
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2014

Learning to Grasp Unknown Objects using Weighted Random Learning to Grasp Unknown Objects using Weighted Random

Forest Algorithm from Selective Image and Point Cloud Feature Forest Algorithm from Selective Image and Point Cloud Feature

Md Shahriar Iqbal
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Iqbal, Md Shahriar, "Learning to Grasp Unknown Objects using Weighted Random Forest Algorithm from
Selective Image and Point Cloud Feature" (2014). Electronic Theses and Dissertations. 4790.
https://stars.library.ucf.edu/etd/4790

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F4790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4790?utm_source=stars.library.ucf.edu%2Fetd%2F4790&utm_medium=PDF&utm_campaign=PDFCoverPages

LEARNING TO GRASP UNKNOWN OBJECTS USING

WEIGHTED RANDOM FOREST ALGORITHM FROM

SELECTIVE IMAGE AND POINT CLOUD FEATURE

by

MD. SHAHRIAR IQBAL

B.Sc. University of Dhaka, 2011

A thesis submitted for the partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Fall Term

2014

Major Professor: Aman Behal

ii

© 2014 Md. Shahriar Iqbal

iii

ABSTRACT

This method demonstrates an approach to determine the best grasping location on an unknown

object using Weighted Random Forest Algorithm. It used RGB-D value of an object as input to

find a suitable rectangular grasping region as the output. To accomplish this task, it uses a

subspace of most important features from a very high dimensional extensive feature space that

contains both image and point cloud features. Usage of most important features in the grasping

algorithm has enabled the system to be computationally very fast while preserving maximum

information gain. In this approach, the Random Forest operates using optimum parameters e.g.

Number of Trees, Number of Features at each node, Information Gain Criteria etc. ensures

optimization in learning, with highest possible accuracy in minimum time in an advanced

practical setting. The Weighted Random Forest chosen over Support Vector Machine (SVM),

Decision Tree and Adaboost for implementation of the grasping system outperforms the stated

machine learning algorithms both in training and testing accuracy and other performance

estimates. The Grasping System utilizing learning from a score function detects the rectangular

grasping region after selecting the top rectangle that has the largest score. The system is

implemented and tested in a Baxter Research Robot with Parallel Plate Gripper in action.

iv

ACKNOWLEDGMENTS

I would like to express my deepest and sincere gratitude to my advisor, Dr. Aman Behal.

Without his patience, guidance, and support this research would not have been possible, nor

would I have been capable of completing it. The learnings I have received from him are

immense. I will always have a proud story to tell everyone that I happened to work under his

knowledgeable supervision. In addition, Dr. Michael G. Haralambous, has also been an

invaluable resource and a source of guidance and inspiration throughout this work. I would also

like to thank Dr. Lotzi Boloni, who was instrumental in helping assist in the machine learning

aspects of this project. A special thank you to my research colleagues who have helped me

achieve all that I have thus far with their help and support: Nicholas Paperno, Amirhossain

Jabalemi, Kun Zhang and Shahriar Talebi. I would like to thank Mahmudur Rahman

Chowdhury, Fahad Abdullah, Md. Mokarram Hossain, Md. Towhidul Islam, Tahrim Alam, Md.

Rakibul Islam, Md. Zihad Tarafdar, A. K. M. Bodiuzzaman, Md. Ariful Hossain, Sakif Ahsan, M

Shamim Rahman, Md. Nasir Uddin, Raihan Abir, Golam Mohiuddin, Towfiq Rahman and

Kamrul Islam who helped and supported me along the way. Finally, thanks to my parents, my

sister, my nieces and Iffath Mizan for all of the sacrifices they have done and the encouragement

they have provided over the years in furthering my education and providing a mountain of

support that has allowed me to accomplish this goal.

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xiii

CHAPTER 1 : INTRODUCTION .. 1

1.1 Robotic Grasping.. 1

1.2 Application and Impact .. 2

1.3 Problem Statement ... 3

1.3.1 Rectangle as a Grasping Region ... 3

1.3.2 Goal ... 4

1.4 Contribution of the Thesis .. 5

1.5 Organization of the Thesis ... 5

1.6 References .. 8

CHAPTER 2 : BACKGROUND AND RELATED WORK .. 9

2.1 Introduction .. 9

2.2 Chapter Objectives ... 9

2.3 Analytical Approaches ... 9

2.3.1 Force Closure Grasps .. 10

2.3.2 Task Compatibility.. 11

2.4 Empirical Approaches .. 12

2.4.1 Systems based on human observation... 12

2.4.2 Systems based on object observation .. 13

2.5 Discussion .. 14

2.6 References .. 14

CHAPTER 3 : FEATURES USED AND EXTRACTION TECHNIQUE 20

3.1 Introduction .. 20

3.1.1 Feature Extraction ... 20

3.2 Chapter Objectives ... 21

3.2.1 Image Feature Extraction Technique .. 22

3.2.2 Non-linear Image Feature Extraction Technique .. 27

vi

3.2.3 Point Cloud Feature Extraction Technique ... 29

3.2.4 Non-linear Point Cloud Feature Extraction Technique .. 32

3.2.5 Fast Point Feature Histogram Descriptors Extraction Technique........................... 34

3.2.6 Geometric Feature Extraction Technique ... 36

3.3 Discussion .. 36

3.4 References: ... 36

CHAPTER 4 : WHY RANDOM FOREST? .. 38

4.1 Introduction .. 38

4.1.1 Cross Validation Score ... 39

4.1.2 Precision .. 40

4.1.3 Recall .. 40

4.1.4 Accuracy ... 40

4.1.5 F1 Score .. 41

4.1.6 ROC Score .. 41

4.2 Chapter Objectives ... 42

4.3 Definition of Performance Metric .. 42

4.4 Support Vector Machine .. 43

4.4.1 SVM with Linear kernel ... 44

4.4.2 Parameters used in SVM with linear kernel and Results .. 45

4.4.3 SVM with Polynomial kernel ... 46

4.4.4 Parameters used in SVM with Polynomial kernel and Results............................... 46

4.4.5 SVM with Radial Basis Function kernel .. 47

4.4.6 Parameters used in SVM with Radial Basis Function kernel and Results 47

4.4.7 Comparison of Error Estimates from Linear, Polynomial and RBF SVM and

Discussion .. 48

4.4.8 Evaluation Metric Results from Linear, Polynomial and RBF SVM 48

4.5 Information Gain Parameter Definition for Tree based Learning Algorithms............... 49

4.5.1 Gini Impurity .. 49

4.5.2 Entropy .. 50

4.6 Decision Tree Algorithm .. 50

4.6.1 Parameters used in Decision Tree Algorithm ... 50

vii

4.6.2 Comparison of Error Estimates using Decision Tree Algorithm with different

Parameters ... 54

4.6.3 Performance Metric Results from Decision Tree Algorithms 55

4.7 Adaboost Algorithm ... 56

4.7.1 Parameters used in Adaboost Algorithm .. 56

4.7.2 Error Estimates from Adaboost Algorithm ... 60

4.7.3 Performance Metric Results on Adaboost Algorithm ... 61

4.8 Random Forest Algorithm .. 62

4.9 Evaluation of Dataset to select range of Number of Trees .. 62

4.9.1 Weighted random Forest Algorithm used in this Method 63

4.9.2 Parameters used in Random Forest Algorithm ... 64

4.9.3 Error Estimate Results from Random Forest Algorithm using Gini....................... 64

4.9.4 Error Estimate Results from Random Forest Algorithm using Entropy Criteria.... 71

4.9.5 Performance Metric Results from Random Forest Algorithm with Different

Number of Trees .. 79

4.10 Selection of the Best Algorithm with Optimal Parameters .. 84

4.11 Selection of Most Significant Features .. 85

4.12 References .. 87

CHAPTER 5 : GRASPING ALGORITHM ... 89

5.1 Introduction .. 89

5.2 Chapter Objectives ... 91

5.3 Learning a Score Function ... 91

5.3.1 Definition of a Score Function .. 91

5.3.2 Computing of a Score Function .. 92

5.3.3 Assumption ... 93

5.3.4 Incremental Search Procedure .. 94

5.4 Background Subtraction using Mixture of Gaussian Model .. 95

5.5 Algorithm ... 98

5.6 Hardware Setup .. 99

5.7 Evaluation Metric ... 99

5.7.1 Point Metric .. 100

viii

5.7.2 Rectangle Metric ... 100

5.8 Experimental Results.. 101

5.9 Training Dataset ... 101

5.10 Testing Results ... 102

5.11 Discussion .. 105

5.12 References .. 107

CHAPTER 6 : CONCLUSION AND FUTURE SCOPE OF RESEARCH 109

6.1 Introduction .. 109

6.2 Chapter Objectives ... 109

6.3 Summary of the Grasping System .. 109

6.4 Innovations in this Method ... 111

6.5 Scope of Further Research ... 111

6.6 References .. 112

APPENDIX A: FORCE CLOSURE GRASP ... 113

APPENDIX B: FAST POINT FEATURE HISTOGRAM DESCRIPTORS 115

Appendix B: References.. 116

ix

LIST OF FIGURES

Figure 1-1 Rectangle as a Grasping Region ... 3

Figure 1-2 Goal of the method is to find a rectangle on object from 2-D image and Point Cloud

Data .. 4

Figure 1-3 Organization of the Thesis .. 7

Figure 3-1: Features are extracted from subdividing the rectangle into Top, Middle and Bottom

Horizontal strips. ... 20

Figure 3-2 Total Number of Features in this Method ... 21

Figure 3-3: Image Feature Extraction Technique ... 23

Figure 3-4 Color Features Extracted from (left) Positive Rectangles (right) Negative Rectangles

 ... 24

Figure 3-5 Filter used for Texture Feature Extraction .. 24

Figure 3-6 Texture Feature Extraction Technique .. 25

Figure 3-7 Texture Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles .. 25

Figure 3-8 Filters used to extract Edge Features .. 26

Figure 3-9 Edge Feature Extraction Technique .. 26

Figure 3-10 Texture Feature Extracted from (left) Positive and (right) Negative Examples 27

Figure 3-11Nonlinear Color Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles .. 28

Figure 3-12 Nonlinear Texture Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles .. 28

Figure 3-13 Nonlinear Edge Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles .. 29

Figure 3-14 Depth Feature Extraction from (left) Positive Rectangles (right) Negative Rectangles

 ... 30

Figure 3-15 Surface Normal Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles .. 31

Figure 3-16 Surface Curvature Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles .. 31

Figure 3-17 Non-linear Depth Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles .. 32

Figure 3-18 Non-linear Surface Normal Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles .. 33

Figure 3-19 Non-linear Surface Normal Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles .. 34

Figure 3-20 Viewpoint Feature Histogram Descriptors from (left) Positive Examples (right)

Negative Examples .. 35

Figure 4-1Confusion Matrix and ROC Curve of Linear SVM ... 45

x

Figure 4-2 Confusion Matrix and ROC Curve of Polynomial SVM .. 46

Figure 4-3 Confusion Matrix and ROC Curve of RBF SVM ... 47

Figure 4-4 Evaluation Metric Results for Linear, Polynomial and RBF SVM 49

Figure 4-5 Confusion Matrix and ROC Curve for Decision Tree Gini using 2110 features at each

node ... 51

Figure 4-6 Confusion Matrix and ROC Curve for Decision Tree Gini using 46 features at each

node ... 51

Figure 4-7 Confusion Matrix and ROC Curve for Decision Tree Gini using 11 features at each

node ... 52

Figure 4-8 Confusion Matrix and ROC Curve of Decision Tree Entropy using 2110 features at

each node ... 52

Figure 4-9 Confusion Matrix and ROC Curve of Decision Tree Entropy using 46 features at each

node ... 53

Figure 4-10 Confusion Matrix and ROC curve of Decision Tree Entropy using 11 features at

each node ... 53

Figure 4-11 Performance Metric Results for Decision Tree Algorithm using Different Criteria 55

Figure 4-12 Confusion Matrix and ROC Curve using Adaboost with 32 base estimators 57

Figure 4-13 Confusion Matrix and ROC curve using Adaboost with 64 base estimators 57

Figure 4-14 Confusion Matrix and ROC Curve using Adaboost with 128 base estimators 58

Figure 4-15 Confusion Matrix and ROC Curve using Adaboost with 256 base estimators 58

Figure 4-16 Confusion Matrix and ROC Curve using Adaboost with 512 base estimators 59

Figure 4-17 Confusion Matrix and ROC Curve using Adaboost with 1024 base estimators 59

Figure 4-18 Performance Metric Result for Adaboost Algorithm using different Base Estimators

 ... 61

Figure 4-19 Confusion Matrix and ROC Curve of Random Forest Gini using 32 Trees and 46

features at each node .. 64

Figure 4-20 Confusion Matrix and ROC Curve using Random Forest Gini using 32 Trees and 11

features at each node .. 65

Figure 4-21 Confusion Matrix and ROC Curve using Random Forest Gini using 64 Trees and 46

features at each node .. 65

Figure 4-22Confusion Matrix and ROC Curve using Random Forest Gini using 64 Trees and 11

features at each node .. 66

Figure 4-23 Confusion Matrix and ROC Curve using Random Forest Gini using 128 Trees and

46 features at each node ... 66

Figure 4-24 Confusion Matrix and ROC Curve using Random Forest Gini using 128 Trees and

11 features at each node ... 67

Figure 4-25 Confusion Matrix and ROC Curve using Random Forest Gini using 256 Trees and

46 features at each node ... 67

Figure 4-26 Confusion Matrix and ROC Curve using Random Forest Gini using 256 Trees and

11 features at each node ... 68

xi

Figure 4-27 Confusion Matrix and ROC Curve using Random Forest Gini using 512 Trees and

46 features at each node ... 68

Figure 4-28 Confusion Matrix and ROC Curve using Random Forest Gini using 512 Trees and

11 features at each node ... 69

Figure 4-29 Confusion Matrix and ROC Curve using Random Forest Gini using 1024 Trees and

46 features at each node ... 69

Figure 4-30 Confusion Matrix and ROC Curve using Random Forest Gini using 1024 Trees and

11 features at each node ... 70

Figure 4-31 Confusion Matrix and ROC Curve of Random Forest Entropy with 32 trees using 46

features at each node .. 72

Figure 4-32 Confusion Matrix and ROC Curve of Random Forest Entropy with 32 trees using 11

features at each node .. 72

Figure 4-33 Confusion Matrix and ROC Curve of Random Forest Entropy with 64 trees using 46

features at each node .. 73

Figure 4-34 Confusion Matrix and ROC Curve of Random Forest Entropy with 64 trees using 11

features at each node .. 73

Figure 4-35 Confusion Matrix and ROC Curve of Random Forest Entropy with 128 trees using

46 features at each node ... 74

Figure 4-36 Confusion Matrix and ROC Curve of Random Forest Entropy with 128 trees using

11 features at each node ... 74

Figure 4-37 Confusion Matrix and ROC Curve of Random Forest Entropy with 256 trees using

46 features at each node ... 75

Figure 4-38 Confusion Matrix and ROC Curve of Random Forest Entropy with 256 trees using

11 features at each node ... 75

Figure 4-39 Confusion Matrix and ROC Curve of Random Forest Entropy with 512 trees using

46 features at each node ... 76

Figure 4-40 Confusion Matrix and ROC Curve of Random Forest Entropy with 512 trees using

11 features at each node ... 76

Figure 4-41 Confusion Matrix and ROC Curve of Random Forest Entropy with 1024 trees using

46 features at each node ... 77

Figure 4-42 Confusion Matrix and ROC Curve of Random Forest Entropy with 1024 trees using

11 features at each node ... 77

Figure 4-43Comparison of Performance Metric Results of Random Forest Algorithm using 32

Trees .. 79

Figure 4-44 Comparison of Performance Metric Results of Random Forest Algorithm using 64

Tree .. 80

Figure 4-45 Comparison of Performance Metric Results of Random Forest Algorithm using 128

Trees .. 81

Figure 4-46 Comparison of Performance Metric Results of Random Forest Algorithm using 256

Trees .. 82

xii

Figure 4-47 Comparison of Performance Metric Results of Random Forest Algorithm using 512

Trees .. 83

Figure 4-48 Comparison of Performance Metric Results of Random Forest Algorithm using 1024

Trees .. 84

Figure 4-49 Important Variable Selection Algorithm ... 86

Figure 5-1 Incremental Fast Search Algorithm Used in this System.. 95

Figure 5-2 Background Subtraction result using Mixture of Gaussian subtraction Algorithm. The

top left image is background, the one on the right is the image of the object and the bottom

image illustrates the foreground mask after subtracting the background from the foreground

 ... 97

Figure 5-3 Algorithm used for Finding Best Grasping Rectangle .. 98

Figure 5-4 Screenshot of Some Objects of Cornell University Personal Robotics Dataset from

Personal Robotics Website used for Training ... 101

Figure 5-5 Grasping Rectangles on Computational Control Systems Laboratory University of

Central Florida Dataset (From top left clockwise: Can, Holder, Tea, Window Cleaner, Soap

(orientation 1), Soap (orientation 2), Toothpaste and Remote) ... 102

Figure 5-6 Unsuccessful grasping result on multimeter ... 106

Figure 5-7 Unsuccessful grasping result on a Penholder .. 106

xiii

LIST OF TABLES

Table 4-1Comparison of Error Estimates from Linear, Polynomial and RBF SVM.................... 48

Table 4-2 Error Estimates of Decision Tree Algorithm using different Parameters 54

Table 4-3 Error Estimates from Adaboost Algorithm using different Base Estimators 60

Table 4-4 Error Estimates obtained for different parameters of Random Forest Algorithm using

Gini Criteria ... 71

Table 4-5 Error Parameters obtained for different parameters of Random Forest Algorithm using

Entropy Criteria ... 78

Table 4-6 Selection of Best Algorithm with Optimal Parameters .. 85

Table 5-1 Result on Cornell University Dataset ... 103

Table 5-2 Result on Computational Control System Laboratory University of Central Florida

Dataset ... 104

1

CHAPTER 1: INTRODUCTION

1.1 Robotic Grasping

Robotic Grasping is one of the most fundamental qualities for object manipulation. For assistive

robotics to succeed in regular environment setting, this is a must have capability for Robotic

devices. Robotics application in healthcare, household and industrial manufacturing is quite

incomplete without grasping. The area of Robotic Grasping has received significant attention in

recent years among researchers. Because, of the large variability among objects and uncertain

environment condition, it is quite difficult to develop an ideal grasping algorithm without having

any prior idea of the object shape and pose. The noisy and incomplete sensor data makes the

problem even worse.

There are manifold challenges which are needed to be overcome in order to develop a successful

grasping algorithm. Before being put into implementation the grasping algorithm needs to

successfully locate the object in a cluttered or uncluttered environment, segment it from the

background, estimate the pose of the object, find a suitable grasping region on the object, reach

in the selected region and finally perform the grasping without slipping or causing any

deformation on the object known as force closure grasp. Force Closure Grasp is discussed in

detail in Appendix A.

This thesis presents a novel algorithm that detects the grasping region on any unknown object

using Weighted Random Forest Algorithm. This approach requires the 2-D image of the object

and raw Depth data as input. This method does not attempt to recognize or create a model for

2

specific type of object for grasping rather it tries to learn from a set of manually labeled data to

detect the grasping region autonomously regardless of shape, pose or some other attributes. This

method is mostly similar to Jiang et al [Jiang, 2011]. The grasping algorithm developed in this

method also shows a very high success rate roughly around 90.8% on novel objects.

1.2 Application and Impact

The grasping algorithm developed here is capable of selecting rectangular grasping region on

any unknown object autonomously with a particularly low execution time. Algorithm

implemented with Weighted Random Forest ensures only the most significant features which

have higher information content than others are used. By narrowing down the feature space, a

computationally fast algorithm is developed. Design of weights of the Random Forest is

performed in a way so that it incorporates the significant feature’s contribution in determination

of grasp region.

The algorithm developed in this method can be directly implemented on any Robotic devices that

use Parallel Plate Grippers. It can be also extended to be used for other grippers with little

modification. This method is capable to extract a grasping rectangle on any object if the 2-D

image or Point cloud or both are provided as input in an uncluttered environment. This method

achieves a high positive performance rate in determining a good grasp in a very computationally

fast and efficient manner.

3

1.3 Problem Statement

1.3.1 Rectangle as a Grasping Region

Selection of grasping region is one of the primary steps while designing a grasping algorithm.

The region selected should accommodate the 7-D gripper configuration in order for the grasping

to be succeeded. There have been a lot of researches where researchers have adopted different

regions to locate a grasp on an object. Saxena et al. [Saxena, 2006], Fischinger et al. [Fischinger,

2013] used a 2-D point as a grasping region whereas Jiang et al. [Jiang, 2011] and Lenz et al.

[Lenz, 2013] used a rectangle based approach. In this method a rectangle based approach is

considered to detect a grasping region on an object as proposed by Jiang et al. [Jiang, 2011].

Figure 1-1 Rectangle as a Grasping Region

An oriented rectangle with respect to the image plane is considered for the representation of

grasping region. This approach also intends to use parallel plate gripper to grasp objects. The

edges shown by red line in Figure 1-1 indicates where the parallel plate gripper should be placed.

4

The blue lines indicate the opening width of the gripper. A 2-D rectangle is defined using 5

parameters e.g. 𝑟𝐺 , 𝑐𝐺 , 𝑚𝐺 , 𝑛𝐺 , 𝜃𝐺 . 𝜃𝐺 describe the angle between the first edge of the rectangle

and the image plane. 𝜃𝐺 provides one orientation of the gripper. For the other two angles,

configuration of the 3D points in the rectangle can be used. [Jiang, 2011]. To obtain the 3D

position from the point cloud, center of the rectangle is used. So, this way 7-D configuration of

the gripper is achieved.

1.3.2 Goal

Figure 1-2 Goal of the method is to find a rectangle on object from 2-D image and Point Cloud Data

5

The goal of this approach is to find a suitable grasping region that will be regarded as the best

grasping rectangle on that object given its 2-D image and point cloud.

1.4 Contribution of the Thesis

The main contributions of this thesis are

 Implementation of viewpoint feature histogram descriptors for capturing information

which is effective for Grasping.

 Selection of the most significant features and exploiting their contribution by designing

the weight of the random forest algorithm in a novel manner.

 Implementation of a reliable performance metric to select a supervised learning algorithm

with optimal parameters.

 Implementation of weighted random forest algorithm in robotic grasping.

1.5 Organization of the Thesis

Having discussed the goal of the thesis and motivation for using rectangle as a grasping region

now the contents of the other chapters included in this thesis will be discussed in brief. This

thesis covers the entire discussion within the context of six chapters. In Chapter 2 previous works

on robotic grasping will be discussed. Chapter 3 focuses on the description of the features and

feature extraction technique. Chapter 4 deals with selection of the best rectangle with optimal

parameters. Chapter 5 discusses the main grasp algorithm. In Chapter 6 Innovations and future

scopes of research on this method are described.

6

Chapter 2 illustrates the motivation for using supervised learning algorithm. It presents an

overview of the current state of art research in robotic grasping and issues involved with

different methods. In this chapter, the entire overview is proposed from an analytical and

empirical perspective.

Chapter 3 discusses the different types of features used in this technique. This chapter also

demonstrates the extraction technique of those features. Feature extraction is a preprocessing

step for off-line training employed in this method. After extracting features, this chapter also

depicts a comparison between the histogram of extracted features from positive and negative

rectangles.

Chapter 4 describes the idea of selecting weighted random forest algorithm. This method uses a

systematic approach using a performance evaluation metric to select the algorithm with optimal

parameters. This chapter also provides brief introduction about support sector machine (SVM),

decision Tree, adaboost and random forest algorithm and their performance estimates.

Chapter 5 discusses the grasping algorithm that is developed using Weighted Random Forest. It

also demonstrates and analyzes the results and performance of the method. This chapter depicts

how score function is defined, how search is optimized, how background subtraction is

performed for this technique, steps involved in the algorithm and results after using evaluation

metric.

7

Chapter 6 provides a summary of the thesis and also focuses on the innovations that have been

made in this thesis. This chapter also illustrates the direction of future research using this

technique to achieve better performance and solve issues those were not addressed in this thesis.

Figure 1-3 Organization of the Thesis

Selection of Rectangle as the Grasping Region

Feature Extraction from Manually labeled Positive and

Negative Training Examples

Selection of the Algorithm with Optimal Parameters for

Robotic Grasping

Comparison of Algorithm Performances using

a performance metric

Selection of the Best Algorithm with

Optimal Parameters

Extraction of Most Important

Features

Evaluation of the Results on different dataset containing

Novel Objects

Test the System using Weighted Random Forest that finds

a rectangular grasping region with highest rank using only

the most important features

8

1.6 References

A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. 2006. Robotic grasping of novel objects:

NIPS, 2006.

Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Images: Learning using a

new Rectangle Representation. ICRA, pp. 3304-331, 2011.

D. Fischinger, M. Vincze, and Y. Jiang. Learning Grasps for Unknown Objects in Cluttered

Scenes. ICRA, 978-1-4673-5643, May 6-10, 2013.

I. Lenz, H. Lee, and A. Saxena. Deep Learning for Detecting Robotic Grasps. ICLR, 2013.

9

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Introduction

Robotics Grasping has gained high attention in the field of active robotics research. A great deal

of effort has been put to develop autonomous robotic grasping algorithm. Researchers have used

various approaches to address this issue. There are a significant number of papers that have

reviewed these approaches based on the grasping mechanics and the interaction between the

object and hand [Bicchi, 2000]. Researchers have also contributed in reviewing grasping

approaches based on the hand design and control [Al-Gallaf, 1993]. This thesis will deal with the

review of grasping algorithm based on the method proposed by Sahbani et al. [Sahbani, 2011].

They have reviewed grasping algorithms from two aspects: analytical and empirical. This

chapter will also focus on grasping algorithms from these two approaches.

2.2 Chapter Objectives

 Listing of grasp synthesis algorithms based on analytical approaches.

 Listing of grasping algorithms based on empirical approaches.

 Discussion on the grasping algorithms using both approaches

2.3 Analytical Approaches

In Sahbani et al. [Sahbani, 2011] approaches that take into account the kinematics and dynamics

in developing grasping algorithms are categorized in terms of analytical approaches. They have

addressed these approaches from two perspectives.

1. Based on the possibility of forming or finding a force closure grasp

10

2. Based on task compatibility

2.3.1 Force Closure Grasps

There have been a lot of approaches where people have developed algorithms based on the

object model. Ponce et al. proposed a method where each point in a plane face was

parameterized linearly with two parameters [Ponce, 1993]. They developed an algorithm after

forming necessary linear conditions for three and four finger force closure grasps. Liu et al. [Liu,

1999] demonstrated an algorithm where force closure grasp is achieved for n fingers. Here, n-1

fingers were fixed in a position and with these the grasp is not a force closure. They searched for

a location on the object face for the n-th finger using a linear parameterization technique where

force closure grasp will be possible. Ding et al. [Ding, 2000] proposed a method where position

of force closure grasp for all fingers was found based on an initial random grasp. These methods

have mainly considered objects as polyhedral such as boxes and selection of grasping facet is not

considered in these approaches [Sahbani, 2011].

Ding et al. [Ding, 2001] designed an approach where force closure grasps were synthesized with

7 frictionless contacts. Discretization of the grasped objects was achieved in such a way which

allowed a large number of contact wrenches to be found. In El Khoury et al. [El Khoury, 2009]

wrenches which allow the association of any three contact points that are not-aligned, forms a

basis of the wrench space. Using this result they formulated a force-closure condition which

works with general objects.

There are also lot of methods where people have tried to compare between different grasps and

tried to figure out which grasp will satisfy force-closure conditions using some criteria. Mirtich

11

et al. [Mirtich, 1994] developed one criterion to extract optimal two and three finger grasps on

2D objects. They also found optimal three finger grasps on 3D polyhedral objects. Search for an

optimal grasp in the solution space needs heavy computational effort. Because of this, some

approaches have used some predefined procedure [Fischer, 1997] or generated some random

grasps [Borst, 2003]. Some have also addressed this issue with a set of rules that were defined

prior to the grasping [Miller, 2003].

2.3.2 Task Compatibility

The prime reason of robotic grasping is to perform manipulation on different objects. Objects are

manipulated based on the type of task to be performed. Some researchers have considered

developing grasping algorithms taking into account the intended task to be performed.

Chiu et al. [Chiu, 1988] proposed an index where task compatibility is considered based on the

match of optimal direction of the manipulator and the actual direction of movement that is

required for the task to be performed. Li et al. [Li, 1988] used a measure to quantify the grasp

quality which is related to the task. Pollard et al. [Pollard, 1997] developed an algorithm that

models a task wrench space (TWS) with a unit sphere to tackle this issue. Borst et al. [Borst,

2004] came up with a method that uses object wrench space (OWS) which describes the TWS in

a specific way. To reduce the computational complexity, they modeled the OWS with a 6D

ellipsoid.

12

2.4 Empirical Approaches

Sahbani et al. [Sahbani, 2011] classified the methods which approached towards the grasping

problem using some classification and learning algorithms as empirical. These methods achieved

better computational performance over the previous analytical approaches. They further

subdivided these approaches into two sections.

1. Systems based on human observation

2. Systems based on object observation.

2.4.1 Systems based on human observation

These methods are classified as those which use some policy learning methods or learn by

demonstration where a human shows the robot how to grasp an object. The robot observes and

tries to emulate it.

In [Billard, 2008] a method describes who, what and how to emulate the operator and the robot

learns from this. In [48] a method is illustrated that considers the operator and robot are standing

in front of a table. On the table some objects are placed. The human shows the robot how to

manipulate an object. The robot then tries to emulate it. Hidden Markov model (HMM) and

magnetic trackers are used for this purpose.

In Hueser et al. [Hueser, 2006] the authors developed a method that uses vision and audio for

grasping. After demonstration of the grasping by the operator, the robot tries to track the hand of

the operator stereoscopically. In Hueser et al. [Hueser, 2008] a method was proposed using Self-

13

Organizing Maps (SOM) and Q-learning approach that follows similar approach. A vision based

approach is also presented in Romero et al. [Romero, 2008], where the system is constructed in

three parts: grasp classification, measuring the hand position relative to the object and a grasp

strategy for the robot to perform grasping.

Oztop et al. [Oztop, 2002] displayed an approach that develops a grasp strategy using the

concept of mirror neurons. Kyota et al [Kyota, 2005] proposed a method to detect grasping

positions where they found the graspable portions using a neural network. Training is done using

a data glove.

2.4.2 Systems based on object observation

Development of grasping algorithm based on this approach considers object affordances,

properties of the objects and produces an algorithm that is generalized to find a grasping location

on any object.

Pelossof et al. [Pelossof, 2004] used support vector machines in order to generate a mapping

between the shape of the object, parameters of the grasp and quality of the grasp. Stark et al.

[Stark, 2008] showed a method that uses affordance learning strategies. Li et al. [Li, 2007]

proposed a shape matching algorithm to tackle this issue. They assumed that the 3D model of the

object is available.

14

Saxena et al. [Saxena, 2006] proposed a grasping algorithm that finds a 2D point on an object

using Support Vector Machine algorithm. Saxena et al. [Saxena, 2008, 2009] used supervised

learning methods to detect a grasping point using image features on novel objects. Jiang et al.

[Jiang, 2011] proposed a rectangle region detection technique using a SVM-rank algorithm to

detect robotic grasps. Lenz et al [Lenz, 2013] used deep learning method to detect robotic grasps.

2.5 Discussion

Methods those followed the analytical approach have mainly emphasized on the concept of

finding a force-closure grasp or finding grasp based on the task. Here the most significant

problem is the computational effort, which is needed to find such a grasp from an enormously

huge search space, is very high. For task modeling the effort to model a task is also the same.

Models that have followed the empirical approaches have seen to achieve robustness in terms of

application. Human based observation methods do not completely fulfill the condition for

autonomous grasping. Developing algorithms based on object observation have gained much

popularity among researchers due to its high performance. Pre-modelling an object is always

difficult. So, the methods that consider in learning from features using some supervised learning

algorithm is better implemented in practice and also acts as a motivation for this work.

2.6 References

A. Bicchi, V. Kumar. Robotics Grasping and Contact: A review. ICRA 2000.

15

E. Al-Gallaf, A. Allen, K. Warwick. A survey of Multi-fingered Robotic Hands: Issues and

grasping achievements. 1993, Mechatronics 01/1993; DOI: 10. 1016/0957-4158(93)

90018-W

A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. 2006. Robotic grasping of novel objects:

NIPS, 2006.

Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Images: Learning using a

new Rectangle Representation. ICRA, pp. 3304-331, 2011.

I. Lenz, H. Lee, and A. Saxena. Deep Learning for Detecting Robotic Grasps. ICLR, 2013.

A. Sahbani, S. El-Khoury, P. Bidaud, An overview of 3D grasp synthesis algorithms, Robotics

and Autonomous Systems, 2011, doi:10.1016/j.robot. 2011

J. Ponce, S. Sullivan, J. D. Boissonnat, J. P. Merlet. On characterizing and computing three and

four finger force closure grasps of polyhedral objects. IEEE International Conference on

Robotics and Automation, vol. 2, 1993, pp. 821-827.

Y. H. Liu. Qualitative test and force optimization of 3-D frictional form closure grasps using

linear programming. IEEE Transactions on Robotics and Automation 15 (1), 1999.

16

D. Ding, Y. H. Liu, S. Wang. Computing 3D optimal form closure grasps. IEEE International

Conference on Robotics and Automation, vol4. 2000, pp. 3573-3578.

D. Ding, Y. H. Liu, S. Wang. On computing immobilizing grasps of 3-D curved objects. IEEE

International Symposium on Computational Intelligence in Robotics and Automation,

2001, pp. 11-16.

S. El-Khoury, A. Sahbani. On computing robust N-finger force closure grasps of 3D objects,

ICRA 2009, pp. 2480-2486.

B. Mirtich, J. Canny. Easily computable optimum grasps in 2D and 3D, ICRA 1994, vol 1, pp.

739-747.

C. Borst, M. Fischer, G. Hirzinger. Grasping the dice by dicing the grasp. ICRA 2003, vol 3, pp

3692-3697.

M. Fischer, G. Hirzinger. Fast planning of precision grasps for 3D objects. ICRA 1997, pp. 120-

126.

17

A. T. Miller, P. K. Allen. Examples of 3D grasp quality computations. ICRA 1999, pp. 1240-

1246.

 S. Chiu. Task Compatibility of manipulator postures, International Journal of Robotics Research

7 (5), 1988, 13-21.

Z. Li, S.S. Sastry. Task Oriented optimal grasping by multi-fingered robot hands. International

Journal of Robotics and Automation 4 (1), 1988.

N. S. Pollard, Parallel algorithms for synthesis of whole hand grasps, IEEE International

Conference on Robotics and Automation, vol. 1, 1997, pp. 373-378.

A. Billard, S. Calinon, R. Dillmann, S. Schaal, Survey: Robot Programming by demonstration.

Handbook of Robotics, MIT Press, 2008.

S, Ekvall, D. Kragic, Interactive grasp learning based on human demonstration. ICRA, 2004,

vol. 4, pp. 3519-3524.

18

F. Kyota, T. Watabe, S. Saito, M. Nakajima, Detection and evaluation of grasping positions for

autonomous agents. International Conference on Cyberworlds, 2005, pp. 453-460.

M. Hueser, T. Baier, J. Zhang. Learning of demonstrated grasping skills by steresocoping

tracking of human hand configuration. ICRA 2006, pp. 2795-2800.

J. Romero, H. Kjellstrom, D. Kragic, Human-to-robot mapping of grasps. ICRA, WS on Grasp

and Task Learning by imitation, 2008, 9-15.

E. Oztop, M. A. Arbib. Schema design and implementation of the grasp related mirror neuron

system, Biological Cybernatics 87 (2), 2002, 116-140.

M. Hueser, J. Zhang. Visual and Contact-free imitation learning of demonstrated grasping skills

with adaptive environment modelling. IEEE/RSJ International Conference on Intelligent

Robots and Systems, WS on Grasp and Task Learning by Imitation, 2008, pp. 17-24.

R. Pelossof, A. Miller, P. Allen, T. Jebara. An SVM Learning approach to robotic grasping.

ICRA 2004, vol. 4, pp. 3512-3518.

19

Y. Li, J. L. Fu, N. Pollard. Data driven grasp synthesis using shape matching and task based

pruning. IEEE Transactions on Visualization and Computer Grasphics. 13 (4), 2007, 732-

747.

M. Stark, P. Lies, M. Zillich, B. Schiele. Functional object class detection based on learned

affordance cues. International Conference on Computer Vision Systems, 2008, pp. 435-

444.

A. Saxena, J. Driemeyer and A. Ng. Robotic Grasping of Novel Objects using Vision. IJRR, vol.

27, no.2, Multimedia Archives, 2008, p. 157.

A. Saxena, Monocular Depth perception and robotic grasping of novel objects. PhD Dissertation,

Stanford University, 2009.

20

CHAPTER 3: FEATURES USED AND EXTRACTION TECHNIQUE

3.1 Introduction

3.1.1 Feature Extraction

Both image and point cloud features are used in this method. Features are extracted from a set of

labeled rectangles. Those labels are manually assigned on an object that corresponds to good and

bad grasps. Rectangles with good grasping regions are denoted as Positive examples and others

as negative examples. This method exploits a high number of features for extraction from the

positive and negative rectangles. For the grasping system the features those have higher

information content are mainly used. Feature extraction is performed before the Training step of

the algorithm.

Figure 3-1: Features are extracted from subdividing the rectangle into Top, Middle and Bottom

Horizontal strips.

In order to capture more details of an object, each rectangle is subdivided into three horizontal

strips. Features are then extracted from each strip using a 15 binned histogram. It is seen that

extraction of features in this method performs better than extracting features from the whole

rectangle at a time. The feature extraction technique in this method is followed from Lim et al.

Middle

Top

Bottom

F
T

F
M

F
B

21

[Lim 2010], Saxena et al. [Saxena, 2008] and Jiang et al.[Jiang 2011]. The concept of using

binned histograms, Image and Point cloud Feature is used from Lim et al. [Lim 2010]. The

feature extraction technique using color, edge and texture cues and the extraction technique of

using 9 Laws’ mask to extract texture features, 6 Oriented edge filters to extract edge

information and First Laws’ mask to extract color information are followed from Saxena et al

[Saxena, 2008]. The concept of using Non-linear features that uses the ratio of the top, bottom

and middle section of the rectangle are followed from Jiang et al [Jiang, 2011]. Those features

and extraction technique are discussed in detail here for convenience.

This method uses a total 2110 features in the implementation of the system. Among them 1530

are Image Features, 270 Point Cloud Features, 308 Viewpoint Feature Histogram Descriptor

(VFH) based features and 2 geometric features. This chapter deals with the description of these

features and the extraction technique that is employed for feature collection from labeled

rectangles.

Figure 3-2 Total Number of Features in this Method

3.2 Chapter Objectives

 Description of Image Feature and Extraction Technique.

 Description of Point Cloud Feature and Extraction Technique.

 Description of Viewpoint Feature Histogram Descriptors and Feature Extraction

Technique.

Image Features+ Point Cloud Features+ VFH Features + Height + Width

1530+270+308+1+1

2110

22

 Description of the Geometric Features used.

3.2.1 Image Feature Extraction Technique

Three visual cues are used to extract Image Features in this method.

1. Color

2. Edge

3. Texture

These information are extracted using the extraction technique of image features. In order to

capture these information the input RGB space is converted to YCbCr space.

3.2.1.1 Color Feature Extraction

In order to extract color features, the first Laws’ mask is applied to the Cb and Cr channel. Once

the features are extracted, normalization is done between 0 and 1. This allows the features to be

more robust to illumination changes and can work in different lighting conditions.

• Number of Bins * Number of Horizontal Strips * Number of Image Features

• 15*3 *17= 765

23

Figure 3-3: Image Feature Extraction Technique

From each strip there will be 15 x 2=30 color features. So, from each rectangle there will be 30 x

3=90 color features. Histogram of Color Features extracted from Positive and Negative

Rectangles are displayed in Figure 3-4.

Cb

R G B

Y Cr

Local Averaging Filter

Normalization

Output

Input

Number of Bins * Number of Horizontal Strips * Number of Color Features

15 *3 *2 =90

24

Figure 3-4 Color Features Extracted from (left) Positive Rectangles (right) Negative Rectangles

3.2.1.2 Texture Feature Extraction

In order to extract Texture Features, 9 Laws’ Mask is applied on the Y- channel. After extraction

the features are normalized to 0 and 1. Filter and the method used to extract texture features are

displayed in Figure 3-5 and 3-6 consecutively. Figure 3-7 shows the texture feature extracted

from positive and negative rectangles.

Figure 3-5 Filter used for Texture Feature Extraction

25

Figure 3-6 Texture Feature Extraction Technique

Figure 3-7 Texture Features Extracted from (left) Positive Rectangles (right) Negative Rectangles

Cb

R G B

Y Cr

9 Laws’ Mask

Normalization

Output

Input

• Number of Bins * Number of Horizontal Strips * Number

of Color Features

• 15 *3 *9 =405

26

3.2.1.3 Edge Feature Extraction

Edge Features are extracted by convolving the Y-channel with 6 oriented edge filters. After

extraction of the features the values are normalized to 0 and 1. Edge Filters used in this system

and the technique employed to extract edge features are displayed in Figure 3-8 and 3-9.

Figure 3-8 Filters used to extract Edge Features

Figure 3-9 Edge Feature Extraction Technique

Cb

R G B

Y Cr

6 Oriented Edge Filters

Normalization

Output

Input

• Number of Bins * Number of Horizontal Strips * Number of

Color Features

• 15*3 *6 =270

27

From each strip there will be 15 x 6 =90 edge features. So, from each rectangle there will be 90 x

3=270 features. Histogram of Edge features extracted from Positive and Negative examples are

displayed in Figure 3-10.

Figure 3-10 Texture Feature Extracted from (left) Positive and (right) Negative Examples

3.2.2 Non-linear Image Feature Extraction Technique

For extraction of non-linear image feature, ratios of the feature values between top, middle and

bottom strips are used. These are also used as the advanced features.

3.2.2.1 Non-linear Color Feature Extraction

Ratios of the color features from three strips of a rectangle are used. The features used are

𝐹𝑇𝑐
/𝐹𝑀𝑐

, 𝐹𝐵𝑐
/𝐹𝑀𝑐

, (𝐹𝑇𝑐
. 𝐹𝐵𝑐

)/𝐹𝑀𝑐
. Here, from each strip there will be 30 features. So, from each

rectangle there will be 90 features. Non-linear color features extracted from positive and negative

rectangles are shown in this Figure 3-11.

• Number of Bins * Number of Horizontal Strips * Number of Non Linear Image

Features

• 15*3 *17= 765

28

Figure 3-11Nonlinear Color Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

3.2.2.2 Non-linear Texture Feature Extraction

Ratios of the edge features from three strips of a rectangle are used. The features used are

𝐹𝑇𝑡
/𝐹𝑀𝑡

, 𝐹𝐵𝑡
/𝐹𝑀𝑡

, (𝐹𝑇𝑡
. 𝐹𝐵𝑡

)/𝐹𝑀𝑡
. Here, from each strip there will be 135 features. So, from each

rectangle there will be 405 features. Non-linear texture features extracted from positive and

negative rectangles are shown in Figure 3-12.

Figure 3-12 Nonlinear Texture Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

29

3.2.2.3 Non-linear Edge Feature Extraction

Ratios of the edge features from three strips of a rectangle are used. The features used are

𝐹𝑇𝑒
/𝐹𝑀𝑒

, 𝐹𝐵𝑒
/𝐹𝑀𝑒

, (𝐹𝑇𝑒
. 𝐹𝐵𝑒

)/𝐹𝑀𝑒
. Here, from each strip there will be 90 features. So, from each

rectangle, there will be 270 features. Non-linear edge features extracted from positive and

negative rectangles are shown in Figure 3-13.

Figure 3-13 Nonlinear Edge Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

3.2.3 Point Cloud Feature Extraction Technique

 Three cues are used for extraction of point cloud features. In total 270 point cloud

features are extracted. Cues used are

1. Depth

2. Surface Normal

3. Surface Curvature

• Number of Bins * Number of Horizontal Strips * Number of Point Cloud Features

• 15*3 *3= 135

30

3.2.3.1 Depth Feature Extraction

Figure 3-14 Depth Feature Extraction from (left) Positive Rectangles (right) Negative Rectangles

Z-positional value is used as the depth feature in this method from the point cloud collected.

This corresponds to the viewpoint component so we do not consider X and Y information.

Histogram of depth features extracted from positive and negative examples are illustrated below.

For each strip there will be 15 features. So, from a rectangle there will be 15 x 3= 45 depth

features.

3.2.3.2 Surface Normal Feature Extraction

In order to extract surface normal features a surface is fitted though the point and its 50

neighboring points. From each strip there will be 15 surface normal features. So, from a

rectangle 15 x 3= 45 features are extracted. Histogram of surface normal extracted from the

positive and negative rectangle is shown in Figure 3-15.

31

Figure 3-15 Surface Normal Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

3.2.3.3 Surface Curvature Feature Extraction

Surface curvature feature extraction technique is also similar to normal feature extraction. Here

also, a surface is fitted through the point and its 50 neighboring points and surface curvatures are

computed. Each strip outputs 15 features. So, one rectangle produces 15 x 3= 45 surface

curvature features. Histogram of surface curvature features extracted from positive and negative

rectangles are shown in Figure 3-16.

Figure 3-16 Surface Curvature Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

32

3.2.4 Non-linear Point Cloud Feature Extraction Technique

For Non-linear Point cloud feature extraction, ratios of the features values from top, middle and

bottom strips are used. There will be 135 more features extracted in this technique.

3.2.4.1 Non-linear Depth Feature Extraction

Ratios of the depth from three strips constitute this feature. Values of
𝐹𝑇𝐷

𝐹𝑀𝐷

,
𝐹𝐵𝐷

𝐹𝑀𝐷

,
𝐹𝑇𝐷.𝐹𝐵𝐷

𝐹𝑀𝐷

 are used

as the features. There will be 45 non-linear features from each rectangle with 15 from each strip.

Histogram of features from positive and negative examples is shown in Figure 3-17.

Figure 3-17 Non-linear Depth Features Extracted from (left) Positive Rectangles (right) Negative

Rectangles

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

• Number of Bins * Number of Horizontal Strips * Number of Non-linear Point Cloud

Features

• 15*3 *3= 135

33

3.2.4.2 Non-linear Surface Normal Feature Extraction

Ratios of the surface normal from three strips constitute this feature. Values of

𝐹𝑇𝑁

𝐹𝑀𝑁

,
𝐹𝐵𝑁

𝐹𝑀𝑁

,
𝐹𝑇𝑁.𝐹𝐵𝑁

𝐹𝑀𝑁

 are used as the features. There will be 45 non-linear features from each

rectangle with 15 from each strip. Histogram of features from positive and negative examples is

shown in Figure 3-18.

Figure 3-18 Non-linear Surface Normal Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles

3.2.4.3 Non-linear Surface Curvature Feature Extraction

Ratios of the surface curvature features from three strips constitute this feature. Values of

𝐹𝑇𝑠𝑐

𝐹𝑀𝑠𝑐

,
𝐹𝐵𝑠𝑐

𝐹𝑀𝑠𝑐

,
𝐹𝑇𝑠𝑐.𝐹𝐵𝑠𝑐

𝐹𝑀𝑠𝑐

 are used as the features. There will be 45 non-linear features from each

rectangle with 15 from each strip. Histogram of features from positive and negative examples is

shown in Figure 3-19.

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

y = 1106.4x - 291.88
R² = 0.9376

0

500

1000

1500

2000

0 1 2

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce

34

Figure 3-19 Non-linear Surface Normal Features Extracted from (left) Positive Rectangles (right)

Negative Rectangles

3.2.5 Fast Point Feature Histogram Descriptors Extraction Technique

Viewpoint Feature Histogram descriptor is a significant feature that captures the geometrical

properties of a point and its’ neighborhood. The viewpoint Feature Histogram (VFH) descriptor

is similar to Fast Point Feature Histogram descriptor [Rusu, 2009]. Because of its speed and

discriminative power, VFH feature is used in this method. VFH feature has been very

successfully implemented in the field of object detection and pose estimation problem. The key

idea in VFH feature is to use the discriminative feature of FPFH descriptors with respect to a

viewpoint direction. The VFH Feature concept is introduced and used in practice by Rusu et al.

[Rusu, 2010].

To compute the VFH features, the concept of mixing the viewpoint direction directly into the

relative normal angle calculation is employed. FPFH features are described in detail in Appendix

B. The viewpoint component is calculated by using a histogram of angles which is produced

y = 244.67x + 196.37
R² = 0.8594

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce (L∙mg-1)

y = 244.67x + 196.37
R² = 0.8594

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

1
/q

 (
g

m
e

d
ia
∙m

g-1
-P

)

1/Ce (L∙mg-1)

35

between the view-point with each normal. In order to ensure the scale invariance the angle

between the central viewpoint directions is translated to each normal.

The computation of second component of VFH feature is quite similar to FPFH feature

computation. But here, instead of using each normal, the relative pan, tilt and yaw angles are

measured using the viewpoint direction at the central point and each normal on the surface. The

Euclidean distance between the centroid from each point constitutes the other part of the second

component. This is also known as surface shape component.

This method exploits the usage of 45 binning histograms for each of the three angle component

of the FPFH. Additional 45 binning histograms are used which measures the Euclidean distance

between the centroid and each point on the surface. This makes the VFH feature number, 180.

128 more binning histograms are used for the viewpoint component. In total, 308 VFH features

are used in this system.

Figure 3-20 Viewpoint Feature Histogram Descriptors from (left) Positive Examples (right)

Negative Examples

36

3.2.6 Geometric Feature Extraction Technique

In order to capture geometric information of an object, height and width are used as geometric

features. These two features also provide some distinctive information between good and bad

grasping rectangles.

3.3 Discussion

This chapter demonstrates the features, those are used in the system to train the robot so that it

can learn in distinguishing between Positive and Negative grasps. A total of 2110 Image and

Point Cloud Features are used. Histograms collected for each feature on some from the

rectangles (both positive and negative) depict that these feature are capable to provide the

discrimination between good and bad grasps. To my knowledge, VFH feature is used in the area

of autonomous grasping for the first time in this method. This feature aids in achieving

significant accuracy over FPFH features used in some other methods.

3.4 References:

Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Images: Learning using a

new Rectangle Representation. ICRA, pp. 3304-331, 2011.

A. Saxena, J. Driemeyer and A. Ng. Robotic Grasping of Novel Objects using Vision. IJRR, vol.

27, no.2, Multimedia Archives, 2008, p. 157.

37

R. Rusu et al. Fast Point Feature Histograms (FPFH) for 3D Registration, ICRA. 2009.

R. B. Rusu, G. Bradski, R. Thibaux, J. Hsu. Fast 3D Recognition and Pose Using the Viewpoint

Feature Histogram, Proceedings of the 23
rd

 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2010.

M. Lim, B. Biswal. Determining Grasping Region Using Vision. Cornell University.

38

CHAPTER 4: WHY RANDOM FOREST?

4.1 Introduction

The selection of machine learning algorithm is a challenging problem in the research community.

For autonomous grasping of unknown objects, usage of a supervised learning algorithm has been

very successful. Supervised learning algorithm enables the robot to learn from the labeled data.

In this method, to learn from the labeled rectangles weighted random forest algorithm is used.

Selection of the weighted random forest algorithm is not performed at random here. It was

chosen over other commonly available and very successful supervised learning algorithms, using

some performance metric results.

The performance metric used in this method to compare between Support Vector Machine,

Decision Tree, Adaboost and Weighted Random Forest Algorithm utilizes the error estimates

which are used to analyze a system performance and the execution time. For autonomous robotic

grasping to be applicable in assistive robotics the most important issue to be satisfied is the

ability of the algorithm to achieve highest possible success rate in minimum possible time,

literally real time. The performance metric ensures the selection of the best algorithm can lead

towards the best performance.

Efficient usage of machine learning algorithm does not only depend on selection of the best

algorithm. The parameters associated with an algorithm are also tremendously vital. Poor

selection of parameters will totally disrupt the performance of the system. In addition for

39

selection of the proper algorithm for a given dataset, a performance metric algorithm can be

utilized in selecting the optimal parameters associated with the algorithm. In this method this

technique is employed in selecting the best algorithm with optimal parameters. The chosen

algorithm with the selected optimal parameters will perform the best for a dataset.

In this method the performance metric compares the performance between Support Vector

Machine with Linear, Polynomial and Radial Basis Function Kernel, Decision Tree, Adaboost

and Random Forest Algorithm with different number of trees and other associated parameters

which influence the algorithm performance. The performance metric uses Cross Validation

Score, Accuracy, Precision, Receiver Operating Characteristics (ROC) score, F1 score and recall

as the error estimates and the running time of an algorithm as execution time parameter. The

error estimates used in this method are defined below. For Training Cornell University Personal

Robotics dataset is used. 66.66% of the data (5000 examples from 7037) were used for training

and rest for testing.

4.1.1 Cross Validation Score

Cross-validation score is a measure to assess how the statistical analysis will be generalized in an

independent dataset. It determines how accurately a predictive model will perform. It is used for

comparison of the performance of two or more different algorithms and selecting the best

algorithm for the available data, or alternatively to compare the performance of two or more

variance of a parameterized model.

40

4.1.2 Precision

Precision is the fraction of the examples retrieved which have relevance to the find. It takes into

account all the retrieved examples but can be evaluated only at a given cut-off rank which

considers only the topmost results returned by the system. This is called as precision at n. It is

defined as,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … (4.1)

4.1.3 Recall

In the field of machine learning, Recall is defined as the portion or fraction of the examples that

have relevance to the query which are successfully retrieved. In binary classification problem, it

is also known as sensitivity. It can also be regarded as the probability by which a relevant

example is retrieved by any query. The equation to compute recall is,

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … (4.2)

4.1.4 Accuracy

 This is associated with trueness of systemic errors and precision with random errors.

Accuracy is defined as a combination of both trueness and precision. This is ratio of the true

examples in the entire population. It is also sometimes referred as “Rand Accuracy”. It is called a

parameter of the test. The method for computing accuracy is,

41

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
… … (4.3)

4.1.5 F1 Score

F1 score is a measure of test’s accuracy. In computation of the score it takes into account both

the precision and recall. It can be described as a weighted average of precision and recall also. It

does not take into account the true negative rate. It can be defined as,

𝐹1 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
… … (4.4)

It is actually the harmonic mean of precision and sensitivity. It can be simplified as,

𝐹1 =
2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
… … (4.5)

4.1.6 ROC Score

ROC score determines the area under the ROC curve. ROC Curve illustrates the performance of

a classifier when the discrimination threshold is varied accordingly. The ROC curve displays the

true positive rate vs false positive rate variation. False Positive Rate is also known as fall-out. So,

it is actually a measure of the sensitivity as a function of fall-out.

All these error estimates are extracted out from each algorithm and upon comparison with

execution time, performance metric is evaluated which is discussed in detail in this chapter.

42

4.2 Chapter Objectives

 Definition of Performance Metric.

 Comparison of the performance metric results on support vector machine with different

kernel.

 Comparison of the performance metric results on Decision Tree algorithm with different

parameters.

 Comparison of the Adaboost Algorithm with various important parameters.

 Selection of the range of number of Trees for Random Forest Algorithm.

 Comparison of the Weighted Random Forest Algorithm with different trees and varying

parameters.

 Selection of the Best learning Algorithm.

 Selection of the most significant features that allows reducing search space maintaining

the accuracy.

4.3 Definition of Performance Metric

Classification is one of the most exciting areas in the field of machine learning research. From

vast of classification algorithms it has always been a basic science question “Which algorithm

should be the first choice for my classification task”? People have adopted different techniques

in doing so. In this thesis, a method similar to Ali et al. [Ali, 2004] is used in order to select the

classification algorithm. They have defined a performance metric, Z as a linear function of error

estimates and execution time. The definition of performance metric, Z is shown in Equation 4.6.

𝑍 = 𝛼𝑒𝑖 + 𝛽𝑐𝑖 … … (4.6)

Here,

Z= Performance Metric

𝑒= Error estimates (accuracy, cross-validation score, F-1 score, precision, recall, ROC)

𝑐= Execution time

𝛼=average accuracy weight

43

𝛽=Weight for computation time

Ali et al. [Ali, 2004] used the value of 𝜶 to be constant and set it to 1. They varied the value of 𝜷

from 0 to 2 in order to find the performance metric, Z and the algorithm that has the highest Z

value is considered to perform the best. They used True Positive Rate (TPR), True Negative Rate

(TNR), F1 Score and Accuracy as the error estimates.

The method proposed in this thesis, uses the same definition of performance metric in order to

find the best classifier with optimal criterions but uses a slight different technique in choice of

error estimates and fixing the value of 𝜷. In this method, accuracy, precision, recall, ROC Score,

F1 score, Cross Validation Score are used as error estimates and an average of them is used as 𝑒𝑖.

The value of 𝛼 is kept at 1. 𝜷 is varied from 1 to 11 here and the value of the performance

metric Z is measured for different algorithms and compared further.

4.4 Support Vector Machine

Support Vector Machine Algorithm is one of the most commonly used machine learning

algorithm in robotic grasping. It is a supervised learning method that analyzes data and figures

out patterns when used for classification. It is also vastly used for regression analysis

applications. It is a representation of the examples as points in the space. This performs a

mapping such a way that the examples of different categories are separated by a large margin or

gap. This margin is expected to be as wide as possible. When new examples are mapped onto the

same space then the predictive model of SVM determines on which side of the gap that example

belongs. Using Kernel trick, SVM can be used for both linear and non-linear classification. In

44

non-linear classification SVM implicitly models the examples in a higher dimensional space by

employing similar mapping techniques.

Support Vector Machine can be described as an algorithm that forms a hyper-plane or set of

hyper-planes in a high dimensional space. The hyper-plane that provides the largest margin to

the nearest training data examples are known to perform better and lowers the generalization

error. When mapping is done in higher dimensional space in order to keep the computational

complexity simpler, it is mapped such a way that the dot products are easily computed by using

some kernel function, k (x, y). The hyper-planes are defined in a way so that they ensure their

dot products with any vector in that specific space remains constant. SVM algorithm is first

proposed by Vapnik et al. [Vapnik, 1995].

In the later sections, SVM with both Linear and Non-linear kernels are discussed. Degree 3

Polynomial kernel and Radial Basis Function Kernel are used as Non-linear kernels for SVM in

this method. SVM was implemented using scikit-learn in python. [Pedregosa, 2011].

4.4.1 SVM with Linear kernel

In case of a SVM with linear kernel, a data point is described as n-dimensional vector and the

goal is determining whether those points are separated by n-1 dimensional hyper-plane. There

may be more than one hyper-plane that can classify the data points. But, the one that has the

largest separation is chosen as the best hyper-plane between two classes. That is why, the hyper-

45

plane that has the maximum distance from its nearest data point is chosen. If such a hyper-plane

can be found for a problem setting that is known as the maximum-margin hyper-plane.

4.4.2 Parameters used in SVM with linear kernel and Results

The set of Parameters used in the SVM with Linear Kernel is illustrated below

Figure 4-1Confusion Matrix and ROC Curve of Linear SVM

The error estimates like ROC curve and Confusion Matrix obtained from linear Kernel are

displayed in Figure 4-1.

Parameters in Linear SVM

1. C=1

2. Class Weight= None.

46

4.4.3 SVM with Polynomial kernel

In case of a Polynomial kernel a nonlinear function is used as the separating hyper-plane. In this

method a degree 3 polynomial is used to find the best separation.

4.4.4 Parameters used in SVM with Polynomial kernel and Results

The set of parameters used in the polynomial kernel is listed below.

Figure 4-2 Confusion Matrix and ROC Curve of Polynomial SVM

The error estimates like ROC curve and Confusion Matrix obtained from Polynomial Kernel is

displayed in Figure 4-2.

Parameters in Polynomial SVM

1. C=1

2. Class Weight= None.

Equal weight is assigned to each class.

3. Degree=3

4. Gamma=0.001

5. Coefficient=0

47

4.4.5 SVM with Radial Basis Function kernel

It is also a popular kernel function in machine learning algorithms. In this method a very low

gamma value is used and no weight is assigned to any of the classes.

4.4.6 Parameters used in SVM with Radial Basis Function kernel and Results

The set of Parameters used in the SVM with Radial Basis Function Kernel is illustrated below.

Figure 4-3 Confusion Matrix and ROC Curve of RBF SVM

The Error estimates like ROC curve and Confusion Matrix obtained from Polynomial Kernel is

displayed in Figure 4-3.

Parameters in Radial Basis Function SVM

1. C=1

2. Class Weight= None.

Equal weight is assigned to each class.

3. Degree=3

4. Gamma=0.001

5. Coefficient=0

48

4.4.7 Comparison of Error Estimates from Linear, Polynomial and RBF SVM and Discussion

Error Estimate Results obtained from Linear, Polynomial and RBF SVM are tabulated in Table

4-1. The table demonstrates that Linear SVM has better performance than other kernels in terms

of cross validation score, accuracy, F1 score, Precision and ROC Score. Polynomial kernel has

the best recall value than others. In this thesis a 5-fold cross validation is used.

Table 4-1Comparison of Error Estimates from Linear, Polynomial and RBF SVM

Kernel Cross

Validation

Score

Accuracy F1 Score Precision Recall ROC

Score

Linear .899

.910 .912 .931 .894 .910

Polynomia

l

.803

.817 .845 .763 .946 .809

Radial

Basis

Function

.804 .812 .831 .788 .880 .808

4.4.8 Evaluation Metric Results from Linear, Polynomial and RBF SVM

Evaluation metric results from Linear, Polynomial and RBF SVM are displayed in Figure 4-4.

From the Figure it is obvious that Linear SVM achieves the highest Z value as 𝜷 is varied. So,

linear kernel should be chosen over Polynomial and RBF kernel for classification.

49

Figure 4-4 Evaluation Metric Results for Linear, Polynomial and RBF SVM

4.5 Information Gain Parameter Definition for Tree based Learning Algorithms

For tree based learning method information gain parameters play a very important role. Those

parameters are defined here.

4.5.1 Gini Impurity

It measures the correctness of a randomly selected element if it was randomly labeled based on

the label distribution in a dataset. It can be calculated by summing the product of the probability

of how many times each item is chosen and the probability of a mistake in classification.

50

4.5.2 Entropy

Entropy is an information gain property. It determines the average amount of information

contained in an attribute.

4.6 Decision Tree Algorithm

Decision tree learning is a method that is used to approximate discrete-valued target functions.

Here, the learned function is represented by a decision tree. These learning methods are very

popular for inductive inference algorithms. Decision trees classify the instances by sorting them

down the tree from the top node to the bottom node, which is also known as leaf node. Each

node specifies a test of some attribute at each node with some instances and generates a decision.

The method propagates along the tree this way with successive iteration until leaf node is

reached and a decision is generated at the leaf node. This is proposed by Quinlan et al. [Quinlan,

1986]. Decision tree in this method is implemented in scikit-learn. [Pedregosa, 2011]

4.6.1 Parameters used in Decision Tree Algorithm

The set of Parameters used in the Decision Tree Algorithm is illustrated below.

Parameters in Decision Tree Algorithm

1. Splitter= Best

2. Maximum Depth=None

3. Minimum Samples Split=2

4. Minimum Samples at Leaf Node=None

5. Maximum Leaf Nodes=None

6. Information Gain Criteria= Gini, Entropy

7. Maximum Features at each node= 2110, 46, 11

51

The error estimates like ROC curve and Confusion Matrix obtained from linear Kernel is

displayed from Figure 4-5 to 4-10.

Figure 4-5 Confusion Matrix and ROC Curve for Decision Tree Gini using 2110 features at each

node

Figure 4-6 Confusion Matrix and ROC Curve for Decision Tree Gini using 46 features at each node

52

Figure 4-7 Confusion Matrix and ROC Curve for Decision Tree Gini using 11 features at each node

Figure 4-8 Confusion Matrix and ROC Curve of Decision Tree Entropy using 2110 features at each

node

53

Figure 4-9 Confusion Matrix and ROC Curve of Decision Tree Entropy using 46 features at each

node

Figure 4-10 Confusion Matrix and ROC curve of Decision Tree Entropy using 11 features at each

node

54

4.6.2 Comparison of Error Estimates using Decision Tree Algorithm with different Parameters

Table 4-2 suggests that for Decision Tree Algorithm if all the features are used at each node they

will have better performance than others. Though for different estimates the information gain

criteria may vary but if more features are used at each node the better performance is expected.

Quite generally it can be weakly stated that for Decision Tree Algorithms usage of entropy as the

information gain parameter portrays better performance.

Table 4-2 Error Estimates of Decision Tree Algorithm using different Parameters

Information

Gain Criteria

Number of

Features at

each node

Cross

Validation

Score

Accuracy F1

Score

Precision Recall ROC

Score

Gini

2110 .831 .842 .850 .854 .845 .842

Gini

46 .756 .764 .773 .786 .761 .765

Gini

11 .721 .747 .757 .766 .749 .747

Entropy

2110 .852 .843 .853 .845 .860 .842

Entropy

46 .775 .779 .792 .786 .798 .778

Entropy

11 .726 .751 .767 .757 .778 .750

55

4.6.3 Performance Metric Results from Decision Tree Algorithms

Figure 4-9 illustrates the performances of decision tree algorithm with varied parameter. From

Table 4-2 it was seen that if more features are used, better the error estimates be. But, it could not

provide any clear distinction which information gain criteria should be used. The Z performance

metric indicates that Decision Tree that applies 2110 features at each node operating with

entropy criteria will have the highest Z value or the best performance than others.

Figure 4-11 Performance Metric Results for Decision Tree Algorithm using Different Criteria

56

4.7 Adaboost Algorithm

Adaboost Classifier is a meta-estimator. It begins with by fitting a classifier on the original

dataset. It then tries to fit additional copies of the classifier on the same dataset. In this step the

weights, which were incorrectly classified are adjusted such a way so that later classifiers can

concentrate more on difficult cases. It was first proposed by Freund et al. [Freund, 1999].

Adaboost algorithm is implemented using scikit-learn [Pedregosa, 2011] in python.

4.7.1 Parameters used in Adaboost Algorithm

The set of Parameters used in the Adaboost algorithm is illustrated below.

 The error estimates like ROC curve and Confusion Matrix obtained from linear Kernel is

displayed from Figure 4-12 to 4-17.

Parameters in Adaboost Algorithm

1. Base Estimator= Decision Tree Classifier

2. Number of Estimators= 32, 64, 128,256, 512, 1024

3. Learning Rate =1

4. Algorithm=’SAMME’

57

Figure 4-12 Confusion Matrix and ROC Curve using Adaboost with 32 base estimators

Figure 4-13 Confusion Matrix and ROC curve using Adaboost with 64 base estimators

58

Figure 4-14 Confusion Matrix and ROC Curve using Adaboost with 128 base estimators

Figure 4-15 Confusion Matrix and ROC Curve using Adaboost with 256 base estimators

59

Figure 4-16 Confusion Matrix and ROC Curve using Adaboost with 512 base estimators

Figure 4-17 Confusion Matrix and ROC Curve using Adaboost with 1024 base estimators

60

4.7.2 Error Estimates from Adaboost Algorithm

Error estimates for Adaboost with different number of base estimators are listed in Table 4-3.

This indicates, the one with the highest base estimators will have better error estimate results.

This table also indicates that optimizations are not achieved. Because, if that would have

happened then Adaboost should have stopped earlier and there should have been some

convergence achieved in the results.

Table 4-3 Error Estimates from Adaboost Algorithm using different Base Estimators

Number of

Estimators

Cross

Validation

Score

Accuracy F1 Score Precision Recall ROC

Score

32

.883 .879 .885 .886 .884 .879

64

.895 .891 .897 .899 .894 .891

128

.906 .914 .918 .923 .914 .914

256

.911 .920 .924 .928 .920 .920

512

.910 .919 .923 .926 .920 .924

1024

.913 .926 .930 .933 .927 .926

61

4.7.3 Performance Metric Results on Adaboost Algorithm

Performance Metric results for Adaboost with different number of base Estimators are displayed

in Figure 4-14. From the performance metric the exact opposite result is noticed than in Table 4-

3. Here, highest Z value is achieved using the minimum of base estimators, in this case 32.

Figure 4-18 Performance Metric Result for Adaboost Algorithm using different Base Estimators

62

4.8 Random Forest Algorithm

A Random Forest Algorithm is an ensemble learning approach. It is also a meta-estimator. It fits

a number of decision tree classifiers on various sub-sections of the dataset. It uses an averaging

in order to improve the predictive accuracy and to control over-fitting. Random Forest Algorithm

was first proposed by Breiman et al. [Breiman, 2001].

4.9 Evaluation of Dataset to select range of Number of Trees

For a random forest algorithm a very basic question is “How many numbers of trees should be

used in a Random Forest”? Oshiro et al. [Oshiro, 2012] proposed a density based metric that is

used to quantify the quality of a dataset. Using that metrics an estimation of the number of trees

are also approximated. This thesis also follows the similar approach to quantify the quality of the

dataset and select a range of number of decision trees for random forest algorithm.

𝐷1 = 𝑙𝑜𝑔𝑎𝑛 = 1.112 … … (4.7)

𝐷2 = 𝑙𝑜𝑔
𝑎

𝑛
𝑐

= 1.022 … … (4.8)

𝐷3 = 𝑙𝑜𝑔
𝑎

𝑛+1
𝑐+1

= .9621 … … (4.9)

Here,

a= number of features=2110

c=number of classes=2

n= number of training examples=5000

63

According to Oshiro et al. [Oshiro, 2012] if the value of the density based metrics are greater

than 1 then the dataset can be classified easily, which is our case for first two metrics. But, for

the last one it is less than 1. So, we start with a tree number of 32 and double the number of trees

every time unless we see some convergence in their error estimates.

4.9.1 Weighted random Forest Algorithm used in this Method

In this method a weighted random forest algorithm is used to improve the predictive

performance. According to Winham et al.[Winham, 2013] Weighted random forest algorithm has

significant improvement in prediction over un-weighted random forest algorithm. In this method

a weight is defined such a way so that it can also give enough emphasize to the feature that has

more distinctive properties. The weight, w is defined as

𝑤 = 𝑛𝑣 × 𝑓𝑠𝑎𝑣𝑔
… … (4.10)

Here,

𝑤 =weight

𝑛𝑣 = Number of majority votes for a class

𝑓𝑠𝑎𝑣𝑔
= average score of the most important features

The weighted random forest algorithm is implemented using the un-weighted random forest code

,librf, a C++ implementation of original Random Forest proposed by Breiman et al. [Breiman,

2001], developed by Lee et al. [Lee, 2007].

64

4.9.2 Parameters used in Random Forest Algorithm

The set of Parameters used in Random Forest Algorithm is illustrated below.

4.9.3 Error Estimate Results from Random Forest Algorithm using Gini

The error estimates like ROC curve and Confusion Matrix obtained from Random Forest

Algorithm using Gini Criteria are displayed in the Figure 4-19 to 4-30.

Figure 4-19 Confusion Matrix and ROC Curve of Random Forest Gini using 32 Trees and 46

features at each node

Parameters in Random Forest Algorithm

1. Number of Estimators=32,64,128,256,512,1024

2. Maximum Depth=None

3. Minimum Samples Split=2

4. Minimum Samples at Leaf Node=None

5. Maximum Leaf Nodes=None

6. Information Gain Criteria= Gini, Entropy

7. Maximum Features at each node= 46,11

8. Bootstrapping= On

65

Figure 4-20 Confusion Matrix and ROC Curve using Random Forest Gini using 32 Trees and 11

features at each node

Figure 4-21 Confusion Matrix and ROC Curve using Random Forest Gini using 64 Trees and 46

features at each node

66

Figure 4-22Confusion Matrix and ROC Curve using Random Forest Gini using 64 Trees and 11

features at each node

Figure 4-23 Confusion Matrix and ROC Curve using Random Forest Gini using 128 Trees and 46

features at each node

67

Figure 4-24 Confusion Matrix and ROC Curve using Random Forest Gini using 128 Trees and 11

features at each node

Figure 4-25 Confusion Matrix and ROC Curve using Random Forest Gini using 256 Trees and 46

features at each node

68

Figure 4-26 Confusion Matrix and ROC Curve using Random Forest Gini using 256 Trees and 11

features at each node

Figure 4-27 Confusion Matrix and ROC Curve using Random Forest Gini using 512 Trees and 46

features at each node

69

Figure 4-28 Confusion Matrix and ROC Curve using Random Forest Gini using 512 Trees and 11

features at each node

Figure 4-29 Confusion Matrix and ROC Curve using Random Forest Gini using 1024 Trees and 46

features at each node

70

Figure 4-30 Confusion Matrix and ROC Curve using Random Forest Gini using 1024 Trees and 11

features at each node

Error Estimates for different Parameters of Random Forest Algorithm using Gini Information criteria are

compared in Table 4-4. It can be stated that best error estimates are achieved as higher number of trees are

used and with higher number of features at each node. It is also noted that, it tends to converge at some

point which indicates, growing trees beyond that would not be wise.

71

Table 4-4 Error Estimates obtained for different parameters of Random Forest Algorithm using

Gini Criteria

Informa

tion

Gain

Criteria

Number

of Trees
Number

of

Features

at each

node

Out of

Bag

Score

Accurac

y
F1 Score Precisio

n
Recall ROC

Score

Gini

Index

32

46

.885 .915 .918 .931 .906 .915

11

.861 .901 .905 .915 .895 .901

64 46

.902 .925 .929 .936 .921 .926

11

.881 .904 .909 .916 .902 .905

128 46

.913 .928 .931 .934 .928 .928

11

.901 .912 .916 .920 .911 .912

256 46

.921 .927 .930 .934 .927 .927

11

.906 .907 .919 .923 .924 .918

512 46

.921 .933 .936 .940 .935 .935

11

.906 .916 .920 .924 .915 .916

1024 46

.923 .935 .939 .940 .935 .935

11

.911 .919 .923 .926 .920 .919

4.9.4 Error Estimate Results from Random Forest Algorithm using Entropy Criteria

The error estimates like ROC curve and Confusion Matrix obtained from Random Forest

Algorithm using Entropy Criteria are displayed in Figure 4-31 to 4-42.

72

Figure 4-31 Confusion Matrix and ROC Curve of Random Forest Entropy with 32 trees using 46

features at each node

Figure 4-32 Confusion Matrix and ROC Curve of Random Forest Entropy with 32 trees using 11

features at each node

73

Figure 4-33 Confusion Matrix and ROC Curve of Random Forest Entropy with 64 trees using 46

features at each node

Figure 4-34 Confusion Matrix and ROC Curve of Random Forest Entropy with 64 trees using 11

features at each node

74

Figure 4-35 Confusion Matrix and ROC Curve of Random Forest Entropy with 128 trees using 46

features at each node

Figure 4-36 Confusion Matrix and ROC Curve of Random Forest Entropy with 128 trees using 11

features at each node

75

Figure 4-37 Confusion Matrix and ROC Curve of Random Forest Entropy with 256 trees using 46

features at each node

Figure 4-38 Confusion Matrix and ROC Curve of Random Forest Entropy with 256 trees using 11

features at each node

76

Figure 4-39 Confusion Matrix and ROC Curve of Random Forest Entropy with 512 trees using 46

features at each node

Figure 4-40 Confusion Matrix and ROC Curve of Random Forest Entropy with 512 trees using 11

features at each node

77

Figure 4-41 Confusion Matrix and ROC Curve of Random Forest Entropy with 1024 trees using 46

features at each node

Figure 4-42 Confusion Matrix and ROC Curve of Random Forest Entropy with 1024 trees using 11

features at each node

Error Estimates for different Parameters of Random Forest Algorithm using Entropy Criteria are

compared in Table 4-5. From Table 4-5 it is observed that best error estimates are achieved with

78

higher number of trees and they also tend to converge at some point (after 256 trees, more

evident after 512 trees).

Table 4-5 Error Parameters obtained for different parameters of Random Forest Algorithm using

Entropy Criteria

Informa

tion

Gain

Criteria

Number

of Trees
Number

of

Features

at each

node

Out of

Bag

Score

Accurac

y
F1 Score Precisio

n
Recall ROC

Score

Entropy

32

46

.887 .919 .922 .933 .911 .919

11

.855 .904 .908 .921 .895 .904

64 46

.903 .926 .929 .936 .923 .926

11

.885 .908 .912 .919 .906 .908

128 46

.886 .915 .918 .934 .902 .916

11

.893 .913 .917 .932 .902 .914

256 46

.917 .931 .934 .943 .925 .931

11

.905 .918. .922 .928 .916 .918

512 46

.921 .923 .926 .931 .922 .932

11

.913 .923 .926 .931 .922 .933

1024 46

.921 .932 .935 .944 .926 .932

11

.906 .919 .923 .929 .916 .919

79

4.9.5 Performance Metric Results from Random Forest Algorithm with Different Number of Trees

Performance Metric results for Random Forest Algorithm using different number of Trees are

displayed from Figure 4-43 to Figure 4-48.

4.9.5.1 Random Forest with 32 Trees

When comparing the error estimates it was observed that best results were achieved with higher

number of features at each node. But, here it can be seen that with Entropy gain criteria and 11

features at each node best performance is achieved.

Figure 4-43Comparison of Performance Metric Results of Random Forest Algorithm using 32

Trees

80

4.9.5.2 Random Forest with 64 Trees

For 64 trees using Gini Criteria and 11 features at each node, best performance is achieved. This

achieves a very high Z-value when 𝜷 is varied.

Figure 4-44 Comparison of Performance Metric Results of Random Forest Algorithm using 64 Tree

4.9.5.3 Random Forest with 128 Trees

For 128 trees using Gini Criteria and 46 features at each node, best performance is achieved. It is

quite interesting to note that the best performance metric value by a decision tree is similar to

that of using Random forest with 128 trees. Highest performance metric value is 2.6.

81

Figure 4-45 Comparison of Performance Metric Results of Random Forest Algorithm using 128

Trees

4.9.5.4 Random Forest with 256 Trees

For 256 trees using Gini Criteria and 11 features at each node best performance is achieved.

With 256 trees for almost all parameters the performance metric degrades in comparison with

number of trees fewer than 256. It is believed that this is the starting point where a large number

of decision trees start to generate heavy computational effect which is responsible for

performance degradation.

82

Figure 4-46 Comparison of Performance Metric Results of Random Forest Algorithm using 256

Trees

4.9.5.5 Random Forest with 512 Trees

For 512 trees using Entropy Criteria and 11 features at each node best performance is achieved.

Though it was observed that, for some of the error estimates measure it achieved the highest

value but the overall performance is low. This is due to the high computation time because of

using large number of trees.

83

Figure 4-47 Comparison of Performance Metric Results of Random Forest Algorithm using 512

Trees

4.9.5.6 Random Forest with 1024 Trees

For 1024 trees using Gini Criteria and 11 features at each node best performance is achieved.

This also performs poorly because of very high computational cost.

84

Figure 4-48 Comparison of Performance Metric Results of Random Forest Algorithm using 1024

Trees

4.10 Selection of the Best Algorithm with Optimal Parameters

The best algorithm is selected based on the value of Z at highest 𝜷 value. For each algorithm the

best one with optimal parameter is selected and their values are compared.

85

Table 4-6 Selection of Best Algorithm with Optimal Parameters

Algorithm with Best Parameter Highest Z- Value

Linear SVM 2.1 (Range= 0.9-2.1)

Decision Tree (Entropy, 2110 features at each

node)

2.5 (Range= 0.9-2.5)

Adaboost (32 base estimators) 1.6 (Range= 0.8-1.6)

Weighted Random Forest (Gini, 11

features at each node, 64 Trees)

2.7 (Range= .9-2.7)

So, it can be seen from Table 4-6 that Weighted Random Forest with Gini criteria, 11 features at

each node and 64 trees has highest Z- value= 2.7. So, this algorithm will be used for developing

Grasping Algorithm in this system.

4.11 Selection of Most Significant Features

Earlier to this chapter, a feature extraction technique was employed that yielded 2110 features.

Using so many features is computationally very expensive. That is why a variable importance

method is employed to reduce the feature space. Using the variable importance technique

discussed by Breiman et al. [Breiman, 2001] the feature space is reduced.

Scores were extracted for each variable (feature). The following procedure was followed to

select the most important variables based on their scores

86

Figure 4-49 Important Variable Selection Algorithm

Start

Compute the score of the features,

𝐹𝑠 using variable importance

Compute the mean score, 𝑚𝑠 of all

the features

Is 𝐹𝑠 − 𝑚𝑠 > .2

Current Feature

Number=1

Consider it

Finish

Is Current feature Number=

Maximum Feature Number?

Discard

it

Current Feature

Number=Current

Feature Number

+1

No

Yes

No

Yes

87

In this way total 715 features are selected. The grasping algorithm is trained and tested using

these 715 features. So, the parameters of the best algorithm is as follows

4.12 References

T. M. Oshiro, P. S. Perez, J. A. Baranaukas. Lecture notes in Computer Science, 2012, DOI:10.

1007/978-3-642-31537-4_13

L. Breiman. Machine Learning, 45, 5-32, 2001.

Y. Freund, R. E. Schapire. A Short Introduction to Boosting. Journal of Japanese Society for

Artifical Intelligence, 14 (5): 771-780, September, 1999.

J. R. Quinlan. Introduction of Decision Trees. Machine Learning 1: 81-106, 1986.

Selected Algorithm (Weighted Random Forest) with optimal parameters

1. Number of Estimators=64

2. Maximum Depth=None

3. Minimum Samples Split=2

4. Minimum Samples at Leaf Node=None

5. Maximum Leaf Nodes=None

6. Information Gain Criteria= Gini

7. Maximum Features at each node= 𝑙𝑜𝑔2 (715)=10

8. Bootstrapping= Off

88

B. Lee, librf: A library for random forests, 2007, http;//mtv.ece.ucsb.edu/benlee/librf.html

S. J. Winham, R. R. Freimuth, J. M. Biernacka. A Weighted Random Forest Approach to

Improve Predictive Performance, 2013. Stat Anal Data Min, 6(6): 496-505. Doi:

10.1002/sam.11196

V. Vapnik, C. Cortes. Support Vector Networks. Machine Learning. Vol. 20. Issue 3. Pp. 273-

297, 1995

F. Pedregosa et al. Scikit-Learn: Machine Learning in Python. JMLR 12, pp. 2825-2830, 2011.

S. Ali, K. A. Smith. On Learning Algorithm Selection for Classification. Applied Soft

Computing 6 (2006) 119-138.

89

CHAPTER 5: GRASPING ALGORITHM

5.1 Introduction

The grasping algorithm developed in this system takes a 2-D image and an aligned depth map of

the object to be grasped as the input and outputs a rectangular region on the 2-D image that

corresponds to the best grasping rectangular region as determined by the system. The input is

referred as a single image with four values at each pixel-RGBD-where D represents the depth.

There will be a lot of rectangles on an object which will correspond to a valid grasping rectangle.

The goal of this method is to find the optimal grasping rectangle on the object. This method is

motivated by Jiang et al. [Jiang, 2011]. The score function definition and the design of grasping

algorithm are extracted from Jiang et al. [Jiang, 2011]. This method differs from the above

mentioned method in terms of the number of features used to calculate the score function and

weight, w is learned from a weighted random forest algorithm instead of svm-rank proposed

there. For the purpose of better understanding definition of score function, fast search procedure

and algorithm iteration steps are described here too from Jiang et al. [Jiang, 2011]. Code for

grasping with rectangle representation by Jiang et al. [Jiang, 2011] is used and integrated with

weighted random forest algorithm that learns from selective image and point cloud feature.

The selection of the optimal rectangle is done using a score function quantitatively. So, the aim is

to find out a rectangle that has the highest score. The score function is defined using the feature

values of a rectangle which is described later in detail in this chapter. To compute the score

function of a rectangle, it is needed to consider all the rectangles on an image. It is quite

infeasible to perform an exhaustive search on an image that takes into account all the rectangles.

90

The computational complexity will be huge and the system will not be of practical use. As, the

present system aims at development of a method that will replace human operators in regular

setting and serve the basic purposes of assistive robotics, it is needed to consider an approach

that will perform this score function computation as fast as possible.

In order for fast computation of a score function this methods uses an approach that computes

both the score and the feature values in an incremental fashion. This method of computing score

function narrows down the search space significantly. In order to meet this requirement some

more computationally expensive features need to be avoided from the feature extraction step.

This also poses another problem of losing more informative feature that carries higher

significance. So, a trade-off is needed to balance off between the accuracy and speed of the

grasping system. This challenge is addressed in this method by the use of a two-step process as

in Jiang et al. [Jiang, 2011].

In the first step, features which allow incremental computation of the score function are used.

Features like Color, Edge, Texture, Depth, Surface Normal, Curvature, and View Point Feature

Histogram Descriptors fall to this category. Usage of these features allows reducing the search

space from tens of millions down to hundred rectangles. Then in the second-step, more

exhaustive and sophisticated features are used and the optimal rectangle is captured. All the non-

linear features used in this method are applied in this step. Here the first step is little inaccurate

but very fast while the second-step is more accurate and little slow. This chapter deals with the

detailed description of the grasping algorithm, implementation of the method and demonstrates

91

the training and testing results obtained from University of Central Florida Computational

Control Systems Laboratory and Cornell University Personal Robotics Dataset.

5.2 Chapter Objectives

 Definition of the Score Function.

 Computation of Score Function in an Incremental Fast Search Procedure.

 Design of the Grasping Algorithm.

 Training the system that enables learning to select a grasping rectangle on an object.

 Testing of the system.

 Demonstration of Experimental Results on Cornell University Dataset

 Demonstration of Experimental Results on Central Florida Computational Control

Systems Laboratory Dataset

 Analyze the System Performance using an Evaluation Metric.

5.3 Learning a Score Function

5.3.1 Definition of a Score Function

Let, a rectangle is denoted by G and its corresponding score function is denoted by 𝐟(𝐆). The

goal of this method is to find an optimal rectangle, G* that has the maximum score value. This

can be numerically demonstrated as

𝐺∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝐺 𝑓(𝐺) … … (5.1)

Score function, 𝐟(𝐆) can be defined as

 𝑓(𝐺) = 𝑤𝑇⏀(𝐺) = ∑ 𝑤𝑖

𝑖=𝑘

𝑖=1
⏀𝑖(𝐺) … … (5.2)

Here, 𝑓 is defined as a linear function of features. This is quite a common technique for machine

learning algorithms [Cortes, 1995]. In addition to that, it also allows the method to be simple.

This also ensures that the search process is accelerated which is discussed later. ⏀(𝑮) denotes

92

the feature value of a rectangle G. 𝒘 denotes the weight which is learned using Weighted

Random Forest Algorithm. This similar technique is motivated by other researchers. In those

methods they showed that generalization is achieved using some sort of learning algorithms. This

is more robust than some hand-written rules or manually computed parameters for a few

features.

In our supervised Random Forest Algorithm, we noted that there will always be more than one

good grasp on an object. But, among them one or some will be more desirable. These will

provide more robustness into the system and allow performing manipulation on the object. This

provides a distinction between a good grasp and a bad grasp but still does not provide the exact

separation. That is why this method focuses on ranking the grasping regions based on the

attributes used rather than classifying the good and bad grasping regions. The one that has the

highest score is considered to be of rank 1.

5.3.2 Computing of a Score Function

In a view to find the rectangle that has the highest score performing exhaustive search method to

compute score value of all the rectangles is quite expensive and infeasible. This method comes

into action in case of finding a suitable grasping point. But for searching a rectangle with highest

score this method uses a definitive fast search approach. Here, the problem of finding the highest

score is similar to the very classic problem of finding the maximum-sum sub matrix [Bentley,

1984]. To compute maximum sum sub matrix various efficient algorithms are presently

available. In order to solve the problem more efficiently the score value of each rectangle is

93

decomposed as a sum of scores of each pixel in that rectangle [Jiang, 2011]. The usage of the

linear function while defining the score, facilitates in achieving this decomposition of score as

the sum of scores of individual pixels. Now, the problem is also less complex. It needs to find the

score value at each pixel on a rectangle. Then the sum of those values is the score of that

rectangle.

5.3.3 Assumption

Let, the score function f(G) of a rectangle G is known. We assume the features are additive.

Numerically it is illustrated as,

𝑖
(G ∪△ G) =

𝑖
(𝐺) + 𝑖(△ 𝐺) … … (5. 3)

 Let, 𝐺′ = 𝐺 ∪△ G. Then, the score of the new rectangle 𝐺′can easily be computed as,

𝑓(𝐺′) = 𝑓(𝐺 ∪△ 𝐺) … … (5.4)

It can be further expanded as,

𝑓(𝐺′) = ∑ 𝑤𝑖
𝑖=1

𝑖=𝑘

𝑖
(𝐺 ∪△ 𝐺) = 𝑓(𝐺) + 𝑓(△ 𝐺) … … (5.5)

So, this method needs to only compute, 𝐟(△ 𝐆) only instead of computing for the entire

rectangle. This way, search space is reduced significantly and allows the computational speed to

be very fast.

Here, the feature value ⏀(𝐆) can be simplified as,

94

𝑖
(𝐺) = ∑

𝑖
(𝑥,𝑦)∈𝐺

(𝐼(𝑥, 𝑦)) … … (5.6)

 This indicates that feature value, ⏀(𝐆) at each rectangle is determined as the sum of feature

values at each pixel.

5.3.4 Incremental Search Procedure

The incremental search process allows computing the score of all the rectangles in an extensively

fast manner. This is described in using the expansion of the score function below. This is a

method extracted from Jiang et al. [Jiang, 2011] and proposed by Joachims et al. [Joachims,

2002]. Let, we want to compute the score function, 𝐟(𝐆) of rectangle G from k number of

features.

𝑓(𝐺) = ∑ 𝑤𝑖𝑖

𝑖=𝑘

𝑖=1

(𝐺) … … (5.7)

So, 𝑓(𝐺) was defined as the sum of the products of weight and feature value for all the features.

𝑓(𝐺) = ∑ ∑𝑥=𝑟𝐺

𝑥=𝑟𝐺+𝑛𝐺
𝑖=1

𝑖=𝑘

∑ 𝑤𝑖𝑖
(𝐼(𝑥, 𝑦))

𝑦=𝑐𝐺

𝑦=𝑐𝐺+𝑚𝐺

… … (5.8)

𝐟(𝐆), can also be written this way. Here x indicates the range of rows and y indicates the range of

columns. Feature value of a rectangle, ⏀(𝐆) is expanded as it is the summation of feature value

at each pixel (x, y) in image I. After interchanging we get,

𝑓(𝐺) = ∑𝑥=𝑟𝐺

𝑥=𝑟𝐺+𝑛𝐺 ∑ ∑ 𝑤𝑖
𝑖=1

𝑖=𝑘

𝑖
(𝐼(𝑥, 𝑦)) … … (5.9)𝑦=𝑐𝐺

𝑦=𝑐𝐺+𝑚𝐺

95

𝑓(𝐺) = ∑𝑥=𝑟𝐺

𝑥=𝑟𝐺+𝑛𝐺 ∑𝑦=𝑐𝐺

𝑦=𝑐𝐺+𝑚𝐺 𝐹(𝑥, 𝑦) … … (5.10)

Here, a new function 𝐅(𝐱, 𝐲) is defined, which indicates the score value at each pixel (x, y). So,

the algorithm is shown in Figure 5-1

.

Figure 5-1 Incremental Fast Search Algorithm Used in this System

5.4 Background Subtraction using Mixture of Gaussian Model

Background Subtraction is one of the significant preprocessing steps in grasping region

selection. For this method it is assumed that when the system will be implemented in practice

there will be some computer vision algorithm available to address this issue. As this method

96

entirely focuses on implementation of a grasping rectangle selection for any novel object using

Random Forest Algorithm so, a simple background subtraction algorithm is used here. This

Approach is followed being inspired by Lim et al. [Lim, 2010]. In order to use such background

subtraction algorithm, a 2D image of the scene without the object is also used along with the 2D

image of the object as input. This method facilitates the use of a simple Mixture of Gaussian

Background Subtraction Algorithm in OpenCV [Bradski, 2000]. The result is shown in Figure 5-

2.

Mixture of Gaussian Background/Foreground Segmentation Algorithm was used for background

subtraction. Here, a method is used that models each background pixel by a mixture of k

Gaussian distributions. K value is used as 5. The weights in the mixture represent the time

proportions. This indicates that those colors stay in the scene. The colors which are more static

and stay for long are the probable background colors.

97

Figure 5-2 Background Subtraction result using Mixture of Gaussian subtraction Algorithm. The

top left image is background, the one on the right is the image of the object and the bottom image

illustrates the foreground mask after subtracting the background from the foreground

98

5.5 Algorithm

Figure 5-3 Algorithm used for Finding Best Grasping Rectangle

The grasping algorithm is showed in Figure 5-3. The algorithm first performs the background

subtraction. It creates a foreground mask on the object. This region is used to extract features.

After computation of score function it selects the best rectangle that has the highest score. After

Start

Perform Background Subtraction

Select Region of Interest

Extract Features

Calculate the score function

Select the Best Rectangle

Finish

99

the entire sequence is completed for an orientation the image is rotated 20 degrees with the

image plane and performed again until 360 degrees.

5.6 Hardware Setup

This method is intended to be used for grasping novel objects using Parallel plate Gripper of

Baxter Research Robot by Rethink Robotics Inc.. Baxter Head Camera was used for capturing

the 2D image of the object. The resolution of the image is 640 x 400, has a frame rate of 30

frames per second and focal length of 1.2 mm. In order to capture the point cloud Baxter Head

Sonar ring was used. The algorithm was implemented in a 2.6 GHz Intel Core i5 processor that

uses Virtual Box with 32 bit Ubuntu 10.04 and 4GB RAM.

5.7 Evaluation Metric

In order the implemented grasp to be successful it needs to satisfy several criteria. In this method

the criterions are used from Jiang et al. [Jiang, 2011] and Saxena et al. [Saxena, 2006]. The same

criterions are followed in the evaluation metric like these approaches but this method imposed

more stringent conditions on the metric. The criterions followed in the above methods are

described below:

 The centroid of the Parallel Plate Gripper should be at the correct location.

 All of the three orientation angles should be correct.

 The area should have sufficient width so that the Parallel Plate Gripper can be placed

while performing the grasping.

100

These factors have a mutual interplay between them. One center point will not work for all the

orientations [Jiang, 2011]. The evaluation metric used in this method uses both Point Metric and

Rectangle Metric to measure the performance of the algorithm.

5.7.1 Point Metric

 In this method a Rectangular Region is used for prediction. At first, the center of the rectangle is

computed. If the distance of the center of the rectangle is within a certain threshold in

comparison with the ground truth rectangle, then it is considered to a correct prediction using as

described in Point Metric [Saxena, 2006].

5.7.2 Rectangle Metric

Let us consider, G is the predicted Rectangle and G* is the Ground Truth Rectangle. For our

performance analysis we made some modification in the evaluation metric algorithm and

introduced some stringent conditions. These are discussed below:

 First Pass: If the predicted Rectangle G has an orientation difference of greater than 20

degrees with ground truth rectangle G* then it will be considered as incorrect prediction.

 Second Pass: If the amount of area of overlap between G and G* are less than 30% then

this also falls to the incorrect prediction category.

In case of multiple grasping rectangles each one is considered and evaluated. The one

with the best result (maximum area overlap and minimum orientation difference) is used

for the computation of the system performance.

101

5.8 Experimental Results

In this method Training is performed on the Cornell University Grasping Dataset. The system is

tested on both Cornell University Dataset and Computational Control Systems Laboratory at

University of Central Florida Dataset.

5.9 Training Dataset

Cornell University Personal Robotics Dataset is used for Training. In this method out of 285

objects 200 objects were used for Training. A sample of the dataset is illustrated in Figure 5-4,

which is collected from Cornell University Website.

Figure 5-4 Screenshot of Some Objects of Cornell University Personal Robotics Dataset from

Personal Robotics Website used for Training

102

5.10 Testing Results

Testing is performed on 15 different objects of Computational Control Systems Laboratory at

University of Central Florida Dataset. Some of the Positive Results are displayed in Figure 5-5.

Figure 5-5 Grasping Rectangles on Computational Control Systems Laboratory University of

Central Florida Dataset (From top left clockwise: Can, Holder, Tea, Window Cleaner, Soap

(orientation 1), Soap (orientation 2), Toothpaste and Remote)

103

Table 5-1 Result on Cornell University Dataset

Dataset Object Specific

Training

Two Step RGBD

(Image + Point

Cloud + FPFH)

Features

Prediction Rate

(%)

General Training

Two Step RGBD

(Image + Point

Cloud + FPFH)

Features

Prediction Rate

(%)

Object Specific

Training

Two Step RGBD

(Image + Point

Cloud + VFH)

Features

Prediction Rate

(%)

General

Training

Two Step RGBD

(Image + Point

Cloud + VFH)

Features

Prediction Rate

(%)

Remote 88.4 91.6 80 88

Marker 91.2 86.2 91.4 89.6

Pencil Bag 76.4 74 81.2 72.8

Bulb 82.4 84.4 82.4 78.6

Screwdriver 100 80 100 100

Brush 100 82.4 100 92.4

Lid 61.2 56 71.3 60.4

Box 56.8 33.2 60.5 57.9

Shoe 34.8 57.6 49 38.1

Average 76.8 72.68 79.2 75.2

104

Table 5-2 Result on Computational Control System Laboratory University of Central Florida

Dataset

Dataset Object Specific Training

Two Step RGBD

(Image+ Point Cloud+ VFH)

Features

Prediction Rate (%)

General Training

Two Step RGBD

(Image+ Point Cloud+ VFH)

Features

Prediction Rate (%)

Remote 100 100

Soap 100 100

Toothpaste 100 100

Camera 100 100

Can 100 100

Pen 100 100

Window Cleaner 100 100

Multimeter 0 0

Complex Penholder 100 0

Average 93.33 86.64

105

5.11 Discussion

This method uses 715 features to compute the score function. Out of these 715 features, 576 are

image features, 85 are point cloud features and 54 are VFH features. From Table 5-1, it is quite

evident that using VFH Features there is an increase in the algorithm performance than FPFH

features. From Table 5-1 it can also be seen that using VFH feature for object specific and

general testing there is an average of 2.46% performance increase is observed.

It can be seen from the above two charts that, the method performs better for UCF

Computational Control Systems Laboratory dataset than Cornell University Personal Robotics

Dataset. This may be due to large variability of objects used in Cornell dataset and contains more

complex shaped object. From UCF dataset result, it can be observed that mostly the rectangles

are aligned horizontally with respect to the image plane. So, it does not work very well for pose

estimation. But, it is very efficient in finding the suitable grasping rectangle from an unknown

object.

From Table 5-1 it is observed that it performs poorly in comparison with others for lid, boxes

and shoes. This method performs very well for Screwdriver, Toothbrush, Remote and Marker.

These are the type of objects where there is a large flat area can be found. It is very capable of

finding a good gasping region from these kinds of objects.

106

From Table 5-2 it is obvious that it performs well for some plain shaped objects but it fails for

multimeter and penholder. Though using object specific training for penholder performance is

increased, but it can never find a suitable grasping region on a multimeter. In Figure 5-6

unsuccessful results on UCF dataset is shown. For multimeter it finds a region on the wire, which

is not a valid grasping point as determined by the evaluation metric.

Figure 5-6 Unsuccessful grasping result on multimeter

Figure 5-7 Unsuccessful grasping result on a Penholder

107

The method developed in this dataset is computationally very fast. In a 32 bit machine it takes

24.80 seconds on an average to detect the grasping rectangle. Using a better configuration

machine will certainly improve the run time.

5.12 References

Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Images: Learning using a

new Rectangle Representation. ICRA, pp. 3304-331, 2011.

A. Saxena, J. Driemeyer and A. Ng. Robotic Grasping of Novel Objects using Vision. IJRR, vol.

27, no.2, Multimedia Archives, 2008, p. 157.

A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. 2006. Robotic grasping of novel objects:

NIPS, 2006.

J. Bentley. Programming Pearls: algorithm design techniques. Commun. ACM, vol. 27, no .9,

pp. 865-873, 1984.

A. Saxena, J. Driemeyer, J. Kearns, C. Osondu and A. Y. Ng, Learning to grasp Novel objects

using Vision, ISER, 2006.

G. Bradski, OPENCV_LIBRARY, Dr. Dobb’s Journal of Software Tools, 2000, 2236121.

108

T. Joachims. Optimizing Search Engines using clickthrough data. SIGKDD, 2002.

C. Cortes and V. Vapnik. Support Vector Networks. Machine Learning. Vol. 20, no. 3, pp 273-

297, 1995.

109

CHAPTER 6: CONCLUSION AND FUTURE SCOPE OF RESEARCH

6.1 Introduction

The principle focus of this method was to develop a system that can work beside human in day to

day settings. This method intended to find a grasping region that would ensure robust grasp. So,

it can be said that this method serves as a very efficient approach towards robotic manipulation

of objects. While developing the method, it also considered to make the system computationally

fast and reliable. This chapter focuses on providing a general overview of the developed system

and directs a pathway that will be followed to achieve the intended goal of assistive robotics in

future.

6.2 Chapter Objectives

 Discussing the summary of the entire work

 Discussion of the novel contribution in the field of Robotic Grasping Research proposed

and implemented in this thesis.

 Discussion of the future scope of research using this approach.

6.3 Summary of the Grasping System

The grasping system developed in this method utilizing weighted random forest algorithm has

significantly high accuracy in detecting a rectangular grasping region on any unknown objects.

The method also has a significantly low run time and has every potential to be extended for a real

time system. Like all other supervised learning methods, this one can also be divided into two

parts: Training and Testing.

110

Here Training is performed offline. A feature extraction step is performed prior to training. This

can be considered as a pre-training step. A total of 2110 features are extracted from positive and

negative labeled rectangles. Among the features more than two-third are image features and the

rest are point cloud features. It has been shown that, image features are more distinctive than

point cloud features in selection of grasp region.

In order to perform training a supervised algorithm selection step is performed. Performance

evaluation metric was employed to choose the best algorithm with optimal parameters from svm,

decision tree, adaboost and weighted random forest algorithm with associated optimal

parameters. After selection of the proper algorithm, training is performed using Cornell

University Personal Robotics Dataset. A classification is also performed on Cornell University

Dataset using the most important features for evaluation purposes and made sure they can be

used for testing in the grasping algorithm.

Once the training is done, the system is tested using a grasp algorithm. The grasp algorithm was

developed in such a way, that it finds out the best rectangular grasping region on any unknown

object using most important image and point cloud features utilizing the weights learned from

the Random Forest Algorithm and score function defined. This method also ensured scoring of

the rectangle is performed in a very fast and efficient manner. This method very closely follows

the technique proposed at Jiang et al [Jiang, 2011] and Lenz et al. [Lenz, 2013].

111

6.4 Innovations in this Method

The novel ideas presented in this method are

 Implementation of Viewpoint Feature Histogram Descriptors in autonomous grasping

algorithm

 Proposal of weights in the Random Forest Algorithm

 Usage of the most important variables from Random Forest Algorithm to select the best

features in a novel manner.

 Implementation of Weighted Random Forest Algorithm in Robotic Grasping.

6.5 Scope of Further Research

The method developed in this thesis addresses some of the basic issues in robotic grasping. In

order to completely work as assistive robot, still further issues need to be solved. The scopes of

further research using this technique are

 Implementation of the motion planning and perform grasping on novel objects using a

Baxter Research Robot that has a parallel plate gripper.

 Extension of the work such that anthropomorphic IH2 Azzura hand interfaced with

Baxter Research Robot can be used for grasping.

 Implementation of the system without background subtraction and ensure that the method

can achieve high accuracy with similar computational effort.

 Extension of the work for cluttered environment where occlusion will occur.

 Employing object affordances into the method.

112

 Improvement of execution time performances so that real time grasping can be

performed.

6.6 References

Y. Jiang, S. Moseson, and A. Saxena. Efficient Grasping from RGBD Images: Learning using a

new Rectangle Representation. ICRA, pp. 3304-331, 2011.

I. Lenz, H. Lee, and A. Saxena. Deep Learning for Detecting Robotic Grasps. ICLR, 2013,

Science and Systems (RSS).

113

APPENDIX A: FORCE CLOSURE GRASP

114

A grasp is force closure if and only if for any external wrench 𝐹𝑒there exists contact forces 𝑓𝑐

such that 𝐺𝑓𝑐 = −𝐹𝑒

Example of External Wrenches can be gravitational force, object making contact with another.

Appendix A: Force-Closure Grasp:

115

APPENDIX B: FAST POINT FEATURE HISTOGRAM DESCRIPTORS

116

Fast point Feature Histogram Descriptor (FPFH) features are introduced by Rusu et al. [Rusu,

2009]. Fast point Feature Histograms are a simplified form of Point Feature Histograms. It helps

to reduce the computational complexity involved in the computation of Point Feature

Histograms.

The histogram feature computation is simplified in a following way:

1. In the very first step, for a certain point p a set of tuples between itself and the neighbors are

computed. This is known as Simplified Point Feature Histogram.

2. In the Second Step, for each point, its k neighbors are determined again. The Simplified Point

Feature Histogram values are then used to weight the final histogram.

So, for a certain query point, the algorithm estimates the Simplified point Feature histogram

Values. This is continued for all points of the dataset. After that a reweighting is done and FPFH

values are created.

Appendix B: References

R. Rusu et al. Fast Point Feature Histograms (FPFH) for 3D Registration, ICRA. 2009.

	Learning to Grasp Unknown Objects using Weighted Random Forest Algorithm from Selective Image and Point Cloud Feature
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 : INTRODUCTION
	1.1 Robotic Grasping
	1.2 Application and Impact
	1.3 Problem Statement
	1.3.1 Rectangle as a Grasping Region
	1.3.2 Goal

	1.4 Contribution of the Thesis
	1.5 Organization of the Thesis
	1.6 References

	CHAPTER 2 : BACKGROUND AND RELATED WORK
	2.1 Introduction
	2.2 Chapter Objectives
	2.3 Analytical Approaches
	2.3.1 Force Closure Grasps
	2.3.2 Task Compatibility

	2.4 Empirical Approaches
	2.4.1 Systems based on human observation
	2.4.2 Systems based on object observation

	2.5 Discussion
	2.6 References

	CHAPTER 3 : FEATURES USED AND EXTRACTION TECHNIQUE
	3.1 Introduction
	3.1.1 Feature Extraction

	3.2 Chapter Objectives
	3.2.1 Image Feature Extraction Technique
	3.2.1.1 Color Feature Extraction
	3.2.1.2 Texture Feature Extraction
	3.2.1.3 Edge Feature Extraction

	3.2.2 Non-linear Image Feature Extraction Technique
	3.2.2.1 Non-linear Color Feature Extraction
	3.2.2.2 Non-linear Texture Feature Extraction
	3.2.2.3 Non-linear Edge Feature Extraction

	3.2.3 Point Cloud Feature Extraction Technique
	3.2.3.1 Depth Feature Extraction
	3.2.3.2 Surface Normal Feature Extraction
	3.2.3.3 Surface Curvature Feature Extraction

	3.2.4 Non-linear Point Cloud Feature Extraction Technique
	3.2.4.1 Non-linear Depth Feature Extraction
	3.2.4.2 Non-linear Surface Normal Feature Extraction
	3.2.4.3 Non-linear Surface Curvature Feature Extraction

	3.2.5 Fast Point Feature Histogram Descriptors Extraction Technique
	3.2.6 Geometric Feature Extraction Technique

	3.3 Discussion
	3.4 References:

	CHAPTER 4 : WHY RANDOM FOREST?
	4.1 Introduction
	4.1.1 Cross Validation Score
	4.1.2 Precision
	4.1.3 Recall
	4.1.4 Accuracy
	4.1.5 F1 Score
	4.1.6 ROC Score

	4.2 Chapter Objectives
	4.3 Definition of Performance Metric
	4.4 Support Vector Machine
	4.4.1 SVM with Linear kernel
	4.4.2 Parameters used in SVM with linear kernel and Results
	4.4.3 SVM with Polynomial kernel
	4.4.4 Parameters used in SVM with Polynomial kernel and Results
	4.4.5 SVM with Radial Basis Function kernel
	4.4.6 Parameters used in SVM with Radial Basis Function kernel and Results
	4.4.7 Comparison of Error Estimates from Linear, Polynomial and RBF SVM and Discussion
	4.4.8 Evaluation Metric Results from Linear, Polynomial and RBF SVM

	4.5 Information Gain Parameter Definition for Tree based Learning Algorithms
	4.5.1 Gini Impurity
	4.5.2 Entropy

	4.6 Decision Tree Algorithm
	4.6.1 Parameters used in Decision Tree Algorithm
	4.6.2 Comparison of Error Estimates using Decision Tree Algorithm with different Parameters
	4.6.3 Performance Metric Results from Decision Tree Algorithms

	4.7 Adaboost Algorithm
	4.7.1 Parameters used in Adaboost Algorithm
	4.7.2 Error Estimates from Adaboost Algorithm
	4.7.3 Performance Metric Results on Adaboost Algorithm

	4.8 Random Forest Algorithm
	4.9 Evaluation of Dataset to select range of Number of Trees
	4.9.1 Weighted random Forest Algorithm used in this Method
	4.9.2 Parameters used in Random Forest Algorithm
	4.9.3 Error Estimate Results from Random Forest Algorithm using Gini
	4.9.4 Error Estimate Results from Random Forest Algorithm using Entropy Criteria
	4.9.5 Performance Metric Results from Random Forest Algorithm with Different Number of Trees
	4.9.5.1 Random Forest with 32 Trees
	4.9.5.2 Random Forest with 64 Trees
	4.9.5.3 Random Forest with 128 Trees
	4.9.5.4 Random Forest with 256 Trees
	4.9.5.5 Random Forest with 512 Trees
	4.9.5.6 Random Forest with 1024 Trees

	4.10 Selection of the Best Algorithm with Optimal Parameters
	4.11 Selection of Most Significant Features
	4.12 References

	CHAPTER 5 : GRASPING ALGORITHM
	5.1 Introduction
	5.2 Chapter Objectives
	5.3 Learning a Score Function
	5.3.1 Definition of a Score Function
	5.3.2 Computing of a Score Function
	5.3.3 Assumption
	5.3.4 Incremental Search Procedure

	5.4 Background Subtraction using Mixture of Gaussian Model
	5.5 Algorithm
	5.6 Hardware Setup
	5.7 Evaluation Metric
	5.7.1 Point Metric
	5.7.2 Rectangle Metric

	5.8 Experimental Results
	5.9 Training Dataset
	5.10 Testing Results
	5.11 Discussion
	5.12 References

	CHAPTER 6 : CONCLUSION AND FUTURE SCOPE OF RESEARCH
	6.1 Introduction
	6.2 Chapter Objectives
	6.3 Summary of the Grasping System
	6.4 Innovations in this Method
	6.5 Scope of Further Research
	6.6 References

	APPENDIX A: FORCE CLOSURE GRASP
	APPENDIX B: FAST POINT FEATURE HISTOGRAM DESCRIPTORS
	Appendix B: References

