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ABSTRACT 

In this paper, the step modulated sine wave (u(t)Asin2rrft] 

response of the low-pass, band-pass, and high-pass filters are 

evaluated. Butterworth filters from the first order on up to the ideal 

filter are analyzed, and expressions for the settle times developed. 

The longest settle ti.me occurs for the ideal filter, with all other 

filters taking progressively less time to settle as the order 

decreases. A significant point is that the transient settle time for a 

filter depends on the difference in applied signal frequency and the 

filter cut off frequency. The set of expressions developed in this 

report are primarily intended to be used in selecting programming time 

delays in computer based signal measurement and processing systems . 

• 
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Introduction 

One of the characteristics of a processor controlled measurement 

system that must be accounted for is the stability of the signal being 

sampled. A finite time interval exists between the time an input 

signal is applied to a circuit and the time at which the circuit output 

signal has stabilized. Therefore a time delay must be built into the 

measurement algorithm to allow all transients to settle within 

allowable error limits before collecting waveform data. This research 

is directed toward deriving expressions to describe the minimum delay 

time necessary in order to collect valid waveform data. 

Many electrical circuits operate practically instantaneously, but 

circuits with reactive components, such as filters, require a short, 

measurable time before their output signals approach steady state 

value. It is well known that filters contribute to this settling time 

delay in two ways: phase delay and transient decay time. Phase delay 

is usually well defined by the filter type (Bessel, Butterworth, etc.), 

and can be derived using Laplace transform techniques or obtained from 

tables on filter functions. Derivation of the decay time, or settle 

time, is a more challenging problem because it involves a rigorous 

frequency domain analysis and subsequent conversion to the time domain. 

If the filter is treated as ideal (rectangular function of frequency), 

a general approximation may be developed which is useful in computing 

the maximum settling time. For non-ideal filters, it will be shown 

that the settle time gets progressively faster as the filter order 



2 
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Figure 1. Ideal Filter Response to a step Modulated Sine Wave. 

decreases. Approximations for their settle times may be useful as an 

improvement in efficiency over the general approximation developed for 

the ideal filter. 

The expressions developed in this report are useful 

approximations of the settle times required for low-pass, band-pass and 

high-pass filters with varying degrees of order. It will be shown that 

the step modulated sine wave causes the filter to react with an 

amplitude modulation similar to that shown in Figure 1. As the filter 

order increases, the modulation index increases, and in the limiting 

case of an ideal filter the envelope assumes the form of a sine 

integral. The settle time is defined as the delay time necessary for 

the transient waveform to settle to within a given percentage of steady 

state. In general the expressions for low-pass, band-pass and 



3 

high-pass filter settle times are similar and the derivations will show 

how they are related. The conclusions of this research can be summed 

up as follows: 

l. The band-pass filter takes more time to settle than the low-pass 

or high-pass filters. 

2. A lower acceptable error requires longer settling time. 

3. As the difference between the applied signal frequency and the 

filter cut off frequency decreases, the settling time increases. 

The technical analysis presented in this report will begin with 

Chapter one which covers the Butterworth low-pass filter settle time 

derivation. It will be shown that a key quadratic filter section 

dominates the trans.fer functi.on, and that it can be used to approximate 

the settle time expression. This key filter section principle can be 

extended to apply to many other filter types. It will also be shown 

that as the filter order increases, a trend will become apparent which 

will, in the limit, lead to a settle time function for a very high 

order filter. Chapter Two continues this trend with the analysis of an 

ideal filter which has, in theory, an order of infinity. 

The analytical results presented in this report are all derived 

using Laplace and Fourier transforms and well known mathematical 

techniques. The derivation of settle time expressions is done slightly 

differently in each chapter for ease of obtaining a solution and 

presentation of the results. In Chapter One, Laplace transforms are 

used to derive the transfer functions for low order filters. 



In Chapter Two, the ideal filter characterization is much easier to 

solve using Fourier transforms due to the double sided frequency 

arguments associated with the exponential integral. 

4 

Several low-pass filter circuits were designed and analyzed using 

SPICE, a circuit analysis program, on a Digital Equipment Corporation 

VAX 11/780 computer. One of the circuits, an 8-pole low-pass 

Butterworth filter, was constructed to verify the analytical and 

computer analysis. For the convenience of oscilloscope display a 

special module was designed and constructed to produce the modulating 

function u(t)Asin2rrft. These results are presented in Chapter Three 

with the comparisons, results, and conclusions. 



CHAPTER l 

DERIVATION OF SETTLE TIME EXPRESSIONS 

FOR LOW ORDER FILTERS 

In this chapter, several corrnnon filter transfer functions will be 

evaluated and approximations to the settle ti.me expressions made. The 

unilateral, or one-sided, Laplace transforms and inverse transform 

techniques (Van Valkenburg 1974) will be used to solve for the steady 

state and the transient expressions. It will be shown that the settle 

time expression is a function of the transient portion of the inverse 

Laplace transform. The relationship between filter transfer functions 

and the transient response will be developed and reduced to algebraic 

approximations which can be used to describe the settle time. 

In theory, the filter is always approaching steady state but 

never quite gets there. For practical analysis, a given error term 

(which will be referred to as € in this report) will be used in the 

settle time expressions to designate the maximum difference that can be 

tolerated between the steady state response and the transient response. 

For a typical value of € = 0.01, the transient waveform at that 

particular time cannot contribute greater than a 1% error in the total 

amplitude measurement. 

5 
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The Butterworth filter transfer function was selected for this 

analysis because it is one of the most basic of all filter types 

available. Other filter transfer functions may be analyzed using the 

same techniques that will be presented for the Butterworth filter. 

However, it will be shown that for filters with two or more quadratic 

sections, one of the sections will dominate the transient solution. 

This particular quadratic section will be referred to as the key 

section, which almost all higher order filter types will have in common 

with the Butterworth analysis. Therefore, at least to a good 

approximation, this analysis will be general enough to apply to most 

filter types. 

Low-Pass Butterworth Filter Transfer Functions 

A normalized n-order Butterworth filter is characterized in the 

s-plane by 2n equally spaced poles on a radius about the origin. The 

poles that lie in the left half s-plane are mirror images of the poles 

that lie in the right half s-plane. Even order filters do not have 

poles on the cr-axis, so with the exception of the first order filter, 

it will be convenient to work exclusively with even ordered filter 

transfer functions. The 8-pole filter s-plane map shown in Figure 2 

depicts pole pairs symmetrical about the + and - cr-axis. Each pair can 

be characterized with a quadratic expression as follows: 

(1) 
1 

TFq(s) 
' s + s/Q + 1 

where Q = l/(2cos9) 

and e can take on one of the angles: 11.25°, 33.75°, 56.25°, or 78.75° 
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Figure 2. S-Plane Map of an 8-Pole Butterworth Filter. 

The complete normalized transfer function is made up of the 

product of the four sections, each using a different value for e. 

Since 8 is a function of filter order and section number, a general 

equation can be given to describe the transfer function of any even 

ordered Butterworth filter: 

n/Z [ z. 2i-l ]-1 
[2] TF(s) =_n s + 2scosrr~ + 1 

i=l 

From this equation, it can be seen that the coefficients of s are 

the variables that characterize the Butterworth filter. For the 

normalized transfer function, these coefficients are the reciprocal of 

the Q's, which establish each filter section quality factor. The trend 

from low order to higher order filter section Q's can be observed by 

inspection of the calculated values for each quadratic section shown in 

Table 1. 
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TABLE 1 

BU'ITERWORTH FILTER QUALITY FACTORS 

Filter Order Q Q Q Q 

2-Pole 0.70711 

4-Pole 0.54120 1.30656 

6-Pole 0.51763 0.70711 1.93185 

9-Pole 0.50980 0.60135 0.89998 2.56292 

16-Pole 0.50242 0.52250 0.56694 0.64682 
0.78816 1. 06068 1.72245 5.10115 

32-Pole 0.50060 0.50547 0.51545 0.53104 
0.55310 0.58293 0.62250 0.67481 
0. 74454 0.85935 0.97257 1.16944 
1. 48416 2.05778 3.40761 10.19000 

For higher order filters, the first quadratic section Q 

approaches 0.5, and the last quadratic section Q approaches n/rr. 

Analyses of General Low-Pass Filters 

In this section, the frequency domain expressions will be 

developed for 1, 2, and 4 pole low-pass filters. Using Laplace 

transform techniques, the time domain and settle time expressions will 

be derived. Since the time domain solutions quickly become very 

complex, only filters of order 4 and less will be evaluated. 



General First Order Low-Pass Filter 

The Laplace transform of the filter transfer function is given as 

H(s) 
a 

s + a 

The Laplace transform of the step modulated sine wave is given as 

Vi(s) L{u(t)sin{3t} 
f3 

The frequency domain output function is therefore given as 

[3] Vo(s) Vi(s)H(s) 
f3 a 

s + a 

Where a = filter cut off frequency 

and f3 sine wave frequency 

Using partial fraction expansions 

Vo(s) a{3 [ s ~ j{3 
1 1 

s + a s - j{3 

The residues may be expressed as follows: 

Vo(s) 
Rl Rl* R2 

+ + 
s + j{3 s - j{3 s + a 

Where 

1 a 
Rl 

2 f3 ja + 

Rl* 
1 a 
2 f3 ja 

R2 
a{3 

z. + {32. a 

9 
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Transforming to the time domain, 

vo(t) Rl exp(-j/3) + Rl* exp(j/3) + R2 exp(-cx) 

Which gives the time domain solution 

[4] vo(t) 
CX{3 

sin({3t + 9) + exp(-cxt) 
cxz. + {32. 

Where e = - arctan({3/cx) 

The steady state and transient solutions for vo(t) can be expressed as 

vo(t) s sin{3t + T exp(-at) 

Which, for the convenience of future analyses, will be referred to as 

vo(t) vo1(t) + voz.(t) 

The error term e(t) is defined as the transient solution voz.(t). 

Therefore, whenever a transient condition occurs, e(t) describes the 

behavior of the output signal which decays to zero shortly after the 

input signal achieves a steady value. Note that whenever the sine wave 

is abruptly changed, another transient will be generated. The reactive 

nature of the filter is such that whenever the amplitude or frequency 

changes from one steady state value to another, a transient waveform is 

generated which will require a short time to settle. 

An expression for the error versus time is given as 

e( t) 
cx{3 

exp(-at} 
cxz. + {32 

Rearranging, and solving for the settle time ts 

[5] ts 13 < ex 
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Where ts is the time required for the filter output waveform to settle 

to a value within the error term e of steady state. 

Equation 5 shows that the settle time for a 1-pole filter is a 

natural log function of the maximum error allowed and the input sine 

wave frequency {3. 

General Second Order Low-Pass Filter 

The Laplace transform of the filter transfer function is given as 

H( s) 
z. 

a 

s
2 + s(a/Q) + a

2 

The frequency domain output function is therefore given as 

2 
a 

(6] Vo( s} 
2 2 

s + s(a/Q) + a 

Where a filter cut off frequency 

and f3 sine wave frequency 

The residues to be solved for are 

Vo( s) 
Rl Rl* 

+ + 
s + j{3 s - jJ3 

a 
s + + 2Q 

R2* 
+ 

s + 
a jcx( 1 

l ]~ 2Q 4Q2 

R1 and R2 are 

R1 
1 a2Q 

= 2 - 2. - /32} a{3 + JQ(a 

1 
[ ~~[ 1 - ~2 ] + j~[ R2 1 -

2 

R2 

jcx( 1 
1 ]~ 

4Q2 

1 (32 
][ 1 -

2Q2 2 
a 

1 --
4Q2 i~ r 
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Rl* and R2* are the complex conjugates of R1 and R2 which can be 

determined by inspection. 

Transforming to the time domain and letting vo(t) vo1( t) + 

voz(t), the steady state solution is given as vo1(t). 

= [ 
{3z 

[ 
z 

{3z r ]-; [7] vo1( t) ex 
sin({3t + 9) + 

Qzexz z ex 

Where e arc tan ex{J 

Q(exz {32. ) 

The transient solution is given as voz( t). 

[8] voz(t) T [ ext J sin[ a[ 1 ]~ t $ l exp - 2Q 1 - + 
4Q.? 

Where T [ Q::z[ 1 
-

1 r+ ::[ 1 -
1 {3z t[ 1 -

1 l l : 4Qz 2Qz z 4Qz. ex 

[ 1 -
l ]~ 

and 4> arc tan 
4Qz 

= 
{3z l 

1 z 2Qz ex 

From equation 8, it is evident that the transient portion of the 

solution is an exponentially decaying sine wave. The rate of decay and 

the frequency of the sine wave are both functions of the filter section 

Q. For the Butterworth filter, the filter section natural frequency, 

wn, is equal to 0.707lex, where ex is the filter cut off frequency. 

The error term is approximated by the transient solution, where 

e(t) = voz(t}, which drives toward zero shortly after application of 
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the sine wave. The maximum error may be expressed under the condition 

that the sine term is set equal to one. With this assumption, the 

settle time, ts, can be expressed as 

[9] ts 2Q ln € 
a T 

f3 < a 

Where ts is the time required for the filter output waveform to settle 

to a value within the error term € of steady state value. 

This result, which is similar to the simple low-pass filter, 

shows that the settle time is a log function of the maximum error term 

e and the input frequency. T(max) = 1 for a {3, but T decreases 

toward zero as the applied frequency increases toward or decreases away 

from the cut off frequency. 

The trigonometric relationship 

(lO) sin(x) + sin(y) . l 1 
2 sin(-(x + y))cos(-(x - y)) 

z. z 

can be used to illustrate the amplitude modulation that takes place 

while the transient is large enough to be observed. For the 2-pole, 

1-KHz Butterworth filter, note that when driven at the cut off 

frequency the "sum" frequency is 854 Hz and the "difference" frequency 

is 146 Hz. If the same filter is driven at 707 Hz, which is wn/2rr, the 

"sum" frequency is 707 Hz, and the "difference" frequency is zero. For 

this latter case in which f3 is equal to the quadratic filter section 

natural frequency, there will be no apparent amplitude modulation. The 

transient response will be an exponentially decaying level. 



General Fourth Order Low-Pass Filter 

The Laplace transfonn of the filter transfer function is given as 

H(s) 

2 ex 
1 

2 2 
s + s(ex /Q ) + ex 

1 1 1 

2 ex 
2 

2 2 
s + s(ex /Q ) + ex 

z. z. 2 

The frequency domain output function is therefore given as 

{J 
2 ex 

[12) Vo( s) l 

2 ex 
z 

2. {32.. 2 
s(ex /Q ) + 2 2 

s( ex /Q } s + s + ex s + 
1 1 1 2 z 

Where ex First filter section cut off frequency 
1 

ex Second filter section cut off frequency 
2. 

{3 = sine wave frequency 

The residues to be solved for are 

Vo(s) Rl 
+ 

Rl* 

ex 
ja,[ 

1 ]; ex 
ja,[ 

1 
1 

1 -
1 

1 -s + + s + 
2Q 4Q2 2Q 4Q2 

1 1 l 1 

R2 R2* 
+ + 

ex 
ja

2
[ 

1 ]; ex 
jaz [ 

1 
2. 2 

1 -s + + 1 - s + 
2Q 4Qz 2Q 4Q2 

2 z. 2 2 

+ 
R3 

s + j{3 
+ 

R3* 
s - j{J 

RJ., R2, and R3 for the general 4-pole filter are 

2 
+ ex 

z 

Ji 

]; 

2. 

[ a 1 [ 1 _ 
1 

] ja,[ 
1 

]; [ :: Jr ex 
1 

Rl 
{3 z. + 1 - 1 -
2 2. 4Qz 4Qz. 2Qz a Q1 1 1 1 1 1 

. [ 2: [ 
1 1 

] ~[ 
1 ]; ~[ 

1 J; r + 1 - 1 -
4Q2. z. 

Q1 Q, 4Qz. 1 Q1 1 Qz. 

14 
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z. 

[ az [ 1 _ 
1 

l jaz[ 
1 

]; [ -:: 1 r ex 1 
(3 1 

R2 + 1 - 1 -
2 z. 4Qz. 2 2Q2 ex Q2 4Q2. 2 z. 2 2 

. L: [ 1 1 l ~[ 
1 ]~ ~[ 

1 

i~ r + 1 - 1 -

Q1 Q, 
4Qz.. 4Qz. 

1 Qz. 2. Ql. 1 

1 
[ [ 1 -

f3' l {3 r [ [ {3z. 

] - {3 r R3 j- 1 - j-
2 z. z. 

ex 2Q ex 2Q 
1 1 z.. 2. 

Rl*, R2*, and R3* are the complex conjugates of Rl, R2, and R3, which 

can be determined by inspection. 

The residues can be simplified by letting some of the filter 

related variables take on the values for a Butterworth filter. The 

following residue equations are valid for the Butterworth filter only. 

Rl 

R2 

R3 

{3 

2 

l 

2 

1 -

z. 

1 

4Qz. 
1 

a Q 
1 

l + ja[ 

l + ja[ 

1 -

l -

2 
a Q 

z 

a{3 + jQ (az. - (3
2

} 
z. 

1 

2Q2. 
1 

Transforming to the time domain and letting vo(t) 

:: i r 
:: i r 

vo1(t) + voz(t) + vo3(t) 1 the steady state solution is given as vo3(t). 

(13] 

V03( t) 
2. (32 1 

2 
-; sin({Jt + 9) + [ ex cx2 l l 



Where 

e l ] l 
The transient solutions are given as vo1(t) and vo2(t). 

T 
1 

(14] VOl ( t) 

T 
2 

[15] vo2(t) 

Where 

T 
1. 

2 

[ ~z~z [ 

1 

T 
z. 

l 

= arctan 

arc tan 

exp( - ext 

2Q 

exp( - ext 

2Q 

l -
l 

4Q2 
1 

[ l -

1 

4Q2. 
2. 

[ l -

) sin( a[ l -

1 

) sin( a[ l -

2. 

l -

l 

r + ::[ 
l. -

l 

2Q2. 
2. 

1 

l 

4Q2 
1 

1 

4Q2. 
2. 

]; ] t + <t> 
1 

]; t H 2 l 

(32. 

2. 
a 
r [ l -

l l ]--; 

] ] : 

From equations 14 and 15, it is evident that the transient 

portion of the solution is an exponentially decaying sine wave. The 

16 

rate of decay and the frequency of the sine wave are both functions of 

the filter section Q. For the Butterworth filter the natural 
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frequency, wn, is equal to 0.38la for the first filter section and 

o.924a for the second filter section (a is the filter cut off 

frequency ) . 

The error term is approximated by the transient solution, where 

e(t) = vo1(t) + voz(t), which drives toward zero shortly after 

application of the sine wave. The maximum error may be expressed under 

the condition that the sine terms are set equal to one. With this 

assumption the settle time, ts, can be expressed as 

(16) e(t) T exp[ - at 
1 2Q 

l. 

For the 4-pole Butterworth filter, vo2(t) will take 2.414 times 

longer to settle than vo1(t) because of the difference in Q's. A 

comparison of T and T at a = ~ shows that T = T = 1.4142. 
1 z 1 2 

Therefore, the dominant term in the settle time solution is voz(t), 

which will be used to approximate the settle time ts. 

2Q 
(17) ts 

a 
z ln e 

T 
z 

Where ts is the time required for the filter output waveform to 

settle to a value within the error term e of steady state value. 

This result is similar to the 1 and 2 pole filter settle time 

expressions, and it can be shown that the approximation holds true for 

higher order filters as well. In general, the highest Q filter section 

can be used to approximate the settle time. 

The trigonometric identity (equation 10) can be used to 

illustrate the amplitude modulation that takes place while the 

transient is large enough to be observed. Note that when the 
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Butterworth filter is driven at the cut off frequency, the "sum" 

frequency is 962 Hz and the "difference" frequency is 38 Hz. If the 

same filter is driven at 962 Hz, which is wn/Zrr, the "sum" frequency is 

962 Hz and the "difference" frequency is zero. For this latter case in 

which f3 is equal to the key quadratic filter section natural frequency, 

there will be no apparent amplitude modulation. The transient response 

will be an exponentially decaying level. 

High Order Low-Pass Filters 

Higher order filters can be analyzed using the same techniques as 

those shown for the second and the fourth order filters. Due to the 

symmetrical pole pattern of the Butterworth filter, several terms 

cancel and the Laplace analysis can be carried out with less 

difficulty. Further simplification can be made by observing the trend 

of the pole pattern on the cr - jw axes. 

As the filter order increases, the highest Q pole pair approaches 

the jw-axis. In reference to figure 2, the pole pair labeled 4 

(closest to the jw-axis) is the highest Q pole pair for the a-pole 

low-pass Butterworth filter. This pair is implemented in the filter 

with a quadratic transfer function. Due to its high Q, this key 

section dominates the settle time expression and the other three 

sections become relatively insignificant. Using this principle, high 

order filter settle times may be approximated by considering the filter 

transfer function characteristics of the highest Q section only. With 

slight modification, equation 17 is adequate to describe the settle 

time for most filters. 
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Another interesting characteristic of higher order filters is 

that as the filter order increases, the natural frequency of the 

highest Q section tends toward the cut off frequency. This should be 

expected as it leads in the limit to the ideal filter characteristics. 

lim 
n-oo 

a 

Summary 

The results of this chapter are engineering approximations which 

do not include phase information, filter delay, or lower order effects. 

These results are intended to be used for approximating the settle time 

required for signal processing applications. Equations lB, 19 and 20 

sum up the results for the low-pass filters evaluated in this chapter. 

(18) 

(19) 

(20] 

Where 

ts = - 2Qm ln € 
a T 

T = [ ;:~z[ 1 -

wn = a[ 1 -
1 

4Qm' 

1 --
4Qm2 

]~ 

{3 < a 

r cl [ 1 
+ 1 -

{32. 2Qm2. 

a Filter section cut off frequency 

wn Filter section natural frequency 

{32. 

2. 
ex 

Qm Highest filter section quality factor 

r [ 1 -
1 ] ]-; 

4Qm2. 

settle time expressions can be developed for the band-pass and 

high-pass filters using a similar technique. Equations 21 to 23 were 
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developed for Butterworth filters of second order and higher and are 

presented to show how the different filter types are related. Equation 

21 must be used in place of equation 19 to describe the settle time 

required for a band-pass filter. Note that the differences between 

equations 19 and 21 are the factor 4 in both terms and the factor Q
2 in 

the second term. The Q
2 

term establishes the bandwidth dependency of 

the T-term for the band-pass filter. 

[21) 
z. 

T = [ Qm4:t32 [ 
1 -

1 

4Qm2 

Equation 18 may be used for the high-pass filter, but equations 

19 and 20 must be replaced with equations 22 and 23 to accurately 

describe the settle time. Equation 18 is shown again for convenience. 

High-pass filter settle time expression: 

(18) ts 

(22) T 

(23] wn 

ZQm ln E: 
a T 

[ ;:J 1 -

ex[ 1 -
1 

4Qm2. 

1 

4Qm 

l : 

valid for ~ within the passband. 

r :: [ z. 

]2[ 1 -
1 1 a 

+ 1 -
2. 2Qm2. ~2. 4Qm2 

] ]--; 

The maximum value of T, Tma.x, occurs when the filter is driven 

at its cut off frequency, where a = ~, and is observed to approach Qm 

for high orders of Butterworth filters. T rapidly drops off on either 

side of the filter cut off frequency and approaches zero for very high 

and very low frequencies. Table 2 shows some representative values of 

Qrnax, wn, and Tma.x for several different orders of filters. 
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TABLE 2 

BUTTERWORTH FILTER VALUES FOR Qmax, wn, and Tmax 

Filter Order Qma.x wn Tma.x 

2 0.70711 0.707a 1.0000 

4 1.30656 0.924a 1.4142 

6 1.93185 0.966a 2.0000 

8 2.56292 0.98la 2.6131 

16 5 . . 10115 0.995a 5.1258 

32 10.1900 0.999a 10.202 

If the assumptions under which equations 18 to 23 were developed 

are satisfied, it can be seen that the settle time is a logarithmic 

function the error term «!: and T. The T term is dependent on the 

difference of frequency between the applied frequency ~ and the filter 

cut off frequency a. Since the band-pass filter effectively has two 

cut off frequencies, the settle time will be longer than that for a 

low- pass or high-pass filter. This increase in ts is dependent on the 

key filter section Q which determines the bandwidth. Table 3 lists 

some representative settle times for 1-KHz low-pass Butterworth filters 

from order 2 to order 16. 
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TABLE 3 

1-KHZ LOW-PASS BUTrERWORTH FILTER SETTLE TIMES FOR e 1% 

Frequency 2-Pole 4-Pole 8-Pole 16-Pole 

20 Hz 0.234 ms 0.321 ms 0.58 ms 1.14 ms 
50 0.441 0.703 1.33 2.62 

100 0.597 0.993 1.90 3.76 
200 0.753 1.291 2.49 4.94 
500 0.952 1. 732 3.42 6.81 
900 1.035 2.044 4.44 9.51 

1000 1.036 2.060 4.54 10.13 

Note: The settle times for very high order filters are best 
approximated near the cut off frequency. Negative settle times 
can result for very low frequencies, which is invalid 
information. There is a transition region at moderately low 
frequencies at which the settle time expression for the ideal 
low-pass filter will yield more accurate results. This error 
results from use of the formulas for conditions that are not 
within the assumptions made for the approximations. Phase 
information was neglected in order to make the engineering 
simplifications necessary to develop the settle time formulas. 
Therefore, for very low frequencies, the use of the ideal settle 
ti.me equati.ons in Chapter Two are recommended. 



CHAPTER 2 

DERIVATION OF SETTLE TIME EXPRESSIONS 

FOR IDEAL FILTERS 

In Chapter 2, low order low-pass filters were analyzed and 

generalizations made to approximate the settle time behavior as the 

filter order was increased to high values. In this chapter the trend 

is continued to the limiting condition of an ideal filter. Conversion 

of low-pass filter results to band-pass and high-pass filter results is 

easily accomplished during the analysis by changing the limits of 

integration. Therefore, the final results of this chapter will include 

settle time expressions for the band-pass and high-pass filters. A 

comparison of these three filter types will verify that the low-pass 

filter analysis can be used to approximate the settle times for 

band-pass and high-pass filters. 

The analysis of the ideal low-pass filter was accomplished using 

Fourier transforms and inverse transforms (Van Valkenburg 1974) in 

order to preserve the two-sided frequency spectrum. The reason for 

this will become evident in the section dealing with the evaluation of 

the exponential integral. Fourier transformation shows more clearly 

that the cosine component of the exponential integral cancels and that 

it therefore simplifies to the sine integral. 

23 
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A brief review of the concepts of this problem can be summed up 

as follows. Upon application of a step modulated sine wave u(t}Asinwt, 

if w is within the filter passband, the filter output will be an 

amplitude modulated version of the input signal delayed in time by some 

filter factor T(w}. (For the theoretical results presented in this 

chapter T(w} is set equal to zero}. This amplitude modulation is 

described by the sine integral, which decays after a short time to a 

steady state value. In theory, the filter is always approaching steady 

state but never quite gets there. For practical analysis, a given 

error term ~ will be used in the settle time expressions to designate 

the maximum difference that can be tolerated between the steady state 

response and the transient re.sponse. 

Fourier Transform of the Step Modulated Sine wave 

The input signal can be expressed as vi(t} = u(t}Asint3t, where f3 

will be used to replace w for this analysis. Since the filtering 

function is more easily represented in the frequency domain, Vi(w} will 

be derived. AS shown in the development of equation 21, Vi(w} is the 

convolution of the Fourier transforms of the unit step function u(t} 

and the sine function sin{3t. The amplitude A of the sine wave will be 

set equal to one for the analyses in this chapter. The resulting 

expression for Vi(w} will be used as an input signal to the filters. 

Vi(w} = F{u(t}} * F{sin({3t}} 
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After performing the convolution, the resulting expression for Vi{w) is 

[24] Vi(w) 1 ) 
W-{3 

Filter Output Expressions 

The low-pass filter {LPP) frequency domain output signal Vo(w) is 

a band limited form of Vi( w). The output signal in the time domain is 

the inverse Fourier Transform of Vo(w), which is easily carried out 

using the transform integral. It will be shown that for the low-pass 

filter, vo
1
(t) is an amplitude modulated version of the input signal 

vi( t). Similarly, .for the band-pass and high-pass filters, vob( t) and 

voh( t) are also amplitude modulated versions of the input signal. 

In order to develop the output signal expressions for the 

band-pass ( BPF) and high-pass filters ( HPF), the limits of integration 

for the transform integral must be changed. The spectral response of 

the three filter types is shown graphically in Figure 3. For the 

derivation of equations 22, 23 and 24, refer to Figure 3 which shows 

how the filter cut off frequencies correspond to the integration 

limits. 

The upper limit 6wt of the sine integral detennines the settle 

time, where 6w represents the difference in frequency between sinf3t and 

the filter cut off frequency a. For the band-pass filter, the limits 

split into two parts, one corresponding to the high frequency b~t and 

the other corresponding to the low frequency bw1t. 
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Figure 3. Filter Spectral Response Functions to u(t)sinJ3t. 
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The filter transfer functions are given as 

LPF 

BPF 

HPF 

~(w) 

~(w) 

u(w+(3+6w) - u(w-(3-6w) 

u(-w+(3-6w) + u(w-(3+6w) 

Low-Pass Filter Time Domain Solution 

Using Vo(w) = H(w) Vi(w) 

+ ~2 [ 1 
w+(3 

Then, transforming to the time domain and using appropriate 

substitution of variables, vo
1
(t) is expressed as follows: 

27 

sin.Gt l,. l + 1 

2 2rr 
1 
j2 

je:wt dw + 
l 
2rr 

2(3+6w . t l 
- _e __ dw l I ]W 
j2 w 

-6.w -2(3-t::J..u 

The exponential integral can be simplified and evaluated by 

letting exp(x) = cosx + jsinx. As can be seen in Figure 4 the 

evaluation of every set of points on the cosine integral curve cancels 

when the limits of integration are equal and opposite in sign. 

Following the same logic, it can be seen that the evaluation of the 

sine integral is simplified by doubling the integral and setting the 

lower limit equal to zero. 



Si(x) 

-x x 

Ci(x) 

-x x 

Figure 4. Evaluation of the Sine and cosine Integrals. 

The resulting expression for the output equation is 

[ 
.6.wt ( 213+.6.w )t 

l (25] vo
1 

( t) sint'3t 
1 1 I 

sinwt 
dw j I sinwt d 

+ + --- w 
2 2rr w w 

0 0 

Band-Pass and High-Pass Time Domain Solutions 

A derivation similar to the one just presented for the low-pass 

solution can be used to solve for vob(t) and voh(t). The results are 

given as equations 26 and 27. 
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(26) 

(27] 

AWt 

s int3t [ 21 + 1 I 
2rr 

0 

sinwt 
dw 

w 

+ 

(X) 

+ I sinwt 
j 

w 
0 

Each filter output expres.sion may be written as the sum of the 

steady state solution and the transient solution: 

vo(t) = s vo1(t) + T voz.(t). The ti.me dependence of the transient 

solution T voz.(t) is seen in the sine integrals where the upper limit 
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drives the evaluation to a steady state value as t goes to oo. It will 

be shown that in the limit as t ... oo the evaluation of the sine integral 

approaches rr/2. 

Sine Integral Evaluation 

Evaluation of the sine integral, Si(x), may be carried out by 

numerical methods or reference to tabulated values in a book of 

integrals, such as Abramowitz and Stegun in Handbook of Mathematical 

Functions, National Bureau of Standards, Applied Math Series 55 (1968). 

The evaluation in either case does not lead to a readily usable 

solution, so an effort was made to find an engineering approximation of 

the sine integral. A close examination of the maxima and minima points 

on the evaluation curve led to the discovery that the envelope of the 

evaluated sine integral could be closely approximated by a hyperbolic 

function. Using this function in equations 25, 26 and 27 led to time 
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domain expressions that can be used for describing the settle time. 

A numerical technique was used to evaluate the sine integral so 

its characterization would not be limited by tabulated values. This 

was accomplished by using the infinite series representation of sinwt 

to break down Si(x) into a series of integrals that could easily be 

evaluated. Then a program was written for the Hewlett Packard 41CV 

calculator to perform the evaluation. This program is listed for 

reference in Appendix 1. A summary of evaluated points for Si(x) is 

given is Table 4, and a graph, which was constructed from a larger set 

of points, is given in Figure 4. 

First, the sine integral is evaluated as a series of integrals: 

x x x 

(28] Si(x) J s~nw dw J ~ dw - J 
0 0 0 

3 
w 

dw + 
w( 31 ) 

x 
5 

I w dw - .. 
w( 51) 

0 

The evaluation of Si(x) can then be expressed in an equivalent form by 

reducing the series of integrals in equation 28 to the sununation in 

equation 29 (Abramowitz and Stegun 1968). 

[29] Si(x) 
oo n 2n+l 
E ( -1) x 

n=O (2n+l)[(2n+l)J] 

Numerical evaluation of Si(x) can then be approximated by 

summation of a significant number of terms in equation 29. Up to 33 

terms can be used in the calculator program for the HP41CV which was 

used to evaluate each limit point x. The graph of the evaluated sine 
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integral presented in Figure 4 was developed from a large number of 

points collected using this program. (Another calculator program was 

developed using a similar technique to generate the graph of the cosine 

integral which was also presented in Figure 4). 

The tabulated results listed in Table 4 show the values of the 

evaluated function at the maxima and minima points. These points occur 

at integer multiples of rr, which can easily be shown by taking the 

derivative of the sine integral, and solving for sinx equal to zero. 

x 

0 

1T ( 3.14) 

27T 6.28) 

3rr 9. 42) 

4rr {12.57) 

5rr (15.71) 

TABLE 4 

TABULATED VALUES OF Si(x) 

Si(x) x 

0 6rr ( 18. 85) 

1.8519371 7rr ( 21. 99) 

1. 4181516 arr ( 25 .12) 

1. 6747617 9rr ( 28. 27) 

1.4921612 lQrr (31.41) 

1.6339648 00 

Si(x) 

1.5180339 

1.6160855 

1.5311313 

1.6060769 

1.5390291 

rr/2 

The maxima and minima values of the evaluated sine integral 

represent the maximum amplitude error. Therefore, a smooth curve 

faired through the absolute value of these points represents the 

boundary limits of error. In other words, the error in amplitude will 

always be less than or equal to the envelope of the damped sinusoid. 
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An expression was then developed for approximating the envelope 

of the evaluated function Si(x). By plotting x vs ISi(x) - rr/21 on 

log-log graph paper it became evident that the function was 

asymptotically approaching a straight line. The equation of that line 

corresponded to the hyperbolic function l/x. Thus, the following 

expression led to the approximation function shown in equation 30. 

- logx 

Therefore 

I . 1T I 1 [30] Si(x) - ~ ~ i 

The approximation function, given in equation 30, was compared 

with the evaluated sine integral values given in Table 4. The error 

analysis results are shown in Table 5 where it can be seen that for 

large values of x, the error decreases toward zero. 

TABLE 5 

ERROR ANALYSIS OF THE APPROXIMATION FUNCTION FOR Si(x) 

lsi(x) - ~I 
1 % error x -
x 

1T 0.2811407 0.3183099 0.0371690 13.22 

2TT 0.1526447 0.1591550 0.0065102 4.26 

3TT 0.1039655 0.1061033 0.0021378 2.06 

4rr 0.0786351 0.0795775 0.0009424 l.20 

5rr 0.0631685 0.0636620 0.0004935 0.781 

6rr 0.0527624 0.0530517 0.00028925 0.548 

7TT 0.0452892 0.0454730 0.00018364 0.405 

Brr 0.0396650 0.0397887 0.00012374 0.312 

9TT 0.0352806 0.0353677 0.00008717 0.247 

lOTT 0.0317672 0.0318310 0.00006379 0.201 
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For an arbitrarily small error e, the function Si(x) - rr/2 may be 

set equal to 1/x to yield the following expression. 

[31) 
1T 

Si(x) = 2 
l 

x 

Filter Settle Time Expressions 

Combining equation 31 with equations 25, 26 and 27 yields the 

following expressions which approximate the ideal filter responses. 

[32] vo
1 
(t) sin'3t [ 1 + ~[ 1T 

1 ) ~rr( i - 2t3+~t J ) + 
2 2rr 2 t.wt 

[33) vob(t) sint3t [ 1 ~r " 1 ] + ~[ ~ l ] ] + ---
2 2rr 2 Awht 2rr 2 .&ult 

(34) voh{t) = sint3t [ 1 + ~[ 1T 
1 

J + ~[ 1T ~ ] ] - -
2 21T 2 Awt 2rr 2 

The envelope, E(t), of equations 32, 33 and 34 can be expressed 

as follows: 

[35] LPF E
1
(t) 1 - e(t) 

1 1 
1 - --- -2rrtw.>t 2rr(2t3+6wt) 

(36) Eb<t) 1 - e(t) 
1 1 

BPF = 1 -
2rr~t 2rr6w

1
t 

(37) E),(t) 1 - e(t) 
1 

HPF 1 - 2rr6wt 

The error expressions are simply the envelope expressions which 

can be rearranged as follows: 

(38) e(t) 
1 1 

LPF = --- + 2rr(2t3+6wt) 2TTAWt 

(39) BPF e(t) 
1 1 

- ·--+ 2rrAw
1

t 2TTAWht 



[40) HPF €( t) 
1 

2rrALi>t 

Where €( t) the maximum absolute difference between the steady state 

34 

response and the transient response of the ideal filters. 

and 

Au>h filter high frequency cut off - input frequency (wch - ~) 

Au.>
1 

input frequency - filter low frequency cut off(~ - wc
1

) 

jwc - ~I for the LPF or the HPF. 

Equations 38, 39 and 40 may be used to solve for the settle time 

of any ideal f .ilter. A close comparison with equations 18 to 23 from 

Chapter l would show that the ideal filter takes longer to settle. In 

fact, the ideal filter will never settle if the input signal is at the 

exact same frequency as the filter cut off frequency. 

If the applied frequency is near the middle of the passband for 

the low-pass or the band-pass filter, the following engineering 

approximations can be made: 

Au>t << 2~ + c.wt 

The settle time equations may then be expressed as 

[41) LPF and HPF 

( 42] BPF 

ts = 

ts 

1 
21Te.6W 

1 
1T€6W 

If the assumptions under which these approximations were made are 

satisfied, equations 41 and 42 show that the settle time is a 

hyperbolic function of c.w. Since the band-pass filter effectively has 
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two cut off frequencies, t he settle time is twice as long as that of a 

high-pass or low-pass filter . Table 6 lists some representative settle 

times for the ideal low-pass fi l t er. 

TABLE 6 

IDEAL 1-KHZ LOW-PASS FILTER SETTLE TIMES FOR E 1% 

Frequency ts 

100 Hz 2. 81. ms 
200 3.17 
500 5.07 
900 25.3 

1000 00 

1100 25.3 
1500 5.07 
2000 2.53 



CHAPTER 3 

COMPARISON OF THEORETICAL AND MEASURED DATA 

The theoretica l s olutions for the transient settle times of 

filters has been presented in Chapters one and Two. For most 

applications , the settle t ime and the phase delay will not take longer 

than 100 milliseconds. However, f or signal measurement and processing 

applications, an efficient a l gorithm can save time and maximize the 

accuracy of the system being me asured. For example, if several hundred 

measurements of a pulsed system are to be made using an analog to 

digital converter under computer control, the progranuner would have to 

examine the trade-off between s peed and accuracy. The formulas 

presented in this paper can prov i de a reasonable guideline for 

selection of program delays t o a l low the system to settle to within 

prescribed limits of error. 

Computer Ci rcuit Analysis Using SPICE 

A circuit analysis o f an 8-pole Butterworth filter was performed 

using the SPICE 2G progr am originally developed by Nagel (1975}. This 

program was used on a Di gital Equipment Corporation VAX 11/780 computer 

and t h e tabul ated transi ent results recorded using a Tektronix 4662 

Di gital Plot ter. Each graph shown has a 1000 point resolution. 
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Fi gure 5. Comparison of SPICE Transient Analysis with 
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Figures 5, 6 and 7 show the transient response functions of an 

8-pole Butterworth low-pass filter with a design cut off frequency of 

1032 Hz. A comparison of the computer generated graphs with the 

oscilloscope photographs shows that close agreement was obtained 

between the computer analysis and the breadboard circuit analysis. 

Therefore, it can be shown without a supporting breadboard ana.lysis 

that the 16 and 32-pole Butterworth filters may be expected to respond 

to a 1000 Hz step modulated input as shown in Figure 8. 

Note that the frequencies compared were 500, 800 and 1000 Hz, but 

it was found that s.ome intermediate frequencies displayed more 

amplitude variations. This is the result of phasing relationships 

between the filter sections which go through ranges of cancellation and 

reinforcement depending on frequency. 

Amplitude modulation is much more visible in Figure 8 and the 

settle time can be seen to increase for higher order filters. A 

comparison of Figures 7 and 8 shows that the settle time increases from 

approximately three milliseconds for the 8-pole filter to approximately 

20 milliseconds for the 32-pole filter. The noise visible on the 32-

pole filter transient analysis graph indicates the SPICE program 

numerical technique has reached the computer limit for digital 

precision. If higher order filters were evaluated using the techniques 

developed in Chapters One and Two, it would be shown that the settle 

time would increase without bound. In the limit, equation 41 would 

apply, where it can be seen that an ideal filter driven at its cut off 

frequency with a step modulated input signal would never settle. 
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Breadboard Circuit Analysis 

A final analysis of the filter transient settle times was made 

using an actual circuit. The filter selected for construction was the 

Butterworth 8-pole low-pass filter with a cut-off frequency of 1032 Hz. 

This circuit is identical to the model used in the SPICE analysis, and 

its behavior was observed to closely match the graphical results. The 

design technique was based on Daryanani (1976) with a voltage divider 

added to provide unity gain. A schematic diagram of the circuit is 

presented in Appendix 2. 

The step modulated sine wave input to the filter was obtained by 

using a circuit designed for and constructed with commercially 

available integrated circuits. A schematic diagram of the circuit is 

presented in Appendix 3. 

The Butterworth filter transient response was observed at 

different input frequencies on an oscilloscope and the settle times 

were noted to fall within the range of two to five milliseconds. The 

settle time fonnulas predicted worst case transient settle times and 

the breadboard analysis always took less time to settle. Note that the 

settle ti.me was shown to increase as the step modulated input frequency 

approached the filter cut off frequency. At frequencies beyond the cut 

off, the steady state signal decreased to such low levels that the 

transient signal could be monitored more accurately. The transient 

waveform was then observed to be an exponentially decaying sinusoid. 

Settle ti.me continued to increase as the input frequency was increased 

beyond the filter cut off. 
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Conclusions 

Several useful properties of filters have been presented with the 

intention of predicting filter response times for signal processing 

applications. The time response of filters to step modulated sine 

waves is an amplitude modulation of the input signal. Settle time is 

determined by establishing a desired error limit E at which the 

envelope must be dampened. The formulas presented show that the settle 

time is a function of E, the filter order, and the difference in 

frequency between the sine wave input signal and the filter cut off. 

The actual transient settle time will be less than the predicted value 

due to phasing relationships not accounted for, and an engineering 

approximation made that assumed a value of l for the sine function. So 

with an understanding of these limitations, the low order settle time 

expressions can be useful for describing the delay time necessary for 

Butterworth or similar filters. Filters with zeros in the stop-band, 

such as Elliptic filters, have a cut off slope which is not accurately 

represented by the denominator quadratic filter sections described in 

Chapter One. For these filters, the analysis technique for low order 

filters can be used, or the ideal filter expressions can be used. In 

the limit, the settle time expressions for the ideal filters predict 

the worst case time delays and are valid for all filter types. 



APPENDIX 1. PROGRAMS TO SOLVE Si(x) AND Ci(x). 

These programs evaluate the sine and cosine integrals by 
numerical approximation. The infinite series equivalent expression is 
presented first, followed by the program listing that is used to solve 
the evaluation. Both programs are written for a Hewlett Packard 41C 
series calculator. The operator is prompted by the calculator to 
enter the argument x, which is the limit to be evaluated, and n, the 
number of terms to be used from the series. Large values of x will 
yield poor results due to limitations in the range of the calculator. 
Best results will be obtained by evaluating values of x less than 25 
and using int{2x) terms for n; n < 33. 

Si( x) "" 
n<33 (-l)nxz.n+1 

E (2n+l)[(2n+l)l] 
n=O 

Si(x) LISTING 

LBL SI X<->Y 
LBL A Yf X 

cxARG Xcx RCL 04 
PROMPT PACT 
ABS I 
STO 00 RCL 04 
STO 01 I 
aN?cx -1 
PROMPT RCL 03 
INT YtX 
STO 02 * 
34 ST+ 01 
X<=Y? l 
GTO 02 ST+ 03 
l DSE 02 
STO 03 GTO 01 
LBL 01 RCL 01 
RCL 03 STOP 
2 GTO SI 

* LBL 02 
l aN>33cx 
+ AVIEW 

STO 04 END 

RCL 00 

n<33 (-l)nxz.n · 
Ci{x) ~ y +lnx + E (Zn)(ZnJ) 

n=l 

y = 0.577215664 

Ci( x) LISTING 

LBL CI RCL 00 
LBL A X<->Y 
cxARG Xcx YtX 
PROMPT RCL 04 
ABS PACT 
STO 00 I 
cxN?cx RCL 04 
PROMPT I 
INT -1 
STO 02 RCL 03 
34 YtX 
X<=Y? * 
GTO 02 ST+ 01 
l 1 
STO 03 ST+ 03 
0.577215664 DSE 02 
STO 01 GTO 01 
RCL 00 RCL 01 
LN STOP 
ST+ 01 GTO CI 
LBL 01 LBL 02 
RCL 03 aN>33cx 
2 AVIEW 

* END 

STO 04 

44 



APPENDIX 2. SCHEMATIC DIAGRAM OF AN 
8- POLE LOW-PASS BUTTERWORTH FILTER. 
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APPENDIX 3. 
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