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ABSTRACT 

In this thesis, Density Functional Theory and Time-Dependent Density-Functional 

Theory approaches are applied to study the optical and magnetic properties of several 

types of nanostructures. In studies of the optical properties we mainly focused on the 

plasmonic and excitonic effects in pure and transition metal-doped noble metal 

nanochains and their conglomerates.  In the case of pure noble metal chains, it was 

found that the (collective) plasmon mode is pronounceable when the number of atoms 

in the chain is larger than 5. The plasmon energy decreases with further with increasing 

number of atoms (N) and is almost N-independent when N is larger than 20. In the case 

of coupled pure chains it was found that the plasmon energy grows as square root of 

the number of chains, and reaches the visible light energy 1.8eV for the case of three 

parallel chains. Doping of pure Au chains with transition-metal atoms leads in many 

cases to formation of additional plasmon peaks close in energy to the undoped chain 

peak. This peak comes from the local charge oscillations around the potential minima 

created by the impurity atom. The effect is especially pronounced for Ni-doped chains. 

In the multiple-chain case, we find an unusual hybridization of the two different (local 

and collective) plasmon modes. Changing the chain size and chemical composition in 

the array can be used to tune the absorption properties of nanochains. The case of 

coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also 

analyzed. We find that one can get significant exciton-plasmon coupling, including 

hybridized modes and energy transfer between these excitations, in the case of doped 
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chains. The impurity atoms are found to work as attraction centers for excitons. This can 

be used to transform the exciton energy into local plasmon oscillations with consequent 

emission at desired point (at which the impurity is located). In a related study the optical 

properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast 

emission, In particular, it was found that the system can emit in femto-second regime 

under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties 

of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic 

transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. 

Surprisingly, the ferromagnetic phase is found to be much more stable for these 

nanostructures as compared to the bulk, which suggests that band-type effects may be 

responsible for this transition in the bulk, i.e. the transition cannot be described in terms 

of modification of the Heisenberg model parameters.  
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CHAPTER 1 INTRODUCTION  

 

Nanostructures form a new class of materials that possess unique properties which are 

neither molecular nor bulk-like and because of these novel properties, nanoparticles 

have become the focus of considerable research in many fields such as catalysis1 , 

optical communications2, nanoelectronics3, biomedicine4, 5. The under coordinated 

surface atoms play a significant role in the unique properties of nanoparticles as does 

its large surface to volume ratio, so that there are large numbers of surface atoms. The 

properties of the systems can thus be tuned by changing the particle size, i.e. changing 

the surface to bulk atoms ratio. The properties of nanoparticles also depends strongly 

on their shape and composition6. Many experimental and theoretical works are being 

dedicated to understand the above dependencies and eventually trying to control and 

manipulate the properties of nanoparticles by varying size, shape, composition, as well 

as some other parameters, such as the environment, substrate, external fields, etc. 

Theoretical calculations play a central role in better understanding the complex physics 

of nanoparticles. Not only do they provide interpretations for many experimental 

observations, but also predict the most suitable systems for different applications. In this 

work, we focus on computational studies of the optical and magnetic properties of 

several types of nanostructures: chains, particles and infinite monolayer. As the size of 

the system decreases, quantum effects come into the picture, which need to be taken 

into account. Therefore, in order to understand the optical and magnetic properties of 
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the systems we will use quantum mechanical approaches, in particular, Density 

Functional Theory (DFT), Time-Dependent Density-Functional Theory (TDDFT) and the 

many-body Green’s function approach.  

In the case of the optical response, we focus on plasmonic and excitonic properties, as 

well as on the interaction between plasmons and excitons. Noble metal nanostructures 

have attracted considerable attention in the field of optical spectroscopy, since silver 

and gold exhibit strong absorption in the visible region of the spectrum with different 

colors, such as yellowish for silver and burgundy for gold spherical particles7. The origin 

of this absorption is attributed to collective electron charge density oscillation in 

response to external electromagnetic radiation. These collective excitations of electrons 

are called plasmons. Plasmonics is one of important branches of optics. Plasmons have 

the ability to concentrate light at nano-scale and also to enhance the local 

electromagnetic field. While bulk and surface plasmons have been studied in many 

systems in great detail, plasmons in sub-nanometer structures is a relatively new field. 

The plasmon absorption band strongly depends on the shape of the nanostructures. In 

the case of gold and silver structures, one can tune in principle the position of plasmon 

peaks to any frequency in the visible range, i.e. to any possible color, by controlling the 

shape or the structure of the nanomaterial8-10. For practical applications, it is essential to 

be able to tune the plasmon resonance to a desired frequency. In particular, it can be 

used in solar cell technologies, sensor devices, etc. Greater versatility in the tuning of 

properties may be achieved by using structures that consist of several different 
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elements, in particular the dielectric core - metallic shell particles with different types of 

fundamental excitations (plasmons and excitons),11, 12 two or more coupled particles 

with hybridized excitations of individual clusters13, 14. Linear chains of nanoparticles 

have also been proposed as possible candidates for electromagnetic energy transport15-

17, catalysis18 and as efficient nanolens19. Also, the Scanning Tunneling Microscope 

(STM)-creation of chains of gold atoms (up to 20-atom long) on NiAl (110) substrate has 

sparked an interest in the optical properties of the atomic chains20. Since the optical 

properties of such chains and nanoparticles potentially have many practical 

applications, it is very important to understand the nature of the excitations in these 

systems, the most pronounced of which are plasmons. In this work, we study the 

absorption spectrum of single and multiple chains of pure Au as well as Transition-metal 

(TM) doped chains of Au. It is shown that the doping opens additional opportunities to 

tune the system properties, including the plasmon response. We have also studied the 

case of coupled chains, which consist of different types (noble and TM) of chains.  

We also study another important excitation – excitons. Excitons are bound states of 

electrons and holes that play an important role in the optical response of 

semiconductors and insulators. Unlike plasmons, excitons are formed in systems with 

energy gap. We have considered Au chains with a geometry that leads to a bandgap in 

the electronic spectrum (like zigzag chains) with ability to create exciton states. Creating 

coupled systems of “plasmon” and “exciton” chains opens an opportunity to tune the 

optical response by creating corresponding hybridized states or transferring the energy 
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between these two types of excitations. We have studied such a possibility, and found 

that the energy transfer is especially efficient when the system is doped with TM 

impurities.  

We also study the ultrafast response, including femto-second emission, in monolayer 

MoS2. Monolayer MoS2 shows a great potential to be used in novel nanoelectronics and 

nano-optical devices. One of the characteristic features of single layer MoS2 is that it 

shows strong luminescence as opposed to it bulk counterpart which is attributed to its 

direct band gap. There are evidences of strongly bound excitons and trions in the 

optical absorption spectrum and the doped system demonstrates high electron mobility. 

Study of the slow and ultrafast (~100fs) optical response of monolayer MoS2 is also 

important from the point of view of science and technological applications. We have 

carried out DFT calculations of the photoluminescent properties of monolayer MoS2. In 

particular, we have analyzed the role of electron-phonon interactions in the 

photoluminescence process. Phonon properties were used to calculate electron self-

energy and spectral function. We found that the photoemission spectrum is in good 

agreement with experimental data. We focused on the ultrafast relaxation of the 

electron system resulting from electron-phonon interaction and evaluated the 

photoluminescence of the excited system by using the effective electron temperature 

model21. It is shown that similar to graphene, MoS2 demonstrates significant ultrafast 

photoluminescence.  
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 Finally, we studied the magnetic properties of small bimetallic clusters. Nanoparticles 

possess very unique magnetic properties, different from their bulk counterparts, e.g. 

non-magnetic bulk materials are magnetic in nanometer scale. The magnetic properties 

of nanoparticles can also be manipulated by changing size, shape or composition of 

nanoparticles. Bimetallic nanoparticles are of particular interest, since in these systems 

novel properties can be generated by just changing the chemical composition. Pure TM 

clusters such as Fe, Co, and Ni have spin and orbital moments and magnetic anisotropy 

energy that are much enhanced as compared to their respective bulk structures. 

Alloying 3d and comparatively heavier 4d and 5d elements is particularly interesting. In 

particular, bulk FeRh alloy has been actively studied with regard to the 

Antiferromagnetic (AFM)- Ferromagnetic (FM) transition at T~300K22. It is very 

interesting to note that similar bimetallic alloy FePt does not demonstrate this transition 

(it undergoes FM-paramagnetic (PM) transition at T~730K23). With the study of 

magnetic properties of FeRh nanostructures, it might be possible to get an insight into 

the origin of the FM-AFM transition in the bulk. Towards this end we performed spin-

DFT calculations for these structures with different ratios of Fe and Rh atoms. We 

systematically studied the ferromagnetic properties, including the individual atom 

magnetization, of the clusters as function chemical composition. We found that the Rh 

atoms have a rather large magnetic moment (up to ~1µB), which does not differ 

significantly for the surface and bulk atoms. In contrast, surface Fe atoms have much 

larger magnetization (~3µB) comparing to the bulk atoms. In particular, we find that the 
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FM phase is extremely stable in these systems, and the magnetization can be tuned by 

changing the chemical composition of the clusters. 

This thesis is organized as follows: after Introduction (Chapter 1), in Chapter 2, I explain 

the computational methods that I have used to study the optical and magnetic 

properties of nanoparticles. Chapter 3 is devoted to two important optical excitations in 

nanostructures: plasmons and excitons. In particular, I present results for the absorption 

spectra of single and multiple pure Au chains, TM chains and TM-doped Au chains. In 

this Chapter, I also try to analyze possibility of collective and local excitations in the 

systems under study. In addition, I report results for possible excitations in infinite pure 

zig-zag Au chain coupled to finite pure and TM-doped Au chains. In Chapter 4, I present 

details of calculations and results for the absorption and emission spectra of monolayer 

MoS2, as well as results for the processes of the ultrafast emission. In Chapter 5, I 

consider the magnetic properties of 26-atom FeRh nanoparticles and analyze the 

dependence of the magnetization on the chemical composition and inter-atomic 

distance. Finally, in Chapter 6 I give a summary of the results and some future 

prospects for given studies. 
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CHAPTER 2 THEORETICAL METHODS  

2.1 Density Functional Theory 

Density Functional Theory (DFT) is a phenomenological quantum mechanical tool to 

study the electronic structure and some other properties of matter24. This theory can be 

applied to atoms, molecules, clusters, bulk materials, nuclei, quantum fluids, etc. Most 

of the properties of materials are defined by their electronic structure and electronic 

structure calculations are done by using first principles approaches. DFT allows one to 

obtain the ground state energy and the electron density of the system, though many 

other material properties can be obtained from these quantities. The ultimate goal of all 

approaches is to solve approximately the Schrodinger equation, which defines the 

behavior of many-particle systems in condensed matter physics and quantum 

chemistry: 

 ̂  (  ⃗⃗⃗     ⃗⃗  ⃗      ⃗⃗  ⃗   ⃗⃗⃗⃗    ⃗⃗ ⃗⃗       ⃗⃗⃗⃗  ⃗)      (  ⃗⃗⃗     ⃗⃗  ⃗      ⃗⃗  ⃗   ⃗⃗⃗⃗    ⃗⃗ ⃗⃗       ⃗⃗⃗⃗  ⃗) ( 1 ) 

 ̂   ̂   ̂   ̂     ̂     ̂     ( 2 ) 

 where  ̂ is the Hamiltonian operator of the system that is composed of the kinetic 

energy of electron and nuclei terms  ̂  and   ̂  , the electron-electron interaction and 

electron-nucleii interaction terms  ̂   , and  ̂   , and the nucleus-nucleus repulsion term 

 ̂    : 

 ̂   
 

 
∑   

  
    

 

 
∑

 

  
  
  

    ∑ ∑
 

   

 
   

 
    ∑ ∑

  

   

 
   

 
    ∑ ∑

    

   

 
   

 
    ( 3 ) 
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The summation indices i,j run over n electrons, whereas A, B indices run over N nuclei 

in the system. The exact solution to this equation is impossible owing to complexity that 

increases as the number of particles increases.  So, we have to use approximations, 

like Born-Oppenheimer approximation which states that electron and nucleus degrees 

of freedom can be decoupled. Due to much heavier mass, nucleii move much slower as 

compared to electrons, therefore one can consider the problem of motion of electrons in 

“static” potential of nucleii, and the correction for the effects of electrons on the nuclei 

can be taken into account after the equilibrium distribution of electrons has been found. 

In the “static” approximation, the Hamiltonian reduces to the electronic Hamiltonian: 

 ̂      
 

 
∑   

  
    ∑ ∑

 

   

 
   

 
    ∑ ∑

  

   

 
   

 
   . ( 4 ) 

The total energy is equal to the electronic energy plus the energy of the inter-nucleus 

interaction: 

 ̂                     ( 5 ) 

           ∑ ∑
    

   

 
   

 
   . ( 6 ) 

The Born-Oppenheimer approximation makes the problem simpler by excluding the 

nucleus degree of freedom, though the remaining multi-electron problem is still 

complicated and one needs to make more approximations. The simplest one is the 

Hartree approximation that decouples the electronic wave function into product of single 

electron orbitals and thus gives n equations for n electrons: 
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 (  ⃗⃗⃗     ⃗⃗  ⃗      ⃗⃗  ⃗)    (  ⃗⃗⃗  )  (  ⃗⃗  ⃗)    (  ⃗⃗⃗⃗ ), ( 7 ) 

[ 
 

 
∑   

  
    ∑ ∑

  

   

 
   

 
    ∑ ∫|  (  ⃗⃗ )|

  

|  ⃗⃗  ⃗   ⃗⃗⃗  |
      ⃗⃗ ]   (  ⃗⃗⃗  )     (  ⃗⃗ ). ( 8 ) 

However, this approximation fails to take into account properly the Pauli exclusion 

principle, expressed in particular in the asymmetry of the wave function with respect to 

interchange of two electrons. This property is taken into account in the Hartree-Fock 

approximation. The wave function in the Hartree-Fock approximation is the Slater 

determinant constructed from single-electron orbitals:   

 (  ⃗⃗⃗     ⃗⃗  ⃗      ⃗⃗  ⃗)  
 

√  ‖

‖

  (  ⃗⃗⃗  )  (  ⃗⃗⃗  )    (  ⃗⃗⃗  )

  (  ⃗⃗  ⃗)  (  ⃗⃗  ⃗)    (  ⃗⃗  ⃗)
            
           
  (  ⃗⃗⃗⃗ )  (  ⃗⃗⃗⃗ )     (  ⃗⃗⃗⃗ )

‖

‖
. ( 9 ) 

The exchange of two particles is equivalent to the exchange of two columns, which 

induces a change of sign. Also note that if two rows are equal, the determinant is zero 

which takes into account the Pauli's exclusion principle: two (or more) identical fermions 

cannot occupy the same state. Although the Hartree-Fock approximation is much 

accurate than Hartree one, it is still is not the exact solution. It would be exact if the 

interactions were described just by the Pauli principle: electrons with the same quantum 

numbers avoid each other (exchange interaction). In other words, one needs to take 

into account also effects of explicit Coulomb interaction between electrons, i.e. so called 

correlation effects. Even the Hartree-Fock approximation is computationally expensive 

in the case of dozens or more electrons, but the correlation effects make the problem 
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much more difficult to solve, or in other words the approach mentioned above is 

computationally very expensive.  

One can avoid this complexity by using DFT which maps many-electron problem onto a 

single-electron one. DFT has become remarkably popular because of its good balance 

between accuracy and computational cost. In DFT, the electron density determines all 

ground state properties of the system. Hohenberg and Kohn25 established two theorems 

which constitute the theoretical foundation of DFT. The first theorem states that for any 

system of interacting electrons, there is one-to-one correspondence (up to a trivial 

additive constant) correspondence between the effective external potential     ( ) that 

governs the properties of the effective electron with the same charge density as in the 

many-electron system and the ground-state particle density n(r). The second theorem 

states that the free energy functional    [ ]  for the interacting electron system, gives 

the lowest energy of the system if and only if the charge density is the ground state 

density, i.e. 

        [ ] ( 10 ) 

and  

   [ ]     [ ]  ∫    ( ) ( )    ( 11 ) 

where,    [ ] is a universal functional of the density which does not depend on     ( ) 

and,    [ ] is minimal at the exact ground-state density n0(r). In simple words, all 

ground state properties of the system are defined by n(r) which is related to the total 
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energy by equation (11) and is the energy has minimum only when n(r) is equal to the 

ground state density. The HK theorems provide general theoretical basis for 

calculations, but they do explain how to deal with the quantum many-body problem in 

practice. A practical formulation of DFT was provided by the Kohn and Sham (KS)26. In 

their approach, the energy functional can be expanded as: 

   [ ]    [ ]    [ ]     [ ]  ∫    ( ) ( )    ( 12 )  

where T0 is kinetic energy of the non-interacting electrons,   [ ] is the classical 

electrostatic (Hartree) energy, given by 

  [ ]  
 

 
∬
 ( ) (  )

|    |
       ( 13 ) 

   [ ] is the exchange-correlation (XC) energy which contains the non-classical 

interaction energy and the difference between the kinetic energies of the interacting and 

non-interacting systems. The exact form of    [ ] is not known exactly. By applying the 

variational principle of the second theorem to the HK energy functional, one can obtain 

the Euler equation for the interacting electrons 

   [ ]

  ( )
    ( )   , 

where ( 14 ) 

   ( )      ( )     [ ]( )     [ ]( )  ( 15 ) 

   ( )      ( )  ∫  
  ( 

 )

|    |
 
    [ ]

  ( )
  ( 16 ) 
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and µ is a Lagrange multiplier that enforces the conservation of the total number of 

particles. The same equation can also be obtained by applying the variational principle 

to a system of non-interacting electrons in an effective potential    ( ) . The many-

electron wave function, thus, can also be represented by Slater determinant of single 

electron functions, which are eigenfunctions of the corresponding Hamiltonian: 

[ 
 

 
      ( )]  ( )      ( ), ( 17 ) 

with the particle density constraint 

 ( )  ∑ |  ( )|
  

   , ( 18 ) 

n(r) is the electron density obtained from summation over all occupied states. Equations 

(17) and (18) are the key equations of DFT and are known as KS equations. Once one 

knows density-dependent    ( )   he can plug it into equation (17) which gives the 

orbitals and ground state charge density by using Eq. (18), i.e. Eqs. (17), (18) have to 

be solved self-consistently. The KS potential is often used as local and depends only on 

the coordinates of given particle, but it effectively takes into account the interaction of 

the electrons with other electrons. It is important to note that KS orbitals have, in 

principle, no physical significance, they are just functions used to obtain the ground-

state energy and charge density of the full many-body system, though in general they 

are used as low-interaction limit for the electron wave functions.  
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2.1.1 Exchange-Correlation Functional 

The solution of KS equations is exact provided    [ ] is exact. As the correct from of 

   [ ] is still unknown, various approximations have been applied to get better results. 

The simplest approximation is the Local Density Approximation (LDA), which assumes 

that the    [ ] energy of a real system behaves locally as that of the uniform electron 

gas. This is a system where electrons move in positive charge background such that the 

total system is neutral. The    [ ]  functional is expressed as 

   
   [ ]  ∫    

   ( ( )) ( )   ( 19 ) 

   
    is the XC energy per electron of the homogeneous electron gas of density n(r). 

The quantity    [ ] can be split into the exchange and correlation parts:   [ ]    [ ]. 

For the homogeneous electron gas   [ ]   (
  

  
)
   

    ( ) is obtained from the 

Hartree-Fock approximation for the free homogeneous gas, but the expression for the 

correlation term is very difficult to calculate even in this case.  LDA is rather accurate in 

the limit of high density or slowly varying density distributions, when it is possible to 

determine the correlation term. Typically LDA can reproduce the structural and 

vibrational properties of strongly bound systems very well. LDA overestimates 

adsorption energies of molecules by 10%~20% and underestimates bond lengths by 

~2%.  LDA also fails in calculating dissociation energies, some magnetic properties, in 

the cases of heavy fermions and systems where electron-electron interactions are 

dominant, etc. Therefore, there is a need to go beyond this approximation. As the first 

improvement, the Generalized Gradient Approximation (GGA) has been proposed. In 
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this approximation one takes into account the gradient-corrections to the LDA charge 

density energy, which takes into account the non-homogeneity effects: 

   
   [ ]  ∫    

   ( ( ) |  ( )|) ( )    ( 20 ) 

or 

   
   [ ]  ∫   [ ] ( )

      ∫   [ ]|  ( )|
   ( )        ( 21 ) 

In the last expression, the XC energy includes the lowest-order charge density 

gradient|  ( )|. The corresponding higher-order expansion (so called Generalized 

Gradient Expansion (GGE) approximation) leads to a solution that is not stable and 

does not converge monotonically.  So, direct expansion, like in Eq. (21), is not 

promising approach. Another way is to obtain the expression for the XC that depends 

on the density and the gradients from other theoretical (phenomenological) reasons, 

and set the unknown parameters in such a way that different formal exact constraints 

are satisfied and some known results are reproduced. Alternatively, one can fit the 

parameters of the functional in order to reproduce a number of experimental results. 

Several expressions for GGA XC potentials have been considered. The GGA usually 

significantly improves the LDA results, like in predicting the binding energies of real 

materials. It has managed to keep the correct features of LDA and add to that the 

inhomogeneity features which are energetically very important. 
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BLYP Functional: In 1988, Becke proposed a functional where parameters are fitted to 

experimental molecular data. The exchange and correlation energy terms have the 

following form: 

     
   (  

 

      

  

           ( )
)  ( 22 ) 

where     (   )         |  ( )|  ( )   ,    (   )(   )
   ,           

    
 

        
{        [   

        
 

 
(   

 

 
   )]     

    
}, ( 23 ) 

   
 

 
(
|  | 

 
    )  ( 24 ) 

and        (  
 )   ,                                   . 

PBE Functional: In 1996, Perdew, Burke, and Enzerhof (PBE)27 proposed this functional 

which satisfies many formal properties and limits. The PBE XC energy can be written in 

terms of what is called the enhancement parameter that depends on density, its 

gradient and higher powers of that: 

   [ ]  ∫ ( )   [ ( )]   [ ( )   ( )  
  ( )   ]    ( 25 ) 

In PBE functional, the exchange part of the enhancement parameter   (     ) depends 

on the charge density n, spin polarization density  , and a dimensionless parameter 

given by   |  ( )| (    ) 

  ( )      
 

  
   

 

  ( 26 ) 
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where    (
  

 
)          and            are related to the second order gradient 

expansion, and         . This form of equation obeys the spin scaling relationship 

and reproduces LSDA limit s0. In addition, it also satisfies the uniform scaling 

condition and recovers the correct uniform electron gas limit, i.e   ( )   . The 

correlation energy is similar to what is proposed by Perdew and Wang (PW91)28-30, and 

is given as:  

  
    ∫ ( )[  

   (   )   [     ]]    ( 27 ) 

 [     ]  (     )  
   {  

 

 
  [

     

          
]}  ( 28 ) 

  
|  ( )|

     
  ( 29 ) 

where    is the Thomas-Fermi screening wave number and  ( )  [(   )    

(   )   ]   is the spin scaling factor. The other parameters are:   
(     )

  
          

and  

  
 

 
[    

   [ ] (        )   ]
  

  ( 30 ) 

PBE functional gives good results in many cases. Other important advantages of it is 

parameter-independence and the fact that it satisfies the exact exchange-correlation 

hole condition. 
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Hybrid Functionals: The functionals mentioned above are inadequate to solve problems 

where the density is not varying slowly. For this case, hybrid functionals were 

introduced. They consist of DFT and Hartree-Fock parts (the correlation part comes 

from DFT and the exchange part is combined expression of both DFT and Hartree-Fock 

parts). In a very general form, the hybrid XC energy can be expressed as 

   
   

    
   (   )  

      
   , ( 31 ) 

Where α is a fitting parameter (though often put  ½ or a value of the same order of 

magnitude). Popular hybrid functionals, like B3LYP31,  have the following structure:  

   
   

    
       (   )  

        
        

         
           ( 32) 

where,       are obtained by fitting to the experimental results for a certain set of 

molecules. VWN32 is a correlation functional, fitting the RPA solution to the uniform 

electron gas, often referred to as Local Spin Density (LSD) correlation energy. The last, 

LYP33 term, is the correlation term that includes both local and non-local contributions. 

Another popular functional, B3PW91, includes a  non-local correlation term given 

proposed by Perdew and Wang28. These and some other hybrid functionals are 

computationally not very expensive,  and reproduce the geometries, binding energies 

and other properties of molecular system with a better accuracy comparing to LDA. In 

this thesis, we use LDA, GGA and hybrid functionals, like B3PW91. 
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2.1.2 Spin-Density Functional Theory 

For many problems in condensed matter physics, for e.g. to calculate the magnetic 

properties of the system, one has to take into account the spin degrees of freedom. 

Therefore, one can extend the KS theory on the case of spin densities, which define the 

total charge density of electrons:  

 ( )    ( )    ( ), ( 33 ) 

  ( )  ∑ |    ( )|
   

    ( 34 ) 

where s corresponds to spin-up and –down, and     is the number of electrons with   

spin s. The spin-dependent orbitals satisfy the KS equations 

[ 
 

 
        ( )]    ( )          ( ), ( 35 ) 

where the spin-dependent KS potential is defined by the spin-dependent XC energy: 

   ( )      ( )  ∫  
   ̅( 

 )

|    |
 
    [     ]

   ( )
 ( 36 ) 

In general, the XC energy functional depends on the total charge density (21) and spin 

polarization density  

 ( )    ( )    ( )  ( 37 ) 

In the Spin-Density Functional Theory it is assumed that the projection of total spin of 

the system is a good quantum number. However, this theory fails in the case of non-
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collinear magnetism, which can be studied by using Pauli spin matrices along with the 

spin polarization density vectors. 

 

2.1.3 DFT+U 

DFT fails to generate correct results for systems that have localized d- and f –orbitals. It 

is because LDA corresponds to (locally) homogeneous electron gas, where the 

electrons are delocalized and some sort of mean-field (averaged and in general weak) 

electron-electron interaction is assumed. However, it is known that in many systems, 

like transition-metal oxides and rare earth materials, electrons are localized, so  placing 

an additional electron on given site/orbital will cost rather large (~1-10eV) additional 

energy, usually defined by letter  U. This situation was originally considered by 

Hubbard. The simplest way to correct the DFT results in the case of such systems is to 

add the Hubbard term accounting the interaction of localized electrons. In this case, the 

Hilbert space of the crystal can be divided into weakly correlated subspace that can be 

studied by the DFT approach, and the strongly-correlated subspace, for which one 

needs to include the local Coulomb interaction processes in full detail. The Coulomb 

interaction part of the Hamiltonian in terms of creation and annihilation operators is 

given as 

 ̂        
 

 
∑ ∑ ⟨    |   | 

       ⟩                             ̂    
  ̂

      
  ̂       ̂         

 ( 38 ) 
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where i is the atomic site index, n,l,m are energy, orbital momentum and its projection 

quantum numbers and σ is the spin index.      is the screened Coulomb interaction 

potential.  ̂    
       ̂     are the creation and annihilation operators. The Hamiltonian 

(38) allows the mixing of all possible combinations of m, some of which are not allowed 

taking into account the crystal symmetry. More precisely, the Hamiltonian (38) can be 

rewritten as  

 ̂        
 

 
∑ ∑ {     ̂     ̂     ̅  (         ) ̂     ̂     }                

 

 
∑ ∑     { ̂    

  ̂    ̅ ̂     ̅
  ̂       ̂    

  ̂    ̅
  ̂      ̂     ̅}                 ( 39 )  

In the last expression,       is the direct Coulomb interaction matrix, while      is the 

exchange-interaction matrix: 

     ⟨   
 |   |   

 ⟩      ⟨   
 |   | 

   ⟩. ( 40 ) 

In Equation (39), the last term is interaction terms that cannot be represented in terms 

of density operators.  The first part in the last brackets correspond to the spin flip for   

and    orbitals, i.e.  ̅   ( )       ( ) and the second part represents pair transition 

of two electrons with opposite spins from one orbital to another. These two contributions 

are often neglected in calculations, since they are relatively small, and their neglection 

allows one to simplify significantly the problem. In this case, the Hamiltonian reduces to  

 ̂        
 

 
∑ ∑ {     ̂     ̂     ̅  (         ) ̂     ̂     }                 ( 41 ) 

or farther, 
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 ̂        
 

 
∑ ∑ {[       

 (      )] ̂     ̂     ̅  ( 
   ) ̂     ̂     }                

 ( 42 ) 

where             
      . 

Unfortunately the corresponding DFT+U solution contains so called double counting 

problem. Namely, the correlation part of the energy is counted twice in this case: by 

LDA (although in a very rough way) and by the U-correction. The problem is fixed by 

subtracting the mean-field local correction term in the Hamiltonian (which mostly 

cancels the LDA contribution to the correlation energy): 

 ̂   ̂     ̂    ̂       , ( 43 ) 

where 

 ̂   ∑     ̂            ( 44 ) 

     ̅ (   
 

 
) ( 45 ) 

and   ̅ is the average value of the interaction energies U and J over all orbitals, and    

is the number of electrons in the corresponding shell. 
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2.2 Combined DFT and Many-Body Approaches  

2.2.1 Green’s Function and GW Approximation 

In the GW approximation, the one-electron Green’s function is calculated by taking into 

account the long-range screened Coulomb repulsion effects that modifies the electron 

self-energy. The Green’s function represents the probability of finding an electron at 

position r and at time t given that an electron was present at position r’ at time t0. From 

Green’s function one can calculate the total energy, electronic density, density of states, 

electronic excitations and many other properties. Green’s function can be obtained by 

solving the following equation:  

{ 
  

  
       ( )   } (   

   )  ∫ (       ) (        )       (    ), ( 46 ) 

where  (       ) is the self-energy of the electron that describes the interaction effects. 

If the exact Green’s function   (   
   ) for the reference system (the non-interacting 

Green’s function) and the self-energy are known then by using Dyson’s equations it is 

possible to generate the required Green’s function: 

 (      )     (   
   )  ∬  (      )   (       )  (    

   )         ( 47 ) 

   (       )    (       )    (     ) ( 48 ) 

 where   (     ) is the interaction potential of the reference system, which is equal to 

zero for the non- interacting electrons. The single particle Green’s function can be 

expressed using the solution for the single-particle orbitals    ( ) and eigenvalues      
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  (   
   )  ∑

  ( )  
 (  )

    
 . ( 49 ) 

In general, the reference system can either be the Hartree-Fock or Kohn-Sham system. 

In the LDA approximation, the self-energy of the non-interacting system is given as  

           , ( 50 ) 

where    is the Hartree potential and     is the LDA XC potential. In order to get correct 

self-energy that includes all many-body interaction effects one has to solve many-body 

problem with two-particle Green’s functions, which is very complicated. A simpler 

approach is the GW approximation which takes into account only the first term in the 

expansion of self-energy in terms of the dynamically screened Coulomb interaction W: 

   (   
   )   ∫ (         ) (      )     ( 51 ) 

 (      )    (   
 )  ∬ (      ) (       )  (    

 )         ( 52 ) 

 (       )      (   
   ) (      )  ( 53 ) 

Equations (47), (51-53) are solved self-consistently and give more accurate comparing 

to DFT results for the properties of the many-body system. 

2.2.2 DFT+DMFT 

Dynamical Mean-Field Theory (DMFT) takes into account correlation effects more 

accurately, as compared to DFT+U. The approach is similar to DFT+U, but it works also 

for intermediate values of U, which is often the case in materials of interest. While, DFT 
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+U treat correlation effects much better as compared to DFT, it does not take into 

account dynamical effects, which can lead to wrong results. DMFT takes dynamical 

effects into account (time-resolved local interactions between electrons). It has been 

successfully applied to study many properties of bulk and layered materials. We 

formulated a DFT-DMFT approach to study the physical properties of nanostructures 

and apply the formalism to analyze the magnetic properties of small clusters34, 35.  In 

DFT+DMFT method, the ground state of the system and the non-correlated properties 

are obtained using DFT and the correlation effects are included via the short-range 

Coulomb interaction of the quasi-particles within a Hubbard-type tight-binding model. 

The Hubbard Hamiltonian which contains the hopping (kinetic energy of electrons 

jumping from one site to other) and Coulomb repulsion parameters has the following 

expression: 

  ∑       
     ∑          〈  〉 . ( 54 ) 

This Hamiltonian can be solved by considering the time-ordered Green’s Function: 

 (         )    〈    ( )   
 (  )〉, ( 55 ) 

which is connected with the self-energy through Equation (47).  In the case of high-

dimensionality d, the problem can be reduced to the single-site problem with local 

Green’s Function given as 

 ( )  ∑
 

( )    ( )  (   ) , ( 56 ) 
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where µ is the chemical potential and   ( ) is the free quasiparticle spectrum,   (   ) is 

the self-energy. DMFT assumes the self-energy to be local in space, so it is site- 

independent  (   )      ( ). The non-local self-energy corrections are of order  

 
√ 
⁄   

√ 
⁄ ,   where Z is the coordination number36 .Thus, the DMFT approach is 

accurate in the case of high-dimensional systems and highly-coordinated clusters. 

Frequency-(time-) dependence of the self-energy means that time-dependent 

(dynamical) effects of the local interactions are taken into account. The DMFT problem 

is equivalent to solving a single-site problem of electron interacting with a bath, which 

corresponds to the Anderson impurity model. The effective field of the bath is given as 

 ( )  ∑
 

        ( )  ( )
   ( 57 ) 

where 

 ( )  ∑
|  |

 

    
    , ( 58 ) 

and is connected with the Green’s function and the self-energy in the following way: 

   ( )     ( )   ( )  ( 59 ) 

These equations follow from the equivalence of the many-body single-electron and the 

single-impurity Green’s functions. The self-consistent DMFT equations are solved by 

following the steps below: 

1. Choose initial self-energy ( ). 
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2. Calculate local Green’s function using Equation (56). 

3. Calculate Dynamical mean field   ( ) using Equation (59). 

4. Find new Green’s function using the quantum  impurity problem  

       ( )  ∫ [ ]  [ 
 ]       

       [   
     ] ( 60 ) 

    [   
     ]   ∫   

 

 
∫    ∑    

 ( ) 
 

 
   (    )   ( 

 )   ∫      ( )   ( )
 

 

 ( 61 ) 

5. Find new self-energy from equation (59). 

6. Continue till  ( ) converges. 

The most difficult part of this scheme is to solve equation (60). One can follow exact 

numerical methods like Quantum Monte Carlo (QMC) (e.g., Hirsh-Fye or continuous-

time QMC approaches), or analytical methods like the iterative perturbation theory 

expansion to solve that part. 

 

2.3 Time-Dependent Density-Functional Theory 

DFT is a ground-state theory, so it cannot be used to calculate the excitation energies 

or other excited-state properties. Time-Dependent Density Functional Theory (TDDFT) 

extends the basic idea of DFT to deal with time-dependent external perturbations and 

calculate the excitation energies or more general time-dependent phenomenon. In 

TDDFT, similar to DFT, the basic variable is n(r, t) and the simplest way to determine 
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the density is using the fictitious system of non-interacting electrons, i.e. solving the 

time-dependent Kohn –Sham equations. This is very general scheme and can be 

applied to any time-dependent situation. If the external time -dependent potential is 

weak, one can use the linear-response theory to calculate the optical absorption spectra 

and other properties of the system. On the other hand, if the time-dependent potential is 

strong one has to solve the KS equations exactly. The rigorous mathematical foundation 

of TDDFT was done by Runge and Gross37 by formulation of the Runge-Gross theorem, 

which is an extension of the Hohenberg-Kohn theorem. It states that: “For any system of 

interacting electrons evolving from the same wavefunction there is one to one mapping 

between the time-dependent external potential and the time-dependent electron 

density”. The difference is that unlike DFT, TDDFT depends on the initial conditions; this 

is because the time-dependent Schrodinger equation is the first order differential 

equation in time. Another difference is that in the static case the ground state of the 

system can be determined through the minimization of the total energy functional, but in 

the time-dependent case the total energy is not a conserved quantity. The time- 

dependent counterpart of the energy is the action: 

  ∫ ⟨ ( )| 
 

  
  ̂( )| ( )⟩

  

  
 ( 62 ) 

A can be expressed as a functional of the density: 

 [ ]   [ ]  ∫ ∫ (   )    (   )    
  

  
, ( 63 ) 
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where S[n] is a universal functional of the time-dependent density (namely, it does not 

depend on the external potential). The functional A[n] has minimum in the case of  the 

exact density of the system. Equation (63) is in agreement with the exact solution of the 

many-body time-dependent Schrödinger equation, in other words the functional S[n] is 

stationary for the exact time-dependent density:  

 [ ]    [ ]    [ ]     [ ]  ∫ ∫ (   )    (   )    
  

  
  ( 64 ) 

where   [ ] is the functional for non-interacting electrons, 

  [ ]   
 

 
∫ ∫∫

 (   ) (    )

|    |
        

  

  
 ( 65 ) 

and Sxc includes all many-body effects. The stationary action principle leads to the Euler 

equation of non-interacting electrons moving in some time-dependent effective potential 

   (   ):  

   [ ]

  (   )
    (   )     ( 66 ) 

   (   )      (   )     [ ](   )     [ ](   )  ( 67 ) 

or 

   (   )      (   )   ∫   
  ( 

   )

|    |
 
    [ ]

  (   )
, ( 68 ) 

which gives 
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  (   )  [ 

  

  
      (   )]   (   )  ( 69 ) 

 (   )  ∑   
 (   ) 

     (   ). ( 70 ) 

Similar to static DFT density, the time-dependent density is calculated by solving the 

one-particle time-dependent equation called the time-dependent Kohn-Sham (TDKS) 

equation. The total density is the sum over all occupied orbitals   , Equation (70). Once 

again, the accuracy of the results depends on the approximation for the XC potential. 

 

2.3.1 Adiabatic Approximation 

The simplest TDDFT approximation is adiabatic LDA, which is an extension of the static 

LDA. In general case, the exact XC potential depends non-locally on the density both 

for the spatial and time variables (memory effects). The adiabatic approximation 

assumes neglecting the memory effects, i.e. the XC potential at given time depends on 

the density at the same moment of time. The general form of adiabatic XC potential can 

be obtained as 

   
    [ ](   )     

  [ ](   )  ( 71 ) 

where    
   is the density dependent ground-state (DFT) XC functional, calculated for 

time-dependent (instantaneous) density, n(r,t). Although, it seems like a dramatic 

approximation it works well in many cases, especially when the perturbation is weak 
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and/or slow. Each ground-state functional such as LDA, GGA or hybrid one can be used 

for the adiabatic TDDFT approximation.  

 

2.3.2 Linear Response Theory 

In majority of cases, when the external time-dependent potential is small, perturbation 

theory can be applied to calculate the absorption spectra and other properties. One of 

the main applications of TDDFT is the calculation of the optical absorption spectra in the 

linear-response regime, using the dipole approximation, where works remarkably well. 

We will be working in the frequency domain, by using Fourier transformation of time-

dependent quantities. For given many-body system, the linear response theory can be 

applied to study the variation of a given physical observable (like density) due to the 

application of a weak external perturbation. Let us assume that for time t < t0 the system 

is in its ground-state with external (nuclei) potential    and ground-state density n0. At t0 

a weak perturbation     
  is applied, so that the total external potential becomes 

            
   ( 72 ) 

The applied perturbation will induce charge density evolution. Since the perturbation is 

slow, the density can be expanded in series:  

 (   )    ( )   
 (   )     (   )   . ( 73 ) 

Here,   (   ) depends linearly on     
 ,    (   ) depends quadratically on     

  and so on. 

Because the perturbation is small, we are interested only in the linear part   (   ),  

which in the frequency domain can be written as: 
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  (   )  ∫ (      )    
 (    )     ( 74 ) 

The generalized susceptibility  (      ) is a fundamental quantity in TDDFT. It is also 

known as the density-density response function, which can be calculated as 

 (      )  

∑ [
⟨  | ̂

 ( ) ̂( )|  ⟩⟨  | ̂
 (  ) ̂(  )|  ⟩

  (     )   
 
⟨  | ̂

 (  ) ̂(  )|  ⟩⟨  | ̂
 ( ) ̂( )|  ⟩

  (     )   
]   

 ( 75 ) 

where η is an infinitesimal positive number,    and    are the ground state and excited-

state wave functions, corresponding to the energies E0 and En, and  ̂ ( ) and  ̂( ) are 

the field operators. The operator  ̂ ( ) ̂( ) is the secondary-quantized density operator 

with the eigenvalues  

 ̂( )  ∑  (    )
 
     ( 76 ) 

where N is the total number of electrons in the system. The poles of Equation (75) give 

the excitation energies of the system. In the case of an independent particle system with 

single-particle orbitals   (r) and energies εi,    and    are the Slater determinants and 

Equation (75) can be written as 

 (      )  ∑ (     )
  
 ( )  ( )  

 (  )  ( 
 )

          
    ( 77 ) 

where    and    are the occupation numbers. Obviously, the response function for the 

non-interacting system is much easier to calculate than the interacting one. From the 
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response function we also find many important quantities, like polarizability of the 

system: 

   ( )  ∫    (   
   )  

        ( 78 ) 

In case of an homogeneous external electric field E(ω), the external potential is given by  

    ( 
   )    ( )    ( 79 ) 

(dipole approximation), and  

   ( )  
  
 ( )

  ( )
  ( 80 ) 

where   
 ( )  is the dipole moment, i.e. polarizability is the response tensor of the dipole 

to an external electric field. In the case of non-polarized radiation, the mean 

polarizability is  

 ̅( )  
 

 
   ( )  ∑

  

(     )
     , ( 81 ) 

where 

   
 

 
(     )(|⟨  | ̂|  ⟩|

  |⟨  | ̂|  ⟩|
  |⟨  | ̂|  ⟩|

 ) ( 82 ) 

is the oscillator strength for the excitation energy      . Most molecules are bound 

excited electronic states in addition to the ground electronic state   . These states arise 

when an electron from the occupied orbital in the ground state jumps to a vacant higher 

energy orbital and this excitation of an electron occurs when the absorbed photon has 
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the energy that matches the energy difference between the two states. The classical 

Franck-Condon principle states that because the rearrangement of electrons is much 

faster than the motion of nuclei, the nuclear configuration does not change significantly 

during the energy absorption process. Thus, the absorption spectrum of molecules is 

usually calculated at fixed ion positions. In the extended case, since the photon 

momentum can be usually neglected (it is much smaller than the Fermi momentum), 

usually the vertical transitions (with fixed momentum) are considered.  

The evaluation of the response function for interacting system is a complicated problem. 

We recall that in the TDKS framework, the density of the interacting system of electrons 

is obtained from a fictitious system of non-interacting electrons. So, we can also 

calculate the linear change of density due to the external perturbation using the KS 

formalism. In this case, the density can be written as: 

  (   )  ∫   (   
   )   

 (    )   , ( 83 ) 

where 

   
 (    )      

 (    )    
 (    )     

 (    )  ( 84 ) 

and  

   (   
   )  ∑ (     )

  
 
( )  ( )  

 
(  )  ( 

 )

          
   ( 85 ) 

Corresponds to the non-interacting KS electrons.       are the occupations of the 

ground state orbitals       .  
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The KS potential    
   depends on the density and controls the external perturbation. It 

consists of the external potential      
  and the Hartree and the XC parts:  

    
 (   )    

 (    )     
 (    )  ∫ (      )  (    )     ( 86  ) 

 (      )  
 

|    |
 
     (   )

  (   )
|
    

  ( 87 ) 

The kernel  (      ) has contributions from both the Hartree and the XC parts. The 

second term in Equation (87) is the XC kernel fxc and that depends on the charge 

density. In the adiabatic approximation, the frequency dependence vanishes and the  

kernel depends on the ground state density:   

   
    (         )  

     ( )

  (  )
|
    

 (    ). ( 88 ) 

Using Equations (83), (84) and (86), we obtain the linear response function: 

 (      )     (   
   )  ∬   (      ) (       ) (    

   )       ( 89 ) 

As mentioned before, the poles of this function give the excitation energies and the 

residues give the corresponding oscillator strengths of the interacting system. Formally, 

Equation (89) is the exact representation of the linear response function, if we know 

exact    . The self-consistent solution of the above equation gives the susceptibility of 

the interacting system. The fxc term contains the corrections to the non-interacting Kohn-

Sham susceptibility and includes all the many-body effects in it. This is a very complex 

quantity difficult to find exactly, and many approximations have been used for it. The 
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simplest one is the Adiabatic LDA (ALDA), which is local in both space and time, and 

uses the XC potential of the homogeneous electron gas: 

   
    (       )   (    ) (    )   

   ( )|   (   )  ( 90 ) 

where  

   
   ( )  

 

  
   
   ( ). ( 91 ) 

ALDA approximation in spite of being very simple works well for many systems, 

especially in the low frequency regime. Another type XC kernel is PGG kernel derived 

by Petresilka et al. in 1996: 

  
   (       )    (    )

 

 

 

|    |

|∑   ( )  
 (  )   

 |
 

 ( ) (  )
  ( 92 ) 

The solution of Equation (89) is computationally expensive and also requires a huge 

amount of memory. The calculation of the empty states of the ground-state KS 

Hamiltonian scales as the third power of the dimension of the basis set. If one uses 

small number of states, then he is restricted to the low-energy range. Also, constructing 

the susceptibility     in real or reciprocal space requires a computational effort of the 

order of          
 , where,           are the number of valence and conduction bands 

and       is the dimension of the grid. The memory requirement is of the order of      
  

and solving the matrix inversion and multiplications costs are proportional to      
 . 

Furthermore, the calculation has to be done for many frequencies, making them very 

tedious and expensive. Therefore, there is a need in more efficient technique. 
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2.3.3 Casida Equations 

The Casida equations38 used the eigenvalue problem to calculate the excitation 

energies of the system. This approach is mostly used in quantum chemistry and 

condensed matter physics community and is also implemented in many ab initio codes. 

For any TDDFT Casida analysis, the first step is calculation of the electronic excitation 

energies from usual DFT calculations, with a chosen XC functional. The difference 

between the occupied and unoccupied Kohn-Sham DFT electronic energies resembles 

excitation energies and this difference is the starting point of the Casida approach. The 

charge density is obtained by substituting Equation (85) in Equation (83):  

  (   )  ∑    
   

 ( )  ( )  , ( 93 ) 

where the expansion coefficients are given by  

   
 ( )  

     
          

∫  
 ( )   

 (   )  ( )    ( 94 ) 

These coefficients are equal to zero if the virtual states are not the same as the 

occupied states. Now, substituting n’ into Equation (74) one gets  

∑ [
  (     )

     
             ]    

 ( )   ∫  
 ( )    

 (   )  ( )     ( 95 ) 

where  

      ( )  ∬  
 ( )  ( ) (   

   )  
 (  )  ( 

 ) ( 96 ) 
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is the coupling matrix that depends on the XC kernel.  Equation (95) can be reduced to 

the Casida eigenenergy equations (by setting     
   )   

 ̂     
   , 

where ( 97 )  

       (     )
         √(     )(     )      √(     )(     ) ( 98)  

 is a Hermitian matrix. The eigenvalues of Equation (97) are the excitation energies and 

the eigenvectors define the spectroscopic oscillator strengths. The diagonal part of a 

matrix (first term) gives the square of the Kohn-Sham DFT excitation energies. The off-

diagonal part is the coupling matrix that on addition to the diagonal part corrects the 

Kohn-Sham energies. The XC kernel contribution is different for the spin-singlet and in 

the spin-triplet states. 

The Casida formalism allows us to calculate oscillator strengths which are needed to 

obtain the frequency-dependent polarizability, and the corresponding optical spectrum. 

The oscillator strengths are given as a second-rank tensor, in the Cartesian 

coordinates. After obtaining the energy levels Ei and the transition dipole 

moments ⟨ | | ⟩, one can calculate the absorption spectrum using the standard 

expression 

  ( )   ∑ (     )|⟨ | | ⟩|
   |       |       ( 99 )                                       

 where ω is the frequency and   is the peak broadening.   
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The Casida equations are computationally less expensive owing to the iterative 

methods that do not require explicit calculation and storage of the complete matrix. But, 

this iterative method restricts the calculations to only lowest eigenvalues, which is not 

suitable for very large systems. In order to solve Casida equation the first step is to 

calculate the empty Kohn Sham states, which is done by diagonalizing the Hamiltonian 

and this diagonalization becomes very expensive when the basis set is large. Also when 

the size of the system increases the density of transitions in the given energy range 

increases as well. Real time propagation TDDFT approach helps deal with these 

problems. It can handle large systems and also takes in account the non-linear effects. 

The computational cost is more but it is favorable approach for large systems. For this 

thesis we will be focusing on small chains so we will restrict to Casida formalism.  
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CHAPTER 3 OPTICAL PROPERTIES OF NANOCHAINS 

 3.1 Plasmonic Effects 

3.1.1 Plasmons  

Plasma oscillations in a metal is a collective excitation of electrons in a fixed positive 

background. Collective excitations involve a significant number of particles in the 

system, that move in a synchronized way. These excitations can be very unusual and 

have very useful characteristics for applications.The nature of these oscillations can be 

understood in terms of a very simple model. One can imagine them as displacement of 

the entire electron gas as a whole through some distance d with respect to the fixed 

positive background of ions (Fig.1). 

 

Figure 1. Electron gas model to describe the charge oscillation. 

The resulting surface charge σ will give rise to an electric field of magnitude 4πσ in the 

slab (see Fig.1 for details). Consequently, the electron gas will obey the equation of 

motion: 
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   ̈     |   |     (     ), ( 100 ) 

   ̈            ( 101 ) 

where d is the dipole moment. Equation (101) is nothing but the harmonic oscillator 

equation with the frequency known as the plasmon frequency 

  
  

     

 
  ( 102 ) 

The last result is valid for the bulk system. For the surfaces the plasmon frequency is 

related to the bulk frequency as     
  

√ 
  .calculated from Maxwell’s equations. The 

dispersion relation of wave propagating on surface is given by    
 

 
(
    

     
)
   

and in 

the free electron gas model the dielectric function is given as ( )    
  
 

  
 . The surface 

plasmon frequency is the asymptotic curve given by       √      and for air it 

reduces to    √ . In the case of nanoparticles, there is no general formula for the 

plasmon frequencies.  If the diameter of a nanoparticle is of the order of the penetration 

depth of electromagnetic waves in metals, the excitation light is able to penetrate 

through the particle. This electromagnetic wave, when enters inside the metal, it causes 

conduction electrons to shift with respect to positive ions. As the electrons moves to one 

side they build up a charge on the surface of the particle on that side. The attraction 

between the negative charge of electrons and the positive charge of the ions on the 

opposite side results in a restoring force. The alternating surface charges correspond to 
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dipole oscillations, which can lead to an electromagnetic emission. If the frequency of 

the excitation source is in resonance with the eigen frequency of this collective 

oscillation, the resulting oscillation can be rather strong even for small exciting field. The 

oscillations also depend on the damping, which can be both radiative and non-radiative. 

The value of the resonance frequency depends on the strength of the restoring force 

which depends on the separation of the surface charges, the particle size, and the 

polarizability of the medium. For particles larger than 10nm classical Mie’s theory can 

be applied to calculate the absorption spectrum. Mie39 presented a solution to Maxwell’s 

equations that  describes the extinction spectra (extinction = scattering + absorption) of 

spherical particles of arbitrary size. He found that for spherical particles, as long as their 

diameter is much smaller than the wavelength of incident radiation, there is a single 

resonance frequency that is independent of the particle diameter. The absorption 

spectrum is more complex if the particle is not spherical, and one needs to take into 

account quantum effects for smaller particles. Therefore, for smaller nanoparticles one 

needs to use quantum approaches, like TDDFT. It was shown by Kummel et al.40, who 

applied both TDDFT and quantum fluid dynamics methods in the local current 

approximation (LCA) to small Na atom clusters, that  collective oscillations exist even for 

very small clusters of two atoms. 

In our studies, we focused on the plasmons in linear chains of atoms. Analytically, we 

can estimate the plasmon frequency of the chain from Eq. (102) by assuming the chain 

to be a tube of some radius r and length l given in Eq. (103) 
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  ((        )    ) ( 103 ) 

 

Figure 2. Schematic representation of plasmons in chains. 

We estimate the radius of the tube as such that it contains 90% of the orbital electronic 

charge. For example, in the case of the 6s orbitals for Au, r is equal to 21.07Å. So we 

get the plasmon energy: 

   √   
    

  

  

 
  ( 104 ) 

where n is the density given as       and the volume of the tube is       . 

Substitution of the expressions above into Equation (104) gives: 

         √
 

((        )      )  
  

 
        ( 105 ) 

This expression gives qualitatively correct value for the plasmon absorption energy and 

this is justified by our studies also as presented in section 3.1.b below.  
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3.1.2 Single pure and doped Au chains 

The characteristics of monoatomic nanostructures and bimetallic nanostructures 

consisting of a noble and transition metal (TM) atoms is an active area of both 

experimental and theoretical study. One of the main reasons for this is that bulk noble 

metals such as Au and Ag and their extended layered structures display plasmon 

excitations in the visible frequency range which may be further tuned by changing either 

the geometry or chemical composition via doping with TM atoms. Since the TM atoms 

have both extended s and localized d states, one may expect interesting and unusual 

interplay of the role of these two types of states in determining the properties of noble 

metal-TM systems, particularly at the nanoscale. Collective excitations in few-atom 

clusters shown initially by Kummel et al.41 have been the subject of several theoretical 

investigations following recent scanning tunneling microscope observations showing 

development of 1D band structure when the number of atoms in Au chains on NiAl(110) 

exceeds 1020. Subsequent theoretical calculations at the same time confirmed the 

presence of the collective plasmon mode for Na42, 43, Ag44, 45, and Au46, 47 chains 

containing more than 10 atoms. Experimental observation of such collective excitations 

requires the chains to be grown on a substrate that does not quench them rapidly. While 

there are theoretical indications that NiAl(110) surface does not affect the electronic 

properties of the Au chains48 its metallic nature precludes a short lifetime for any 

plasmon excitation. On the other hand, it is possible to grow Au chains and wires on 

semiconductor substrates such as Si (557)49, 50, Ge(001)51 and quartz52 which may be 

amenable for capturing the plasmon effects (especially with the bandgap much larger 
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than the chain plasmon and other excitation energies of interest). In principle, one may 

expend a significant change of the interatomic distances when the chains are put on the 

substrate. However, as our calculations demonstrate, the qualitative results remain 

qualitatively and semi-quantitatively the same when the bond lengths change (in a 

reasonable, ~0.01-0.1nm, interval). The experimental study of TM (Pd) doped small Au 

chains on NiAl(110)53 found local electronic resonances around the dopant atom. As for 

optical properties of TM doped noble metal chains, we are not aware of any previous 

study. Here I present results of theoretical calculations of the optical properties of Au 

chains and doped chains, Aun-mXm, consisting of n = 2 to 24 atoms. In the doped case, 

we consider weakly-doped chains with different TM atoms (X = Ni, Rh and Fe, m =1-4) 

 

3.1.2.1 Computational Details 

We have applied the TDDFT approach as employed in the Gaussian 0354 code with a 

B3PW9131 hybrid functional and a LanL2DZ basis set55. We have considered Aun-mXm 

chains of length up to n=24 atoms, in which X=Ni, Rh or Fe, with m ranging between 1 

and 4 (though in most cases m=1). For pure Au chains, our results are in a good 

agreement with those of other TDDFT calculations46. Calculations of optimized Au-Au 

bond lengths show that the optical absorption spectrum does not significantly depend 

on the interatomic distances. Ab-initio calculations show that NiAl (110) surface acts 

mostly as a structural template for Au chains and do not affect the electronic properties 

of the chains. Therefore, as a first approximation we do not take into account the chain 
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substrate interaction to study the plasmon excitations, we only set the interatomic 

distance d to 2.89Å, corresponding to that observed experimentally for Au chains on 

NiAl (110) substrate20.  For doped chains, we optimized the bond lengths in Au-X dimer 

and Au-X-Au trimer.  Since our interest is mainly in the visible spectrum and since the 

computational time for a given number of excited states increases dramatically with 

increasing chain size, we have focused our attention on states below 5eV, also since 

the visible range is the most interesting from solar energy application point of view..  

This choice allowed us to study the longitudinal plasmon modes in all cases, but not the 

high-energy (ultra-violet) transverse plasmon modes, found for example in Au chains46. 

In order to make the figures more transparent, in plotting A(ω) we neglected the 

contribution of dipole moments less than 0.1 in atomic units as it is very small as 

compared to the main plasmon peak. 

 

3.1.2.2 Results 

Fig.3 confirms the finding of Lian et.al.46, that a new (collective) longitudinal plasmonic 

mode emerges in the optical absorption spectrum when the number of atoms in the 

even numbered chains is of order 6. The position of the peaks moves into the infrared 

region with increasing n and becomes close to the asymptotic value ~0.6eV when n=20.   
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Figure 3 The optical absorption spectrum of the Aun (n=4-24) from bottom to top. 

Since the magnitude of the peak grows with n, this excitation becomes dominating as 

the number of electrons involved in the collective motion also increases with n. The 

redshift of the plasmon energy with increasing n is related to the reduction in the energy 

gap (the bandgap in the many-atom case) involved in the dipole excitation (see also 

Ref.46).   

The high energy peaks survive as n decreases. They correspond to the 

atomic/molecular level transitions. Interestingly, we have found for pure gold chains with 

an odd number of atoms a smaller satellite peak with the energy ~ 0.1 below the main 

peak, which might be attributed to additional oscillations related to the unbonded extra 
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charge from the ''odd" atom at the edge. However, in this study we focus on examining 

chains with even number of atoms, and don’t analyze the nature of such peaks in detail. 

 

 

 

 

 

 

 

Figure 4 The optical absorption spectrum for Aun-1Ni (n=8-24). The local plasmon peak 

emerges at the left of the main peak at n=12 and changes its relative position at n>20 

As for the doped chains, we consider first those of length n=2 to 24, doped with only 

one TM atom X=Ni, Rh and Fe. We find that when X= Ni, there is an additional plasmon 

peak close in energy to that of the main peak (Fig. 4). Since this additional peak does 

not exist in the case of short chains (n<12), it must also have a collective nature. The 

fact that this peak appears when the Au chain is doped with one atom and that its 

position is independent of the position of the doping atom in the chain (except when it is 

very close to the chain edge) suggests that it must have a localized nature (see the next 
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subsection).  The localized plasmon mode appears also when the doping atom is Fe, 

but Rh.  Note that the highest occupied s-orbital of an Rh atom contains only one 

electron, as does that of Au, while in Ni and Fe this orbital is doubly occupied.  The 

presence of the extra peak may be closely related to the charge redistribution in the 

doped chains, which is expected to be much larger in those containing Ni or Fe atoms 

with unfilled d orbitals, while in Rh-doped chains, the d-levels are filled (see below). This 

explanation is supported by our calculations for chains in which the dopant is an Ag 

atom (for which the s-state is likewise singly-occupied):  as in the Rh case, no new 

plasmon peak appears. 

A closer look at those plasmonic modes in the Ni doped case reveals that a 

redistribution of the oscillation strength takes place: what is the dominant mode at n=18 

turns at n=24 into a secondary mode.  In between at n=20 the plasmon modes are of 

almost equal strength. A plausible explanation for this is that when a Ni atom sits in the 

middle of this chain, we have what amounts to two separated gold chains, each of a 

size close to the critical value (10) at which the collective extended plasmonic mode 

appears, and one may assume that these two chains generate strong coherent 

oscillations, raising the strength of the lower mode to a level close to that of the 

dominant.  The magnitude of the lower peak increases as n increases further.  The 

second mode can be attributed to the local plasmon, with higher energy comparable to 

that of the collective plasmon at n>20.  The reason for this is that the attractive positive 

background potential is stronger for the local mode than that for the collective mode.  
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The position of the local peak depends much less on the chain length than does the 

collective plasmon because number of electrons involved in the local plasmon 

oscillations will not increase with the entire chain length increasing. The size of the 

chain area involved in local oscillations depends on the impurity potential. 

 

 

 

 

 

 

 

 

Figure 5 The optical absorption spectrum of Au20, Au19, Au19Ni, Au19Rh, Au19-hole  

 

The origin of the extra peak is further analyzed in Fig. 5 which compares the absorption 

spectrum of theAu19Ni and Au19Rh chains with those of Au20, Au19, and Au19 with a hole 

in the middle. One of the peaks for Au19Ni coincides with that of Au19 reflecting that it is 

indeed the collective excitation of the 19 Au atoms in the chain while the other is 
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inherently linked to the presence of the Ni atom. The absorption spectrum of the Au19Rh 

chain in Fig.5 asserts that its optical properties are similar to the Au20 chain with a small 

lower energy peak revealing the effect of the dopant. On the other hand, a hole in the 

Au19 chain breaks the response into that for a 10-atom and 9-atom chain. 

. 

 

 

 

 

 

 

 

Figure 6  The optical absorption spectrum of the Au24-nNin (n = 1, 2, 3, 4, 5) chains. 

We have found that the plasmonic peaks in the optical absorption spectrum disappear 

when the number of dopant atoms is around 5.  The results for the case of quasi- 

equidistant Ni impurities far from the edges in the 24-atom Au chain are presented in 

Fig.6.  Indeed, in the case of 5 impurities, consisting of five 3-atom and one 4-atom Au 

chains separated by the TM atoms, the constituent chains are too short to excite either 
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collective or local plasmons (see Fig.3).  Similar results emerged when the 5 Ni atoms 

situated directly next to each other (“clubbed together,” as it were).  In the case of 

weakly-doped Au18Ni2 chain, there are two plasmon peaks in both the separated and 

the clubbed Ni atom cases, about 0.1eV, though the center of the peak positions is 

different in the two cases.  This result also suggests that there are two kinds of 

excitations in the system: collective motion in subchains and some local- charge 

oscillations near the Au-Ni border. 

 

3.1.2.3 Discussion   

Casida formalism allows us to look at the energy ranges for longitudinal oscillations only 

and that is where the focus of our calculations is. The main objective of this study is to 

see how doping affects the plasmon resonance in small chains. The effect is different 

for larger nanoparticles where Au and Ni when mixed together destroys the plasmon 

peak56. But in small chains with just one atom one can get new modes in the absorption 

spectrum and also larger absorption band (in the case of double doped chains: see next 

section). These calculations are all electron calculations and so all the orbitals are taken 

into account making the basis set even larger. This restricts us to lower energy values 

for larger systems. One can use frozen core approach to look at larger energies or 

transverse oscillations46. But for this thesis we will focus just on the longitudinal 

oscillations. In this discussion we have used various analytical approaches to 

understand the nature as well as origin of excitation peaks that we see in the absorption 
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spectrum. All the given approaches suggest that the collective oscillations exist in pure 

chains and additional peak arise because of the potential well generated by impurity 

potential. With these approaches we explain different results, for example, to 

understand the nature of oscillations involved in particular excitation, one dimensional 

electron gas model is used and to understand the reason for additional peak, impurity 

model using tight binding Hamiltonian is used. The Mulliken charge analysis suggest the 

reason so as to why the additional mode in Rh is weak as compared to Ni and the 

analytical plasmon frequency is calculated by deriving a simple formula from the bulk 

plasmon frequency which can be further refined to use for multiple chains (see next 

section). Although these different calculations agree qualitatively with the TDDFT 

calculations, the latter are important because there we have used all electron 

calculations which make them more accurate while in all other analytical approaches 

only valence electrons and orbitals are considered. One dimensional gas model cannot 

be used to explain the new peaks generated because of doping. Also the formula to 

calculate the plasmon frequency is only for pure chains and cannot give the frequency 

for the additional mode because there we have considered the oscillations over the 

entire chain. So even when each model has its own restrictions combining various 

approaches strengthen the idea of local and collective oscillations observed with 

TDDFT calculations. Below we discuss each of the analytical approaches in detail.  
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To understand qualitatively the nature of the excitations in the chains under study, we 

used a simple model of quasi-one-dimensional electron gas as proposed by Gao et 

al.,38 and motivated by recent calculations which show the presence also of  quadrapole 

excitations in confined one dimensional systems57. The ground state of the electron gas 

is described by standing electron waves confined between the infinite walls at both 

ends: 

  (   )  √
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being the transverse wave function, ρ is the radial coordinate perpendicular to the chain. 

The quasi-one-dimensional electron gas system has length L and the transverse radius 

2b. The response function of interacting electron gas is calculated from the free 

response function and electron-electron interaction kernel K: 
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From the response function, in turn, one can calculate both the dipole strength function 

 ( )  
  

 
     ( ), ( 111 )  

 ( )   ∫  ∫      (      )    ( 112 )    

and the induced charge density  

  (   )   ∫     𝛱 (      )   ( 113 ) 

From the above equations we calculate the absorption spectra for pure and doped 10-

atom chains. As shown in Fig. 7, the spectrum of the doped chain has more peaks than 

that of the pure 10-atom chain. The nature of excitations can be qualitatively understood 

from the induced charge-density plots shown in Figs.8,9. For the main peak, which is 

around 1eV, the charge-density oscillations are extended over the entire chain, owing to 

collective excitations. While this peak does not shift under doping, other peaks appear 

only with doping on doping.  The charge-density plot for the additional mode, which is 

around 5ev, shows the oscillation taking place in the middle area of the chain, which is 

where the dopant is placed, indicating that the dopant generates local oscillations. 
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Figure 7 Dipole strength function of a quasi-one dimensional electron gas with 10 atoms 

 

 

 

 

 

 

 

Figure 8 Real part of induced charge densities for a 10-atom chain. 

0 10 20 30 40 50
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

 

E
le

c
tr

o
n

 D
e

n
s
it
y
 (

1
/a

.u
.)

x(a.u.)

 main peak

 additional peak 

Re[n] (*10-3)

0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
S

tr
e
n
g
th

 F
u

n
c
ti
o

n
 (

1
/e

V
)

Energy(eV)

 10 atom chain 

 10 atom chain with dopant

       in the middle



56 

 

 

 

 

 

 

 

Figure 9. Imaginary part of induced charge densities for a 10-atom chain. 

 

 

 

 

 

 

 

Figure 10. The Mulliken atomic charge distribution in the case of Au19X(X = Au; Ni; Rh) 

chains. The impurity atom is put at the site 10 from the left. 
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To get more understanding of possible reasons for the observed splitting of plasmon 

peaks, we analyze the Mulliken atomic charge distributions in the case of Au and single-

doped Au chains. The results for the Au20, Au19Ni and Au19Rh are presented in Fig.10 

(The results for Au19Fe are very similar to those for Au19Ni).  Since the charge 

distribution on the edges is almost identical in all three cases and there is no second 

plasmon peak in the pure Au chain, we infer that the edge oscillations are not 

responsible for the second peak in the doped chains. On the other hand, among the 

three cases there are quite strong differences in charge distribution near the impurity 

atom at the center of the chain.  In the case of Ni atom, the impurity ion has a very large 

positive charge, while the nearest Au atoms are negatively charged. One can think of 

this situation in terms of a jellium model of electrons in presence of one high potential 

wall and two neighboring valleys; the rest of the chain can be considered as the positive 

background, usual in the studies of plasmon phenomena. To understand the difference 

between the results for Rh impurity on one hand and Ni and Fe impurity on the other, 

one should note from Fig.10 that the height of the potential well and the depth of the 

valleys are much smaller in the case of Rh.  In this case, when the charge from the right 

sub-chain close to the valley moves to the right but the valley potential is not deep 

enough to move the charge back, there is no reason for the local oscillations. The 

plasmon oscillations can be modeled as a local mode and a collective mode in the case 

of atom with impurities (Figs.11d and 11e).      
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Figure 11.  Schematic form of the positive charge background potential for the Au16 (a) 

and Au15X (c) chains. In the case of Au16, the plasmon excitation corresponds to the 

charge oscillation along all the chain (b). In the case of Au15X chains, there are possible 

two kinds of plasmonic oscillations: collective plasmon excitations in each half of the 

chain (d) and local plasmon oscillations on both sides of the impurity atom potential wall 

(e). 

To estimate the necessary potential strength to generate local plasmon oscillations, one 

can assume that the restoring energy effects are important when this energy is of order 
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or larger of the kinetic energy in the system.  The kinetic energy of electrons can be 

estimated as twice nearest-neighbor hopping energy.  We approximate it by the 

expression for the Slater-Koster parameter Vssσ = 1.32       multiplied by 2, where m 

is the electron  effective mass, which for simplicity we put equal to the free electron 

mass me and d = 2.89Å is the inter-atomic distance.  This gives Ekin = 1eV. The potential 

energy is of the order of the local plasmon frequency ωp, which can be estimated from 

equation (5). This gives potential energy of chain as 0.638eV which is in good 

agreement with what we get from our calculations (0.66eV). When an impurity is 

introduced, its charge shifts to its neighboring Au atoms, and as that charge density 

increases in turn, the plasmon frequencies increase along with it. From the estimations 

above, in order to get the local plasmon oscillations it is necessary that ωp ≃ Ekin ∼ 1eV, 

which corresponds to the following number of electrons per atom: (1eV /0.66eV )2 ∼ 2.  

In other words, the Au atoms nearest to the impurity atoms receive one extra electron – 

and in doing so generate local plasmons.  As one can see from Fig.10, this analysis 

gives semi-quantitatively correct results in the case of Ni and Rh atoms.  In the first 

case, the extra charge is ∼ 0.5 electrons, i.e., on the order of one electron, while in the 

case of Rh atom the charge received is almost an order of magnitude smaller. 

We have also used another analytical model to test the presence of local oscillations 

around the impurity atom. For this we have used the impurity model suggested by 

Muniz58. The pure chains can be modeled using a tight binding Hamiltonian  

     ∑ (  
      

   )〈   〉  ∑     
      ∑   

     ( 114 ) 
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where t is the hopping parameter and   is the chemical potential.    is the impurity 

potential felt at a site which is not the impurity site: 

        (
 |     |

 

   
)  ( 115 ) 

here    is the impurity potential generated by the impurity present at site    and σ 

defines the range of potential and is given in terms of the lattice sites. We have used 

  √        and different      .  The total Hamiltonian consists of H0 and the impurity 

perturbation term: 

          ∑        
   
           ( 116 ) 

      
  

 
∫  ∫   

  
 ( )  

 (  )  ( 
 )  ( )

|    |
  ( 117 ) 

The polarization operator for the interacting system includes this perturbation term: 

 ( )    (         )   ( 118 ) 

The diagonal matrices           are given as  

              (  
    

 ) ( 119 ) 

              (  
    

 ) ( 120 ) 

By using retarded Green’s functions, spectral density function of this system is given by  

 ( )      (         )  ( 121 ) 
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which is non zero only at the plasmon frequencies because of the delta function. The 

size of these matrices involved is               . In our calculations we use energy 

levels from the TDDFT calculations performed earlier. So the first check was to see how 

many orbitals are required to get accurate results. As in TDDFT we can use as many as 

200 orbitals in most part of our calculations and the matrix size is               , we 

cannot have           larger than 5 for a 20 atom chain. 

 

 

 

 

 

 

 

Figure 12. Absorption spectra of 20 atom pure Au chain by using            . 
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Figure 13. Absorption spectra of 20 atom pure Au chain by using            . 

 

 

 

 

 

 

 

Figure 14 Absorption spectra of pure Au chains using tight binding approach. 
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Absorption spectrum is calculated using Equation (115). It changes significantly from 2 

to 4 orbitals, however our calculations show that there is no significant change when we 

go from 5 orbitals and above. So we fixed           as 4 for rest of our calculations. The 

difference between the cases with 2 and 4 orbitals can be seen from Fig.12 and Fig.13. 

The absorption spectra for pure Au chains show the plasmon peak at 6 atoms and the 

peak grows with the number of atoms (Fig.14). The features are not as sharp as those 

from TDDFT calculations as these calculations are based on a simple model and 

performed only to understand the nature of the oscillations. On adding the impurity atom 

in the middle additional modes are observed (Fig.15). 

 

 

 

 

   

 

 

 

Figure 15. Comparison of absorption spectrum of Au20 and Au19Ni chains. 
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We analyzed the contributions to the local mode by isolating the orbitals that contribute 

to the strength of the mode to find that in all the cases the orbitals of the impurity atom 

or the ones surrounding it are the major contributors to the strength of the local peak. 

Fig. 16 shows the local mode strength for different atoms. 

 

 

 

 

 

 

 

Figure 16. Atoms contributions to the local peak in Au19Ni chain (Ni in the middle). 
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Figure 17 Analysis of the additional mode of Au19Ni chain (black squares represent 

orbital 1and red circles represents orbital2). 

Fig. 17 gives a much clearer picture of the dominating atoms with the orbitals 

contributing to the local oscillations: the strength is coming from oscillations between the 

impurity atom number 10 and the atoms surrounding it. It is also seen that atoms further 

away on either side of the impurity (labeled <6 and >16) do not participate in the local 

oscillations, confirming our earlier prediction. 

One can also analyze the basis for the charge redistribution from the bonding point of 
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with the result that the positive and negative charges of the Aun−1Rh and Aun ”plasmas” 

are almost the same. Hence, the type of excitations in these chains will be the same, 

i.e. a single plasmon peak.  In the case of Ni and Fe atoms, the valence s-state is 

doubly occupied which means that it is mainly the d-states that contribute to atomic 

bonding.  A more precise look shows that d2, dxz and dyz orbitals donate most of the 

charge to the bonding, resulting in a positively charged core with charge Z > +1.  This is 

the main reason for the potential well at the impurity atom. Thus, one can estimate 

which sorts of atoms may lead to the generation of a localized plasmon by looking at the 

bonding charge redistribution.  Obviously the estimation presented above is not very 

accurate, but more refined estimations can be easily obtained by improving this one, in 

particular by using some more accurate values for the  electron effective mass.  We 

believe, however, that even such simple estimations give the energy of possible 

plasmon excitations within the correct order of magnitude. In summary, we have shown 

that weak doping of Au chains with some TM metal atoms may lead to generation of 

local plasmon modes. This effect is a result of a delicate balance between s- and d- 

states of the dopant atoms causing charge redistribution in chain near the TM atom. We 

propose a simple criterion for the possibility of generation of local plasmon mode based 

on this charge redistribution, i.e. the double occupancy of the highest s-orbital and 

partial occupancy of the d-states are necessary for this. Our results show that some TM 

metal atoms can be used to tune the optical properties of nanostructures. 
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3.1.3 Multiple Chains 

Recently, detailed studies have been done on the mechanism of the collective 

excitations of alkali-metal clusters.59-61 Ma et al.62 studied the sensitivity of plasmon 

resonance in Au nanoparticles and their dimers as a function of particle size and inter-

particle distance. Studies of the plasmon excitations in planar Na structures63, 64 reveal 

the importance of dimensionality in the formation and development of the plasmon 

peaks. Recently, Scanning Tunneling Microscope (STM) experiments have 

demonstrated development of 1D band structure in Au chains on NiAl(110) when the 

number of atoms in the chain exceeds 10.20 In the previous section and in our study 65 

we examined the role of TM doping in generating plasmon modes in single Au chains, 

demonstrating that such doping leads to several changes in the absorption spectrum, 

including (most strikingly) new local mode. These new excitations are a result of a 

complex rearrangement of the ionic potential around the impurity atom felt by the 

delocalized electrons participating in the plasmon oscillations around the TM atom, as 

well as a collective effect of the localized (TM d-) and de-localized (s) electrons. Indeed, 

the mutual effects of both subsystems may be nontrivial, in particular leading to a 

change of the spectral function of the localized electrons (see, e.g., Ref. 66), or to local 

electronic resonances around the dopant atom, as was shown experimentally in the 

case of Pd-doped Au chains on NiAl(110).53 This complexity opens the door to new 

opportunities for tuning the optical properties of nanostructures by changing their shape 

or size and by TM doping. In this study, we confirm this possibility for several coupled 

noble-metal/TM and pure noble-metal nanochains.  
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3.1.3.1 Computational Details 

All calculations have been carried out using the TDDFT approach as employed in the 

Gaussian 0354 code with a B3PW91 hybrid functional31, 30, 29 and a LanL2DZ basis set55. 

Unless specified, all interatomic distances are set to be 2.89 Å. The absorption 

spectrum is calculated from Equation (63) where Ei and ⟨ | | ⟩ are the energy levels 

and transition dipole moments respectively computed from TDDFT calculations,  ω is 

the oscillation frequency and Г is the peak broadening which we set to 0.2 eV. For 

clarity of the figures, in plotting  ( ) we neglect the contribution of dipole moments with 

intensity of less than 1% of the main plasmon peak. 

 

3.1.3.2 Results 

(1)Pure chains:  Increasing of the number of atoms in the double chains leads to 

generation of a plasmon mode when n reaches a certain threshold. This mode gains 

strength and moves to lower energy with further increase in the number of atoms. 

Fig.18 shows how this mode is generated when n ≥ 6 (n being the number of atoms in 

one chain, the 10-atom chain is shown on the top). in double Au chains – similar to what 

happens in the case of a single Au chain.65  
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Figure 18 Optical absorption spectra of the n-atom double Au chains, n=2-14  

 

 

 

 

 

 

 

Figure 19 Absorption spectra of arrays of pure Au chains of 10 atoms each. 
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The absorption spectra of single, double and triple ten-atom Au chains (Fig. 19) 

demonstrate that the plasmon peak moves in to the visible range (1.7eV -3.0 eV) as the 

number of chains increases. A similar effect can be produced by changing the geometry 

of the system while keeping the number of atoms fixed (Fig. 20). We have considered 

four different geometries, three of which have been previously studied, but for infinite 

chains37.  In the square pattern (SQ3) the two chains are parallel to each other, and 

each atoms coordination number is three.  In single zigzag geometry the chains are 

aligned at some (non - 900) angle to each other, depending on the vertical distance 

between the two chains. Each atom’s coordination number is four.  Examples are ZZ4-

eq (in which that angle is 600, so that the atoms form equilateral triangles) and ZZ4-iso 

(in which they form this or that isosceles triangle). In double zigzag geometry (ZZ3+5), 

two zigzag chains are combined.  Although the average coordination number is four, but 

four atoms in the unit cell alternate between coordination number three and five. The 

plasmon peaks for SQ3 and ZZ4-iso chains lie below the visible range, while  two of the 

three for ZZ4-eq and both of those for the ZZ3+5 chains fall within the visible range.   
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Figure 20 Absorption spectra of pure Au chains with different geometries -- square, 

zigzag (with different vertical distances between chains) and double zigzag.   

 

(2)Doped chains:  The contrast between the absorption spectra of single and double 

TM-doped chains is more complicated than that between the corresponding spectra of 

pure single and double chains.  In both cases the peaks shift to higher energy and the 

strength of the plasmon peak increases.  However, when the chains are doped in the 

middle with TM, bringing two chains together increases the number of plasmon modes 

and moves some of the absorption spectrum peaks into the visible range (Fig 21).  

Putting Ni atom at the end of chain does not affect the plasmon mode of pure Au double 

chains whereas Ni in the middle splits the mode into two. However, it’s not the case with 

Pd doping. (Fig. 23).  
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Figure 21 Optical absorption spectra of single and double Au11Ni chains. 

 

 

 

 

 

 

 

 

Figure 22 Optical absorption spectra of Au28, Au26Ni2 (Ni in the middle) and Au26Ni2 (Ni 

at the end) chains. 
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Figure 23 Optical absorption spectra of Au28, Au26Ni2 (Ni at the end) and Au26Pd2 (Pd at 

the end) chains. 

 

 

 

 

 

 

 

 

 

Figure 24 Optical absorption spectra of Au28, Au26Pd2 (Pd at ends and in the middle) 

and Au27Pd (Pd at the end and in the middle) chains. 
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(3)Mixed Chains:. In the case of double chains, one of which is Au and other either 

TM or other noble-metal, the results are also very interesting. In particular, when an Ag 

chain is coupled with a Cu chain, the resulting plasmon peak is situated halfway 

between the peaks of pure Ag and pure Cu double chains (Fig.25).  But when either an 

Ag or a Cu chain is coupled with an Au chain, the plasmon peak is much closer to that 

of the pure Au double chain than that of either of the pure Ag or Cu chains, implying that 

collective oscillations from Au chains are much stronger than from two other chains. 

When the Au chain is coupled to a TM (Ni, Fe, Rh, Pd) chain the plasmon modes are 

highly suppressed (Fig. 26). 

 

 

 

 

 

 

 

 

 

Figure 25 Coupled M14N14 chains absorption spectra (a) Au14Au14, Ag14Ag14, Cu14Cu14, 

Au14Ag14, Au14Cu14,  Ag14Cu14  chains.  
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Figure 26 Coupled M14N14 chains absorption spectra, Au14Au14, Au14Ni14, Au14Pt14, 

Au14Pd14, Au14Fe14 chains. 

 

3.1.3.3 Discussion 

    As follows from the results, the position of the plasmon peak in pure chains moves to 
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the simple expression for the plasmon energy which follows from the jellium model: 
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  ( 122 )                                                                     

In this expression,     is the charge density and, e and m are the electron charge and 

mass, for which we use the free-electron values. The particle density is n=N/V,   

     is the number of s-electrons (n – the number of atoms in the chain,     - the 

0.8 1.0 1.2 1.4 1.6 1.8
0

50

100

150

200

N14

 Au14Au14

 Au14Fe14

 Au14Ni14

 Au14Pt14

Au14Pd14

 

 

A
b
s
o
rp

ti
o
n

 (
a
rb

. 
u
n
it
s
)

Energy (eV)

M14



76 

 

number of chains), and V is the volume of the system, which can be estimated as 

follows. It is equal to the effective system length l multiplied by the effective width d and 

height h. The chain length can be approximated by     (   )    , where    

      is the inter-atomic distance in the chain, and  R is the s-orbital radius. The last 

quantity can be estimated as the radius of the sphere around the atom which contains 

90% of the s-electron charge.  For Au atoms this comes to R=21.07Å. The system 

height is h=2R in this case, and the system width     (     )    , which gives: 

   √
       

 

  [  (   )   ][  (     )   ]
 ( 123 )                                                                            

Since in a system consisting of only few chains   (     ) is much smaller than 2R, 

and in a system consisting of long chains (n>20),   (   ) is much larger than this 

quantity, one can use the following approximate expression for the dependence of the 

plasmon energy on the number of atoms in the chain: 

    √
      

     
 ( 124 )                                                           

For the parameters used above this gives         √   , or 0.52eV, 0.74eV and 

0.9eV, for the single-, double- and triple-Au chains, respectively. This is in reasonable 

agreement with the results presented in Figs. 18 and 19.  One can also estimate the 

plasmon energy for 2D (infinite) arrays. In this case,        , so that one gets from 

Equation (117) 

   √
    

     
         ( 125 ) 



77 

 

As it follows from these estimations, the energy of the plasmon peak moves into the 

visible range as the number of chains increases. 

Another important result which follows from Equation (117) is an additional criterion for 

recognizing the presence of collective response of the system: when   (   ) becomes 

larger than 2R the plasmon energy weakly depends on the chain length (n’s in the 

numerator and denominator cancel), as should be the case for the collective behavior of 

“the extended” system. In other words, the criterion of collective response is   (   )  

  , or   
  

  
  , which gives n>15.5. Given the simplicity of the model this is in 

reasonable agreement with the numerical result n>10. The energy becomes almost n-

independent when   (   )    , or   
  

  
       , which is again in agreement 

with the analytical estimation of n>20. 

In the case of doped chains, the shape of the spectra strongly depends on the chemical 

composition of the structures and on the position of the impurity atoms. In the single-

chain case, as we have reported earlier34, a single impurity leads to an extra peak in the 

case of some TMs, and the plasmon peaks are suppressed when the number of 

impurities is large enough (~4-5). 
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Figure 27. The electron charge density in the case of two Au14 chains doped in the 

middle by Rh(top) and Ni (bottom) atoms. 

The plasmon effects were found to be especially pronounced in the case of Ni, and 

almost absent in that of Rh. Our analysis demonstrated that this can be explained by a 

local potential created by the d-electron impurity, which leads to charge oscillations 

around it in the case of excited system. Since the Rh atom has only one s-valence 

electron, it did not significantly perturb the Au system. Doping with Rh barely affects the 

charge distribution, which corresponds to the jelly model (with its homogeneous positive 

background). On the other hand, doping with a Ni atom introduces a strong repulsive 

potential at its location and generates attractive valleys at neighboring Au atoms (see 

Fig 27 in which one can compare the charge gradients in the Ni- doped and pure 

systems). 
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In the case of doped multi-chain structures the situation is more complicated.  One 

would expect in general to find local and collective plasmons in each chain, and that 

interaction among these many modes leads to extra (“hybridized”) peaks, so that the 

plasmon spectrum is much more complex and difficult to understand. Moreover, when 

the chains and/or the impurity atoms in different chains are close to each other one 

might anticipate inter-chain oscillations, i.e. the appearance of additional new modes. In 

order to get some insight on the nature of possible plasmon excitations in such doped 

multi-chain systems, we present the Mulliken charge distribution and charge densities 

for all the absorption spectra presented above (Figs. 28-35).  As these figures indicate, 

an impurity atom leads to a significant redistribution of the Mulliken charge, and hence 

the effective positive background charge. 

 

 

 

 

 

 

 

 

Figure 28.  Mulliken atomic charge for the pure Au chains illustrated in Fig. 19 with 

different array sizes.  
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Figure 29. Mulliken atomic charge distribution for the pure Au chains with different 

geometries presented in Fig.20 

. 

 

 

 

 

 

 

 

Figure 30. Mulliken atomic charge distribution for the Ni-doped Au chains illustrated in 

Fig. 21 (the second chain atoms in the double chain correspond to Atoms 13-24). 
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Figure 31. Mulliken atomic charge for double Au chains – one pure, one doped with Ni 

in the middle, one doped with Ni at the end. 

 

 

 

 

 

 

 

 

Figure 32. Mulliken atomic charge for the Au chains illustrated in Fig. 4: pure, end-

doped with Ni and end-doped with Pd  with 1 and 2 Pd atoms at different positions. 

4 8 12 16 20 24 28

-0.19

0.00

0.19

0.38
 Au28

 Au26Ni2-middle

 Au26Ni2-end

M
u

ll
ik

e
n

 a
to

m
ic

 c
h
a

rg
e

Atom

4 8 12 16 20 24 28

-0.2

0.0

0.2  Au28

 Au26Ni2 at ends

 Au26Pd2 at ends

M
u

lli
k
e

n
 a

to
m

ic
 c

h
a

rg
e

Atom



82 

 

 

 

 

 

 

 

 

 

Figure 33. Mulliken atomic charge for the Au chains with 1 and 2 Pd atoms doped at 

different positions. 

 

 

 

 

 

 

 

 

Figure 34. Mulliken atomic charge for coupled the M14N14 chains illustrated in Fig. 5: 

Au28, Ag28, Cu28, Au14Ag14, Au14Cu14, Ag14Cu14 (b) Au28, Au14Ni14, Au14Pt14, Au14Pd14, 

Au14Fe14. 
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Figure 35. Mulliken atomic charge for coupled the M14N14 chains: Au28, Au14Ni14, 

Au14Pt14, Au14Pd14, Au14Fe14. 

An effective theory of plasmon excitation in this case can be described by the 

following system of equations: 

  ̇          ∑                   , ( 126 ) 

where     is the energy of plasmon in chain i,        are the corresponding local or 

collective modes, and        is the plasmon-plasmon coupling within the system. Since 

the plasmon-plasmon interaction is of the dipole type, it should decay rapidly (1/R3) with 

increase in the distance R between the plasmon “centers of mass, ” so only the nearest-

chain interaction matrix elements V need to be taken into account (as highlighted in 

Fig.38). Therefore, the corresponding modes will split, leading to extra modes with 

respect to the single chain case. The striking results for the ( and only for the) Pd edge-

doped chains leads to extra modes can be explained by an enhanced  “resonance”, due 
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to interaction between the oscillations at the end of the chains with collective modes. 

Though such qualitative analysis can provisionally explain the main features of the 

plasmon spectrum in this case, a detailed quantitative analysis is necessary for every 

particular case.  

 Another surprising result is suppression of the plasmon modes in noble metal chains 

coupled to a TM chain (Fig. 26). Although both chains support plasmons (albeit weaker 

for TM), in the coupled case these excitations are damped by the strong mutual 

scattering between the d-wave orbital charges of the TM chain, orbitals oriented 

perpendicularly to the chains, and the s-orbitals of the neighboring Au chain.  

 

 

 

Figure 36. HOMO (top) and LUMO (bottom) of two Au14 chains each doped in the 

middle by one Ni atom (red and blue indicate an extra and missing charge, 

respectively). 
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Figure 37. The same chains as in Fig. 29 but doped (also in the middle) with Pd atoms. 

 Finally, we would like to draw attention to the charge redistribution in the Ni- and Pd-

doped systems when they are excited from the HOMO to the LUMO states (Figs 37,38). 

Since such an excitation can take place simultaneously with the plasmonic excitations, it 

may lead to interesting effects on plasmon oscillations as well as on charge and energy 

transport. While in the case of Ni doping, the HOMO-LUMO excitations lead mostly to “a 

flip” of the quasi-periodic areas with extra and missing charge (with two such new 

areas), in the Pd case the areas with the charge non-homogeneity in the HOMO state is 

emerge to the right of the impurity, but moves to the left when the system is LUMO-

excited. The effect of the LUMO (and possibly other) excitation(s) on the behavior of 

plasmons is a problem for future studies. Appendix A shows various molecular orbitals 

HOMO-LUMO for different cases under study. 
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Figure 38. Schematic representation of the collective and local plasmon oscillations in 

double chains. 

To summarize, we have analyzed the optical properties of arrays of multiple pure and 

TM-doped noble metal nanochains systems. In the case of pure chains, the system 

demonstrates a plasmon peak when the chain contains about 10 atoms or more. The 

position of the peak in the optical absorption spectrum moves to lower energies as the 

number of atoms n increases, and becomes almost n-independent at n>20. The position 

of the peak moves to higher energies when the length of the chain is fixed but the 

number of chains increases. Doping of a single chain with some TM atoms (with 

different non filled shells) leads to extra plasmon peaks which can be explained by local 

plasmon oscillations around the impurity atom (Fig.38). In the multichain case such 

doping leads to multiple in-chain plasmon oscillations and also to an inter-chain 

interaction between different plasmon modes, mostly in the nearest-neighbor chains. 
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These extra plasmon modes can be explained as a result of plasmon-plasmon 

interaction, which leads to the mode splitting of the modes. Interestingly, we have found 

plasmon modes even in pure TM chains.  To our knowledge, ours is the first report of 

such an effect in TM materials, though when such pure chains coupled to pure noble 

metal chains, no plasmon modes were found, owing to mutual scattering between s- 

and d-states excitations in different chains. Though our studies have mainly focused on 

Au chains doped with Ni, Rh or Pd atoms, but as pure Ag and Cu cases behave 

similarly to Au, so one can expect similar picture for Ag and Cu chains doped with TM 

atoms. The results obtained in this paper can be used to tune the optical properties of 

nanosystems including the visible spectrum case.   

 

3.2 Effects of Exciton Plasmon Interaction in Coupled Chains 

3.2.1 Excitons 

An exciton is an electrically neutral quasiparticle consisting of a bound pair of electron 

and hole which are attracted to each other by electrostatic force.  As excitons are 

electrically neutral particles, they can transfer energy without transferring net charge. 

Excitons are formed when a photon with energy larger than the bandgap, excites an 

electron from the valence band into the conduction band of a semiconductor or 

insulator. As an electron moves into the conduction band, it leaves behind a hole that 

has a positive charge and an effective mass that may be similar to that of the electron. 

These positive and negative charges attract each other through a screened Coulomb 

attraction and form a bound pair (Fig.39). 
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Figure 39 Schematic representation of an exciton. 

An exciton has two momenta: the pseudomomentum, which is equal to the vector sum 

of electron momentum and hole momentum (center-of-mass momentum) and the 

relative momentum of the electron and the hole. The pseudomomentum enables exciton 

to move throughout a crystal and the relative momentum determines its internal 

structure. Excitons are classified into Frenkel and Wannier types based on their size. 

Frenkel Exciton: Excitons localized over a single lattice site are called Frenkel excitons. 

They are tightly bound excitons that can hop from one atom to another.  If the electron 

is excited from the valence band of one atom to its conduction band, it can move into 

the conduction band of the neighboring atom. Now as the neighboring atoms have an 

additional electron in the conduction band the repulsive force between the valence and 

conduction band electron might push the valence band electron to the corresponding 

atom to fill the hole there. So, the electron-hole pair moves to the neighboring atom. The 

translational states of Frenkel excitons take the form of propagating waves just as 
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excitations in periodic systems. Frenkel excitons are most commonly found in biological 

systems, polymers and molecular crystals. 

 

Figure 40 Schematic representation of Frenkel exciton. 

Wannier Excitons: In the case of Wannier excitons the lattice atoms act as a 

background field in which electron and hole exist as free pair. The bound pair is formed 

by electron and hole orbiting each other on this background. The distance between 

electron and hole is much larger than the lattice constant of the system. In this weakly- 

interacting system for which the background also is very important, one has to take into 

account the effective masses of electron and hole as well as the dielectric constant of 

the material. 
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Figure 41 Schematic representation of a Wannier exciton. 

Excitons in Au chains --  Infinte Au chains with zig-zag structure are semiconducting. In 

our studies, the vertical distance between two atoms is fixed at 2.89Å and the horizontal 

disatnce is 5.006Å (Fig.42). 

 

 

 

Figure 42 Schematic of the Infinite zig-zag chain. 

 

 

 

5.006Å 

2.89Å 
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Figure 43. Band structure for infinte zig-zag chain 

The exciton binding energy for infinite chain is calculated using different exchange and 

exchange-correlation potentials by using the TDDFT67 We found that exciton binding 

energy is very sensitive to the choice of potential used. We have considered local, LDA 

and Slater  potentials where we have added just exchange or exchange and correlation 

both and the results are tabulated in Table 1. 
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Table 1. Exciton binding energy for infinte zig-zag chain with different TDDFT potentials. 

Potential Exciton Binding 

energy(meV) 

[Exchange] 

Exciton Binding 

energy(meV) 

[Exchange-

Correlation] 

Local 0.461 1.490 

LDA 0.636 1.670 

Slater 1.271 2.317 

 

As it follows from our calculations, the binding energy is in ranges of meV, which means 

that the exciton excitation energy is not very different from the gap value,~0.8eV, close 

to the plasmon energy in the finite chains. 
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3.2.2 Exciton Plasmon Energy Transfer  

The advantages of nanomaterials are not limited to controllable optical properties of 

single components and potentially synergistic properties caused by interactions 

between the nanoscale constituents. Exciton-plasmon interaction allows one to design 

system properties such as emission and absorption. It also gives control over energy 

transfer processes at the nanoscale and creation of new excitations. Exciton plasmon 

interactions can be very strong as both the building blocks and the separation between 

the components have nanoscale dimensions. The number of possible hybrid materials 

that can be built from existing nanostructures is enormous; therefore, the potential for 

creating highly functional hybrid materials that enable, modify, and control energy 

processes and pathways is very promising. An important mechanism of such interaction 

is fluorescence resonance energy transfer (FRET) or Forster Energy Transfer67, 68. This 

transfer mechanism provides a very efficient coupling between optically excited systems 

because it comes from Coulomb interaction between nanostructures. The fundamental 

optical excitations are transitions between these discrete levels in the conduction and 

valence bands that in particular lead to the formation of bound electron-hole pairs or 

excitons. The equivalents in metal nanostructures are so-called plasmons that are 

collective oscillations of conduction band electrons. Typically the exciton energy flows 

from large bandgap nanocrystal (donor) to a nanocrystal with smaller band gap 

(acceptor). Interactions between excitons and plasmons occur when metal and 

semiconductor nanostructures are in close proximity and they are often described by 

the coupling of the exciton dipole with the electromagnetic (also dipole) field of the 
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plasmons. This model has been used to explain the original experiments by Drexhage69  

who studied the change of the excitation decay rate of an emission dipole in the 

proximity of a plane metal surface. In general, well known phenomena including 

enhanced absorption cross-sections, increased radiative rates, and exciton-plasmon 

energy transfer70 are described in the weak coupling regime. The challenge remains to 

properly calculate the electromagnetic fields in the proximity of metal nanoparticles.   

Such interactions have been studied in quantum dots 71, 72, nanowires73 etc. We model 

a semiconductor –metal system, where infinite Au chains are   semiconducting and 

finite chains are metallic. The excitons in the infinite chains transfer energy to Au 

nanochains to generate plasmon in them. FRET between the excitonic and plasmon 

states in coupled chain-wire system takes place on the femto-second time scales.  Such 

a transfer might be used to manipulate the absorption and emission spectra of 

technological devices based on these systems. This opens up also a possibility for 

coupled excitations that can act differently than the optical excitations of the individual 

components.  

 

3.2.2.1 Computational Details 

When these wires are coupled with nanochains the Coulomb interaction between the 

wire and the chain electrons and the holes may lead to a non-radiative energy transfer. 

The process of energy transfer can be described as a transition between two states 

(    )
           
→    (    )   ( 130 ) 
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where D* (D) is the donor in the excited (unexcited) state, A* (A) is the acceptor in the 

excited (unexcited) state, and kT is the rate of resonance energy transfer between the 

donor and acceptor pair.  In this process, the donor absorbs an external photon leaving 

it in an excited state. Then, the donor transfers its excited energy, via a non-radiative 

process, to the acceptor leaving it in an excited state. From Förster’s theory [29], the 

rate of energy transfer from a donor to an acceptor kT(r) is given by 

  ( )  
 

  
(
  

 
)
 

   ( 131 ) 

where,   is the decay time of the donor in absence of acceptor,   is the Förster 

distance, and r is the donor-to-acceptor distance.  The efficiency of the energy transfer 

(E) is the fraction of photons absorbed by the donor which are transferred to the 

acceptor:  

  
  ( )

  
     ( )

  ( 132 ) 

It can be shown that the equation above corresponds to: 

  
  
 

  
    

   ( 133 ) 

Therefore, the efficiency of such transfer between the systems separated by distance r 

is proportional to 1/r6.   

Nanowire –nano chain  system is described by the local environment around them i.e. 

by the dielectric constants of the nanowire, nanochains and substrate            .The 

local dielectric constant approach provides us with reliable description if the transferred 
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exciton energy is not very close to the band gap of the semiconducting wire. The 

formalism is based on the multipole expansion and fluctuation-dissipation theorem. We 

have used two-band model to calculate the exciton binding energy 74  using different XC 

kernels. The rate of energy transfer can be calculated as  

  (    )  
 

 
  [

   (    )

  
] ∫    ⃗    ⃗  

    ( 134 ) 

where ωexc is the exciton frequency and  ⃗   is the electric field induced by the dipole field 

of the exciton, given by the gradient of the potential  

         
     (       ) ̂

    |       |
  

          ( 135 ) 

dexc is the dipole moment of the exciton and  ̂ is the direction of optical dipole moment  

     
 

 
∫  
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   ( 137 ) 

     is the position of the nanowire and    covers the entire space where the plasmon 

charge cloud could is present.  The dielectric constant of the nanochains was calculated 

using the oscillator model: 
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ω0  is the resonance frequency, or  the plasmon frequency.  µ is the damping put equal  

0.025. 

 

3.2.2.2 Results 

As it was shown above, finite Au chains have collective excitations and when they are 

doped with TM atoms additional local excitations are seen in the absorption spectrum. 

We analyse how these local and collective excitations interact with the excitons in the 

infinite semiconducting Au wires. We fix number of atoms in chain to be 14 and consider 

four different cases: Au14 chain, Au13Ni, Au13Fe, Au13Rh. The absorption spectra 

calculated using equation 95 for all of these cases are shown in Fig.44-47. The finite 

chain with 14 atoms have plasmons as shown above (The absorption spectra of 14 

atom Au chain is shown in Fig.44). The plasmon peak is at 0.85eV so that plasmon 

energy and the gap of the infinite chain are comparable. 
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Figure 44. Absorption Spectra of pure Au chains of 14 atoms. 

 

 

 

Figure 45 Absorption Spectra of Au13Ni chain. 
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Figure 46 Absorption Spectra of Au13Fe chain. 

0 1 2 3
0

10

20

30

 

 

A
b

s
o

rp
ti
o

n
 (

a
rb

. 
u

n
it
s
)

Energy(eV)

Au
13

Rh

 

Figure 47. Absorption Spectra of Au13Rh chain. 
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Figure 48. . Schematic of the Infinite zig-zag chain with finite Au14 chain. 

When the two chains, i.e the infinite and the finite chains, are brought together one can 

calculate the rate of energy transfer which is 9.3x1011 s-1, i.e. picosecond scale. When 

these chains are coupled with doped chains the exciton-plasmon coupling is enhanced 

because of the presence of local plasmons, so the transfer rate is substantially 

increased (in some cases by an order of magnitude), Table 2. 

Table 2. The dielectric constant and rate of energy transfer (equation 131) for zig-zag 

chain and pure, doped chains of Au. 

System ε ϒx1011(1/s) 

Au 27.32 9.23 

Au-Ni 59.39 20.0 

Au-Fe 186.30 62.9 

Au-Rh 127.13 42.9 
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This means that one can expect a possibility to manipulate the optical properties of the 

systems by changing the doping.  

 

3.2.2.3 Discussion 
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Figure 49. Mulliken Atomic charge of Au14, Au13Ni, Au13Fe, Au13Rh. 

We have studied excitonic effects in the infinite semiconductor Au chains and effects of 

the exciton-plasmon interaction in coupled chains on their optical properties. In 

particular, we have found that the exciton binding energy in the chains can be 

significant, comparable to the values in other semiconducting materials75. When the 

“excitonic” chains are coupled to the finite chains with plasmon excitations one can 
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expect an energy transfer between the chains. The effect is especially pronounced 

when the exciton and plasmon energies have close values and when hybrydization 

between the excitations may occur. It was found that the largest transition dipole 

moment corresponds to the transfer between the exciton and local plasmon which is 

excited around the impurity atom. Thus, our results suggest that impurity atoms in the 

finite chain can be served as trapped centers for excitons. It may open a possibility to 

collect absorbed energy in particular spacial areas, with consequent local emission. For 

instance, very long semiconducting chains can be used to absorb the solar energy over 

a large area, while the created excitons travelling through the chains will be transformed 

into the local plasmons in the finite chains near the impurity atoms. This effect might 

have applications in solar cell technologies, for examle in concentrators. 
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CHAPTER 4 ULTRAFAST EMISSION IN SINGLE LAYER MoS2 

Single layer MoS2 shows a great potential to be used in novel nanoelectronics76, 77 and 

nano optical devices78, 79 and in catalysis. It’s the tunable electronic structure of MoS2 as 

well as strong absorption and emission makes it very attractive to be used in wide 

variety of applications like phototransistors80, light emitting devices operating in visible 

region81. One of the important features of single layer MoS2 is that it shows strong 

luminescence as opposed to its bulk counterpart82, 83. The intensity of the emission 

decreases about 100 times as the number of layers increases to bulk value. This 

decrease in intensity has been attributed to the indirect band gap in the bulk MoS2. 

Many experiments have reported photoluminescence in single layer MoS2 and a great 

amount of work is being done in this field to understand the nature of the emission and 

absorption spectra83, 84. Different experimental groups get different values of energy for 

the photoluminescence peak, the energy range varies from 1.8 -1.9 eV depending on 

the sample used82, 84. To our knowledge there are no theoretical calculations for 

photoluminescence spectra that can give the insight on the reason for different results. 

We calculate the absorption and emission spectra of single layer MoS2 and also study 

the role of electron phonon interactions on the peak position. There are evidences of 

strongly bound excitons82 and trions85, 86 in the optical absorption spectrum, so it is 

important to include exciton effects in the calculations. Tuning the bandgap in the single 

material makes MoS2 a very promising material that can capture broad range of 

spectrum and also concentrate excitons and other charge carriers. The doped system 
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demonstrates high electron mobility. Study of the slow and ultrafast optical response of 

monolayer MoS2 is important from the point of view of science and technological 

applications. It has been found that graphene which is also a single-layer material like 

MoS2 shows strong emission when excited by ultrafast pulses21. It is very interesting to 

explore the ultrafast response of monolayer MoS2 to ultrafast pulses, in particular its 

photoluminescence properties.  

Photoluminescence is the emission of light which happens when the material is 

irradiated with some external light source. Phosphorescence and fluorescence are two 

different types of photoluminescence which differ from each other only by the emission 

time. Fluorescence is the prompt emission, i.e. the emission that occurs in the time 

range of microseconds after the excitation, whereas in phosphorescence the time scale 

is larger, of the order of milliseconds. When a material is irradiated by light, electrons 

are excited from valence band to conduction band. The lifetime of electrons in the 

conduction band is short because of various scattering processes like electron-electron 

scattering and electron-phonon interactions, which move electrons to the bottom of 

conduction band, which finally results in the transition back to the valence band and 

light emission.  Electron-phonon interactions play a very important role in many 

processes in metals and semi-conductors, such as in electrical and thermal transport. In 

simpler picture, electron-phonon coupling alters the dispersion and lifetime of electronic 

states in the material. We have carried out first principles calculations of the 

photoluminescence properties of monolayer MoS2 using DFT.  We have tested our 
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approach by testing it on bulk Au and on graphane. In particular, we have analyzed the 

role of the electron-phonon interactions in the photoluminescence process. Phonon 

dispersion curves calculated using density functional perturbation theory served as the 

basis for the evaluation of the system electron-phonon coupling, which in turn was used 

to calculate the electron self-energy and the electron spectral function.   

 

 4.1 Computational Details 

We have used QUANTUM ESPRESSO87  code to calculate the ground state properties 

of monolayer MoS2. We have used post processing software to calculate the electron- 

phonon coupling for semiconductors. The Quantum Espresso code uses the following 

steps to calculate electron-phonon coupling in metals. The ground state atomic and 

electronic configurations are obtained from usual DFT and then phonon spectrum is 

calculated using Density Functional Perturbation Theory. In order to know the electron-

phonon coupling parameters, one has to determine the electron-phonon coefficient g  

which gives the probability of electron scattering from an initial electron state (i) with 

momentum k to a final electron state (j) by a phonon with momentum q and mode index 

 : 
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where M is the atomic mass,      and        are the electronic wave functions for the 

initial and final states, respectively. 
     

  ̂  
 is the gradient of the self-consistent potential 

with respect to the atomic displacements induced by the phonon mode (q,   ) with 

frequency     and phonon polarization vector   ̂ . 

The phonon line width is defined as 

         ∑ ∫
   

   
|   (     )|
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 and the electron-phonon coupling constant for mode   and wave vector q is given by 

    
   

   (  )   
    ( 141 )  

where  (  ) is the electron DOS at the Fermi level. It can be seen from the equation 

above that the electron-phonon coupling constant depends on the DOS at the Fermi 

level and that is why the codes fail to calculate it in the case of semiconductors where 

this parameter is zero. To avoid this problem, in the case of our semiconducting system 

we have manually shifted the Fermi level to a point where we have some finite DOS. 

This is equivalent to introducing doping in the system. The effectiveness of phonons 

with energy    to scatter electrons is expressed in terms of the Eliashberg 

function    ( ). When the initial electron energy and momentum are fixed, the 

corresponding state-dependent Eliashberg function gives the e–ph coupling between 

the initial state and all other final states, which differ in energy by    (due to the phonon 

emission (E) or absorption (A) processes). The Eliashberg function is defined as  
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The coupling λ can also be defined as the first reciprocal momentum of the Eliashberg 

function 

  ∑      ∫
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       ( 143 ) 

To study the absorption and emission properties, one can calculate the spectral function 

A (k,ω), which is proportional to  the probability of finding an electron with energy    

and momentum k in the given state (occupied or excited) and is given by 

 (   )  
|  ∑(   )|

[    ( )   ∑(   )]  [  ∑(   )] 
  ( 144 ) 

where E0(k) is the band dispersion in the absence of interactions, ∑(   ) is the complex 

self-energy that include all many-body interaction effects. The real part of the self-

energy renormalizes the dispersion and the states acquire a finite lifetime through the 

finite imaginary part. The imaginary part of the electron self-energy due to phonon 

scattering in the lowest-order approximation is related to the Eliashberg function through 

the integral over all the scattering events that conserve the energy and the momentum: 
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In the last equation, f and n are the Fermi and Bose distribution functions, respectively. 

The term in the first square bracket represents the phonon emission and the term in the 

second square brackets is associated with the phonon absorption processes 

 In the quasi-elastic approximation:- 

    (      )    ∫     (      )[   (    )    (    )    ( )]
    

 
    ( 146 ) 

   (   )  ∫   
 

  
∫      
    

 
 (    )

   

     
  (   )  ( 147 ) 

 

4.2 Results 

As explained above, the electron-phonon coupling in the case of semiconductors is 

calculated by shifting the Fermi level; which actually corresponds to introducing some 

doping in the system. This practically is the case for many experiments in which the 

sample is inevitably doped. To test our approach, we first use the system of graphane 

(fig.50) where we calculate electron-phonon coupling as a function of doping, the results 

for which are known88. Our results are in good agreement with Savini et. al.88, which 

suggests that our approach is reliable. The structure for graphane was relaxed and the 

lattice parameters are given in Table 3. The doping in this case corresponds to hole 

doping. 



109 

 

 

Figure 50 Schematic representation of graphane 

Table 3 Lattice parameter and bondlength for graphane obtained by different 

approaches.  

 Our calculations Savini et. al.88 

Lattice Parameter 2.53 2.50 

C-C bond length 1.53 1.51 

C-H bond length 1.10 1.11 

 

The density of states is also in agreement with other calculations (Fig.51). The band 

gap of graphane is 3.5eV as calculated by previous studies. 
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Figure 51. Density of states of pure graphane. 

Table 4. Electron-phonon coupling constant in graphane as a function of doping. 

Doping λ  λ  (Ref88) 

2% 1.13 1.25 

4% 1.25 1.37 

10% 1.43 1.44 

 

Furthermore, it can be seen from the Table 4 that the electron-phonon coupling 

constant is in very good agreement with other calculations and varies with the amount 

of hole doping. 
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Therefore, we applied the similar approach, mentioned above to single layer MoS2 (Fig. 

52). The single layer MoS2 has two planes of hexagonally arranged Sulphur atoms 

which are bonded to hexagonal Mo atoms through covalent bonds. The bulk structure is 

formed by when such single layers are held together through Vander wall’s interaction. 

The lattice parameter was optimized within Local Density Approximation (LDA) with the 

energy cut off 60 Ry and the K pointy mesh15x15x1.  The values for the lattice constant 

and the bond lengths are shown in Table 5 and are in reasonable agreement with 

experimental data89, 90. 

 

Figure 52 Schematic diagram of monolayer MoS2. 

Table 5 Lattice parameters for monolayer MoS2. 

 Our calculations Experimental 

a 3.167 3.16 

Mo-S bond 

length 

2.419 2.414 
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Figure 53 Density of states for single layer MoS2. 

 

 

 

 

 

 

Figure 54 (a) Phonon dispersion curve for single layer MoS2. (b) Schematic 

representation of the optical modes. 
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The electronic DOS shown in Figure 53 demonstrates the band gap of 1.8eV which is 

expected from DFT calculations91. GW calculations report band gap to be equal to 

2.8eV92 and the experimental value is 2.15eV93. Although LDA gives lattice parameters 

that agree well with experimental results the band gap is not correct. So, we will correct 

the band gap in order to get correct absorption spectrum. 

Figure 54 shows the phonon dispersion of monolayer MoS2. MoS2 belongs to the 

symmetry point group D3h and has 9 branches of phonons, 3 acoustic and 6 optical. 

The acoustic modes LA and TA are the in plane vibration modes that have linear 

dispersion and they are higher in energy than the out of plane vibration mode ZA. The 

lower energy optical modes E’ and E’’ are in-plane vibrations and both are degenerate 

at the Gamma-point.  Two E’’ modes are in-plane vibrations with 2 sulphur atoms 

moving out of phase and Mo atom being static. The E’ optical modes are polar modes 

with Mo and S atoms moving out-of-phase with respect to each other. A’ is the 

homopolar mode with two sulphur atoms vibrating out-of-phase and Mo atom not 

moving and A’’ is the highest energy optical mode with out –of-plane vibrations, where 

Mo and S atoms are vibrating out of phase with respect to each other. 

The low-mode electron-phonon coupling is calculated with the same approach as for 

graphane (The Fermi level was shifted to a point where we get a finite DOS). The 

results of which are shown in Table 6. 
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Table 6 Electron-phonon coupling constant for different doping in monolayer MoS2.  

Doping λ  

1% 0.12 

2% 0.16 

3% 0.20 

 

Shifting the Fermi energy to 0.067 eV corresponds to 1% electron doping. It gives λ= 

0.12, which is in the range expected by the previous studies94. Once we obtain the 

electron-phonon coupling and the Eliashberg function, we calculate the real and 

imaginary parts of the self-energy (Figure 55).  Then, using Equation (135) we calculate 

the spectral function, plotted in figure 56. The different curves in these plots represent 

the different values of chemical potential or Fermi energy (we have used an effective 

phonon frequency            ). The important point to note is that the imaginary part 

of self-energy equal to the inverse   excitation lifetime   ( )       [ ( )] is small for 

frequencies around zero which means low scattering while for some other   it is very 

large, which means fast phonon assisted relaxation and hence fast emission. 
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Figure 55 The Real and Imaginary part of the electron self-energy 
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Figure 56 The spectral function of monolayer MoS2. 

 

 

 

 

 

 

 

Figure 57 Absorption Spectrum of monolayer MoS2. 
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The absorption spectrum was calculated using Equation (93). The absorption spectra 

shows two prominent features that correspond to the exciton transition from the valence 

band to the conduction band. Absorption spectrum demonstrates strong excitonic peak 

(binding energy ~1eV86). In general, the system is optically active in the visible range. It 

is important to note that we have corrected DFT band gap to 2.8eV to get the absorption 

spectrum as presented above. Figure 58 shows the emission spectrum of monolayer 

MoS2. The PL peak for λ= 0.12 coincides very well with the experimental value of 1.9eV. 

The exciton emission was also included into the spectrum, which gives results that are 

in very good agreement with the experimental data. It is evident from the PL spectrum 

the peak position depends on the electron-phonon coupling as the peak moves to 

higher energy as the value of λ increases and as expected the line width also increases 

with the value of λ. 

 

 

 

 

 

 

Figure 58 The photoluminescence spectrum of monolayer MoS2 for different values of λ 
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To understand the behavior of system under ultrafast excitations we study the time 

dependence of the electronic temperature of doped MoS2 calculated by (Allen model95): 

   

  
  ( )    (     )  ( 148) 

where the rate is 

   
   ⟨   

 ⟩

     
  ( 149) 

 

 

 

 

 

 

 

 

Figure 59 Time dependence of electron temperature in doped MoS2. 
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Figure 60 The Spectral fluence in doped MoS2. 

Figure 59 shows the result of the time dependence of electron temperature. Our 

calculations suggest that thermal relaxation of 100 fs-pulse excited MoS2 electron 

system happens also on the fs scale. The corresponding fluence is shown in Figure 60. 

Spectral fluence is the total radiant energy emitted in all directions per unit area per 

photon energy. It is calculated using Planck-type formula 

 (   ) 
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where the emission time     is the time for which the laser pulse is applied was set to 
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one can expect a high spectral fluence of visible light emission at high effective 

emission temperatures of the excited system in the femto-second timescale.  

 

4.3 Conclusions 

To summarize, we have calculated the optical response pure and doped monolayer 

MoS2, including the ultrafast response. It was found that absorption spectrum 

demonstrates exciton peak in the visible range with binding energy ~1eV. Position of the 

emission peak of clean system is very sensitive to the value of e-ph coupling and also 

lies in the visible range. Calculations of the self-energy and spectral functions of the 

doped systems suggest that one can expect excitations with 10-100fs lifetime, which 

makes the system interesting to ultrafast applications. The position of the spectral peaks 

can be manipulated by doping in the visible range frequencies. The doped system 

demonstrates ultrafast (fs) relaxation of electronic subsystem when excited by fs pulses 

and a high ultrafast spectral fluence of visible light emission. These features might be 

also used in modern optical devices.  
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CHAPTER 5 MAGNETIC PROPERTIES OF NANOPARTICLES 

5.1 AFM-FM Transition in Bulk Fe-Rh  

There has been recent interest in bimetallic nanoalloys when non-magnetic metals or 

even insulators are embedded in magnetic 3d clusters (e.g. Fe, Co, Cr and Ni). The 

combination of 3d metals with large magnetic moment and 4d metals (e.g. Rh) with 

strong spin orbit coupling may be an effective way of obtaining a high magnetic moment 

and anisotropy which is required in high density magnetic recording. Fe-Rh systems are 

of special interest due to unusual AFM-FM transition in the bulk case. In 1938 Fallot 

discovered that ordered FeRh system undergoes a transition from AFM to FM22. This 

happens at about 370 K. Equiatomic Fe-Pt might be expected to show the same 

magnetic behavior but it remains FM at all temperature. At room temperature CsCl type 

structured alloy has zero net magnetic moment ; the Fe spins are antiferromagnetically 

ordered with         while Rh spins donot exhibit any ordering.Upon heating beyond 

the critical temperature of about 340K , FeRh undergoes an isotropic lattice expansion 

and Fe as well as Rh spins are aligned ferromagnetically with Fe magnetic moment as 

     and Rh as    . When the temperature is raised above the Curie temperature 740K 

the system undergoes second phase transition into a paramagnetic phase. Although the 

AFM –FM transition has been known for decades and numerous experimental and 

theoretical works has been devoted to this system23, 96-99, the physical mechanism of 

this transition remains a matter of debate. While some studies suggest that electron gas 

entropy to be the driving force for this transition100 while other suggest that non collinear 
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magnetic excitations and strong Fe-Rh hybridization could also be the reason for 

transition101. Gu et. al. suggest that the transition is caused by different magnon 

excitations of FM and AFM states 98 and Cooke102 et.al. show the role of magnetic 

fluctuations in AFM to FM transitions. 

Starting with the bulk FeRh (50%-50%), we first try to reproduce the result obtained in 

all previous calculations i.e. to look at AFM-FM transition in the bulk. For that we have 

applied DFT studies using Quantum Espresso code and found that the system 

undergoes AFM-FM transition with increase of temperature, in agreement with 

experimental data. Experimental studies22 suggest that FeRh undergoes lattice 

expansion during the transition and this is the parameter that we have incorporated in 

our calculations. We changed the lattice parameter and found that system undergoes 

AFM-FM transition at 3.08Å. 
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Figure 61. AFM –FM transition in bulk Fe-Rh. Transition takes place at a=3.08Å  

In this work our goal is to see if the basis of this transition may be found by examining 

FeRh nanoparticles. Particularly since for nanosystems it is easy to change the 

chemical composition which could possibly shed light on the nature of bulk FM-AFM 

transition and also possibility to tune the magnetic properties of this type of material. 

 

5.2 Magnetism in FeRh Nanoparticles 

Although the potential advantages of alloying 3d elements with highly polarizable 4d or 

5d elements are easy to understand, the problem involves a number of serious practical 

challenges. Different growth or synthesis conditions can lead to different chemical 

orders, which can be governed not just by energetic reasons but by kinetic processes 

as well. For instance, one may have to deal with segregated clusters having a 4d core 
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and a 3d outer shell or vice versa. Moreover, the interatomic distances are also 

expected to depend strongly on size and composition. Typical TM-cluster bond lengths 

are in fact 10–20% smaller than in the corresponding bulk crystals. Taking into account 

that itinerant 3d-electron magnetism is most sensitive to the local and chemical 

environments of the atoms,26,37–39. It is clear that controlling the distribution of the 

elements within the cluster is crucial for understanding magnetic nanoalloys. So, it is 

important to understand the chemical composition, geometry and the cluster size-

dependence of the magnetic properties of the corresponding nanoclusters. FeRh has 

been studied extensively in bulk and thin film forms96, 98, 103. However, there is also 

interest in FeRh nanoparticles arising from potential applications in magnetic recording 

or sensor technologies, as well as fundamental interest concerning the relationships 

between size reduction and tailoring of the magnetostructural transition character. There 

have been contradictory results on AFM-FM transition in FeRh nanoparticles while Yu 

Ko104, 105 et. al. and Jia106 et. al. reported an AFM-FM transition in these nanoparticles, 

while Hillion107 et.al reports absence of such transition in smaller cluster sizes. 

 

5.2.1 Computational Details 

We have applied DFT as implemented in QUANTUM ESPRESSO87  code to calculate 

the magnetization and total energy of the clusters. The exchange and correlation energy 

was approximated by using both the spin-polarized generalized-gradient approximation 

(GGA) with PBE27 functional. The structures are obtained from cutting the bulk FM as 
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well as AFM ground state structures and then relaxing them. Different concentrations 

are obtained by just replacing the Fe or Rh atoms from 50-50 FeRh bulk structure. 

 

5.2.2 Results 

We studied different compositions for 26-atom nanoparticles of FeRh, namely Fe2Rh24, 

Fe10Rh16, Fe14Rh12, Fe24Rh2 (Fig.62). Table1 shows the total energy and total 

magnetization of these clusters. It is very clear that for all clusters the FM state is the 

lower energy state. The total magnetization increases with the number of Fe atoms in 

the cluster. Fe atoms have more magnetization ~3µB and Rh atoms in FM structure 

have magnetic moment more than 1.2 µB and less than 0.9 µB in the AFM case. The 

magnetic moment increases from 20-30% as the atom moves from inside to surface. 

We have also analyzed the bondlength expansion and contractions and even in that 

case the FM state was lower in energy than the AFM state. 
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Figure 62. Optimized structures of FexRh26-x: (a) FM Fe24Rh2, (b) AFM Fe24Rh2, (c) FM 

Fe14Rh12, (d) AFM Fe14Rh12, (e) FM Fe10Rh16, (f) AFM Fe10Rh16 (g) FM Fe2Rh24, (h) 

AFM Fe2Rh24 

(a) (b) 

(c) 
(d) 

(e) (f) 

(g) (h) 
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Table 7. Total Energy and total Magnetization of FM and AFM FexRh26-x nanoparticles. 

 

 

 

 

 

 

 

 

 

The zero actually corresponds to the lowest energy value and the +sign shows that the 

AFM structures have this much energy more than the FM ones. The table clearly 

indicates that the FM structures are always lower in energy than AFM ones. Also the 

total magnetization of the cluster decreases with the number of Rh atoms as it should 

be as the magnetic moment of Rh atoms is less than Fe atoms. Another interesting 

thing to note is that the difference in energy between FM and AFM structure is also 

decreasing with increasing Rh atoms suggesting that Fe atoms are responsible for the 

stability of FM phase. 

Clusters                FM                  AFM 

  Energy 

(eV) 

Total  

Magnetization

(µB/cell) 

Energy (eV) 

  

Total 

Magnetizatio

n(µB/cell) 

Fe24Rh2    0           74.0     +4.02            2.0 

Fe14Rh12    0           60.0     +1.75             0.0 

Fe10Rh16    0            54.0     +1.44             6.0 

Fe2Rh24    0           42.0     +0.12             0.0 
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Figure 63 Bond length distribution of the structures shown above in Fig.62. 
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Figure 64. Magnetization/atom and coordination number for the clusters in fig.62. 
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We analyzed the bondlength distribution and coordination number in these clusters. Fig. 

63 shows the bond length distribution in the clusters. For both Fe and Rh atoms, the 

bond lengths are distributed in the range 2.2 to 3.0 Å. In general, Fe-Rh bonds are 

shorter than Rh-Rh bonds and the bondlength distribution remains almost same for FM 

and AFM cases. Figure 64 shows the magnetization per atom and the coordination 

number of the atoms in the cluster. We find that more coordinated the Fe atom is the 

smaller is its magnetic moment. However, this condition does not necessarily hold for 

the Rh atoms as can be seen from figure 65 where an example of Fe10Rh16 FM case is 

shown. Fe atom no.9 and 13 with coordination number 6 is located outside the cluster 

and has relatively more moment (3.40 and 3.38 µB) than Fe atom no. 2 and 3 which lies 

inside the cluster and have coordination number 10 and magnetic moment 2.86 and 

2.93 µB respectively. But for Rh atom, Rh21 is least coordinated (coordination number 

3) and is surrounded by 3 Fe atoms but still its moment (1.32µB) is less than Rh26 

(1.47µB) whose coordination number is more and is bonded just by Rh atoms. This can 

be explained by looking at the Partial Density of States (PDOS) for these atoms. Fig. 66 

shows the PDOS of d orbital Fe atom no.2 and 13 which indicate that m4 moves to the 

occupied level for atom number 13 thereby giving more magnetization. However for Rh 

atoms the PDOS for the inner and surface atoms (1 and 22) does not differ much and 

hence the magnetization also does not differ.  
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Figure 65 FM Fe10Rh16 (two figures are just different angles to show Fe and Rh atoms 

clearly) 
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Figure 66 Partial DOS of d-orbital of Fe atoms shown in Fig.65 (a) atom number 2 (b) 
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Figure 67 Partial DOS of d-orbital of Rh atoms shown in Fig.65 (a) atom number 22 (b) 
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5.2.3 Conclusions 

We found that FeRh nanoparticles behave very differently from their bulk counterparts 

and do not show AFM state as their ground state. We have analyzed various 

compositions and all of them are ferromagnetic. The magnetization per atom decreases 

with increasing number of Rh atoms, though not dramatically. Energy difference 

between the AFM and FM states becomes very small when cluster is close to pure Rh 

which means FM is mostly due to Fe states. The average bondlength increases with 

number of Rh atoms. There is correlation between the magnetization per atom and the 

position of Fe atoms (surface and bulk), i.e. coordination number. On the other hand 

this is not the case for Rh, which probably has magnetic moment due to stronger orbital 

localization. Thus manipulation of FM can be done by changing the number and the 

position of Fe atoms. These results also suggests that the FM-AFM transition in bulk 

might be caused by the Stoner mechanism, characteristic for extended solids, while in 

the finite clusters the magnetism is governed by Heisenberg exchange mechanism, 

which favors ferromagnetism in our case. Stoner mechanism is related to 

ferromagnetism, arising from the shift between the spin-down and spin up bands. The 

Stoner criterion describes the energy balance of the ferromagnetic order. The energy of 

the system can increase as a result of the (spin related) asymmetry of the dispersion 

relation and can decrease as a result of the Weiss field. The comparison of these 

energies gives the ferromagnetic order in the system. It is thus a many-body (band) 

effect. The Heisenberg mechanism, on the other hand is a local (inter site) spin 

interaction effect. By changing the distance between atoms and their environment the 
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coupling constant J can be changed from positive to negative, making the system 

ferromagnetic or antiferromagnetic (                ). We have expanded the lattice 

constant of the cluster and found the FM state to be still the ground state i.e. the sign of 

J did not change implying there is no AFM-FM transition. On the other hand, we know 

that in the bulk the transition happens, which means that it is probably not due to the 

Heisenberg J change, but rather due to Stoner mechanism. We also found a nontrivial 

dependence of the magnetic properties on the chemical composition of the clusters, 

including rather strong magnetization of the Rh atoms. 
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CHAPTER 6 SUMMARY 

In summary, I have studied optical and magnetic properties of several different types of 

nanostructures: chains, nanoparticles and atomic-thin monolayer, and found that these 

properties can be tuned by varying the system parameters, most notably the 

composition and size. Collective excitations were observed not only in noble metal-, but 

also in TM metal chains. In the case of TM-doped Au chains we found additional local 

modes. Similar behavior was observed in arrays of chains in which in addition to this 

effect the interaction between local and collective plasmons of the chains give rise to 

new peaks and broad spectra. It was shown that by increasing the number of chains in 

the array it is possible to tune the spectrum into visible range, a very important feature 

from the point of view of practical applications.  In addition to plasmons, we studied a 

possibility of excitons and exciton-plasmon interaction effects in chain systems. It was 

shown that this interaction may lead to collective coupled modes, as well as to energy 

transfer between different excitations, especially pronounceable for the local plasmon 

modes. We also studied the optical properties of monolayer MoS2, and the main result 

we found is a possibility of the ultrafast (fs) emission in this system under laser 

excitations. Finally, the magnetic properties of FeRh nanoparticles were analyzed. We 

found no indication of the AFM-FM transition, contrary to the bulk. It was shown that the 

magnetic properties of the system are very sensitive to chemical composition. 
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APPENDIX: ORBITAL DENSITY IN DOUBLE CHAINS 
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Figure 68 Highest Occupied Molecular Orbital (HOMO) of square Au10Au10 chain. 

 

Figure 69 Highest Occupied Molecular Orbital (HOMO) of zig-zag Au10Au10 chain 



139 

 

 

 

Figure 70 (a)HOMO and (b) LUMO of Au26Ni2 chains with 2 Ni atoms in the middle of 

each 14 atom chain. 
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Figure 71 HOMO of (a) Au26Pd2 (2 Pd atoms at the end) (b) Au26Pd1 (1 Pd atom at the 

end). 
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The molecular orbitals for the coupled chains are shown below. Fig. 72 shows various 

transitions taking place in these chains. Darker lines indicate more oscillator strength. 

 

Figure 72 Molecular orbitals for the mixed chains (from left to right) Au-Fe , Au-Ni, Au-

Pd, Au-Pt. 
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Figure 73 (a)HOMO and (b) LUMO of Au14Fe14 chains.  
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Figure 74 (a)HOMO and (b) LUMO of Au14Ni14 chains. 
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Figure 75 (a)HOMO and (b) LUMO of Au14Pd14 chains. 
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Figure 76 (a)HOMO and (b) LUMO of Au14Pt14 chains. 
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