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A generalized electrodynamics model for surface
enhanced Raman scattering and enhanced/quenched
fluorescence calculations

Haining Wang*ab and Shengli Zou*a

A generalized electrodynamics model is proposed to describe the enhancement and quenching of the

fluorescence signal of a dye molecule placed near a metal nanoparticle (NP). Both the size of the NP and

quantum yield of the dye molecule are crucial in determining the emission intensity of the molecule.

Changing the size of the metal NP will alter the ratio of the scattering and absorption cross sections of

the metal NP and consequently results in different enhancement or quenching effect to the dye molecule.

A dye molecule with a reduced quantum yield indicates that the non-radiative channel is dominant in the

decay of the excited dye molecule and the amplification of the radiative decay rate will be easier. In

general, the emission intensity will be quenched when the size of the metal NP is small and the quantum

yield of the molecule is close to unity. A significant enhancement factor will be obtained when the

quantum yield of the molecule is small and the particle size is large. When the quantum yield of the dye

molecule is less than 10�5, the model is simplified to the surface enhanced Raman scattering equation.

Introduction

The energy transfer between uorophore molecules and metal
nano-structures has attracted signicant interest in recent
years.1,2 This research not only advances our fundamental
understanding of the mechanism for the energy transfer
between uorophores and metal nano-structures, but also
provides a solid foundation for applications such as bio-
sensors.3–5 The uorescence signal from a molecule is inu-
enced by a nearby metal particle in two ways, one is the energy
transfer from the molecule to the nanostructure in the form of
radiative and non-radiative decay, and the other is the
enhanced local electric eld by the metal structure at both
excitation and emission wavelengths. The detailed mechanism
is still under controversy. There have been many theoretical
works for the calculations of energy transfer between amolecule
and metal structures.6–8 Nitzan and co-workers developed a
theoretical model to calculate the surface enhanced Raman
scattering and enhanced or quenched uorescence from
molecule adsorbed on a rough silver surface.9 Lakowicz
proposed a radiating plasmon model to describe the uo-
rophores near a metal surface.10 In the previous literature, both
enhanced and quenched uorescence signal of dye molecule

placed near metal nanoparticles have been reported. Enhanced
uorescence has been experimentally demonstrated by using
various types of metallic structures11,12 including spherical
nanoparticles,2,13–16 core–shell nanoparticles,17–22 nanorods,23

bowtie structures,24 or tips.25–27 Moerner group reported that an
enhancement factor of up to 1340 could be obtained for a single
molecule placed between a gold bowtie nanoantenna.24 Chou
group showed that an enhancement factor of 2970 and 4.5 �
106 for area-average and single-molecule placed at a hot spot
could be achieved for ICG dye molecule by a designed disk-
coupled dots-on-pillar antenna array structure.28 In the mean-
while, uorescence quenching has also been reported by many
groups.29–32 Dulkeith et al. demonstrated that the uorescence
signal from a Cy5 dye molecule could be quenched by a gold NP
of 6 nm radius.33 Novotny and co-workers showed experimen-
tally a continuous transition from uorescence enhancement to
quenching for a single nile blue molecule placed close to a gold
spherical NP.34

In this paper, we propose an electrodynamics model to
demonstrate that either enhancement or quenching could be
obtained for the uorescence signal of a dye molecule when it is
placed adjacent to a metal NP. The model gives a generalized
perspective for surface-enhanced Raman scattering and
enhanced or quenched uorescence of various kinds of mole-
cules andmetals by electrodynamics method. The size of the NP
and the quantum yield of the dye molecule are two crucial
parameters for the enhancement or quenching of the uores-
cence signal. In the calculations, the molecule and the metal NP
were treated as oscillating dipoles and they were described by
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Lorentz model. The Fourier transform was carried out to obtain
the dipole moment and local electric eld at frequency domain.
The coupled-dipole method was then adopted to calculate the
emission (scattering) spectra of the system. The properties of
the molecule are similar to those of a Cy3 dye molecule and the
properties of the metal NP are close to those of gold in water
medium.

Methods

For an excited molecule, it will decay by two channels, one is
called radiative decay which will emit photons and the other is
through a non-radiative decay channel in which the energy
is converted to thermal energy (phonon energy). The quantum
yield, h, of the molecule is dened by

h ¼ kr

kr þ knr
; (1)

where kr and knr refer to the radiative and non-radiative decay
constants of the molecule, respectively. When a metal NP is
placed nearby the molecule, the pseudo radiative rate constant
of the molecule will be modied which is denoted by kt. We call
it pseudo radiative rate constant since part of the energy in the
newly dened radiative decay channel (kt) will be transferred to
the metal NP. A portion of the transferred energy will be
absorbed by the metal NP and become its thermal energy and
only the rest will be emitted eventually as detectable photons. In
this regard, the relative ratio between the scattering and
absorption cross sections of the metal NP will determine the
percentage of the energy to be converted to thermal energy or
photonic energy and plays a crucial role in the quenching or
enhancement effect of the metal NP to the dye molecule. We
dene the altered radiative rate constant of the system
including the dye molecule and the metal NP as k 0

r. The modi-
ed quantum yield h0 of the system can be expressed as

h0 ¼ k0
r

kt þ knr
¼ fr � kr

ft � kr þ knr
; (2)

where fr ¼ k 0
r/kr is the enhancement factor of the radiative rate

constant of the system including the dye molecule and the
metal NP relative to that of an isolated dye molecule and ft ¼
kt/kr is the enhancement factor of the pseudo radiative rate
constant of the molecule itself in the complex system including
the dye molecule and the metal NP in comparison to the radi-
ative rate constant of an isolated dye molecule. Since the total
energy is conserved, the number of dye molecule at the excited
energy state can be assumed to be the same. The uorescence
signal ratio of the molecule due to the presence of a metal
particle at the emission wavelength qem can be calculated by

qem ¼ h0

h
¼ fr � ðkr þ knrÞ

ft � kr þ knr
¼ fr

ft � hþ 1� h
: (3)

In the calculations, fr is proportional to the enhanced local
electric eld |E|2 of the metal NP at the molecule position at the
emission wavelength.35 Since the excitation rate of the molecule
may also be amplied by a factor of |E|ex

2 due to the enhanced
local electric eld of the metal NP at the excitation wavelength,

the detectable uorescence signal enhancement factor can be
calculated by

f ¼ |E|ex
2qem. (4)

We may nd that eqn (4) is simplied to |E|ex
2fr which is the

equation to calculate the surface enhanced Raman scattering,35

when the quantum yield, h, of the dye molecule is extremely
small. The lifetime ratio of the dye molecule with or without the
metal particle can be readily derived as

s0

s
¼ kr þ knr

kt þ knr
¼ 1

ft � hþ 1� h
; (5)

where s0 and s are the lifetimes of the dye molecule with or
without the presence of the nearby metal particle.

In the calculations, the molecule and the metal NP were
treated as oscillating dipoles using Lorentz model. The
displacement of electrons at different time can be obtained
using equation

u0
2xþ g _xþ x€¼ eEloc

m
; (6)

where u0 and g are resonance and damping angular frequency
of the dye molecule or metal NP, respectively, x is displacement
of electrons at each time, e and m are charge and mass of
electrons, respectively, and Eloc denotes the local electric eld at
the dipole position. For the dye molecule, the Eloc includes the
incident light and the scattered light from the metal NP, while
the Eloc at the metal NP position only includes the scattered
light from the molecule.

The dipole moment, P, of the dye molecule or metal NP at
each time can be obtained by

P ¼ rVex/30 (7)

where r and V are the electron density and volume of the
particle, respectively, and 30 is the vacuum permittivity. The
dipole moment and local electric eld at frequency domain can
be obtained aer a Fourier transform. Then the coupled-dipole
method36 was adopted to calculate the extinction, absorption
and scattering cross sections of a single particle or a system
including a metal NP and a dye molecule.

Cext ¼ 4pk

jE0j2
XN
j¼1

Im
�
E*

inc; j$Pj

�
; (8)

Cabs ¼ 4pk

jE0j2
XN
j¼1

Im

�
Pj$E

*
loc; j �

2k3

3
Pj$P

*
j

�
; (9)

Csca ¼ k4

jE0j2
ð
dU

�����
XN
j¼1

h
Pj � n̂ðn̂$PjÞ

i
expð�ikn̂$rjÞ

�����
2

; (10)

where k¼ 2p/l is the wave vector at a wavelength of l, n̂ is a unit
vector in the direction of scattering, and dU is the element of
solid angle, E0 is the amplitude of the incident light, Einc, j and
Eloc, j represent the incident and local electric eld for particle j,
respectively. rj and Pj denote the coordinate and dipole for
particle j, respectively. The efficiencies can be calculated by
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dividing the calculated cross sections over the physical area of
the particle.

The radiative decay rate constants dened in eqn (1)–(5) are
represented using the scattering cross section of the dye mole-
cules or metal NPs. To reduce the numerical errors in the
calculations, we calculated the scattering cross section of the
whole system using eqn (10), and the scattering cross section of
the molecule itself by Cext � Cabs when a metal particle is placed
adjacent to it.

Results and discussion

The schematic of a dye molecule and a metal NP is shown in
Fig. 1. The radius of the metal NP is r and the distance between
the dye molecule and the metal nanoparticle surface is dened
as d. A dye molecule is illuminated by the incident light and the
scattered light represents the emission of an excited uo-
rophore. A metal NP is placed close to the dye molecule which is
excited by the emitted (scattered) light from the dye molecule.
The coupling between the dye and the metal NP is treated with
the coupled dipole method and the dipole excitations of both
elements are described by Lorentz model as discussed in the
previous paragraph. In the calculations, the excitation wave-
length is set at 550 nm, the emission wavelength is xed at 570
nm, and the quantum yield of the molecule is chosen as 0.16.
Those parameters are close to a Cy3 molecule. For the metal
particle, we use an electron density of 0.80 � 1028 m�3 and a
damping frequency of 5 � 1014 rad�1 which is close to a Au
metal NP. The resonance wavelength of the metal NP is set at
540 nm.

Fig. 2(a) shows the uorescence signal ratio of a dye mole-
cule placed near a metal NP at varying distance in comparison
to that of an isolated dye molecule. The results were averaged
over different orientations relative to the incident wave vector
and polarization directions. When the radius of the metal NP is
10 nm, the uorescence signal of the dye molecule was
quenched because the energy transfer from the dye molecule to
the metal NP is dominant by the form of non-radiative decay.
Theoretical calculations had been experimentally proved in the
previous report.29,37 When the distance between the molecule
and themetal NP is larger than 50 nm, the effect of the metal NP
on the molecule becomes very weak and the signal ratio reaches
to 1. However, when a larger metal NP with a radius of 20 nm
was placed near the molecule, the uorescence signal of the dye

molecule is enhanced by a factor of 3 when the metal NP is
placed 5 nm away from the molecule. The enhancement factor
reaches to 15 when a metal NP with a 30 nm radius was used.
The alternative enhancement and quenching effect of the metal
NP on the uorescence signal of the dye molecule can be
explained as following. For a metal NP, its scattering cross
section is proportional to r6 while the absorption cross section
is proportional to r3 when the radius, r, of the particle varies.
The different r dependence of the cross sections indicates that
the scattering cross section will increase much more signi-
cantly than that of the absorption when the radius of the
particle is increased. For the presentation clarity of gures, we
show scattering and absorption efficiencies in Fig. 2(c) and (d)
which are obtained by dividing the corresponding cross
sections over pr2 where r is the radius of the particle. For a small
particle of 10 nm radius as shown in Fig. 2(c) and (d), the
scattering efficiency is much smaller in comparison with the
absorption efficiency. The scattering efficiency of a metal
particle with a 10 nm radius is only 6.84 � 10�3 and the
absorption efficiency is 1.48 at emission wavelength of 570 nm.
Most of the transferred energy from the dye molecule to the
metal NP will be absorbed by the metal NP in the form of non-
radiative decay and only small portion is eventually scattered
(emitted) as photons, which results in a quenched signal. For a
large particle of 30 nm radius, the scattering efficiency of the
metal NP is 0.554 and the absorption efficiency is 3.93 at the
emission wavelength. The ratio of the scattering efficiency over
the absorption efficiency is much larger than that of a 10 nm
radius metal particle. Consequently, more transferred energy
from the excited dye molecule to the metal nanoparticle will
decay through the radiative channel and becomes detectable
photonic signal which leads to an enhancement of the uo-
rescence signal.

Fig. 2(b) shows the uorescence lifetime ratio of a dye
molecule placed near a metal NP with different radii at varying
distance in comparison to that of an isolated dye molecule.
Fig. 2(b) shows that when the distance is short, a small sized

Fig. 1 Schematic of the energy transfer between a dye molecule and a metal
particle. r represents the radius of themetal particle and the distance between the
dye molecule and the metal particle surface is defined as d.

Fig. 2 (a) Fluorescence signal ratio and (b) lifetime ratio of a dye molecule
placed near a metal NP with different radii (r) in comparison to those of an iso-
lated dye molecule. (c) The scattering and (d) the absorption spectra of a metal NP
with different radii.
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metal NP results in a shorter lifetime than a larger sized metal
NP. When the distance increases, the lifetime ratio of the dye
molecule is higher when a metal NP of 10 nm radius is placed
near the molecule relative to a 30 nm radius particle. Since the
lifetime ratio of the dye molecule as shown in eqn (5) is only
related to the ratio of the pseudo radiative decay rate constant of
the whole system and the radiative decay constant of an isolated
dye molecule ( ft), Fig. 2(b) shows that the effect of the absorp-
tion cross section of the metal NP is more important in altering
ft of the dye molecule than the scattering cross section of the
metal NP.

To further understand the proposed mechanism, we
numerically change the electron density r and damping
frequency g of the metal NP to adjust the energy transfer
efficiency between the dye molecule and the metal NP.
Fig. 3(a) shows the uorescence signal ratio of a dye molecule
placed near a metal NP in comparison to that of an isolated
dye molecule when the electron density of the metal NP is
changed from 0.8 � 1028 to 1.6 � 1028 and 3.2 � 1028 m�3.
Fig. 3(a) shows that the uorescence signal is enhanced with
a higher factor with increasing electron density of the metal
NP. A larger electron density means more electrons in the
particle which has a similar effect as increasing particle
radius, which results in a larger scattering cross section of
the metal nanoparticle. In another hand, a decreased damp-
ing frequency leads to reduced absorption cross section.
When the damping frequency is decreased from 5 � 1014 to
4 � 1014 or 3 � 1014 rad�1, the ratio between the scattering
and absorption cross sections of the metal particle will
increase, which will also give a more enhanced uorescence
signal, as shown in Fig. 3(b).

We have showed the uorescence signal ratio of a dye
molecule placed near a metal NP at different conditions. eqn
(3) shows that the quantum yield h of the molecule is also
crucial in calculating the quenching/enhancement factor of
the dye molecule placed near a metal NP. From eqn (3) we can
nd that, when h is close to 1 (log(h) ¼ 0), the equation will be
reduced to fr/ft. Since fr represents the radiative decay rate
constant (total emission) enhancement while ft includes both
the emitted energy and the absorbed energy by the metal NP
and is always larger than fr, the uorescence will always be
quenched if we did not consider the excitation rate enhance-
ment at the excitation wavelength. In another hand, if h is
extremely small, eqn (3) is simplied to fr, which is propor-
tional to the enhanced local electric eld |E|2 of the metal NP

at the emission wavelength at the position of the molecule.
eqn (4) is simplied to the equation used to calculate the
surface-enhanced Raman scattering. It is worth noting that the
enhancement of the Raman signal at emission wavelength is
due to the change of the relative decay rate constants between
the radiative and non-radiative channels which does not
violate the energy conservation of the system. As shown in
Fig. 4, when a metal NP with a 20 nm radius is placed 5 nm
away from the molecule, the signal ratio is enhanced by a
factor of 516 if the quantum yield h is set at 1 � 10�5. Similar
results will be obtained when the distance is changed to 10,
20, and 40 nm. When the distance is further extended to 80
nm, the enhancement/quenching factor will be close to 1 no
matter of the quantum yield of the molecule.

Conclusions

In conclusion, we proposed a generalized electrodynamics
model to calculate the energy transfer efficiency between a dye
molecule and a metal NP. When the size of the particle is small
(10 nm radius), the transferred energy from the dye molecule to
the metal NP is dominantly absorbed by the metal particle
which results in a quenched signal. However, the uorescence
signal will be amplied when a large metal NP (30 nm radius or
larger) is used. The reason of the change is due to the relative
ratio variation of the scattering and absorption cross sections of
the metal NP. Increasing the electron density or decreasing the
damping frequency of the metal NP will also generate the same
effect due to the increased ratio between the scattering and
absorption cross sections of the metal NP. The quantum yield of
the molecule also has a signicant effect on the enhanced or
quenched signal. A molecule with a quantum yield close to one
will experience a quenched uorescence signal when placed
near a small metal NP in comparison to an isolated molecule.
When the quantum yield of the molecule is extremely small, the
signal enhancement will be similar to the surface-enhanced
Raman scattering.

Fig. 3 Fluorescence signal ratio of a dye molecule placed near a metal NP with
(a) different electron density r or (b) damping frequency g.

Fig. 4 Fluorescence signal ratio of a dyemolecule with varying quantum yield (h)
placed near a metal NP. The radius of the particle is 20 nm and the molecule is
placed at different distance (d) from the particle surface.
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