
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2014

Improved Internet Security Protocols Using Cryptographic One-Improved Internet Security Protocols Using Cryptographic One-

Way Hash Chains Way Hash Chains

Amerah Alabrah
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Alabrah, Amerah, "Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains"
(2014). Electronic Theses and Dissertations. 4599.
https://stars.library.ucf.edu/etd/4599

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F4599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F4599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4599?utm_source=stars.library.ucf.edu%2Fetd%2F4599&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPROVED INTERNET SECURITY PROTOCOLS USING CRYPTOGRAPHIC
ONE-WAY HASH CHAINS

by

AMERAH ABDULRAHMAN ALABRAH

B.S. King Saud University, 2006
M.S. Colorado State University, 2008

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
 in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2014

Major Professor: Mostafa Bassiouni

 ii

© 2014 Amerah Alabrah

 iii

ABSTRACT

In this dissertation, new approaches that utilize the one-way cryptographic hash functions

in designing improved network security protocols are investigated. The proposed approaches are

designed to be scalable and easy to implement in modern technology.

The first contribution explores session cookies with emphasis on the threat of session

hijacking attacks resulting from session cookie theft or sniffing. In the proposed scheme, these

cookies are replaced by easily computed authentication credentials using Lamport’s well-known

one-time passwords. The basic idea in this scheme revolves around utilizing sparse caching

units, where authentication credentials pertaining to cookies are stored and fetched once needed,

thereby, mitigating computational overhead generally associated with one-way hash

constructions.

The second and third proposed schemes rely on dividing the one-way hash construction

into a hierarchical two-tier construction. Each tier component is responsible for some aspect of

authentication generated by using two different hash functions. By utilizing different

cryptographic hash functions arranged in two tiers, the hierarchical two-tier protocol (our second

contribution) gives significant performance improvement over previously proposed solutions for

securing Internet cookies. Through indexing authentication credentials by their position within

the hash chain in a multi-dimensional chain, the third contribution achieves improved

performance.

In the fourth proposed scheme, an attempt is made to apply the one-way hash

construction to achieve user and broadcast authentication in wireless sensor networks. Due to

 iv

known energy and memory constraints, the one-way hash scheme is modified to mitigate

computational overhead so it can be easily applied in this particular setting.

The fifth scheme tries to reap the benefits of the sparse cache-supported scheme and the

hierarchical scheme. The resulting hybrid approach achieves efficient performance at the lowest

cost of caching possible.

In the sixth proposal, an authentication scheme tailored for the multi-server single sign-

on (SSO) environment is presented. The scheme utilizes the one-way hash construction in a

Merkle Hash Tree and a hash calendar to avoid impersonation and session hijacking attacks. The

scheme also explores the optimal configuration of the one-way hash chain in this particular

environment.

All the proposed protocols are validated by extensive experimental analyses. These

analyses are obtained by running simulations depicting the many scenarios envisioned.

Additionally, these simulations are supported by relevant analytical models derived by

mathematical formulas taking into consideration the environment under investigation.

 v

To My Father

 vi

ACKNOWLEDGMENT

This dissertation would not have been possible without the guidance of my committee,

the help and support from friends and the love and encouragement of my family and loved ones.

First and foremost I am truly indebted to my advisor Dr. Mostafa Bassiouni who, from

the very first day he met me, has shown me how a true scholar should really be. He never spared

me his guidance, his support and his encouragement. He has been and will always be my true

mentor. To him, I am grateful.

I am also thankful to my committee members, Dr. Sheau-Dong Lang, Dr. Cliff C. Zou

and Dr. Yuanli Bai for their invaluable comments and suggestions throughout my dissertation

writing process.

I also would like to thank my friends and colleagues in the Department of Computer

Science and Engineering who provided me with a nurturing and fruitful research environment. I

am also truly grateful to have known my best friend Sana Tariq during my years in the

department. We have been together through the best and worst of times, and she has shown me

how a true friend really should be.

I would like to thank my family for providing me with the support I needed. My mother

has been keeping me up thorough this experience by her daily phone calls to cheer me up. My

brothers and sister have provided me with their love, encouragement and sense of humor. I

would also like to thank my soul mate and my friend, Husam Alawadh, my husband, who have

never quit on believing on me and supported me take this route from the day we met.

One final word of gratitude goes to someone who has always waited for this moment, a

person whom I always dreamt of writing these words to, a person who saw his dream in me, but

 vii

left before I made it in reality; my father. I am sorry I couldn’t make this earlier, but I know that

you hear me. Thank you is not enough!

 viii

TABLE OF CONTENTS

LIST OF FIGURES .. xiii

LIST OF TABLES ... xvi

 INTRODUCTION .. 1 CHAPTER 1:

1.1 One-way Hashing .. 2

1.2 Problem Statement .. 5

1.3 Contributions .. 7

1.4 Dissertation Organization ... 10

 REVIEW OF THE LITERATURE .. 12 CHAPTER 2:

2.1 Introduction .. 12

2.2 Securing Session Cookies .. 15

2.3 What Are Cookies? ... 16

2.4 Current Practices .. 17

2.5 New Direction .. 19

2.6 The One-way Hash Chain Model ... 21

2.7 User and Broadcast Authentication in Wireless Sensor Networks 24

2.8 Authentication in Single Sign-On Environments ... 25

2.9 Authenticating Cloud-based Toll/Traffic RFID Systems .. 28

 HASH CHAIN (HACH) WITH SPARSE CACHING TECHNIQUES 31 CHAPTER 3:

3.1 Introduction .. 31

3.2 Sparse Caching: Basic Idea .. 31

3.2.1 Sparse Caching with Uniform Spacing .. 32

 ix

3.2.2 Weighted Overhead Formula ... 34

3.2.3 Uncertainty in the Number of Transactions ... 35

3.2.4 Sparse Caching with Non-uniform Spacing .. 36

3.2.5 Caching with Geometric Spacing ... 37

3.3 Energy Consumption ... 39

3.4 Evaluation and Performance Results ... 40

3.4.1 Impact of Cache Size on HACH Performance ... 40

3.4.2 Cache Space Allocation Policies ... 42

3.4.3 Effectiveness of Sparse Caching .. 45

3.4.4 Selecting Cache Size for Mobile Devices .. 46

3.5 HACH with Non-uniform Cache Spacing ... 51

3.6 Approximate Knowledge of N.. 52

3.7 Geometric Spacing .. 53

3.8 Energy Consumption ... 55

3.9 Conclusion ... 56

 HACH WITH A HIERARCHICAL TWO-TIER CONSTRUCTION (TTOHC) 57 CHAPTER 4:

4.1 Proposed Scheme ... 57

4.2 Performance Results ... 61

4.3 Conclusion ... 69

 HACH FOR COLLABORATIVE AND SOCIAL MEDIA NETWORKS 70 CHAPTER 5:

5.1 Introduction .. 70

5.2 The Proposed Protocol ... 71

5.3 Case of Known Number of Transactions ... 75

5.4 The Proposed Protocol’s Steps .. 75

 x

5.5 Protocol Evaluation ... 77

5.6 Protocol Comparison with OHC .. 81

5.7 Unknown Number of Transactions ... 83

5.8 Conclusion ... 89

 HACH FOR WIRELESS SENSOR NETWORKS .. 91 CHAPTER 6:

6.1 Introduction .. 91

6.2 Network Model .. 93

6.3 The Proposed MOHC Authentication Scheme ... 94

6.4 Simulation and Evaluation .. 98

6.5 Performance and Results.. 100

6.6 Conclusion .. 104

 HYBRID CACHE-SUPPORTED HACH .. 106 CHAPTER 7:

7.1 Introduction ... 106

7.2 The proposed Hybrid Scheme .. 106

7.2.1 The mini OHC Scheme: ... 107

7.2.2 The OHC Caching Scheme: .. 109

7.3 HACH Hybrid Scheme .. 111

7.4 Comparison and Tradeoffs .. 115

7.5 Simulation and Performance Results .. 119

7.5.1 Caching options ... 119

7.5.2 Full vs. Partial Caching Performance.. 121

7.5.3 Performance Comparison between the three schemes .. 123

7.6 Caching in Token Chain Yk or Seed Chain Xk ... 124

7.7 Conclusion .. 126

 xi

 IMPROVED AUTHENTICATION IN SINGLE SIGN-ON ENVIRONMENT CHAPTER 8:

AND RFID IN TRAFFIC MANAGEMENT SYSTEMS ... 128

8.1 Introduction ... 128

8.2 Problem Statement ... 128

8.3 The Proposed SSO Authentication Scheme ... 130

8.3.1 Adversary Model ... 131

8.3.2 Merkle Hash Trees ... 132

8.3.3 Hash Calendars .. 133

8.3.4 SSO Keyless Signature Scheme Components .. 135

8.3.5 SSO Authentication Procedure .. 136

8.4 Performance evaluation .. 139

8.4.1 Performance evaluation testbed .. 139

8.4.2 Evaluation Metrics ... 140

8.4.3 The Effect of Number of Log ins ... 141

8.4.4 Variable Number of Service Providers .. 142

8.4.5 Optimal Token Chain Length in HACH ... 144

8.5 Tree-based Authentication for Toll/Traffic Management Systems 147

8.6 Problem Statement ... 148

8.7 The Proposed RFID Authentication Scheme .. 150

8.8 Protocol Components and performance .. 152

8.9 Performance Evaluation ... 153

8.10 Conclusion .. 157

 CONCLUSION AND FUTURE WORK .. 159 CHAPTER 9:

9.1 Future Work ... 161

 xii

REFERENCES ... 163

 xiii

LIST OF FIGURES

Figure ‎3-1 Impact of cache size on TotalHCost ... 41

Figure ‎3-2 Impact of cache size on HCostavg .. 42

Figure ‎3-3 HACH performance with two policies for sparse caching .. 44

Figure ‎3-4 HACH storage requirements with two policies for sparse caching 44

Figure ‎3-5 HACH performance improvement ratio .. 46

Figure ‎3-6 Weighted Overhead results for N=500 .. 47

Figure ‎3-7 Weighted Overhead results for N=1000 .. 48

Figure ‎3-8 Handling unknown large values of N: comparison between HCostavg with and

without sparse caching .. 53

Figure ‎3-9 Comparison of HCostavg between Uniform, Non-Uniform and Geometric Spacing 54

Figure ‎3-10 Energy consumption comparison of HACH with and without sparse caching 56

Figure ‎4-1 Comparison between OHC and TTOHC (Ns=20) .. 62

Figure ‎4-2 TTOHC to OHC Performance Improvement Ratio in the Static case 63

Figure ‎4-3 TTOHC Performance for static Ns .. 64

Figure ‎4-4 TTOHC performance when Ns changes linearly .. 67

Figure ‎4-5 Dynamic TTOHC Performance Improvement Ratio .. 68

Figure ‎4-6 TTOHC performance with static and dynamic Ns .. 69

Figure ‎5-1 Position-indexed hashing for 12 transactions TChain_Len= 3, SChain_Len= 4 71

Figure ‎5-2 Protocol Evaluation (known number of transactions) ... 78

Figure ‎5-3 Performance comparison between position-index hashing (PIH) and OHC 81

Figure ‎5-4 Performance improvement ratio of OHC .. 82

 xiv

Figure ‎5-5 Protocol Evaluation (Unknown number of transactions) SChain_Len= 5 all the time

... 87

Figure ‎5-6 Protocol Evaluation (Unknown number of transactions) SChain_Len= 20 all the time

... 88

Figure ‎5-7 Protocol performance comparison when TChain_Len=3 and different SChain_Len . 89

Figure ‎6-1 Network Model External Structure ... 93

Figure ‎6-2 Example of time calculation for serial mode .. 100

Figure ‎6-3 Time comparisons between OHC and MOHC protocol with higher rounds of

communication (Serial Mode). ... 102

Figure ‎6-4 Average number of hashes comparison between OHC and MOHC 104

Figure ‎7-1 mini OHC Scheme .. 108

Figure ‎7-2 OHC Caching Scheme .. 110

Figure ‎7-3 HACH Hybrid Scheme ... 112

Figure ‎7-4 Total Cost of 500 transactions with different x values ... 116

Figure ‎7-5 The minimum value of M when N= 500 ... 118

Figure ‎7-6 Session cost comparison between full and partial caching in g in Y 122

Figure ‎7-7 Storage requirement comparison between full and partial caching 123

Figure ‎7-8 Storage requirement comparison with cache support in either Token_Chain (Y) or

Seed_Chain (X) ... 125

Figure ‎7-9 Session cost comparison with cache support in either Token_Chain (Y) or

Seed_Chain (X) ... 126

Figure ‎8-1 SSO overall structure .. 129

Figure ‎8-2 Merkle hash tree .. 133

 xv

Figure ‎8-3 Hash calendar structure ... 134

Figure ‎8-4 Communication Overhead over Variable Number of Log ins 141

Figure ‎8-5 Computational Overhead with Variable Number of Log ins 142

Figure ‎8-6 Communication Overhead with Variable Number of Service Providers 143

Figure ‎8-7 Computation Overhead with Variable Number of SPs ... 144

Figure ‎8-8 Optimal Chain Length for Different AES Key Sizes .. 147

Figure ‎8-9 Cloud-based RFID tree system ... 151

Figure ‎8-10 Impact of number of nodes on MHTs ... 154

Figure ‎8-11 Impact of the tree size on hash count .. 155

Figure ‎8-12 Performance comparison between a single MHT and multiple MHTs 156

Figure ‎8-13 Average hash count comparison with different network size 157

 xvi

LIST OF TABLES

Table ‎3-1 HACH performance with/without sparse caching using the sqrt policy 45

Table ‎3-2 Speedup factor per unit cache for Class 3 .. 49

Table ‎3-3 Speedup factor per unit cache for Class 2 .. 50

Table ‎3-4 Speedup factor per unit cache for Class 1 .. 50

Table ‎3-5 Average speedup for a high-priority transaction .. 51

Table ‎3-6 Average slow-up of a low-priority transaction ... 52

Table ‎5-1 Notations used in the proposed scheme .. 73

Table ‎5-2 TChain_Len OPTIMAL VALUE ... 80

Table ‎6-1 Time comparisons showing equal execution overheads for MOHC and OHC (Serial

Mode) .. 101

Table ‎6-2 Time comparisons showing equal execution overheads for MHOC and OHC (Parallel

Mode) .. 102

Table ‎7-1 Optimal values of M ... 119

Table ‎7-2 Comparing session cost between the three schemes .. 124

Table ‎8-1 Keyless SSO Scheme Notations ... 131

 INTRODUCTION CHAPTER 1:

Our world today is signified by its unprecedented reliance on the Internet in all facets of

life. From online banking and shopping, e-governance, medical recording, military surveillance

to manufacturing and production, we are witnessing a cyber revolution that never once had been

anticipated. Admittedly, this realization does not come without its caveats. One of the major

hurdles that is potentially slowing down this trend and threatening its ascending wave is

represented in the security threats associated with the inherent nature of the Internet. As the

Internet advances, so do the cyber threats, and we see numerous occasions, that take place on a

daily basis, where billions of dollars are lost due to the weakness of Internet security, or lack

thereof.

As an example of the counter-measures deployed to increase cybersecurity, one-way hash

functions have been widely utilized in numerous applications to secure wired and wireless

communication. One-way hash functions, which are based on cryptographic hash functions, are

a practical example of how forth we have come in our battle against cybersecurity threats and the

advancement in the field of cryptography. Modern cryptography has enabled much of our

Internet today and made electronic commerce thrive by helping companies and individual alike

to maintain their privacy and the integrity of their data, when their information is shared from

virtually everywhere distributed environment.

Given the increasing amount of information spread over the Internet, the potential of

information abuse by unlawful entities grows exponentially, thereby, emphasizing the need for

powerful counter-measures to combat such abuse. Cryptography is by far the backbone of such

 2

counter-measures, and its development will continue to evolve as long as threats prevail.

Accordingly, cryptographic hash functions have evolved with this sole purpose in mind.

This dissertation investigates the wide utilization of one-way hash functions and presents

schemes that are hoped to increase their efficiency. The contributions introduced herein utilize

one-way hash functions in a variety of ways, but they all share a quest for achieving better

performance with the least amount of resources consumed.

1.1 One-way Hashing

One-way hashing is a common practice within cryptographic approaches used today.

Hashing is a widely utilized technique in cryptography in which typical algorithms are deployed

to encode information quickly. Typically, a “hash value” is achieved when these algorithms are

applied to strings of text creating a “digital fingerprint” of the message. The digital fingerprint is

expected to be identifiable by the respective entities who have access to the hash function used to

create the hash value. One of the main benefits of hashing is that it enables us to know if the

transmitted message/data has been altered from its original form or not. Once received, the

hashed value is checked by the receiving entity using the agreed upon hash function primitives,

and if the message conforms to the expected results it is accepted. Otherwise, the message might

have been altered from its original form, and, thus, should be questionable.

The use of hashing in cryptography is attractive for a variety of reasons. One important

aspect of hashing revolves around the fact that the hashing algorithm generates a fixed length

string to any piece of data to which the hashing algorithm is applied. Another feature that is

worthy of noting here is that hashing is not analogous to encrypting. The two distinctive features

that make hashing different from encryption have to do with one-wayness and the resulting

message. Whereas encryption is a two-way process where data is transformed to a cipher-text

 3

that is decoded at the destination site, hashing is a one-way operation that converts data into a

compressed message digest that does not get decoded, but, rather the message digest is checked

for integrity. Message integrity is the other distinctive feature making hashing different from

encryption. One of the main goals of hashing is to check the integrity of the message between the

communicating nodes. With hashing, we want to make sure the message is not altered from its

original form during any stage of communication.

Examples of applications that utilize hashing as a backbone solution for their designs are

vast but just to name a few, here is a list of applications:

1. Digital Signatures: were one of earliest applications of hash functions. Most digital

algorithm schemes verify the authenticity of the message to be signed by utilizing hash

functions. In 1978, Rabin in [1] introduced the idea using hash functions in the digital

signature schemes. The idea is basically is to sign a hashed value of a piece of data M

instead of signing this piece of data directly. The benefit from this technique is two-

fold. First, instead of directly signing a large set of data with a public key incurring

extraneous computational overhead, hashing the data to produce a smaller sized

message is much more efficient. The second reason is as we mentioned above is that

hashing ensures the integrity of the message.

2. Password hashing: Previously, storing passwords in plain text was a common procedure

utilized by many service providers. Getting a hold of the passwords file stored in clear

text can lead to compromising the privacy of all clients whose passwords are stored in

the password file. Here, hashing techniques have been proven useful to overcome this

problem. Instead of storing the password in plaintext in the service provider’s database,

a hashed value of the password is stored. Each time the client tries to access a service

 4

using their password, the password is hashed, and the hash digest is checked against the

stored hash value. Unless they do not match, the client is granted access.

3. Identity based encryption: hashing has also been beneficial for identity based

encryption. Like digital signatures, users’ IDs can be large and incur high

computational overhead to be encrypted, and also require to be handled privately. The

use of hashing technique can help provide privacy as well as achieve efficient

encryption.

4. Hash trees: in this approach, the one-way hash functions are used in a binary tree to

minimize the cost of authentication. The one-way hash functions are applied to data so

that their sources can be verified via the use of the root hash and authentication path

information.

5. Hash calendar: a special type of hash tree in which one-way hash functions are applied

to conceal time since a special point in the past.

6. Message authentication code: this approach commonly known as MAC is used to

protect a message’s authenticity and integrity. The hashing technique is central to this

approach. A message authentication code is a keyed hash function, where input to the

hash function is a message as well as a key. Both inputs are subjected to the hash

function and the receiver can verify, given that he has the key, both the authenticity of

the messages and its integrity.

Given these great properties of hash functions, their application is endless and their

versatility makes them a top choice for many developers for encryption and authentication

purposes. Areas where hashing is utilized are vast, but just to name a few we take for instance

 5

(e.g. wireless sensor networks [2], [3], [4], [5], smart card based authentication schemes [6], [7]

and banking authentication schemes [8], [9]). This dissertation presents an investigation of a few

applications of the one-way hashing techniques and proposes several solutions to try to optimize

their configurations to achieve better performance. By introducing new and innovative solutions

to overcome some of the inherent problems in typical hashing procedures, the main objective is

to make hashing much more suitable for applications with limited recourses.

1.2 Problem Statement

Many web sites encrypt the user’s password and perform robust authentication using SSL

based encryption during the initial login only, but do not apply the same level of costly HTTPS

protection in further transactions. Web servers rely on session cookies saved locally at the client

side to perform authentication after the initial login. Among the information stored in these

cookies is a shared hashed secret, which is used as a proof that the user has been successfully

authenticated at the initial login. As these cookies are transmitted over a wireless link using the

unsecure HTTP protocol, the communication between the user and the web server is vulnerable

to session cookie hijacking. An attacker could take over a user's account by sniffing out the

transmitted HTTP cookies. By hijacking session cookies, it becomes possible for the attacker to

impersonate the victim and interact with the web site without proper authorization. Admittedly,

despite the advancement of security measures to combat such attacks, today’s Internet is much

more prone to security breaches especially with the wide utilization of handheld and mobile

devices.

A similar threat is seen in the context of wireless sensor networks where tiny sensor

networks cooperate to gain information of interest to the network administration. Two of the

major shortcomings of today’s WSN are the scarcity of energy and memory resources. These

 6

shortcomings make it difficult to devise security measures that suit them while at the same time

provide robust and effective protection. To protect communication in WSNs, solutions based on

public-key have been proposed. However, the aforementioned shortcomings make such solutions

impractical. Alternatively, solutions based on the keyed-hash chains have been proposed.

One way to secure the connection in both scenarios is utilize hashing techniques. In the

first scenario, the session cookies can be, as suggested in [10], substituted by easily computed

one-way credentials to achieve better handling of cookies and mitigating the possibility of them

being sniffed out resulting in a potential hijacking of a user’s session. In the WSN context, the

authentication of wireless sensor networks and users is a two way process. To secure this two

way process between a user(s) and WSN sensor nodes, keyed-hash chains can be used to

generate verifiable authentication tokens in both sides.

The major difficulty with the one-way hash technique revolves around the fact that the

efficient use of the chain requires an accurate estimation of the number of transactions expected

during the lifetime of the session. If the number of transactions is overestimated, the

authentication in the early stages will suffer from an unjustified large computational overhead. If

the number of transactions is underestimated, there will be the undesirable synchronization

overhead of establishing a new secret and a new number for the remaining transactions. The

shortcoming is detrimental for any context, but is more pronounced and risky if the devices

handling communication are of limited resources.

Like WSN’s, the context of Radio Frequency Identification (RFID) has benefitted from

the one-way hash functions advantages. Namely, several researchers have proposed employing

one-way hash functions in authentication schemes. However, due to scalability issues, using one-

way hash functions in their standard format can be challenging. Therefore, it can be helpful to

 7

consider Merkle Hash Trees to reduce the computational overhead associated with straight

forward implementation of one-way hash functions.

A different yet important application of one-way hash functions for authentication is their

application in multi-server environments. With the wide spread of the Internet, users usually

have several sets of passwords and identities to access different services online. In fact,

according to a recent survey about users’ password habits among American customers, 61% of

people use a single password to access multiple websites and 54% of users have 5 passwords or

less [11]. This reality increases the chances for passwords being forgotten and/or results in users

choosing easy to remember uncomplicated passwords. For that reason, many applications are

now providing opportunities for users to use a single identity to access a variety of services (i.e.

Single Sign-On SSO). One-way hash functions are typically involved in the authentication of

SSO. The challenge here is different. Many of the SSO environments suffer from weaknesses

pertaining to the communication channel between communication nodes. More specifically, the

fact that this channel is uni-directional, thereby lacking mutual authentication, necessitate

looking for more novel technique to convert this channel into a bi-directional one to guarantee

stronger authentication.

1.3 Contributions

In this dissertation, we investigate the possibility of optimizing the one-way hash

constructions to achieve better handling of session cookies as well as user and broadcast

authentication in WSNs. In addition, we investigate the utilization of hash calendars and Merkle

hash trees to improve the authentication of Single Sign-On environments and radio frequency

identification schemes in toll/traffic management. Therefore, seven solutions in which one-way

hash functions are the core of authentication are presented. Although employed differently in

 8

each of these solutions to fit each individual environment, one-way hash functions have proven

useful.

In the first contribution [12], we propose a solution geared towards session hijacking in

the general context and mobile devices in particular. We evaluate the use of sparse caching

techniques to reduce the overhead of one-way hash-chain authentication. Sparse cache schemes

with uniform spacing, non-uniform spacing and geometric spacing are designed and analyzed. A

Weighted Overhead formula is used to obtain insight into the suitable cache size for different

classes of mobile devices. Additionally, the scheme is evaluated from an energy consumption

perspective. We show that sparse caching can also be effective in the case of uncertainty in the

number of transactions per user session. Our extensive performance tests have shown significant

improvement achieved by the sparse caching schemes.

In the second contribution [13], we try to lower the computational overhead of OHC by

dividing the one-way hash chain to multiple smaller hash chains. In doing so, we present a two-

tier one-way hash chain (TTOHC) protocol to secure cookie-based Internet transactions. By

utilizing different cryptographic hash functions arranged in two tiers, our hierarchical TTOHC

protocol gives significant performance improvement over previously proposed solutions for

securing Internet cookies. This solution also succeeds in lowering the computational overhead

significantly, if compared to the straight forward implementation of the one-way hash chain

protocol.

Another area of interest to this dissertation is the collaborative computing environment

and social networking. Collaborative computing is a relatively new computing paradigm whose

success is contingent upon the success of the means used to facilitate it. Similar session hijacking

threats do actually exist for collaborative networking, and, therefore, in the third contribution

 9

[14] we design a protocol which mitigates the risks by adopting a position-indexed hashing

scheme. Similar to the TTOHC protocol, this protocol utilizes multi-dimensional one-way

hashing, but benefits from the idea of position-indexed hashing. The idea basically uses the

position of the hashing operation within the chain as an additional argument in the hashing

function input adding rigor and complexity to the hashed value. We also run evaluative

experiments to verify the benefits of the proposed protocol, and the results indicate the

superiority of the proposed technique over the straight-forwardly configured hashing protocol.

An analytical model to compute the optimal lengths of the chains is presented.

In the fourth contribution [15], we explore the possibility of applying the one-way hash

function protocol to the user and broadcast authentication of wireless sensor networks. In order

to do so, and to make the one-way hash protocol more attractive for this context, where energy

and memory of wireless sensor networks are scarce as they are, we design a mini one-way hash

chain protocol that is computationally efficient, thereby preserving the memory and energy of

WSN nodes.

The fifth contribution [16] examines the potential benefits of a cache supported hybrid

two-dimensional one-way hash construction to handle social networks’ user sessions

authentication in collaborative applications. The proposed scheme is based on utilizing two-

dimensional OHC chains equipped with sparse caching capabilities to carry out authentication

during users’ social networks sessions.

The sixth contribution focuses on the context of mutli-server environments. In particular,

a keyless signature scheme to handle single sign-on authentication is proposed. The proposed

solution attempts to mitigate impersonation attacks commonly experienced in such environment.

Merkle hash trees and hash calendars are employed to generate session keys without completely

 10

relying on public/private keys to achieve authentication. In doing so, the proposed scheme

provides bi-directional authentication.

The final contribution [17] targets the radio frequency identification systems utilized in

toll/traffic management environments. To address authentication in this setting, a scheme based

Merkle hash trees is proposed. The main benefit of MHTs is its scalability compared to

traditional schemes. Specifically, we try to improve traditional MHTs by a simple division

mechanism where MHTs are split into smaller ones with the premise of improving efficiency.

1.4 Dissertation Organization

The dissertation is organized as follows: in Chapter Two, we survey and discuss the

relevant literature. In Chapter Three, we introduce our first contribution where we utilize the

concept of sparse caching to enhance the security of cookie-based sessions in mobile devices.

We demonstrate the main benefits of the proposed solution by presenting the results of our

evaluation experiments. In Chapter Four, we present the second contribution, the two-tier one-

way hash chain protocol, along with the experiments conducted to measure its benefits. In

Chapter Five, we investigate the idea of position-indexed hashing and its potential improvement

of one-way hash chains constructions. The investigation is supported by an analytical model and

evaluative experiments. In Chapter Six, we propose ideas to reduce the computational overhead

of one-way hash chains to appropriate it in the context of wireless sensor networks. Chapter

Seven presents the next contribution where a cache supported hybrid two-dimensional one-way

hash construction scheme is employed to authenticate users’ session in collaborative and social

networks environments. The scheme is evaluated mathematically to determine the cost of

authentication and develop a quartic equation to check the optimal configuration of the two

dimensions. We also evaluate the hybrid scheme with simulation experiments of different

 11

configurations and scenarios. In Chapter Eight, we discuss the context of multi-server networks

where single sign-on solutions are employed to provide a more convenient Internet experience. A

combination of hash calendars and Merkle hash trees is devised to produce a keyless signature to

achieve an updated and bi-directional authentication in this setting. Like the previous chapters,

Chapter eight presents the evaluation and simulations experiments results. Chapter Nine

introduces the tree-based authentication scheme for a cloud based toll/traffic RFID systems and

the relevant evaluation experiments. Finally, Chapter Ten concludes the dissertation and draws

directions for future research in the area of one-way hash chain authentication.

 12

 REVIEW OF THE LITERATURE CHAPTER 2:

In this chapter, a review of the relevant literature is surveyed to try to bring into

prominence the direction to which research in this area is heading, and situate the current

research within the larger paradigm of cryptography and authentication. First, we present the

literature pertaining to the session cookies illustrating how they evolved. We then introduce one-

hashing techniques and their application. The main objective of this chapter is to highlight the

great potential of the one-way hashing schemes which made them applicable in many scenarios

and contexts, and to review the work in the literature related to each of our proposed schemes.

2.1 Introduction

The past few years have witnessed an exponential growth in the use of smartphones and

tablets to gain wireless access to the Internet. This growth has been accompanied by a similar

growth in cyber attacks over wireless links to steal session cookies and hijack private users’

accounts. In a 2010 Open Web Application Security Project (OWASP) [18], broken

authentication and session management attacks were identified among the top ten list along with

injection, cross-site scripting and cross-site forgery attacks. In their 2013 Release, OWASP still

lists these attacks, which lead to session hijacking, among the top 10 security threats of the

Internet [19]. Additionally, the broken authentication and session management attacks have

moved up in prevalence to be second in the list. Many tools have been shown to aid in such

attacks for empirical purposes. For example, the Android application FaceNiff [20] makes it easy

to hijack other people's sessions using an Android smartphone with root access. The application

is claimed to work over any private Wi-Fi network using any of the common protocols, including

WEP, WPA-PSK, WPA2-PSK, or no security at all. FaceNiff can be used to intercept web

 13

session profiles and easily hijack sessions for Facebook, Twitter, YouTube, Amazon, MySpace,

Nasza-Klasa, blogger, etc. The only exception that disables FaceNiff is when the session is

protected by EAP or SSL. In a similar vein, Firesheep [21], an extension for Firefox, clearly

revealed that many sites fail to protect users against session hijacking attacks. To alert users of

these vulnerabilities, a Firefox plug-in extension has been developed in [22] which notifies users

if the server they are visiting is susceptible to cookie hijacking. This extension only gives

warning for users to avoid risky web sessions but does not provide protection.

Wireless networks have more types of security threats and are much more prone to

malicious attacks than wired networks. Serious security vulnerabilities exist in all types of

wireless networks including 802.11 wireless LANs, wireless ad hoc networks, multihop wireless

mesh networks, and wireless sensor networks [23], [24], [25], [26]. Of particular interest to the

current research is the security threat of hijacking user’ private sessions over wireless links. This

threat is increasingly on the rise due to two reasons: i) the worldwide proliferation of

smartphones, tablets and other handheld mobile devices as a primary tool for Internet access and

ii) the increasing use of HTTP cookies by web applications to speed up responses to users and

offer a better web experience that is more personalized and richer in interactivity. Since cookies

are stored on the client’s machine, they are one of the most popular means available to web

developers to create better web applications without requiring significant server resources.

Session cookies are being increasingly used for many purposes including session and transaction

authentication, tracking of shopping cart contents, identification of user's preferences, and

tracking browsing behavior. Cookies usually exist as plain text on the client machine and can be

tampered with by attackers if they succeed to compromise this machine.

 14

The best way to overcome the issue of session hijacking is to use HTTPS (i.e., HTTP

over SSL or TLS) throughout the lifetime of the session. This guarantees a fully secure session

by encrypting users’ login information and securing all transactions between login and logout.

However, due to the costly nature of this approach, many developers use HTTPS only in the

login and initial authentication then revert to the approach of using cookies stored locally at the

client’s side to carry out authentication throughout the remainder of the session. Session cookies

store information about the identity of the client and a shared secret which indicates that the user

has been authenticated in the initial login. Since these cookies are transmitted over unsecure

links using the unsecure HTTP protocol, they are susceptible to malicious attacks which can sniff

out session cookies and, consequently, take over a client’s identity and allow the attacker to gain

the same level of access over the web application that the original user has.

The use of cookies as a cheaper alternative to the wide utilization of the secure HTTPS

protocol has been also attractive to many collaborative websites and social media networks. One

cannot deny the fact that the unprotected nature of cookies can compromise the collaborative

environment. Evidently, the availability of social networks and collaboration websites where

access to the website is extended to long durations has made this issue even more pressing.

Although using a secure protocol (e.g. HTTPS) to connect to the web provides higher levels of

security, it is not always applied by many web servers and is replaced by cookie protection. The

nature of cookies as plain text stored at the client’s side makes it not too complicated for an

adversary to hack these cookies and steal the Internet session leading to a compromise in the

users’ overall Internet experience.

 15

2.2 Securing Session Cookies

As mentioned above the most secure way to handle an internet session is to carry out this

session using either The Secure Sockets Layer (SSL) protocol [27] and its successor, the

Transport Layer Security Protocol (TLS) [28], or the Secure-Hypertext Transfer Protocol

(HTTPS) [29]. The encryption in the SSL/TLS protocol is achieved via utilizing asymmetric

cryptography allowing applications between client-server to communicate without worrying

about eavesdropping and tampering. The communication via the SSL/TLS protocol is carried out

using an encrypted, secure channel that is established by using authentication certificates. Note

that these authentication certificates can be mutually exchanged, thereby enabling mutual

authentication between the server and clients for maximum protection. The HTTPS, on the other

hand, is not considered a protocol by itself, but it achieves its security by working on top of

SSL/TLS. However, since the SSL/TLS is the backbone encryption mechanism used in HTTPS,

the same can be said about the HTTPS.

The security of the SSL/TLS protocols has resulted in their wide utilization in many

applications as they are well-suited for finance, e-business, healthcare etc. However, these

advantages do not come without their prices. One of the major drawbacks of the secure SSL/TLS

and HTTPS protocols preventing their wide utilization in Internet is their demands for

computational resources. Given the fact that they rely on authentication certificates to achieve

their encryption and decryption, the computation required to transmit the certificate is an

additional burden both on the client and the server sides. Furthermore, SSL incurs additional

costs which many companies prefer to spare for other expenses. According to [30], web servers

that employ SSL incur performance penalty that ranges from a factor 3.4 to 9 compared to web

servers not utilizing SSL. For these reasons many websites prefer to use SSL/TLS based

 16

communication for the initial login stages, and then resort to the less expensive, both

computationally and economically, stateless internet protocol HTTP. In order to keep state and

avoid the need for the user to identify himself to websites every time he logs in to a web site, we

revert to cookies as carriers of users’ identity information. Imagine having to introduce yourself

every time you meet someone. While this is not pertinent in real life, cookies are made with this

imagination in mind. Unlike humans, this reality can pose serious threats to the Internet

experience as these identifiers can be accessed and unlawfully exploited, thus, leading to attacks

such as session hijacking.

2.3 What Are Cookies?

Cookies were originally invented to help facilitate the online e-commerce industry. The

authors of [31] identify cookies as metadata that pertains to a pair of name/value information sent

by an HTTP server to a user agent. Whenever the user agent tries to access URL that requires

identification in the HTTP server, the cookies are used as identifiers. According to [32], cookies

are the piece of information that the server and client pass back and forth. In addition, [32]

indicates that the amount of information, whose content is at the discretion of the server, tends to

be usually small. Although simply examining a cookie’s value will not reveal what the cookie is

for, or what the value represents as [32] points out, information about the user can still leak out

exposing privacy and potentially infringing the security of the internet experience. This is evident

in the mechanism with which the HTTP cookies operate. As [32] further explains, “a cooperating

client returns the cookie information verbatim in a Cookie header, one of its request headers, each

time it makes a new request to the same server”. Thus, unless told by the server that the cookie is

changed, the client will keep the previous cookie unchanged. Note that changing the cookie

automatically supersedes the previous cookie [31]

 17

Cookies can be of many types and flavors and can serve a variety of purposes. For

example, there are session cookies, first party cookies, persistent cookies, secure cookies, and

several more. Our main concern in this research is session cookies or more precisely, persistent

cookies, and, thus, will be highlighted. As the name suggests, session cookies are mainly used to

identify a user for a particular Internet session. One of the main features of sessions cookies is that

they are subject to an expiration period or valid for a certain amount of time. First designed by

[33] to keep state of the user in online shopping scenarios, session cookies are set up to have an

end point set forth by the server. This end point, however, can be extended, as a convenient

feature, to alleviate the need of users to enter their login credentials each time they log in, thereby

resulting in a higher possibilities of them being sniffed out and exploited.

2.4 Current Practices

The security measures currently utilized to avoid the hijacking of session cookies are

lacking both in depth and dearth. In fact, the authors of [34] point out that the use of cookies in

web sessions has not evolved much since its first days indicating that they are susceptible to

attacks such as eavesdropping. The fact that web sessions utilizes static tokens sent over a

plaintext channel makes it possible for an eavesdropper to possibly take over the session [34].

This threat is on the rise due to the wide utilization of wireless networks. On the threat caused by

wireless connection, the authors of [34] highlight that users freely connect to the wireless base

stations and then are asked for login credentials of the web sites they are trying to access,

allowing wireless operators to manage per-user password access-control. They further explain

that wireless operators should not be doing this practice and limiting password exposure to that

pertaining to the Wi-Fi service they are providing.

 18

Several solutions have been proposed to address the problem of session cookie hijacking

in wired and wireless networks. Liu et al. [35] proposed a secure cookie protocol for ensuring

integrity of each transmitted cookie by applying HMAC on the concatenation (username |

expiration time | data | session key). Their fundamental assumption, however, is that their secure

cookie protocol would either encrypt the data using a session key or run on top of SSL. As

mentioned above, the use of HTTPS throughout the internet session is not only computationally

inadequate due to the large computation associated with key generation and handling, it is also

very costly. Many websites have different servers that they rely on, and to provide HTTPS on

their servers would incur extraneous costs that might be unnecessary.

Given that SSL is not always optimal for all applications, Adida [34] proposed a

technique called SessionLock as an alternative to the wide utilization of SSL. Essentially,

SessionLock works in two stages: the first sage is done using a secure connection on top of SSL

and involves establishing a session key, and the second stage is where the remainder of the

session is carried out and it is run on HTTP. Using HMAC as a cryptographic function, a shared

session secret is generated and used to encrypt each subsequent request from the client to the

server. While this solution offers potential in solving session hijacking especially, it is not robust

against different types of attacks especially active attackers who can amend or even steal the

session key and use it unlawfully. In HMAC based techniques, the compromise of the shared key

compromises the whole session as all future values of HMAC can be easily calculated.

Moreover, techniques such as URL re-writing and URL fragmentation, which are essential in the

SessionLock solution, might not be suitable for different applications.

Another direction of research suggests the use of an external proxy where authentication

and sensitive information management are carried out completely at the proxy or some other

 19

external device (e.g. a user’s cell phone) [36],[37]. However, this solution’s implementation can

pose difficulties as it might not be optimal in all situations. Specifically, if a user does not have

access to the proxy for any reason or in case the external device is not available at the time the

service is desired (e.g., cellphone battery is dead, no coverage...etc.), he will not be able to use

the service provided by the web application.

2.5 New Direction

We have seen in the previous section that for the most part current practices to secure

session cookies are either based on the wide utilization of SSL/TLS based connection, or on

solutions that are not as rigorous. Alternatively, a possible candidate to address the problem of

session hijacking caused by the lacking security of Internet cookies is the Lamport’s well-known

one-way hash chain technique for one-time passwords [38] which was later formulated by Haller

to the S/Key standard [39]. Lamport’s ideas were very attractive to many researchers. For

example, the attack-resilient security architecture ARSA [40], proposed for multihop wireless

mesh networks, uses a hierarchical one-way hash chain to authenticate beacons transmitted by

mesh routers. The Ariadne secure on-demand Adhoc network routing protocol [41] uses hash

chains in its Route Discovery phase and in later phases to thwart the effects of routing

misbehavior. The SEAD protocol [42] proposed for Adhoc networks also uses a one-way hash

chain for authenticating important routing information such as the routing metric and the

sequence number. This prevents any malicious nodes from falsely advertising a better route or

tampering with the critical routing information contained in the packet that it received from the

source.

Several proposals have tried to address the problem of session cookies’ exploitation by

adopting schemes which rely on Lamport’s one-way passwords. For instance, [43] proposed a

 20

solution that targets the read-only property of the session cookies in the website’s databases.

They achieve their protection by leveraging the read property so that it becomes hard for an

attacker to correctly guess the cookie value. Conceptually, they suggest including an iterated

hashed value of the user’s password and its pre-image in the session cookies. These two values

are compared each time a communication between the server and client is desired. To strengthen

the cookies, they add a salt value which they claim makes it even harder for an adversary to

detect the users’ private information.

We, therefore, address the potential benefits of applying the one-way hash chain as a

technique to secure session cookies. Our objective is to propose schemes which not only

preserve the cryptographic strength of one-way hash chains, but also use it in a computationally

efficient manner. Unlike HMAC based schemes discussed above, using the one-way hash chains

to secure cookies minimizes the chances of them being sniffed out and abused for unlawful

utilization by entities other than the respective parties.

The one-way hash chain technique has been recently used to protect against cookie

hijacking in wireless networks. The One-Time-Cookies (OTC) protocol proposed in [10] is a

straightforward implementation of Lamport’s hash chain technique for one-time passwords. The

authors implemented OTC as a plug-in for Firefox and Firefox for mobile browsers. OTC uses a

hash chain construction to generate a sequence of values that can be used as one-time

authentication tokens. These tokens, once verified by the web application, cannot be reused due

to the pre-image resistance property of cryptographic hash functions. The Rolling Code protocol

proposed in [44] is an attempt to reduce the computational overhead of the OTC protocol for

mobile devices with constrained memory. The protocol replaces the hash chain performed by

OTC in each transaction by two hash operations: one to update and randomize the value of a

 21

variable d = hash(d) and the other to produce a one-time authentication token by applying a hash

function on the Exclusive-OR of a secret seed and the new value of d. In essence the protocol is

much like the rolling code technology used to prevent perpetrators from recording a code and

replaying it to open a garage door. The Rolling code protocol is less robust than the one-way

hash chain approach (e.g., the OTC protocol) but is lightweight and more suitable for mobile

phones and PDA’s. Although the seed is guaranteed to be fresh during each iteration due to the

monotonic function used to increase the value of d, there is a high risk of discovering this value

and consequently compromising the internet session.

2.6 The One-way Hash Chain Model

We first present the notations for the one-way hash chain technique that we will use in

this dissertation. We will refer to this hash chain technique as the HACH technique, which can

be described as follows:

HACH uses an initial secret s which is the seed of the hash chain. We apply a

cryptographic hash function H() successively to obtain the following values

V0 = s

V1 = H(V0) = H
1
(s)

V2 = H(V1) = H
2
(s)

…

Vj = H(Vj-1) = H
j
(s)

…

VN = H(VN-1) = H
N
(s)

Due to the pre-image resistance property of the hash function (e.g., SHA-1), the values Vi

are distinct and can therefore be used to represent one-time authentication tokens in successive

user transactions after the initial login, i.e., the value of the appropriate V token is stored in the

session cookie transmitted by the client to the server in each transaction. To properly use the

one-way hash chain, these values must be transmitted in reverse order. In the first transaction

 22

after login, the client browser transmits the value VN. Similarly, the client transmits VN-1 in the

second transaction and VN-i+1 in the i
th

 transaction.

During the initial HTTPS authentication, a shared secret value s and a value chain length

N representing the number of transactions are exchanged between the client and the server. After

the initial login, the costly HTTPS protocol is replaced by HTTP and authentication is done by

sending the one-time authentication tokens in the session cookies. Upon receiving the value of an

authentication token, the server computes a similar value based on the values of N and s, and

accepts the transaction if the received value matches the computed value.

The variable N is the chain length and represents an upper bound on the number of

transactions that can be handled by the above hash chain. One difficulty with the HACH

technique is that the efficient use of the chain requires an accurate estimation of the value of N,

i.e., the number of transactions expected during the lifetime of the session. If the number of

transactions is overestimated, the authentication in the early steps will suffer from an unjustified

large computational overhead. If the number of transactions is underestimated, there will be the

undesirable synchronization overhead of establishing a new secret and a new number for the

remaining transactions. For our initial presentation of the sparse caching technique, we will

assume that the number of transactions in a session, N, is accurately known. Later in the

dissertation, we will show how the sparse caching technique can be used to effectively deal with

the case when the value of N is not accurately known.

We will use the number of hash operations executed per transaction as the metric to

evaluate the execution overhead of the process of verifying this transaction using the

authentication token transmitted by the client. We denote this metric for the i
th

 transaction by

HCosti. Smaller values of this metric indicate faster speeds for the authentication process. The

 23

total cost of the entire session is the sum of the costs of the N transactions and is denoted by

TotalHCost.

In its most basic format, the 1
st
 transaction in the HACH protocol computes H

N
(s) and has

a cost HCost1 = N. In general, the i
th

 transaction computes H
N-i+1

(s) and has a cost HCosti = N-

i+1. We have

𝑇𝑜𝑡𝑎𝑙𝐻𝐶𝑜𝑠𝑡 = ∑ (𝑁 − 𝑖 + 1) =
𝑁(𝑁+1)

2

𝑁
𝑖=1 (‎2.1)

The maximum and average value of the transaction execution overhead are given by

HCostmax = N
HCostavg = (N+1)/2

It is important to stress that the authentication tokens are generated by successive hashing

from V0 to XN but are exposed (i.e., presented as authentication tokens) from VN to V0. The

reverse presentation of the values of the hash sequence is a fundamental feature that must be

enforced in order to attain the good security properties of one-way hash chains. Exposing

(presenting) the hash sequence values in the same forward order in which they are generated

makes the scheme much less secure because if one hash value is compromised, the attacker can

compute all the hash values that will be used in the future.

The HACH protocol in the above description is the backbone of our solutions. In the four

proposed schemes, we try to optimize the HACH by reducing its computational overhead to suit

different scenarios and contexts. The different techniques utilized try to benefit as much as

possible from the advantages of the HACH protocol maintaining its cryptographic strength,

while at the same time minimizing the drawback inherently associated with its construction.

 24

2.7 User and Broadcast Authentication in Wireless Sensor Networks

Another area of interest that we investigated in this dissertation is user and broadcast

authentication in wireless sensor networks. A wireless sensor network (WSN) is a collection of

tiny sensor nodes that work collaboratively to gather information. Typical shortcomings of

wireless sensor nodes include their limited storage and power resources. Versatile as they are,

WSNs have gained acceptance and are being widely used in various arenas such as military

sensing and tracking, traffic monitoring, industrial quality control, medical monitoring, etc. With

the fast rate of acceptance of such networks, they are expected to grow both in capacities and

capabilities.

One of the important issues slowing down this growth in deployment lies in their security

vulnerability. Attacks on WSNs can be as easy as intercepting messages, falsifying data and

impersonating users to gain access. Such attacks can only be avoided by exercising robust and

effective security measures that prevent unlawful access of unauthorized entities. The fact that

sensor nodes in WSNs are not well-endowed in terms of memory and energy makes it necessary

for solutions addressing such attacks to be lightweight, efficient and memory/energy preserving.

Solutions proposed to address the problem of security issues in WSNs are still work in

progress. Specifically, authenticating the data broadcast and users over a WSN is very crucial.

Researchers such as [45], [46], [47] suggest using public-key based solution. However, with

limited energy and memory capabilities, such solutions can pose difficulties in deployment due

to high cost of calculating public keys. Alternatively, solutions based on the keyed-hash chains

have been proposed [48], [49]. However, if used in the basic configuration where a shared key is

hashed with no limits on the length of keyed-hash chain, two major problems arise. Similar to

session cookies security issues discussed above, the shared key in the WSN can be compromised,

 25

and, hence, data might be at risk putting the whole WSN in danger. Second, the length of the

keyed-hashed chain can grow considerably leading to an unjustified overhead that cannot be

handled by a sensor node with limited memory and energy. In this dissertation, we investigate

these two problems and try to address them by adapting the HACH protocol to achieve broadcast

and user authentication for WSNs.

2.8 Authentication in Single Sign-On Environments

Due to the proliferation of social networking, cloud computing and the Internet of things,

Single Sign-On schemes are now becoming more popular. Social networking giants such

Facebook, Google Twitter and several others are providing SSO services to the public. Protocols

utilizing Browser-based Single Sign-On (SSO) provide convenience and security for users and

service providers alike. By employing SSO protocols, users are relieved the burden of having to

possess multiple sets of IDs and passwords for different web services they wish to use. Similarly,

service providers are relieved the burden of a variety of login-related tasks such as clients

contacting them for stolen passwords, recovering of forgotten passwords, revocation of possibly

compromised passwords etc. As such, by substituting multiple identities corresponding to

multiple service providers connected via a central identity provider with a single identity, SSO

protocols are promising a more secure Internet experience, especially given that clients typically

use easy to remember weak passwords and usually use the same passwords to access different

applications.

An SSO authentication scheme rely on three main components: the users wishing to be

granted access to certain services, the service provider SP (also known as the relying party) and

the Identity Provider (IdP) who delegates identity assertions to the SP. Several researchers have

discovered critical security concerns related to the communication between these three

 26

components (e.g. [50], [51]). In an extensive analysis of SSO, the authors of [50] detected

several serious logic flaws in commonly deployed SSO systems and RP’s. Similarly, the authors

of [51] have identified flaws in two of the commonly utilized SSO frameworks, namely, SAML

SSO and OpenID that lead to hijacking a user’s authentication attempt and accessing resources

without the user’s consent. Such impersonation attacks can be detrimental to the utilization of

SSO schemes, as they can lead to exposing of critical information about the users thereby

threatening their privacy.

SSO authentication schemes generally aim to provide the users with the convenience of

singing in to one portal and gaining access to several services. Therefore, they inherent many of

the password related features present in common authentication systems such as the Lamport

authentication protocol [38]. After successful login, session authentication is typically achieved

via either a secure channel such an SSL or in a cookie supported HTTP connection. While they

have been relatively successful in securing communication in conventional computing

environments, they fell short in the context of SSO due to their inability to provide robustness

and rigor in authentication required for this setting.

Therefore, researchers have tried to come with solutions particularly designed to suit the

SSO environment. The majority of schemes designed to suit SSO fall within two main

categories: hash-based authentication schemes and public-key based authentication schemes.

Among the early attempts to design a hash-based authentication architecture for SSO is reported

in [52] who proposed an authentication protocol that guarantees users’ anonymity by employing

a combination of public key and session token infrastructure. However, this scheme was shown

to have vulnerabilities due to the public nature of the session token, thereby leading to

impersonation and identity disclosure attacks as shown in [53]. The authors of [53], alternatively,

 27

proposed utilizing timestamping to improve the strength of the session key-based approach.

Yang et al. in [54] identified a weakness in the previous protocol resulting in the possibility of

the service providers getting a hold of the clients session ID, and they proposed an improvement

which relies on public-key cryptographic infrastructure. However, as they point out, their scheme

is prone to DoS attacks. These three schemes all rely on the use of smart cards as an additional

authentication factor. Although there followed several improvements on the smart card solutions

(e.g. [55], [56], [57] [58]), relying on a central agency to issue smart card credentials for the

whole network can be problematic as it increases single point of failure which can be detrimental

to the whole scheme.

Another group of SSO authentication protocols that have gained popularity and became

widely adopted in today’s SSO environments is the Security Assertion Markup Language SAML

[59], [60], and the OpenID Project [61]. One of the essential reasons why the two SSO

authentication mechanisms have gain popularity can be attributed to the fact that both are

browser-based solutions. In other words, unlike the schemes discussed earlier which require

additional resources such as a smart card issuing entity, the SAML and the OpenID simply

require a standard web browser as a user agent. The SAML authentication protocol relies on sets

of public and private keys for verification, whereas the OpenID depends on session cookies as a

verification mechanisms. However, both schemers were found to have critical vulnerabilities

pertaining to the logic with which they are designed. In particular, the fact that both are uni-

directional and the possibility of using multiple SSL connections render them susceptible to

attacks such as impersonation and hijacking attacks. In this dissertation, we propose an

authentication protocol that is bi-directional and guarantees the recentness of authentication

 28

assertions. Specifically, we utilize the idea of keyless signatures proposed in [62] in conjunction

of Merkle Hash Trees [63] to authenticate communication in the SSO network.

2.9 Authenticating Cloud-based Toll/Traffic RFID Systems

Due to its capacity to wirelessly and remotely identify tagged objects, RFID (Radio

Frequency Identification) technology has long been used in numerous applications to track

assets, enable supply chain management, track commodities in retail stores, payment, security

and access control and many more. Recently, vehicular and traffic management applications

have adopted this technology in road tolls administration and enforcement. Many municipalities

around the world depend on RFID for electronic toll tracking/ payment through devising RFID

tags mounted in the cars or plates of their customers. TransCore, one of the biggest RFID

providers, indicate that over 3.5 million customers travel their electronic tolling systems at

highway speeds and simply pay their tolls using RFID tags or their vehicle license plates [64].

The Express Way Authority in Central Florida, for example, says that in 2013, the number of

transponders used to track their electronic toll operations is estimated at around 530.000 units; a

number that has grown steadily throughout the past 10 years [65]. According to a report by E-

ZPass Group, the number of transponders in their road toll system has more than doubled in less

than ten years from around 13 million in 2005 to more than 26 million transponders 2013 [66].

The RFID technology is moving toward being adopted in more traffic related applications such

as tag registration and number plate tracking. Such applications are promising since they can

solve a lot of traffic issues experienced today such as congestion, car theft, and rental fleet

management; all of which can bring about better utilization of current infrastructures.

As part of its thriving evolution to become a more enabling technology, the RFID

schemes are presenting architectures which benefit from cloud computing to provide more

 29

resilient and catering solutions for companies. The context of traffic and road toll management is

one of the beneficiary applications of this trend, as managing data that grows exponentially

throughout the years can be very costly and can hinder the future of RFID in traffic management

and application. Therefore, moving to a cloud-assisted traffic management scheme definitely

reduces some of the costs associated with storing and handling vehicles’ information. However,

this movement is not without cost. Authenticating cloud-based RFID schemes is challenging

because such schemes inherent security flaws of both the RFID technology and cloud computing.

The majority of RFID schemes presented in the literature targeting road tolls and traffic

contexts have been concerned with the engineering and conceptual aspects of the issue (e.g. [67],

[68]). However, little research has been conducted to investigate the issue of authentication in

RFID based toll/traffic management systems. This dissertation also tries to address this issue in

addition to the previous ones. In this section, we overview some of the related literature to the

RFID in general.

The authors of [69] stress the importance of authentication in RFID systems. They

indicate that RFID systems are susceptible to security threats due to the fact that they work non-

line-of-sight in a contactless fashion, thereby, allowing attackers to remotely and passively

launch attacks without being noticed. The resulting security concerns can be unwanted consumer

tracking, tag forgery and unauthorized access of tags’ memory content. As a result, any RFID

scheme should address this issue. Strong authentication of RFID systems, according to [69], are

efficient in combating such attacks. Many authentication schemes proposed thereafter attempt to

achieve this property. Authentication can be achieved through cryptographic based approaches

such as symmetric block ciphers and one-way hash based schemes. Examples of schemes that

adopt symmetric block ciphers include [70], [71], [72]]. The main drawback of symmetric block

 30

cipher solutions is the high computational overload associated with the calculation scheme.

Alternatively, solutions based on the one-way hash chain constructions such as [73], [74], [75]

have been proposed. However, with a network of RFID readers and RFID tags as big as the

traffic/ road toll management that can go up to several hundreds of thousands of tags and readers,

these solutions will suffer from a scalability problem. Both symmetric block cipher schemes and

one-way hash chains solutions suffer from this problem, as a linear search is needed in the

database each time the reader tries to identify a tag. This problem is more prominent in the above

described scenario where many readers and tags alike can require access to the database at the

same time; which renders such protocols unsuitable for traffic/ road toll applications.

Schemes based on binary trees have shown benefit in improving the scalability by

reducing the search complexity from O(N) in the linear search schemes to O(logN), where N

represents the number of RFID tags in the network.

The traffic/ road toll scenario presents challenging dimensions in the employment of

RFID schemes. First, the majority of RFID readers in the system are stationary making physical

capture of them far-fetched. However, readers in this context are typically given one chance to

read the RFID tags since RFID-equipped vehicles typically pass through the RFID readers range

only once. Thus, the reading window is limited and readers cannot afford a complex search, such

as the one achieved by a linear search. As stated above, a tree-based solution achieves acceptable

and relatively low complexity searches.

In this dissertation, we introduce a tree-based solution that reinforces the RFID

authentication process by predefining the tree upper bound, thereby, spreading the data of the

RFID system into multiple trees. Our aim from doing so is to reduce the computational overhead

while at the same time improving scalability.

 31

 HASH CHAIN (HACH) WITH SPARSE CACHING CHAPTER 3:

TECHNIQUES

3.1 Introduction

In this chapter, we present and evaluate the use of sparse caching techniques to reduce the

overhead of one-way hash-chain authentication. Sparse cache schemes with uniform spacing,

non-uniform spacing and geometric spacing are designed and analyzed. A Weighted Overhead

formula is used to obtain insight into the suitable cache size for different classes of mobile

devices. Additionally, the scheme is evaluated from an energy consumption perspective. We

show that sparse caching can also be effective in the case of uncertainty in the number of

transactions per user session.

3.2 Sparse Caching: Basic Idea

The main drawback of the HACH protocol, as elaborated in Chapter Two, is the need to

perform the hashing operation N times for the first transaction, N-1 times for the second

transaction, and so on. For large values of N, the Hash Chain (HACH) technique is costly and is

not generally suitable for most mobile devices that have scarce memory resources. In this

chapter, we propose using a sparse caching approach to attain the full level of security of one-

way hash chains but at a much reduced computational overhead. An earlier proposal for sparse

caching was given by Gupta et al. [76] as a way to reduce directory memory requirements. The

hallmark of this approach is that a memory block is allocated for each active entry and

invalidated data is discarded as they are no longer needed. Because of this feature, sparse

caching techniques have been appealing in a variety of environments and applications. The

authors of [77], for instance, proposed a method to improve users’ perceived performance in

wireless networks using sparse infrastructure. Also, the authors of [78], [79] suggested using

 32

sparse caching in multimedia applications. As we describe our proposed solution, we also

introduce several cache spacing configurations that are deployable in different scenarios.

cache[0] = s

cache[1] = H
20

(s),

cache[2] = H
40

(s),

cache[3] = H
60

(s),

cache[4] = H
80

(s).

The above values can be computed using a simple loop that computes the hash function

80 times. The availability of the above cache values reduces the execution overhead of

transactions considerably. For example, the first transaction can now start by fetching the value

of cache[4] then performing 20 more hashes to obtain H
20

(H
80

(s)) = H
100

(s). The value HCost1

for the first transaction has been reduced from 100 to 20. Basically the sparse caching scheme

has divided the initial hash chain into five mini-chains, each with length 20.

The above example uses sparse caching with uniform (equal) spacing. We will examine

non-uniform spacing later, but we will first formally define the uniform spacing model and

examine its characteristics.

3.2.1 Sparse Caching with Uniform Spacing

This scheme is defined by two parameters, the size of the cache, cache_size, and the

uniform space interval, minichain_len. In the above example, cache_size = 5 and

minichain_len= 20.

The pseudo code to compute the authentication token of the i
th

 transaction is presented

below. Notice that in the i
th

 transaction, the client transmits the value VN-i+1 = H
N-i+1

(s).

 33

Authentiaction_Token(i);

 k = (N-i) / minichain_len // integer division

 m = N - (k  minichain_len)

 VN-i+1 = H
m
(cache[k])

Using the uniform sparse caching scheme, the total cost of a session including the cost of

the initial cache setup is given by

𝑇𝑜𝑡𝑎𝑙𝐻𝐶𝑜𝑠𝑡 = 𝐶 ×
𝑀(𝑀+1)

2
=

𝑁(𝑀+1)

2
 (‎3.1)

Where C = cache_size, M = minichain_len, and N=CM.

The above formula is derived under the simplifying assumption that N is divisible by C.

The cost TotalHCost is the sum of two components: a cost of (C-1)M for the initial filling of

the cache values and a cost of (C-1)M(M+1)/2 for the N transactions. Notice that (C-1) of the

N transactions will not need to perform any hashing since the required value is already in the

cache. For the above example of N = 100 and C = 5, transaction # 21 will simply read V80 from

cache[4]. The maximum and average value of the transaction execution overhead are given by

HCostmax = M // for the 1
st
 transaction

HCostavg =
0.5×(𝐶−1)×(𝑀−1)

𝐶
 (‎3.2)

In section 3.4, we evaluate the tradeoffs of the sparse caching scheme and examine

policies for selecting the cache size C for different values of N. It is important to notice that the

sparse caching scheme is applied only to the user mobile device, not to the server. The server

can compute the same authentication tokens using any caching scheme; for example it may use a

complete caching scheme that stores all authentication tokens in the cache during initialization.

 34

3.2.2 Weighted Overhead Formula

For a session with N transactions and a user with a certain mobile device, what would be

the best cache_size C? In answering this question, we first recognize that wireless users can use

mobile devices having a wide range of capabilities. Some users may use high-end laptops that

have plenty of storage resources while others may use mobile phones with limited memory. We

use the following Weighted Overhead (WO) formula to obtain insight into the suitable value of

the cache_size C.

WO = 𝑊 × 𝐶𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝐻𝐶𝑜𝑠𝑡 (‎3.3)

Where w is the weight assigned to the cost of using memory in the mobile device. The

Weighted Overhead formula is simply a pragmatic approach to select the size of the cache for the

different categories of mobile devices. The Weighted Overhead WO obtained from the formula

can be viewed as the combined cost of memory and execution overhead where w is the cost of

memory relative to a unit cost of execution. The value of w may be assigned based on classes.

For example, we may have three classes of mobile devices with the following weights.

Class 1: w1 is used for high-end laptops with plenty of memory.

Class 2: w2 is used for mobile devices, e.g., high end smartphones and tablets, with

reasonable but constrained memory resources.

Class 3: w3 is used for mobile devices, e.g. low-end mobile phones, with very limited

memory resources.

We have the obvious relationship w3 > w2 > w1. To choose the best cache size for a

mobile device, we simply minimize the value of the Weighted Overhead. For Class 1, the value

of w1 is nearly zero and the minimization problem reduces to minimizing the second term

 35

TotalHCost. Minimizing TotalHCost is achieved by choosing the largest possible value of cache-

size, which is simply N. This means that for high-end laptops, the sparse caching scheme is

replaced by complete caching in which the authentication token value Vj is obtained by fetching

cache[j] without performing any hash computation. For Class 2 and 3, plotting the value of

Weighted Overhead versus cache_size could reveal the best size that minimizes the combined

cost.

In section 3.4.4, we present performance results that show how the Weighted Overhead

formula can be used to gain insight into selecting the size of cache.

3.2.3 Uncertainty in the Number of Transactions

In all previous discussions, we assumed that the number of transactions in a session, N, is

accurately known. In real-life applications, however, the value of N is usually only

approximately known. If the application developer chooses a value for N that is too small, the

hash chain will be exhausted before finishing all of the transactions of the session. If the selected

value of N is too large, the transactions will have large execution overhead. It is difficult for an

application developer to consistently strike a good balance of N for the different sessions of the

different users. The sparse caching approach presented earlier comes into play to elegantly solve

this problem. Below, we elaborate on this issue.

Suppose that we know that a session will have approximately 1000 transactions but there

is some likelihood that it could have up to 2000 transactions. Without any caching, the developer

will be tempted to choose a value of N between 1000 and 2000 to strike a balance between

reducing HCost for the individual transactions and avoiding the scenario of exhausting the chain

and resorting to costly HTTPS authentication and additional hash chain setup. By placing a

single cached value cache[1] = H
1000

(s) at the middle of the range, the developer can safely

 36

select N = 2000 with a guarantee that HCostmax will be 1000 and the costly HTTPS re-

initialization will not be needed. By placing a second cached value at 2000, the developer can

extend the value of N to 3000 with the same guarantee that HCostmax will be 1000 and the costly

HTTPS initialization will not be needed. The sparse caching scheme can be used with few

cached units to extend the range of N to a large safe value without incurring an increase in the

execution overhead of individual transactions or running the risk of additional HTTPS setup.

In section 3.4, we present test results that illustrate the application of sparse caching for

the case of approximate values of N.

3.2.4 Sparse Caching with Non-uniform Spacing

The case of uncertain values of N motivates the use of sparse caching with non-uniform

distribution. We elaborate on this by an example.

Suppose it is highly probable that the number of transactions in a user session will be 100

or less but there is some small probability that this number could go up to 500. As shown earlier,

we could use the sparse caching scheme to set the value of N to 500 without increasing the value

of HCostmax above 100. We can actually do better than this by choosing non-uniform cache

spacing to significantly improve the execution overhead of the first likely 100 transactions. For

example, we can distribute 9 cache values non-uniformly as follows:

cache[0] = s

cache[1] = H
100

(s)

cache[2] = H
200

(s)

cache[3] = H
300

(s)

cache[4] = H
400

(s)

cache[5] = H
420

(s)

cache[6] = H
440

(s)

cache[7] = H
460

(s)

 37

cache[8] = H
480

(s)

The above scheme gives priority to the first 100 transactions with a guaranteed value of

HCostmax = 20. The other less likely 400 transactions will be guaranteed a value of

HCostmax=100.

Schemes for the forward generation and reverse presentation of one-way hash chains can

use different topologies including tree topologies. But the simplicity of the proposed sparse

caching authentication scheme and its flexibility in dealing with different scenarios (such as the

non-uniform spacing discussed in this section or the geometric spacing discussed in the next

section) make the scheme more practically appealing than other schemes for implementing one-

way hash chains [80].

In section 3.5, we present the results of our tests to evaluate non-uniform spacing for

sparse caching.

3.2.5 Caching with Geometric Spacing

In the previous section, the non-uniform spacing of cached values was achieved by

creating two groups: the high priority group (first 100 transactions in the above example) and the

low priority group (the remaining less likely 400 transactions). Within each group, the cached

values are distributed uniformly. This scheme is suitable when the value of N is not accurately

known but there is knowledge about the minimum value of N, i.e., the number of transactions

that are most likely or are guaranteed to occur. If this knowledge is not available (i.e., the value

of N could range from a small number to a large number), it would be better to distribute the

cached values at progressively increasing intervals. One possible progressive strategy is the

geometric distribution scheme. We illustrate this scheme using the previous example in which

 38

the value of N could be as small as 1 but could go up to 500. We use 9 cached values

geometrically distributed as follows:

cache[0] = s

cache[1] = H
246

(s)

cache[2] = H
374

(s)

cache[3] = H
438

(s)

cache[4] = H
470

(s)

cache[5] = H
486

(s)

cache[6] = H
494

(s)

cache[7] = H
498

(s)

cache[8] = H
500

(s)

The first transaction uses cache[8]= H
500

(s) and will not need to perform any hash

operations. The second and third transactions use cache[7]= H
498

(s), resulting in performing one

hash operation for the second transaction and no operation for the third transaction. The

transactions numbered 4, 5, 6, and 7 use cache[6]= H
494

(s) resulting in performing 3, 2, 1, and 0

hash operations, respectively for these four transactions. Notice that the cached values are

anchored at points that are geometrically spaced apart. The difference between the number of

hash operations performed for cache[8] and cache[7] is 2, between cache[7] and cache[6] is 4,

between cache[6] and cache[5] is 8, between cache[5] and cache[4] is 16, and so on. As the

number of transactions in the real session increases, the range of the number of hash operations

will increase geometrically and high-numbered transactions will need to perform larger number

of hash operations on average.

The result of the geometric distribution scheme is to give smaller HCostavg value for

earlier transactions. Shorter sessions will benefit more from the geometric distribution.

 39

In section 3.7, we present the results of our tests to evaluate sparse caching with

geometric spacing.

3.3 Energy Consumption

When designing any authentication protocol for mobile devices, it is important to reduce

the energy expended by this protocol. According to [81], there are at least three approaches to

preserving battery life in mobile devices: efficient hardware, accurate knowledge of energy

consumption of different cryptographic approaches and light weight security mechanisms. In

designing our protocol, one of our major goals was to come up with a light security mechanism

while ensuring the highest cryptographic strength available.

Energy consumption is largely influenced by the cryptographic hash function used in the

authentication scheme as different hash functions have different energy consumption levels. The

authors of [82] conducted an extensive analysis of energy characteristics of various

cryptographic approaches and found that energy varies according to the cryptographic approach

utilized. For SHA, SHA1 and HMAC, the energy required to conduct a single operation is 0.75,

0.76 and 1.16 microjoule/byte, respectively (for a complete list of energy consumption

characteristics of different cryptographic approaches, please refer to [82]). The level of energy

consumption by our authentication protocol in a user session is correlated with the value of

TotalHashCost described in section 3.2.1.

In section 3.8, we compare the energy consumption of our sparse caching protocol and

compare it with the case of no caching. It should be noted though that the initialization phase is

not included in this comparison because it is conducted using an HTTPS.

 40

3.4 Evaluation and Performance Results

To experiment with the sparse caching HACH scheme, we developed a benchmark which

was written using Java. The benchmark fully implements the one-way hash chain model and the

different sparse caching configurations.

In the tests and experiments to evaluate the performance of HACH, we considered

several situations and different scenarios. Our objective was to simulate real life connections

which are characterized by differing needs as far as storage and performance are concerned.

Therefore, we used the benchmark to evaluate the HACH performance with numbers of

transactions having different ranges: from 1 to 200 for short sessions, from 500 to 2500 for long

sessions and up to 4000 and 5000 transactions in some tests. We also varied the storage

availability to make sure that we address different users’ needs. The storage spaces used to

evaluate performance ranged from 20 to 500 spaces.

3.4.1 Impact of Cache Size on HACH Performance

Figure 3.1 shows the impact of cache size on the performance of HACH. The execution

overhead of HACH is measured by TotalHCost, the total number of hash operations in a session

including the initial cache setup. The spacing scheme used in Figure 3.1 is the uniform sparse

caching scheme described in section 3.2.1. The results in Figure 3.1 are obtained from the Java

testbed and they agree with the cost estimation derived in section 3.2.1. The results clearly show

that the more cache we have, the less the TotalHCost would be.

 41

Figure ‎3-1 Impact of cache size on TotalHCost

 Figure 3.2 demonstrates the impact of cache size on the average value of the execution

overhead of one transaction (i.e. HCostavg). Again we see that the more cache we have, the less

the value of HCostavg. The sparse caching scheme speeds up transaction authentication and helps

in reducing the turnaround time of user requests.

0

10000

20000

30000

40000

50000

60000

20 40 100 250 350 500

T
o

ta
lH

C
o

st

Cache Size

N=500

N=1000

N=1500

 42

Figure ‎3-2 Impact of cache size on HCostavg

3.4.2 Cache Space Allocation Policies

In section 3.2.2, we proposed a Weighted Overhead formula and gave an example of

three classes for mobile devices used in wireless networks. For Class 1 (high-end laptops with

plenty of memory), we can afford to allocate large cache memory to get the best benefit of

HACH. For Classes 2 and 3 (mobile phones with limited capability), the memory allocated to

cache will be at a lesser level. To investigate the performance of sparse caching on the different

mobile devices, we used the following two policies for allocating cache memory to a user session

with N transactions:

0

10

20

30

40

50

60

70

20 40 100 250 350 500

H
C

o
st

a
v

g

Cache Size

N=500

N=1000

N=1500

N=2000

N=2500

 43

1- The square root (sqrt) policy which allocates cache_size = (N)
0.5

 for a session with N

transactions.

2- The logarithm (log2) policy which allocates cache_size = log2(N) for a session with N

transactions.

We have tested a few other policies but we select the above two policies for presentation

in this dissertation because they nicely suit the classification of mobile devices described in

section 3.2.2. The log2 policy is an aggressive policy which reserves more memory and therefore

can be used for Class 1 devices. The sqrt policy, on the other hand, exhibits a more conservative

behavior and reserves smaller amount of cache memory, which is suitable for low end mobile

devices of Class 2 and 3. Both policies can be multiplied by a scale factor (ranging from a small

fraction to a large number) to adapt the rate of memory allocation based on the capability of the

mobile device, e.g., to differentiate between Class 2 and Class 3.

Figure 3.3 shows the HACH execution overhead and Figure 3.4 shows the HACH storage

overhead of the sqrt and log2 cache allocation policies. The log2 policy allocates more cache

space and consequently incurs a much less TotalHCost. The sqrt policy allocates less cache

space and incurs much higher TotalHCost.

 44

Figure ‎3-3 HACH performance with two policies for sparse caching

Figure ‎3-4 HACH storage requirements with two policies for sparse caching

0

10000

20000

30000

40000

50000

60000

70000

500 1000 1500 2000 2500

T
o

ta
lH

C
o

st

Number of transactions

sqrt policy

log2 policy

0

50

100

150

200

250

300

350

500 1000 1500 2000 2500

C
a

ch
e

 S
iz

e

Number of transactions

sqrt policy

log2 policy

 45

3.4.3 Effectiveness of Sparse Caching

In this section, we present the simulation results when we compared the performance of

HACH with and without sparse caching. Table 3.1 summarizes the results we obtained from tests

using the square root (sqrt) policy. The Performance Ratio in the last column is the ratio

TotalHCost with no caching/TotalHCost with sparse caching. The sparse caching scheme

significantly improves performance of HACH. Sparse caching is able to decrease TotalHCost of

transactions by an average of approximately 41 times over the six values of N shown in Table

3.1.

Table ‎3-1 HACH performance with/without sparse caching using the sqrt policy

Number of

Transactions

TotalHCost

No Caching

TotalHCost

Sparse

Caching

Performance

Ratio

500 125250 5702 21.97

1000 500500 16404 30.51

1500 1125750 29811 37.76

2000 2001000 45750 43.74

3000 4501500 83625 53.83

4000 8002000 127506 62.76

In Figure 3.5, we further illustrate the performance improvement ratio of the HACH

using sparse caching. The x-axis represents the number of transactions and the left y-axis

represents the performance improvement ratio associated with every value of N. The right y-axis

shows the storage requirement for each value of N. We notice that each added cache unit

decreases the value of TotalHCost. This is intuitive since if we can afford more memory, we

 46

would definitely improve performance. However, in the case of mobile phones and other low-

end mobile devices, the storage may not always be readily available and we need to find a

compromise between performance and storage.

Figure ‎3-5 HACH performance improvement ratio

3.4.4 Selecting Cache Size for Mobile Devices

In order to find the best tradeoff between cache size and performance (measured in

TotalHCost), we introduced the Weighted Overhead formula

𝑊𝑂 = 𝑊 × 𝐶𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝐻𝐶𝑜𝑠𝑡 (‎3.4)

In the simulation tests, we experimented with different values of w to represent the

different classes. For Class 1 devices, the value of w was a small value close to zero because

memory consumption is not a substantial issue with high-end devices. Higher values of w are

0

10

20

30

40

50

60

0.00

10.00

20.00

30.00

40.00

50.00

60.00

500 1000 1500 2000 2500

C
a

ch
e

 S
iz

e

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Number of Transactions

Ratio

Cache Size

 47

used for Class 3 devices and lower values are used for Class 2 devices. We ran tests for different

values of N.

Figure ‎3-6 Weighted Overhead results for N=500

Figure 3.6 shows the best cache size when the number of transactions is 500. The left y-

axis represents the value of the Weighted Overhead and the right y-axis is the value of

TotalHCost. The values of weights are w1 = 0.1 representing Class 1 devices, w2 = 12

representing Class 2 devices and w3=35 representing Class3 devices. The dashed curve is used to

indicate TotalHCost. We notice that for this particular number of transactions (N=500), a cache

size of 50 units is the most suitable for Class 3 devices as it exhibits the lowest Weighted

Overhead value which strikes an acceptable tradeoff between TotalHCost and memory. For

Class 2 devices, the best cache size is 100. We notice for Class 1 devices represented by w1, the

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

16

18

20

20 50 100 150 250 500

T
o

ta
lH

C
o

st

Th
o

u
sa

n
d

s

W
e

ig
h

te
d

 O
ve

rh
e

a
d

Th

o
u

sa
n

d
s

Cache Size

W3

W2

W1

TotalHCost

 48

Weighted Overhead curve is very close to the TotalHCost curve, indicating that we should select

the highest possible cache size C=N, i.e., complete caching of size 500.

Figure ‎3-7 Weighted Overhead results for N=1000

Figure 3.7 shows the same test but with N=1000. The same w values reported for Figure

3.6 were used here. For Class 3 devices (w3 curve), the best cache size is slightly over 100. For

Class 2 devices (w2 curve), the best size of cache is 250. For Class 1 devices (w1 curve), it is

best to use complete caching of size 1000.

We further analyzed the performance of sparse caching for HACH using a metric called

the speedup factor per unit cache (or simply the speedup factor) defined as follows:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐻1

(𝐻2×𝐶)

Where

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

20 50 100 150 250 500 1000

T
o

ta
lH

C
o

st

Th
o

u
sa

n
d

s

W
e

ig
h

te
d

 O
ve

rh
e

a
d

Th

o
u

sa
n

d
s

Cache Size

W3

W2

W1

TotalHCost

 49

H1 = the value of TotalHCost without caching, and

H2 = the value of TotalHCost with sparse caching of size C

Table 3.2 gives the results for the speedup factor for Class 3 (weight w3=35) when the

cache size used is the best cache size selected by the Weighted Overhead formula. Table 3.2

shows that the contribution of one cache unit is captured by a speedup value of approximately

0.9. As an example for N = 500 transactions and cache size C = 50, each cache unit improves the

performance by a magnitude of 0.91 and the total cache of size 50 increases performance by a

magnitude of 45.5 resulting in decreasing the total number of hashes from 125250 to 2750.

Table ‎3-2 Speedup factor per unit cache for Class 3

Number of

Transactions
Cache Size H2 H1 Speedup

500 50 2750 125250 0.91

1000 100 5500 500500 0.91

1500 150 8250 1125750 0.91

2000 250 9000 2001000 0.89

3000 250 18000 4501500 1.00

4000 500 18000 8002000 0.89

Table 3.3 shows similar results for Class 2 devices (w2 = 12). The cache sizes used for

these devices are bigger than those of Class 3. It should be mentioned that for values of N equal

to 2000 and higher, the weight w2 = 12 gave multiple best cache sizes (giving the same

Weighted Overhead value). We therefore used a weight value w2 = 15 to pick the specific cache

size shown in Table 3.3.

 50

Table ‎3-3 Speedup factor per unit cache for Class 2

Number of

Transactions
Cache Size H2 H1 Speedup

500 50 2750 125250 0.91

1000 100 5500 500500 0.91

1500 150 8250 1125750 0.91

2000 250 9000 2001000 0.89

3000 250 18000 4501500 1.00

4000 500 18000 8002000 0.89

For Class 1 devices (w1  0), the Weighted Overhead formula suggests using complete

caching. Table 3.4 gives the results for the speedup factor for Class 1 (weight w1  0) when the

cache size used is equal to the value of N. The speedup factor for Class 1 with complete caching

is 0.50.

Table ‎3-4 Speedup factor per unit cache for Class 1

Number of

Transactions

Cache

Size
H2 H1 Speedup

500 500 500 125250 0.50

1000 1000 1000 500500 0.50

1500 1500 1500 1125750 0.50

2000 2000 2000 2001000 0.50

3000 3000 3000 4501500 0.50

4000 4000 4000 8002000 0.50

 51

3.5 HACH with Non-uniform Cache Spacing

Tables 3.5 and 3.6 give comparisons between sparse caching with uniform spacing and

with non-uniform spacing. For non-uniform spacing, we allocated 50% of the cache for the first

20% of transactions, which we call “high priority transactions”. The other 50% of the cache is

used to serve the remaining 80% transactions, which we call the low priority (uncertain)

transactions. Table 3.5 analyzes the average authentication time (average number of hash

operations) of a high priority transaction. The non-uniform spacing gives superior (much

smaller) authentication time compared to the uniform spacing. The last column in Table 3.5

gives the value of speedup for a high priority transaction. For example when N = 500, the

average authentication time for a high priority transaction using non-uniform spacing is 1.5 hash

operations whereas the corresponding figure for uniform spacing is 4.5. This means that high

priority transactions enjoy a three-fold speedup under the non-uniform spacing scheme compared

to the uniform spacing scheme. As the number of transactions goes up, the speedup factor

decreases slightly and becomes equal to 2.55 at N = 4000

Table ‎3-5 Average speedup for a high-priority transaction

Number of

Transactions

High

Priority

Non

Uniform

Spacing

Uniform

Spacing
Speedup

500 100 1.5 4.5 3.00

1000 200 3.5 9.5 2.71

1500 300 5.5 14.5 2.64

2000 400 7.5 19.5 2.60

3000 600 11.5 29.5 2.57

4000 800 15.5 39.5 2.55

 52

Table 3.6 analyzes the average authentication time (average number of hash operations)

of a low priority transaction. The non-uniform spacing gives larger (slower) turnaround time

compared to the uniform spacing. The last column in Table 6 gives the value of the slow-up for a

low priority transaction. Notice that the uniform-spacing scheme gives the same speed for both

high priority transactions (Table 3.5) and low priority transactions (Table 3.6). From Tables 3.5

and 3.6, we see that the non-uniform caching scheme has positively impacted high-priority

transactions by a speedup factor of 2.5 or higher and has negatively impacted low-priority

transactions by a slow-up factor of only 1.67 or less.

Table ‎3-6 Average slow-up of a low-priority transaction

Number

of

Transactions

Low Priority

N

Non Uniform

Spacing

Uniform

Spacing

Slow-

up

500 400 7.5 4.5 1.67

1000 800 15.5 9.5 1.63

1500 1200 23.5 14.5 1.62

2000 1600 31.5 19.5 1.62

3000 2400 47.5 29.5 1.61

4000 3200 63.5 39.5 1.61

3.6 Approximate Knowledge of N

In the previous sections, we performed our simulation tests assuming that the value of N

is accurately known. The value of N in most real life applications is not accurately known. A

minimal level of sparse caching can help the developer apply hash chains of larger length

 53

without the fear of any increase in the average or maximum authentication time for a transaction.

Figure 3.8 shows the impact of using sparse caching with minichain_len set at 1000 for sessions

with unknown number of transactions exceeding 1000. It can be seen that sparse caching reduces

HCostavg of transactions when N is not precisely known. For example, when N = 4000

transactions, the value of HCostavg without sparse caching is approximately 1500. By placing

only three cache units, the value of HCostavg is reduced to 375. We observed that the reduction in

HCostavg due to sparse caching increases as the number of transactions increases.

Figure ‎3-8 Handling unknown large values of N: comparison between HCostavg with and

without sparse caching

3.7 Geometric Spacing

In section 3.2.5, we introduced the idea of geometric spacing of cache which gives

smaller HCostavg value for earlier transactions in cases when the exact number of transactions N

0

500

1000

1500

2000

2500

2000 3000 4000 5000

H
co

st
a

vg

Number of Transactions

With sparse caching

Without sparse caching

 54

is not known and could be as small as one and as large as N. The idea involves increasing the

cache spacing intervals progressively as the real number of transactions increases.

Figure ‎3-9 Comparison of HCostavg between Uniform, Non-Uniform and Geometric

Spacing

Figure 3.9 shows the test results for the case when N is not known and the developer has

chosen the value N = 500 to be the length of the hash chain. The horizontal axis represents the

real number of transactions, denoted K. The figure compares the performance of the following

three schemes for values of K = 5, 10, 20, 50, 100 and 200.

- Uniform caching with equal spacing as described in section 3.2.1.

- Non-uniform caching with two groups as described in section 3.2.4.

- Geometric spacing as described in section 3.2.5.

0

20

40

60

80

100

120

140

160

5 10 20 50 100 200

H
C

o
st

a
v

g

K

Uniform

Non_Uniform

Geometric

 55

As seen in Figure 3.9, using the geometric spacing policy improves the performance of

HACH compared to the other two policies when the real number of transactions K is lower than

50. For the case K = 50, the geometric spacing performs better than uniform spacing and has the

same performance as the non-uniform spacing policy. For K = 100 transactions, geometric

spacing still performs better than uniform spacing but worse than non-uniform spacing. The

geometric spacing scheme does not benefit HACH when K  120 transactions.

3.8 Energy Consumption

In section 3.3, we introduced the energy consumption metric used to evaluate the

performance of our sparse caching protocol. Since the energy consumption is largely influenced

by the cryptographic hash function used, the type and amount of hashing operations required to

carry out the authentication of the internet session translate into the energy consumption of the

authentication scheme.

Figure 3.10 illustrates the energy consumption comparison between our sparse caching

based HACH protocol and its counterpart without sparse caching. It should be noted that the

sparse caching in this comparison is conducted using the sqrt policy and SHA-1 hashing. As can

be seen in the figure, our sparse caching scheme tremendously improves energy consumption of

the HACH authentication protocol. It is also noted that the HACH protocol suffers from a huge

increase in energy consumption making it far from ideal especially for platforms with limited

energy capacities.

 56

Figure ‎3-10 Energy consumption comparison of HACH with and without sparse caching

3.9 Conclusion

In this chapter, we have shown that the use of lightweight easy to implement sparse

caching approach can significantly improve the performance of the widely used cryptographic

one-way hash chain technique to secure session cookies. We introduced a memory-times-

computation complexity metric to help select a best cache size depending on different users’

storage requirements. Different cache spacing techniques have been investigated to demonstrate

different connection behaviors.

We presented the results of extensive performance tests that have shown the significant

reduction in authentication cost achieved by the sparse caching schemes. We have also shown

how to deal with real-life situations in which the number of transactions per user session is

largely unknown and cannot be accurately estimated.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

500 1000 1500 2000 3000 4000

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

Number of transactions

No Caching

Sparse Caching

 57

 HACH WITH A HIERARCHICAL TWO-TIER CHAPTER 4:

CONSTRUCTION (TTOHC)

In this chapter, we present our second contribution to solve the computational overhead

of the HACH protocol discussed in Chapter Two. The two-tier one-way hash chain protocol

revolves around utilizing different cryptographic hash functions arranged in two tiers. The

TTOHC protocol gives significant performance improvement over previously proposed solutions

for securing Internet cookies. A detailed Java testbed has been used to evaluate alternative

configurations for the hierarchical scheme and investigate the optimal set up of the two tiers.

Detailed performance results obtained from this testbed are presented and analyzed.

4.1 Proposed Scheme

A. The Two-Tier One-way Hash Chain (TTOHC) Protocol

Our TTOHC protocol is based on the idea of utilizing two levels of hashing that use

different cryptographic hash algorithms, e.g., SHA-1 and HMAC. The OHC (OTC and SCRHC

[83] are examples of OHC) scheme has a single one-way hash chain and the length of this chain

represents the number of transactions N. The TTOHC scheme, on the other hand, has a single

first-tier chain and multiple second-tier chains. The variable N is divided into two components:

the length of the first-tier chain Nf and the length of the second-tier chain Ns. Although we will

primarily focus on the static case where all second-tier chains have the same length Ns, we will

also present results on the dynamic case in which the length of the second-tier chain changes

linearly.

The TTOHC protocol is composed of three routines: Initialization,

Authenticate_Transaction, and Adjust_Seed. In the Initialization routine, a shared secret value S0,

the number of transactions N and length of the second-tier chain Ns are selected and exchanged

 58

between the server and the client. The authentication tokens transmitted in the cookies are

generated by the Authenticate_Transaction routine using the second-tier hash function HS. These

authentication tokens are denoted Vi,j where V represents the authentication token, i refers to the

first-tier index and j refers to the second-tier index. Each time the length of the second-tier hash

chain is exhausted, the Adjust_Seed routine is used to compute the new seed for the next second-

tier chain. The new seeds are computed using the first-tier hash function HF. In what follows,

we give the notations and more details of the TTOHC protocol.

N= number of transactions in the session

Nf = length of the first-tier chain

Ns = length of the second-tier chain assuming the static case

N ≤ Nf  Ns ; ideally N = Nf  Ns

HF is the hash function used in the first-tier

HS is the hash function used in the second-tier

S0= Initial seed used by the first-tier chain

In our tests we used a message authentication code HMAC for HF and a hash function

SHA-1 for HS. The values generated in the first-tier are denoted S1, S2, S3, etc., and are used as

seeds for the second-tier chains as shown below.

S1 = HF
Nf

(S0), S2 = HF
Nf -1

(S0),....., SNf-1 = HF
2
(S0), SNf = HF(S0)

In our testbed, the HMAC algorithm used to implement HF uses two arguments: a seed

S0 and a message g; therefore, we created another argument g during initialization (g is the string

“first-tier”). The values generated in the second-tier chain are the authentication tokens used in

the authentication step for the successive transactions of a user’s session. User transactions

 59

numbered 1 to Ns use the tokens generated by the first second-tier chain based on the seed S1,

transactions numbered Ns+1 to 2Ns use the tokens generated by the second second-tier chain

based on S2 and so on. Specifically, the first transaction uses the token value V1,1 = HS
Ns

(S1) .

The second transaction usesV1,2 = HS
Ns-1

(S1) and the transaction numbered NS uses the token V1,Ns

= HS(S1). The token V1,Ns is the last token generated using the seed S1. For the next transaction,

numbered NS +1, the routine Adjust_Seed is invoked to compute the new seed S2 for the second

second-tier chain. After calling the Adjust_Seed routine, transaction numbered NS +1 uses the

authentication token V2,1 = HS
Ns

(S2) . The pseudo codes for the three routines are given below.

Initialization:

The initialization stage takes place using an HTTPS connection. During the HTTPS

authentication, the initial value of the shared secret S0, a message g, the length of the hash chain

N and the length of the second-tier chain Ns are selected and exchanged between the server and

the client. The following code is executed at both the client and the server.

Nf := N ÷Ns // length of the first-tier chain

L:= Ns // L is the global index for the second-tier chain

J:= Nf // J is the global index for the first-tier chain

S:= HF
J
(S0) // S is now S1=seed for the first second-tier chain

The routine Authenticate_Transaction generates the authentication token V at the client

side. The authentication token is generated by the second-tier hash function HS. The token V is

then transmitted in the cookie of the transaction to the server where a similar routine is executed

to compute the value V at the server. The server compares the received value and the computed

value to authenticate the transaction.

 60

Authenticate_Transaction(S,L)

Begin

V:= HS
L
(S) // L is the global index for the second-tier chain

L:= L -1

if (L==0) then

 S:= Call Adjust_Seed()

 L:= Ns; end_if

Return (V);

End

For example, if N=500 transactions and Ns=100, then Nf = 5 and the authentication tokens

will be computed as follows:

1
st
 transaction uses token V1,1 = HS

100
(S1),

2
nd

 transaction uses token V1,2 = HS
99

(S1),

….….,

100
th

 transaction uses token V1,100 = HS(S1),

101
st
 transaction uses tokenV2,1 = HS

100
(S2),

102
nd

 transaction uses token V2,2 = HS
99

(S2),

……..,

200
th

 transaction uses token V2,100 = HS(S2),

……..,

401
st
 transaction uses token V5,1 = HS

100
(S5),

……....,

500
th

 transaction uses token V5,100 = HS(S5),

 61

The Adjust_Seed routine generates the seeds for the second-tier chains using the first-tier

hash function HF as given blow.

Adjust_Seed()

Begin

J := J-1 // J is the global index for the first-tier chain

S:= HF
J
(S0);

Return (S)

End

4.2 Performance Results

To evaluate the proposed TTOHC protocol and investigate its optimal setup, we wrote a

detailed benchmark in Java. We used a metric, SessionCost, which is the total cost of the hash

operations in both the first-tier chain and all second-tier chains during the entire lifetime of the

session. In the SessionCost metric, the unit cost is normalized to be the cost of a hashing

operation computed by SHA-1 (the cost of HMAC is higher). We use this metric as an indicator

of the computational overhead. The higher the SessionCost is, the higher the computational

overhead associated with transmission of cookies. We conducted extensive tests to account for

different real life scenarios including long sessions in which the user opts for the ‘remember me’

option offered by many web applications. In our experiments, we took into consideration the

discrepancy of session length in real life and so approximated the results. The results are an

average of 1000 simulations. Below we present and analyze our performance results.

A. Comparison between TTOHC and OHC

Figure 4.1 compares the performance of the TTOHC protocol with the non-hierarchical

OHC scheme for different values of N. In Figure 4.1, the TTOHC protocol used the same

second-tier chain length Ns=20 for all values of N. It is easy to see that TTOHC outperforms

 62

OHC by a wide margin. The cost comparison indicates that the TTOHC protocol decreases the

computational overhead represented by the metric SessionCost tremendously. For example when

the session has N=500 transactions, the session cost of OHC is 250, whereas the corresponding

cost of TTOHC is approximately 13. The difference in performance grows as the number of

transactions increases showing the benefit of our proposed scheme.

Figure ‎4-1 Comparison between OHC and TTOHC (Ns=20)

To further illustrate the benefit of the TTOHC over OHC, we plotted (in Figure 4.2) the

performance improvement ratio between the session cost of TTOHC and the session cost of

OHC. The performance improvement ratio ranges from 21 at N=500 to 83 at N=3000. The

average improvement ratio of TTOHC over OHC in Figure 4.2 is 56. The two-tier one-way hash

chain scheme achieves great performance gain and significantly reduces the computational

overhead of the OHC scheme.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

500 1000 1500 2000 2500 3000

A
v

g
 T

ra
n

sa
ct

io
n

 C
o

st

Number of Transactions

TTOHC

OHC

 63

We next investigate the problem of how to select the value of the length of the second-

tier chain Ns. The value of Ns, selected during initialization, affects the length of the first-tier

chain Nf and significantly impacts performance of the TTOHC protocol.

Figure ‎4-2 TTOHC to OHC Performance Improvement Ratio in the Static case

B. Selecting Ns in the Static Case

In the static case, the value of Ns is set up during initialization and is not changed

throughout the duration of the session. Once the first second-tier chain is exhausted and the

Adjust_Seed is called to generate the seed for the next second-tier chain, the value of Ns is reset

to its original value selected during initialization. This is repeated for all second-tier chains until

the session is completed.

The performance of the TTOHC protocol when Ns is static is illustrated in Figure 4.3

which plots SessionCost versus Ns.

0

10

20

30

40

50

60

70

80

90

500 1000 1500 2000 2500 3000

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Number of Transactions

Ratio

 64

Figure ‎4-3 TTOHC Performance for static Ns

Figure 4.3 shows that the performance of TTOHC is optimal when the value of Ns is

between 20 to 25. This means that we should select the hash chain length of the second-tier chain

to be in the range 20-25. In fact, the value Ns = 20 tends to strike a good balance for minimizing

SessionCost over all values of N. It should be noted that the value Ns = 20 is only optimal for the

particular setup we used in our tests, i.e., when HMAC is used to implement HF in the first-tier

chain and SHA-1 is used to implement HS in all second-tier chains. Choosing different hash

function will certainly change the optimal chain length value. For example, when we swapped

the two functions and used the more expensive HMAC in the second-tier chains and SHA-1 in

the first-tier chain, the optimal value of Ns was found to be around 10.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

100 50 25 20 10 5

S
e

ss
io

n
C

o
st

Ns

N=500

N=1000

N=1500

N=2000

 65

C. Dynamic Ns

We also investigated the use of dynamic values for Ns, i.e., the length of the second-tier

chain is not always the same. In this case, the value of Ns dynamically changes each time the

Adjust_Seed routine is called. There are several options of dynamic Ns configurations, but we

will report the results of the case when Ns increases linearly. The linear increase of the value of

Ns means that an initial value Ns is selected for the first second-tier chain and is increased by a

certain amount in the successive chains. In our tests we used an initial value Init_Ns = Ns as the

length of the first second-tier chain, 2*Ns as the length of the second second-tier chain, 3*Ns as

the length of the third second-tier chain and so on until the session is completed. In order to

account for this increase, we modified the code of the Initialization routine so that we can

compute the length of the first-tier chain Nf needed to produce the seeds for the second-tier

chains in the dynamic case. We also modified the Adjust_Seed routine by letting it handle the

dynamic Ns update as follows:

Adjust_Seed()

Begin

Ns:= Ns + Init_Ns // Ns increases linearly

J:= J-1

S:= HF
J
(S0);

Return (S)

End

To illustrate this, let us examine how the code works to handle N = 500 transactions when

Ns is linearly updated. Below we give the authentication token values produced for the

successive transactions when N = 500, Init_Ns = 2 and the length of second-tier chain increases

linearly as explained above. The Initialization routine uses the values N = 500 and Init_Ns = 2 to

 66

compute the maximum possible value of Nf (i.e. the number of times the seed is going to be

updated). The maximum value of Nf in this case is 22 (i.e., there are 22 second-chair chains

needed to cover all 500 transactions.) The following are the authentication tokens for the

dynamic case when the initial value of Ns is 2.

V1,1 = HS
2
(S1)

V1,2 = HS
1
(S1)

V2,1 = HS
4
(S2)

V2,2 = HS
3
(S2)

V2,3 = HS
2
(S2)

V2,4 = HS (S2)

….

V22,38 = HS
7
(S22)

In the above example, the first transaction (with token V1,1) performs two hash

operations. The second transaction (with token V1,2) performs one hash operation. Then, the

value Ns has to be updated by the Adjust_Seed routine to Ns = 4 and a new seed S2 is computed.

By the 500
th

 transaction, we will have updated the value of Ns twenty two times.

Figure 4.4 shows how linearly increasing Ns impacts the performance of the TTOHC

protocol. Here, we can see that if we start Ns from a low value (e.g. Init_Ns = 1 or 2), we achieve

better performance. If the initial value of Ns starts at a relatively high value, say 20, the protocol

suffers from a large overhead as the SessionCost tends to be high. So, a low initial value of

Init_Ns = 1 or 2 would be the best choice for the dynamic case with linear increase.

 67

Figure ‎4-4 TTOHC performance when Ns changes linearly

The performance (SessionCost) of TTOHC with the dynamic configuration for Ns is

relatively higher than the static configuration. Nevertheless, this dynamic configuration still

results in a much better performance than the OHC scheme. Figure 4.5 demonstrates how the

TTOHC scheme with dynamic configuration outperforms the OHC by a large ratio. Comparing

Figure 4.2 and Figure 4.5, we see that the static configuration gives better performance

improvement ratio than the dynamic configuration, especially at high values of N. Figure 4.6

gives a comparison between the two TTOHC configurations. In Figure 4.6, we used the optimal

value of Ns for both configurations, i.e., Ns = 20 for the static configuration and Init_Ns = 1 for

the dynamic configuration. As shown in the figure, the performance of the two configurations is

comparable when the number of transactions is low, but the static configuration tends to

outperform its dynamic counterpart at higher number of transactions.

0

50000

100000

150000

200000

250000

1 2 5 10 20

S
es

si
o

n
C

o
st

Ns

N=500

N=1000

N=1500

N=2000

 68

Although the dynamic configuration does not match the performance of the static one, it

has some practical merit when the value of N is not known and has a wide range that extends

from a very small number to a large number. In this case, the dynamic TTOHC configuration

would be practically acceptable because the early (more certain) transactions would be

authenticated by second-tier chains of small lengths (e.g., 1, 2, 4, 8) and are therefore given good

performance.

Figure ‎4-5 Dynamic TTOHC Performance Improvement Ratio

0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Number of Transactions

Ratio

 69

Figure ‎4-6 TTOHC performance with static and dynamic Ns

4.3 Conclusion

In this chapter, we presented a protocol for the efficient authentication of session cookies.

Our protocol uses two tiers of one-way hash chains to reduce the overhead of the flat one-way

hash chain significantly. Our testbed for the proposed scheme used two good cryptographic hash

functions (HAMC for first-tier hashing and SHA-1 for second-tier hashing). The use of

cryptographically strong hash functions is recommended to increase the resistance of the scheme

to collision and per-image attacks.

0

10000

20000

30000

40000

50000

60000

70000

500 1000 1500 2000 2500

S
es

si
o

n
C

o
st

Number of Transactions

Static_Ns

Dynamic_Ns

 70

 HACH FOR COLLABORATIVE AND SOCIAL MEDIA CHAPTER 5:

NETWORKS

5.1 Introduction

The use of insecure cookies as a means to authenticate web transactions in collaborative

and social media websites presents a hazard to users’ privacy. In this chapter, we propose and

evaluate a novel protocol for protecting transmitted cookies using two dimensional one-way hash

chains. In the first dimension, there is a hash chain that computes secret values used in the

second dimension hash function. Multiple hash chains use the secret values created by the first

dimension to authenticate session cookies in the second dimension. For improved security, the

hashing operations in the second dimension use a concatenation of the secret values and the

position index of the hash function within the hash chain. The performance of the scheme is

evaluated using a detailed simulation testbed and an analytical model. The optimal lengths of the

chains are derived when the number of transactions in the session is known. The protocol is

extended to efficiently handle the case when the number of transactions is not known. The

evaluation of the proposed scheme reveals that it achieves tremendous improvement over

straightforwardly configured one-way hash chain schemes. Also, by adopting the position-

indexed hashing protocol, energy consumption is reduced significantly especially with longer

sessions making our protocol ideal for battery operated devices.

In designing our protocol, we took into consideration different cryptographic approaches.

While one of our main objectives is reducing the computational overhead of one-way hash

chains based cookies, we wanted our protocol to benefit from the features of current

cryptographic approaches especially their strength and resistance to replay attacks, collision

 71

attacks, pre-image attacks and second pre-image attacks. Hence, our protocol is designed with

the state-of-the art cryptographic approaches in mind.

5.2 The Proposed Protocol

A. Conceptualization

Conceptually, the one way hash chains in our protocol are arranged in two dimensions

(Figure 5.1). In the first dimension (i.e. horizontal axis), there is a single hash chain that

computes the seeds for the second dimension chains (i.e. vertical axis). In the second dimension,

multiple hash chains use these seeds to generate authentication tokens. The authentication tokens

are derived by hashing the seeds and the position of the hashing functions in the hash chains (e.g.

via a concatenation process ||). Given the cryptographic hash function used is resistant to attacks

(e.g. SHA-1, SHA-2 or SHA-3), a slight change in the argument to be hashed is expected to

result in a significantly different output. Figure 5.1 provides a conceptual view of how the

proposed protocol functions.

Figure ‎5-1 Position-indexed hashing for 12 transactions TChain_Len= 3, SChain_Len= 4

 72

The proposed protocol is composed of three main stages: the Initialization stage,

Authenticate_Token stage and Next_Seed stage. The notations we use in our scheme are

summarized in Table 5.1.

1) Initialization stage

During the initialization stage, which is done using an HTTPS protocol, information

about the session length (i.e., number of transactions N), an initial secret S0 and TChain_Len is

exchanged between the server and the client. Once this information is exchanged, the

SChain_Len is determined by dividing N by TChain_Len. The result of this division will give us

the number of seeds that will be needed during an internet session. Our definition of a session

refers to the communication activities between the web application and the client during the

login time (i.e. between log-in and log-out). A transaction on the other hand is a set of request

and response between the web application and the client. The session is composed of N

transactions. Information about the session length, TChains are predetermined and exchanged

during this stage.

 73

Table ‎5-1 Notations used in the proposed scheme

Notations Description

N Number of transactions to be handled during an internet session.

SChain The chain where seeds are generated.

TChain The chain where authentication tokens are generated.

S0 The initial seed used by the SChain

SChain_Len Length of the SChain.

TChain_Len Length of the TChain.

H

Hash function used to generate seeds or authentication tokens.

V Authentication token.

2) Authenticate_Token stage

The next stage Authenticate_Token, is where the authentication tokens are actually

produced. The authentication tokens are denoted Vi,j where the variable i represents the current

TChain and j represents the current transaction number within the TChain. The tokens are

created by hashing the seed concatenated || with a variable indicating the position of the hash

function in the TChain. This position indexing technique is a well-known technique for boosting

security because Birthday Attacks can be avoided if all hash functions used are indexed by their

position in the chain [80]. As will be explained in the Next_Seed stage, we also update the seed

several times during the session. The number of times the seed is updated depends on the number

of transactions and the value of TChain_Len. This number is used to indicate how many TChains

 74

we will have during the session. In other words, each updated seed is only used by the

transactions of one TChain and then discarded and never used again.

3) Next_Seed stage

The third component of the protocol is the Next_Seed routine. This routine is responsible

for updating the seeds used in the TChains to generate authentication tokens. It should be noted

that each TChain has its own seed. This routine is invoked once the authentication tokens of the

first TChain are created and transmitted. Based on the number of transactions and TChain_Len

exchanged in the initialization stage, we know the number of times the seed is expected to be

updated. The length of the seed chain, SChain_Len, is a result of dividing the number of

transactions N by the value TChain_Len. Once the authentication tokens have all used a seed

once (i.e. TChain_Len is exhausted), the Next_Seed routine is invoked to produce an updated

seed for the next authentication token chain; TChain. We illustrate in the following section how

our protocol works with a pseudo code and detailed examples. The performance evaluation

results of the proposed scheme are presented in sections 5.3 and 5.4.

B. Selecting a Cryptographic Hash Function

A cryptographic hash function is an algorithm which changes a certain set of data into a

string of a fixed size, called the block size. Examples of cryptographic hash functions include

MD4, MD5, SHA-1 and SHA-2. It was proven that the MD5 hash function is prone to collision

attacks [84] , [85] as well as pre-image attacks [86], and therefore, we did not consider it in our

scheme. While SHA-1 is resistant to pre-image attacks, it was proven by [87] that it is

theoretically prone to collision attacks. However, since it is not practically susceptible to

collision attacks, we have used it in our protocol for the purpose of illustration.

 75

In our implementation, the original block size is 160-bit corresponding to SHA-1, but it

can easily be expanded to accommodate stronger cryptographic techniques that require larger

block sizes such as SHA-2 (in all its sizes) and SHA-3 once it is released by NIST.

5.3 Case of Known Number of Transactions

Accurate statistics about network traffic related to social networking sites can be helpful

in identifying the length of the one-way hash chain. However, it is not always the case that these

are readily available. Dacosta et al [10] conducted basic traffic analysis of the social networking

site “Facebook” and concluded that a typical session requires hundreds of transactions, and thus

they set their chain length at 1000. In our study, we have varied this chain length since different

social networking sites might have different requirements. Following are the steps of the

protocol when the number of transactions is known.

5.4 The Proposed Protocol’s Steps

The initialization stage takes place using an HTTPS connection. During the HTTPS

authentication, the initial value of the secret key S0, the number of transactions N and the length

of TChain (i.e. TChain_Len) are selected and exchanged between the server and the client. The

following code is executed at both the client and the server sides.

SChain_Len:= N ÷ TChain_Len // length of the SChain

I:= SChain_Len // I is the global index for the SChain

J:= TChain_Len // J is the global index for the TChain

Seed:= H
I
(S0) // Seed is now Seed1=seed for the first TChain

The routine Authenticate_Token is executed once for each transaction to compute the

authentication tokens that will be transmitted with the transaction cookie.

 76

Authenticate_Token(Seed, J)

Begin

 V:= HJ(Seed||J) // J is the global index for the TChain where || is a concatenation of

 the seed with the hash function position in the chain

J:= J -1

if (J==0) then // TChain length is exhausted

 Seed:= Call Next_Seed() // Seed has to be updated

 J:= TChain_Len // TChain length is reset

end-if

Return (V)

End

Next_Seed()

Begin

I:= I-1 // I is the global index for the SChain

Seed:= H
I
(S0) // updating the Seed value

Return (Seed)

End;

Let us now illustrate how the protocol works with an example. In case the number of

transactions is known to be N =200, and the TChain_Len =4, the seed is going to be updated 50

times (i.e., SChain_Len = 50) to carry out the hashing functions for 200 transactions.

We have I=50, J=4, Seed1= H
50

(S0)

The first TChain of four transactions will create the following authentication tokens.

V1,1= H
4
(Seed1||4)

V1,2= H
3
(Seed1||3)

V1,3= H
2
(Seed1||2)

V1,4= H
1
(Seed1||1)

 77

Once these authentication tokens have been transmitted, the Seed has to be updated to

Seed2= H
49

(S0) and J has to be reset to 4.

The next step is to generate the second set of four transactions which will be:

V2,1= H
4
(Seed2||4)

……..

V2,4= H
1
(Seed2||1)

The code continues to calculate the authentication tokens in each TChain until we reach

the 50
th

 TChain. The 50
th

 TChain will have the Seed50= H(S0) and its authentication tokens will

be:

V50,1= H
4
(Seed50||4)

……..

V50,4= H
1
(Seed50||1)

5.5 Protocol Evaluation

1) The Testbed

In this section, we present the protocol evaluation results when the number of

transactions in a session is known. We developed a detailed benchmark in Java which allowed us

to test different session scenarios. An important metric used in our tests is SessionCost which is

the total number of hash operations performed during the lifetime of the session. The metric

SessionCost represents the overall execution overhead of the protocol including the overhead of

the Initialization stage and the overhead of the Authenticate_Token routine for all transactions as

well as the overhead of the Next_Seed routine.

Figure 5.2 shows the performance of the protocol for different values of the number of

transactions N and the length of TChain. It is interesting to see that the value of SessionCost

 78

decreases as the value of TChain_Len increases until a certain point then starts to increase again.

For each value of N, there is a certain value of TChain_Len that minimizes the value of

SessionCost. We validate this behavior by an analytical model.

Figure ‎5-2 Protocol Evaluation (known number of transactions)

2) Analytical Model

As we described earlier our protocol is composed of two chains: i) the seed generating

chain SChain represented by the horizontal axis in Figure 5.1, and ii) the authentication

generating chain TChain represented by the vertical (slanted) axis in Fig 5.1. For simplicity, we

assume that the cost of a single hash operation used in the SChain and TChain is the same

because they both use the same hashing algorithm (i.e. SHA-1); we will examine this assumption

later at the end of this section. The cost of a single session SessionCost= C is the sum of the

hashing operations required to generate authentication tokens in the vertical chains, CV, and the

0

50000

100000

150000

200000

250000

3 5 10 20 25 50 100

S
es

si
o

n
C

o
st

TChain_Len

N=500

N=1000

N=1500

N=2000

 79

hashing operations required to update the seeds in the horizontal chain, CH. Here is how

SessionCost is calculated.

N= number of transactions

M= SChain_Len

K= TChain_Len

Cost of one vertical chain =
𝐾(𝐾+1)

2
 (‎5.1)

CV =
𝑀𝐾(𝐾+1)

2
 =

𝑁(𝐾+1)

2
 (‎5.2)

CH =
𝑀(𝑀+1)

2
 (‎5.3)

C = CV + CH

 =
𝐾(𝐾+1)

2
 +

𝑀(𝑀+1)

2
 (‎5.4)

C =
𝑁(𝐾+1)

2
 +

𝑀(𝑀+1)

2
 =

𝑁𝐾

2
 +

𝑁

2
 +

𝑀2

2
 +

𝑀

2
 (‎5.5)

The next formula can be used to plot C as a function of N and K.

C =
𝑁𝐾

2
 +

𝑁

2
 +

𝑁2

2𝐾2 +
𝑁

2𝐾
 =(𝐾 + 1 +

𝑁

𝐾2 +
1

𝐾
) (‎5.6)

To find the optimal value of K which minimizes the cost C, we differentiate formula 5.6

and equate to 0

𝜕𝐶

𝜕𝐾
=

𝑁

2
(1 −

2𝑁

𝐾3 −
1

𝐾2) (‎5.7)

(1 −
2𝑁

𝐾3 −
1

𝐾2) = 0 (‎5.8)

𝐾3 − 𝐾 − 2𝑁 = 0 (‎5.9)

 80

 Equation 5.9 can be used to derive the optimal value of K which corresponds to

TChain_Len. Table 5.2 gives the optimal value of TChain_Len obtained by solving the above

cubic equation numerically.

Table ‎5-2 TChain_Len OPTIMAL VALUE

Number of

Transactions

Optimal

TChain_Len

500 10.03

1000 12.625

1500 14.445

2000 15.895

Comparing Table 5.2 with Figure 5.2, we can see that the TChain optimal values which

we obtained from the simulation are very close to the optimal values obtained from the analytical

solution.

It should be mentioned that the above analytical solution was derived based on the

assumption that the hash operation used in the SChain and TChain have the same cost because

both use the same hash function SHA-1. A more accurate model can be easily developed to

account for the extra overhead of the concatenation operation used in the SChain. Since the cost

of the concatenation operation is much smaller than the cost of the hash operation, the slight

increase due to concatenation can be accurately modeled by multiplying the cost of CH by a

factor r which is slightly larger than 1. This will cause Equation 2 to be slightly modified as

follows: the second and third terms will be multiplied by the factor r. Solving this modified

equation gives optimal values very close to those given in Table 5.2.

 81

5.6 Protocol Comparison with OHC

In order to validate the efficiency of our protocol, we compared its performance with the

OHC protocol proposed in [10].

Figure ‎5-3 Performance comparison between position-index hashing (PIH) and OHC

In Figure 5.3, we demonstrate the performance comparison between our protocol and the

OHC protocol. We compared the average cost of a single transaction in both protocols. In our

protocol, we were able to lower the average cost of the transaction tremendously. For instance,

for 500 transactions the average transaction cost of the OHC protocol is 250, whereas our

protocol lowers this average to a little over 11. While this average tends to increase significantly

with the increase in transaction numbers for the OHC protocol, our average stays relatively low

even with N= 2500 transactions where the average cost is 13.65.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

500 1000 1500 2000 2500

A
v

g
 T

ra
n

sa
ct

io
n

 C
o

st

Number of Transactions

PIH

OHC

 82

In order to further gain insight in the benefits of adopting our protocol, we measured the

performance improvement ratio when our protocol is chosen over the OHC. The performance

improvement ratio is defined as the ratio SessionCost of OHC : SessionCost of our PIH protocol.

Figure 5.4 displays the significant improvement our protocol achieves over OHC.

Figure ‎5-4 Performance improvement ratio of OHC

Looking at Figure 5.4, we can easily gain insight on how choosing our protocol is

beneficial. Our protocol outperforms the OHC protocol by a little over 22 times when the

number of transactions is 500. This improvement ratio is much higher with higher transaction

numbers. When we have 2500 transactions to be handled in a session, our protocol outperforms

the OHC by over 91 times. This is a relatively wide margin and makes our protocol plausible.

The ratio is expected to be higher for longer sessions with higher transaction numbers.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

500 1000 1500 2000 2500

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Number of Transactions

Performance Ratio

 83

5.7 Unknown Number of Transactions

A. Certainty versus Uncertainty in Transaction Number

In designing the protocol, we took into consideration the possibility of certain versus

uncertain number of transactions. More often than not, it is very hard to estimate the exact

number of transactions to be handled in a single session in a social networking site. As we have

seen above in our discussion of Facebook session length statistics introduced in [10], the length

can range from a few hundred transactions to several hundreds. This has led us to devise two

different versions of the position-indexed hashing protocol to accommodate the two scenarios:

known number of transactions and unknown number of transactions.

We have already accounted for the case of known number of transactions in the previous

section, and this section is devoted to explicating the case of unknown number of transactions.

When the number of transactions is unknown, there is no way to calculate the SChain_Len and

hence the number of TChains in a session. Therefore, we needed to change the code slightly to

account for this discrepancy. During the Initialization stage instead of exchanging the number of

transactions N and the TChain_Len, the client and server exchange the TChain_Len and another

value representing the SChain_Len. The importance of SChain_Len specification comes from the

need to update the seed during the session multiple times. Since the transaction number is

unknown, we have no way of determining how many times the seed is going to be updated.

Given this scenario, we are faced with another problem. If the specified SChain_Len is not long

enough (i.e., the actual number of times we will have to update the seed is more than the value of

SChain_Len), we will need to repeat using one or more seeds, which could compromise the

security of the session. To solve this problem, we utilize the number of TChains in a session as

an index to be attached to the updated seed via a concatenation process ||. The index for TChain

 84

number can be derived from the TChain_Len and the Next_Seed routine. The first TChain in a

session is the one that uses the first seed and once the Next_Seed routine is invoked, the TChain

index is incremented and the new value is attached to the hashed seed.

B. The Modified Protocol

Here, we introduce how we modified the protocol to account for the case of unknown

number of transactions. We still have the three stages we had in the unknown number of

transactions case.

1) Initialization

The initialization stage takes place using an HTTPS connection. During the HTTPS

authentication, the initial value of the secret key S0, the length of the authenticate-token chain

TChain_Len and the length of the next-seed chain SChain_Len are selected and exchanged

between the server and the client. The following code is executed at both the client and the server

sides.

I:= SChain_Len // I is the global index for the SChain

J:= TChain_Len //J is the global index for the TChain

index:= 1 //a global variable indicating TChain

 number where 1 refers to first TChain

Seed:= H
I
(S0||index) // Seed is now Seed1=seed for the first

 TChain

Authenticate_Token(Seed, J)

Begin

V:= H
J
(Seed||J) // J is the global index for the TChain

J:= J -1

if (J==0) then // TChain_Len length is exhausted

 index:= index + 1 // index incremented for the next TChain

 85

 Seed:= Call Next_Seed() // Seed has to be updated

 J:= TChain_Len // TChain length is reset

end-if

Return (V)

End

Next_Seed()

Begin

I:= I-1

if (I==0) then // SChain length is exhausted

 I:= SChain_Len // I is reset to SChain_Len

end-if

Seed:= H
I
(S0||index);

Return (Seed)

End

Here is an example to help illustrate how the protocol handles the transmission of

authentication tokens when the number of transactions is unknown. During initialization, the

values of TChain_Len=4 and SChain_Len=10 will be selected and exchanged between the

server and client.

We have I=10, J=4, index=1. We assign an index which represents the first

TChain, and

therefore the first seed will be:

Seed1= H
10

(S0|| 1)

The first TChain will use Seed1 in the hashing function to derive the first set of

authentication tokens as follows…

V1,1= H
4
(Seed1||4)

V1,2= H
3
(Seed1||3)

V1,3= H
2
(Seed1||2)

 86

V1,4= H
1
(Seed1||1)

Now index becomes 2 which represents the second TChain, I =9, Seed has to be updated

to Seed2= H
9
(S0||2) and J has to be reset to 4.The second TChain will have the following

authentication tokens:

V2,1=H
4
(Seed2||4)

 ……..

V2,4= H
1
(Seed2||1)

After finishing ten TChains (i.e. 40 transactions) index becomes 11 which represents the

11
th

 TChain, I has to be reset to 10, Seed has to be updated to Seed11= H
10

(S0||11) and J has to be

also reset to 4. If we did not use the TChain number as a value attached to S0 , we would have

been forced to recycle Seed1 as Seed11=Seed1=H
10

(S0). This could potentially compromise our

protocol as it becomes easier to detect the initial seed. By indexing the TChain number and using

its value in the hashing function, we are able to solve this problem.

Therefore, the 11
th

 TChain (11
th

 set of four transactions) will have authentication tokens

which will be:

V11,1= H
4
(Seed11||4)

……..

V11,4= H
1
(Seed11||1)

The protocol goes on according to this routine until the user or the server terminates the

session.

 87

C. Protocol Evaluation (unknown number of transactions)

In this section, we present the evaluation of our protocol when the number of transactions

is unknown. Figure 5.5 illustrates the results when the SChain_Len is fixed at 5, while Figure 5.6

demonstrates the protocol’s performance when the SChain_Len is fixed at 20. Our main goal

from this is to determine the best value of TChain_Len where the protocol performs relatively

well.

In both Figure 5.5 and Figure 5.6, regardless of the SChain_Len, the protocol seems to

perform well when the TChain_Len is set at 3. Unlike the case of known number of transactions

where we noticed some kind of correlation between TChain_Len and performance, in the case of

unknown number of transactions it is better to set TChain_Len at a relatively low value.

Figure ‎5-5 Protocol Evaluation (Unknown number of transactions) SChain_Len= 5 all

the time

0

20000

40000

60000

80000

100000

120000

3 5 10 20 25 50 100

S
es

si
o

n
C

o
st

TChain_Len

N=500

N=1000

N=1500

N=2000

 88

Figure ‎5-6 Protocol Evaluation (Unknown number of transactions) SChain_Len= 20 all

the time

Our next task was to see what the best value of SChain_Len is when the TChain_Len is

fixed at 3. The next graph (Figure 5.7) represents the session cost of different number of

transactions with TChain_Len= 3 and different SChain_Len values.

0

20000

40000

60000

80000

100000

120000

3 5 10 20 25 50 100

S
es

si
o

n
C

o
st

TChain_Len

N=500

N=1000

N=1500

N=2000

 89

Figure ‎5-7 Protocol performance comparison when TChain_Len=3 and different

SChain_Len

Figure 5.7 indicates that there is a steady and direct relationship between SChain_Len and

performance measured in SessionCost. The lower the value SChain_Len, the better performance

we can achieve when we do not know the number of transactions during a session. In other

words, we need to start with relatively short chains in both the authenticate-token chain TChain

and the next-seed chain SChain.

5.8 Conclusion

One-way hash chains can be efficiently used in collaborative and social media networks

to overcome the problem of session hijacking in Internet sessions caused by stealing cookies. In

this chapter, we proposed a one-way hash chain protocol to address the problem of

overestimating the number of transactions during a session in the straightforwardly configured

0

2000

4000

6000

8000

10000

12000

14000

16000

500 1000 1500 2000 2500

S
es

si
o

n
C

o
st

Number of Transactions

SChain_Len=5

SChain_Len=10

SChain_Len=20

 90

one-way hash chains. Our solution achieves its goal by utilizing two one-way hash chains; one is

responsible for updating the secret and the other for creating the authentication tokens attached to

the cookies using the secrets produced by the first chain. We also employ the position of the

hashing function in the chain in order to strengthen our protocol against attacks such as Birthday

attacks.

Our extensive evaluation of the protocol and comparison with other protocols yielded

encouraging results. We have been able to improve the performance of one-way hash chains

significantly while keeping the same levels of security.

 91

 HACH FOR WIRELESS SENSOR NETWORKS CHAPTER 6:

6.1 Introduction

Different aspects of WSN security have been addressed in the literature. Among the

problems are user authentication [45], [46], [48], [49], and broadcast authentication [47], [88].

WSN security solutions have a general goal of improving WSN standards in terms of

authenticity, confidentiality and integrity. Conventional user and broadcast authentication

mechanisms are not as practical in WSNs due to the scarcity of memory and energy capacities of

sensor nodes.

Conversely, one of the best solutions for user and broadcast authentication is the use of

public-keys to secure communication. For example, Benenson et al. proposed a solution in which

user authentication is achieved by adopting public-key cryptography [45]. They basically use a

certificate/signature generated by a base station. What renders this technique impractical for

WSN is the high computation cost and large signature size. In addition, they make WSN

susceptible to DOS attacks draining energy resources. To remedy this problem, shortened public-

key based solutions designed for WSNs have been suggested. Addressing the problem of

expensive user authentication if public-keys are used, Wang et al. suggested using a short public

key whose lifetime is much shorter than regular public keys [47]. This solution aims at reducing

computation, but it still suffers from vulnerability to DOS attacks.

The HACH protocol has been considered by several researchers as an efficient

mechanism to achieve user authentication in wireless sensor networks. One of the seminal papers

to take this route is the 𝜇TESLA scheme introduced in [89] which aimed at achieving broadcast

authentication. In 𝜇TESLA, the basic idea is to have a base station, assumed to be trusted all the

time, that acts as a user of sensor nodes services, i.e. the base station is where sensed information

 92

is collected and authenticated. Authentication is achieved by using one-way hash function h()

and using the hash preimages as keys in the Message Authentication Code (MAC). In the

initialization stage, the base station calculates a hashed value of a secret x based on the number

of nodes in the network and distributes it among relative sensor nodes in a unicast fashion. In the

subsequent transactions, a preimage of the hashed value is used as a key in MAC. In the next

stage, the sensors verify whether or not the hashed value and its preimage are consistent. The

problem with this technique is low scalability and the high computational cost due the unicast

nature of key distribution. To further improve 𝜇TESLA, Liu and Ning [90] suggested replacing

the unicast technique for distributing keys with a broadcast based technology.

One-way hash based solutions have also been attractive in user authentication schemes of

WSNs. One of the earliest implementations of user authentication employing one-way hash is

introduced in [91]. The one-way hash operation is used in the initial stages to verify the user

requesting access to the WSN is an authorized user. Subsequent user authentication schemes

which try to overcome the shortcoming of [91] include [92], [93] and [94]. Unlike the one-way

hash chains used in broadcast authentication where computational overhead is an issue of

concern, user authentication schemes do not suffer from such overhead since we only need one-

way hash operations in the login stages.

In this chapter, we propose a novel scheme where the HACH approach is extended to

achieve broadcast authentication in addition to user authentication in WSN’s. The proposed

scheme uses a mini one-way hash chain protocol for user and broadcast authentication that is as

effective, while at the same time significantly reducing the computational overhead. We avoid

the potential security breach by using easily computed one time authentication tokens to secure

communication. Similar to the previous contributions, the proposed protocol is energy

 93

preserving, light and efficient. Our simulation and evaluation tests reflect its benefit over

straightforwardly configured one-way hash chains.

6.2 Network Model

For our protocol, we envision a star topology network where communication between the

user and the WSN is mediated by a central entity, called coordinator. Essentially, the

coordinator is a sensor node with special capabilities. The role of the coordinator is to manage

communication in the WSN by receiving queries from the users, communicating with sensor

nodes to get the sensed information, and fetching the results of users’ queries back to the user.

With this in mind, we assume the coordinator to be responsible for authentication in both

directions. In the user’s direction, the coordinator is expected to only allow identified users

holding the right credentials to access the network. In the sensor nodes direction, on the other

hand, the coordinator(s) delegates only authenticated sensors that hold the correct authentication

tokens at the time of the communication.

Figure ‎6-1 Network Model External Structure

 94

Figure 6.1 captures the main design aspects of the network external structure. Such

network is ideal in a medical or industry setting where the proximity of the sensor nodes makes it

almost impossible for physical capture of sensor nodes to occur. Moreover, given coordinators

are administered by network administrators who assign users such as physicians, nurses, quality

control workers, etc. access to the WSN, we can make sure that only authorized personnel can

access the network.

6.3 The Proposed MOHC Authentication Scheme

In this section, we introduce the formal description of our mini OHC (MOHC)

authentication scheme. There are three components of the proposed solution: the user’s mobile

device, the coordinator CO, and the sensor nodes SN. The user’s mobile device can be

configured by the network administrator and is equipped with network access capabilities in the

form of a username and a password. The user is anyone who is allowed to have access to the data

(e.g. in the case of WSN used in the medical field, it could be the physician, the patient or the

nurse etc.).

The network communication scenario consists of the following steps:

1) The network administrator provides WSN users with temporary login credentials that are

changed by the respective users after initial login. This step ensures that only authorized

personnel are allowed to have access to the WSN. By changing the password, we make sure

that administrators’ role is just to establish service.

2) Once logged in, the user communicates with the coordinator by sending a query asking for

data from the sensor nodes.

3) The coordinator sends requests to the respective sensor nodes.

 95

4) Once gathered, the sensor node(s) delivers the data to the coordinator who checks that each

replying sensor has the correct credentials, accepting data if this condition holds, otherwise,

data will be denied.

5) The coordinator replies to the user with the requested data.

6) Steps 2-5 are repeated for each query generated by the user in the current user session.

With this communication scenario in mind, we designed the protocol to achieve user and

broadcast authentication throughout the WSN session. Therefore, the protocol works in two

directions: the user direction and the SNs direction. In the user direction, once successfully

logged in to the network, login credentials will be substituted by a secret value (Secret), which

will be generated by the coordinator. This Secret automatically expires once the user logs out.

Each time the user logs in, there will be a new generated Secret. This secret will be used to

generate authentication tokens used to secure subsequent communication. The first

authentication token V1 will be the result of applying a hash function h(.) to the Secret||C, where

C is the current number of communications between CO and the user; initially C=0. Thus, the

first authentication token will have the value V1:= H
K
(Secret|| C), where K, the length of the hash

chain, is decremented after each iteration. Before each communication between the coordinator

and the user, the C index is incremented. In the subsequent transactions, and to avoid exposing

the Secret and potentially compromising the WSN, we replace the Secret in the hash function

with the preceding authentication token used in the previous communication. Thus, the second

authentication token V has the value V2:= H
K-1

(V1|| C+1), then V1 is disposed, and V2 is used

instead to generate the third authentication token which is V3:= H
K-2

(V2|| C+2) and so on. The

length of the chain K used in our implementation is 10. In [13], we proposed a scheme where

one-way hash chains are divided into smaller hash chains. The best length of a chain striking a

 96

good balance in terms of hash count falls between 10 and 25. Each time the chain length is

exhausted, the index K is reset.

In the sensor nodes direction, the protocol works a little differently. It actually works in

phases: the first phase occurs during deployment when sensor nodes identify themselves to the

coordinator. The coordinator subsequently distributes Seed0 among the sensor nodes which will

be used in a hash function at the sensor node’s side. The value of Seed0 is never exposed, but

used in a way similar to what we did with the Secret for the user authentication; i.e., as input for

a hash function h(.) to generate subsequent authentication tokens. The second phase is when the

actual communication begins when the coordinator relays a user’s query to SNs. In the first

round of communication, we use Seed0 to generate the first authentication token at the sensor

node’s side V1:= H
K
(Seed0|| Ci), where K is the hash chain length, decremented after each round,

and Ci is the number of communication rounds between sensor_node [i] and the coordinator;

initially Ci =0. The value of Ci is incremented before each round of communication. When Ci

reaches a certain value, C_limit, we reset its value to 0 to avoid large numbers, and also update

and broadcast Seed0 to sensor_node [i]. In the subsequent rounds, and to avoid exposing of Seed0

and potentially compromising the WSN, we replace Seed0 in the hash function with the

preceding authentication token. Thus, the second authentication token will be V2:= H
K-1

(V1|| Ci

+1), then, V1 is discarded. The third authentication token will be V3:= H
K-2

(V2|| Ci +2), V2 is

discarded, and so on. Once the hash chain length is exhausted, the index K is reset. Below a high

level pseudo code of the authentication token scheme described in this section is presented.

 97

Authentication token

Phase 1: Deployment Phase

Input: number of sensor nodes

Coordinator creates Seed0

Attach Seed0 to each Sensor node

Set number of communications Ci between Sensor node [i] and coordinator to 0

Phase 2: Operational Phase

Input: sensor_node [i] or coordinator

Increment Ci

If Authentication token in sensor_node [i] or coordinator is the first authentication

 K:= 10

 Create 1
st
 token V:= H

K
(Seed0 || Ci)

Else

 Prev_V= V

V:= H
K
(Prev_V || Ci), End if

Decrement K

If K is equal to 0

 K:= 10; End_if

If Ci is equal to C_limit

 Set Ci to 0

 If input is coordinator

 Create random Seed0

 Broadcast Seed0 to sensor_node [i]

 End If

End If

Return (V)

 98

The above description is for the protocol when utilized in lenient environments. We also

developed the code with the potential of being deployed in harsh environments where more

stringent authentication is desired. We achieve this functionality by determining and presetting

an expiration to the Seed. The expiration could be as simple as a period of time, or after a certain

number of rounds of communication between the coordinator and sensor node. Once the Seed is

updated, the communication count has to be reset to 0.

6.4 Simulation and Evaluation

In order to evaluate the performance of our proposed scheme, we designed a testbed

where the network model described in section 6.2 is depicted. The whole network structure has

been translated in a Java code and run without the authentication protocol. The performance of

the simulated WSN is measured and reported. To test how our scheme impacts the simulated

WSN network, we also wrote a Java code implementing the authentication protocol described in

section 6.3. As a benchmark, we also simulated the authentication scheme if a straightforward

OHC was used. A comparison between these scenarios is made and will be presented in the next

section.

In our simulation, the design consisted of two configurations: serial and parallel

communication. One possible example where the serial mode can be found is in

industry/manufacturing quality control where a product stays on the assembly line for a period of

time and moves from one point to another for different phases of processing. In each phase, there

is a sensor to measure the product temperature and report it to the coordinator. For that purpose,

a set of serial transactions is useful. In this configuration, the coordinator sends a request

message to the first sensor node, and receives a response message from it. Then, the coordinator

sends a request message to the second sensor node, and receives a response message from it, and

 99

so on until all sensors reply with their data. The coordinator, then, sends the response message to

the mobile device or the quality control manager. In the parallel mode, the coordinator sends a

request message to all sensor nodes at the same time by creating multiple threads. After all

response messages are received, it sends a response message to the mobile device. An example

where parallel configuration is ideal is a medical setting where a physician, for instance, needs to

monitor a patient’s electrocardiogram (EKG) by placing the sensor nodes around the body. Thus,

multiple threads are initiated between the coordinator and sensor nodes.

To measure the effectiveness of our proposed WSN authentication scheme, we used the

following performance metrics in our simulations:

 Time delay: the time was measured based on rounds of communication between the

coordinator and N sensor nodes. Figure 6.2 shows one round of communication for N sensors

in the serial mode. For example a round of communication between the coordinator and sensor

node 1 is the difference between the time that coordinator sends a request message to sensor

node (t1) and receives a response from the sensor node t2. We measured the WSN performance,

in the serial and parallel modes, once without the proposed authentication scheme and another

time when the authentication scheme is plugged either in the OHC or our MOHC format.

 100

Figure ‎6-2 Example of time calculation for serial mode

 Average number of hashes: the average number of hash operations performed during a round

of communication. Given the fact that each component of the WSN (coordinator and sensor

nodes) is going to calculate the same number of hashes in each round of communication, we

used an average number of hashes for each of these components and presented comparisons

based on them.

6.5 Performance and Results

In this section, we present the performance evaluation results of our protocol. Let us first

look at how the MOHC protocol performed when compared with the case of no authentication at

all, and with the straightforward OHC. Table 6.1 illustrates the difference in milliseconds

between these three cases in the serial mode. Here, we compared the time in the case of no

authentication, straight forward OHC and our protocol based on the number of rounds of

communication between the coordinator and the sensor nodes. In this case, the coordinator sends

a query to the first sensor node and waits for its response before sending the next request to the

 101

second sensor node. The results indicate that adding authentication increases the time. This

increase tends to correlate linearly with the duration of the WSN session which is not

unexpected. However, our focus was to compare our idea of mini hash chains on the

performance of WSN with the straightforward implementation of OHC. When the number of

rounds of communication is small, as in the case of 50 rounds, it can be seen that the difference

between OHC and MOHC protocol is approximately 2 milliseconds. However, this difference

becomes more salient with higher rounds of communication numbers. In real WSN traffic,

communication is expected to be higher, and, therefore, rounds of communication number

increases, which makes our solutions an obvious better choice as it outperforms its counterpart

by a margin.

Table ‎6-1 Time comparisons showing equal execution overheads for MOHC and OHC

(Serial Mode)

Rounds of

communication

No-

Authentication
* OHC

*
MOHC

*

50 1192 1201 1199

150 2513 2531 2526

300 5011 5047 5029

600 9767 9874 9793

 * In milliseconds

Similarly, Table 6.2 summarizes the performance comparison in the parallel mode. As

described above, the coordinator initiates multiple threads to send a request message to all sensor

nodes. The response messages are received in no particular order from the sensor nodes. Here,

we can see the time required to run the simulation without authentication is much less. However,

the time required for authentication, either in the serial or parallel mode, is approximately the

 102

same. What is important for our comparison is the time difference between OHC and our

MOHC. The difference in time shows our protocol still outperforms the OHC as the table shows.

Table ‎6-2 Time comparisons showing equal execution overheads for MHOC and OHC

(Parallel Mode)

Rounds of

communication

No-

Authentication
* OHC

*
MOHC

*

50 297 306 304

150 939 957 951

300 1545 1581 1563

600 3104 3211 3131

 * In milliseconds

Figure ‎6-3 Time comparisons between OHC and MOHC protocol with higher rounds of

communication (Serial Mode).

0

500

1000

1500

2000

2500

100 500 1000 1500 3000

T
o

ta
l

T
im

e
 (

M
S

)

Number of rounds of communication

MOHC

OHC

 103

In order to further demonstrate the improvement we achieved in our protocol over OHC,

we measured the time difference between the performance of the two schemes and present it in

Figure 6.3. This figure represents the performance in the serial mode.

As can be seen Figure 6.3, the higher the number of rounds of communication, the wider

the difference margin is. This is another indication that using our MOHC protocol definitely

improves performance and makes deploying a one-way hash chain based protocol more

attractive in WSN.

When the average number of hashes required for a round of communication is compared

as in Figure 6.4, we still can see how our MOHC scheme outperforms the traditional OHC.

Similar to the time delay compared above, as the number of rounds of communication increases,

so does the average hash count. This is indicative of the high computation cost of the one-way

hash chain schemes if configured as is. With minor modifications, like the ones we have

proposed in this chapter, we were able to achieve noticeable improvements. It should be noted

though that regardless of configuration options, the number of hashes is going to be the same.

Each component of the WSN will calculate the same number of hashes.

 104

Figure ‎6-4 Average number of hashes comparison between OHC and MOHC

6.6 Conclusion

In this chapter, we have presented a mini one-way hash chain based solution for WSN

user and broadcast authentication. Our objective of the proposed solution was to mitigate the

high computational cost of the straightforwardly configured one-way hash chain and avoid

exposing the initial secret. We have shown through simulation and evaluative experiments that

with economic modifications to one-way hash chains, we were able to achieve lower

computational overhead measured by computation time and number of hash operations required

to provide protection. Additionally, by substituting the initial secret with easily computed

authentication tokens, we were able to maintain the initial secret less exposed. We have also

shown that our protocol is attractive form an energy consumption perspective as it lowers

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

5.00E+06

100 500 1000 1500 3000

A
v

g
 N

u
m

b
e

r
o

f
H

a
sh

e
s

Number of rounds of communication

MOHC

OHC

 105

consumption of sensor nodes’ battery lives. In the future, we plan to improve our solution and

apply it in alternative WSN topologies.

 106

 HYBRID CACHE-SUPPORTED HACH CHAPTER 7:

7.1 Introduction

In the previous chapter, we have proposed four schemes utilizing different configurations

of one-way hash constructions to deliver efficient authentication schemes that are attractive to

developers. Our main goal has been to achieve efficiency while utilizing the minimum

computing resources possible. In this chapter, we explore the possibility of utilizing the two-

dimensional HACH equipped with sparse caching capabilities to carry out authentication. While

the scheme is designed with the collaborative and social media network in mind, it can be easily

employed in other environments where session cookies based authentication is used.

7.2 The proposed Hybrid Scheme

We propose a hybrid solution that maximizes efficiency and minimizes the cost of

memory resources. To achieve this, we divide the one-way hash chain into multiple chains and

support them with caching units where authentication tokens are stored and fetched as needed.

To measure efficiency, we use the number of hash operations needed in a session. In the next

section, we define the configuration of the system’s components and determine the cost based on

these configurations. Before this overview is presented, we introduce the notations used in the

scheme. We refer to the proposed scheme as the hybrid scheme.

Scheme Notation

I = mini OHC scheme

J = OHC Caching scheme

K = Hybrid scheme

 107

Common Notation

N = number of transactions

X = horizontal chain for seeds

Y = vertical chain for authentication tokens

M = space interval between cache units

N = X × Y // simplified assumption

We will introduce a more detailed description of these notations in our description of the

schemes below.

7.2.1 The mini OHC Scheme:

The conventional OHC scheme has one dimension where one seed is used to generate

authentication tokens by a single one-way hash chain for the whole session. However, the mini

OHC scheme is arranged into two dimensions (see Figure 7.1). In the first dimension (i.e. the

horizontal axis Xi), there is a single hash chain that computes the seeds for the second dimensions

chains (i.e. vertical axis Yi). In the second dimension, we have multiple hash chains that use these

seeds to generate authentication tokens. Authentication tokens are generated by hashing the

seeds using cryptographic hash functions (e.g. SHA-1, SHA-2 or SHA-3). These cryptographic

hash functions are known for their resistance against attacks.

 108

Figure ‎7-1 mini OHC Scheme

Authentication in the mini OHC is done in three steps:

 Initialization:

The server and the client utilize an HTTPS channel to exchange the number of

transactions in a session N, an initial value of the shared secret S0, and the length of the

authentication token chain Yi. Based on these variables, the number of seeds is determined, and

Seed1 is calculated to be used in the first authentication token chain by applying one-way hash

function on S0.

 Authentication:

 In this step, the scheme generates the authentication token V at the client side. The

authentication tokens are derived in the vertical chains by applying the one-way hash function on

 109

Seed1. The authentication token is then attached to the transaction cookie and sent to the server.

A similar authentication routine is done at the server’s side to check the authenticity of the

authentication token. If authentication is verified, the transaction is accepted; otherwise, it will be

rejected. Once the first vertical chain is exhausted, the next routine (i.e. Seed Update) is called to

calculate seeds for the following vertical chain.

 Seed Update:

Once the first vertical chain is exhausted, the seed is updated for the next chain by

applying a one-way hash function on the initial S0. Note that each seed is only used in a single

vertical chain to generate authentication tokens for that chain. Furthermore, the authentication

tokens once used are discarded and never used again. As such, the cost of authentication in the

mini OHC scheme is a result of calculating the number of hash operations in the horizontal chain

and the multiple vertical chains. The following is how we calculate the cost of the scheme:

Cost of one vertical chain =
𝑌𝑖× (𝑌𝑖+1)

2
 (‎7.1)

Total cost of all vertical chains = CV = 𝑋𝑖 ×
𝑌𝑖× (𝑌𝑖+1)

2

 = 𝑁 ×
 (𝑌𝑖+1)

2
 (‎7.2)

Cost of the horizontal chain= CH =
𝑋𝑖× (𝑋𝑖+1)

2
 (‎7.3)

Total Cost = C = CV + CH

 = 𝑁 ×
 (𝑌𝑖+1)

2
 +

𝑋𝑖× (𝑋𝑖+1)

2
 (‎7.4)

7.2.2 The OHC Caching Scheme:

Unlike the previous mini OHC scheme, the OHC caching scheme utilizes storage and

only one-dimension chain, to reduce the computation overhead of the OHC. During the

 110

initialization step, and in addition to the initial S0 a few authentication tokens are pre-calculated

and stored. Figure 7.2 demonstrates how the cache units are placed for this scheme. The

highlighted blocks are where the authentication tokens are stored. For ease we assume the

interval between caches is one. It should be noted that since we only have one dimension in the

OHC caching scheme, the X parameter is considered the cache size (i.e. number of cache units

utilized). Also, given we do not have vertical chains, we consider Y to be the interval between

cache units. Therefore, Xj= size of cache Yj= interval between two cache units.

Figure ‎7-2 OHC Caching Scheme

To reiterate, let us revisit an example for a session of 100 transactions authenticated using

the OHC caching scheme. For a session of this size, five storage units (of length 160 bits for

SHA-1) can be reserved. Thus five authentication tokens are calculated in the initial steps and

stored at 20 transaction interval as follows. Note that Xj in this example is 5 and Yj is 20.

cache[0] = s

cache[1] = H
20

(s),

cache[2] = H
40

(s),

cache[3] = H
60

(s),

cache[4] = H
80

(s).

 111

Compared to the mini OHC scheme, the OHC with caching has the advantage of low

computation cost. Two important parameters are used to guide the calculation of computation

overhead in the OHC with caching: the cache size Xj and the cache spacing interval Yj. In the

above example, the cache size= 5 and the cache spacing interval= 20. Based on these

assumptions, we can determine the cost of the OHC caching scheme according to the following

formulas:

Cost of authentication tokens between two cache units =
𝑌𝐽× (𝑌𝐽+1)

2
 (‎7.5)

Total Cost = C = 𝑋𝑗 ×
𝑌𝐽× (𝑌𝐽+1)

2

 = 𝑁 ×
 (𝑌𝐽+1)

2
 (‎7.6)

It should be noted that the total cost includes the sum of the cost of (Xj-1) ×Yj for the

initial filling of the cache values and a cost of
(𝑋𝑗−1) × Y× (𝑋𝑗+1)

2
 for the N transactions. Also,

notice that (Xj-1) of the N transactions will not need to perform any hashing since the required

value is already in the cache. For the above example of N = 100 and Xj = 5, transaction # 21 will

simply read V80 from cache[4].

In order to handle more transactions efficiently, we either need to increase the number of

storage units allocations. Or, we have to increase the cache spacing interval.

7.3 HACH Hybrid Scheme

We can alleviate the need for extra storage units and increase efficiency by equipping the

mini OHC with sparse caching components to benefit from the advantages of caching in a two-

dimensional configuration. Figure 7.3 is a general view of how the hybrid scheme looks with the

caching units added to the mini OHC in the vertical chain Yk. In the Simulation Results Section,

 112

we discuss why we prefer to equip the scheme with caching at the vertical chain. The highlighted

blocks are where the sparse caching units are placed, and the authentication tokens in these

locations are computed and stored. The proposed scheme uses two dimensions, each of which

generates a set of values. In the first dimension—the horizontal dimension denoted Xk, is a single

one-way hash chain responsible for generating seeds to be used in producing the authentication

tokens in the second dimension Yk—the vertical multiple one-way hash chains.

Figure ‎7-3 HACH Hybrid Scheme

Here is a high level description of the protocol.

 113

Initialization:

Xk := N ÷Yk // length of the Seed_Chain

K:= Yk // K is the global index for the Token_Chain

J:= Xk // J is the global index for the Seed_Chain

Seed:= H
J
(S0) // Seed is now Seed1 for the first Token_Chain

Interval:= Yk÷ Cache_Size // # of hash operations between cache units

Call Fill_Cache(Seed)

Fill_Cache (Seed)

Begin

i:= 0

HNum:= 1 // number of hashes to be calculated

While(i not equal to Cache_Size)

Cache[i]:= H
M

(Seed) // authentication tokens stored

HNum:= HNum +Interval

 i:= i+1

 End-While

End

Authentication ()

Begin

L:= (K/Interval)-1 //L is the cache locator to fetch the token value

HNum:= K-(L*interval)-1

V:= H
HNum

(Cache[L])

K:= K -1

 114

if (K==0) then

 Update_Seed()

 K:= Yk;

 end_if

Return (V);

End

Update_Seed()

Begin

J := J-1 // J is the global index for the first-tier chain

Seed:= H
J
(S0);

Call Fill_Cache(Seed) // update the next authentication tokens

Return (Seed)

End

The protocol is composed of four main procedures: the Initialization, the Authentication,

the Update_Seed and the Fill_Cache (Seed) routines. Each of these routines is responsible for

some part of the protocol.

The Initialization procedure works the same way as described in the mini OHC described

in Section 3. An additional step in the Initialization entails filling the cache with authentication

tokens based on the cache size. This is achieved by invoking the Fill_Cache (Seed) procedure.

The next step is when the session actually starts. It is where authentication tokens are

used to protect session cookies. The Authentication procedure is responsible for generating the

authentication tokens. This step works by locating the closest cache, fetching the respective

stored authentication token and performing the additional hash operations if needed. Once the

 115

first vertical chain is exhausted, the Update_Seed step is invoked and a new seed is calculated

and handed over to Fill_Cache (Seed) so that authentication tokens for the next Token Chain are

stored. The protocol works in this manner until the session is complete.

Compared to the single dimension OHC caching scheme described in Section 3, where

the number of cache units devised either grows proportionately with the number of transactions,

or is configured to handle more transactions by increasing the cache spacing interval, the hybrid

scheme is more efficient. In other words, to achieve good performance with higher number of

transactions, the OHC caching scheme will need to devise more cache units. In the hybrid

configuration, however, we efficiently handle this scenario, but with much less space by

emptying storage after each Token Chain is exhausted.

While the mini OHC performance is influenced by the length of the Token Chain and the

OHC with caching by the cache size, we need to investigate the optimal configuration of the

hybrid scheme by comparing the costs of the previous two schemes and identifying the factors

that influence the performance. In the following section, we introduce our evaluation of these

factors and present an analytical model to find the best tradeoff between cache employment and

performance.

7.4 Comparison and Tradeoffs

Essentially, using the number of hash operations in a session as a measurement metric,

the mini OHC has higher computation cost as opposed to the OHC caching scheme. The

difference between the two schemes is
𝑋𝑖 × (𝑋𝑖 +1)

2
. However, there is the expense of extra storage

units associated with OHC caching scheme. If the number of cache units devised is relatively

small, the performance is comparable. However, if more cache units are added, the OHC caching

 116

scheme outperforms the mini OHC. Figure 7.4 shows how the two schemes give different

performance for different size of cache for 500 transactions.

Figure ‎7-4 Total Cost of 500 transactions with different x values

In the hybrid scheme, our goal is to utilize the minimum storage requirements while

efficiently handling authentication. First, we present how the total hash cost of the hybrid scheme

is calculated. The analytical model below is used to obtain the optimal setup of the scheme; we

try to achieve a configuration that strikes a balance between efficiency and memory

requirements.

𝑁 = 𝑋𝐾 × 𝑌𝐾 (‎7.7)

Assuming 𝑋𝐾 << 𝑌𝐾 and using the same number of sparse storage units X in the vertical

chains, we get:

0

5000

10000

15000

20000

25000

30000

100 50 25 5

T
o

ta
l

C
o

st

X

OHC Caching

Mini OHC

 117

Let Space_Interval 𝑀 =
 𝑌𝐾

𝑋𝐾
 for simplifying assumption M integer

𝑌𝐾 = 𝑀 × 𝑋𝐾 (‎7.8)

 𝑁 = 𝑋𝐾 × 𝑌𝐾 = 𝑀 × 𝑋2 (‎7.9)

Cost of authentication tokens between 2 cache units =
𝑀× (𝑀+1)

2
 (‎7.10)

Cost of one vertical chain = 𝑋𝐾 ×
𝑀× (𝑀+1)

2
 = 𝑌𝐾 ×

 (𝑀+1)

2
 (‎7.11)

Cost of all vertical chains = CV = 𝑋𝐾 × 𝑌𝐾 ×
 (𝑀+1)

2
 = 𝑁 ×

 (𝑀+1)

2
 (‎7.12)

Cost of horizontal chain = CH =
𝑋𝐾 × (𝑋𝐾 +1)

2
 (‎7.13)

Total Cost = C = CV + CH = 𝑁 ×
 (𝑀+1)

2
+

𝑋𝐾 × (𝑋𝐾 +1)

2
 (‎7.14)

The above formula can be used to plot C as a function of N and M where X = √
𝑁

𝑀

C= 0.5𝑁𝑀 + 0.5𝑁 + 0.5
𝑁

𝑀
+ 0.5 √

𝑁

𝑀
 (‎7.15)

To find the optimal value of M which minimizes the cost C, we differentiate the above

formula with respect to M and equate to 0. On differentiation we have

𝑑𝐶

𝑑𝑀
 = 0.5 𝑁 − 0.5

𝑁

𝑀2
+ 0.5 √𝑁 (−0.5 𝑀

−3
2 ⁄)

 = 0.5𝑁 − 0.5
𝑁

𝑀2
− 0.25

1

𝑀
√

𝑁

𝑀
 (‎7.16)

After equating
𝑑𝐶

𝑑𝑀
 to zero, we get the following quartic equation:

4𝑁𝑀4 − 8𝑁𝑀2 − 𝑀 + 4𝑁 = 0 (‎7.17)

 118

To give an example, the Plot of the function C when the number of transactions is 500 is

given below in Figure 7.5.

Figure ‎7-5 The minimum value of M when N= 500

Thus, the minimum value occurs near the value M = 1. Table 7-1 summarizes the optimal

values of M for the different numbers of transactions.

 119

Table ‎7-1 Optimal values of M

N

Optimal value of M by

equating
𝒅𝑪

𝒅𝑴
= 𝟎

500 1.01118

1000 1.00791

1500 1.00645

2000 1.00559

2500 1.00500

3000 1.00456

Based on the analytical modeling presented above, we can determine the optimal cache

spacing in the hybrid scheme to be 1. Therefore, given the optimal Token Chain length Yk

obtained in [14], we run our simulation with the assumption that the optimal cache spacing is 1.

In the next section the simulation results for the three schemes are presented.

7.5 Simulation and Performance Results

The performance of the HACH hybrid scheme is evaluated using a detailed Java

benchmark. Our goal was to measure the performance of the three schemes. We compared and

contrasted the results measured in terms of efficiency (number of hash operations in a session)

and in terms of storage units required to complete an internet session.

7.5.1 Caching options

The hybrid scheme can benefit from caching in a number of ways. Our first option is to

use caching in the Token Chain Yk. In other words, we only store the authentication tokens or a

subset of them in the vertical dimension of the mini OHC. Caching can be either full or partial.

 120

In the full caching option, all the authentication tokens are calculated and stored before

authentication, whereas only a subset of authentication tokens are calculated and stored in the

partial caching option. Below is a description of both options.

In the full caching

The number of cache units required is equal to the optimal Token Chain length Yk. Since

all authentication tokens are going to be calculated and stored before the start of the session, the

full caching approach indicates that the authentication tokens do not require any hash operation

in the Yk. The only cost incurred when full caching is utilized would be hash operations used to

derive the seeds in the Xk.

In the partial caching

A subset of authentication tokens in the Token Chain Yk is stored. We use the optimal

cache spacing obtained above (i.e. M = 1) and the optimal Token Chain Yk as the basis for our

spacing. As a result, each authentication token will cost either one hash operation or none (i.e.

fetching the authentication token form the cache). Here is an example to illustrate this:

Suppose we have an Internet session of length 500 transactions. According to [15], the

optimal length of Yk in the mini OHC is 10. The length of Seed Chain Xk is going to be 50.

Cache [0]=H
1
(S1)

Cache [1]=H
3
(S1)

Cache [2]=H
5
(S1)

Cache [3]=H
7
(S1)

Cache [4]=H
9
(S1)

Given the number of cache units and the spacing interval, the following are the first ten

authentication tokens along with their cost in terms of hash operations.

 121

1
st
 Transaction = V1 = H

1
(Cache [4])

2
nd

 Transaction = V2 = H
0
(Cache [4])

3
rd

 Transaction = V3 = H
1
(Cache [3])

…….

 10
th

 Transaction = V10 = H
0
(cache [0])

Therefore, for every Yk only 5 hash operations are required given we have 5 cache units

uniformly distributed. The maximum number of hash operations for the authentication token

transaction is 1 if partial caching with cache spacing of 1 is used.

These caches are used in the first Yk. Once this chain is exhausted, the cache is emptied

and a new seed is generated for the next Yk authentication tokens. New values are calculated and

the cache is filled again with new authentication tokens. If partial caching was used in the OHC

with caching scheme only, we would need 250 memory spaces to carry out an Internet session of

length 500 transactions to achieve comparable results. With adding partial sparse caching to the

mini OHC, we can bring this number down to just 5 memory spaces.

7.5.2 Full vs. Partial Caching Performance

Figure 7.6 demonstrates the session cost measured by the number of hashes in the full

caching configuration and the partial caching operation. We perform this test when caching is

only performed at the Token Chain Yk. Later, we test the caching option in the Seed Chain Xk.

Here we can see that the full caching does not have a tremendous improvement over partial

caching.

 122

Figure ‎7-6 Session cost comparison between full and partial caching in g in Y

Thus, the next step is to compare the storage requirements in the full and partial caching

configurations in the Token Chain Yk to see whether it is worth to employ full caching or partial

caching. The comparison is presented in Figure 7.7. While the partial caching requires half the

storage of the full caching, it can still achieve good results. Therefore, the partial caching can be

a better option as the memory requirement is half without sacrificing performance.

0

2000

4000

6000

8000

10000

12000

500 1000 1500 2000 2500

S
e

ss
io

n
 C

o
st

Number of Transactions

Full Caching in Y

Partial Caching in Y

 123

Figure ‎7-7 Storage requirement comparison between full and partial caching

7.5.3 Performance Comparison between the three schemes

Since the partial caching option strikes a good balance between memory requirement and

efficient performance, we compare the performance of the hybrid scheme in the partial caching

option at the Token Chain Yk with the HACH caching scheme and the mini HACH scheme.

Table 7.2 summarizes the results of this comparison. Note that we use the same number of cache

units in the simulation of each scenario except for mini HACH where caching is not supported.

In terms of efficiency, the mini HACH scheme helps reduce the session cost significantly if

compared to the HACH scheme. By utilizing very little storage in the hybrid scheme, we were

able to lower this cost by approximately 65% as indicated in the table.

0

2

4

6

8

10

12

14

16

18

20

500 1000 1500 2000 2500

S
to

ra
g

e
 R

e
q

u
ir

e
m

e
n

t

Number of Transactions

Full Caching in Y

Partial Caching in Y

 124

Table ‎7-2 Comparing session cost between the three schemes

Number of

Transactions

HACH

mini

HACH

Hybrid

HACH

500 25250 4025 1525

1000 71930 10009 3465

1500 141382 12505 5750

2000 251000 24875 8875

2500 348471 33496 10980

7.6 Caching in Token Chain Yk or Seed Chain Xk

Our next task is to see whether equipping the proposed scheme with caching capabilities

in both dimensions can have better outcome. Figure 7.8 and 7.9 demonstrate the storage and

session cost requirements if either the Seed Chain or the Token Chain is equipped with caching

capabilities. It is obvious that adding caching in the Seed Chain does not benefit the scheme as

storage requirement increases (Figure 7.8) while the session cost increases (Figure 8.9).

Therefore, we have opted for equipping the hybrid scheme with sparse caching at the Token

Chain to be the optimal setup.

 125

Figure ‎7-8 Storage requirement comparison with cache support in either Token_Chain

(Y) or Seed_Chain (X)

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500

S
to

ra
g

e
 R

e
q

u
ir

e
m

e
n

t

Number of Transactions

Partial Caching in Y

Partial Caching in X

 126

Figure ‎7-9 Session cost comparison with cache support in either Token_Chain (Y) or

Seed_Chain (X)

7.7 Conclusion

This chapter addresses the security threat of session hijacking attacks facing collaborative

applications especially when mobile and wireless applications are utilized to access collaborative

services. Common HTTPS based solutions do not usually suit mobile devices especially those

with limited computation and storage capacities. One-way hash chain based solutions have been

proposed to replace the current cookie based session management techniques but due to their

inherent nature requiring recursive computation of hash values, they do not suit some mobile

devices. This is particularly because of the high computational overhead associated with OHC in

Internet session.

This chapter proposed and analyzed the potential of a hybrid solution where divided one-

way hash chains are equipped with caching capacities to store pre-computed hashed values and

0

5000

10000

15000

20000

25000

30000

500 1000 1500 2000 2500

S
e

ss
io

n
 C

o
st

Number of Transactions

Partial Caching in Y

Partial Caching in X

 127

fetch them once needed to authenticate a user session. We presented an analytical model which

aimed at measuring the cost of the hybrid scheme compared to the straightforward HACH with

caching and the two-dimensional HACH. We also used this analysis to derive a quartic equation

with which we were able to identify the optimal cache spacing configuration in the hybrid

scheme. The evaluation and experimentation reveal major improvements and highlight

advantage of adding sparse caching to the mini one-way hash chains to achieve economic and

efficient authentication for mobile devices that suits collaborative applications and other Internet

applications.

 128

 IMPROVED AUTHENTICATION IN SINGLE SIGN-ON CHAPTER 8:

ENVIRONMENT AND RFID IN TRAFFIC MANAGEMENT SYSTEMS

8.1 Introduction

In this chapter, we propose an authentication scheme tailored for the growing SSO

environment. Our scheme relies on the utilization of hash calendars and Merkle Hash trees in

addition to HACH to provide for a keyless signature environment. Our main motivation for

adopting a keyless signature scheme is that the majority of SSO schemes that suffer from

impersonation attacks rely heavily on public/private key cryptosystems to achieve their

authentication. Our goal is to add rigor and robustness to current SSO systems without

sacrificing functionality and effectiveness.

8.2 Problem Statement

Before we provide a formal definition of the authentication problem in SSO, let us

introduce the typical components of SSO systems and their functionalities. Figure 8.1 depicts the

SSO overall architecture. As can be seen in the figure, the communication and authentication of

the SSO follows the steps illustrated. In the first step, a client requests a URI (unified resource

identifier) from a service provider. Second, the service provider contacts an identity provider,

who manages and delegates authentication in the scheme, to check if the client holds the required

authentication privileges (an active user session established via the exchange of user’s

credentials), and, if not, asks the user to create one and provide it to the identity provider. If the

user provides the necessary authentication credentials, the identify provider provides the

requesting services provider and the other participating service providers with authentication

assertion that entail that the user is a verified one.

 129

Figure ‎8-1 SSO overall structure

The authors of [95] indicate that the main cause of SSO impersonation attacks are related

to the design of the communication channel between the service providers and the identity

provider which lacks bi-directional authentication. In fact, the SAML 2.0 specification

repeatedly indicate that the communication between the client, who is typically a browser guided

by a user, and the SP is carried over a unilateral SSL connection. Similarly, the communication

between the client and the SP starts as a unilateral SSL connection and becomes bilateral once

the client is authenticated through the exchange of valid certificates from the IdP and appropriate

credentials from the clients. These two assumptions are, according to [51], problematic due to

two essential reasons: 1) the lack/ambiguity of authentication recentness which is a logical

requirement in any authentication scheme, and 2) the unidirectional nature of authentication

between the SP and the client. As far the first reason is concerned, the SAML 2.0 specification

states that the SP and client mutually authenticate and agree on the value of URI, but fails to

 130

guarantee whether this assertion is recent or not. This feature is particularly important given the

fact that the SAML 2.0 protocol does not guarantee authentication to be carried out using a

single SSL connection. Due to difficulties pertaining to the nature of SSL such as the difficulty

to resume an already established connection after it has been terminated, it is natural to assume

that SAML 2.0 protocol is carried out using different SSL connections. Therefore, the recentness

of authentication assertion is not possible to achieve unless the protocol is run with each run of

the SSL connection, which is necessarily against the whole nature of SSO. In terms of the second

reason, the SAML 2.0 does not provide the client with guarantees of the authenticity of the SP’s

after he/she has been granted access by the IdP. Similar problems have also been detected in the

OpenID environment.

 The lack of recentness of the SSL protocols utilized in the SSO environment and the uni-

directional nature of the SSO schemes makes it possible for a malicious SP to impersonate a

client and cause it to access certain resources without its consent. Therefore, it is imperative for

any authentication scheme to be suitable for SSO to satisfy these requirements in addition to the

common authentication requirements.

8.3 The Proposed SSO Authentication Scheme

Our main goal in this paper is to develop a solution that efficiently handles the security of

SSO. In the proposed protocol, we pay special attention to the possible causes of certain SSO

vulnerabilities. From a cryptographic point of view, access to the SSO requires the service

providers, clients as well as identity providers to carry their communication based on public and

private keys as seen in the majority of the schemes discussed in the Literature Review Chapter of

this dissertation. The security of the whole environment is contingent upon these keys. If for any

reason these keys are compromised, there is the risk of stolen identities, password revocation and

 131

their likes. In this chapter, we propose a keyless signature scheme that is based on utilizing a

hash calendar and Merkle Hash Trees in addition to our HACH protocol. In Table 8.1, we

introduce the notations used in the chapter.

Table ‎8-1 Keyless SSO Scheme Notations

Symbol Description

Idp The central Identity Provider

C An SSO client

SPs List of Service Providers

K Length of one-way hash chain to generate authentication tokens

Seed Secret value dispensed by SP to C to be used in V

N The activity between client's login and logout

V Authentication Token

H() One way hash function

CO The total computational cost during N

I

Computational cost in SSL connection when Seed is exchanged

between C and SP

8.3.1 Adversary Model

We summarize the adversary model envisioned in the current scheme in the following

steps. Steps of the attack involving a malicious service provider, which can be conducted by

malicious code insertion:

1. C contacts a malicious SP (thinking it’s an honest SP) requesting a URI

2. Impersonating C, the malicious SP relays the request received from C to an honest SP

 132

3. The honest SP replies to the malicious SP to authenticate himself to IdP.

4. The malicious SP relays the authenticate message to C.

5. C communicates with IdP through HTTPS for authentication and provide its credentials.

6. IdP provides C with authentication assertions to be sent to SP.

7. SP receives C’s authentication assertions and set cookies for further communication.

8. When C tries to access a service at SP and provides session cookies, the malicious SP

will steal the cookies because the connection is in http.

9. Malicious SP will freely use services at SP as long as cookies are active.

Let us before describing the details of our keyless protocol touch on the concepts of

Merkle hash trees and hash calendars.

8.3.2 Merkle Hash Trees

A Merkle hash tree is a binary tree whose leaf nodes are pieces of data. Neighboring

nodes are concatenated and hashed. The resulting hash value is the first level of the tree. An

example of a Merkle Hash Tree is shown in Figure 8.2. At lowest level of the tree, we have the

data that is hashed and placed in a leaf node.

Let us now explain how authentication is conducted in a Merkle Hash Tree. At the lowest

level of the tree, the values of the eight leaf nodes are calculated by applying a hash function h(i)

=h(Ti)(i = 1, . . . , 8), where T is a piece of data. At the tree nodes level, the internal nodes are

derived from their child nodes. For example, the value of the node h3,4 = h(h3||h4) and so on until

we reach the root node h1,8=h(h1,4||h5,8). To verify the authenticity of a node, the leaf nodes can

be authenticated with the root node h1,8 and the corresponding authentication path information.

For example, to verify the node T1, the server, in which h1,8 (the root) is stored, checks the

information sent from T1 (which also includes the corresponding authentication path information

 133

= h2, h3,4, h5,8). The server first computes and h1, then h1,2 = h(h1||h2), h1,4 = h(h1,2||h3,4), and last,

h1,8 = h(h1,4||h5,8). In the last step, the server checks whether the computed h1,8 corresponds to the

existing h1,8. The server only accepts the data from T1, only if the two values are matching.

Our utilization of the Merkle hash tree does not only involve authentication of data as

explained above. Rather, we use it to generate a value that constitutes the SSO key. As will be

shown later in this section, the Merkle hash tree construction enables us to periodically update

this key.

Figure ‎8-2 Merkle hash tree

8.3.3 Hash Calendars

The authors of [62] indicate that a hash calendar as a special type of a hash tree with leaf

nodes representing every second since 1970-01-01 00:00:00 UTC. As such, at any given

moment, the tree has a leaf node for each second starting from this time. The structure of the tree

starts from left to right and each leaf node added is added to the right. They describe several

ways the tree can be structured and hash chains for individual seconds are extracted from it. One

such construction is as follows:

 134

The tree is built with maximal number of nodes and the nodes representing future

seconds are left empty as in Figure 8.3. In this particular figure, we have a tree for 11 seconds.

Instead of the regular concatenation and hashing in a typical Merkle tree the, the empty nodes

(grey nodes) are merged and copied to the next level. In case there is one empty node and

another non-empty node, the non-empty node is copied to the next level (dashed lines).

Therefore, in the chain extraction process, the copying processes are not included and only the

copied nodes are used for the chain extraction.

Figure ‎8-3 Hash calendar structure

The authentication mechanism using the hash calendar is to a great extent similar to that

of the Merkle Hash Trees. That is the authentication is achieved by using two pieces of

information: 1) the authentication path information and the root hash. The hash calendar is

originally proposed to perform timestamping functionality [62] that is verifiable if needed. The

root hash of the hash calendar is calculated at a certain point and published via easily accessible

media. In our proposed scheme, we employ the hash calendar not only to provide timestamping,

 135

but also to produce the authentication key. The published root is used as a key to verify the

authenticity of the communicating parties. More importantly, the root is updated periodically to

ensure recentness of the authentication key. In our proposed scheme, we employ the hash

calendar in a two-phase manner to produce the authentication key. The published root is used as

a key to verify the authenticity of the communicating parties. More importantly, the root is

updated periodically to ensure recentness of the authentication key.

8.3.4 SSO Keyless Signature Scheme Components

In this section, we introduce the main components of the proposed scheme and their

roles.

 Identity provider: the identity provider handles authentication and provides

authentication assertions to the service providers and clients. The identity provider

keeps track of a hash calendar which is pre-calculated and updated periodically (in the

following step we will show when the hash calendar is updated), in addition to

registering each log in by the client in a hash tree.

 The client: the first communication between the client and the identity provider

involves the creation and exchange of authentication credentials (a user name, and a

password). This step can be SSL/TSL secured. The first log in and each subsequent log

in are used as input for the hash tree. Once the root of the hash tree is calculated, the

root of the two trees are concatenated and hashed to produce the new key for the

scheme.

 The service provider: like the client, the service provider contacts the identity provider

to verify and get authentication assertions with reference to a certain client. Traffic

 136

between the SP and C is secured by using a one-way hash chain which is meant to

produce a bidirectional authentication channel.

The identity provider is responsible for updating the hash trees and the hash calendar.

Each time the hash calendar is updated, the root value is handed over to the service providers and

the client as the fresh key for authentication. The key acts as a benchmark to validate the

communication between nodes. So, instead of sharing a public key between clients and servers

and utilizing private keys, the privacy of which is critical to the network, the key is used for

verification of authenticity of the communicating nodes. As such, if a malicious service provider

or client tries to get a hold of a client’s credentials, they would need to have an updated and fresh

version of the key.

8.3.5 SSO Authentication Procedure

In this section, we provide a formal description of our SSO authentication procedure. The

following is a pseudo code:

C sends register request to Idp

HashCalendar[C] ← Idp initializes a hash calendar for C (*)

Idp publish hash root to C and SPs (**)

C sends a request to an URI at SP[i]

Idp verifies that C has permission to access URI by receiving a request from SP[i].

LogIn (C, SP[i]) ← Idp authenticate if C is allowed to access URI at SP[i]

Add LogIn(C, SP[i]) to a hash tree (*)

If the hash tree of C is complete

 Calculate new hash root (*)

 Append hash root to HashCalendar[C] (*)

 137

 Idp publish hash root to C and SPs (**)

SP[i] verifies C is valid and not malicious

If the hash root matches

 Session[C] ← Active session for C

 SP[i] Generate Seed and send it along with K to C

Transaction Authentication[C] ←Verify C’s transaction

 V← H
k
(Seed) (*)

 Decrement K (*)

 If K is equal to 0

 Update Seed (*)

 Reseat K

(*) Computation Overhead is measured

(**) Communication Overhead is measured

As the code above shows, the SSO authentication scheme is composed of two main

routines; one is done at eh IdP side and the other is conducted at the SP side. While the goal of

the routine at the IdP is to generate the SSO key (i.e. the hash value of the hash calendar and the

hash tree) which satisfies the recent key requirement explained in section 2, the SP routine

satisfies the unidirectional authentication requirement by utilizing and adapting our HACH

scheme. In the following, we provide more explanation:

 138

Routine at the Idp:

1. A client wants to access a service (URI) at an SP

2. SP checks with IdP to see if C is a registered client. If yes go to step 3 and, if not do the

following:

 a. IdP returns to C for creating an account.

b. Once the account is created, the IdP generates the hash root using a hash

calendar and publishes to the client and SPs.

c. IdP initializes a hash tree and registers the first log in in the tree.

3. IdP checks if C is logged in:

 a. If yes, go to step 1 in the second routine (routine at SP).

 b. Otherwise, Idp requests C login information and add login info to the hash tree.

4. Once the hash tree is complete a new hash root is calculated and used as a new hash

root.

Routine at the SP:

Each SP handles authentication independently by running the following routine (this

routine prevents impersonation attacks):

1. After C tries to access a URI at SP, SP checks with IdP, which runs the first routine for

authentication.

2. If there is an active log in, the SP requests the hash root from C. If it matches hash root

at SP, a new session starts.

a. SP generates and sends a Seed to be used in Transaction Authentication routine,

along with the chain length K to C.

 139

b. Each communication between C and SP is secured by authentication tokens

generated by Transaction Authentication routine. If token V that came from C

matches the stored one at SP, the transaction is accepted.

 c. If session is exhausted the Seed is updated for the next authentication tokens.

4. Continue session until C logs out, or session terminates for lack of authentication.

Session termination causes:

Session termination requires the client to log in again: These can be changed depending

on application needs:

1. Lack of authentication during an active session: when the client or SP fails to provide a

current authentication token, the session terminates automatically and the user is required

to log in again.

2. Time constraints: the user has been idle for a specific amount of time during an active

session.

3. Changing machine: when the user logs in to the SSO using a different machine, the

session in the first machine automatically terminates.

4. Changing connections: using a wireless connection that converts to an LTE connection

requires the user to log in again.

8.4 Performance evaluation

This section introduces the performance evaluation and testing. We first introduce the

testbed that was used as a benchmark to evaluate the performance of the proposed scheme.

8.4.1 Performance evaluation testbed

In order to evaluate the proposed SSO authentication scheme, a simulation based testbed

was designed and developed. The simulator simulates communication between the components

 140

described in section 4.4. The simulator functions as follows: 1) the simulator generates a number

of requests for each client, and simulates the operation of the identity provider to record the

communication overhead, computation overhead and number of hash operations in order to

estimate the efficiency and performance of the simulated SSO authentication scheme. We

provide more description of these metrics below.

8.4.2 Evaluation Metrics

The simulation is measured by counting each of measurement factors based on the logic

of the authentication scheme. As such, the simulation records these following metrics which we

use as our main evaluation metrics of the scheme:

• Communication Overhead is the number of communications required for the

authentication scheme for services at service providers made by the client. The

communication overhead entails communication between the client and the IdP in

addition to communication between the client and SP’s. Each of these overheads is

measured separately.

• Computation Overhead is the number of computations required by the authentication

scheme. Computation involves the creation and updating of the key from the IdP, in

addition to the creation and update of the Seed at the SP’s. This involves the hashing

operations required to generate and update these variables.

The performance evaluation was run to find out the performance of the authentication

scheme over a number of variables. The first configuration was when we varied the number of

times a client logs in to the SSO. Second, we measured performance over variable number of

service providers with fixed number of log ins. We then measure the optimal length of the one-

way hash chain responsible for authenticating traffic between the client and SP’s.

 141

8.4.3 The Effect of Number of Log ins

The first test run to evaluate the SSO authentication scheme was when the number of log

ins was varied. This number was set at 10 service providers. The graph in Figure 8.4 shows the

existence of a linear relation between the authentication scheme performance over increasing

number of log ins in terms of communication overhead. This is not surprising, as it is intuitive to

have an increase in communication, computation overheads as well as the number of hash

operations.

Figure ‎8-4 Communication Overhead over Variable Number of Log ins

The number of log ins also has a an effect on the computational overhead of the scheme.

In Figure 8.5, this overhead shows that the more log ins we have, the higher the computational

overhead incurred.

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128

C
o

m
m

u
n

ic
a

ti
o

n
 O

ve
rh

e
a

d

Number of Log Ins

Communication Overhead

 142

Figure ‎8-5 Computational Overhead with Variable Number of Log ins

8.4.4 Variable Number of Service Providers

The second evaluation environment was when the number of service providers increased.

We increased the number of service providers incrementally by 10 until we simulated the

authentication scheme’s performance at 50 service providers. Note that we fix the number of log

ins in this test at 8. The reason is that based on the previous two tests, 8 log ins appeared to have

the least effect on both communication and computation. Figure 8.6 demonstrates the overhead

in this setting. Similarly, Figure 8.7 shows the computation overhead with the different number

of service providers.

0

100

200

300

400

500

600

8 16 32 64 128

C
o

m
p

u
ta

ti
o

n
 O

ve
rh

e
a

d

Number of Log Ins

 143

Figure ‎8-6 Communication Overhead with Variable Number of Service Providers

0

10

20

30

40

50

60

70

80

10 20 30 40 50

C
o

m
m

u
n

ic
a

ti
o

n
 O

ve
rh

e
a

d

Number of Service Providers

Communication Overhead

 144

Figure ‎8-7 Computation Overhead with Variable Number of SPs

The main reason why this occurred is that each service provider is expected to compute

the same number of hashes during the run of the authentication scheme. In other words, the work

load is distributed equally among the service providers involved. In real life scenarios, this would

be different, as the client might not use the services equally.

8.4.5 Optimal Token Chain Length in HACH

Although the computation and communication overheads seemed to be influenced by the

increasing number of log ins and service providers, the length of K, which is the one-way hash

chain length, appeared to have an unpredictable influence on the computation overhead at the

SP’s sides. More precisely, neither did the length of this chain yield a linearly increasing

computation, nor did it lead to a decreasing effect. For that reason, we developed an analytical

0

5

10

15

20

25

30

35

40

10 20 30 40 50

C
o

m
p

u
ta

ti
o

n
 O

ve
rh

e
a

d

Number of Service Providers

Computation Overhead

 145

model in which we derived an approximate optimal length of K by computing the cost of the

HACH scheme at the SP.

In order to find this value, we had to account for the computations involved in the

initialization and update of the Seed in an active Client/SP session. This cost is measured by

adding the cost of the initial Seed generation, the hash operations to authenticate the traffic and

the Seed updating once this chain is exhausted. While this cost is highly dependent on the

number of transactions between the SP and C, which we gave a value of N in our notation Table

8.1, the Seed generation and update, which are done using an SSL based connection for which

we used I in Table 8.1. Whereas N depends on users’ behavior and differs from one application

to another and, therefore, cannot be determined, we investigated the available literature to find an

approximate cost of the SSL. The authors of [96] indicate that SSL is typically achieved through

the SSL handshake protocol that usually involves three essential phases: 1) parameter

negotiation, 2) mutual authentication and 4) secret key exchange. With this in mind, they

measured the performance overload of SSL and found that approximately 80% of time is spent in

SSL handshake and encryption/ decryption. Moreover, the authors of [97] analyzed SSL

processing and found that about 70% of the total processing time of an HTTPS is spent in SSL

processing. While computation cost of SSL is largely influenced by computing resources, an

approximation can be made based on these statistics. In [97], they calculated the execution cost

of the AES for key sizes of 128 and 256 and found them to be 562 and 747 cycles, respectively.

For our derivation of the optimal chain length, we use both of these numbers for the different key

sizes. Here is how we obtain the optimal length of K:

𝐶𝑂 = (
𝐾×(𝐾+1)

2
+ 𝐼) ×

𝑁

𝐾
 (‎8.1)

 146

 𝐶𝑂 =
𝑁𝐾+𝑁

2
+

𝐼𝑁

𝐾
 (‎8.2)

We Differentiate the above formula with respect to K and equate to 0.

𝜕𝐶𝑂

𝜕𝐾
=

𝑁

2
−

𝐼𝑁

𝐾2
 (‎8.3)

𝑁

2
−

𝐼𝑁

𝐾2 = 0 (‎8.4)

𝐾2 = 2𝐼 (‎8.5)

𝐾 = √2𝐼 (‎8.6)

We use this equation to plot the optimal value of K for 1500 transactions. Figure 8.8

demonstrates that the optimal value of k if an SSL key of either size 128 or 256 bits obtained by

simulation. These are around 33 and 38 respectively. This means that the Seed needs to be

updated approximately every 33, 38 transactions to achieve optimal performance depending on

the AES key size used in the SSL connection.

 147

Figure ‎8-8 Optimal Chain Length for Different AES Key Sizes

8.5 Tree-based Authentication for Toll/Traffic Management Systems

After introducing our SSO authentication scheme, we devote this section of the chapter

for an equally important context that requires rigorous authentication, namely, the context of

Toll/Traffic management systems. We propose the utilization of a modified Merkle hash tree

structure for better handling of RFID authentication in this particular context.

Existing RFID schemes targeting traffic management contexts are mainly conceptual and

prototypical. Little attention has been given to the important issue of authentication. With the

rapid migration to cloud-based technology, there is a pressing urgency for addressing

authentication in toll/ traffic RFID solutions. We introduce a toll/ traffic RFID authentication

scheme which benefits from the well-known Merkle hash trees. The main benefit of MHTs is its

scalability compared to traditional schemes. In order to increase scalability, we propose a scheme

0

20000

40000

60000

80000

100000

120000

140000

160000

8 16 32 64 128

C
o

m
p

u
ta

ti
o

n
 C

o
st

Session Length(K)

AES=128

AES=256

 148

that significantly lowers the computation complexity of the traditional MHTs. In our proposed

scheme, we achieve practical performance and improve traditional MHTs by a simple division

mechanism. Initial evaluation results demonstrate these benefits and show promising direction

for further research.

8.6 Problem Statement

A traditional RFID system is composed of three main components: RFID tags, RFID

readers and a back-end server. The RFID readers, which are usually able to read multiple tags

simultaneously, send encrypted radio signals interrogating RFID tags. The RFID tags in turn

respond with their identification information along with the data relative to the application in

which they are applied. For a road management RFID scheme, the main goal is to achieve

Automatic Vehicle Identification (AVI). According to [98], AVI permits fully automatic and

unique identification of vehicles at specific interrogation points and offers potential benefits in

many fields such as fleet control, revenue collection, traffic operations, transportation planning,

and safety and law enforcement. While primitive AVI techniques were based on technologies

such as microwave and other dated technologies, more reliance on modern technologies such as

RFID has become more common in recent systems.

Conventionally, RFID readers send, via radio signals, interrogative commands to RFID

tags, which in turn respond with the interrogated information. Before this process of data

transmission is incepted, an authentication process verifying the identity of the reader and the

authenticity of the tags is conducted. During this process, both entities perform the security

parameters set forth by the protocols deployed in the system. The reader first sends a nonce

message to activate the RFID tags. The tags verify the identity of the readers by checking the

readers’ stored information. If verified, the tags respond with an encrypted message which

 149

contains its identification information so that the reader verifies their authenticity. If this

verification process is successful, the reader responds with more information containing queries

about the data to be gathered.

Most authentication solutions addressing this scenario fall into two major categories:

server-based solutions and server-less solutions. The authors of [99] point out that most RFID

authentication schemes available in the literature (e.g. [69], [75]) are either backend-server-based

or server-less (e.g. [100] and [101]). On the one hand, schemes utilizing backend servers entail

communication between the RFID readers and the backend server to carry out the operation of

the schemes. Essentially, readers transmit data which they gather from RFID tags to the backend

servers which in turn verify the authenticity of the readers and tags according to their databases.

This constant transmission of data back and forth with the backend server necessities the

existence of communication channels between the readers and the backend servers throughout

the connection, presenting an authentication problem. Essentially, authentication in these

schemes typically targets the channels between the readers and the RFID tags.

The other category of RFID schemes is the server-less based solutions. Server-less RFID

architectures are designed so that readers identify tags offline. While this alleviates the need for

connecting to external resources via wireless connections, the readers are required to have an AL

(Access List) downloaded from a CA (Certification Agency). Such solutions typically suffer

from low scalability due to the limited capacities of the reader. In addition, they are known for

their low privacy preservation due to the potential of readers to be tampered with either

physically or via hacking.

Evolving trends in RFID solutions involve migration to cloud-based environments to

further enhance their abilities, adding new challenging dimensions to the already complicated

 150

authentication mechanisms. Neither server-based RFID schemes nor server-less schemes

authentication cover the full spectrum of authentication requirements for a cloud-based RFID

system. Therefore, our proposed authentication scheme tailored for cloud-based RFID with the

traffic/road toll context as a basis of our scheme utilizes a Merkle hash tree to achieve

authentication.

8.7 The Proposed RFID Authentication Scheme

Assuming there are several proposed schemes to address authentication between the

readers and tags in conventional RFID schemes, the proposed scheme will be more focused on

authenticating the communication between the RFID reader and the cloud server in the traffic

and toll management/payment context.

Figure 8.9 is a high level depiction of the proposed scheme to solve the authentication

problem between the RFID readers and the cloud server utilizing Merkle hash trees (MHT). The

basic idea of the MHT scheme is that each node in the tree is a hash function derived by the

computation of its children. Two pieces of information are important in the MHT scheme,

namely the root node and the authentication path information (API). When the reader reads a tag,

it will submit the tag’s data along with the API. To ensure the authenticity of the node sending

the data, the API is used to calculate the root node, and if the calculated root node matches the

stored root node, the authenticity of the data source is verified. By doing this we can ensure

authentication from the reader’s direction. To ensure the data stored in the cloud is confidential,

the data to be sent to the cloud is going to be encrypted using Advanced Encryption Standard

(AES) for instance. Thus, T1 would be the Tag ID and the encrypted data.

 151

Figure ‎8-9 Cloud-based RFID tree system

In order to avoid the exponential growth of MHT’s if the number of the tags increases,

we can set an upper bound on the tree size, thereby reducing computational overhead.

Depending on the number of tags, we will have multiple trees each with a unique ID. Each

reading of the tags will be accompanied by the corresponding tree ID. For example, if we have a

tree with 16 leaf nodes and we need to authenticate a piece of data sent from the reader to the

server with API, we only need 4 hash operations to calculate the root node to see if it matches the

stored one. By doing so, not only do we aim to lower the computation overhead incurred by the

reading and authentication of tags, but we should be able to decrease the size of authentication

tree making the search less expensive to perform by the reader. If a reader performs a search

within a tree of size 16 as opposed to a tree of size N, where N is the total number of tags in the

 152

database, the search complexity is lowered tremendously. This is especially beneficial in the

context of traffic management and toll payment systems, where the readers typically have one

chance of reading the RFID tags (i.e. when the vehicle passes through the toll gate at high

speeds).

8.8 Protocol Components and performance

Commonly, RFID schemes are composed of three main components: 1) RFID tags, 2)

RFID readers and 3) a back-end server, in case it is server-based. Our proposed scheme shares

these components but instead of a back-end server owned by the company or a third party known

to the respective service provider, we use the cloud as a back-end server. In this case, we aim to

secure the communication not only on the readers and RFID tags side but also on the direction

between the readers and the cloud. For that reason, the communication between the readers and

the cloud is secured by the utilizing the AES protocol which is known for its security and

robustness against different types of attacks. We chose AES despite its relatively high cost due to

its strength and to the fact that the reader and the cloud can afford its high computation since

both are well equipped with storage and powerful resources. In the RFID tags direction,

however, and since they typically are much less powerful, as they are usually not capable of

performing highly complex algorithms such as AES, we use a Merkle hash tree as depicted in

Figure 8.2 (for more information about how authentication is achieved using a Merkle hash tree,

please refer to section 8.3.2).

Given the nature of the toll/ traffic management scenario described in the introduction of

this problem statement section, which necessitates RFID readers to identify tags on the go at

vehicles’ highway speeds, searching the whole tree to identify a certain RFID tag upon the

passage of a vehicle in the readers’ range can be cumbersome. As such, an MHT like this does

 153

not provide scalability. That is because when the tree grows to accommodate more RFID tags,

the readers’ ability to search the tree to find the appropriate tag becomes difficult, thereby

increasing the potential of denial of service attacks. Our proposed scheme addresses this issue by

splitting the authentication tree into multiple smaller trees, each with its unique tree ID and its

own set of RFID tags.

8.9 Performance Evaluation

In order to show the benefit of the proposed scheme, we show comparisons between the

performance of one large MHT as opposed to multiple smaller MHTs. Let us first demonstrate

how we calculate the cost of a single MHT in the following:

Number of RFID tags(Leaf nodes)= N = 2
i

Number of hash operations to authenticate one RFID tag = i-1

Number of hash operations to authenticate all RFID tags with one MHT= N*(i-1)

This formula is used to determine the cost of authentication in one tree. Note that we use

the number of hash operation in a session as an indicator of the cost. Therefore, our main goal is

to reduce this cost as much as possible. The computation cost of multiple hash trees is

determined according to the following formula:

Using multiple hash trees(MMHT) with a maximum size of k leaf nodes:

Number of MHT=M =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝐹𝐼𝐷 𝑡𝑎𝑔𝑠(𝑁)

𝑘

Number of RFID tags (Leaf nodes) in one MHT= k = 2
j

Number of hash operations to authenticate one RFID tag= j-1

Number of hash operations to authenticate all RFID tags in MMHT= M*k*(j-1)

 154

Before presenting the comparison results, let us look at how the branching factor

influnces the performance of the protocol. Figures 8.12 and 8.13 below demonstrate how the size

of the tree impacts the number of hash operations when the numer of RFID tags in the system is

60,000. If we set the tree size at 32, we will end up having 1800 MHTs with in which 240,000

hash operations are required. Conversely, increasing the MHT size increases the number of hash

operations slightly, with a much reduced number trees. For an MHT of 128 nodes, we will have

469 trees with a hash cost of 360,000. With an MHT of 64 nodes, we have 938 trees with a hash

cost of 300,000.

Figure ‎8-10 Impact of number of nodes on MHTs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32 64 128

N
u

m
b

e
r

o
f

M
H

T

Number of leaf nodes(k)

number of MHT

 155

Figure ‎8-11 Impact of the tree size on hash count

 Based on these results, we opted for the MHT size that yields the lowest number of

hash operations (i.e. 32) to compare the performance of the proposed protocol with traditional

MHT based solutions. In figures 8.14 and 8.15, we show the comparison results. The results

below are the comparison of performance of one MHT versus multiple MHTs with 32 leaf node.

The performance comparison assumes the whole dataset is to be authenticated. To authenticate a

single tag, we will need only 4 hash operations as Figure 8.15 demonstrates.

0

50000

100000

150000

200000

250000

300000

350000

400000

32 64 128

N
u

m
b

e
r

o
f

h
a

sh
 o

p
e

ra
ti

o
n

s

Number of leaf nodes(k)

k

 156

Figure ‎8-12 Performance comparison between a single MHT and multiple MHTs

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

10,000.00 60,000.00 120,000.00 240,000.00

N
u

m
b

e
r

o
f

h
a

sh
 o

p
e

ra
ti

o
n

s

RFID Tags

MMHT

MHT

 157

Figure ‎8-13 Average hash count comparison with different network size

As the comparison results demonstrate in figure 8.14, the divided MHT and the single

MHT achieve similar performances when the number of tags in the network is small (i.e. 10,000

RFID tags in the experiment). Earlier this chapter, we have shown that toll/traffic management

systems typically have a large number of vehicles and that networks constantly grow in size

which means that the RFID tags to be authenticated is much higher. The results indicate that our

proposed scheme achieves much lower computation as the number of tags increases when

compared to traditional MHT based solutions.

8.10 Conclusion

In this chapter, we presented a keyless authentication scheme designed to suit multi-

server authentication environments where single-sign on is adopted. Most previous schemes

available in the literature suffer from the lack of bi-directional authentication channels between

0

2

4

6

8

10

12

14

16

18

10,000.00 60,000.00 120,000.00 240,000.00

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
h

a
sh

 o
p

e
ra

ti
o

n
s

RFID Tags

MMHT

MHT

 158

service providers and clients. In addition, the fact that authentication can occur utilizing multiple

SSL connection requires the authentication keys used to remain constant resulting in the lack of

recentness of the keys.

The scheme presented in this paper addresses these issues by proposing the utilization of

hash calendars and hash trees to derive authentication keys that can be bi-directionally verified

and constantly changing to insure recentness. The proposed scheme was exposed to extensive

experiments to measure communication, computation overheads and the total number of hash

operations required to carry out the scheme. We also developed an analytical model to derive the

optimal configuration of the one-way hash chain used for authentication between the client and

service providers.

Also in this chapter, we explored the possibility and benefit of utilizing the Merkle hash

tree construction to develop an RFID based solution for authenticating RFID tags in toll/traffic

management environment. Due to the high cost associated with MHTs especially with large

networks of RFID tags such as the case of toll/traffic management systems, traditional MHTs do

not provide scalability. Therefore, we have proposed dividing the MHT into multiple trees to

better handle environments like toll/traffic systems where ID identification is needed on the go at

highway speeds. We have shown through comparison that the proposed RFID scheme

outperforms the traditional MHT based protocols. The improvement in performance is much

more significant as the number of RFID tags in the network increases. In our future work, we

will focus on determining the ideal size of the tree and the optimal branching factor.

 159

 CONCLUSION AND FUTURE WORK CHAPTER 9:

The research in this dissertation has thus far shed some light on seven schemes that have

been proposed to address the problem authentication in a variety of environments. In particular,

we proposed five schemes to solve the computational overhead associated with one-way hash

chain constructions when used to protect session cookies in HTTP connections as well as

broadcast and user authentication in wireless sensor networks. In addition, it has introduced a

novel solution to tackle the drawback of the uni-directional authentication channel and lack of

key recentness in multi-server environments that utilize single sign-on mechanisms by

employing a combination of a hash calendar, Merkle hash trees and one-way hash chains.

Finally, an authentication scheme tailored for the context of toll/traffic management RFID

systems was introduced.

Session cookies are one of the widely used mechanisms to keep browser state between

the client and the server. They are, therefore, commonly used to substitute users’ identity in

Internet sessions as a cheaper alternative to the wide utilization of the secure HTTPS protocol or

SSL/TSL based mechanisms which tend to be expensive and incur additional costs that service

providers prefer to spare for other expenses. One of the major drawbacks of such practice is the

fact that session cookies are stored and communicated in plaintext, thereby exposing critical

private information about the user and about the services being used during that session. One

common threat resulting from this practice is the hijacking of session cookies and other

identifiers that belong to the user.

Much of the research addressing the issue of session hijacking is very much preliminary

and up to this point the majority of session cookies are communicated in the air without proper

 160

protection. A major recent security breach has resulted in exposing of critical financial and

banking information of more than 40 million customers who have shopped at Target Stores in

the United States during the months of November and December of 2013 [102]. Although it is

early to determine whether this breach can be attributed to hijacking session cookies or not, the

author of [102] suspects the incident took place because of debit personal identification numbers

interception process that targeted the giant Target retailer stores. In a different incident, the

author of [103] talks about an attacker who claims he was able to steal session cookies pertaining

to Yahoo accounts and selling them to the public, and offers his services to hijack more accounts

by launching cross-site scripting attacks (XSS). These attacks according to [103] let attackers

steal cookies from Yahoo! Webmail users.

With attacks as easy as interception of cookies and consequences as severe as exposing

an excess of 40 million customers’ financial information, addressing issues of Internet, and

especially session cookies security, is an ever growing necessity. A new direction of research in

[10] suggested devising Lamport’s one-time passwords [38] as a means with which cookies can

be made secure. We described in the previous chapters that this promising solution offers a great

potential and help avoid a lot of security threats seen in today’s Internet. It is well known that the

computational overhead resulting from the need to calculate the hash values of the one-way hash

chain in the first transaction can be high and unmanageable by devices with modest memory and

energy capabilities, and sometimes undesired by even the highly capable devices simply because

we do not want to add burdens on our computers. Having this in mind, we designed five novel

schemes that will aid in lowering this computational overhead while at the same time benefiting

from the excellent security features of one-way hash functions. We have demonstrated with

 161

extensive experiments that our solutions achieved better performance that the straightforwardly

configured hash chains.

Another equally important issue that this dissertation has addressed is the context of

multi-server environments where single-sign on mechanisms provide convenience for customers

and cost effectiveness for providers at the potential cost of breached security. Scholars have

pointed out that due to flaws encountered in the logic of common SSO solutions such as XAML

2.0 and OpenID, attackers can possibly launch attacks such as impersonation and cross-scripting

targeting weaknesses that result from the unidirectional nature of the authentication channel

between clients and service providers and the lack of guarantees of recent keys. With these

weaknesses in mind, we have developed a keyless signature scheme that achieves authentication

channel bi-directionality between the client and the service provider and a recent authentication

key by periodically updating authentication credentials.

The last proposed scheme targets the context of toll/traffic management systems that

utilize RFID tags. An authentication scheme employing a modified Merkle hash tree is suggested

to address authentication of RFID tags in this contexts. The Merkle hash tree modification

proposed is aims to achieve scalability and computational economy while not sacrificing strong

authentication.

9.1 Future Work

The work in this dissertation can be extended and improved in a variety of ways. For

example, in the context of the sparse caching solution proposed to avoid session hijacking

attacks, a possible extension can be made by measuring real network traffic and finding accurate

statistics about the number of transactions a typical user session is. This can be achieved by

looking at more specific contexts such as medical settings where physicians and nurses typically

 162

have a relatively tangible behavior. Another possibility to extend our work in this scheme is

investigate the cost of session re-initialization as it is important to measure such construct to

validate the result obtained.

While our solutions have been targeting cookies in HTTP connections, a possible

extension of the works reported in this dissertation is to compare their performance with the

utilization of SSL based connections throughout user session. However, in order to do that, it is

imperative to implement and evaluate the proposed schemes in real networks before moving to

the next step of comparing their potential benefits relative to SSL based channels.

As far as the SSO authentication scheme, our future work includes comparing the results

obtained in our simulation with other schemes available in the literature. This will require

analyzing and interpreting current SSO authentication schemes and comparing them with the

proposed keyless signature scheme.

Finally, the work in the tree-based toll/traffic RFID management system can be extended

by analyzing behavior in RFID networks and ultimately finding the appropriate setup of the

Merkle hash tree suitable for this environment. This will result in a more scalable scheme; one

that is attractive for developers in this arena.

 163

REFERENCES

[1] M. O. Rabin, "Digitalized signatures and public-key functions as intractable as

factorization," 1979.

[2] D. Liu and P. Ning, "Multilevel μTESLA: Broadcast authentication for distributed sensor

networks," ACM Transactions on Embedded Computing Systems (TECS), vol. 3, pp. 800-

836, 2004.

[3] H. Tan, J. Zic, S. Jha, and D. Ostry, "Secure multihop network programming with

multiple one-way key chains," Mobile Computing, IEEE Transactions on, vol. 10, pp. 16-

31, 2011.

[4] I. Khalil, S. Bagchi, C. N. Rotaru, and N. B. Shroff, "UnMask: Utilizing neighbor

monitoring for attack mitigation in multihop wireless sensor networks," Ad Hoc

Networks, vol. 8, pp. 148-164, 2010.

[5] M. Li, S. Yu, J. D. Guttman, W. Lou, and K. Ren, "Secure ad hoc trust initialization and

key management in wireless body area networks," ACM Transactions on Sensor

Networks (TOSN), vol. 9, p. 18, 2013.

[6] T.-H. Chen, H.-C. Hsiang, and W.-K. Shih, "Security enhancement on an improvement

on two remote user authentication schemes using smart cards," Future Generation

Computer Systems, vol. 27, pp. 377-380, 2011.

[7] C.-T. Li and M.-S. Hwang, "An efficient biometrics-based remote user authentication

scheme using smart cards," Journal of Network and Computer Applications, vol. 33, pp.

1-5, 2010.

[8] X. Dai and J. Grundy, "NetPay: An off-line, decentralized micro-payment system for

thin-client applications," Electronic Commerce Research and Applications, vol. 6, pp. 91-

101, 2007.

[9] H.-T. Liaw, J.-F. Lin, and W.-C. Wu, "A new electronic traveler’s check scheme based

on one-way hash function," Electronic Commerce Research and Applications, vol. 6, pp.

499-508, 2008.

[10] I. Dacosta, S. Chakradeo, M. Ahamad, and P. Traynor, "One-time cookies: Preventing

session hijacking attacks with disposable credentials," ACM Transactions on Internet

Technology (TOIT), vol. 12, 2012.

 164

[11] CSID, "CONSUMER SURVEY: PASSWORD HABITS A study of password habits

among American consumers," September 2012.

[12] A. Alabrah, J. Cashion, and M. Bassiouni, "Enhancing security of cookie-based sessions

in mobile networks using sparse caching," International Journal of Information Security -

Springer Publishing, Vol. 13, No. 4, July 2014, pp. 355–366, online version published

December 2013, DOI: 10.1007/s10207-013-0223-8.

[13] A. Alabrah and M. Bassiouni, "A hierarchical two-tier one-way hash chain protocol for

secure internet transactions," in Proceedings of IEEE Global Communications

Conference (GLOBECOM'12), Anaheim, California, December 3-7, 2012, pp. 868-873.

[14] A. Alabrah and M. Bassiouni, "Robust and fast authentication of session cookies in

collaborative and social media using position-indexed hashing," in Proceeding of IEEE

International Conference on Collaborative Computing: Networking, Applications and

Worksharing (COLLABORATECOM 2013), Austin, Texas, October 20–23, 2013, pp.

241-249.

 [15] A. Alabrah and M. Bassiouni, "Efficient User and Broadcast Authentication Scheme for

WSNs," in Proceedings of IEEE Wireless Communications and Networking Conference

(WCNC’14), Istanbul, Turkey, April 6-9, 2014.

 [16] A. Alabrah and M. Bassiouni, "Preventing session hijacking in collaborative applications

with hybrid cache-supported one-way hash chains," in Proceedings of IEEE

International Conference on Collaborative Computing: Networking, Applications and

Worksharing (COLLABORATECOM 2014), Miami, Florida, October 22–25, 2014.

[17] A. Alabrah and M. Bassiouni, "A Tree-Based Authentication Scheme for a Cloud

Toll/traffic RFID System, submitted for publication," in Proceedings of IEEE Vehicular

Networking Conference (VNC'14), Paderborn, Germany 2014.

[18] T. OWASP, "10 2010," The Ten Most Critical Web Application Security Risks, 2010.

[19] D. Wichers, "The 2013 OWASP Top 10," in AppSec USA 2013, 2013.

[20] B. Ponurkiewicz, "FaceNiff—A new Android download application," ed, 2012.

[21] E. Butler, "FireSheep: Cookie Snatching Made Simple," in ToorCon Conference, San

Diego, CA, 2010, pp. 22-24.

 165

[22] R. D. Riley, N. M. Ali, K. S. Al-Senaidi, and A. L. Al-Kuwari, "Empowering users

against sidejacking attacks," in ACM SIGCOMM Computer Communication Review,

2010, pp. 435-436.

[23] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, "Wireless LAN security and IEEE 802.11 i,"

Wireless Communications, IEEE, vol. 12, pp. 27-36, 2005.

[24] C. Sreedhar, S. M. Verma, and N. Kasiviswanath, "A survey on security issues in

wireless ad hoc network routing protocols," International Journal on Computer Science

and Engineering, vol. 2, pp. 224-232, 2010.

[25] M. S. Siddiqui and C. S. Hong, "Security issues in wireless mesh networks," in

Multimedia and Ubiquitous Engineering, 2007. MUE'07. International Conference on,

2007, pp. 717-722.

[26] Y. Zhou, Y. Fang, and Y. Zhang, "Securing wireless sensor networks: a survey,"

Communications Surveys & Tutorials, IEEE, vol. 10, pp. 6-28, 2008.

[27] K. Hickman and T. Elgamal, "The SSL protocol," Netscape Communications Corp, vol.

501, 1995.

[28] T. Dierks, "The transport layer security (TLS) protocol version 1.2," 2008.

[29] E. Rescorla and A. Schiffman, "The secure hypertext transfer protocol," 1999.

[30] C. Coarfa, P. Druschel, and D. S. Wallach, "Performance analysis of TLS Web servers,"

ACM Transactions on Computer Systems (TOCS), vol. 24, pp. 39-69, 2006.

[31] D. M. Kristol and L. Montulli, "HTTP state management mechanism," 2000.

[32] D. M. Kristol, "HTTP Cookies: Standards, privacy, and politics," ACM Transactions on

Internet Technology (TOIT), vol. 1, pp. 151-198, 2001.

[33] L. Montulli, "Method of on-line shopping utilizing persistent client state in a hypertext

transfer protocol based client-server system," ed: Google Patents, 1998.

[34] B. Adida, "Sessionlock: securing web sessions against eavesdropping," in Proceedings of

the 17th international conference on World Wide Web, 2008, pp. 517-524.

 166

[35] A. X. Liu, J. M. Kovacs, C.-T. Huang, and M. G. Gouda, "A secure cookie protocol," in

Computer Communications and Networks, 2005. ICCCN 2005. Proceedings. 14th

International Conference on, 2005, pp. 333-338.

[36] G. Pujolle, A. Serhrouchni, and I. Ayadi, "Secure session management with cookies," in

Information, Communications and Signal Processing, 2009. ICICS 2009. 7th

International Conference on, 2009, pp. 1-6.

[37] M. Wu, S. Garfinkel, and R. Miller, "Secure web authentication with mobile phones," in

DIMACS workshop on usable privacy and security software, 2004, pp. 9-10.

[38] L. Lamport, "Password authentication with insecure communication," Communications

of the ACM, vol. 24, pp. 770-772, 1981.

[39] N. Haller, "The S/KEY one-time password system," 1995.

[40] Y. Zhang and Y. Fang, "ARSA: an attack-resilient security architecture for multihop

wireless mesh networks," Selected Areas in Communications, IEEE Journal on, vol. 24,

pp. 1916-1928, 2006.

[41] Y.-C. Hu, A. Perrig, and D. B. Johnson, "Ariadne: A secure on-demand routing protocol

for ad hoc networks," Wireless Networks, vol. 11, pp. 21-38, 2005.

[42] Y.-C. Hu, D. B. Johnson, and A. Perrig, "SEAD: Secure efficient distance vector routing

for mobile wireless ad hoc networks," Ad Hoc Networks, vol. 1, pp. 175-192, 2003.

[43] S. J. Murdoch, "Hardened stateless session cookies," in Security Protocols XVI, ed:

Springer, 2011, pp. 93-101.

[44] J. Cashion and M. Bassiouni, "Robust and low-cost solution for preventing sidejacking

attacks in wireless networks using a rolling code," in Proceedings of the 7th ACM

symposium on QoS and security for wireless and mobile networks, 2011, pp. 21-26.

[45] Z. Benenson, N. Gedicke, and O. Raivio, "Realizing robust user authentication in sensor

networks," Real-World Wireless Sensor Networks (REALWSN), vol. 14, 2005.

[46] I. Butun and R. Sankar, "Advanced two tier user authentication scheme for heterogeneous

wireless sensor networks," in Consumer Communications and Networking Conference

(CCNC), 2011 IEEE, 2011, pp. 169-171.

 167

[47] R. Wang, W. Du, X. Liu, and P. Ning, "ShortPK: A short-term public key scheme for

broadcast authentication in sensor networks," ACM Transactions on Sensor Networks

(TOSN), vol. 6, p. 9, 2009.

[48] K. Arikumar and K. Thirumoorthy, "Improved user authentication in wireless sensor

networks," in Emerging Trends in Electrical and Computer Technology (ICETECT),

2011 International Conference on, 2011, pp. 1010-1015.

[49] O. Cheikhrouhou, A. Koubaa, M. Boujelben, and M. Abid, "A lightweight user

authentication scheme for Wireless Sensor Networks," in Computer Systems and

Applications (AICCSA), 2010 IEEE/ACS International Conference on, 2010, pp. 1-7.

[50] R. Wang, S. Chen, and X. Wang, "Signing me onto your accounts through facebook and

google: A traffic-guided security study of commercially deployed single-sign-on web

services," in Security and Privacy (SP), 2012 IEEE Symposium on, 2012, pp. 365-379.

[51] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pellegrino, and A. Sorniotti, "An

authentication flaw in browser-based Single Sign-On protocols: Impact and

remediations," Computers & Security, vol. 33, pp. 41-58, 2013.

[52] W.-B. Lee and C.-C. Chang, "User identification and key distribution maintaining

anonymity for distributed computer networks," Comput Syst Sci Eng, vol. 15, pp. 211-

214, 2000.

[53] T.-S. Wu and C.-L. Hsu, "Efficient user identification scheme with key distribution

preserving anonymity for distributed computer networks," Computers & Security, vol.

23, pp. 120-125, 2004.

[54] Y. Yang, S. Wang, F. Bao, J. Wang, and R. H. Deng, "New efficient user identification

and key distribution scheme providing enhanced security," Computers & Security, vol.

23, pp. 697-704, 2004.

[55] Y.-P. Liao and S.-S. Wang, "A secure dynamic ID based remote user authentication

scheme for multi-server environment," Computer Standards & Interfaces, vol. 31, pp. 24-

29, 2009.

[56] C.-C. Lee, T.-H. Lin, and R.-X. Chang, "A secure dynamic ID based remote user

authentication scheme for multi-server environment using smart cards," Expert Systems

with Applications, vol. 38, pp. 13863-13870, 2011.

 168

[57] T.-T. Truong, M.-T. Tran, and A.-D. Duong, "Robust Secure Dynamic ID Based Remote

User Authentication Scheme for Multi-server Environment," in Computational Science

and Its Applications–ICCSA 2013, ed: Springer, 2013, pp. 502-515.

[58] Q. Pei and J. Yu, "A Secure Dynamic Identity based Single Sign-On Authentication

Protocol," Journal of Software, vol. 9, pp. 154-161, 2014.

[59] P. Hallam-Baker, "Security assertions markup language," May, vol. 14, pp. 1-24, 2001.

[60] S. Cantor, I. J. Kemp, N. R. Philpott, and E. Maler, "Assertions and protocols for the

oasis security assertion markup language," OASIS Standard (March 2005), 2005.

[61] O. Authentication, "2.0-Final," OpenID Foundation website, 2007.

[62] A. Buldas, A. Kroonmaa, and R. Laanoja, "Keyless Signatures’ Infrastructure: How to

Build Global Distributed Hash-Trees," in Secure IT Systems, ed: Springer, 2013, pp. 313-

320.

[63] R. C. Merkle, "A digital signature based on a conventional encryption function," in

Advances in Cryptology—CRYPTO’87, 1988, pp. 369-378.

[64] L. TransCore. (07/01). All Electronic Tolling Available:

https://http://www.transcore.com/tolling-systems - 0cc1c3a90eb92a65c3a914ae2f793446

[65] O.-O. C. E. Authority, "Saving Time, Connecting Communities for Fifty Years.," Annual

Financial Report 06/30/2013 2013.

[66] E.-Z. I. Group. (2013, 07/01). Statistics

[67] K. Kamarulazizi and D. W. Ismail, "Electronic toll collection system using passive RFID

technology," Journal of Theoretical and Applied Information Technology, vol. 2, 2010.

[68] Z.-h. Xiao, Z.-q. Guan, and Z.-h. Zheng, "The research and development of the highway's

electronic toll collection system," in Knowledge Discovery and Data Mining, 2008.

WKDD 2008. First International Workshop on, 2008, pp. 359-362.

[69] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, "Strong authentication for RFID

systems using the AES algorithm," in Cryptographic Hardware and Embedded Systems-

CHES 2004, ed: Springer, 2004, pp. 357-370.

http://www.transcore.com/tolling-systems#0cc1c3a90eb92a65c3a914ae2f793446

 169

[70] W. Wu and L. Zhang, "LBlock: a lightweight block cipher," in Applied Cryptography

and Network Security, 2011, pp. 327-344.

[71] Z. Gong, S. Nikova, and Y. W. Law, "KLEIN: a new family of lightweight block

ciphers," in RFID. Security and Privacy, ed: Springer, 2012, pp. 1-18.

[72] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, "Piccolo: an

ultra-lightweight blockcipher," in Cryptographic Hardware and Embedded Systems–

CHES 2011, ed: Springer, 2011, pp. 342-357.

[73] B. Song and C. J. Mitchell, "Scalable RFID security protocols supporting tag ownership

transfer," Computer Communications, vol. 34, pp. 556-566, 2011.

[74] G. Kapoor, W. Zhou, and S. Piramuthu, "Multi-tag and multi-owner RFID ownership

transfer in supply chains," Decision Support Systems, vol. 52, pp. 258-270, 2011.

[75] J.-S. Cho, S.-S. Yeo, and S. K. Kim, "Securing against brute-force attack: A hash-based

RFID mutual authentication protocol using a secret value," Computer Communications,

vol. 34, pp. 391-397, 2011.

[76] A. Gupta, W.-D. Weber, and T. Mowry, Reducing Memory and Traffic Requirements for

Scalable Directory-Based Cache Coherence Schemes*: Springer, 1992.

[77] A. Deftu and A. Murarasu, "Optimization Techniques for Dimensionally Truncated

Sparse Grids on Heterogeneous Systems," in Parallel, Distributed and Network-Based

Processing (PDP), 2013 21st Euromicro International Conference on, 2013, pp. 351-

358.

[78] W. Lau, M. Kumar, and S. Venkatesh, "A cooperative cache architecture in support of

caching multimedia objects in MANETs," in Proceedings of the 5th ACM international

workshop on Wireless mobile multimedia, 2002, pp. 56-63.

[79] C. C. Douglas, J. Hu, M. Iskandarani, M. Kowarschik, U. Rüde, and C. Weiss,

"Maximizing cache memory usage for multigrid algorithms for applications of fluid flow

in porous media," in Numerical Treatment of Multiphase Flows in Porous Media, ed:

Springer, 2000, pp. 124-137.

[80] Y.-C. Hu, M. Jakobsson, and A. Perrig, "Efficient constructions for one-way hash

chains," in Applied Cryptography and Network Security, 2005, pp. 423-441.

 170

[81] R. Chandramouli, S. Bapatla, K. Subbalakshmi, and R. Uma, "Battery power-aware

encryption," ACM Transactions on Information and System Security (TISSEC), vol. 9, pp.

162-180, 2006.

[82] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, "Analyzing the energy

consumption of security protocols," in Proceedings of the 2003 international symposium

on Low power electronics and design, 2003, pp. 30-35.

[83] J. Cashion and M. Bassiouni, "Protocol for mitigating the risk of hijacking social

networking sites," in Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2011 7th International Conference on, 2011, pp. 324-

331.

[84] M. Stevens, "Fast Collision Attack on MD5," IACR Cryptology ePrint Archive, vol.

2006, p. 104, 2006.

[85] S. Chen and C. Jin, "An improved collision attack on MD5 algorithm," in Information

Security and Cryptology, 2008, pp. 343-357.

[86] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, "Cryptanalysis of the Hash Functions

MD4 and RIPEMD," in Advances in Cryptology–EUROCRYPT 2005, ed: Springer, 2005,

pp. 1-18.

[87] X. Wang, Y. L. Yin, and H. Yu, "Finding collisions in the full SHA-1," in Advances in

Cryptology–CRYPTO 2005, 2005, pp. 17-36.

[88] Y. Liu, J. Li, and M. Guizani, "PKC Based Broadcast Authentication using Signature

Amortization for WSNs," Wireless Communications, IEEE Transactions on, vol. 11, pp.

2106-2115, 2012.

[89] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. E. Culler, "SPINS: Security protocols

for sensor networks," Wireless networks, vol. 8, pp. 521-534, 2002.

[90] D. Liu and P. Ning, "Efficient Distribution of Key Chain Commitments for Broadcast

Authentication in Distributed Sensor Networks," in NDSS, 2003.

[91] K. H. Wong, Y. Zheng, J. Cao, and S. Wang, "A dynamic user authentication scheme for

wireless sensor networks," in Sensor Networks, Ubiquitous, and Trustworthy Computing,

2006. IEEE International Conference on, 2006, p. 8 pp.

[92] M. L. Das, "Two-factor user authentication in wireless sensor networks," Wireless

Communications, IEEE Transactions on, vol. 8, pp. 1086-1090, 2009.

 171

[93] M. K. Khan and K. Alghathbar, "Cryptanalysis and security improvements of ‘two-factor

user authentication in wireless sensor networks’," Sensors, vol. 10, pp. 2450-2459, 2010.

[94] B. Vaidya, D. Makrakis, and H. T. Mouftah, "Improved two-factor user authentication in

wireless sensor networks," in Wireless and Mobile Computing, Networking and

Communications (WiMob), 2010 IEEE 6th International Conference on, 2010, pp. 600-

606.

[95] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G. Vigna, and Y. Chen, "Protecting

Web-based Single Sign-on Protocols against Relying Party Impersonation Attacks

through a Dedicated Bi-directional Authenticated Secure Channel," in Research in

Attacks, Intrusions and Defenses, ed: Springer, 2014, pp. 276-298.

[96] K. Kant, R. Iyer, and P. Mohapatra, "Architectural impact of secure socket layer on

internet servers," in Computer Design, 2000. Proceedings. 2000 International

Conference on, 2000, pp. 7-14.

[97] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan, "Anatomy and performance of SSL

processing," in Performance Analysis of Systems and Software, 2005. ISPASS 2005.

IEEE International Symposium on, 2005, pp. 197-206.

[98] R. A. Hauslen, "The promise of automatic vehicle identification," Vehicular Technology,

IEEE Transactions on, vol. 26, pp. 30-38, 1977.

[99] W. Xie, L. Xie, C. Zhang, Q. Zhang, and C. Tang, "Cloud-based RFID authentication," in

RFID (RFID), 2013 IEEE International Conference on, 2013, pp. 168-175.

[100] C. F. Lee, H. Y. Chien, and C. S. Laih, "Server‐less RFID authentication and searching

protocol with enhanced security," International Journal of Communication Systems, vol.

25, pp. 376-385, 2012.

[101] B. Wang and M. Ma, "A server independent authentication scheme for RFID systems,"

Industrial Informatics, IEEE Transactions on, vol. 8, pp. 689-696, 2012.

[102] B. Krebs. (2013, 31). 18 Sources: Target Investigating Data Breach. Available:

http://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/

[103] B. Krebs. (2012, 31). 23 Yahoo Email-Stealing Exploit Fetches $700. Available:

http://krebsonsecurity.com/2012/11/yahoo-email-stealing-exploit-fetches-700/

http://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/
http://krebsonsecurity.com/2012/11/yahoo-email-stealing-exploit-fetches-700/

	Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 One-way Hashing
	1.2 Problem Statement
	1.3 Contributions
	1.4 Dissertation Organization

	CHAPTER 2: REVIEW OF THE LITERATURE
	2.1 Introduction
	2.2 Securing Session Cookies
	2.3 What Are Cookies?
	2.4 Current Practices
	2.5 New Direction
	2.6 The One-way Hash Chain Model
	2.7 User and Broadcast Authentication in Wireless Sensor Networks
	2.8 Authentication in Single Sign-On Environments
	2.9 Authenticating Cloud-based Toll/Traffic RFID Systems

	CHAPTER 3: HASH CHAIN (HACH) WITH SPARSE CACHING TECHNIQUES
	3.1 Introduction
	3.2 Sparse Caching: Basic Idea
	3.2.1 Sparse Caching with Uniform Spacing
	3.2.2 Weighted Overhead Formula
	3.2.3 Uncertainty in the Number of Transactions
	3.2.4 Sparse Caching with Non-uniform Spacing
	3.2.5 Caching with Geometric Spacing

	3.3 Energy Consumption
	3.4 Evaluation and Performance Results
	3.4.1 Impact of Cache Size on HACH Performance
	3.4.2 Cache Space Allocation Policies
	3.4.3 Effectiveness of Sparse Caching
	3.4.4 Selecting Cache Size for Mobile Devices

	3.5 HACH with Non-uniform Cache Spacing
	3.6 Approximate Knowledge of N
	3.7 Geometric Spacing
	3.8 Energy Consumption
	3.9 Conclusion

	CHAPTER 4: HACH WITH A HIERARCHICAL TWO-TIER CONSTRUCTION (TTOHC)
	4.1 Proposed Scheme
	4.2 Performance Results
	4.3 Conclusion

	CHAPTER 5: HACH FOR COLLABORATIVE AND SOCIAL MEDIA NETWORKS
	5.1 Introduction
	5.2 The Proposed Protocol
	5.3 Case of Known Number of Transactions
	5.4 The Proposed Protocol’s Steps
	5.5 Protocol Evaluation
	5.6 Protocol Comparison with OHC
	5.7 Unknown Number of Transactions
	5.8 Conclusion

	CHAPTER 6: HACH FOR WIRELESS SENSOR NETWORKS
	6.1 Introduction
	6.2 Network Model
	6.3 The Proposed MOHC Authentication Scheme
	6.4 Simulation and Evaluation
	6.5 Performance and Results
	6.6 Conclusion

	CHAPTER 7: HYBRID CACHE-SUPPORTED HACH
	7.1 Introduction
	7.2 The proposed Hybrid Scheme
	7.2.1 The mini OHC Scheme:
	7.2.2 The OHC Caching Scheme:

	7.3 HACH Hybrid Scheme
	7.4 Comparison and Tradeoffs
	7.5 Simulation and Performance Results
	7.5.1 Caching options
	7.5.2 Full vs. Partial Caching Performance
	7.5.3 Performance Comparison between the three schemes

	7.6 Caching in Token Chain Yk or Seed Chain Xk
	7.7 Conclusion

	CHAPTER 8: IMPROVED AUTHENTICATION IN SINGLE SIGN-ON ENVIRONMENT AND RFID IN TRAFFIC MANAGEMENT SYSTEMS
	8.1 Introduction
	8.2 Problem Statement
	8.3 The Proposed SSO Authentication Scheme
	8.3.1 Adversary Model
	8.3.2 Merkle Hash Trees
	8.3.3 Hash Calendars
	8.3.4 SSO Keyless Signature Scheme Components
	8.3.5 SSO Authentication Procedure

	8.4 Performance evaluation
	8.4.1 Performance evaluation testbed
	8.4.2 Evaluation Metrics
	8.4.3 The Effect of Number of Log ins
	8.4.4 Variable Number of Service Providers
	8.4.5 Optimal Token Chain Length in HACH

	8.5 Tree-based Authentication for Toll/Traffic Management Systems
	8.6 Problem Statement
	8.7 The Proposed RFID Authentication Scheme
	8.8 Protocol Components and performance
	8.9 Performance Evaluation
	8.10 Conclusion

	CHAPTER 9: CONCLUSION AND FUTURE WORK
	9.1 Future Work

	REFERENCES

