD and the change from −−→CiE to −−→CiB. For example, there is an S shape in the left image

of Figure 4.12, so −−→CiA to −−→CiD is counterclockwise and −−→CiE to −−→CiB is clockwise. On the other

hand, if Ci is not on an S shape, then the direction change will be the same, as shown in the right

image of Figure 4.12. In this case, −−→CiA to −−→CiD and −−→CiE to −−→CiB are both clockwise. If the curve

is an S shape, the candidate corner will more likely be a incorrect corner, so we check whether the

angle defined by the candidate corner and its adjacent points is larger than 135 degrees. If so, it

is considered to be a incorrect corner. We made the choice of 135 degrees after examining all the

incorrect corners meeting the S shape requirement from our second training dataset (strokes with
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curves) and taking the minimum angle of these points as the threshold. If Ci is not on a S shape

curve, we use the general curve detection approach to test it.

Figure 4.12: An example of S shape (left) and a normal curve (right).

Figure 4.13: An example of a stroke that has a self-intersection (left) and a normal curve (right).

Strokes with self-intersections, as shown in the left image of Figure 4.13, also need special at-

tention. Although Ci is a incorrect corner, the angle α is larger than β, since points D and E are

inside the loop but A and B are outside the loop. To check for the existence of a self-intersection

in a stroke, we can test for direction change. If the rotation direction from −−→CiA to −−→CiB and from
−−→
CiD to −−→CiE is opposite then a self-intersection exists. If they have the same direction then no self-

intersection exists as shown in the right image of Figure 4.13. Once there is a self-intersection,

we reduce the shift value to 4 instead of 12 in the second pass of curve detection. If the self-

intersection still exists, we keep this corner, otherwise we use the general approach to test it.
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4.3.8 Shifting Resampled Points

Resampling the input stroke is necessary to find the corners in our system, but it will distort the

original stroke, especially at some corners. The worst case is when the real corner is located

between two resampled points, like in Figure 4.14, making the corner look like a curve. One way

to alleviate this problem is shifting the resampled points to move one of them closer to the corner.

Figure 4.14: An example of distortion with a resampled stroke: the initial stroke (left) and the
resampled stroke (right).

In our corner finder, we resample the input stroke twice: the first time setting the first raw point as

the first resampled point, and the second time shifting all the resampled points backward half the

interspacing distance. Next we find all the corners in these two resampled strokes and merge the

two corner sets. The distance between a resampled point to a real corner is, at worst, one fourth the

interspacing length. Based on the sampling rate from our data, we found that two time shifts were

sufficient for our approach. However, more shifts might be needed with lower sampling rates, a

possibility that we plan to investigate as part of our future work.

With this approach, we will see an increase in false positives during the bottom-up part of the

algorithm (i.e., initial corner set calculation using straws). However, the top-down component (i.e.,

the collinear test and curve detection) is not sensitive to the resampling rate, since the collinear test

utilizes ratios rather than Euclidean distances and curve detection examines angles relative to each

other.
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4.3.9 Choosing Thresholds

Our corner finder depends heavily on the parameters used in the algorithm. Optimizing these

parameters is essential to the accuracy of the system. Different parts of the algorithm have different

thresholding requirements, and we describe how to find and set values for the most important

parameters in this section.

The parameters used in interspacing between resampled points, the window size for computing

straws, and the threshold for finding initial corners come from the original ShortStraw paper [93],

and they work well in our algorithm. Thus, we chose to utilize these values in our work.

There are several threshold values used in the collinear testing procedures to find missing corners

and remove false positives. The general strategy for computing these thresholds is to find the

appropriate collinear ratio r using equation 4.2 on the training dataset. For the collinear test used

to find missing corners, we find the maximum r for all of the missing corners in the training dataset.

As in Figure 4.1, in order to add the missing corner C, we must make sure the stroke segment from

the previous corner A to the next corner B is not a line, which means the ratio must be smaller

than the chosen threshold. Based on our training data, the ratio of 0.975 was set as the threshold to

ensure all these missing corners are added to the corner list.

The first pass of the triplet collinear test is used to remove false corners that specifically stem

from the consecutive false corner problem (e.g., F in Figure 4.4). To find the appropriate threshold

for this test, we find all of the consecutive false negatives in the polyline training data using the

ShortStraw algorithm with 0.975 as the threshold for the first collinear check. We then compute

the collinear ratio r for each stroke segment between the adjacent missing corners and take the

minimum as the threshold. Using our training data, we set the threshold equal to 0.988.

The second pass of the triplet collinear test is used to try to minimize the number of false positives
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without adding any false negatives using the polyline training data. This condition is important

because we focus on only false positives in the curve detection component of IStraw. To find the

appropriate threshold for this test, we

1. find all the false negatives in the strokes using the IStraw algorithm with a triplet collinear

test threshold of 0.95 (taken from the original ShortStraw algorithm) in pass 2 and without

curve detection

2. compute the collinear ratio r for each stroke segment starting from the corner before the

false negative and ending at the corner after the false negative

3. separate corners into four groups:

(a) corners far from their adjacent corners (index difference larger than ten) and drawn

slowly (time of the corner point is larger than 2×meanTime)

(b) corners that are far from their adjacent corners but are drawn fast

(c) corners that are drawn slowly but not far from their adjacent corners

(d) the remaining corners

4. find the maximum ratio for each group and keep the remaining corner’s ratio as the basis

threshold. The remaining thresholds are used when corners fall into the first three groups,

defined by stroke speed and corner index differences.

For our implementation and training data, the ratios for each group are 0.9826, 0.98, 0.9813, and

0.9747 respectively.

For the curve detection part of our algorithm, we need to choose good ”shift” values for each of

the two passes. Recall that a shift value is an integer representing the index difference between a
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corner and a resampled point. This value is used to find the resampled points to the left and right

of a candidate corner, which points are then used to compute α. In our case, the best shift value

for each candidate was computed by searching for the minimum α value if the candidate is a false

corner and the maximum α value if it is a real corner. Based on our training dataset, we found that

the mean of the observed best shift values was 12, and thus have chosen this as the shift we use

in computing α.

The best β, as defined in Section 4.3.7.0.1, is the local maximum angle defined about a false corner

and the local minimum angle for a real corner. To find β we need to know what the relationship

is between the shift value used in calculating α and the index difference of β to the candidate.

We define the ”shift” value used in calculating α as the variable X and the index difference for

calculating β as variable Y . Since the relationship between X and Y is Y = kX , we can use

least squares to find k. In our case, k = 1/3 and the indices to get β are the testing corner index

plus/minus the shift value used in calculating α divided by three.

At this point, we have initial shift values for calculating α and β. However, as discussed in Sec-

tion 4.3.7.0.1, β will be greater than α for a false corner on a curve if the shift value is chosen

wisely and the candidate is none of the special cases. Unfortunately, a real corner whose β is also

larger than α is more likely to be incorrectly deleted. To get a reasonable threshold for β in the first

pass of the curve detection process, we need to analyze these real corners to delete as many false

positives as possible without creating any false negatives. We can find these correct corners, as

shown in the left image of Figure 4.15, using the constraint β > α. After obtaining the set (α, β),

points from all the training data with or without curves, our goal is to find the upper boundary

β = a + bα of all the real corners to guarantee there will be no false negative after our first curve

detection pass. We use the least squares method to get a line β = a′+b′α that best fits the data. We

then vertically shift this line upward to the point farthest away from the line to get the boundary

we need. For the training data we used, we found β = 36 + 0.85α to be the threshold needed to
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ensure all the correct corners are left after the first pass.

Figure 4.15: Our method for choosing the upper boundary of all the real corners (left) and the
lower boundary of all the incorrect corners (right).

In the second curve detection pass, we are interested in minimizing both false positives and false

negatives to obtain the highest all-or-nothing accuracy possible. Some of the candidates on the

curve have such a subtle increase from α to β that they may be left as a real corner, so we need to

find a lower boundary for all these false candidate corners in order to eliminate them. To do so,

we employ the same approach as with the first curve detection pass. Since all the real corners are

below the line β = 36 + 0.85α, the incorrect corners under this line may be left as correct corners.

In this case, we enlarge the boundary from β < 36 + 0.85α to β < 40 + α to find all the false

positives from our training set that may be decided as real corners during this pass (see right image

of Figure 4.15). Again, based on the training data, we obtain a second line to fit the data of all

these incorrect corners and shift it down slightly to β = 16.2 + 1.01α, to provide a lower boundary

of all the observed false corners. This lower boundary can guarantee no false positives. Finally, we

got β = 26.1 + 0.93α, a line having the mean slope of the two boundaries and going through the

intersection of them, as the threshold needs to minimize both false positives and negatives. These
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lines are graphically depicted in Figure 4.16. The real corners above the line, β = 16.2 + 1.01α,

will be false negatives and the incorrect corners below this line will be false positives.

Figure 4.16: Our method for choosing the threshold in the second pass.

4.4 IStraw Evaluation

To evaluate IStraw, we conducted several experiments comparing its corner finding accuracy to the

original ShortStraw algorithm as well as to MergeCF and Sezgin’s scale space algorithm. Note

that both MergeCF and Sezgin’s algorithm directly support corner finding in strokes with arcs and

curves. In addition we analyzed IStraw’s computational complexity to determine if its running

time was on par with ShortStraw.
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4.4.1 Evaluation Tests

As in [93], we use two different measures to determine the accuracy of IStraw. The first one,

”Correct Corners Accuracy”, described in [74], is equal to the number of correct corners found

divided by the total number of correct corners a human would perceive. The second one, ”All-

or-Nothing Accuracy”, defined in [93], takes false corners into account, which means a correct

stroke should have no false positives or negatives. This accuracy metric is calculated by dividing

the number of correctly segmented strokes by the total number of strokes.

We used the test data, 244 polyline strokes in [93] to configure the polyline ink stroke part of our

algorithm. This set of data, consisting of the 11 shapes shown in Figure 4.17, were drawn by six

users. In addition, we used data gathered from six students, 120 stokes in total, using the shapes

shown in Figure 4.18 to configure the curve detection component of our algorithm.
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Figure 4.17: The 11 polyline shapes used for corner finding testing from the original ShortStraw

dataset. There are 87 corners in total, including the start and end points, which are marked with

red points.
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Figure 4.18: 10 new shapes with curves used for corner finding testing. There are 59 corners in

total, including the start and end points, which are marked with red points. This data was used for

both training and testing.

To test IStraw, we collected two separate datasets using a Compaq TC4400 tablet computer with

a 1.83 GHz Intel Core2 processor and 2 GB of memory. The first dataset used strokes from 15

users (6 females and 9 males) from the computer science, electrical engineering and mechanical

engineering fields. Nine out of the fifteen users had tablet PC experience. Users wrote samples for

21 shapes used for testing including the 11 found in Figure 4.17 and the 10 in Figure 4.18. After

getting familiar with the system, each user was asked to draw each shape four times. 1260 strokes

were collected but 13, examples of which are shown in Figure 4.19, were removed because they
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were not properly drawn like the required shapes in Figures 4.17 and 4.18. Thus, our first test set

contained 1247 strokes, 652 from polyline ink strokes and 595 from curve ink strokes.

Figure 4.19: Some examples of removed strokes, but we can see they are all correctly segmented
with IStraw.

Our second dataset was gathered to have strokes across a wider range of users and shapes. This

dataset had strokes from 10 users (5 female and 5 male) using the 10 additional shapes shown in

Figure 4.20. Note that only two of the ten users had participated in the previous data collection

task. The testing process was the same as the previous one. Each shape was drawn 4 times by each

user, so 400 strokes were collected. Since 5 strokes were removed (Figure 4.19), the second data

set contained 395 strokes in total. None of these strokes were used in the training process for our

corner finding algorithm.

In addition to ShortStraw and IStraw, we tested two other algorithm variations. The first one is

ShortStraw+C (ShortStraw combined with our curve detection approach) and the second is IStraw-

C (our algorithm without curve detection). To make a thorough comparison, we also tested two

other, state-of-the-art corner finding algorithms: MergeCF [94] and Sezgin’s scale space algo-

rithm [75], both of which are able to handle strokes with curves.

75



Figure 4.20: 10 additional new shapes used for corner finding testing. There are 65 corners in
total, including the start and end points, which are marked with red points. This data was used for
testing only.

4.4.1.0.4 Original ShortStraw Data

The results in Table 4.1 are based on the test set used in the ShortStraw paper; we also used it to

help set the thresholds for IStraw-C. We chose to use this data to ensure our implementation of the

original ShortStraw algorithm had the same results as Wolin et al. [93]. The results show that our

ShortStraw implementation did indeed give us the same results as [93] and that IStraw-C obtains

very high correct corners and all-or-nothing accuracy with optimized parameters.
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Table 4.1: Accuracy results for ShortStraw and IStraw-C, our algorithm without curve detection.
The results are for the data used in the original ShortStraw paper.

ShortStraw IStraw-C
False Positives 32 2
False Negatives 38 1
False Strokes 63 3
Correct Corners Accuracy 0.979 0.999
All-or-Nothing Accuracy 0.741 0.998

Table 4.2: Accuracy results for ShortStraw, IStraw-C, ShortStraw+C, IStraw, MergeCF and the
Sezgin corner finding algorithms (652 polyline strokes).

ShortStraw IStraw-C ShortStraw+C IStraw MergeCF Sezgin
False Positives 32 2 21 2 10 23
False Negatives 93 12 94 0 20 461
False Strokes 106 14 99 2 23 286
Correct Corners Accuracy 0.982 0.997 0.982 1.000 0.996 0.911
All-or-Nothing Accuracy 0.837 0.979 0.848 0.997 0.965 0.561

4.4.1.0.5 Polyline Ink Stroke Test – Dataset One

For the polyline ink stroke test, we wanted to examine IStraw with and without our curve detection

extension to determine if it would cause any accuracy degradation for polyline ink strokes. We

were also interested in the accuracy of other corner finding algorithms. Table 4.2 shows the results

of testing these six algorithms on the polyline stroke part of our first dataset.

4.4.1.0.6 Curve Detection Tests – Dataset One

To test whether IStraw works better for strokes containing curves, we conducted experiments with

the stroke data from dataset one with curves. Note that shapes we tested were the same as the
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Table 4.3: Accuracy results for ShortStraw, IStraw-C, ShortStraw+C, IStraw, MergeCF and the
Sezgin corner finding algorithms (595 strokes with curves).

ShortStraw IStraw-C ShortStraw+C IStraw MergeCF Sezgin
False Positives 8351 8613 39 5 663 1090
False Negatives 35 10 92 5 32 196
False Strokes 595 595 103 9 294 424
Correct Corners Accuracy 0.990 0.997 0.974 0.999 0.991 0.944
All-or-Nothing Accuracy 0 0 0.827 0.985 0.506 0.287

training shapes (see Figure 4.18). Table 4.3 shows the results of testing these six algorithms for the

strokes with curves.

4.4.1.0.7 Tests on Dataset Two

Table 4.4: Accuracy results for IStraw, MergeCF and the Sezgin corner finding algorithms (395
strokes of new shapes).

IStraw MergeCF Sezgin
False Positives 13 139 172
False Negatives 7 4 116
False Strokes 19 90 184
Correct Corners Accuracy 0.997 0.998 0.955
All-or-Nothing Accuracy 0.952 0.773 0.534

In our previous tests, we showed IStraw has higher accuracy over the other corner finding algo-

rithms. However, the shapes we tested were also used in training. To explore corner finding accu-

racy on strokes that were not used in tuning the corner finders, we used a new testing dataset from

the shapes in Figure 4.20. Table 4.4 shows the results of testing the three curve-stroke recognizers:

IStraw, MergeCF and the Sezgin algorithm on dataset two.
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4.4.2 Analysis of Computational Complexity

In order to get higher corner finding accuracy, we developed IStraw by making several refinements

and adding new components to the ShortStraw algorithm. The question arises as to how these

changes might increase the computational complexity of our approach compared with ShortStraw.

To investigate this, we examine each change made and compare the computational complexity

between our algorithm and ShortStraw. First, we set the number of raw points to M and number

of resampled points to N . We further assume that the number of corners is C.

During resampling, we use the same algorithm as the one in [93] and the runtime is O(M+N). For

the polyline corner finding component, we did not modify the bottom-up component of the O(N)

algorithm, but use the speed data to add more potential corners. We have many enhancements in

the top-down approach, but all these will not affect the computational complexity, so this part runs

in time O(CN) and the running time for the worst scenario is O(N2). To avoid consecutive false

corners, we need one more loop, whose iteration time is C, the number of corners.

The last part of our algorithm is curve detection, and the algorithm contains two loops to remove

the unnecessary corners. These two loops are similar. The iteration number of each one isC, so the

computational complexity is O(C). In conclusion, the computational complexity of our algorithm

is O(M +N2 + C), exactly the same as ShortStraw.
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CHAPTER 5: METHODOLOGY

5.1 Introduction

The goal of this dissertation is to create a 3D human model that looks like a specific participant,

which means that the 3D model has accurate geometry based upon the collected real world data and

a correctly mapped image texture. The hardware setting of our system is simple, and it is composed

of one Microsoft Kinect and a regular personal computer. With the exception of the algorithms that

we implemented in our system mentioned in Chapter [?], all components of what we introduce in

this chapter are novel algorithms and processes or involve significant improvements to existing

techniques.

In order to generate 3D human models for the participants, we use one human template, which is

a triangle mesh attached to a skeleton. Our modeling technique is similar to the approach created

by Kraevoy et al. [48] in 2009. The advantage of this approach is that the relationship between

the vertices and the skeleton won’t change, so the deformed model is still attached to the original

skeleton. Under these conditions, we can control the generated human model with human tracking

techniques or other kinds of input data. One major difference between our method and Kraevoy’s

is that we use the Kinect to get the contour of the real person automatically instead of drawing

a contour. We also improved some existing contour matching technique with modified IStraw

algorithm and the process to generate a texture map for the 3D human model.

In this chapter, we will emphasize our unique contribution to the human modeling and related

research areas. The first section is an overview of our method and of each stage of the system

pipeline. We then will present the detail of the main challenges addressed here, including contour

extraction, contour segmentation, and texture mapping.
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5.2 Main Pipelines

This section presents the main pipeline of our human modeling system and each modules’s func-

tionality. Some of the modules use existing work mentioned in the previous chapter; the rest have

our own unique contributions, which we will describe in this section. The main pipeline is divided

into two parts based upon whether the computation can be pre-executed. One advantage of mean-

value encoding [47] is that the encoding result will be unchanged if one focuses on a single t3D

model. Since we only use one template in our system, we only need to encode this model once

and save the result. Whenever a new session starts, our system will load the saved data for the

decoding process.

Figure 5.1 (a) displays the three pre-processed steps: anchor deciding, model encoding, and data

saving. The first step is to determine the anchors of the human template and save these points to

a XML file. The properties of the non-anchor vertices are then calculated with the mean-value

encoding algorithm, see Section 3.5. In order to get rid of the expensive encoding process for each

test, we save the encoding to another XML file.

Figure 5.1 (b) shows the remaining processes for human modeling. These processes are required

for each sessioin. First of all, the system needs to load pre-computed data, including the human

template, the anchors information, and the encoding data. The participant then stands in front of the

Kinect with the initial pose, which is the same as the default pose of the template (see Figure 3.1).

Once the participant’s pose matches the requirement, the color image and depth image from the

Kinect are used to extract the contour of the participant. The contour is segmented into eight

pieces, the details of which process is presented in Section 5.3. Points on each contour segment

are matched to one anchor vertex and then the model decoding starts by following the mean-value

decoding approach mentioned in Section 3.5. After we get the geometry of the participant, we

can generate the texture map based upon the color image from the Kinect and compute the texture
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Figure 5.1: Main pipeline of our human modeling system. (a) Pre-computed part. (b) Steps for
each test.

coordinate of each vertex.

5.2.1 Anchors Deciding

Anchors are those vertices that won’t be affected by the reshaping algorithm. During the 3D model

reshaping process, these vertices are either fixed or set by the user or real world data input. The

remaining vertices in the 3D model are changed based upon the new location of these anchors.

In our system, there are two kinds of anchors: one kind includes vertices that will be matched to

the real world data directly; the other includes vertices that won’t change shape. In order to better
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distinguish these two kinds of anchor vertices, we call the first kind edge anchors and the second

kind end anchors.

When the camera is put in front of the 3D human template and facing it, the edge anchors will be

located on the silhouette of the model and this is the reason for naming these vertices edge anchors.

Instead of manually marking these vertices, we introduce an edge anchor finding algorithm. The

human template is rendered as white on a black background, so the 2D contour can be easily

identified. The projected position of each vertex is calculated with the matrix, which is the same

as the camera matrix for the rendering. The vertex vi, whose projected position pi is close enough

to the contour, could be an edge anchor. What we mean by close enough is that the minimum

Euclidean distance di between pi and the contour is below a threshold of one pixel. Ideally, pi is

located on the contour and di is equal to zero. However, the rendering output is rasterized, so we

set our threshold to tolerate the error introduced by rasterization and the calculation accuracy. So

far we can get all the anchor candidates, but some vertices, like vertex D in Figure 5.2, must be

removed from the list. Vertex D is close enough to the contour and it will be an anchor if there is

no B, which is closer to the contour. One false anchor can be detected when it meets the following

conditions. Suppose this anchor candidate is D, and more than two of its neighboring vertices, A,

B, and C, are anchor candidates. Furthermore, verticesA and C are not connected, andB is closer

to the contour pixels. In this case, B is an anchor and D is rejexcted as a false anchor candidate.

The end anchors are vertices belonging to the 3D human template’s head, hands, and feet. These

end body parts cannot be deformed based upon contour information. The head shape is not related

to the facial features. For example, a person with big head may have a small nose, but a person with

a small head may have a big nose. The head contour can also be affected by the hair style. We tried

deforming the template’s head based on a female head contour, and the result was unacceptable.

The whole face became contorted, because the left canthus (corner of the eye where the upper and

lower eyelids meet) is stretched to the upper-left and the nose is shifted to the right. Therefore, we
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Figure 5.2: An example of false anchors. Gray squares are the contour pixels, Red points are the
projected positions of anchor candidates, vertex A to D, and blue lines are connections among
these vertices. Vertex D is a false positive.

won’t deform the face but only transfer, scale, and rotate it based upon the face tracking results

from the Kinect. Although the face features are incorrect, the result looks fine with the texture.

For the hands and feet, we transfer them to the right location without any reshaping. The contours

of the hands and feet are related to the movement of fingers and toes, and the participant will wear

shoes unlike the human prototype, who is bare foot. Furthermore, it is impossible to get a precise

contour of these parts, since they have signifant details, are lost due to the low resolution of the

color image.

5.2.2 Contour Extracting

In order to get the contour of the user automatically, we took advantage of the depth camera

provided by the Kinect SDK and its human tracking technique. Before running the MR system,

we pre-compute the angle range of each tracked bone by fitting it to the initial pose. When we

start the system, the Kinect tracks the participant in the scene and compares his/her tracked bones
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to the pre-computed angles. After the pose is matched, the system will load the depth image and

corresponding color image from the Kinect as the input to the contour generating function.

Figure 5.3: Contour extracting pipeline: (a) raw participant edge map; (b) automatically generated
trimap; (c) generated alpha map; (d) contour pixels.

Figure 5.3 shows the result of the automated contour extracting process. The depth image and the

human tracking information can provide a rough outline of the tracked participant, as shown in

Figure 5.3 (a); however, this raw data is not accurate due to errors in the depth image. This raw

outline will be used to determine the trimap of the participant, as seen in Figure 5.3 (b). With the

trimap, depth information and the color image, our matting algorithm is able to generate a precise

matte of the participant, as displayed in Figure 5.3 (c). The generated matte determines the contour

of the participant with a threshold setting, as depicted in Figure 5.3 (d).
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5.2.2.1 Rough Contour Shift

The depth map and human tracking information from Microsoft Kinect SDK 1.5 can determine

the pixels of the depth map belonging to the participant. These pixels will be mapped to the

corresponding pixels of the color image with the mapping function provided by the Kinect SDK

and a coordinate transfer function. From Figure 5.4 (a), we can see that the raw edge marked with

red is not well-aligned to the color image, with the major issue being pixel shifted to the right of

the image borders.

Figure 5.4: Raw edge from Kinect depth data and human tracking information: (a) red pixels
transferred from depth image space to the color image space only with the Kinect SDK mapping
function. (b) green pixels shifted to left to be closer to the image borders than the red pixels in (a).

For our process to start, we ask the participant to stand at a specified target location to get an addi-
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tional transfer function to better map the depth data to the color image. We suppose the minimum

column index is jmin, and the maximum column index is jmax. After getting the mean value of

shiftness of the pixels, whose column index is j on the left, where j < jmin + 5, and pixels on the

right, where j > jmin − 5, we can estimate the linear relationship between the shiftness jshift and

the column index of each pixel. The linear equation to compute the shiftness is:

jshift = r ∗ (j − jmin + 0.5 ∗ jdiff )/jdiff , (5.1)

where jdiff = jmax − jmin, and r is 4. This transfer function will shift each pixels of the partic-

ipant to the left based upon the column information of each pixel of the participant. As shown in

Figure 5.4 (b), the result marked with green after the shifting function is more accurate and able

to provide a more reasonable trimap. In order to configure this equation, we compared the shifted

rough contour with the manually marked real contour on the color image of the training data. Cur-

rent parameters provides the minimum mean Euclidean distance between the shifted and the real

contours.

5.2.2.2 Trimap Generation

The shifted pixels from previous step can generate a rough contour of the participant, like Fig-

ure 5.5, in which the pixels outside the human body are marked with black; the pixels on the edge

of the participant are grey; and the pixels inside the body are white.

The grey edge will be expanded to form the unknown area of the trimap; the left black area will be

the known background; and the left white area is the foreground. The easiest approach to generate

the unknown area is to set a constant width w, and expand each grey pixel to a w × w window.

The initial contour pixel is in the center of the window. Suppose the pixel,pij , is located at the
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Figure 5.5: Raw contour map of the upper body of the participant.

ith row and jth column of the color image, then any pixel pxy with i − w/2 ≤ x ≤ i + w/2 and

j − w/2 ≤ y ≤ j + w/2 will be unknown pixel in the trimap.

The window size w is chosen carefully. If the window size is too small, some pixels belonging

to the foreground may be marked as background on the trimap, and vice verse. However, if the

window size is too large, the increasing unknown area will reduce the accuracy of the matting

result and increase the execution time of the algorithm. In our approach, we set w to 7, which will

produce the best result.

5.2.2.3 Matting Result Postprocess

The result of the matting process can provide a precise contour of the participant with the trimap

from the previous step along with the color image and depth image from the Kinect. Our matting
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approach is based upon the global sampling method of the natural image matting proposed in

[38]. However, we use an automatically generated trimap from our previous step instead of a user

specified trimap to get the background and foreground samples. The details of the single image

matting will be discussed in Section 3.3.

The result of the mapping algorithm is an alpha map, in which each pixel is represented by an

integer from 0 to 255. The larger the alpha value is, the more likely the pixel belongs to the

foreground, which is the participant in our system. The generated alpha map will provide an

accurate matte of the participant from the background by setting a threshold to 127. The contour

pixels are the pixels of the participant but having neighbor pixel(s) that belong to the background,

and the rough normal of each contour pixel is computed as well.

The generated alpha map has many errors caused by an unreliable depth map and the mapping be-

tween the depth and color image. In Figure 5.3 (c), we can see that the alpha map is not continuous

on some neighboring pixels. These errors will falsely mark some background pixels as foreground

or vice verse. The reason is that the colors of some foreground and neighboring background pixels

are close. The resulting contour of the original alpha map will have significantf noise.

In order to get a more reasonable contour, we use an algorithm to smooth the alpha map. The new

alpha value of one pixel pi is the weighted sum of neighboring the pixels’ original alpha value in a

limited radius of 5 pixels. The weight of each neighboring pixel pj is based upon a 2D Gaussian

function:

W (pi, pj) = A× exp(−(pj.x− pi.x)2

2σ2
− (pj.y − pi.y)2

2σ2
), (5.2)

where A = 0.0522 and σ = 1.7607. The parameter σ determines the decay speed of the Gaussian

function. The larger σ is, the more smooth the resulting alpha map will be, since the new alpha

value weighs more neighboring pixels’ value. The best σ should be able to remove noise and

preserve the curvature feature of the contour. The other parameter A is based upon σ to make sure
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that the sum of all the weights is 1. We compared the mean Euclidean distance d between the

extracted contour and the real contour of training data to configure the parameters for the Gaussian

function. This parameters can provide the best result, minimum mean d of all the training data.

5.3 Contour Segmentation

In order to improve the accuracy of the matching between the contour of the participant and the

anchors of the 3D prototype, we use the Kinect skeleton tracking data and IStraw-based algorithm

to segment the contour. Unlike the contour in [48], which preserves the curvature feature of the

template model, the contour of the participant in our system can be quite different from the proto-

type model. These differences are caused by different body shapes and clothes of the participants.

Therefore, simply copying Kraevoy et. al’s matching algorithm will result in many mismatches.

We segment the contour into several parts and match these segments with anchor sub-paths to

increase the reliability of the matching criteria.

5.3.1 Contour Segmentation Algorithm

IStraw is a general corner finding algorithm for pen-based interfaces, but our contour segmentation

problem only needs to determine which body part each contour point is corresponding to. Unlike

sketch-based interface, our system does not have time information of points on the contour. How-

ever, we have extra information not available in the sketch-based case, like the rough shape of the

contour, and the tracked skeleton of the participant. We need to take advantage of these extra data

and create a more robust and more accurate contour segmentation algorithm for a specific human

pose (Figure 3.1).

Our contour segmentation process includes three steps:
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Figure 5.6: Contour segmentation process. (a) Initial contour path. (b) After skeleton based seg-
mentation. (c) After corner based segmentation.

Resampling is the process to resample the initial contour path, as Figure 5.6 (a).

Skeleton based segmentation is the process to remove some contour points and group the rest

into five contour segments. As shown in Figure 5.6 (b), these five segments start from the five red

dots.

Corner based segmentation is the process to find some specific corners and further segment the

contour into eight paths, as Figure 5.6 (c).

5.3.1.1 Resampling

Before segmenting the contour into different body parts, the sorted contour pixels is resampled

into points with the same interval. This process is necessary for two reasons: the first is to remove

the noise of the path for the accuracy of the corner finding algorithm, and the second is to decrease
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the density of the contour points for the efficiency of the matching algorithm.

The interval distance between two adjacent resample points is chosen carefully based upon the

requirement of both corner finding and matching algorithms. If the interval is too small, the corner

finder may detect some noise as corners, but if the interval is too big, some corner may be missing

from the result. The smaller the interval is, the slower the matching process will be, because the

computational complexity of the matching algorithm is proportional to the number of resample

points. Furthermore, each anchor must be mapped to at least one resample point, so the number of

resample points should be more than the number of anchors. Unlike IStraw, which should works

for strokes of different size, our human modeling system take participants’ contour with similar

length as input, since human beings’ contour size won’t be quite different. Therefore, we set the

interval between sample points to a constant number of pixels. After testing different parameters,

we determined that three is the best trade-off. If the interval distance is 4 pixels, there might be

more anchors than the resample points. If the interval distance is 2 pixels, it is easier to introduce

false positive into the corner finding step.

5.3.1.2 Skeleton Based Segmentation

After resampling the contour path, we can start the segmentation with the skeleton data of the

participant. In this step, we will remove the contour points of the end body parts, including head,

hands, and feet, and segment the contour into five parts, including neck to left wrist, left wrist to

left ankle, left ankle to right ankle, right ankle to right wrist, and right wrist to neck (Figure 5.6

(b)).

The skeleton data from the Kinect can provide the 3D positions of the head, neck, hands, wrists,

feet, and ankles. These points are projected to depth map space and then mapped to color image

space. We also compute the direction from neck to head dhead, left wrist to left hand dlhand, as well
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as the same process for drhand, dlfoot, and drfoot. Each resampled contour point will be checked

whether it belongs to one of the five body parts. Take the head for example, one contour point

pi is on the head and will be removed from the contour path, when the distance between pi and

the neck point on the image space pneck is less than 80 pixels and pi is on the head direction

(pi − pneck)ḋhead > 0. The same process will be executed for hands and feet, except the distance

limitations are 50 pixels for hands and feet instead of 80. These limitations are determined by the

observed maximum size of head, hands, and feet.

The contour points continuously belonging to one body part and two neighboring contour points

cannot be on two different end body parts. Suppose the folling are three consecutive contour points

,pi, pi+1, and pi+2, then it is impossible for pi and pi+2 to be on one body part while pi+1 belongs

to another. The end body parts are not connected to each other as, for instance, there are shoulder

and arms between head and hands. Therefore, if pi is on the head, pi+1 cannot be on the hands or

feet.

Previous features enable us to remove these end body parts and segment the contour into five paths

simultaneously. The initial contour path always starts from the head, so we will check whether

contour points belong to the head one by one. If the point is not on the head, it will be added to

the first contour segment. After this, the following points will be tested for being on the left hand.

If these continuous points are not, they will be added to the first segment, and once one of them

belongs to the left hand, the first following point not on the left hand will be the first point in the

second segment. The same process will be executed for the left foot, right foot, right hand, and

head in sequence.

93



5.3.1.3 Corner Based Segmentation

After this, a skeleton-based segmentation algorithm based upon IStraw [96] is used to further

divide the contour into more segments. In 5.6 (b), we can see that there are three obvious corners

on the contour path 1, 2, and 3, including armpits and crotch. These points are hard to be identified

correctly by the tracked skeleton. Take left armpit for example, it is close to the left shoulder joint,

but it is impossible to get the precise searching direction. In order to find these corners, we need to

take advantage of the contour shape of the fixed initial pose.

The initial IStraw algorithm is proposed as the initial step for gesture recognition without any

knowledge of the stroke. The testing stroke of IStraw can be any shape and any size, but the

contour for segmentation in our system has similar shape and size. By analyzing the contour paths,

we notice the difference between them and the ambiguous strokes tested in the IStraw algorithm.

• There will be only one most noticeable corner on the contour path from 1 to 3.

• These corners may be located on a short curve instead of a obvious peak.

• These corners have sharp angles between themselves and two adjacent corners. The angles of

armbits are less than 90◦, and the angle of the crotch will be smaller than 60◦.

• There is some noise caused by cloth folds of the participant.

These new features require new thresholds and process adjustments for IStraw to provide accurate

and robust results.

After adjusting corners (see Section 4.3.5), we run multiple triple collinear tests for any three

adjacent corners (including the start and the end points) until there is only one corner left. In

order to remove noise caused by cloth folds instead of a real corner, we initialize the threshold

for collinear test as 0.975, and then decrease it during each iteration. We change the threshold

gradually instead of setting a small threshold at the beginning, because small thresholds may result

in deleting the right corner. A false corner after the right corner may reduce the reliability of the
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collinear test – the detailed explanation is located in Section 4.3.4. The curve detection process

will be removed, since it may delete the corners that we are looking for.

5.3.2 Analysis

The parameters for corner based contour segmentation is different from IStraw. IStraw may find

corners around the cloth folds, but we only need corners around armpits and crotch of the partic-

ipant. In order to configure better parameters for segmentation, we used new training data of the

real person instead of the strokes in [96].

Segmenting the contour path before matching to anchor vertices can improve the matching result.

The human prototype is modeled with a tight T-shirt and shorts, but the participant may wear a

jacket or pants. The different clothes and cloth folds may introduce extra curves, which can cause

mismatch or shiftiness, since Kraevoy et. al’s algorithm [48] uses normal difference as a matching

criterion (Section 3.4.1). Furthermore, more contour segments mean the initial alignment will be

more accurate. This improvement will enhance the credibility of the proximity of the matching

criteria (Section 3.4.1). These matching errors will bring further problems in the generated 3D

human model.

Figure 5.7 shows the generated 3D models with different contour segmentation. The first 3D hu-

man model is the best and it comes from the full segmentation algorithm to generate eight contour

paths. In Figure 5.7 (b), we only use the skeleton-based segmentation to divide the contour into

five segments and remove the corner segmentation step. The second model is okay, but there is

an obvious artifact around the right armpit, which overlaps the contour and misclassifies some

background pixels as part of the human texture. We also test the result without any contour seg-

mentation. The last human model (Figure 5.7 (c)) is the worst, especially the wrists, hands, and

the right armpit. The wrists are too slim, and the hands are shifted to the wrong location. From
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Figure 5.7: The generated 3D model of different segmentations. (a) Skeleton-based and corner-
based segmentation. (b) Skeleton-based segmentation only. (c) No segmentation.

the comparison, we notice that the mismatch on a flat contour area won’t cause many problems.

However, any trivial mismatch will lead to noticeable errors in the generated human model.

The end body part removal will cause contour path disconnects on the wrists and ankles. If the

mismatch happens around the disconnect points, it will result in the wrist or ankle of the generated

human model being twisted. Figure 5.8 is the demo of the simplified left wrist area, and the real

prototype is more complicated. The correct matching is vj to pi and vk to pi+1 and the correct

modeling result is shown in Figure 5.8 (b). However, one mismatch (vj−1, pi) will cause further

wrong match pairs (vj, pi+1). This error will make the 3D model become slim and twist as seen in

Figure 5.8(c).

Even when the contour points are continuous, any mismatch around the contour corners, like

armpits and crotch, may make the generated 3D models be bloated. In Figure 5.9 (b), the ver-
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Figure 5.8: Left wrist area modeling demo. Contour points are marked with red dots, anchor
vertices are marked with blue dots, and 3D model is the black triangular mesh. (a) Contour points
and 3D prototype. (b) Generated model with correct matching. (c) Generated model with incorrect
matching.

tex vj is mismatched to pi+2 instead of pi, which is not matched to any anchor point, and the

generated 3D model will be over the contour.

False corners will cause false contour segmentation, and result in serious errors in the generated

model. In Figure 5.10, we use the original IStraw algorithm for corner finding, and it will output

the red dot on the left image as a corner, because of a cloth fold on the pants. The following

step takes the red dot as the right armpit and segments the contour sub-path there. Therefore, the

anchor vertices from the right ankle to right wrist will match to the wrong contour point, and the

corresponding body parts are improperly modeled. As shown in the right image of Figure 5.10, the

generated right leg and arm do not match the input contour at all.
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Figure 5.9: Left wrist area modeling demo. Contour points are marked with red dots, anchor
vertices are marked with blue dots, and 3D model is the black triangular mesh. (a) Contour points
and 3D prototype. (b) Generated model with correct matching. (c) Generated model with incorrect
matching.

Figure 5.10: Finding corner with original IStraw algorithm. Left: False corner marked with red
dot. Right: 3D human model generated from the contour segmentation on the left.
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CHAPTER 6: EVALUATION

6.1 Interface Design

In order to trigger the human modeling process automatically, the participant must stand in an

initial pose. When the system starts, the color video streaming from the Kinect will be displayed,

so the participant can see his/her movement. However, this is not enough to guide the participant

to the right pose, especially for those who are not familiar with the system. We decided to semi-

transparently render the human template in the initial pose at the location where the participant is

supposed to stand. The rendering color of the model will change based upon the status of the data

collecting process. Figure 6.1 shows the work flow of the interface. The first state is to help the

participant to adjust his/her position or pose. Once the position and pose are matched, the interface

Figure 6.1: The work flow of the interface for human modeling.
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will notify the participant to hold the pose for three seconds and then will save the data required

for the modeling process. The next state is human modeling, and the participant does not need to

hold the pose any longer. If the human model is created successfully, the human template will be

deformed to the generated model. If not, the system will return back to the initial state.

Figure 6.2: The initial state of the interface for our human modeling system.

The initial color of the 3D human template is dark yellow, (60, 60, 0), and the output video is the

sum of the model and the Kinect color streaming. As shown in Figure 6.2, the area with the human

template is lighter and more yellowish. Therefore, the participant is able to adjust his/her position

and pose based upon the template’s. The human prototype is semitransparent, so the participant

can see the prototype as reference and his/her own movement in the video. The rendering scheme
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and the color of the human template is chosen carefully. We tried wireframe rendering, but the

model looks scary, especially the face. The human template is only used as a reference and does

not need to look real, so we decided to render it as a flat surface without shading and shadows. The

color yellow is chosen because it is noticeable and is different from the colors used in the following

steps. Since the color is added onto related pixels of each frame, it will be hard for the participant

to see his/her movement inside the overlapped area if the chosen color is too bright. However, if

the color is too dark, it is hard to see the template as a reference. In both situations, the participant

cannot see the movement and the prototype’s pose clearly at the same time, so he/she may feel

frustrated when it takes a long time to pose correctly.

Figure 6.3: The second state of the interface for our human modeling system.
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Figure 6.4: The third state of the interface for our human modeling system.

Once the pose of the participant matches the initial pose, the human prototype will be rendered

with red, as in Figure 6.3. Then the participant must freeze until the prototype turns to green, as

in Figure 6.4. During these two states, the template is rendered with a bright color, because the

participant no longer needs both the template and the color streaming as references to adjust his/her

pose. The interface must provide a strong signal to notify the participant what to do. Generally,

the color red means stop and green means free to go, as with a traffic light. Therefore, we take

advantage of this common sense to help the participant to quickly understand the interface.

The system requires the participant to hold the initial pose for several seconds. This is essential
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to the consistency of the color image, depth data, and the skeleton data from the Kinect. When

the participant adjusts the pose, he/she will keep moving. If the system takes the available data

from Kinect immediately after the pose is matched, the participant may have moved, resulting in

saving different data. The Kinect has different latency and processing time for different types of

data. The color image is the fastest, because it is the raw data from the color camera and the only

latency is due to data transmission. The depth map will be slower, since the Kinect SDK needs to

analyze the input infrared data and corresponding pattern to generate the depth information. We

use the skeleton information from the Kinect SDK for pose matching. Suppose that the Kinect

SDK used the depth data at time td for human tracking and generated the skeleton data after a

delay of ts. If the matching process requires time tm and the delay to get the first color image after

the matching is tdc, then the color image used for human modeling is taken at tc = td + ts + tdc.

If the delay for the first available depth data is tdt, the tracking result and depth data used is taken

at tt = td + ts + tdt. The latencies between availability of these data will cause problems during

the contour extraction and contour segmentation processes. The generated trimap, which is based

upon the tracking result, won’t match the color image and can introduce significant errors to the

matting result. The alignment of the skeleton and depth data is essential to the reliability of the

contour segmentation.

Figure 6.5 shows the latency between the human tracking result, color image and depth data when

we save the first available data after the pose is matched. It is easy to notice the pose differences

of the arms, since the participant is moving her arm up and down to figure out the right pose. Our

solution is simple but effective. We change the prototype’s color to warn the participant to stop

moving, and employ a 3 seconds latency between the color changing and the input data saving.

When the prototype turns to green, it means the required data is saved and the participant can

move freely. If the participant is familiar with the system, one second is generally long enough

for the system to change the interface and the participant to react to the change. However, partic-
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Figure 6.5: Latency between different Kinect data: (Background) the color image; (Red) the out-
line of the participant’s tracking result; (Green) the saved skeleton information.

ipants, who are not familiar with the system, commonly need more time to notice the change and

understand what is happened. Therefore, we set the time interval to 3-seconds, which is safe for

the different levels of participants. The color used in the interface is chosen carefully as well. Red

is a common sign for stopping, while green means free to move, like the traffic lights.
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6.2 Test Process

Before running the formal test, I collected the test data of myself four times with the test system as

the training data. Each time, I am wearing different clothes to get rid of the ambiguity introduced

by clothes. The training data is used to debug the system and configure the parameters used in the

system. All the ground truth is manually marked, such as the real contour and the real corners.

The scheme used for choosing the parameters is discussed in the previous chapter along with the

algorithms.

The goal of the system test is to evaluate the accuracy of the human modeling results of using our

system. The usability of the system interface is not addressed in this evaluation process. The test

was held inside the Synthetic Reality Laboratory (SREAL) at UCF, and all the participants were

faculty members and students working in the lab. Therefore, most are familiar with the idea of

human modeling and have experienceof using the Kinect. There were ten participants in total, 2

females and 8 males. Figure 6.6 shows the silhouettes of the ten participants, and it is obvious

that their body shapes are quite different. For example, some of them have large heads, some have

wider shoulders, and some have long legs. The participants also wear different clothes, like short

sleeve T-shirts, long sleeve shirts, and flared leg pants. The body shape and clothes variance help

to put high demands on the reliability of the evaluation process, allowing us to test whether our

system works for most people or just a small group of people having specific body shapes.

At the beginning of each test, I tell the participant to stand at a specific location in front of a

Kinect and follow the initial pose of the human template displayed on the screen. Once the pose is

matched, the participant must hold the pose until the template on the screen becomes green. Then

the participant’s job is done. Our test system saves all the data into binary files used for the human

modeling process. Afterward, the system compares the results of different algorithms using the

same test input. The saved data include color image, depth image, color-depth matching informa-
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Figure 6.6: Silhouettes of the ten participants.

tion, human pixels, skeleton positions, and model face parameters.

• The color image is the 640× 480 rgb image from the color camera of the Kinect.

• The depth image is the 640 × 480 depth data from the Kinect sdk, which will process the data

collected by the infrared camera.

• The color-depth matching information is the data of the coordinate correspondance between the

color image space and the depth image space. The Kinect sdk is able to provide the information

based upon the parameters of the color camera and the infrared camera.

• Human pixels are depth image pixels associated with the participant, and the Kinect sdk can

isolate these pixels by analyzing the depth image.

• Skeleton positions are the skeleton information of the participant from the result of the Kinect

sdk’s human recognition process.
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• Model face parameters are the position, size of the the participant’s face. The Microsoft Face

Tracking sdk for Kinect enables this real-time face tracking.

After collecting the data, we are able to run different human modeling systems on the same input

and compare the test results. The first system is our full algorithm. The second one is our algorithm

using manual techniques to mark the real contour instead of automatically generating this contour,

so we can see the errors introduced by the matting algorithm. The next system is developed by

Kraevoy [48] with our generated contour as the drawing contour. The drawing skill of the user

will affect the reliability of the drawing contours and we do not want human factors to affect the

evaluation. Therefore, using the same contour can better compare the reshaping algorithm used

in [48] and ours.

6.3 Results

None of the evaluation results take the head, hands, and feet into account. The human template

used in our system is bald and bare foot, so the generated human model does not match the hair

outline and shoes of the participant. The current Kinect SDK does not support finger tracking,

so the contour of the participant’s fingers cannot match to the corresponding contour path of the

template.

6.3.1 Contours

Figure 6.7 shows the real contour (green) and the generated contour (red) of one participant. The

black pixels are the overlap part of the real and the generated contours. Real Contour (RC) of the

participant in the color image space consists of manually marked pixels, which are on the silhou-
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ette of the participant based upon our subjective judgment. After getting the color image of the

participant, we manually marked his or her Real Contour for future evaluation purpose. The gener-

ated contour is the contour created by our system with the input data from the Kinect. Since there

are lots of non-overlapped pixels between the real and the generated contours, the automatically

generated contours have errors introduced by depth map input and the matting algorithm.

Figure 6.7: Real and generated contours of one participant.

In order to evaluate the error introduced in the contour generation process, suppose there are n

pixels on the generated contour. For each pixel pigc of the generated contour, we find the nearest

pixel pjrc on the real contour, which has the minimum Euclidean distance between pigc and any

pixels on the real contour. Then the Euclidean distance digc between pigc and pjrc is the projected

distance from pigc to the real contour, and the difference between the real and the generated contour

is the mean value of the project distance Diffgc = 1/n
n∑
i=1

pigc of all the pixels on the generated
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contour.

Table 6.1: Geometry evaluation.

Generated Contour
Participant #1 1.2286
Participant #2 1.2836
Participant #3 1.1875
Participant #4 1.2265
Participant #5 1.1576
Participant #6 0.9397
Participant #7 1.1126
Participant #8 1.1085
Participant #9 1.1249
Participant #10 1.1303
Mean 1.1500

Table 6.1 shows the difference between the real and the generated contours of the ten participants.

The average difference is 1.1500 pixels, which means that the mean projected distance between

the generated contour is 1.1500 pixels away from the real contour. From Figure 6.7, we can see

that most of the errors occur around the contour areas having sharp angles and around the head

and feet areas. The depth maps are not precise around some small area, like the armpits, and have

more errors around the feet, since it is hard to distinguish the floor and the participant from the

depth information. The matting algorithm may also introduce some errors, like those seen in the

hair part and other noisy areas.

6.3.2 Geometry Evaluation

The errors introduced during the contour extracting process will be propagated and infect the final

3D modeling result. In order to evaluate the geometry of generated human models, we compare

the contour of the 3D model with the manually marked real contour. After getting the 3D human
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model, we render it to a black background, and then the contour of the model can be extracted

easily. The points on the contour are the non-black pixels that have black neighboring pixels. The

difference between the 3D model contour and the real contour Diffmc is computed in the same

manner as the difference between the generated contour and the real contour. The result represents

the pixel distance between the model contour and the real contour.

Table 6.2: Geometry evaluation.

Xiong’s Kraevoy’s Xiong’s + RC
Participant #1 1.2713 1.7150 0.8902
Participant #2 1.3209 1.9263 1.0764
Participant #3 1.2178 1.3592 0.9855
Participant #4 1.2609 1.3334 0.8443
Participant #5 1.6235 1.9352 1.3305
Participant #6 1.3323 1.6202 1.0448
Participant #7 1.3928 1.5060 1.1197
Participant #8 1.4839 1.5271 1.0117
Participant #9 1.4658 1.5473 1.0777
Participant #10 1.4128 2.4855 0.9174
Mean 1.3515 1.6955 1.0298

Table 6.2 shows the comparison for those results produced by our system, Kraevoy’s [48] results

with our generated contour as the input strokes, and our system with the real contour as input. Our

system can generate better 3D human geometry than Kraevoy’s with the same contour input, since

the introduction of the contour segmentation process can improve the accuracy of the anchors and

contour matching result, and then the model deformation is based upon more accurate real world

data. When we use the real contour as input, the generated model is the best, because errors are

only caused by the anchor matching and model deformation process.

Figure 6.8 is the output model portions of participant #7, and the visual feedback matches the

evaluation result. When we use the real contour to generate the model, we get the best result,

1.1197 pixel distance, and the model in image (c) of Figure 6.8 does not include many background
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Figure 6.8: An example of generated 3D human model portions with different systems or input: (a)
Xiong’s system using generated contour without texture retouching process; (b) Kraevoy’s system
using generated contour; (c) Xiong’s system using real contour.

pixels, represented by the whitish pixels around the armpit. The left model in Figure 6.8 is the result

of using our full system, and there are more background pixels showing on the model. The worst

result in Figure 6.8 (b) is produced with Kraevoy’s system. Although the evaluation result, 1.5060

pixels, seems not that bad, the corresponding model is quite different from the real participant

around the armpit area.

Evaluating the generated 3D model by comparing contours is able to tell which model is closer to

the ground truth. However, the evaluation result is not sufficient to visualize how much difference

is introduced. For example, the geometry evaluation result of models in image (a), (b), and (c) of

Figure 6.8 are 1.3928, 1.5060, and 1.1197 pixels. The distance between models in (a) and (c) is

0.2731 pixels, while the distance between models in (b) and (C) is 0.3864 pixels. However, the

model in image (b) looks much worse than the one in image (a). There are two reasons that the

evaluation result value cannot represent the real differences between the models. First of all, we use

the minimum distance between the model contour and the real contour as the projected distance,

but the real projected distance is much larger than the minimum distance. Take participant #7’s
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model generated with Kraevoy’s system for example (see the zoom in Figure 6.9), the minimum

distance is only 6 pixels, but the real projected distance should be 14.8661 pixels. The second

reason is that we take the mean distance as the evaluation result. If most part of the generated

model A is exactly the same as the real contour and only some small portions are really bad, the

mean difference distance is still small. On the other hand, if most part of the generated model B is

one or two pixels away from the real contour, this model will be visually closer to the participant,

but the evaluation result of this model won’t be much better than model A, and may even be worse.

Figure 6.9: Zoom in of participant #7’s model generated with Kraevoy’s system: green line is the
real contour; red pixel P is one pixel on the model contour; blue line shows the minimum distance
between P and the real contour; orange line shows the real projected distance.
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6.3.3 Texture Evaluation

Since the geometry evaluation is not sufficient to evaluate the visual perception of the output human

models, we add the texture evaluation to measure how the model looks with the texture. We use

both false positive rate and false negative rate to determine the accuracy of the texture. False

positive rate is the number of background pixels on the 3D model divided by the total number

of texture pixels nt, which is the number of pixels inside the real contour. False negative rate is

the number of texture pixels not showing on the model divided by nt. False positive pixels are

more visually disturbing than the false negative pixels. Since our final goal is to merge our human

modeling system with other Mixed Reality systems, the background of the participant will change,

and then the false positive pixels become quite noticeable. On the other hand, the visual result

assicated with false negatives causes the texture to be shifted toward the outside, and it is hard for

a person to notice that.

Table 6.3: Texture evaluation of our system.

Xiong’s System
false positive rate false negative rate total false rate

Participant #1 1.7382% 4.6503% 6.3885%
Participant #2 1.8419% 4.2585% 6.1004%
Participant #3 1.6650% 4.1342% 4.1342%
Participant #4 1.8875% 3.8642% 5.7517%
Participant #5 1.7882% 4.9196% 6.7078%
Participant #6 1.7119% 3.9050% 5.6169%
Participant #7 0.5535% 4.8184% 5.3719%
Participant #8 0.7333% 4.7232% 5.4565%
Participant #9 0.7794% 5.5873% 6.3667%
Participant #10 1.8002% 4.3713% 6.1715%
Mean 1.4499 4.5232% 5.8066%

Table 6.3 and Table 6.4 show the texture evaluation result of our system and Kraevoy’s system.

From the result, we can see that our system cause less false rate, especially false positive rate. The
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Table 6.4: Texture evaluation of Kraevoy’s system.

Kraevoy’s
false positive rate false negative rate total false rate

Participant #1 4.8399% 4.5363% 9.3762%
Participant #2 5.3532% 6.0743% 11.4275%
Participant #3 2.2346% 4.5986% 6.8332%
Participant #4 2.0107% 4.3317% 6.3424%
Participant #5 4.8399% 4.5363% 9.3762%
Participant #6 2.5654% 4.7527% 7.3181%
Participant #7 0.6415% 5.2473% 5.8888%
Participant #8 1.2916% 5.9072% 7.1988%
Participant #9 0.9408% 6.4228% 7.3636%
Participant #10 2.8422% 4.4066% 7.2488%
Mean 2.7560% 5.0814% 7.8374%

mean total false rate of our system is 5.8066%, which is better than Kraevoy’s 7.8374%. There

is little difference in the mean false negative rate between our system (4.5232%) and Kraevoy’s

(5.0814%). For the first and the fifth participant, Kraevoy’s system even produced the model with

a little bit lower false negative rate. However, our system is doing much better for reducing the

false positives, which is essential to the visual appearance of the generated 3D model. Kraevoy’s

system works fine for some participants, but not for participants #1, #2, and #5.

Figure 6.10 shows the color image and generated 3D models of the second participant. Most parts

of the model created by Kraevoy’s system look good; some area are even a little bit better than our

system, such as the left armpit. However, the red circled areas are really bad. One portion of the

participant’s left shoulder is missing, and we can easily notice the sharp hole on that body part.

The other problem is from the right armpit to the right hand. The 3D model shifted a lot and the

background wall is shown on the human body.
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Figure 6.10: Comparing participant #2’s model generated with our system and Kraevoy’s system:
(a) input color image; (b) 3D human model generated with our system; (c) 3D human model
generated with Kraevoy’s system.
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CHAPTER 7: CONCLUSIONS

7.1 Achievements

We have presented a framework for a novel human modeling system that is able to create a 3D

human model automatically without any user retouching of the input data. Our system is based

upon the 3D model reshaping from 2D contour technique. We use a mean-value geometry encoding

algorithm [47] to find the relationship among the vertices in the 3D human template and save the

encoding data into a file for the decoding process. Using this approach, we eliminate the encoding

time during the human modeling process by only needing to load the encoding information from a

pre-saved file. The techniques can generate 3D models rapidly while retaining an initial template’s

features.

As an initial step in our process, we took advantage of the Microsoft Kinect’s ability to automati-

cally extract an approximate contour of the participant instead of our drawing the contour manually.

The human tracking result from the Kinect SDK is able to identify when the participant is in our

predetermined initial pose and trigger the human modeling process automatically once that pose is

matched. We then generate the trimap based upon the depth data and human tracking information.

Empolying an automatically created trimap, a matting algorithm is used to get the contour of the

participant. This whole pipeline is fully automatic.

A significant achievement in our work is the manner in which our contour segmentation process

can improve the matching accuracy between the anchor vertices and the contour points. We use

skeleton information from the Kinect SDK and IStraw corner finding algorithm to segment the

contour. The IStraw algorithm, which was initially developed for sketch-based interface as an

initial step for gesture recognition, works as the basis for our contour segmentation. Our adaptation
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of IStraw addresses false negatives and false positives introduced by that algorithm. The resulting

segmentation process eliminates many of the mismatches, thereby improving the accuracy of the

final 3D model.

In order to evaluate our system, we collected data of ten participants and ran a number of dif-

ferent human modeling systems with this same input data. Since the contour generation process

introduces errors, we compared the real contour and the generated contour by computing the mean

distance between them. Our primary basis for evaluation is a comparison to Kraevoy’s system [48],

which we consider the standard among existing systems. In order to not introduce bias, we tested

the Kraevoy system with our automatically generated contour path. This differs from the norm

used in that approach, which takes a user drawing as its contour input. Furthermore, we compared

the 3D model produced from the real contour (ground truth) and the one generated by our algo-

rithm. Our human modeling process with the real contour creates the best 3D human model for

all ten participants, and the test results from our full system represents a significant improvement

over Kraevoy’s. The mean projected distance between the 3D model contour and the real contour

is used to compare the output models, as this metric provides reliable, objective results. However,

this metric does not address all errors perceived by the human visual system. As such, we intro-

duced another metric to measure the false positive rate and the false negative rate. Our system

provides significantly better results on the false positive rate, which is more important to human

visual perception of the 3D human model than is the false negative rate.

7.2 Future Plan

Our current system uses only one Kinect to capture the participant’s data from one point of view,

so the generated 3D model is limited to the front side texture. We can set up a camera to capture

the back side of the participant after the initial pose is matched. This image and the Kinect color
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image can be appended to form the whole texture map.

The motivation of this human modeling research is to improve the interaction between the real

participant and the virtual world. One possible implementation of our system is to improve the

sense of presence users feel in collaboration systems. Take the TeachLivETMproject [63] for ex-

ample; it is a remote teacher training project and the teachers interact with five virtual students,

in part controlled by a human-in-the-loop, called the interactor. The teacher is standing in front

of a big screen, which shows a projected virtual classroom and the students. The camera of the

virtual world is determined by the movement of the teacher. Remotely, the interactor can take di-

rect control of one of the five students based upon the teacher’s movement; other virtual characters

are controlled through computer agency. When the teacher walks close to one student and looks

at him/her, the controller’s workstation will present the virtual world as displayed on the teacher’s

screen, so the interactor knows whom the teacher is addressing and can act through that student’s

virtual presence, employing the character’s unique personality. There is another window on the

workstation for the controller to observe the teacher’s movements, actions and expressions (body

and facial non-verbal messages).

Adding our human modeling technique to TeachLivETMcan help the teacher and the interactor to

be more embedded in the virtual world. The teacher is the participant in our modeling system and

a 3D model of the teacher can be created at the beginning of running TeachLivETM. This new

setting enables the teacher to interact with the virtual world naturally. On the interactor side, the

teacher’s 3D model is displayed inside the virtual scene instead of in a separate window and this

3D model is controlled by the teacher’s tracking data. Furthermore, the interactor can observe the

virtual world from the active student’s view point instead of the teachers. This is a more natural

view and makes it easier for the interactor or others (e.g., trainers, co-learners or raters) to observe

the teacher’s behavior.
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There are many issues that need to be solved in this new collaboration system design. The most

challenging problem is the interaction paradigm between the teacher and the virtual world. If

the virtual objects are movable, the teacher should be able to manipulate them. For example, the

teacher may show some virtual teaching props (manipulables) to the students. However, the teacher

should not be able to move some heavy virtual objects easily, such as the student desks. Moreover,

some virtual objects, such as walls, are static obstacles that can never be moved. When there is a

conflict between the real and the virtual world, there is a challenge as to how one should display

the virtual scene on both the teacher’s and the interactor’s monitors. We do not want to see the

virtual teacher model embedded in a desk or wall on the interactor side. One possible solution is to

constrain the movement of the virtual teacher model to be influenced but not absolutely tied to the

real teacher, so the model can follow the rules of physics within the virtual world and stand beside,

not inside, the virtual desk or wall.

If, on the other hand, we disengage the model from the real person, how do we notify the teacher

that his/her avatar in the virtual world is no longer synchronized with him/her? It will be an inter-

esting topic to analyze the different approaches to tell the teacher that his/her movement conflicts

with the virtual world. Sometimes the conflict is trivial, such as when there is some minimal in-

tersection between the teacher and the student’s desk. The system may not even need to warn the

teacher as the disparity is too small to be noticed and is certainly not worth interrupting ongoing

teaching tasks. However, when the conflict is critical, the system must make the teacher realize

what happened immediately. For example, the teacher’s body could go through the virtual stu-

dent’s body. The system may use visual, auditory, and/or haptic feedback, or it might just use a

form of redirection, keeping the virtual camera and virtual teacher counterpart always in areas that

can be traversed, even if that means an internal recalibration of the mapping between the teacher’s

position in the real world and that in the virtual setting. This is a topic for further human-centered

computing research.

119



LIST OF REFERENCES

[1] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz, Keyframe-Based Tracking for

Rotoscoping and Animation. In Proceedings of ACM SIGGRAPH ’04, pp. 584-591, 2004

[2] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless, D. Salesin,

and M. Cohen, Interactive Digital Photomontage. In Proceedings of ACM SIGGRAPH ’04,

pp. 294-302, 2004

[3] E. de Aguiar, C. Theobalt, M. Magnor, H. Theisel, H.-P. Seidel, M3: Marker-free Model

Reconstruction and Motion Tracking from 3D Voxel Data. In Pacific Conference on Computer

Graphics and Applications 2004, pp. 101-110, Oct. 2004

[4] E. Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S. Thrun, Performance Capture

from Sparse Multi-View Video. In SIGGRAPH ’08, pp: 98:1-98:10, 2008

[5] B. Allen, B. Curless, and Z. Popovic The Space of Human Body Shapes: Reconstruction and

Parameterization from Range Scans. ACM Trans. on Graphics, vol. 22, no. 3, pp. 587-594,

2003

[6] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis, SCAPE: Shape

Completion and Animation of People. In SIGGRAPH ’05, pp. 408-416, 2005

[7] N. E. Apostoloff and A.W. Fitzgibbon, Bayesian Video Matting Using Learnt Image Priors.

In IEEE Conference on Computer Vision and Pattern Recognition 2004, pp. 407-414, 2004

[8] S. Asteriadis, A. Chatzitofis, D. Zarpalas, D. S. Alexiadis, and P. Daras, Estimating Human

Motion from Multiple Kinect Sensors. In Proceedings of the 6th International Conference

on Computer Vision / Computer Graphics Collaboration Techniques and Applications (MI-

RAGE ’13), 2013

120



[9] X. Bai and G. Sapiro, A Geodestic Framework for Fast Interactive Image and Video Segmen-

tation and Matting. In Proceedings of IEEE ICCV ’07, pp. 1-8, Oct. 2007

[10] A.O. Balan, L. Sigal, M.J. Black, J.E. Davis, H.W. Haussecker, Detailed Human Shape and

Pose from Images. In IEEE Conference on Computer Vision and Pattern Recognition 2007

(CVPR ’07), pp. 1-8, 2007

[11] A. Balan, and M. Black, The Naked Truth: Estimating Body Shape Under Clothing. In

ECCV’08, 2008

[12] B.G. Baumgart, Geometric Modeling for Computer Vision. PhD dissertation, Stanford Uni-

versity, 1974

[13] N. Beato, R. Pillat, and C. E. Hughes, Real-time Video Matting for Mixed Reality using Depth

Generated Trimaps. In Proceedings of GRAPP/IVAPP 2012, pp. 280-288, Feb. 2012

[14] N. Beato, Towards Real-time Mixed Reality Matting in Natural Scenes. PhD dissertation,

University of Central Florida, 2012

[15] T. Beeler, B. Bickel, P. Beardsley, B. Summer, and M. Gross, High-Quality Single-Shot Cap-

ture of Facial Geometry. In Proceedings of ACM SIGGRAPH 2010, pp. 40:1-40:9, 2010

[16] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer, A. Scholz, and M. A. Magnor, Markerless

Motion Capture Using Multiple Color-depth Sensors. In Proceedings of Vision, Modeling

and Visualization 2011 (VMV’11), pp. 317-324, 2011

[17] A. Berman, P. Vlahos, and A. Dadourian, Comprehensive Method for Removing from an

Image the Background Surrounding a Selected Object. U.S. Patent 6,135,345, 2000.

[18] M.J. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and

Piecewise-smooth flow fields. Computer Vision and Image Understanding, vol. 64, no. 1, pp.

75-104, 1996

121



[19] V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces. In SIGGRAPH

’99, pp. 187-194, 1999

[20] G. Borshukov, D. Piponi, O. Larsen, J. P. Lewis, and C. Tempelaar-Lietz, Universal Capture

- Image-Based Facial Animation for ”the Matrix Reloaded”. In SIGGRAPH 2005 courses,

2005

[21] D. Bradley, W. Heidrich, T. Popa, and A. Sheffer, High Resolution Passive Facial Perfor-

mance Capture. In ACM SIGGRAPH 2010, pp. 41:1-41:10, 2010

[22] V. Buchmann, S. Violich, M. Billinghurst, and A. Cockburn, FingARtips: Gesture Based

Direct Manipulation in Augmented Reality. In Proceedings of the 2nd International Confer-

ence on Computer Graphics and Interactive Techniques in Australasia and South East Asia

(GRAPHITE ’04), pp. 212-221, 2004

[23] M. Caputo, K. Denker, B. Dums, and G. Umlauf, 3D Hand Gesture Recognition Based on

Sensor Fusion of Commodity Hardware. In Proceedings of Conference Mensch & Computer

2012, pp. 293-302, 2012

[24] L. Chen, H. Lin, and S. Li, Depth Image Enhancement for Kinect Using Region Growing

and Bilateral Filter. In Proceedings of 21st International Conference on Patter Recognition

(ICPR ’12), pp. 3070-3073, Nov. 2012

[25] K. Cheung, S. Baker, and T. Kanade, Shape-From-Silhouette Across Time Part I: Theory and

Algorithms. International Journal of Computer Vision, vol. 62, issue. 3, pp. 221-247, May

2005

[26] J.-H. Cho, R. Ziegler, M. Gross, and K. H. Lee, Improving Alpha Matte with Depth Informa-

tion. IEICE Electronics Express, vol. 6, no. 22, pp. 1602-1607, 2009

122



[27] J.-H. Cho, T. Yamasaki, K. Aizawa, K. H. Lee, Depth Video Camera Based Temporal Alpha

Matting for Natural 3D Scene Generation. In Proceedings of IEEE 3DTV-CON, pp. 1-4,

2011

[28] Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital

Matting. In IEEE Conference on Computer Vision and Pattern Recognition, 2001

[29] Y. Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szeliski, Video Matting of

Complex Scenes. ACM Trans. Graphics, vol. 21, no. 3, pp. 243-348, 2002

[30] Y. Cui, W. Chang, T. Noll, and D. Stricker, KinectAvatar: Fully Automatic Body Capture

Using a Single Kinect. Computer Vision - ACCV 2012 Workshops, pp. 133-147, November

2012

[31] J. A. Ferwerda, Three varieties of realism in computer graphics. In B.E. Rogowitz and T. N.

Pappas, editors, Proceedings of Human Vision and Electronic Image VIII, voliume 5007 of

SPIE Proceedings Series, pp. 290-297, 2003

[32] E. S. L. Gastal and M. M. Oliveira, Shared Sampling for Real-Time Alpha Matting. Computer

Graphics Forum, vol. 29, no. 2, pp. 575-584, May. 2010

[33] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, . In Proc. Fifth Int’l Conf. Visualiza-

tion, Imaging, and Image Processing (VIIP ’05), pp. 423-429, 2005

[34] Y. Guan, X. Liang, Z. Ding, Y. Fan, W. Chen, and Q. Peng, Energy Matting. In Edutain-

ment’06, 2006

[35] P. Guan, A. Weiss, A. O. Balan, and M. J. Black, Estimating Human Shape and Pose from a

Single Image. In IEEE 12th International Conference on Computer Vision (ICCV ’09), pp.

1381-1388, 2009

123



[36] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin, Making Faces. In Proceedings of

the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’98), pp. 55-66, 1998

[37] N. Hasler, Bodo. Rosenhahn, T. Thormahlen, M. Wand, Juergen Gall, and H.-P. Seidel, Mark-

erless Motion Capture with Unsynchronized Moving Cameras. In IEEE Conference on Com-

puter Vision and Pattern Recognition 2009 (CVPR ’09), pp. 224-231, June 2009

[38] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, A Global Sampling Method for Alpha

Matting. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’11), pp.

2049-2056, 2011

[39] M. Hernandez, J. Choi, and G. Medioni, Laser Scan Quality 3-D Face Modeling using a

Low-Cost Depth Camera. In 20th European Signal Processing Conference (EUSIPCO ’12),

pp. 1995-1999, August 2012

[40] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,

D. Freeman, A. Davision, and A. Fitzgibbon, . In ACM Symposium on User Interface Soft-

ware and Technology, October 2011

[41] A. Jain, T. Thormahlen, H.-P. Seidel, and C. Theobalt, MovieReshape: Tracking and Re-

shaping of Humans in Videos. In ACM SIGGRAPH Asia 2010 (SIGGRAPH ASIA ’10), pp.

148:1-148:9, 2010

[42] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, Drag-and-Drop Pasting. In Proceedings of ACM

SIGGRAPH ’06, pp. 631-637, 2006

[43] N. Joshi, W. Matusik, and S. Avidan, Natural Video Matting using Camera Arrays. In Pro-

ceedings of ACM SIGGRAPH, pp. 779-786, 2006

124



[44] I. Kemelmacher-Shlizerman and R. Basri, 3D Face Reconstruction from a Single Image Us-

ing a Single Reference Face Shape. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 2, pp. 394-405, Feb. 2011

[45] I. Kakadiaris and D.Metaxas, 3D Human model Acquisition from Multiple Views. In Fifth

International Conference on Computer Vision (ICCV ’95), pp. 618-623, Jun. 1995

[46] S.-Y. Kim, J.-H. Cho, and A. Koschan, 3D Video Generation and Service based on a TOP

Depth Sensor in MPEG-4 Multimedia Framework. In IEEE Transactions on Consumer Elec-

tronics, vol. 56, no. 3, pp. 1730-1738, Aug. 2010

[47] V. Kraevoy, and A. Sheffer, Mean-Value Geometry Encoding. Intl. Journal of Shape Model-

ing, vol 12, issue 1, pp. 29-46, 2006

[48] V. Kraevoy, A. Sheffer, and M. Van De Panne, Modeling from Contour Drawings. In SBIM

’09, pp. 37-44, 2009

[49] A. Levin, A. Rav-Acha, and D. Lischinski, Spectral Matting. In Proceedings of IEEE CVPR

’07, pp. 1-8, Jun. 2007

[50] A. Levin, D. Lischinski, and Y. Weiss, A Closed Form Solution to Natural Image Matting.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 228-242,

Feb. 2008

[51] Y. Li, J. Sun, and H.-Y. Shum, Video Object Cut and Paste. In Proceedings of ACM SIG-

GRAPH ’05, pp. 595-600, 2005

[52] H. Li, E. Vouga, A. Gudym, L. Luo, J. T. Barron, and G. Gusev, 3D Self-Portraits. In Pro-

ceedings of ACM SIGGRAPH ’05, pp. 595-600, 2005

125



[53] I.-C. Lin, and M. Ouhyoung, Mirror MoCap: Automatic and Efficient Capture of Dense 3D

Facial Motion Parameters from Video. The Visual Computer, vol. 21, no. 6, pp. 355-372,

2005

[54] P. Lindstrom, and G. Turk, Fast and Memory Efficient Polygonal Simplification. In SIG-

GRAPH Asia 2013, 2013

[55] T. Lu and S. Li, Image Matting with Color and Depth Information. In Proceedings of 21st

International Conference on Patter Recognition (ICPR ’12), pp. 3787-3790, Nov. 2012

[56] W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec, Rapid Acquisition

of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In

EUROGRAPHICS Symposium on Rendering, 2007

[57] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M.

Ouhyoung, and P. Debevec, Facial Performance Synthesis Using Deformation-Driven Poly-

nomial Displacement Maps. In ACM SIGGRAPH Asia 2008 (SIGGRAPH Asia ’08), pp.

121:1-121:10, 2008

[58] M. McGuire, W. Matusik, H. Pfister, J. F. Hughes, and F. Durand, Defocus Video Matting. In

Proceedings of ACM SIGGRAPH ’05, pp. 567-576, 2005

[59] P. Milgram, and F. Kishino, A Taxonomy of Mixed Reality Visual Display. IEICE Transactions

on Information Systems, vol. E77-D, no. 12, Dec. 1994

[60] Y. Mishima, Soft Edge Chroma-Key Generation Based upon Hexoctahedral Color Space.

U.S. Patent 5,355,174, 1993.

[61] T. B. Moeslund and E. Granum, A Survey of Computer Vision-Based Human Motion Capture.

Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-268, Mar. 2001

126



[62] T. B. Moeslund, A. Hilton, and V. Kruger, A Survey of Advances in Vision-Based Human

Motion Capture and Analysis. Computer Vision and Image Understanding, vol. 104, no. 2-3,

pp. 90-126, Nov.-Dec. 2006

[63] A. Nagendran, R. Pillat, A. Kavanaugh, G. F. Welch, and C. E. Hughes, AMITIES: Avatar-

mediated Interactive Training and Individualized Experience System. In Proceedings of the

19th ACM Symposium on Virtual Reality Software and Technology, pp. 143-152, Oct. 2013

[64] F.I. Parke, Computer Generated Animation of Faces. In ACM SIGGRAPH ’72, pp. 451-457,

1972

[65] F. Pighin, R. Szeliski, and D. Salesin, Modeling and Animating Realistic Faces from Images.

Int’l J. Computer Vision, vol. 50, no. 2, pp. 143-169, 2002

[66] R. Plankers and P. Fua, Articulated Soft Objects for Video-Based Body Modeling. In Eighth

IEEE International Conference on Computer Vision (ICCV ’01), pp. 394-401, 2001

[67] T. Porter and T. Duff, Compositing Digital Images. In SIGGRAPH 1984, pp. 253-259, Jul.

1984.

[68] R.J. Qian and M.I. Sezan, Video Background Replacement Without a Blue Screen. In ICIP

1999, pp. 143-146, Oct. 1999

[69] B. Robertson, Facing the Future. Computer Graphics World, vol. 36, issue 6, Oct. 2013

[70] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, A Low Cost 3D Scanner

based on Structured Light. Computer Graphics Forum, vol. 20, issue 3, pp. 299-308, Septem-

ber 2001

[71] K. Rohr, Human Movement Analysis Based on Explicit Motion Models. Motion-Based

Recognition, M. Shah and R. Jain (Eds), chap. 8, pp. 171-198, 1997

127



[72] M. A. Ruzon and C. Tomasi, Alpha Estimation in Natural Image. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition 2000, pp. 18-25, Jun. 2000

[73] Y. Schroder, A. Scholz, K. Berger, K. Ruhl, S. Guthe, and M. Magnor, Multiple Kinect Stud-

ies. Technical Report no. 09-15, ICG, Oct. 2011

[74] T. Sezgin, T. Stahovich, and R. Davis, Sketch based Interface: Early Processing for Sketch

Understanding. In Workshop on Perceptive User Interface, 2001

[75] T. Sezgin, and R. Devis, Scale-Space Based Feature Point Detection for Digital Ink. In SIG-

GRAPH ’06 Courses, pp. 29, 2006

[76] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and

A. Blake, Real-Time Human Pose Recognition in Parts from Single Depth Images. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR ’11), pp. 1297-1304, 2011

[77] C. Sminchisescu and A. Telea, Human Pose Estimation from Silhouettes. A Consistent Ap-

proach Using Distance Level Sets. In 10th International Conference on Computer Graphics,

Visualization and Computer Vision (WSCG ’02), 2002

[78] A.R. Smith and J.F. Blinn, Blue Screen Matting. In SIGGRAPH ’96, pp. 259-268, Aug. 1996

[79] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, Poisson Matting. In Proceedings of ACM SIG-

GRAPH ’04, pp. 315-321, 2004

[80] J. Sun, Y. Li, S.-B. Kang, and H.-Y. Shum, Flash matting. In Proceedings of ACM SIG-

GRAPH ’06, pp. 772-778, 2006

[81] N. Magnenat-Thalmann, and D. Thalmann, The Direction of Synthetic Actors in the Film

Rendez-vous a Montreal. IEEE Computer Graphics and Applications, vol. 7, no. 12, 1987,

pp. 9-19, 1987

128



[82] J. Tong, J. Zhou, L. Lin, Z. Pan, and H. Yan Scanning 3D Full Human Bodies Using Kinects.

Visualization and Computer Graphics, vol. 18, no. 4, pp. 643-650, 2012

[83] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, Articulated Mesh Animation from Multi-view

Silhouettes. In Proceedings of ACM SIGGRAPH 2008, pp. 97:1-97:10, 2008

[84] J. Wang and M. Cohen, An Iterative Optimization Approach for Unified Image Segmentation

and Matting. In Proc. 10th IEEE Int’l Conf. Computer Vision (ICCV ’05), vol. 2, pp. 936-

943, Oct. 2005.

[85] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. Cohen, Interactive video cutout. In

Proceedings of ACM SIGGRAPH ’05, pp. 585-594, 2005

[86] J. Wang and M.F. Cohen, Optimized Color Sampling for Robust Matting. In Proceedings of

IEEE CVPR ’07, pp. 1-8, Jun. 2007

[87] J. Wang, M. Agrawala, and M.F. Cohen, Soft Scissors: an Interactive Tool for Realtime High

Quality Matting. In SIGGRAPH 2007, pp. 9:1-9:6, 2007

[88] J. Wang and M. Cohen, Simultaneous Matting and Compositing. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR ’07), pp. 1-8 2007

[89] J. Wang and M.F. Cohen, Image and Video Matting: a Survey. Foundation and Trends in

Computer Graphics and Vision, vol. 3, no. 2, pp. 97-175, 2008

[90] O. Wang, J. Finger, and Q. Yang, Automatic Natural Video Matting with Depth. In Proceed-

ings of 15th Pacific Conference on Computer Graphics and Applications, pp. 469-472, 2007

[91] T. Weise, S. Bouaziz, H. Li, and M. Pauly, Realtime Performance-Based Facial Animation.

In SIGGRAPH ’11, pp. 77:1-77:10, 2011

129



[92] A. Weiss, D. Hirshberg, and M. J. Black, Home 3D Body Scans from Noisy Image and Range

Data. In 13th International Conference on Computer Vision, pp. 1951-1958, 2011

[93] A. Wolin, B. Eoff, and T. Hammond, ShortStraw: A Simple and Effective Corner Finder

for Polylines. In EUROGRAPHICS Fifth Annual Workshop on Sketch-based Interfaces and

Modeling (SBIM’08), pp. 33-40, 2008

[94] A. Wolin, B. Paulson, and T. Hammond, Sort, Merge, Repeat: An Algorithm for Effectively

Finding Corners in Hand-Sketched Strokes. In Proceedings of the sixth EUROGRAPHICS

Symposium on Sketch-Based Interfaces and Modeling, SBIM ’09, pp. 93-99, 2009

[95] Y. Xiong, and J. LaViola, Revisiting ShortStraw - Improving Corner Finding in Sketch-Based

Interfaces. In Proceedings of EUROGRAPHICS Symposium on Sketch-Based Interfaces and

Modeling, SBIM ’09, pp. 101-108, 2009

[96] Y. Xiong, and J. LaViola, A ShortStraw-based Algorithm for Corner Finding in Sketch-based

Interfaces. Computers and Graphics, vol. 34, no. 5, pp. 513-527, 2010

[97] J. Wobbrock, A. Wilson, and Y. Li, Gestures Without Libraries, Toolkits or Training: A $1

Recognizer for User Interface Prototypes. In Proceedings of the 19th National Conference on

Artificial Intelligence (AAAI’04), pp. 159-168, 2004

[98] P. Vlahos, Electroic Composite Photography. U.S. Patent 3,595,987, July 27, 1971, Expired.

[99] P. Vlahos Comprehensive Electronic Compositing System. U.S. Patent 4,100,569, July 11,

1978, Expired.

[100] G. Ye, Y. Liu, N. Hasler, X. Ji, Q. Dai, and C. Theobalt, Performance Capture of Interact-

ing Characters with Handheld Kinects. In Proceedings of the 12th European Conference on

Computer Vision (ECCV), 2012

130



[101] S. You, U. Neumann, and R. Azuma, Hybrid Inertial and Vision Tracking for Augmented

Reality Registration. In Proceedings of IEEE Virtual Reality, pp. 260-267, Mar. 1999

[102] L. Zhang, N. Snavely, B. Curless, and S.M. Seitz Spacetime faces: High-Resolution Capture

for Modeling and Animation. ACM Transactions on Graphics, vol. 23, no. 3, pp. 548-558,

2004

[103] S. Zhang, and P. Huang, High-Resolution, Real-Time 3D Shape Acquisition. In Conference

on Computer Vision and Pattern Recognition Workshop (CVPR ’04), Jun. 2004

[104] Y. Zheng, C. Kambhamettu, J. Yu, T. Bauer, and K. Steiner, Fuzzymatte: A Computationally

Efficient Scheme for Interactive Matting. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition 2008 (CVPR ’08), pp. 1-8, Jun. 2008

[105] S. Zhou, H. Fu, L. Liu, D. Cohen, and X. Han, Parametric Reshaping of Human Bodies in

Images. In SIGGRAPH ’10, 2012

[106] J. Zhu, M. Liao, R. Yang, and Z. Pan, Joint Depth and Alpha Matte Optimization via Fusion

of Stereo and Time-of-Flight Sensor. In Proceedings of IEEE CVPR ’09, pp. 453-460, 2009

[107] M. Zollhofer, M. Martinek, G. Greiner, M. Stamminger, and J. Sbmuth, Automatic Re-

construction of Personalized Avatars from 3D Face Scans. Computer Animation and Virtual

Worlds, vol. 22, issue 2-3, pp. 195-202, 2011

131


	Automatic 3D human modeling: an initial stage towards 2-way inside interaction in mixed reality
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Definition
	1.3 Objectives and Difficulties
	1.4 Structure of Dissertation

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Human Shape Capture Devices
	2.3 Human Modeling Approaches
	2.3.1 Introduction
	2.3.2 3D data input
	2.3.3 2D data input

	2.4 Morphable 3D Human Models
	2.5 Human Tracking
	2.5.1 Whole-body Tracking
	2.5.2 Face Tracking

	2.6 Matting
	2.6.1 Introduction
	2.6.2 Single Image Matting
	2.6.3 Video Matting
	2.6.4 Matting with Extra Information

	2.7 Reshaping Algorithms

	CHAPTER 3: IMPLEMENTED ALGORITHMS
	3.1 Introduction
	3.2 Human Tracking
	3.2.1 Introduction
	3.2.2 Tracking Devices
	3.2.3 Tracking Techniques

	3.3 Single Image Matting
	3.3.1 Sample Selection Criteria
	3.3.2 SampleMatch Algorithm

	3.4 Contour Matching
	3.4.1 Match Criteria
	3.4.2 HMM Model

	3.5 3D Model Reshaping
	3.5.1 Introduction
	3.5.2 Mean-value Encoding One Vertex
	3.5.3 Mean-value Decoding One Vertex
	3.5.4 Encoding and Decoding of Models


	CHAPTER 4: ISTRAW
	4.1 Introduction
	4.2 ShortStraw Review
	4.2.1 ShortStraw Implementation
	4.2.2 ShortStraw Limitations

	4.3 IStraw Algorithm
	4.3.1 Straws
	4.3.2 Timing Information
	4.3.3 Dynamic Threshold for the Collinear Test
	4.3.4 Consecutive False Corners Avoidance
	4.3.5 Adjusting Corners
	4.3.6 Sharp Noise Avoidance
	4.3.7 Curve Detection
	4.3.7.0.1 General Approach
	4.3.7.0.2 Shift Value
	4.3.7.0.3 Special Cases

	4.3.8 Shifting Resampled Points
	4.3.9 Choosing Thresholds

	4.4 IStraw Evaluation
	4.4.1 Evaluation Tests
	4.4.1.0.4 Original ShortStraw Data
	4.4.1.0.5 Polyline Ink Stroke Test – Dataset One
	4.4.1.0.6 Curve Detection Tests – Dataset One
	4.4.1.0.7 Tests on Dataset Two

	4.4.2 Analysis of Computational Complexity


	CHAPTER 5: METHODOLOGY
	5.1 Introduction
	5.2 Main Pipelines
	5.2.1 Anchors Deciding
	5.2.2 Contour Extracting
	5.2.2.1 Rough Contour Shift
	5.2.2.2 Trimap Generation
	5.2.2.3 Matting Result Postprocess


	5.3 Contour Segmentation
	5.3.1 Contour Segmentation Algorithm
	5.3.1.1 Resampling
	5.3.1.2 Skeleton Based Segmentation
	5.3.1.3 Corner Based Segmentation

	5.3.2 Analysis


	CHAPTER 6: EVALUATION
	6.1 Interface Design
	6.2 Test Process
	6.3 Results
	6.3.1 Contours
	6.3.2 Geometry Evaluation
	6.3.3 Texture Evaluation


	CHAPTER 7: CONCLUSIONS
	7.1 Achievements
	7.2 Future Plan

	LIST OF REFERENCES

