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Abstract

Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors
being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein
gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this
class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as h-defensins, which are
produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the h-
defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and
tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors
affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus
that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41
was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial
mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-
resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand
our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of
compensatory gp41 mutations.
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Introduction

Prevention of HIV transmission using safe and effective

treatments with specific mechanisms of action remains a necessary

challenge in the development of microbicides. Of the options

currently being explored, HIV entry has become an attractive

target for HIV treatment and prevention. Entry is a multi-step

process in which interactions between viral and host proteins result

in fusion of the enveloped virus with host membranes. Fusion of

the host and viral membranes occurs through direct insertion of

gp41 into the host membrane and subsequent formation of a trimer

of gp41 hairpin complexes, composed of the heptad repeat regions

1 and 2 (HR1 and HR2). The formation of this stable complex,

referred to as a 6-helix bundle, brings the viral and host

membranes into close enough proximity for fusion to occur [1,2].

During membrane fusion, conformational changes in the

envelope proteins provide a kinetic window for inhibition by

drugs that bind to the gp41 ectodomain [3,4]. One such drug,

enfuvirtide (ENF), is an anionic, 36-amino acid peptide that

competes with the HR2 region of gp41 for binding to HR1, thus

preventing formation of the mature gp41 6-helix bundle required

for fusion [5]. Currently, enfuvirtide (ENF) is the only fusion

inhibitor approved for HIV treatment, and resistant viruses

continue to emerge [6,7].

Another class of antiviral peptides that has been shown to act as

fusion inhibitors are retrocyclins [3,8,9]. These are synthetic, 18-

residue, cyclic antimicrobial peptides that possess amino acid

compositions and structures based on the theoretical product of

human h-defensin pseudogenes. Retrocyclins have been found to

inhibit HIV-1 infection in both in vitro and in ex vivo models and

have been shown to exhibit antiviral activity against both R5 and

X4 tropic clinical isolates of HIV-1 [10,11]. Retrocyclins have also

retained their antiviral activity for over 1 week following

application in non-human primates [12]. Further, retrocyclins

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e55478



remain stable under acidic conditions, are resistant to boiling, and

lack cytotoxic and proinflammatory activity at concentrations over

100 times their IC50 [13,14]. Because of its unique stability and

safety, combined with its potent anti-HIV activity even in the

presence of mucosal fluids, the retrocyclin analog RC-101 is

currently being developed as an intravaginal microbicide to

prevent sexually transmitted HIV-1.

Retrocyclins prevent viral membrane fusion by binding the

HR2 helix of gp41 [3,8]. Using multi-round, serial passaging of

the HIV-1 R5 strain, BaL, in the presence of sub-inhibitory

concentrations of the RC-101, we selected for partially-resistant

mutants. In agreement with retrocyclins preventing gp41 activity,

mutations in gp41 alone were shown to be sufficient for RC-101

resistance in pseudotyped viruses. These mutations identified in

gp41 were Q66R and N126K, located in the HR1 and HR2

regions, respectively [9]. Due to the cationic nature of these

mutations, it was presumed that they might act to electrostatically

repel the cationic RC-101 peptides.

Here,wesought todelineate themechanismbywhichmutations in

gp41 contribute to RC-101 resistance. Specifically, we determined

that Q66R compromises gp41 fusion and entry kinetics, and that

N126K behaves as a compensatory mutation to enhance gp41

activity in RC-101 resistance, as has been observed in resistance to

ENF [15]. This is the first time that mutations compromising gp41

activity, followedbyacompensatorymutation,havebeenobservedas

a pattern of drug resistance used to evade a non-gp41-mimetic

peptide. Additionally, we identified the activity of RC-101 against

clinically relevant enfuvirtide-resistant mutants.

Materials and Methods

BaL env Molecular Clones and DNA Constructs
The pNL43 plasmid encodes an infectious X4 strain of HIV-1

[15]. Briefly, pNL43 was digested using EcoR1 and XhoI prior to

gel purification of the 11 kb cleavage product using the QIAEX II

system (Qiagen, Valencia, CA). For the construction of infectious

molecular clones containing the BaL env sequence, viral RNA was

isolated from infected PM1 cell supernatants containing high titers

of BaL as determined by gag p24 concentration using a p24

ELISA (Perkin-Elmer, Waltham, MA). Viral cDNA was generated

from purified RNA using the Superscript III system (Life

Technologies, Carlsbad, CA). env-containing regions were en-

riched using oligonucleotide primers (FWD 59-CTGCAA-

CAACTGCTGTTTATCC-39 REV 59-GATACTGCTCC-

TACTCCATCTGCT-39) designed to target the 39 region of vpu

and the 59 region of nef. Cloning inserts were then purified from

PCR products using crystal violet gel purification with QIAquick

columns (Qiagen). Purified DNA was then inserted into the

TOPO-XL cloning vector and sequenced using the M13F and

M13R priming sites as well as env-specific sequencing primers [9].

After sequencing, env inserts were prepared for InFusion cloning by

adding EcoRI and XhoI –specific extensions in a second round of

amplification (FWD 59-GCCATAATAAGAATTCTGCAA-

CAACTGCTGTTTATCC-39 REV 59-TTTTCTAGGTCTC-

GAGATACTGCTCCTACTCCATCTGCT-39). The BaL env-

containing PCR product was then cloned into the pNL43 plasmid

backbone using the InFusion cloning system (Clontech, Mountain

View, CA). This method was employed to avoid complications due

to non-conserved restriction sites between pNL43 and BaL, thus

preserving the complete BaL env sequence. The pMONO-neo

GFP vector (Invivogen, San Diego, CA) was transfected into 293T

cells and used for visualization of cell-cell fusion.

Virus and Cell Culture
The following cell lines were obtained from the NIH AIDS

Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH: TZM-bl from Dr. J.C. Kappes (University of

Alabama, Birmingham, AL) and Dr. X. Wu (University of

Alabama, Birmingham, AL and Tranzyme, Research Triangle,

NC) and PM1 cells from Dr. M. Reitz (Institute of Human

Virology, Baltimore, MD). 293T cells were purchased from the

American Type Culture Collection (ATCC). TZM-bl reporter

cells and 293T cells were maintained in DMEM supplemented

with 10% fetal bovine serum with penicillin and streptomycin.

PM1 cells were maintained in RPMI 1640 media supplemented

with 20% fetal bovine serum with penicillin and streptomycin.

Cells were stored at 37uC and 5% CO2. Virus from molecular

clones was produced by transfecting 293T cells with viral DNA

using the Effectene (Qiagen) following the manufacturer’s

instructions. Viral 293T supernatants were collected 24 hours

after transfection and immediately stored at 280uC.

Antiviral Peptides and Synthesis
The 18 amino acid RC-101 peptide was synthesized as

previously described [9,16]. ENF was provided by the NIH

AIDS Research and Reference Reagent Program (Trimeris/

Roche) and was reconstituted in water prior to storage at

220uC. The a-defensin HNP-1 was purchased from Bachem

(Torrance, CA) and was reconstituted in water prior to storage

at 220uC. HIV inhibitory peptides Grifonin-1 and RC107GG-

F2 were produced by solid-phase FMOC chemistry as pre-

viously described [17,18].

Antiviral Activity Assays
TZM-bl luciferase reporter cells were used to determine

inhibition of infection as previously described [9]. TZM-bl cells

were plated in 96-well, black, transparent bottomed plates at

a density of 56104 cells per well in 100 mL of the previously

described culture media. 24 hours after plating, media was

removed and replaced with peptide or vehicle control in 50 mL
culture media before incubation for 10 minutes at 37uC and 5%

CO2. Viral stocks were titered using b-galactosidase expression in

TZM-bl reporter cells infected with serial dilutions of wild-type

and mutant HIV-1 molecular clones using a modified MAGI cell

assay [19]. Briefly, TZML-bl cells were plated at 1.06103 cells/

well in a 96-well dish prior to 24-hour incubation. Cells were then

infected in quadruplicate with dilutions of viral stocks ranging

from 423–4212. After 48 hours of infection, cells were washed,

fixed, and stained with Xgal for b-galactosidase activity. Infected

blue cells were counted in each dilution and TCID50 values were

then calculated using the method of Reed and Muench [20]. In

experiments with antiviral compounds, virus was used at MOI 0.2

for each viral genotype tested. In experiments using HNP-1,

Grifonin-1, and RC107GG-F2, serum-free conditions were used

for the initial 4 hours of infection, before replacement of media

with DMEM supplemented with 10% FBS, in order to observe

antiviral activity. Infected cells were incubated for 24 hours before

removal of media and lysis using Glo-Lysis buffer (Promega,

Madison, WI). Plates containing lysed cells were sealed in parafilm

and stored at280uC for 1 to 24 hours before thawing and treating

with 100 mL per well of Bright-Glo reagent (Promega). Bio-

luminescence was measured using an Lmax luminometer (Molec-

ular Devices, Sunnyvale, CA). RLUs were normalized to baseline

expression in uninfected cells.

Mechanisms of RC-101 Resistance
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Viral Fitness Assays
PM1 infections were carried out in 100 mL of previously

described culture media in deep 1ml volume 96-well plates. 16105

PM1 cells were incubated with peptide or vehicle control for 10

minutes before infection using an MOI of 0.003. Cells were then

incubated at 37uC and 5% CO2 for 2 hours, agitating every 30

minutes. Conditions with virus and peptide or with vehicle control

were diluted with the addition of 900 mL culture media to each

well. Treated cells were then centrifuged 2006g for 5 minutes.

Media containing virus and peptide or control was aspirated and

cell pellets were re-suspended in 0.5 ml culture media containing

peptide or control at experimental concentrations. Media treated

with drugs or vehicle controls was changed on days 3 and 5 with

the volume of cultures being increased to 1 ml on day 3.

Supernatants were collected on day 7 and stored at 280uC.
Levels of p24 in samples were determined using an HIV-1 p24

ELISA.

Cell-Cell Fusion Assay
Fusion efficiency of wild type and mutant envelope proteins was

determined using a cell-cell fusion assay consisting of Env- and

GFP-expressing 293T effecter cells and luciferase-expressing

TZM-bl reporter cells. 293T cells were transfected with equivalent

molar concentrations of both molecular clones and GFP or GFP

alone in 24-well dishes. The protease inhibitor saquinavir was used

at 1 mM concentrations to prevent virion maturation while

allowing envelope expression and processing in effector cells.

Twenty-four hours after transfection, 293T cells were washed,

trypsinized, and co-cultured with TZM-bl cells using a 1:1 ratio of

26104 cells each in black 96-well plates. After 6 hours of co-

culture, cells were lysed and stored at 280uC overnight.

Luminescence was measured using an Lmax luminometer

(Molecular Devices). Alternately, transfected cells were co-cultured

with TZM-bl cells grown on 8 well chamber slides (Lab-Tek,

Bloomington, IN) for 6 hours before fixing with 4% para-

formaldehyde and washing twice with PBS. Coverslips were

Figure 1. Synthesis and Characterization of BaL envMolecular Clones. To study the effect of gp41 mutations identified in the BaL envelope,
the dominant env genotypes from untreated and RC-101-passaged virus were used to generate the pNBaL molecular clone containing the complete
BaL envelope within pNL43 (A). Molecular clones possessing the envelope proteins cloned from untreated BaL (WT) or from RC-101-passaged BaL
(RCres) were treated with either RC-101 (B) or ENF (C). Error bars represent SEM. Differences in percent inhibition were determined between WT and
RCres at each drug concentration (N= 3; ** = p,0.01, *** = p,0.001).
doi:10.1371/journal.pone.0055478.g001

Mechanisms of RC-101 Resistance
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mounted on fixed cells using DAPI-containing mounting solution

(Vector Laboratories, Burlingame, CA). Images were acquired

using a Zeiss Axiovert inverted fluorescent microscope with

Axiovision software.

Determination of Entry Kinetics
TZM-bl reporter cells were plated in black 96-well plates at

2.56104 cells per well. After 24 hours, cell supernatants were

removed and replaced with 50 ml fresh media. Suspensions of

equivalent concentrations of tested virus were quickly added to

each well before centrifugation of plates at 20956g for 30 minutes

at 4uC as previously described [21]. Plates were then kept at 37uC
for 0–1 hour, and infection was stopped at individual time points

by adjusting the concentration of ENF in experimental wells to

5 mg/ml. This concentration was found to not affect cell

metabolism via MTT assay. Plates were incubated for 24 hours

before lysing cells and measuring bioluminescence as described

above.

Sequence and Structural Analysis
Mutations in gp41 were observed and confirmed using eBioX

Software for Mac OSX to generate alignments and concatenate

Sanger Sequencing data [22]. Structural analyses of gp41

mutations were carried out using Mac PyMOL (DeLano

Scientific).

Figure 2. Effect of HR1 and HR2 Mutations on Drug-Resistance. The role of individual gp41 mutations on drug-resistance was determined
using site-directed mutagenesis of the pNBaL vector. The gp41 mutations identified in RC-101 resistant virus, Q66R and Q66R+N126K, were used to
understand contributions to drug resistance. We also tested mutations shown to confer resistance to ENF, V38A and V38A+N126K. Equal
concentrations of infectious virus, as determined by TCID50, were used to inoculate TZM-bl cells with increasing concentrations of RC-101 and ENF.
Error bars represent SEM. Percent inhibition was calculated from RLU values and normalized to vehicle control (A) (N= 325). The structure PDB 1IF3
was used to model the positions of primary gp41 mutations. HR1 (blue) mutations Q66R (B) and V38A (C) are shown along with nearby residues on
HR2 (green) of the same gp41 molecule. Two additional gp41 molecules making up the 6-helix bundle are shown in gray.
doi:10.1371/journal.pone.0055478.g002

Figure 3. Analysis of Viral Fitness and Drug Resistance. To
determine if N126K is acting as a compensatory mutation in RC-101,
viral fitness in culture over a 7 day period was determined for wild-type
(WT) and drug-resistant mutants in the presence or absence of RC-101
and ENF. An MOI of 0.003, as determined by TCID50, was used for the
initial inoculation of PM1 cells. Fitness was determined by p24
concentration measured in cell supernatants. Error bars represent
SEM. Black lines indicate comparisons between conditions (N= 3;
* = p,0.05).
doi:10.1371/journal.pone.0055478.g003

Mechanisms of RC-101 Resistance
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Statistical Analysis
All analyses were performed using GraphPad Prism v4.0c.

TZM-bl antiviral assays were analyzed using an unpaired student’s

t-test or two-way ANOVA with bonferroni correction. Viral fitness

assays and differences in cell-cell fusion were analyzed using

a paired student’s t-test to account for inter-assay variability.

Differences in entry kinetics were determined using linear

regression to compare slopes.

Figure 4. Effect of HR1 and HR2 Mutations on Cell-Cell Fusion. Cell-cell fusion was analyzed to determine differences in gp41 fusion
demonstrated by wild type (WT) and drug-resistant mutant virus. Transformed 293T cells expressing BaL Env and Tat proteins, as well as GFP, were
co-cultured with TZM-bl reporter cells. RLU values correlate with cell-cell fusion during co-culture (A), which is also shown as percent fusion of WT (B).
Error bars represent SEM. Fusion for each mutant virus was compared to that observed in WT (N=4; or 5 * = p,0.05, ** = p,0.01). Fluorescent
imaging and DIC were used to observe syncytia formation as a secondary indicator to compare cell-cell fusion between mutants (C).
doi:10.1371/journal.pone.0055478.g004

Mechanisms of RC-101 Resistance
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Results

RC-101 Selects for Enfuvirtide-resistant HIV-1
Infectious molecular clones containing the complete BaL R5

envelope gene were produced using InFusion cloning. This

method utilizes 15 base pair single-stranded DNA present at the

59 ends of the insert and vector DNA, which allows cloning of

PCR products into plasmids based on areas of homology

(Figure 1A). This allowed cloning of BaL env into the pNL43

vector despite differences in restriction enzyme recognition sites.

Chimeric BaL-pNL43 HIV-1 constructs (pNBaL) were generated

containing both the wild type and RC-101-passaged env genes.

The molecular clone produced from the RC-101-passaged env

(referred to as RCres) contained the gp41 mutations Q66R and

N126K, in addition to several mutations in the variable regions of

gp120.

Equivalent amounts of virus, as determined using p24 proteins

levels, were used to infect TZM-bl cells in the presence or absence

of increasing concentrations of both RC-101 and ENF or a vehicle

control (Figure 1B and 1C). Wild type pNBaL was almost

completely inhibited by RC-101 at 10 mg/ml and by ENF at

200 ng/ml. Mutant pNBaL containing multiple env mutations

showed significant resistance to both drugs at varying concentra-

tions and was inhibited by approximately 50% by both RC-101 at

10 mg/ml and ENF at 200 ng/ml.

While RC-101 and ENF are structurally and chemically

disparate drugs, these results demonstrate that a mutant virus

selected by RC-101 also displays partial resistance to ENF. This

could be explained by the presence of the N126K mutation in the

HR2 region of the RC-101-resistant virus. Previously, this amino

acid mutation in HR2 has been found to occur with the ENF

mutation V38A in HR1, where it has been attributed to an

increased rate of fusion and a potential reduction in the kinetic

window in which ENF, and presumably other gp41-mimetic

peptides, can exert their activity [23,24]. Individual mutations

within the RC-101-resistant gp41 would have to be explored

further in order to explain the observed cross-resistance.

Resistance Mutations in HR1 are Drug-specific While an
HR2 Mutation Provides Variable Cross-resistance
To determine which specific mutations contributed to drug

resistance, we introduced the two gp41 mutations observed in RC-

passaged BaL, Q66R and N126K, into the wild-type BaL env. We

also generated mutants containing the well-characterized ENF

resistance genotypes V38A and V38A+N126K. These mutants

were used to infect TZM-bl reporter cells at MOI 0.2, in the

presence and absence of either RC-101 or ENF at varying

concentrations.

As expected, the wild-type virus exhibited susceptibility to both

RC-101 and ENF (Figure 2A and 2B). The Q66R mutant

demonstrated resistance to RC-101, with an IC50 2.3-fold higher

than the wild-type virus. At the same time, the IC50 of ENF

against Q66R was 2.3-fold lower than the wild-type virus. The

Q66R+N126K double mutant possessed greater resistance to RC-

101 than the wild-type virus (3.1-fold) and than Q66R alone (1.4-

fold). Q66R+N126K also demonstrated increased infection at

10 mg/ml versus control conditions, but could be inhibited .80%

at 20 mg/ml. These observations suggest that the addition of

N126K improves resistance to RC-101.

Figure 5. Entry Kinetics of RC-101-Resistant Virus. Viral entry was
observed over one hour to determine differences in entry kinetics
between wild type (WT) and RC-101-resistant virus. Equal concentra-
tions of infectious virus were used to infect reporter cells and infection
was halted at specific time-points. Entry kinetics is shown as percent of
total entry and graphed using cubic splines. Linear regression curves
were fit to data and slopes were compared between the 15 and 30-
minute time intervals. Error bars represent SEM. Both wild type (WT) and
Q66R+N126K had significantly greater slopes than the Q66R mutant
(N = 4; p,0.05).
doi:10.1371/journal.pone.0055478.g005

Figure 6. Resistance to Alternative Peptide Entry Inhibitors in RC-101-Resistant Virus. Susceptibility to antiviral peptides in wild type (WT)
and RC-101-resistant mutants was determined using infection TZM-bl reporter cells. The antiviral peptides RC107GG-F2, HNP-1, and Grifonin-1 (GRFN-
1) were used at concentrations known to inhibit infection by wild type virus. Percent inhibition of infection was calculated from RLU values and
normalized to vehicle controls. Error bars represent SEM. Percent inhibition values were compared with infection using vehicle control alone (N= 3;
* = p,0.05, ** = p,0.01).
doi:10.1371/journal.pone.0055478.g006

Mechanisms of RC-101 Resistance
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Conversely, the V38A mutant was resistant to the highest

concentrations of ENF tested, yet remained susceptible to RC-101.

The V38A+N126K double mutant was also resistant to ENF at all

concentrations tested, and additionally demonstrated 1.6-fold

greater resistance to RC-101 than the wild-type virus. The HR1

mutations Q66R and V38A were analyzed using the theoretical

structure of the mature gp41 protein and both were found to be

present on the same region of the HR1 helix responsible for the

intramolecular association with HR2 (Figure 2C and 2D) [25].
While both mutations appeared at the same region of the HR2

helix, V38A and Q66R are located near the N and C termini of

HR1, respectively, potentially contributing to the specificity for

either drug tested.

The HR2 Compensatory Mutation N126K Provides
Increased Fitness in the Presence of Fusion Inhibitors
To determine the effect of HR1 and HR2 mutations on viral

replication, we subjected our mutants to 7-day viral fitness assays

using lymphoblast-derived PM1 cells. Cells were infected in the

presence of drugs or vehicle control using a relatively low titer

(MOI 0.003). This ensured that the majority of infection would

occur over a seven-day period, allowing us to determine the effects

of each mutant on both drug resistance and on the overall

replication fitness in culture.

In vehicle control conditions, virus containing the wild-type env

consistently infected to a greater degree than the HR1-only

mutants Q66R or V38A (Figure 3). In agreement with TZM-bl

results, Q66R remained partially resistant to RC-101 at 5 mg/ml,

and completely susceptible to ENF. Oppositely, the V38A mutant

was significantly inhibited by RC-101, yet remained resistant to

ENF.

When the HR2 mutation N126K was combined with Q66R,

this double mutant no longer demonstrated significant replication

differences from wild type virus in vehicle treated conditions,

suggesting restored fitness. Furthermore, N126K imparted in-

creased RC-101 and ENF resistance to the Q66R mutant.

However, for the V38A mutant virus, N126K did not restore

viral fitness in vehicle control conditions; instead, this double

mutant suffered slightly reduced fitness compared to the V38A

mutant virus (p,0.05). The secondary N126K mutation appeared

to provide an increased ability to infect in the presence of ENF,

though this trend was not statistically significant.

The effects of the N126K mutation in these experiments suggest

that it acts as a compensatory mutation to restore viral fusion to

the RC-101-resistant mutant Q66R. This observation suggests

that N126K could be acting to increase the rate of gp41 fusion,

potentially leading to a previously characterized hyperfusogenic

phenotype observed during ENF resistance, but not understood to

be implicated in RC-101 resistance [23].

N126K Differentially Enhances gp41 Fusion Efficiency
Compromised by Drug Specific HR1 Mutations
Our previous results suggest that the N126K mutation provides

resistance to both fusion inhibitors tested. Based on this, we

speculated that an increase in gp41 fusion efficiency could both

restore fitness lost in the presence of inhibitors and provide

resistance by fusing more rapidly, thus decreasing the possible time

of interaction with fusion inhibitors. To observe potential

differences in gp41 fusion between mutants, cell-cell fusion assays

were performed.

Cell-cell fusion was quantified by luciferase expression using

target reporter TZM-bl cells following fusion with HIV Env- and

Tat-expressing effector 293T cells. Cell-cell fusion was found to

decrease by roughly half for both the Q66R and V38A HR1

mutants when compared with wild-type env (Figure 4A and 4B).
Cells expressing N126K alone demonstrated a higher degree of

fusion when compared with the wild-type env, while the

Q66R+N126K combination restored fusion to roughly that of

wild-type env. Interestingly, V38A+N126K displayed a 3.5-fold

increase in fusion from wild-type, well beyond any of the other

genotypes tested. In addition to data obtained by luciferase

readings, imaging of GFP and env expressing cells revealed

multinucleated fusion products whose sizes were proportional to

cell-cell fusion as determined by luciferase readings and provided

visual evidence comparing fusion between gp41 mutants

(Figure 4C). Large syncytia were consistently more frequent in

N126K- and V38A+N126K-expressing cells than with other

genotypes. Conversely, effector cells expressing Q66R and V38A

displayed numerous small, bright syncytia formed by relatively few

cells. Together, these results reveal that the N126K mutation

compensates for a loss of fusion due to either the Q66R or V38A

primary mutations.

N126K Restores Viral Entry Kinetics Compromised by
Q66R
While our results demonstrate an increase in membrane fusion

associated with the N126K mutation, we can only speculate as to

how this may affect entry and possibly drug resistance. Previous

studies suggest that a potential increase in the rate of gp41 fusion

and entry is associated with drug resistance and can decrease the

window of time when fusion inhibitors can act on the prefusion

complex [23]. To determine if our RC-101-resistant mutants

displayed differences in entry, we next investigated whether

N126K could modify the rate at which our R5 molecular clones

infected cells. Entry kinetics assays were carried out using equal

amounts of infectious viral clones representing WT, Q66R, or

Q66R+N126K env genotypes (Figure 5). There was a consistently
sharp increase in infection by the WT and Q66R+N126K viruses

at 30 minutes after transferring the cells from 4uC to 37uC to

initiate infection. The Q66R single mutant virus demonstrated

a significant lag in infection compared to both the WT and

Q66R+N126K mutants at the points between 15 and 30 minutes.

This experiment demonstrates that Q66R compromises the early

stages of entry, and that N126K restores viral entry kinetics to

levels observed in the WT.

N126K Provides Resistance to other Structurally Diverse
Peptide Entry Inhibitors
Our previous experiments indicate that the N126K mutation

acts to restore fusion and rate of entry while providing RC-101

and ENF resistance. Since both RC-101 and ENF are thought to

use different mechanisms for fusion inhibition, we hypothesized

that this mutation would also provide resistance to other unique

peptide entry inhibitors. Using the previously described TZM-bl

viral inhibition assay, we infected cells with either wild-type,

Q66R, or Q66R+N126K env mutants in the presence of

RC107GG-F2, Grifonin-1, or the human a-defensin HNP-1 at

their reported EC50 concentrations. These peptides have all been

identified as HIV-1 entry inhibitors and are believed to work

through diverse mechanisms targeting the viral envelope

[18,26,27]. Both Q66R and Q66R+N126K viruses displayed

varying resistance to the antiviral peptides tested when compared

to the wild-type virus (Figure 6). Alone, Q66R was able to

provide resistance to both HNP-1 and Grifonin-1 at concentra-

tions sufficient for inhibition of the wild-type virus, yet it remained

susceptible to inhibition by RC107GG-F2. With the addition of
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N126K, we observed not only improved resistance to all peptides

tested, but we saw increased infection in the presence of these

peptides. These results demonstrate that the compensatory

mutation N126K can provide improved resistance to a diverse

set of peptides that act through inhibition of viral entry.

Discussion

We observed that while single HR1 mutations provide some

degree of drug resistance, this resistance is specific for either RC-

101 or ENF. The V38A substitution, in particular, has been shown

to be associated with resistance against multiple C-peptide type

fusion inhibitors, yet we found V38A mutants remained suscep-

tible to inhibition by RC-101. This is likely due to different gp41-

binding regions for the two drugs, as ENF aligns with its

corresponding HR1 residues closer to the N-terminus of gp41

and RC-101 is known to bind to HR2 [28]. The V38A single

mutant remaining susceptible to RC-101 provides evidence that

RC-101 targets a region outside of the ENF binding site. This

finding is particularly promising since RC-101, and similarly

acting h-defensins, would likely remain active against HIV-1

harboring other ENF-resistance mutations such as those frequently

observed in the ‘‘GIV’’ region of HR1 [29,30].

Irrespective of the specificity of either HR1 mutation, N126K

provided some degree of resistance to both drugs despite the clear

differences in not only the structure of both inhibitors tested, but

also the different binding sites of these peptides on gp41.

Moreover, we have shown that N126K has a different effect on

fusion depending on the primary mutation present in HR1

responsible for providing drug resistance. The effect on fusion

associated with Q66R and V38A may again be explained by their

similar locations on the HR1 helix. Both Q66R and V38A occupy

the same position of the helical turn directly interacting with the

HR2 helix of the same molecule and could reasonably affect

membrane fusion in a similar way. The comparable effect on

fusion seen with HR1 mutations is contrasted by the difference in

compensatory activity with the addition of N126K. While the

V38A+N126K genotype appears to overcompensate for the loss of

fusion associated with V38A, Q66R+N126K restores fusion to the

level of the wild-type virus. This observation may explain

differences in fitness in the absence of fusion inhibitors displayed

by the two double-mutants. Previous studies have demonstrated

that N126K leads to a rapidly fusing gp41 that is dependent on

ENF for infection. However, with our Q66R+N126K mutant we

observed that fitness was not affected and that fusion and entry

kinetics were restored to the levels of the wild-type virus. This

observation is perhaps due to the differences in how Q66R or

V38A would affect the formation of the mature gp41 complex.

The difference being, that while V38A merely exchanges one

small hydrophobic residue for another, perhaps reducing HR1’s

affinity for both HR2 and ENF, Q66R inserts a large cationic

residue into the hydrophobic pocket of gp41 that could not only

act to repel a cationic peptide such as RC-101, but would also

sterically constrain two key tryptophan residues located in the

corresponding region of HR2 that are believed to play a significant

role in the activity of gp41 [2]. This key difference may explain

why we see overcompensation in fusion observed with

V38A+N126K, while Q66R+N126K only exhibits restored fusion

when compared with the wild type.

One question that remained was how N126K could provide

increased resistance to RC-101 when it merely restored gp41

activity to that observed in the wild type. It is reasonable to assume

that if N126K was in fact increasing fusion beyond what is seen in

the wild-type virus, then the time in which gp41 is exposed to

fusion inhibitors would decrease, and thus the kinetic window

wherein fusion inhibitors exert their activity would be reduced as

well. However, N126K only increased fusion when compared to

Q66R alone, thus still decreasing the time that RC-101 could

interact with gp41 while maintaining the resistance imparted by

Q66R. This would explain the increase in RC-101 resistance as

corresponding to a decrease in the time available for RC-101 to

exert its activity.

A remaining question is why partial ENF resistance was

achieved with the Q66R+N126K virus when N126K appears to

only restore gp41 activity to that of the ENF-susceptible wild-type

virus. Interestingly, Q66R has been identified in a patient

receiving ENF treatment and may have been selected for by

treatment [31]. In contrast, our experiments show that Q66R

alone was not sufficient to provide any noticeable ENF resistance.

This difference is possibly due to our studies utilizing the env

derived from an R5 virus, rather than the more frequently studied

X4 strains, which are known to display differences in entry rates,

possibly due to utilization of separate coreceptors [32].

We have shown here that the same evolutionary path could

achieve resistance to two distinctly different fusion inhibitors.

Further, we have described the contribution of a secondary

mutation responsible for the observed cross-resistance while

exploring the mechanism by which resistance could be achieved.

These findings were then applied to demonstrate how this

mutation could provide improved resistance to other unique

peptide entry inhibitors. Additionally, we show for the first time

that RC-101 can inhibit the clinically significant enfuvirtide-

resistant mutants V38A and V38+N126K. This insight provides us

with direction in the continued development of fusion inhibitors

and underscores the importance of compensatory HR2 mutations

in drug-resistance.
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