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ABSTRACT 

The classes of simple and weak precedence grammars are generalized to include 

e-rules (productions with the empty right parts). The descriptive power of epsilon 

simple precedence (ESP) grammars increases directly with the number of e-rules per

mitted; the class of ESP grammars with no E"-rules, ESP 0 , is identical to the class of 

simple precedence grammars; ESP gramm~rs with at most one ~-rule, ESP 1 , define a 

class of languages which properly includes the class of ESPo languages, but is itself 

properly included in the class of deterministic context-free languages. In general, 

ESP grammars having at most i t:"-rules, ESP1 , define a class of languages which is 

properly included in that defined by ESP1 + 1 grammars. This hierarchy of languages 

exhausts the deterministic context-free languages. The hierarchy of ESP languages 

is established using an iteration theorem which may be used to show that a given 

language is not ESP1 for a given i. 

An algorithm to convert arbitrary LR( 1 ) grammars to equivalent epsilon weak pre

cedence (EWP) grammars is developed. 

The class of Viable Prefix EWP grammars is defined and it is shown that the EWP 

parser for every Viable Prefi~ EWP grammar detects syntactic errors at the earliest 

possible time. Also, it is established that every deterministic context-free language 

is defined by some Viable Prefix EWP grammar. 

Finally, it is shown that the class of EWP grammars, while properly containing the 

class of Viable Prefix EWP grammars, is itself properly included in the well-known 

classes of context-free grammars with e-rules which define exactly the determinis

tic context-free languages. 
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CHAPTER 1 

INTRODUCTION 

A language, L, is a set (possibly infinite) of f~nite length sentences con

structed from a finite alphabet I!. The theory of languages, developed mainly in 

the past two decades, provides a basis !or studying programming languages and 

the mechanisms appropriate for describing and implementing them. Generally, 

there are two mechanisms for describing a language: recognizers and generators. 

A recognizer is a procedure (program or machine) which, when presented an arbi

trary sentence over the alphabet, decides whether or not that sentence is a 

member of the language it defines. A generator is a formalism that describes how 

to enumerate all and only those sentences that are members of the language 

being defined. Grammars fall into this latter category. In addition to defining a 

language precisely, a grammar associates structure with the sentences it gen

erates. It is through this syntactic structure that the semantics of a language 

can be realized. 

Formally, a grammar is a 4-tuple, G=(N,I!,P,S), where 

(1) N is a finite set of symbols called nonterminals or variables. 

(2) I! is a finite set of terminal sym.bols (symbols of the alphabet). 

(3) P is a finite set of ordered pairs (a,p), where ex is some string of sym

bols over the vocabulary, N LJI!, containing at least one symbol from N 

and {3 is an arbitrary string (perhaps null) over the vocabulary. Ele

ments of P are called productions and are usually denoted a-+{J for 
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some a and (3. a is called the left-hand side or left part and (3 is 

called the right-hand side or right part of the production. 

(4) S, the start symbol, is a distinguished symbol in N. 

(5) N(')E=¢. 

For example, the grammar G=(N,E,P,S), where 

S=E 
N = ~ E, T, F~ 
E = ~ a, b, (, ) ~ 
P = ~ 1: E4 E + T 

2: 64 T 
3: T 4 T * F 
4: T4 F 
5: f4 ( E) 
6: F -~a 

7: f4 b ~ 

defines the set of arithmetic expressions over a, b, •, +, (, and). 

The sentences of the language defined by a grammar are generated by · 

starting from the start symbol of the grammar, and repeatedly applying produc-

tions until a string consisting only of terminal symbols is generated. Figure 1 

shows how (a+b)* a may be· generated by G. 

SENTENTIAL FORM 

E 
T 
T*F 
T*a 
F*a 
( E) * a 
(E+T)*a 
(T+T)*a 
(F+T)*a 
(a+T)•a 1 

(a+F)*a 

==> 
==> 
==> 
==> 
==> 
==> 
==> 
==> 
==> 
==> 
==> 

RESULT OF THE RULE 

---------------------
T 
T * F 
T*a 
F *a 
( E) * a 
(E+T)*a 
(T+T)*a 
(F+T)*a 
(a+T)*a 
(a+f)*a 
(a+b)*a 

RULE APPLIED 

---------------
2 
3 
6 
4 
5 
1 
2 
4 
6 
4 
7 

Figure 1. Generation of (a+b)* a by G. 
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Chomsky [12], in an attempt to describe na~ural languages, classified gram

mars into four categories. Each category was defined by imposing various types 

of restrictions on the forms of the productions. This classification, known as the 

Chomsky hierarchy in the literature, is defined below: 

Type 0 or unrestricted gram.mars: 

No restriction is imposed on the productions. 

Type 1 or context-sensitive grammars: 

The number of symbols in the left-h~nd side of each production is less than 

or equal to the number of symbols in its right-hand side. 

Type 2 or cantext-fre e gram.m.ars: 

The left part of each production consists of a single nonterminal. 

Type 3 or regula~ grarn:m.ars: 

Each production is of the form A4t8 or A4f, where A and Bare in N, and tis 

a string over I!. 

The different classes of grammars defined in Chomsky's hierarchy have dif

ferent descriptive powers and are capable of generating different families of 

languages. The class of languages defined by type i+1 grammars is properly 

included in the class defined by type i grammars. This hierarchy of languages is 

shown in Figure 2. 



Type 2 
Context-free 

Type 3 
Regular 

Figure 2. Chomsky Hierarchy. 

4 

The first serious attempt to formally define a programming language was 

made by Backus [8]. He designed a special notation, known as BNF (Backus-Naur 

Form), to describe the syntacti~ structure of the ALGOL-60 language - one of the 

first formally defined programming languages [36]. The formal definition of 

ALGOL-60 in BNF, which is equivalent in descr~ptive power to Chomsky's 

context-free grammars, is considered to be one of the major contributions to 

computer science. Since the definition of the programming language ALGOL-60, it 

has been recognized that context-free grammars are well-suited for the formal 

definition of programming languages. 
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The definition of a language generally con~ists of two parts: syntax and 

semantics. The rules of syntax specify sentences of the language and associate 

with each sentence a syntactic structure. The rules of semantics associate 

meaning with each valid syntactic structure. A context-free grammar defines 

only the syntax of a language. The syntactic structure of a sentence, as defined 

by some grammar, is usually represented by a labeled tree called the syntax 

tree. for example, consider the grammar G=OS,X~,~a,b,c~,~S-+aXb, X-+cX, X-+c~, 

S) describing the language L=~ac n bin ~1 ~· The syntax tree for the sentence 

"accb" of L is shown below. 

c 

A parser is an algorithm designed to reconstruct the syntactic structure of 

some string presented as input. This can be done In either "top-down" or 

"bottom-up" fashion. A top-down parser builds the syntax tree starting from the 

root (start symbol), while a bottom-up parser starts from the leaves. The steps 

involved in constructing the above syntax tree, both top-down and bottom-up, 

are shown in figures 3a and 3b, respectively. 



s ==> s ==> s ==> 

a x Ab a/Kb 
/\ /\ 

c x c x 

Figure 3a. Top-down generation of a syntax tree. 

x 

x /\ 
c x 

c ==> c ==> c ==> 

s 

a~b 
/\ 

c x 

I 
c 

Figure 3b. Bottom-up generation of a syntax tree. 

I 
c 
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Unfortunately, in spite of a considerable effort, general algorithms to con-

struct efficient parsers (parsing time proportional to the length of input) for arbi-

trary context-free grammars have not been found [5,22]. Therefore, formal 

language research has been focused on the development of different subclasses 

of context-free grammars which may be used to construct efficient parsers. 

Among the classes developed for this purpose are LL(k ), Bounded Right Context 
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and various types of LR and precedence gram~ars. Generally, LL(.k) grammars 

are used to build top-down parsers, while Bounded Right Context, LR and pre-

cedence grammars yield bottom-up parsers. 

At the present time, LR grammars and parsing techniques are the most used 

device to define programming languages and implement their parsers [ 4 ]. This is 

due to the fact that LR grammars are general and include most of the "natural" 

grammars for programming languages. Furthermore, LR parsers have good error-

detecting capabilities. LR parsers are, however, difficult to construct and their 

parsing tables consume considerable memory resources. 

Precedence parsing techniques, in contrast to LR, enjoy a simple theoretical 

basis and produce relatively compact parsers. The use of precedence grammars 

for defining and implementing programming languages, however, is not particularly 

popular for several reasons. 

• Precedence grammars have a small intersection with the class of gram-

mars one would "f!aturally" write for a programming language. 

• Simple and weak precedence grammars, as illustrated in Figure 4, 

describe a proper subclass of deterministic context-free languages.1 

• Precedence grammars do not allows-rules (productions with the empty 

right part) · which are very convenient for introducing semantic actions 

at appropriate times durin.g a parse. 

1 A context-free language Is determln 1st le If It Is accepte.d by some deterministic pushdo\M"l auto
maton. 
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• Precedence parsers in general, do not detect syntactical errors at the 

earliest possible time during a parse. 

Deterministic 
Context-free 
Languages 

Simple 
Precedence 
LanguageR 

Figure 4. The relationship between deterministic context-free 
and simple precedence languages. 

In the broadest terms, the purpose of the research presented in this disser-

tation is to further develop precedence techniques. We have extended the class 

of simple precedence grammars to include &-rules. This generalization is not trivi-

al since we show that the class of epsilon simple precedence grammars, or ESP, 

as we call it, describes all deterministic context-fre~ languages. Furthermore, we 

show that the descriptive power of such grammars increases directly with the 

number of &-rules permitted; the class of ESP grammars with no &-rules, ESP0 , is 

identical to the class of simple precedence grammars; the ESP grammars with no 

more than one e-rule, ESP1 , define a class of languages which properly includes 
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the class of ESPo languages, but is itself properly included in the class of deter

ministic context-free languages. In general, ESP grammars with at most i e-rules, 

denoted ESPi, define a class of languages which is properly included in that de

fined by ESPi+ 1 grammars. The hierarchy of languages so defined exhausts the 

class of deterministic context-free languages. This is the first exhaustive 

hierarchy of deterministic context-free languages studied in the literature. The 

other known hierarchies, namely the hierarchies of LL(k) and strict deterministic 

languages, cover only a proper subset of deterministic context-free languages 

[5,22,23]. 

The hierarchy of ESP languages is established using a new iteration theorem; 

that is, a theorem which characterizes infinite languages of the same class. The 

iteration theorem is used to show that a given language is not ES Pi, for a fixed 

i. 

We have defined the class of Viable Prefix EWP grammars and shown that 

the EWP parser constructed for these grammars detects syntactic errors at the 

earliest possible time. Additionally, an algorithm to convert arbitrary LR(1) gram

mars to equivalent EWP grammars is developed. We show that the grammars ob

tained from this algorithm are Viable Prefix EWP grammars. This result shows that 

it is possible to obtain simple parsers with ·good error detection capabilities only 

by restricting the forms of the productions. Such restrictions do not, however, 

limit the class of languages. As our last result, we show that the well-known 

classes of context-free grammars with e-rules defining exactly the class of 

deterministic context-free languages properly contain the class of EWP gram

mars. 

This dissertation is organized as follows. Chapter 2 contains the relevant 

terminology, and a review of the literature. In Chapter 3, precedence grammars 
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are generalized to obtain the classes of epsilon s.imple, epsilon weak, and extend

ed epsilon weak precedence grammars. A parsing algorithm for epsilon simple pre

cedence grammars is presented in Chapter 3. An algorithm to convert arbitrary 

LR( 1) grammars to equivalent epsilon weak precedence grammars is presented in 

Chapter 4. Moreover, it is shown in Chapter 4 that the algorithm to convert arbi

trary LR( 1) grammars to equivalent EWP grammars produces grammars whose ep

silon precedence parsers detect syntactical errors at the earliest possible time. 

Chapter 5 presents an iteration theorem for epsilon simple precedence languages 

of index i and discusses some of the closure properties of these languages. The 

hierarchy of the ESP languages is also established in Chapter 5. In Chapter 6, 

the classes of epsilon simple and weak precedence grammars are compared with 

the well-known classes of context-free grammars. finally, Chapter 7 contains 

our concluding remarks and possible extensions of this research. 



CHAPTER 2 

BASIC DEFINITIONS AND THE SURVEY OF LITERATURE 

In this chapter the topics in parsing theory that are important to our 

research are surveyed. First, the basic definitions and notations used throughout 

this thesis are established. 
;. 

2. 1 Basic Terminology 

Definitions, examples, lemmas and theorems are numbered sequentially in the 

order they appear in each chapter. The number designation has the form s.le, 

where s a.nd le denote the chapter number and the occurrence index, respec-

tively. Figures and tables are numbered sequentially starting from one. 

For any set of symbols, V, v• will denote the set of all strings of finite length 

over V, including the empty string, e. y+ denotes y• -~ eJ. If a is a string in v•, 

an denotes the n-fold concatenation of a with itself; a 0 =e, and 

an =aan-J, n>1. The length of a string, a, is denoted JaJ. For all le~O, unary 

operators, PRgFic and S UF'l'ic, are defined on v• as follows: 

it I af<k 
if a={Jo and I (JI =le 

it I a I <le 
if a={Jo and I o I =le 

11 
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A context-free grammar (CFG) is a 4-tuple G=(N,~,P,S), where N, ~' P, and S 
' 

denote the nonterm,inal set, term.inal alphabet, production set and 

start sym.bol, respectively. The vocabulary of G, N LJ~, will be denoted by VG· 

A production (A,a) is written as A-+a. 

If A-+aE"..P and p, oEVc, then we say {JAo directly derives {Jao, or f3ao 

directly reduces to {JAo. A direct derivation of {Jo..o from (JAo is denoted (JAo 

==> {Jao. A direct derivation, (JA o ==> {Jao, is said to be rightm.ost 

(leftm.ast), denoted {JA6==>nnfJa6 ({JAo==>tm,{Jo..o), if oE~ • ({JE~ •). If 

1<i<k' k >1, 

aicVJ, akcVc, then a1c is derived from a 1 and is written as a 1 ==>•ak· If at 

least one production is applied in deriving a1c from a.1 then we write o..1 ==>+a1c. 

A derivation is rightmost (leftmost), if it consists only of direct rightmost (left

most) derivations. Rightmost (leftmost) analogues of a.1 ==> •a1c and a.1 ==>+ak 

are d eno"ted • a1 ==>rm. a'.k 

respectively. A derivation having exactly n steps is denoted ==>71
• ==> •n 

denotes a derivation having at most n steps. 

A string a{J7 is · a sentential f DT'Tn if S = = > • a(J-y. A sentential form is 

called a right (left) sentential form if ·it is derived from S by a rightmost (leftmost) 

derivation. Tl)e string {J is said to be the handle of a right sentential form a(J7, if 

there exists a rightmost derivation S==> •o..A7==>a{J7. A string 7cV~ is called 

a viable prefix of G if S=~>~aAc.>==>a{Jc.> and 7=PREF1c(a{J), for some 

k>O. 

A nonterminal, Z, is said to be erasable, if Z-+eE:P. The set of erasable non

terminals is denoted N eCG). A nonterminal, Z, is said to be null.able, if Z==>+e. 

The set of nullable nonterminals is denoted null(G). 
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A grammar is said to be uniquely invertible (UI), if for all A, B EN, A _,.{J E 

P and B_,.P E Pimply A=B. 

For each a.E:: V~, the sets FIRSTk, FOLLOWk:, and EFFk are defined as fol-

lows: 

EFJik(a)= PREFk:(x) if there exists a derivation a==>~711==>rm.xEI:• 
and either 7E.:I:, or 7EN and y #:x 

A grammar, G, has a cycle if there exists A EN such that A ==>+A. A gram

mar, G, is reduced if for each production, A 11ia:cP, there exist strings x, y, z cI:• 

such that S==> •xAz ==>x a:z ==> •xyz. A grammar is said to be proper if it is 

cycle-free and reduced. Let G=(N,~,P,S) be a CFG. The augm.ented gram.mar 

derived from G is defined to be G'=(NLJ~S'j,~,PLJfS'_,.Sj, S'), where S' is a 

new symbol not in Ve. 

2.2 Hierarchy of Context-Free Grammars 

The more important classes of deterministic context-free grammars and 

languages are surveyed in this section. The first concept we review is that of LL 

grammars developed by Rosenkrantz and Stearns [ 40]. These form the basis for 

top-down parsers. We then review the concepts related to bottom-up parsing. 
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DEFINITION 2.1 A CFG, G=(N,:E,P,S), is said .to be LL(k ), k =>O if the condi-

t ions 

( 1) S==>i:n '4>Afj==>'4>afj==> • '4>X 

(2) S= =>,:n '4>A P== >'4>7(3= = >. '4>Y 

(3) FIRSTk(x)=FIRSTk(y) 

imply a=7. 

For k =1, the grammars satisfying tile requirements of the above definition 

form the basis for deterministic top-down parsers (recursive descent). For 

k > 1, an LL(k) grammar can be used to construct a recursive descent parser only 

if it is LL(k) in the strong sense. 

DEFINITION 2.2 A CFG, G=(N,1!,P,S), is said to be LL(k) in the 

strong sense, k >.O, if for all AEN such that A4a.., A4{JEP, a:#:p, 

FIRSTk (aFOLLOWk (A)) nF:IRSTk ((JFOLLOWk (A))=¢. 

A recursive descent paTser starts from the start symbol, S, and tries to 

reconstruct a leftmost derivation of · the input string by looking at the next k 

input symbols in each step. In a recursive descent parser, a procedure for each 

nonterminal is implemented. Each procedure examines the next k input symbols 

to decide whether to advance the input, call another procedure, or terminate. 

Conditions of LL grammars guarantee that the next action in each procedure may 

be uniquely determined. LL(k) languages form a proper subset of the determinis

tic context-free languages. This is shown by proving that the language 

L=~on 1 n I n=>1JU~c)n2n I n=>1 i is not described by any LL grammar [5]. furth

ermore Kurki-Suonio [29] established that for all k >O, the class of LL(k -1) 
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languages is properly included within the class of LL(k) languages. This hierarchy 

of LL(k) languages is established by showing that for all k >0, the language 

Lk =~an t:&> I n > 1 , t:&> E: ~ b , c , b k d Jn J 

is an LL(k) language which is not LL(k-1 ). 

In general, a bottom-up (shift-reduce) parser consists of a stack and an 

input buffer. The parser "shifts" the input symbols onto the stack until a handle 

appears on top of the stack. The handle is then replaced by the left part of the 

appropriate production. This process is repeated until either an error configura

tion is reached or the input buffer becomes empty and the stack contains only 

the start symbol of the underlying grammar. 

There are many grammar classes studied in the literature which restrict the 

forms of the productions to facilitate the implementation of bottom-up parsers. 

We start our survey of bottom-up grammars by the class of Bounded Right Con

text (BRC) ·grammars introduced by Floyd [16]. 

DEFINITION 2.3 A CFG, G=(N,~,P,S), is said to be 

(rn,n)Bounded Right Context (BRC) for rn,n~1 if in the augmented grammar, 

G', the conditions 

(1) sm S'$n ==>~~At:&>==>nn 1J{3t:&>, 

(2) sm s·sn ==>~-yBx ==>rm. yox =1' I py' 

(3) Ix l<ly L 

(4) SUFFm('fl')=SUFFm('iJ) and PREFn(y)=_PREFn(t:&>) 

imply 1'- 'Ay =-yBx; that is, 19 '=-y, y =x and A=B. 

The conditions of (m.,n)BRC grammars guarantee that in each step during a 

parse_, the next action of the parser may be uniquely determined by examining the 
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next n input symbols and at most m. +l symbol~ of the stack where L is the 

length of the longest right part in the grammar. BRC parsers are quite large and 

difficult to construct. ( 1, 1 )BRC grammars define exactly the class of determinis

tic context-free languages [5]. 

fundamental to our research are simple precedence grammars and languages 

introduced by Wirth and Weber [ 43]. These grammars are defined in terms of pre

cedence relations defined below. 

DEFINITION 2.4 Let G=(N,~,P,S) be. a CFG without &-rules. For each XEN 

define sets LEFT(X), RIGHT(X) as follows: 

LEFT(X)=~ZEVclX==>i!nZ~, for some ~EVc~' 

RIGHT(X)=~ZEVGIX==>rin~Z, for some ~EVc~· 

Then, for X,YEVG and t E~ define the precedence relations <·, =, ·>on V(J as 

follows: 

( 1) x=v, if there exists a production A~aXY {3EP for some a.{3E Ve; 

(2) X<·Y, if there exists ZcN such that x=z and YcLEFT(Z); 

(3) X· >t, if there exists ZEN such that z=t and XERIGHT(Z) or, if there are 

Z1, Z2EN where Z1=Z2 with XERIGHT(Z1) and tELEFT(Z2). 

The purpose of the precedence relations was 1) to identify what pairs of 

symbols could legally appear in a viable prefix and 2) to classify these . pairs 

according to whether they defined the left end of the handle ( < · ), the right end 

of the handle ( · >) or occurred within the handle (:::) of a right sentential form. 

These relations were then .used to define a class -of grammars that could be 

deterministically parsed bottom-up. 
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DEFINITION 2.5 Let G=(N,E,P,S) be a reduced CFG without £-rules. G is 

said to be simple precedence if the following conditions hold. 

(1) G has no cycles; 

(2) G is uniquely invertible; 

(3) The precedence relations, <·, =,·>are pairwise disjoint. 

In parsing algorithms based on simple precedence grammars the precedence 

relations were extended to include a special symbol, $, which is commonly used to 

denote the end of the input string to be parsed as well as the bottom of the 

parse stack. The precedence relations are stored in a matrix called the pre-

cedence matrix. Each row and column of this matrix represents a symbol of the 

vocabulary of the grammar. The entry in row i, and column j of the precedence 

matrix contains the precedence relation which holds between the symbols 

represented by i and j, resl?ectively. The algorithm functions by shifting input 

symbols onto the stack as long as the relations < · or = hold between the stack 

top and the next input symbol. A stack reduction is initiated when the relation, 

· >, holds. If neither of these relations hold, then an error is reported. When stack 

reductions are made the relation, < · is · used to locate the left end of the handle in 

the stack. The stack is reduced by the production whose right part appears on 

top of the stack. 

Wirth and Weber [ 43] suggest that, for some precedence grammars, the pre-

cedence relations · can be represented by two vectors, f and g, called precedence 

functions such that 

f(X) = g(Y) 
f(X) < g(Y) 
f(X) > g(Y) 

implies X =v 
implies X <· Y 
implies X · > Y 
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The use of precedence functions instead of a precedence matrix reduces 

the storage requirements of a precedence parser. Precedence functions, how

ever, do not exist for every precedence grammar. The use of precedence func

tions, in general, decreases the error detecting power of precedence parsers [5]. 

Since a precedence parser shifts when either <· or :::: holds between the 

stack top and the next input, the requirement that <· and = be disjoint can be 

relaxed. This observation lead to the notion of weak precedence grammars origi

nally due to lchbiah and Morse [24]. 

DEFINITION 2.6 Let G=(N,~,P,S) be a reduced CFG without E-rules. G is 

said to be weak precedence (WP) if the following conditions hold: 

( 1) G is cycle-free; 

(2) G is uniquely invertible; 

( 3) The Wirth-Weber precedence relations, < ·, -, · > satisfy 

<<·u=)n·>=¢; 

(4) if X-+aA(3 and y_,,,p belong to P, then (A,Y) ~(<· U:::). 

In [2] it is established that weak precedence grammars are equivalent in 

language power to the class of simple precedence grammars. Fischer [1 5] has 

shown the simple precedence languages to be a proper subclass of the deter

ministic context-free languages by demonstrating that the set 

L=~aon 1n I n>OJ U~b on 1 2 xn I n>OJ is not a simple precedence language. 

Simple precedence grammars can be generalized by increasing the number of 

symbols used to define the precedence relations. This gave rise to the notion of 

extended precedence relations and grammars credited to Gray [20]. 
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DEFINITION 2. 7 Let G=(N,~,P,S) be a redu9ed CFG without e-rules. for 

m.,n~1 define the (m.,n)-precedence relations, <·, = ·>,on q$j U Ve)+ as 

follows. Let STn ssn = = >r~ 1'X r..>= = >rm.1'6 CJ be any rightmost derivation, then 

(1) SUFFTn ( 1')<·v, v ciPREFn (or..>)J U iFIRSTn (or..>) I PREF1 (o)cr.j; 

(2) for each 61 =Fe and 62 :Fe such that 6=6102 define 

SUFFTn (1'01 )=.P.R.EFn (62r..>), and if 02 begins with a terminal define 

SUFFTn(1'61)=v, v EFJRSTnCt52r..>); 

(3) SUFFTn(1Jo)·>PREFn(CJ). 

G is said to be (m. ,n )-precedence parsable if 

(4) G is cycle-f~ee; 

( 5) G is uniquely invertible; 

(6) the (m.,n)-precedence relations<·,::::,->, are pairwise disjoint for G. 

A corollary to this definition is that every simple precedence grammar is 

( 1, 1 )-precedence parsable. 

Graham [ 18] showed that every deterministic context-free language is 

described by some (2, 1 )-precedence parsable grammar. 

In the same manner that simple precedence grammars were generalized to 

(m. ,n )-precedence parsable grammars, weak precedence grammars can be gen

eralized to (m..,n)-weak precedence grammars. The extension to weak pre

cedence grammars presented in our next definition was introduced in [ 44 ]. 

DEFINITION 2.8 Let G=(N,L:,P,S) be a reduced CFG without £-rules. G is 

said to be (m.,n)-wepk precedence for m.,n~1 if 

( 1) G is cycle-free; 
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(2) G is uniquely invertible; 

(3) the (m.,n)-precedence relations <·, .:... · > for G satisfy, -, 

<<· u=)n·>=¢; 

(4) If X->a{3 and Y->{3 are distinct productions, then for no 7, oE( VG Uf SD• 

is it true that (SUF'1''m, (-ya),PRE'F'n ( Y o))E( <· U::). 

In general, writing a precedence grammar for a given language is not an easy 

task due, in part, to the requirement of unique invertibility. McKeeman [34], in an 

attempt to relax this requirement, developed the class of Mixed Strategy gram-

mars. 

DEFINITION 2.9 Let G=(N,I:,P,S) be a reduced CFG without e-rules. G is said 

to be Simple Mixed Strategy Precedence (SMSP) if 

( 1) G is cycle-free; 

(2) Wirth-Weber relation · > is disjoint from the union of the relations =and 

<-; 

(3) let l (A)=~X I (X,A) E<· U =~,then 

If A->{3'X{3 and B->{3 are two productions in P, then Xis not in l(B); 

If A-> f3 and B->(J are two productions in P, A#B, then l(A) ()lCB)=¢. 

An SMSP parsing algorithm is identical to that of weak precedence, except 

that once the handle is identified, one symbol below the handle (condition (3)) is 

used to uniquely determine the production to be used in the reduction. 

We now review the class of LR( 1) grammars and parsers due to Knuth [26]. 
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DEFINITION 2.1 0 A reduced CFG, G=(N,~,P,S), ~s said to be LR(k) fork ~O, if 

in the augmented grammar, G', the conditions 

(1) S'==>r~cxA~==>TTn a{JCJ, 

(2) S'==>r~yBx ==>rTna{Jy 

(3) FIRSTk (G))=FIRSTk (y ), 

imply a=y, A=B, and x =y. 

LR grammars are the most general class of grammars defining deterministic 

context-free languages. However, LR parsers are difficult to construct without 

the use of automatic parser generating systems and can consume considerable 

memory resources. The construction of LR parsers is covered extensively in 

[3,4,5,22]. Here, we explain the behavior of LR parsers. First, the notion of 

LR(k) items is introduced. 

DEFINIT.ION 2.11 Let G=(N,I:,P,S) be a CFG. We say that [A->{31 .(32 Ju] is 

an LR(k) item for G, if A->{J1{J2 EP, and uc:I:k. · [A->fJ1.fJ2 luJ is said to be valid 

for a{J 1, a viable prefix of G, if there exists a derivation 

An LR(k) item, [A->p1. p2 I u ], indicates that at some stage during a parse, 

we have seen a string derivable from p1 and expect to see a string derivable 

from (32 , and FIRSTk ((J2 u) is the ·acceptable input lookahead. 

The canonical collection of LR(k) items for a grammar, G, defined below 

HI I T is a valid LR(k) item for y j I 7 is a viable prefix of G~ 

forms the basis for implementation of LR(k) parsers. Each set of items in the 

1 

canonical collection of LR(k) items is represented by one state of a Deterministic 

Finite Automaton (DFA), known as the GOTO graph .. This DFA recognizes viable 
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prefixes of the underlying grammar. Two functions called ACTION and GOTO 

tables are used by LR parsers. The GOTO function is essentially the transition 

function of the GOTO graph. It takes a state and a grammar symbol as input and 

returns a state. For each state of ·the LR parser, I, each u E~lc, ACTION (I ,u) 

may have one of the following values: 

• shift; 
• reduce; 
• accept; 
• error . 

Each stack entry of the LR parser is a pair (l,X), where I is a state and Xis a 

grammar symbol. Initially, the pair (I 0 ,e) is pushed onto the stack where I 0 is the 

initial state of the parser. Let (l,X) be the top stack and u be the next k input 

symbols. The behaviour of the LR parser is then summarized as follows: 

(1) If ACTION(l,u) = shift, then the entry (GOTO(l,PREF1 (u)),PREF1 (u)) is 

shifted onto the stack. 

(2) If ACTION(l,u) = reduce A-+a, where la I =n, then n entries are popped from 

the stack and the entry (GOTO(J,A),A) is pushed onto the stack where (J,Y) 

is the n +1st entry in the stack. 

(3) If ACTION(l,u) = accept, then the input is accepted as a valid sentence. 

(Note that in this case u is 9k .) 

(4) If ACTION(l,u) = error, then an error is announced. 

The conditions of LR grammars guarantee that every entry of ACTION and 

GOTO tables is uniquely defined. 
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EXAMPLE 2.12 The ACTION and GOTO tables of the LR(1) parser for the 

grammar 

are shown in Table 1. 

STATE 

a b 
shift 

reduce X 4C 

reduce X4cX 
shift 

S .. ,, a X b 
x ~ex 
x~c 

ACTION 

c 

shift 
shift 

$ 

reduce S-'*aXb 
accept 

a b 
/1 

f 5 

Table 1. ACTION and GOTO tables of an LR parser. 

GOTO 
c x s 

Is 
!2 /4 
f 2 /3 

The sequence of moves of the LR parser on the input "accb" is shown in Fig-

ure 5. 

STACK 

(1 o,d 
Uo,d (h,a) 
Uo,d (11,a) (12,c) 
(/ o,e) (I 1'a) (I 2,c) (I 2,c) 
(1 o,e) (h ,a) U 2,c) (I 3,X) 
(I o,e) (11,a) (14,X) 
(1 o,e) U 1,a) (14,X) (l 5,b) 
(1 o,e) U s,S) 

INPUT 

accb$ 
ccb$ 

cb$ 
b$ 
b$ 
b$ 

$ 
$ 

Figure 5. Moves of the LR parser on input "accb." 
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The next concept we review is that of SR(s ,k) grammars and parsers, due 

to Workman [ 44]. An SR parser is similar to an LR(k) parser except that the 

states of an SR(s ,k) parser incorporate information determined by only s symbols 

of the stack. 

DEFINITION 2.13 An LR(k) item, l=[X4a.p I u ], is said to be s -consistent 

with 7, s~O, if I is valid for some viable prefix 1'a, where -y=SUFF8 (1'a). 

For given values of s, k and . 7Ev•s, As0,1r;(7) denotes the (s ,k)

cansistency set for 7 containing all k-items, s-consistent with 7. Cs Jc (G) 

denotes the collection of all non-empty (s ,k )-consistency sets, A( 7), for G. 

Cs,1c(G) is called the canonical collection of SR(s,k) items for G. In [44] it is 

established that each (s ,k )-consistency set, As ,k ( 7), is the union of LR(k) 

states, rk ( 1'), where 1' is a viable prefix satisfying 7=SUFF8 (1'). 

Having formed the canonical collection of (s ,k )-consistency sets one can 

construct a shift-reduce parser using essentially the same techniques employed 

in constructing a canonical LR(k) parser. A grammar, G, is said to be SR(s ,k) pre

cisely when its canonical parsers constructed with states, As,k(7)cC8 ,1:(G), is 

deterministic according to the definition below. 

DEFINITION -2.14 G=(N,~,P,S) is said to be SR(s ,k) if 

(1) [X-+a.plu], [Y-+o. lv]EA(7)E:C~.k(G) implyv~EFFk(fJu); 

(2) [X-+ap.lu], [Y-+P.lu]E:A(7)E:C5 ,k(G) imply [X-+a.f31u], and 

[Y-+. fJ I u] do not both belong to the same (s ,k )-consistency set. 

(3) [X-+a. I e]EA(SUFFs (S)) implies that X=S' and a= S. 
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It is shown in [44] that every (m.,n)-weak precedence grammar is SR(rn,n) 

and every SR(m.,n) grammar is (rn,n)BRC. 

We conclude this section with a review of the class of strict deterministic 

languages [23]. This is the class of prefix-free languages accepted by a deter

ministic pushdown automaton in a final state with the empty stack. First, the 

notion of deterministic pushdown automata is introduced. 

DEFINITION 2.1 5 A deterministic p4shdown automaton (DPDA) is a 7-tuple 

P=(O,:E,r,o,q 0 ,Z 0 ,F), where 

( 1) Q is a finite set of states; 

(2) :E is a finite set of input symbols; 

( 3) r is a finite set of stack symbols; 

(4) q 0 E:O is the initial state; 

(5) ZoEr is the initial stack symbol; 

(6) FcQ is the set of final states 

( 7) 0 is a mapping from Qx(:E u l & pxr to the finite subsets of axr. such 

that for each q E:O, Z Er and a E~ either of the following holds 

(7.1) o(q,a,Z) contains at most one element and o(q,£,Z)=cj>, 

(7.2) o(q,a,Z)=cj>, and o(q,&,Z) contains at most one element. 

A configuration of Pis a triple (q,t:J,cx) in Qx:E •xr•, where 

( 1) q is the current state; 

(2) "' is the unscanned portion of the input. 

A move by P is represented by the relation )--- on configurations. 
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We are now ready to formally define tl:le class of strict deterministic 

languages. 

DEFINITION 2.16 A language, L, is said to be strict deterministic language of 

degree n, if there exists a DPDA, P=(Q,:E,r,o,q 0 ,Z 0 ,F), such that IOl=n, and for 

all '4>E:L 

(q o,'4>,Z o) I --- (q ,e,e), qE:F if and only if '4>E:L 

The class of strict deterministic languages is equivalent to the class of 

LR(O) languages which is properly included in the class of deterministic context-

free languages. It is shown in [23] that for all n>1, the class of strict deter-

ministic languages of degree n is properly included in the class of strict deter-

ministic languages of degree n + 1. 

The hierarchy of the classes of context-free grammars studied in this 

chapter is shown in Figure 6. 



Context-free 

I 
I 

Unambiguous 
Context-free 

I 
I 

--------Lr 
. I~ 

LR(O) BRC LL 

I I 
SMSP UI 

I extended precedence 
I · 
I 

UI 
Weak Precedence 

I 
I 

Simple Precedence 

Figure 6 . The hierarchy of context-free grammars. 

2.3 Precedence Parsers and Correct Prefix Property 

27 

Ideally, a parser should detect syntactic errors before the erroneous input 

symbol is shifted onto the parse stack. Formally, we say that a parsing method 

has the Correct Prefix Property if the existence of a syntax error is 

detected as soon as the input scanned no longer forms a prefix of any sentence 

in the language being parsed [19]. Unfortunately, precedence parsing techniques 

do not have this property. For example, consider the following simple precedence 

grammar: 

S ·+ ax y 
s~ b xz 

L(G) consists of sentences axy and bxz. Now consider the moves made by the 

parser acting upon the erroneous input axz. 
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s 
($,axz$) 1---- ($a xz$) s ' 

1---- ($ax z$) 
s ' 

1---- ($axz $) 
R ' 

1---- ERROR 

The parser did not detect the error in configuration ($ax,z$). Instead, it shifted 

"z." This was due to the relation = that holds between x and z through the pro-

duction S4b x z. 

There has been some research [ 1 9,~0,35] in improving the error-detecting 

capabilities of precedence parsers. Leinius [30] defined three syntactic error 

categories in the context of precedence parsing: 

1) Character-pair error: 

No precedence relation holds between the top stack symbol and the next 

input symbol. 

2) Phrase error: 

The precedence relation · > holds between the top stack symbol and the 

next input symbol. But the right part of no production matches the string 

identified by the reduce function as the handle. The error in the previous 

example falls into this category. 

3) Stackability error: 

The precedence relation · > holds between the top stack symbol and the 

next input symbol. Although a production A4a, is identified as the production 

to be used for the reduction, no precedence rela~ion holds between the sym-

bol below a and A. 

The simple precedence parser designed by Leinius detects stackability 

errors by replacing the handle, a, by A, where A.~a Is a production, only after 
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determining that A is related to the symbol below .a in the parse stack. Consider 

the following simple precedence grammar: 

S -> a A e 
S-+ b Be 
A-+ x y 
B-+ x z 

Leinius's parser detects stackability error in the input "bxye" after shifting the 

the symbol "y." A traditional simple precedence parser, however, will announce an 

error after shifting the last symbol of the i~put string. 

Graham and Rhodes [ 1 9] developed a simple precedence parser that has 

better error detecting capabilities than that of Leinius. In addition to three types 

of errors defined by Leinius, their parser detects Right Hand Side (RHS) errors. A 

RHS error occurs when the relation =holds between the top stack symbol and the 

next input symbol, but after shifting the input symbol, the prefix on the top of the 

stack is no longer a prefix of right part of any production. Consider the grammar 

S ··llJi aA 
S-+ x by 
A-+ b c d 

The actions of Graham and Rhodes' parser acting upon the input "aby" is 

shown below: 

s 
($,aby$) I-;-- ($a,by$) 

l-5-- ($ab,y$) 

f---- RHS ERROR 

Although the relation :::: holds between b and y, the parser did not shift y because 

"by" is not a prefix 0f the right part of any production in the grammar. RHS errors 

are efficiently detected by conducting an incremental search of the right parts. 
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Moll [35], developed the class of Left Cont~xt Precedence grammars, LCP, 

that apparently result in small and simple parsers with the correct prefix property. 

Moll, howeve r, did not give an algorithm t o decide whether a given algorithm is 

LCP. Moll's parser announces a syntactic error, if it is determined during a parse, 

that the underlying grammar is not LCP. Although Moll shows that the class of LCP 

languages is larger than the class of simple precedence languages, he states the 

equivalence of LCP and deterministic context-free languages as an open problem. 

The result of the following theorem is used to define LCP grammars. 

THEOREM 2.1 7 Let G=(N,1!,P,S) be a precedence grammar, and let 7E v+ be 

a viable prefix of G. There exists a unique sequence, 1/Ji, E v+,i = 1, · · · ,n such 

that: 

( 1) 7=1/11 · · · 1/ln; 

( 2) S UF F 1 ( 1/Ji ) < · PREF 1 ( 1/li + 1 ) , i = 1 , · · · , n -1 ; 

(3) There exist 1f;i c:: v• and AcN such that: ~ ->1/Ji 1/li c P, i = 1, · · · ,n. 

DEFINITION 2.18 Let G=(N,~,P,S) be a precedence grammar, and let 7E v+ 

be a viable prefix of G. For 7Ev+, the sequence, 1/Ji, i=1, · · · ,n of the Theorem 

2.1 7 is called a prefix representation of J'· 1/Jn is called the actual prefix _of 7. 

The sequence 1/Ji Ev+, i=O, · · · ,n is called a prefix representation of $7 if 

( 1) 1/10=$; 

(2) 1/Ji Er,i =1, · · · ,n is a prefix representation of 7. 
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DEFINITION 2.19 Let G=(N,~,P,S) be a prec:edence grammar, and let 7EV+ 

be a viable prefix o f G w ith prefix representation 1/Jo · · · 1/ln of $7. 

(1) The set GL(1}'0 )=GL($)= ~ S~ is called the set o f goal variables of 1/Jo· 

(2) For i=1, · · · ,n the set GL(1}'0 ···1/Ji)= ~AEN I there exists 

SS$==>;,,,,1/101f'1 · · · 1f'i-1Az$==>;,,,1/101/11 · · · 1/liAiz$,z EI:•,Ai EV•j 

is called the set of goal variables for $7. 

DEFINITION 2.20 A precedence grammar G is said to be Left Context Pre-

cedence (LCP) if the precedence parsing function VP defined below, is uniquely 

defined for G. 

VP($7,z$)= 

if z=az', SUFF1(7): a. and there exists 

A EGL ( 1/lo · · · 1/ln ) such that 

if z =az ', SUFF1(7)<·a and there exists 

B EGL(1/Jo · · · 'lfln) such that 

B ~'I/In C"An EP and C==>i;,,,a"AEP, 

for SD'Tne A,An in v· 

('I/lo· · · 1/ln-1B,z$) if SUFF1(7)·>PREF1(z) and there exists 

B EGL ( 1/lo · · · 'I/In) sue h that B .-.,pn EP 

UNDEFINED OTHERWISE 

where 7 is a viable prefix of G and 1/Jo · · · 1/Jn is a prefix representation of $7. 

2.4 Iteration Theorems 

Iteration theorems are among the most powerful tools which can be used to 

show that languages are not defined .by any grammar in a particular class. 
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Iteration theorems usually state necessary c::onditions that, if satisfied by 

some sentence of a language, guarantee the membership of a set (usually infin-

ite) of sentences in that language. Iteration theorems exist for context-free [9], 

deterministic context-free [37] LL(k) [1 O], strict deterministic [25], and simple 

precedence languages [28]. 

Iteration theorems for context-free (pumping lemma) and simple precedence 

languages are reviewed in this section. 

THEOREM 2.21 (Iteration theorem for context-free languages) 

Let L=L(G) be a context-free language, where G=(N,~,P,S). There exists a 

constant n, such that if z cl has length greater than n, then there exists a fac-

torization CG-factorization) z =uv G)X1J such that 

(1) there exist Arz..N, a, PE v(;, such that 

• S==>rmaAy; 

(J==>.:m.v; 

A==>~{/Ax; 

(2) for every i ~O, uv i G)X i y EL; 

(3) Iv (...)X I <n, and Jvx I >0. 

• A==>rmG); • a.==>rmu; 

The essential idea behind Theorem 2.21 is that, if a sentence z EL(G) is long 

enough, then in any derivation for z , some nonterminal, A, must be repeated at 

least once. Thus, S==>~ a.Ay, and A ==>/mf3Ax, and therefore, for all i>O, 

• • • -- • Ri.Axi -- • i i S==>rma.Ay==>nn.af3Axy==>rm . .. -->rmcx.JJ y-->nnuv r.>X y. 

THEOREM 2.22 (Iteration theorem for simple precedence languages) 
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Let L=L(G) be a simple precedence language, .where G=(N,2:,P,S) is a simple 

precedence gra mmar . Suppose that there exists s 1, s 2 E L with G-factorizations 

of s 1 =u1v1£4>1X1Y1 and s2 =u2v 2£4>2 x 2y2, such that v1,v2Ea+, for some 

a EE+, and there exists r>O and z EE•, such that 

(1) PRE'F'1 (z )=PRE'Ji'1 (x2y2); 

(2) u1v1ivfw2x2z EL. 

Then, for all m.>O, u1v1iv~+ 1 w2x~z EL. 



CHAPTER 3 

EPSILON PRECEDENCE GRAMMARS AND LANGUAGES 

The classes of epsilon simple precedence, epsilon weak precedence and 

extended epsilon weak precedence grammars and languages are developed in 

this chapter. The class of epsilon simple precedence grammars is obtained by 

extending the class of simple precedence grammars to include ~-rules. We show 

that the class of epsilon simple precedence languages, properly includes the 

class of simple precedence languages. 

The class of epsilon simple precedence grammars is further generalized 

resulting in another new class of grammars which we call epsilon weak pre

cedence grammars. The class of languages defined by epsilon weak precedence 

languages, however, is shown to be equivalent to that defined by epsilon simple 

precedence grammars. Finally, the class of epsilon weak precedence grammars 

are generalized to obtain the class of extended epsilon weak precedence gram

mars. 

Before formally defining these classes of grammars and languages, we 

present the following concepts. 

34 
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DEFINITION 3.1. Let G=(N, I! ,P ,S) be a CFG. For each X EN, we define the 

sets L, Li:, R, R,; as follows: 

L(X)= ~Z there is a leftmost derivation nEP+ such that 

L,;(X) = ~Z I there exists a leftmost derivation nn n 'EP+ such that 

(n:Y_.E')EP and X==>i1:n YB==>i~B ==>C:..Za, where 

ZEVc, 9EVct, aEVcJ 

R(X)= ~z there is a rightmost derivation nEP+ such that 

X==>~aZ ,ZEVa, aEVc, and for all (n:Y_.e)EP, n..'tnJ 

Rl:(X)= ~Z I there exists a rightmost derivation nnn'EP+ such that 

(n:Y_.e)EP and X==>~9Y==>~0 ==>~aZ, where 

ZEVc, SE.VJ, a.EVcJ 

The set R (L) of a nonterminal, X, contains the symbols that may appear 

rightmost (leftmost) in a rightmost (leftmost) derivation X==>+a., which does not 

apply epsilon rules. On the other hand, the set R,; (L,;) for X contains the symbols 

that may appear rightmost (leftmost) in a rightmost (leftmost) derivation 

X==>+a., that does apply epsilon rules. 

Just as Wirth-Weber relations;, we define epsilon precedence relations. 

These relations are later used to define different classes of epsilon precedence 

grammars. 
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DEFINITION 3 .2 The .Epsilon Precedence (Ef>) relations <+, ! , +> for a 

CFG, G=( N,~,P,S) , are defined as follows , where X,YE Ve and t E~: 

(1) x~ y if A ~aXY{:3cP . 

(2) X <+ Y if there exists ZEN such that Y EL(Z) and x! Z. 

(3) Define x!. Y if for n>1, there exist Z 1 ,Z 2 , · · · ,Zn, in null(G) such that 

+ + + + . • £ + 
X= Z1 = Z2 · · · =Zn= Y. Defme = to be= LJ=. Then define X+> t, tEI: 

if one of the following conditions hold: 

+ a) X = Y, Y EN, t El,;( Y); 

b) x! t; 

c) x!. Y, t ELE( Y) LJL( Y); 

d) Y~ t, YEN, XERi;( Y) UR( Y); 

e) Y1 :! Y2, Y1, Y2 EN XERc( Y1) LJR( Y1) t Eli;( Y2) UL( Y2); 

(4) Let $ , a symbol not in NLJI:, be the left and right end-marker of sentential 

forms in -G. Define: 

$ <+ X, for all X E L(S); 

$ +> t, for all t E Li;(S); 

X+> $,for all X ERE(S) LJR(S); 

$ +> $ , if S Enull( G). 

Similar to Wirth-Weber relations, the purpose of the epsilon precedence rela-

tions is: 

(i) to identify pairs ·of symbols which can legally appear in viable pre-

fixes; and 

(ii) to classify these pairs according to whether they occur at the left 

end of the handle ( <+ ), the right end of the handle ( +>) or within 

the handle ( ~ ) of right sentential forms. 
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Simple precedence grammars are uniquely inv~rtible; that is, they do not 

have multiple productions with identical right parts. This property is used by sim

ple precedence parsers at the time a reduction is called for; the stack is reduced 

by the unique production whose right part appears on top of the stack. Epsilon 

simple precedence grammars, however, are not necessarily uniquely invertible. 

This is due to the existence of £-rules. A concept similar to unique invertibility is 

now defined for grammars with f'-rules. 

DEFINITION 3.3 A CFG, G=(N,~,P,S), is said to be 

A/.m,ast Uniquely Invertible (AUi), if for all A, B E: N, A~B, A · •{3 E: P and B·-+{3 E:: 

Pimply {3=e. 

3.1 Epsilon Simple Precedence Grammars 

In this section, we introduce the class of epsilon simple precedence gram-

mars. 

DEFINITION 3.4 A reduced CFG, G=(N,E,P,S), is said to be an 

Epsilon Sim.ple Precedence (ESP) grammar when 

( 1) G is almost uniquely invertible; 

(2) G is cycle-free; 

(3) epsilon precedence relations for G are pairwise disjoint; 

(4) if A__,,a.X and 8....,,£ are two distinct productions in P, then (X,B) Jt( ! U <+ )p; 

(5) for all Z', Z"' E:: N 1:CG), Z' :r.Z", p(Z') n p(Z")=¢ where for all Z EN ,;(G), 

p(Z) is defined as follows: 

p(Z)=~cx,t)1<x,z) E c! u<+), cx,o E+>, cz,t) E c! u<+ u+>)J; 

(6) for all ZEN ,;(G), (S,$) Jt.p(Z). 
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An ESP grammar with i e-rules is denoted E'SPi. A language defined by 

some .ES.Pi grammar is said to be an F:S.Pi language. 

Conditions (1 )-(6) of Definition 3.4 allow the implementation of a simple and 

deterministic bottom-up parser. Condition (3) guarantees that the next action of 

the parser can always be uniquely determined by examining the epsilon pre

cedence relation that holds between the stack symbol and the next input symbol. 

Conditions (1 ), (4) and (5) simply state that if the next action of the parser is to 

"reduce," the production to be used in the reduction can be uniquely identified. 

Condition (6) guarantees that there will be no confusion as to whether "shift" or 

"accept." Finally, Condition (2) ensures that our epsilon precedence parsing 

algorithm (Algorithm 3. 7) will terminate. 

Before presenting the epsilon precedence parsing algorithm, we present two 

lemmas relating EP relations to derivations in a CFG. We establish that in a right 

sentential form, apc.J, with the handle of p, the relations :! , or <+ hold between 

adjacent symbols of o.{J and the relation +> holds between SUFF1(ap) and 

PREF1 (GJ). Moreover, we show that if e is the handle of a right sentential form, 

a.CJ, derived form cxZ c.>, then (SUFF1(a..),_PREF1 (GJ)) belongs to p(Z). 

LEMMA 3.5 Let G=(N,I!,P ,S) be a proper CFG. If $8$ = =.>~ aX 6 a GJ 

= = >i:rn a.Xa CJ, then X +> a. 

Proof. aXa cv may be derived from $S$ in several ways. We consider each case 

separately. 

CASE 1. $S$ ==>~aiXoac.J==>r~aXaCJ = $$ 

In this case S==>+e, and from Definition 3.4, we have$+>$. 



CASE 2. $S$ ==>~a'Az==>rm.a'a''X6'Y(3z==:>~a'a''X6'Yyz==>~ 

ex' a ''X6 'o ''axyz =cxXoa c.v==>~cxXa CJ 
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Here A· ,a"X6'Y(3cP, and either x:!y (6'=&) and acLc(Y), or x!y (6'~&) 

and a EL( Y) LJL1;( Y) U l YJ. In either case it follows from Definition 3.4 that X 

+>a. 

CASE 3. $S$ ==>~a'Az==>rm.a'a"Bo'Y(3z==>~a'a"Bo'Yyz==>~ 

a 'a "Bo 'o "axyz =a' a "Bo 'o "ac:J==>~cx 'a "Bae..>==>~ 

Since 6 '6 "A.~ E:, at least one of A., o ', or 6" must be non-null. 

SUBCASE 3.1 A.#& 

In this case and Also 

• J: • Y==>rmu ''ax==>rm.ax, and we must have a EL( Y) ULcC Y) U l Yj. Since 

A_.a "B6 'Y{3EP, and 6 '==>r~ ~,we have B::! Y. Therefore X +>a. 

SUBCASE 3.2 6 I ~E: 

Here, from the production A_.o "B6 'Yf3, and derivation 6 '==>rint:, we have 

B!Y. Also derivations B==>~17-XA.=. =>~1'X, and _Y==>~o"ax==>~ax, 

imply XER(B)LJR~(B)UlB~ and aEL(Y)ULc(Y)UlYJ. It then follows from 

Definition 3.4 that X +>a. 

SUB CASE 3.3 6 "~ & 

In this case, similar to -subcase (3.1) we have B:! Y. Also, derivations 

B • • 
==>rm·'t9-XA.==>rm 1'X But the derivation 

Y==>~o "ax ==>~ax, implies a E:L,;(Y), and thus X+> a. 



then 

LEMMA 3.6 Let G=(N,~,P,S) be a proper CFG. If 

$S$==>i;,,,XpXp-1 · · · X.t+1Aa1 · · · aq ==> 

XpXp-1 · · · Xk+1X.k · · · X1a1 · · · aq; 

(1) For p >i>k, (Xi +1,Xi)E(! U <+ ); 

(2) X1 +> a1 

(3) Either k >0, and 

(3.1) X.k +1 <+X1c; 

(3.2) fork >i>1, xi +1 :! Xi; 

or k =O, and 

(3.3) (X1,a1)Ep(A). 

40 

Proof. The proof is essentially the same as the proof given in [5] for grammars 

without £·-rules. We only observe that if k =O (the handle is E), conclusion (2) fol

lows from Lemma 3.5 and conclusion (3.3) follows directly from conclusions (1) 

and (2) and Definition 3.4. 

We now present the epsilon precedence parsing algorithm. This parsing 

algorithm resembles the traditional precedence parsers. Each time the relation 

that holds between the symbol on top of the top stack and the next input symbol 

is examined. If the relation ~, or <+ holds, then the next input symbol is shift~d. 

If the relation +> holds, the stack is reduced by the production with the longest 

right part matching the string on top of the stack. If no such production with 

non-empty right part is found, .then p of erasable symbols are examined and one 

e-rule is selected to be used in reduction. The algorithm announces an error, if 

either no relation holds1 between the top stack and input symbol or no production 

can be selected for reduction. The correctness of Algorithm 3. 7 is a direct result 

of Lemmas 3.5 and 3.6. 
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ALGORITHM 3. 7 Shift-Reduce parsing algorithm for an ESP grammar. 

INPUT: An ESP grammar, G=(N,L,P,S), in which the productions in P are numbered 

from 1 top. 

OUTPUT: A=(f,g), a pair of functions defining a shift-reduce parsing algorithm. 

METHOD: 

( 1) Let $ be the bottom marker for the stack and the right end-marker for the 

input. 

(2) The shift-reduce function, f, is defined as: 

a) f($S,$) = accept; 

b) f(X,t) = shift; 

c) f(X, t) = reduce; 

d) f(X, t) = error; 

for all X EVc U~$j, t ELLJ~$~ such that 

+ (X,t)E:( <+ U = ). 

for all X EVcU~$~, t ELU~$~ such that 

(X,t) E: +>. 

otherwise. 

(3) For X EVcU~$~, tELLJ~$~ and aE$Vc denoting the top l symbols of the 

parse stack, where l is the length of the longest right part, define the 

reduce function, g, as follows: 

a) g(a,t) = i, if cx=c.x '(3, (J-Te, i: B_,.P and for all A_.t5{3E:P, 6(J is not a suffix 

of ex; 

b) g(cx,t) = i, if ex= ex 'X, (X,t)Ep(Z), i: z_,.e and for all A_,.PEP, {J#-e, pis not 

a suffix of a; 

c) g(a,t) = error,. otherwise. 

We conclude this section by showing that the class of of ESP languages 

properly includes the class of simple precedence languages. 
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THEOREM 3.8 The class of simple precedence languages is properly 

included in the class of ESP languages. 

Proof. Obviously every simple precedence grammar is also an ESP grammar. 

Hence the class of simple precedence languages is included in the class of ESP 

languages. To show the proper inclusion, consider the language 

cedence language [ 15]. Grammar G, shown below, is an ESP1 grammar which 

defines L1· 

s __. aX, 
X -> A1, 
c __. 1, 
z_.e 

S __. bY, 
Y ·•BYC1, 
A__. ZO, 

X __. AX1, 
Y · ~ BC1, 
B __. 0, 

Table 2 shows the sets L, LE, R, and R~ for the nonterminal symbols of G. 

L LE R 
s a,b X,Y,1 
x A,Z 0 1 
y 8,0 1 
A z 0 0 
B 0 0 
c 1 1 
z rJ!. './!. rJ!. ~ 

Table 2. L, L,;, R, Ri; for G. 



s 
x 
y 

A 
B 
c 
z 
a 
b 
0 
1 
$ 

s x y 

.:r -
.:t -

.:t -
.:t -

A B c z a b 

.:t -
<+ <+ 

<+ .:t -

<+ <+ 
<+ 

<+ <+ 
Table 3. The EP relations for G. 
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0 1 $ 

.:r +> 
<+ +> 

+> ~ -
<+ 

.:r -
.::!: 

+> 
<+ 
+> +> 

+> +> 

Clearly G is cycle-free and AUi. Moreover, the EP relations for G, shown in 

Table 3, are pairwise disjoint. Also, G has only one e-rule and condition (5) of 

Definition 3.4 is satisfied. Additionally, the rightmost symbol of no production in G 

is related to Z, and (S,$).£p(Z). Hence, G is ESP and therefore L1 is an ESP 

language_. 

3.2 Epsilon Weak Precedence Grammars 

Algorithm 3. 7 shifts the next input symbol if the relation between the top 

stack symbol is either ~ or <+. Therefore, in a manner similar to how simple pre-

cedence grammars were generalized to weak precedence grammars by allowing 

the relations ~ and <+ to intersect, we generalize epsilon simple precedence 

grammars. The resulting class of grammars is called epsilon weak precedence 

grammars. 
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DEFINITION 3.9 A reduced CFG G=(N,1!,P,S) is said to be an 

Epsilon Weak Precedence (EWP) grammar if: 

( 1) G is almost uniquely invertible; 

(2) G is cycle-free; 

+ cs) c = u <+ ) n +> = ¢; 

(4) if A 4aXp and B-+P are two distinct productions in P, {JE Vi~, then (X,B) 

+ ~(= U<+ ); 

(5) for all Z', Z" E N ,;(G), Z' :F-Z", p(Z') n p(Z")=¢ where for all Z EN ,;(G), 

p(Z) is defined as follows: 

+ + 
p(Z)=~(X,t) I (X,Z) c (= U<+ ), (X,t) C+>' (Z,t) c (= U<+ u +> H; 

(6) for all ZEN ~(G), (S,$) ~p(Z); 

An EWP grammar with i E;-rules is denoted EWPi. A language defined by 

some EWPi grammar is said to be an EWPi language. 

Although the class of EWP grammars is more general than the class of simple 

precedence grammars, the class of languages defined is identical to that defined 

by epsilon simple precedence grammars. To establish the equivalence of ESPi 

and EWPi grammars, we present an algorithm to convert arbitrary EWPi gram-

mars to equivalent E'SPi grammars. 
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ALGORITHM 3.1 O Conversion of an arbit,rary EW Pi grammar to an equivalent 

ESPi grammar. 

INPUT: G=(N,.E,P,S), an arbitrary EWPi grammar. 

OUTPUT: G'=(N',.E,P',S), an equivalent ESPi grammar. 

METHOD: 

(1) P'=P 

N'=N 

(2) While there exists a pair of symbols X and Y in Ve· such that X~ Y, and X<+ Y 

do 

Let {3 be a string in Ve· such that there exists a production A->aXYp in .P', 

Let [Yp] be a new symbol not found in N' 

(2.1) Add [Yp] to N' 

-
(2.2) Add [Yp]-> YP to P' 

(2.3) Replace each production A-+oXY{3 in P' by A->oX[Y{3] 

(2.4) If B-+ Yp is a production in P', then replace B-> YP by B ->[ J:'"{3] 

In our next two lemmas, we prove that the grammar G', produced by Algo-

rithm 3.10 is an ESPi grammar and L(G)=L( G'). 

LEMMA 3.11 In Algorithm 3.10, L( G)=L( G' ). 

Proof. Clearly, the first time step (2) of the algorithm is reached, we have that 

G= G', and therefore, L( G)=L( G'). We show that applying steps (2.1) - (2.4) does 

not change L( G'). Suppose A~aXYP is the production selected in step (2). 

Each production A-+oXYp is replaced by the production A-+oX[ Yp] in step (2.3). 

Moreover, the production [ Y{3]-+ YP is added in step (2.2). Hence, after applying 
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step (2), for all OE Ve· the derivation A==>oXY{J, is replaced by 

A==>oX[Y{J]==>oXY{J. Additionally, if B-+Y{J is a production in P', then it is 

replaced by the production B-+[Y{J] in step (2.4). Thus, the derivation B==> Y{J 

is replaced by B==>[Yp]==>Y{J. Observing that [Y{i] is a new symbol which 

derives only Y{J, and appears only in the right parts of the productions added in 

steps (2.3) and (2.4), we conclude that L(G)=L( G'). 

LEMMA 3.12 In Algorithm 3.10, G' is ESPi· 

Proof. Clearly, all of the productions added to G' in steps (2.2) - (2.4) have 

non-empty right parts. Moreover, no E-rule is removed from G' in steps (2.3) and 

(2.4). Hence, the number of £-rules in G' is the same as the number of £-rules in 

G. We show that G' is ESP. 

1. G' is cycle-free. 

An argument similar to the one provided for Lemma (3.11 ), proves that apply-

ing steps (2. 1 ) and (2.4) does not introduce a cycle to G'. Hence, if G' has a 

cycle, then G must have a cycle. The assumption that G is EWP, implies G' is 

cycle-free. 

2. G' is almost uniquely invertible. 

Each time steps (2.2) - (2.4) are applied to G', productions of the form 

A-+oX[Y{J], B-+[Yp] and [Y{J]-+YP are added to P'. Obviously, [Yp] is a new 

symbol added to N' in step (2.1) and P' does not have any production with a 

right part of oX[ Yp], or [ Y{J]. Moreover, G' is almost uniquely invertible and can 
I 

have at most one production with the right part of Y{J. If any such production 

exists, it is removed from P' in step (2.4) of the algorithm. Hence, applying steps 
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(2.2) - (2.4) of the algorithm adds productions with unique right parts to G'. 

Considering that G is almost uniquely invertible, we conclude that G' is almost 

uniquely invertible. 

3. If A ·•o..B and X ~e are productions in P', then (B,X)Jt:.(! U<+ ). 

Assume the contrary. Then the relation (B,X) must also be a relation in G. 

This is due to the fact that the added relations do not involve any symbol in 

N £( G). Hence, B and X are symbols in Vo, and it follows that A-}o..B and X4£ 

belong to P, and we have a contradiction for G being EWP. 

4. Epsilon Precedence relations are pairwise disjoint for G'. 

Obviously, each time steps (2.2) - (2.4) of Algorithm 3.10 are applied to G', 

the following relations are added to G': 

(i) x! [Yp], 

(ii) [ Yp] +> t, 

where A-+oXY{3 is the production selected in step (2) and (A,t) E:( :! U <+ U +> ) in 

G'. Moreover, if a production 84 YP is selected in step (2.4), the following rela

tions are added to G'. 

(iii) [Yp]+> t, where (B,t)E:(~ U<+ U+>) in G' 

(iv) Z <+ [Yp], where (Z ,B)E(! U<+) in G' 

Clearly, since [ Yp] is a new symbol, the relations described in (i) - (iv) 

cannot conflict with any existing relation. Additionally, relations x! [Yp] and 

2 <+ [Yp] do not conflict. Otherwise, we must have that X=Z, and 

(X,B)E:(! U<+ ); but A4aXY{3 and B~Yp are productions in G', and it follows that 
1 

(X,B).,l:(! U<+ ). Each time step (2) of the algorithm is performed, one of the pro-

ductions that give rise to the relation x! Y is · removed. The algorithm terminates 
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when no such pair of symbols can be found. Hence, the EP relations for G' are 

pairwise disjoint. 

5. For all z, Z' ENE( G'), z :F-Z'' p(Z) n p(Z')=¢ 

It is clear from the argument for case (4) that the relations added to G' do 

not involve the symbols in N ,;,CG). Hence, for all ZEN &(G), p(Z) in G is identical to 

p(Z) in G'. But, G is EWP and for all Z, Z' E .Ne(G), Z~7,', p(7,) (1 p(Z')=¢. 

Hence, the same property holds for the members of N 1: in G'. 

6. For all ZEN 1:(G), (S,$) Jlp(Z); 

An argument similar to the one provided for case (5) will establish this result. 

3.3 Extended Epsilon Weak Precedence Grammars 

We conclude this chapter by presenting the class of extended epsilon weak 

precedence grammars. This generalization is similar to the generalization of weak 

precedence grammars to extended weak precedence grammars [ 44 ], except here 

t:-rules are allowed. First we define the extended epsilon precedence relations. 

DEFINITION 3. 1 3 Let G=(N,I:,P,S) be a CFG. We define the 

(m.,n) ~psilon Precedence relations, <+, ! , and +> on 

(Vo U~$Jm)x(VcufsJn) 

as follows. Let sm. ssn ==>:ma.A CJ==>aX1 X2 · · · Xi c.>, l~O be a rightmost 

derivation in G. Then, 

(1) If l>O, then for all i, 1~i<l, SUFFm(aX1X2 · · · Xi)~{J, where either 

P=PREFn(Xi+1°Xi+2 · ··Xie.>); or 

Xi+1 EI:, and {JEFIRSTn(Xi+1Xi+2 · · · XiCJ). 



(2) If l >0, then SUF'Ji'm, (a)<+ (3, whe~e either 

(:J=PREFn(X1X2 · · · Xzc.J); or 

X1 c~, and {JcFJRSTn (X1X2 · · · Xi(.,.)). 

(3) SUFFm,(aX1X2 · · · Xz)+> PREFn(C)) 
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DEFINITION 3.14 A reduced CFG G=(N,1:,P,S) is said to be an 

(m.,n ,p ,q )EWP grammar if: 

(1) G is almost uniquely invertible; 

(2) G is cycle-free; 

(3) The extended (m,,n )epsilon precedence relation +> is disjoint from the 

union of the extended (rn ,n) epsilon precedence relations <+ and ! . 

(4) If X4a(:J and Y4(:J are distinct productions, ap:Fe, then for no 

7, oc( VG Uf SD .. is it true that (SUFFm (ya),PREFn< Yo))c( <+ u! ); 

(5) For all Z', Z" E N~(G), Z'~Z", Pp,q(Z') n Pp,q(Z")=¢ where for all 

ZEN ,;(G), Pp,q(Z) is defined as follows: 

p(Z)=~(SUFFp(a),.PREFq((.,.))) I $P SSq==>;,,,azr.> is a derivation in G~ 

A (1, 1,p,q )EWP grammar is denoted (p,q )EWP. 



CHAPTER 4 

THE TRANSFORMATION OF LR(1) GRAMMARS INTO EWP GRAMMARS 

The use of epsilon simple and weak precedence grammars as the basis for 

implementing practical parsers suffers two major drawbacks: 

(1) The classes of epsilon simple and weak precedence grammars have a small 

intersection with the class of grammars one would naturally write for a pro-

gramming language. That is, usually, a natural grammar for a given language 

is not epsilon precedence. 

(2) Epsilon precedence parsers do not in general have the viable prefix pro-

-perty. Consequently, these parsers do not usually detect syntax errors 

present in the input at the earliest possible time during a parse. 

Automatic conversion of arbitrary context-free grammars to equivalent EWP 

grammars is not possible since, as we will show in Chapter 6, EWP grammars 

define exactly the deterministic languages and the problem of deciding whether 

or not an arbitrary context-free grammar defines a deterministic language is 

known to be unsolvable [5,22]. Therefore, to overcome the first problem men

tioned above, we have designed algorithms to automatically convert LR( 1) gram

mars to equivalent (.2,1 )EWP and (1,1 )EWP grammars. These algorithms accept 

an LR( 1) grammar, G, as input and produce an equivalent EWP grammar, G', by 

I 
encoding the entire GOTO graph of G's LR(1) parser into special erasing nontermi-

nals. 
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To achieve our second goal, we have defined the class of Viable Prefix EWP 

grammars and show that the EWP parser for any Viable Prefix EWP grammar has 

the viable prefix property. Moreover, we establish that every deterministic 

context-free language is defined by some Viable Prefix EWP grammar by showing 

that the EWP grammars obtained by applying our algorithm to arbitrary LR( 1) 

grammars are Viable Prefix EWP grammars. 

4.1 Conversion of LR(1) Grammars to Equivalent (2, 1 )EWP Grammars 

In this section we present an algorithm to convert arbitrary LR(1) grammars 

to equivalent (2, 1 )EWP grammars. 

ALGORITHM 4.1 Conversion of arbitrary LR( 1) grammars to equivalent 

(2, 1 )EWP grammars. 

INPUT: G=(N,~,P,S), an arbitrary LR(1) grammar. 

OUTPUT: G' =(N' ,"'£,P' ,S'), an equivalent (2, 1 )EWP grammar. 

METHOD: Let C be the canonical collection of LR( 1) states for G, such that the 

states in C are labeled I 0 , I 1 , . · · · , Im., where Io is the initial state in C, and for 

all i, O<i~m., h~ Ve;. 

(1) S' =[lo, S]; 

.N 1 =~[/,A] I there exists an item [A~.a u] in T, for some fECj 

uu I /EC~; 

P1 = U-+e I /EC~. 

(2) For each state I EC, and each item [A-~ .A 1 A2 · · · An I u ]EI, n~O, do 

I 

(2 .1) Let K=[ GOTO(! ,A 1 A2 · · · An ),Z], where 

Z=~v I [A->A1A2 · ·An. I v]E GOTO(I,A1A2 · · · An)J. 



Let Yo be defined as follows: 

Yo={~ 
For each i, 1 <i<n, define: 

For each i, 1 ~i <n, define: 

AddK4etoP1; 

Add K to N1· 

if n >0, and A1 EN; 

otherwise; 

~+1 C~; 

Ai+1 EN; 

(3) Construct G' by reducing G 1 =(N 1 ,~,.P 1,S ') 
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It is easy to observe that N' can be written as N" UNr UNs, where 

N", Nr, and Ns are disjoint sets defined as follows: 

N" = aI,A] I IEC, AEN, [I,A]4aEP', for some aEVJ;~ 

Nr = ~[k ,Z] I k EC, Zcl:: u~eB. 

Ns =~I I !EC~. 

Also, each production in P' is either of the form A~e, for some AENs l)Nr, or 

(a) K=[k ,Z] ENr. 

(b) For each i, 1~i~n, either Xi EN" and fi-1=&, or Xi EE and Yi-1ENs· 

I 
Furthermore, for each production 
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satisfying properties (a) - (b) above, there ~xists a production A-+B 1B 2 · · · Bn 

in P such that 

(c) For all i, 1 <i~n, 

X;,E~; 

Xi =[Ii ,A], Ii EC, Ai EN. 

(d) There exists v EZ, such that the LR(1) item [A_,..B1B2 · · · Bn Iv] is in 

the state I of C. 

(e) For all v E.Z, the LR( 1) item [A-+B 1 B2 · · · Bn. Iv] belongs to the state 

k=GOTO(I,B1B2 · · · Bn)ofC. 

(f) For all i, 1 ~i~n, such that ~=Bi E~, there exists v EZ such that the 

LR(1) item [A-+B1B2 · · · Bi-1 .Bi · · · Bn Iv] belongs to the state 

Yi-1 of C. 

(g) For all i, 1~i~n, such that Xi =[h,Bi]EN", there exists v EZ such that 

- [A 4 B 1 B 2 . . . Bi -1 . Bi . . . B.,,, I v ] 

Ii=GOTO(l,B1B2 · · · Bi-1) of C. 

belongs to the state 

Before proving that G' of Algorithm 4.1 is (2, 1 )EWP and L( G') = L(G), we 

show how derivations in G' relate to those in G. 

LEMMA 4.2 Let G'=(N',E,P',S') be the (2,1)EWP grammar constructed 

from an arbitrary LR(1) grammar, G=(N,I!,P,S), by Algorithm 4.1. Let [/,A]==>~a, 

[I,A]EN", aEVc,, be a.derivation in G'. Define the homomorphism has follows: 

h(C)=[: CEE; 
C=[J ,B], J EC, BEN; 
C-+eEP'. 

Then, A==>~h(a.) is a derivation in G. 



54 

Proof. The derivation [I,A] ==>r~ c.v in G' Gan be written as 

[.f,A] = ao ==>rm lX1 ==>rm CX2 ==>rm ... ==>nn On· 

We prove by induction that for each k, Osk sn, A==>(; h ( a1c) is a derivation in 

G. 

BASIS: k =O. For k=O, we have that a 0 =[I,A] and h(a0 )=A, and A==>• A is a 

derivation of length zero in G. 

INDUCTIVE STEP: Assume that for all k, Osk <n, n>O, A==>:mh(ak) is a 

derivation in G, and consider the derivation [/,A]==>.:man-1 ==> an· The pro-

duction used for deriving an from an -1 may either be an epsilon production, or a 

non-epsilon production. Clearly, in the first case h(an_1) = h(an) and we have 

that h(an) ==>c h(an+d· In the latter case, however, the production used 

must be of the form [J,B]-')>YoX1 Y1X2Y2 · · · X1-1 Yi-1XiK, for some l";?:O, 

wher~ an_1 =a 'n_ 1[T,B]c.v, GJE~·. But it follows from the form of the non-epsilon 
- -

productions in G' that K4£EP', and for all i, Osi<l, Yi==>o~E, and there 

exists a production B4B1 B 2 · · · Bi in P, such that for all i, 0.<i~l, either 

Xi =Bi is a symbol in ~; or Xi is a symbol of the form [Ii ,Bi], for some Ii cc, and 

h(an-1 )=h(cx 'n-1 [I,B]CJ) = h(a 'n -1 )h([/ ,B])h(CJ)=h (a~ -1 )Br..J, and 

h(an)=h(a'n-1) h(YoX1 Y1X2Y2 · · · Xi-1 Yz-1XzK) h(CJ)= 

h(a. 'n-1)B1 B2 · · · Bi GJ, 

where 84B 1 B 2 · · · Bi is a production in P. Therefore, in either case 

h(an_1 ) ==>~ h(a~) is a derivation in G, and it follows from the inductive 

hypothesis that A==> •h(an) is a derivation in G. 
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We now show that G and G' are equiv.alent. 

LEMMA 4.3 In Algorithm 4.1, L(G)=L( G ' ). 

Proof. We prove that any arbitrary nonterminal of the form [I ,A]E:N' derives in 

G' exactly those terminal strings that are generated by AcN in G. That is, 

en [I,A]==>c·r..> ifandonlyif A==>cr..>, CJE:~·. 

If: Suppose A = =>~ CJ, we prove by induction on n that for all I E:C such that 

[I,A]EN', we have that [I,A]==>c· CJ. 

BASIS: n=1. For n=1, A-'l>CJ is a production in P. Clearly, if CJ=e, then P' has a 

production [I,Al-·~IK where I -~e and K - ~e belong to P' and therefore, 

[I,A]==>•e is a derivation in G'. Let CJ=CJ1CJ2 · · · CJm, m.~O, where for all i, 

1 <i~m., CJi E::E. It then follows from the construction that for all 1 EC such that 

[/,A]EN', there exist Y 1 , Y 2 , · · · Ym._1 and K in Nt:(G') such that 

[I,A]4fc:.>1 Y1CJ2Y2 · · · Ym-1CJm.K is a production in P'. Thus the following 

derivation exists in G': 

Ym-1c:.>m 

• ==> f c:.>1 CJ2 • · · G.>m-1 G.>m 

· G>m.-1 t'.&>m = t'.&>, 

and we have that [I ,A] ==>c· ""'· 

I ND UC Tl VE STEP: Assume that for all k, k <n, n > 1, A==>~ t'.&>, implies for all I in 

C such that [J,A]EN', we have that [I,A]==>c· ""'· Now consider a derivation of 
I 

the form A==>ll c..>. Since n >1, A==>l! CJ may be written as 
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That is, A4A1A2 · · ·Am,7n>O, is a pr~duction in P, and for all i, 1~i~m., 

n . • Ai = = > G" "'i, 'fl-i <n, C&>i El: . Therefore, it follows from the construction that p' 

contains a production of the form 

such that K~EE:_p, Yi==> •1 ~, O<i<m., and for all i, O<i~m. either Xi=~ El:, or 

~EN and Xi =[Ii,~ ]EN" for some Ii EC. If Xi El!, we immediately conclude that 

7l.i =O and ~=Xi =c.>i. If xi EN' I' then from the inductive hypothesis, we have 

that~ ==>E'i (,,Ji, n.;, <n, implies that Xi =[h,~]==>c· "'i· Thus the following 

derivation exists in G'. 

==> • YoX1Y1X2 Y2 

==>•YoX1Y1X2Y2 · 

. •-v ==> ..I. oc.>1 c.>2 ... c.>m -1 "'m. 
.,. 

==> r.>1 c.>2 • • • c.>m-1 c.>m = c.>, 

The above derivation may be written as [I ,A] ==>c· "'and the proof is complete. 

Only if: Suppose [J ,A]==>G· "'· It then follows from Lemma 4.2 that 

A==>• h(c.>) is a derivation in G. But c.>E~· and therefore, h(c.>)=r.>. Hence 

A==>f;G:>. 

The special case of ( 1) where I is the label of the initial state in the canoni-

cal collection of LR( 1) items for G and A=S results in the statement 

S'~=>c· c.> if and only if S ==>cc.>, r..>E~• 

which proves that L(G)=L( G') .. 

We now prove that G' of Algorithm 4. 1 is (271 )EWP. 
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LEMMA 4.4 In Algorithm 4.1, G' is a (2, 1 )EWP grammar. 

Proof. We prove that G' is a (2, 1 )EWP grammar by showing that G' satisfies 

each of the conditions of Definition 3.1 4. 

1. G' is Almost Uniquely Invertible. 

If G' is not Almost Uniquely Invertible, there must exist two distinct produc

tions A'~a and B'-+a, a~e in P'. But a~e implies that a=Yoa'[k,Z], for some 

a 'EVc·, YoENs Ule~, and [k,Z]ENr· Let A'=[J,A] and B'=[J,B], for some A, 

BEN, and I, JEC. Then, P must contain productions A-+A 1A 2 · · ·An,, and 

-B ·· •A 1A2 · · · An., n>O, such that for all v cz the items [A ·· 11iA 1 A 2 · · · An.. Iv] 

and [B 4A 1 A2 · · · An. I v] both belong to the state k of C. But G is assumed to 

be LR( 1 ); therefore, these two items cannot be distinct. Otherwise, state k of C 

has a reduce/reduce conflict and G is not LR( 1 ). Thus A = B. Now consider I and 

J. If Yo~e, then we must have that l=J=Y0 • On the other hand, if Yo=e, then 

PREF1 (a) is a nonterminal of the form [ Y' ,A1 ]. This time, we must have that 

l=J=Y'. Hence, A'=B', and G' is Almost Uniquely Invertible. 

2 . G' is cycle-free. 

Assume the contrary and let [J,A]==>+[J,A] be a derivation in G'. Applying 

Lemma 4.2 to this derivation, we must have that A= =>+A is a derivation in G. 

Hence, if G' has a cycle, then G must have a cycle. But G is assumed to be LR( 1) 

and therefore, cycle-free. Thus, G · is cycle-free. 

8. In G'. (1.1) EPrelatian +> is disjoint from,(:! U <+ ). 

If (:!° U<+) n +> ~rp, for G', then there must exist C and Din Ye·, such that 

either (G,D)E(~ () +> ), or (C,D)E:( <+ () +> ). We consider each potential conflict 
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of EP relations separately and in each case show that the conflict may not be 

present in G'. 

CASE1. C<+DandC+>D. 

If C<+ D, then there must exist a production A->aC'X. pin P' such that XEN' 

and DEL(X). But from the construction we have that for all XEN' and a EE, a 

does not belong to L(X). Therefore, D is not a terminal symbol. But C +> D can 

hold only if DEE. Thus, ( <+ U +>)=¢for G'. 

CASE 2. + C= D and C+> D 

Since C +> D, we must have that D EI:. Also, if c:! D, there must exist a pro-

duction A->aCD {J in P'. But D E:2::, and it follows from the form of the productions 

in p· that Therefore, A->aCDp is of the form 

1~i~n. Thus, for some v EZ there must exist an LR(1) item, 

[A'->H1 · · · Bi-1 ·Bi · · · Bn Iv] in state C of C such that Bi=Xi=D. More-

over, C is a symbol in Ns and it follows from the form of the productions in G' that 

if M-> o.I{J, I EC, is a production in P' ~ th en either PREF 1 ( p) EE, or ex= e and p is a 

symbol Nr. Therefore, for C +> D to hold, we must have a production 

in P' such that for some l and j, 1~l <j<m,, we have that 

X'i ==> "'a[I'',F]==>al''[k '',Z''], 
. . 

Y'1X'i+1 Y"z+1 · · · Xj-1 Y';-1 ==> E 

Dclc(X'i) U ~Xj ~ 

where C=J''. That is, there must exist a production ,.__.£ in P such that 

[f .... e. ID] is an LR(1) item in state C of C. This item along with the item 
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[A~B1 · · · Hi-1 .DHi +1 · · · Bn Iv] can belong, to state C of C if G is not LR(1 ). 

But G is LR(1) and therefore, for all CENs and DE~, both c:! D and C +> D cannot 

hold together in G'. 

4. If A·-~aX(J, and B ··,.{J are productions in P', then (X,B)~(:! U<+ ). 

We consider two cases: 

CASE 1. {J=e. 

Clearly, if A~a..XEP', then XENr· But the members of Nr appear only as the 

rightmost symbol in the right-part of any production and P' does not have any 

singleton production. Thus, if XENr and Y-+o1 Xo2 EP', then we must have that 

01 #e and 02=e. Hence, for all Cf:;..N', XE.Nr, X~L(C). Therefore, for all BE Vo·, 

+ XEN7 , (X,B)~( = U <+ ). 

To establish our result for the case (J#:e, we show that if A-+aX{3 is a pro

duction in .P', a.E Vih and XE Ve·, then B-+(J is not a production in P' for any 

BEN'. 

Suppose for the sake of contradiction that A->aX(J and B->(J, p-;e, are pro-

ductions in P'. Let {J=f:l '[k ,Z], k EC, Z cI! U ( e~. Then, there must exist two 

that for all uEZ, the items and 

[B'~Aj Aj+1 · · Am . I uJ. belong to the state k of C. But G is assumed to be 

LR( 1) and these two items cannot be distinct. Hence G' satisfies condition (3) of 

Definition 3.14. 
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Suppose not and there exist Z1 and Z2, Z1 #Z2, Z1, Z2ENc(G'), such that 

p2,1CZ1)()p2,1CZ2)~¢; that is, there exists (AB,a) in P2,1CZ1)()p2,1CZ2), for 

some A, B in VG·, and a E~. Clearly, Z 1 and Z2 are elements of Nr UNs. We 

consider four cases, and in each case, derive a contradiction for G being LR( 1 ). 

CASE 1. Z1ENr and Z2ENr 

In this case we must have the following productions in P': 

[l,C]__.YoX1 Y1X2Y2 · · · Xi-1 Yi-1XiK, 

[J,D]__.MoN1M1N2M2 · · · Nn-1Mn-1NnZ1, 

[I',C'] 4 Y'oX'1 Y'1X'2Y'2 · · · X'i·-1 Y'i·-1X'i·K', 

[ J ',D '] 4 M 'o N '1.M'1N'2 M '2 · · · N 'n • -1 M 'n ·-1 N 'n • Z 2' 

such that l > 1, l '> 1, n>O, n '>.O, and there exists i, j, 0 <i <l, O<j <l ', where 

ar;;:_FJRST1(Xi+1 Yi+1Xi+2 Yi+2 · ··Xi), 

aEFJRST1(Xj+1 Yj+1Xj+2Y'j+2 · · · X'i·), 

[J,D]ER 1:(Xi) U lXi J, and 

[J' ,D']ER cCX'i) U~Xj J. 

Let Z 1 =[k 1 ,K1 ] and Z 2 =[k 2 ,K2 ]. Then, there must exist items 

[D ..... D 1 · · · Dn-1 a] in state k 1, and [D' ..... D' 1 • • • D'n·· I a] in state k2 of C. 

We first show that k 1 =k 2 . Three subcases are considered. 

SUBCASE 1.1 BEN" 

Let B=[s,B'], for some B'EN ands EC. Then, we must have that Nn=N'n·= 

Dn = D 'n • =B ', and both items 

[D ..... D1 1• • • Dn-1.B' I a] 

[D ' 4 D '1 · · · D 'n • -1 . B' I a ] 

belong to the state s in C. Hence, k 1 =k 2 =GOTO(s ,B '). 
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SUHCASE' 1.2 BEN5 

For this case, we must have that n =n' =O and M 0 =M '0 =B. (Recall that 

the members of N 5 can appear to the right of the members of Nr only in produc

tions of the form f4JK.) Thus, both items [04.1 a] and [D'4. I a] belong to 

state k 1 =k2 =B. 

SUBCASE 1.3 BEE 

In this case N'n=N'n '=Dn=D'n·=B and we must examine A. Obviously, 

A=Mn -1 =M 'n ·-1 is a symbol in Ns and we have that the items 

[D4D1 · · · Dn-1 ·HI a] 

[fl'4D'1 · · · D'n·-1.B I a] 

belong to state A, and therefore, k 1 =k 2 =GOTO(A,B). 

In all of the above subcases, we have shown that Jc 1 =k 2 • Thus, the items 

[D-+ D 1 · · · · .Dn. I a] and [ D' 4.D' 1 · · · D 'n •. I a] imply a reduce/reduce conflict 

in state k 1 =k 2 in C. Again, this is contradictory to the assumption that G is 

LR(1 ). 

CASE 2. Z 1 ENs and Z 2 ENs 

Since the members of Nr appear rightmost in any right-part, we must have 

that B~NT. Additionally, B cannot be a symbol in N 5 • This holds because if 

(AB,a )cp(Z), ZE.N5 , then there must exist a production of the form x.~aBD{J in 

P' such that ZEL(D)U~Di; this implies that BILN~. Therefore, we consider two 

subcases: 
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SUBCASB 2.1 HEN'' 

If Bis a symbol in N", it must be of the form [J,B'] for some JEC, E'EN 

and there must exist a production 

in P' such that for some i, 1~i<l, we have that Xi = [J.,B']=B, and either 

Similarly, we must have that Z2=GOTO(J,B'). Therefore, Z 1 and Z 2 are not dis-

tinct and Z 1 =Z2. 

SUBCASE 2.2 BE"E 

If B belongs to "E, then we have that A ENs and there must exist a produc-

ti on 

in P ' such that for som_e i, 1 ~i <L we have that Xi =B, Yi- 1 =A and either 

li =Z 1 or Z 1 EL(Xi +1 ). This implies that Z 1 =GOTO(A,B). Similarly, we have that 

Z 2==GOTO(A,B). Therefore, Z 1 and Z 2 are not distinct and we have a contradic-

tion. 

If (AB,a.) Ep2, 1(Z1 ), Z 1 ENr, then we must have that BEN" UNs LJI!. On 

the other hand, if (AB,a.)Ep2,1 (Z2 ), Z 2 EN5 , then BE:N"LJI!. But (AB,a) belongs 

to P2,1CZ1)np2,1(Z2), where Z1ENr and Z2EN5 ; therefore, Bis a symbol in 

N'' U~· Let Z 1 =[k ,K].· As shown in case 1·, there must exist an item 

[D...,.D1 D2 · · · D.,,,. I a], n>O, in state k of C, where 

{ 
GOTO(J,B') 

Jc= GOTO(A,B) 
B=[J,B']EN"; 
BE~ 
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Now consider (AB,a)E::p2,1CZ2), Z2E::Ns· It follows from the proof for case 2 

that ;;; 2 =k and there exists an item 

[ c 4 c1 c 2 . . . Ci -1 . Ci . . . Ci I u ], l >0, 

in state Z 2 =k in C, where a E::F/RST 1 (Ci · · · Ci u ). Now if Ci does not derive 

£, acFJRST1(q · · · qu) implies acEFF1(q · · · qu) arid we have a 

shift/reduce conflict in state Z 2 =k. On the other hand, if a E::L,;( q ), then there 

exists F E::L( Ci) such that the item [Ji' 4. I a] belongs to the state Z 2 =k. This 

time we have a reduce/reduce conflict in the state Z 2 =k. But G is LR(1) and 

there cannot have any conflict in state Z 2· Hence, p2, 1(Z 1) nP2.1 (Z2)=¢. 

CASE 4. Z 1 E::Ns and Z 2 E::Nr 

The proof for this case is identical to that given for case 3. 

4.2 Conversion of LR(1) Grammars to Equivalent EWP Grammars 

In this section we present an algorithm for converting arbitrary LR(1) gram-

mars into equivalent EWP grammars. 

ALGORITHM 4.5 Conversion of an arbitrary LR( 1) grammar to an equivalent 

EWP grammar. 

INPUT: G=(N,'E,P,S), an arbitrary LR(1) grammar. 

OUTPUT: G'=(N','E,P' ,S'), an equivalent EWP grammar. 

METHOD: 

(1) Apply Algorithm 4.1 to G, giving G1=(N1,~,P1,S1 ). 
I 

(2) N 2 =N1 

P 2 = ~Z~E I ZE::N,;(G1 )J l)~A4YoKf A 4 YoKE::P,, Yo, KEN,;(G,)~ 



64 

(2.1) For each i, 1 ~i<n, define 

(2.3) For each i, 1 ~i~n, such that X'i=[l,a], for .some IE.Ns and 

a El: (Xi E~) do 

(2.3.1) Add [ l,a] and Ia to N 2, 

Before showing that G' is an EWP grammar and L(G)=L( G'), we observe that 

N' may be written as N" UN'EUN1 UNs, where N", NE, Ni and N 8 are dis-

joint sets defined below: 

N"=ffI,A] I IEC, AEN, [I,A]~aEP1, a7eJ 

NE=ffI ,a] I aE:l:, f E:Ns, A _,.ala{JEP1 J 

N, =ua. I a E~, JENs' [.T,a]ENEJ 

Nr=ffk,Z] I kEC, Zc:Eu~eB 

Ns=U I /EC~ 

Furthermore, if A_,.a, a=Te is a production in P' then exactly one of the fol-

lowing holds: 

• a does nbt contain any symbol in NEU:L: and A_,.cx. is a production in P1. 
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is a pro-

duction in P1. 

• A=[l,a.], a=Ju.a., and A4a is not a production in P 1 • 

LEMMA 4.6 In Algorithm 4.5, L(G)=L( G'). 

Proof. It is clear from the algorithm that a production 

m. =O, and A_. YoKEP', or m. >0, and there exists a production 

A_.X' 1 X'2 · · · X'm-1 X'rn K, in P', where for all i, 1 <i<m., either Xi =X't JlI!, or 

Xi EI!, and X'i EI! derives exactly Xi. Considering that for all i, O<i ~m., Ji 

derives exactly the empty string, we conclude that L( Gd=L( G'). But we have 

already established in Lemma 4.3 that L(G)=L( G 1 ). Therefore, L(G)=L( G'). 

LEMMA 4. 7 In Algorithm 4.5, G' is an EWP grammar. 

Proof. We show that G' satisfies all of the conditions of the Definition 3.9. 

1. G' is Al7nost Uniquely Invertible. 

Let A->a, and B-.a, a#=e, be productions in P'. We show -that A=B; that is, 

A~a and B-.a are not distinct. Since cx#=e, A-.a and B_.a must have been added 

to P' in either step (2.2), or step (2.3.2) of Algorithm 2. Clearly, if both A_.a, and 

B~a are added to P' in step (2.3.2) of the algorithm, then we must have that 

A=B. This follows from the fact that all of the productions added in this step are 

of the form [l,a] ~1aa, /ENs, a EI! and if a=yaa, we must have that 

A=[l,a ]=B. Also productions added in the step (2.2) have some nullable symbol as 

the rightmost symbol in their right-parts, while the productions added in step 

(2 .. 3.2) have a terminal symbol in the extreme- right of their right-parts. There-
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fore, both A4a and 84a should have been added to P 2 in step (2.2). Let 

a=X' 1X'2 · · · X'm -1 X'Tn K, for some rn, m. >0, then there must exist produc

tions 

A 4 YoA1 Y1A2Y2 · · · Am-1Ym.-1Am.K, and 

B - ~ZoB1Z1B2Z2 · · · BTn-1 Zm.-1B'lnK, 

in P1 that give rise to the productions A_.a and B4a, respectively. Furthermore, 

we must have that for all i., 1si<m., Xi is a symbol in (N"UNFJ· If X'iEN", 

then clearly, Ai =Bi =X'i and Yi-1 =Zi-1 =e. On the other hand, if Xi ENr.., then 

it must be a symbol of the form [./i,tLi], and we have that A;,=Bi=tLi, and 

Yi-1 =Zi-1 =Ii-1 · Hence, for all i, 1 si<m., ~=Bi and for all i, O<i<m., 

Ji =Zi. That is, the above productions have the same non-empty right-part. But 

G 1 is a (2, 1 )EWP and therefore it is Almost Uniquely Invertible. Thus A=B, and 

A-+a. and B-+a are not distinct productions and G' is AUi. 

2. G' is cycle-free. 

Suppose for the sake of contradiction that G' has a cycle, A==>+ A. 

Clearly, if x~o, is a production which is used in some step of the derivation 

A==>+A, then o does not contain a symbol in NEU~; this implies that X_.o is 

also a production in P 1 • It then follows that G1 has a cycle. This contradicts the 

fact the G1 is cycle-free. Hence, G' is cycle-free. 

3. (1, 1) EP relations are pair-wise disjoint for G'. 

Suppose C +> D, DE'E. Members of Ni only appear in productions of the form 

A-+ la a, and therefore, we must have that C~Nl. But, if c::! D, D EI!, then we 

must have that CE.Ni. Hence,(::! n +.>)=¢for G'. Now consider a relation of the 

form C<+ D. Obviously, for all BEN', L(.B) nE is empty, and therefore we must 

have that D~: E. Hence,(+> n<+ =)¢for G', and the proof is complete. 
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4. If A-+aXp, and H4{J are productions in P', then (X,8).£(! U<+ ). 

We consider two cases: 

CASE 1. {J=r: 

Obviously, if A-+aX is a production in P', then X is a symbol in Nr U~· The 

symbols in Nr LJ:E, however, are not related to any symbol in Ve· by relations ~, 

or <+ . Thus, for all B such that B-+-y, 'YE Yo·, is a production in p·, 

+ (X,B)~( = U <+ ). The special case of this argument when -y=e, establishes the 

desired result. 

CASE 2. {J=Fe 

In this case, we must have that B-+{J is not a production of the form X-+Ia.a. 

Furthermore, there must exist two productions A-+a 'X' p ', and B_.p' in P 1 which 

give rise. to A4aX{3 and B-+{l, respectively. But, we have shown in Lemma 4.4 

that if A-+a'X'(J' is a production in P 1 , then for no Bis it true that B-+P' is also a 

production in P 1• Thus, if A4aXp, (J=Fe is a production in P,', then B-+(J is not a 

production in P'. Hence, this case is not possible for P'. 

We first observe that NE( G')=Nt lJNr l)N5 , and if Z is a symbol in 

Nr l)N5 , then it is also a symbol in Nc(G1). Additionally, if Z1 and Z2, Z1 =FZ2, 

belong to N E(G1 ), and (X,a) is a pair in p(Z 1) np(Z2) in G,' then x must be a 

terminal symbol. That is, in G 1 , two symbols of the left context are needed to 

resolve the conflicts between two e-rules, only when the first symbol of the left 
I 

context is a terminal symbol (see the proof of the Lemma 4.4). 
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Suppose for the sake of contradiction that ~ Z 1 and Z2, Z 1 ~Z2 are symbols 

in NE(G') and there exists a pair (E,a) in p(Z1)(lp(Z2 ) in G'. First, we observe 

from the form of the productions in P' that E is not a symbol in Nr LJ.Nz LJ'l:. 

Hence, E E(.N" LJNs U Ny). We consider six different cases: 

CASE 1. Z1ENr, and Z2ENr. 

If E is a symbol in Ns, then for some A and B in N' ', P' must contain produc-

tions A4E'Z 1 , and B~.KZ2 • Productions _of this form are also productions in P 1 , 

and therefore, (E,a)Ep(Z 1)(lp(Z2 ) in G 1• But Eis not a terminal symbol and we 

must have thatp2,1(Z1)np2,1 (Z2)"#:¢ in G 1• Hence, we have a contradiction for 

G 1 being (2, 1 )EWP. 

Now suppose Eis a symbol in Nr.LJN". For this case, we must have produc-

tions 

in P' such that Am= Bn =E. Additionally, P 1 must contain productions 

which are used by Algorithm 4.5 to construct the productions 

B4H1B2 · · · HnZ2, 

respectively. If E is a symbol in N", then we must have that A 'm =B'n =E. This 

implies that (E,a)Ep(Z1)LJp(Z2 ) in G 1• Again, Eis not a terminal symbol and we 

have a contradiction for G 1 being (2, 1 )EWP. On the other hand, if Eis not a. sym-
1 

bol in N", it should be a symbol of the form [1,b] in NE· This implies that 

A'm=B'n=b, l=Ym.-1 =Y~-1 and (lb,a)cp2,1 CZ1)np2,1CZ2) in G1. Again, we 
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A'm=B'n=b, l=Ym-1=Y'n-1 and (lb,a)E:p2,1(~1)nP2.1CZ2) in G1. Again, we 

have a contradiction for G 1 being (2, 1 )EWP. 

CASE 2. Z 1 ENs, and Z 2EN5 . 

For this case we must have productions 

A--> A 1 A2 · · · Am J., 77L > 1 , 

B->B1B2 · · · HnJ', n>1, 

C->Z 1 [k ,K], and 

D->Z2[k',K'] 

in P' such that for some i, j, 1<i<m,,1<j~n, we have that ~-1 =Bi_1 =E, 

CE:L(Ai) u I~ J, and DE:L(Bj) u 'f Bj J. Additionally, P1 must contain productions 

A->YoA'1 Y1A'2 Y2 · · · A'm-1 Ym-1A'mJ, 

B-> Y'oB '1 Y'1 B'2 Y "2 · · · B 'n-1 Y'n-1 B 'n J", 

C->Z 1 [k ,K], and 

D->Z2[k',K'] 

where CE:L(A'dUlA'i~ and DEL(Bj)UfB'jJ· Moreover, since A'i and Bj are 

symbols of N", we must have that Yi-1 =Y'j-1 =e. Now if Eis a symbol in N", 

then it should hold that A'i-1 =B'i_1=E, and (E,a)cp(Z 1)np(Z2 ) in G1· But, Eis 

not a terminal symbol and similar to case 1, we have a contradictions for G1 being 

(2, 1 )EWP. 

If E is not a symbol in N' ', however, it must be a symbol of the form [1,b] in 

N'E· This implies that A'i-1=Bj-1 =b, l=Yi-2=Yj-2 and we must have that 

(lb ,a)cp2 ,1(Z1)np2 , 1(Z2 ) in C 1. Again, we have a contradiction for C1 being 

(2,1 )EWP. 
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C'ASE' 3. Z 1 ENz , and Z 2 ENt . 

Members of Nt appear only in productions of the form [I ,b ]-Jtfb b. There

fore, Z 1 and Z 2 must be of the forms Ef(', and E~, respectively. Furthermore, P' 

must contain productions 

A-JtA1A2 · · · Am K, m.>1, 

8-Jt H 1 B 2 · · · Bn K', n > 1 , 

[E 1,a ]-JtE~a, and 

[E2,a]~E~a 

such that for some i and j, 1<i<rn, 1<j<n, we have that ~-1 =Bj_1 =E, 

[E1'a]EL(~) U~~ J, and [E2,a]EL(Bj) U~Bj J. Therefore, in P1 we must have 

productions 

A4 YoA'1 Y1A'2 Y2 · · · A'rn-1 Yrn-1A'rnK, 

8-Jt Y' o B '1 Y' 1 H '2 Y' 2 · · · B 'n -1 Y'n -1 B 'n K', 

such that a ELE(A'i) U ~A'i ~' a Elc(B j) U ~B j J, and exactly one of the following 

holds 

• Yj-1 = Yi-1 =E, and E=[I ,E']=A 'i-1 =B'j-1 is a symbol in N_". 

• Yj-1=fi-1E:N5 , A'i-:-1=B'j-1=b, bEl!, and E=[l,b]ENE, where 

l=Ji-2= Y'i-2 and A'i-1 =B'1-1 =b. 

If the first condition above holds, then we must have that F:1 =F:2=GOTO(.T,E'). 

On the other hand, if the second condition holds, we must have that 

E1 =E2=GOTO(l ,b ). Therefore, EY' =E~ and we have a contradiction to the 

assumption that Z 1 =EY. # Z 2 =E~. 
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(,115•.E' 4. Z 1 EN".r , and Z 2 EN5 . 

For this case, there must exist productions 

in P', such that for some i, 1 <i<n, CEL(.Bi) U~.Bd, and Am =Bi-1 =E. More-

over, P 1 must contain productions 

where CEL(B'i)UlB'iJ, and either Eis a symbol in N", and A'm=B'i-1=E; orE 

is a symbol of the form [I, b] in ~' A 'm =B 'i-1 = b, and I= Ym-1 = Y'i-2· In either 

case, it follows form the construction that G has two items 

[c~.1 a] 

in state J of C, where J is defined below: 

{ 
GOTO(l ,E') 

J= GOTO(l,b) 
E=[l,E']cN"; 
E=[J,b ]ENE; 

The existence of these items in the same state in C implies that G is not LR( 1 ). 

But G is assumed to be LR( 1) and we ha.ve a contradiction. 

CASE5. Z1EN5 , andZ2ENt. 

In this case, P' must ·contain productions 
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such that for some i and j, 1 <i<7n, 1 <j <n, ~ -1 =Bj-1 =.E~, DEL(~) U (~ J, 

and CEL(Hj) U lBi J. Hence, P1 must contain productions 

A 4 YoA'1 Y1A'2AY2 · · · A'm.-1 Y~-1A'mJ, 

B4 Y'oB'1Y'1.B'2Y'2 · · B'n-1Y'n-1B'nJ', 

C-+Z1[k,K] 

such that CEL(Bj)U(Bj J and aELl:(A'i)U~AiJ. Here, using an argument simi

lar to the one given for the previous case, we can show that some state in C con

tains a pair of items 

[A'-+A"1A 112 · · · A"i-1.A"i · · · A"n Iv] 

[ C'-+. I a] 

such that a EEFF 1 (A' i ). Obviously, this is contradictory to the assumption that 

G is LR(1 ). 

CASE6. Z1ENr. andZ2ENt. 

Combining the arguments for cases (4) and (5) , we conclude that some 

state in C contains items 

[A' --+A" 1 A 11 

2 · · · A "i _ 1 . A "i · · · A "n I v ], and 

[ B'--+ B 11 

1 B "2 · · · B "n · I a J 

such that a EEFF 1 (A "i ). Again, we have a contradiction for G being LR( 1 ). 

We conclude this section by a stating a corollary to Lemma 4. 7. 

COROLLARY Every deterministic context-free language is defined by some 

EWP grammar. 

Proof. This is a direct result of the fact that the class of LR(1) grammars define 

exactly the class of deterministic context-free languages, and that Algorithm 4.5 

converts arbitrary LR( 1) grammars into equivalent EWP grammars. 
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4.3 Viable Prefix EWP Gramm;ars and Parsers 

The purpose of this section is the development of EWP parsers with the 

viable prefix property. We define the class of Viable Prefix EWP grammars and 

show that the EWP parser for every Viable Prefix EWP grammar has the viable 

prefix property. Additionally, we establish that every deterministic context-free 

language is defined by some Viable Prefix EWP gramf!lar. 

First, the concept of valid nonterminals used to define the class of Viable 

Prefix EWP grammars is introduced. 

DEFINITION 4.8 Let G=(N,E,P,S) be a CFG. We say that XEN is valid for 

7cVc, if there exists a derivation S==>~7X(,j, G>C~ •in G. 

We now define the class of Viable Prefix EWP grammars. 

DEFINITION 4.9 Let G=(N,'E,P,S) be an EWP grammar. Define the set, fl(7) 

as follows: 

I1(7)=~(A-+cx.P, a) I there is a derivation 
S==>:.m oAG>==>oa{JG.>=)'{3'4) in G~. 

G is said to be a Viable Pref ix EWP grammar if the following holds: 

(1) If A~aap, a E~, is a production in P, then {3=e; 

(2) Let XEN be valid for J'E Ve, and A-+aX{JE:P. Then, the pair (B-+oX(J, o) 

belongs to Il(7), where B-+oX{Jf::_P. 

In our next theorem we establish that EWP parsers for Viable Prefix EWP 

grammars have th1e viable prefix property. 
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THEOREM 4.10 The EWP parser for any Viable Prefix EWP grammar has the 

viable prefix property. 

Proof. Let G=(N,~,P,S) be a Viable Prefix EWP grammar and P be the EWP parser 

for G. Assume that ~ is a string in ~ • and ($ , ~$)I--{}' ($7, ~ '$). We prove 

by induction on n that 7 is a viable prefix of G. 

BASIS: n =1. For n =1, we have that ($ , r..;$) I --p ($7, CJ'$) and either 

7=a=PREF1(CA>)E~, or 7=/ENE(G) and($, PREF1(~))Ep(l). In either case, 

we must have that ($ ,7)E<+ and 7E:_L(S). Hence, there must exist a derivation 

S==>~Ay ==>7oy in G and therefore, 7 is a viable prefix of G. 

INDUCTIVE STEP: Assume that the theorem is true for all m. <n, n > 1 and con-

sider ($ , ~$) 1--~ _, ($7' , y$) I --($7, G> '$). Let 7'=7 "X, 7"EV0, and 

y = ay ', y' E~ •. From the inductive hypothesis, we have that 7 "X is a viable 

prefix of G. Therefore, there must exist a derivation 

• • S==>T7n1'Au==>rm.'l9-a1Xa2u=7"Xa2u==>rm.7"Xu' in G. Additionally, 

(S)'"X, ay'$) I --($7, G> '$) and we must have that (X,a)E(! U<+ U +> ). 

Two cases are considered: 

+ CASE 1. (X,a)E(= U<+ ). 

Since (X,a)t.(:! U<+ ), there must exist a production B__.aXY(J in P such 

that a EL( Y) U ~ Y~. Hence, it follows from condition (1) of Definition 4.9 that 

XEN. Thus, X is valid for y '' and it follows from condition (2) of Definition 4.9 

that there exists a pair ( c~a 'XY(J,a ') in Il(7 "). This implies that there exists a 

derivation 

S -- • -aau ...-- -a •-vyp - ••-vyp --> • ··~ '- -> • ''v.av ,, -->rm.-v -->771, ·va A v -7 A v -- rm,"'/ ..11.1V -- rm:.7 ..11.1 

in G. Clearly, this derivation implies that 7 "Xa=7 is a viable prefix of G and the 

proof for this case is complete. 



75 

CASE 2. (X,a)E+>. 

In this case, the configuration ($/,G> '$) is derived from 

($7 ',y$)=($7 "X,ay '$) by a reduce move. Therefore, we must have that y =G> ', 

--y"X=o{:J and 7=0A, where A_,,{3EP. That is, A_,,{3 is the production used for the 

reduction. Two subcases are considered: 

SUBCASE 2.1 {3= e. 

+ If {3=t:, then we have that (X,a)Ep(A). Hence, (X,A)E(= U<+) and there 

must exist a production B _.aXY{3' in P such that A EL( Y) UI Yj. Moreover, it 

follows from condition (1) of Definition 4.9 that XEN. Considering that X is valid 

for 7 ", we conclude that there exists a pair (B '-+a 'XY{J ',a') in TI( 7 "). That is, 

there exists a derivation 

S==>~ 6B'u ==>oa 'XY{J 'u =11 ''XY{J 'u ==>r~ 7 'XYu '==>~7 ''XAA.u' 

in G. Thus, 7 ' 'XA =7 is a viable prefix of G. 

SUBCASE 2.2 {J~ e. 

For this case, we have that {J={:J'X, {J'EVc. If XE~, then since 7" is a 

viable prefix of G, there must exist a derivation 

S ==>~a.Bu ==>nn a.fl ''XA.u =7 ''XA.u 

in G. But G is a Viable Prefix EWP grammar and the terminals appear on.ly right-

most in any production. Therefore, A=e. On the other hand, if KEN, then it is a 

valid for 7 '' and it follows from condition (2) of Definition 4.9 that there is a pair 

(B-+P "X,(3 ")in Il(7 "). Again, 

S= =>~ aBu ==>rm a..{3 ''Xu =7 ''Xu 

is a derivation in G. 
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Now consider the productions A 4{3 'X an~ B 4{3 "X. Clearly, both p 'X and 

f3 "X are suffixes of I' "X and we must have that either (:J' or f3" is a suffix of 

the other. But, the EWP parser always reduces the stack by the production hav-

ing the longest right part and A 4{3 'X is the production selected to reduce -y ''X. 

Therefore, p 'X=13-{3 "X for some 19-c VJ. If 19-~~, then 19-=19- 'Y and by applying 

Lemma 3.6 to the derivation 

S==>r~a.Bu ==>a{3 "Xu =7 "Xu =op 'Xu=o'l9-{3"Xu =019- 'Y(3 "Xu 

we hav~ that (B, Y)E(~ U <+ ). Obviou.sly, this is a violation of condition (4) of 

Definition 3.9. Hence, we must have that 19-=,f;, a=o and (:J 'X={J "X. But G is AUi 

and p 'X =(:J ''X -:Fe. Hence, A=B and it follows from the derivation 

S ==>r~ a.Bu =oBu =oAu ==>rm 6{1 'Xu 

that 6A =7 is a viable prefix of G. 

We now prove that the grammar G' constructed by Algorithm 4.5 is a Viable 

Prefix EWP gr am mar. 

THEOREM 4.11 In Algorithm 4~5, G' is a Viable Prefix EWP grammar. 

Proof. Obviously, in G' terminals appear only in productions of the form 

[I, a] 4 Ia. a, J EC, a EL: and G' satisfies condition ( 1) of Definition lJ.·.9. Let 

-yE Ve· be a viable prefix of G' and XE:N' be valid for 7. Let A4aX fJ be a produc

tion in P'. We prove that there exists a pair (A' ~ex 'X(J, ex') in I1(7). Two cases 

are considered: 

CASE 1. XENt UNr· 
I 

Since Xis valid for 7, then there is a derivation 
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S'==>r~'l5Br,,;==>rrn1'a 'X(3'r,,;~=7X(J'c.; in G'. 

Therefore, (B->a 'Xf3' , a ')EI1(7). Now consider the productions A->aX(3 and 

B - ~a 'X{3 '. As shown in theorem 4. 7, each symbol of Nr appears exactly in one 

production and therefore, if XENr, then A=B, cx=a' and P=fJ '=£. On the other 

hand, if XENz, then it is a symbol of the form Ia for some 1 EC and a El!. This 

time, we must have that A=B=[J,a], a .=a.'=£ and fl=(J'=a. Thus, 

(A->aX(3, a)=(A->a 'X(3' , a) is a pair in I1(7) and the proof for this case is com-

plete. 

The result for this case is established by an induction on the length of 7. 

BASIS: I YI =O. 

If I 7 I =O, then X is valid for e and there is a derivation 

S'==>.;,;,,B~==>TTnX(J'r,,; in G'. Hence, XEL(S') and either X=IoENs or 

X=[T0 ,Y]EN"UNE, where Io is the initial state in C. Thus, a is the empty 

string; othenNise, we must have that SUFF1(a)=[J,Z] where GOTO(J,Z)=lo, a 

contradiction for C being the canonical collection of LR( 1) states for· G. Thus, 

A=[/0 ,A']EL(S')LJ(S') and there exists a derivation S'==>~Av ==>rmXfJv 

in G'. Hence, (A->X{3, dEil(E). 

INDUCTIVE HYPOTHESIS 

Assume that the theorem is true for all yE Vo· such that I y I <n, n >0 and 

consider a derivation S'==>~)'X(,.) in G', where -171 =n. This derivation may 

be written as 

I 

S' =do==>rm 61==>rm.62==>rm · · · ==>nn Om-1 ==>rm. Om =yXr.>, 
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largest integer such that 7 is not a prefix of o t i Obviously, such a t exists since 

oTn =7 X GJ and I)' I >0. Let H 4 )'1 C72, )'1 T- t;, be the production used to derive 

Ot+1 from 6t. Then, )'=f....t71, XEL(C)LJ~CJ and SUFF1(71) is valid for 7' where 

')''=PREF1 7 1-1(7). Moreover, XJ!:.Nr and we must have that 72:7:-e. Therefore, 

B 471 Cy2 is of the form 

where C=[ Ji ,Bi], for some j, 1 <j <l and for all k, 1 ~k ~l, the LR( 1) item 

[H, 4 B 1 B 2 . . . Bk ---1 • Bk . . . Ht I v ], v EZ, 

belongs to the state Jk = GOTO(J 1,B1 B2 · · · Bk-i) in C. 

Now consider the production A4a_Xf3. Two subcases arise: 

SUBCASE 1. a-Fe . 

If a~£, then XEN" LJNF. and A4<aX{J is of the form 

where X =[Ii ,AiJ, for some i, 1 <i <l ' and for all k , 1 ~k <l ', the LR( 1) item 

belongs to the state h=GOTO(I1 ,A 1A 2 · - · .A,t-1 ) in C. Additionally, 

X=[Ii,Ai]EL(C)LJ(C~, C=[Jj,Bj] and we must have that Ii=Ji. Now consider 

the items 

[B'4B1B2 · · · Bj-2.Bj-1 · · · Bi I v]E:Jj-1, and 

[A'-~A. 1A2 · · · Ai-2.A,,;-1 · · ·Ai· Ju]Eli-1· 

.Clearly, since GOTO(Li _ 1 ,Ai _ 1 )=GOTO(Jj _ 1 ,B;-1 )=Ii =Ji, we must have that 

~-1=Bj-l and [A'4<A 1 A 2 · · · ~-z . Ai-1 ···At· lu] also belongs to the st~te 

J;_1. Let [A'4.A 1A2 · · ·.At· Ju]EK1, where GOTO (K1,A1 · · · Ai-2)=Jj-1· 

Then, it follows from the construction that there exists a. production 
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where GOTO(K1,A1 · · · At·) =K, Ji -1 =K"i-1 and for all k, 1 ~k <l ', 

Kk +1 =GOTO(K1: ,~ ). But Ki =GOTO(K1,A1 A2 · · · ~ -1) =Ji =Ii and therefore, 

for all k, i<k~l ', Kk =h and [K,Z"]=[I,Z']. That is, 

[K,,A']....,[K1,A1][K2,A2] · · · [Ki·,At·][K,Z"] is of the form JJ_,a'X(:J, where 

a' #t: and SUFF1 (a ')=SUFF1 (71 )=[Jj-1,Bj-d=[Jj-1,~ -1J. 

Let Y=SUFF 1 ( 7 1 ). Then, Y is valid for 7', 7=7 'Y and 17' I =n -1. There

fore, from the inductive hypothesi~, we have that there is a pair 

(JJ ' _,a "YX{J, a") in Il(7 '). Hence, there is a derivation 

S'==>r~ {)fl'c.J '==>nn 1'a ''YX{J~ '=7 'Y.X{Jr..J'=7Xp(..}' 

in G' . This derivation implies that the pair (D' _,a' 'YX f3 , ex'' Y) belongs to 

II( 7 'Y) =II( y) and we have the desired result. 

SUBCASE .2. cx=f:. 

For this case, either X=J1 ENs and A_,.aX(:J is of the form [I1"A']....,I1[/1,Z'] 

and [A' ...... 1u]EJ1, u EZ', or X=[I 1,A1 ]EN'' UNE and A_,a.X{J is of the form 

and [A'....,.A 1 A 2 · · ·At· I u]EJ 1 , u EZ'. Moreover, similar to the previous case, 

we have that I 1 =GOTO( Ji _ 1,B;-1 )=Ji. Therefore, h is not the initial state of C 

and there must exist an LR( 1 ) item [D' _, D 1 D2 · · · lJj _1 . Di · · · D,, .. f u ], l "> 1, 

in Jj where 1 <i<l" and A I EL(Di) u~ni j. Hence, there must exist a production 

D_,o..'E(:J'EP', a'#e, AEL(E)U~Ej which is _constructed from the item 

[D'--.D1D2 ···Di·· lx]EK,, where GOTO(K1,D1D 2 · · · Di-1)=Ji. Therefore, 

from the previous s
1
ubcase, we have that (D" _,.a "E (:J ',a') is a pair in TIC 7). That 

is, there exists a derivation S' = = >.;,.,,, 1' D' • r..J '==>rm '19a "E (J 'r..J • =7 E fJ '(..} ' in G'. 

But AEL(E) U l E j. Hence, there exists a derivation 
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S.' - - > • E' {3 ' ' - - > • c,-. '' - - > • Ax - -> - - rTn ?' CJ -- rm /.n CJ - . - nn CJ -- nn 7a.x 

in G' Thus, (A4X{:1,~)ElI()'). 

The result established in the previous theorem is of particular importance 

since it shows that every deterministic context-free language has a Viable Pre-

cedence EWP grammar. This is formally stated as a corollary to Theorem 4.11. 

COROLLARY Every deterministic context-free language is defined by some 

Viable Prefix EWP grammar. 

Proof. We only observe that the class of LR(1) grammars defines exactly the 

class of deterministic context-free languages, and that Algorithm 4.5 converts 

arbitrary LR( 1) grammars into equivalent Viable Prefix EWP grammars. 



CHAPTER 5 

PROPERTIES OF EPSILON SIMPLE PRECEDENCE LANGUAGES 

Given a language, L, it is relatively easy to show that L is defined by a gram

mar in a particular class. One can write a grammar defining exactly L, and show 

that the grammar possesses all of the re~uired properties. 

On the other hand, proving that L is not in a particular class of languages 

poses some difficulties. It must be shown that no grammar having the required 

properties may define exactly L. Closure properties and iteration theorems are 

generally used for this purpose. 

Closure properties of a class of languages, X, state whether or not X is 

closed under different set operations. Iteration theorems usually state neces

sary conditions that, if satisfied by some sentence of the language, guarantee 

the membership of a set (usually infinite) of sentences in the language. Iteration 

theorems exist for context-free [9], deterministic context-free [37], LL(k) [1 O], 

strict deterministic [25], and simple precedence languages [28]. 

In the remainder of this chapter, by generalizing the iteration theorem for 

simple precedence languages, we develop an iteration theorem for ESPi 

languages. Using this theorem, the hierarchy of ESPi languages is established. 

Additionally, some closure. properties of ESPi languages are studied in this 

chapter. 
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5. 1 Iteration Theorem for ESPi Languages 

Before presenting the iteration theorem for ESPi languages, some properties 

of derivations in ESPi grammars are established by proving four lemmas. These 

lemmas generalize similar results established in [28] for simple precedence 

languages. Our proofs are identical to those in [28], except for the discussions 

relating to the use of .e-rules. Complete proofs, however, are given for the sake 

of completeness. 

The following notations are used in this section. Let a, p Ev• and 

µE(~ U<+ U +> ). The relation (SUF'F'1(a),PR~'Ji'1(P))Eµ is denoted aµ(J. We 

say that a has only µ.,, if every two adjacent symbols in a are related only by µ. 

In the first lemma we show that the last steps of two derivations producing 

right sentential forms a{JCJ and a' p(,,)' are identical given that the handle of both 

sentential forms is a substring of fJ and PREF1(CJ)=PREF1(CJ '), and 

SUFJi'1 (1Ga) = SUF.F'1 (1Ga'), if the handle is the empty string located in the 

extreme left of p. 

LEMMA 5.1 Let G=(N,L:,P,S) be an ESP grammar in which there exist deriva-

tions 

(5.1.1) SSS==>~$aoCJ$==>rm.SafJCJ$; 

(5.1.2) $S$==>~$a'{JCJ'$; 

such that 

(1) PREF 1 (CJ$) =PREF 1 ((,,) '$); 

(2) Either $a'<+ p and (Sa<+ p or Sa! fJ), or SUFF1(Sa ')=SUFF1($.a); 

(3) + a I has only <+ and = • 
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Then derivation ( 5. 1 .2) is of the form 

(5.1.3) $S$==>,;,.,_ $a 'oc:.> '$= =>nn $a· {Jc:.>'$. 

Proof. Since o==>rm.f3, we must have 0=7.Ax' and {3=")'1JX' for some iJ, 7E Vi!, 

AEN, and x E~ •, where A_,.iJ is a production in P. Therefore, derivation (5.1.1) 

may be rewritten as follows: 

(5.1.4) $S$==>r;,.,,Sa7Ax c:.>$==>rm. $a71Jxc:.>$=$a{Jc:.>$. 

Applying Lemma 3.6 to derivation ( 5.1 .4), we conclude that the following hold. 

(i) + $ay has only <+ and =; 

(ii) $ay{J +> x c:.>$; 

+ (iii) Either 1J7e, Sa.7<+ 1J and 19 has only =; or, iJ=e, Sa.7+> x c:.>$, and 

Considering conditions (1 )-(3) and (i)-(iii) above, the following must hold for the 

right sentential form $a' (3c:.> 'S=Sa 'rrJx (A)'$. 

+ (iv) $a '7 has only<+ and =; 

(v) $a 'rt9- +> x c.J '$; 

+ (vi) Either 19-~e, $a..'7<+1J and 1J has only=; or, 1'=e, $0.'7+>xr..>'$ and 

Thus, ~ is the handle of $a' {Jc:.>'$ = Sa 'yt)x c:.> '$, and the following derivation 

exists in G. 

(5.1 .. 5) $S$==>,;,.,,$a '7Bx c..> '$==>rm. $a 'yt)x r..> '$, 

where B _.tJ-EP. Here, we consider two cases: 

CASE 1 ~~e.1 

A_,."8 and B_.1' are productions in P, and since G is AUi, it immediately follows 

that A=B. 
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G"'ASE 2 1J = ~. 

For this case, we have that BEN 1;( G), and 

If 7-Tf:, then clearly, SUFF1 ($a '7)=SUFF1 ($a7). On the other hand, if 7=f:, 

then from conclusion (vi), we have that $a '71J=$a' +> x CJ'$, and therefore, 

from condition (2) of the lemma we have that SUFF1($a. ')=SUFF1($a). 

Hence, 

(SUFF1 ($a '7),PREF1 (x CJ'$)) = (SUFF1 ($a7),PREF1(x CJ$)), 

and p(A) np(B)-:Frp. But G is ESP; therefore, A=B. 

Thus, in either case derivation (5.1.5) is of the form 

(5.1.6) $S$==>/mSa '7Bx c..> '$=$a '7Ax CJ '$=$a 'oCJ '$==>rm 
$a 'rtJx (.,.')'=$a' {Jc..>'$. 

That is, derivation (5. 1.2) is of the form 

and the proof is complete. 

Our next lemma generalizes Lemma 5.1 by establishing that the substring {J 

of two right sentential forms a{JG.> and a' {JG.>' is derived identically from some sub-

string o, provided that PRE'F'1 ((.,.')) =PRE'F'1 (CJ'), the handle of both sentential 

forms is a substring of p, and SUFF1($a)=SUFF1(Sa '), if {J is the empty 

string. 

LEMMA 5.2 Let . G=(N,l:,P,S) be an ESP .grammar in which there exists 

derivations 

(5.2.1) $S.#J==>r~Sao(;.)$==>~$a.{JCJ$; 

(5.2.2) $S:I = =>r~ $a' (JGJ '$; 
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such that 

(1) PREF1(c..>$)=PREF1(cv'$); 

(2) Either $a'<+ {J and ($a<+ f3 or $a~ (3), or SUJi'Ji'1($a)=SUFJi'1(6a '); 

(3) + a' has only <+ and = . 

Then derivation (5.2.2) is of the form 

(5.2.3) SSS==>.:wisa 'oGJ '$==>iYmSa '(le..> ·s·. 

Proof. We prove this result by induction on n. 

BASIS: n=O. Then 6=(1, and the result holds. 

INDUCTIVE STEP: Assume that the result holds for all k, k <n, n >0, and con-

sider the following derivation: 

(5.2.4) $S$==>.:wisaoc.J$==>~1 $aon-1 CJS==>rm Sa(1CJ$. 

Obviously, derivations (5.2.2) and (5.2.4) written as 

(5.2.5) $S$==>.:wi$a.On-1 G)$==>rm!Ja(1cv$. 

satisfy the conditions of Lemma 5.1. Hence, we apply Lemma 5.1 to these deriva-

tions and conclude that derivation (5.2.2) is of the form 

(5.2.6) $S$==>~$a 'On-1GJ '$= =>nn$a '(1c.J '$. 

Now consider derivations: 

(5.2.8) $S$==>.:wi$a 'on-1GJ '$ 

(these are drawn from derivations (5.2.4) and (5.2.6)). From the inductive 

hypothesis, we have that derivation (2.5.8) is of the form 

(5.2.9) $SS==>~$a '6GJ '$==>~1 Sa 'on-1 CJ'$; 
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Additionally, it follows from derivation (5.2.4) that On -1 = =>{J, and therefore, the 

following derivation exist in G: 

(5.2.10) $S$==>:m $a' OCJ '$==>~1 $a' On-1 CJ'$ ==>$a' {JCJ '$. 

This derivation may be written as 

(5.2.11) $S$==>:msa 'oCJ'S==>l!TnSa '{JCJ'$. 

Derivation (5.2.11) is of the required form and the proof is complete. 

Lemma 5.3 generalizes Lemma 5.2 to derivations having different numbers of 

steps. In this lemma, we establish that if a{JG) and a' {Jc.;' are derived from ao CJ 

and a 'o 'r..>', respectively, with o '==>-hnfJ being longer than o==>.,;,,_p, then 

o '==>~o==>~{J, provided that PREF1 (G))=PREF1 (r.v') and the last steps in 

both derivations are identical. Moreover, we show that if the last steps of these 

derivations are not identical, then, at least in one of the derivations, a unique 

symbol is erased in the last step. 

LEMMA 5.3 Let G=(N,E,P,S) be an ESP grammar in which there exists 

derivations 

(5.3.1) 6SIJ==>~ Saoc.;$==>l!in 6a{JCJS; 

(5.3.2) SS!J==>~Sa 'o 'CJ'$==>ifi;,,$a 'f1CJ'$; 

such that 

(1) PREF1(G)$)=PREF1(CJ 'S); 

(2) Sa'<+o'; 

Th~n, either derivation (5.3.2) is of the form 

(5.3.3) SS~==>~ Sa '6 'CJ'$ ==>ifi;,,-n$a 'oCJ 'S==>l!inSa '{JCJ '$; 

or, 



(5.3.4) There exist 1J and~' in Ve such that 

.J:--> • -0-->R· u-- rm·v-- ~' 

~ I - - > • -0 I - - >{J• U -- rm·v -- , 
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where PREF1(1J)-./-PREF1(~'), and there exists Z in NE(G) such 

that either 'fJ=Z {3 or~ '=Z (3. 

Proof. The proof proceeds by induction on n. 

BASIS: n=O. If n =O, we have that 6 ={J, and derivation (5.3.2) is of the form 

required by derivation (5.3.3). 

INDUCTIVE STEP: Assume that the result holds for all k, k <n, n>O. Then, 

derivation ( 5.3. 1) may be written as 

Also, since n is assumed to be greater than zero, and 771~, by applying Lemma 

3.6 to derivation ( 5.3.2) we have that a' has only <+ and :! . Hence, derivations 

(5.3.5) and (5.3.2) satisfy conditions (1) (PHE'Ji'1(GJ6)=PRE'Ji'1(GJ'$)) and (3) 

(Sa' has only<+ and~) of Lemma 5.1. Now if condition (2) (either Sa'<+ P and 

(Sa<+ {J or $a~ {J) or SUFF1 ($0..)=SUFF1($a '))is also satisfied, then we can 

apply Lemma 5.1 to derivations (5~3.5) and (5.3.2) written as 

(5.3.6) $S$==>~$a6n-1 ~$==>6o..(JCJ$, 

(5.3.7) $S$==>~$a'{3c.>'$ 

and conclude that derivation (5.3.7) is of the form 

(5.3.8) $S$==>~.$a '6n-1 G)'$==>rm $a .' (Jc.;'$. 

If condition (2) of Lemma 5.1 is not satisfied, however, we must have that 

Sa'<+ {3 and ($a<+ fJ or $a~ (J) or SUFF1($a)=SUFF'1(Sa ') is not true. This 

implies (So..+>P or Sa'+>{J) and SUFF1($a)#-SUFF1(Sa.') (Observe since 

a_'<+ 6 ' and G has no precedence conflicts ex.':! {J is not possible). Now consider 

. . ..... : ~ 
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ex'<+ o ' and G has no precedence conflicts a'~ (:J is not possible). Now consider 

derivations (5.3.6) and 

(5.3.9) $S$==>~$a 'o 'm-1~'$==>rmSa. '(:Jc.>'$. 

Since either $a..+> (:J, or $a..'+> (:J, we have that either On_1 =Z(:J, or o 'm--1 =Z'(:J, 

for some Z, Z'EN£{G)LJ~eJ. If Z=Z', then Om-1=0n-1 and derivation (5.3.9) 

is identical to derivation (5.3.8). Otherwise, we have shown that 

o==>~on-1 ==>(:J, and 

6 I==>~ 0 'm-1 ==>(:J, 

where PREF1(on-1)~PREF1(6'm-1), and either On-1 or o'm.-1 starts witf:l a 

symbol in N ,;( G). This implies that conclusion (5.3.4) holds. To complete the 

proof, we need to show that if derivation (5.3.2) is of the form shown by deriva-

tion (5.3.8), then it is of the form required by derivation (5.3.3). 

Derivation (5.3.8) m~y be rewritten as: 

Applying the induction hypothesis to derivations (5.3.5) and (5.3.1 0), we con-

elude that (5.3.1 0) is of the form 

(5.3.11) SSS==>:rnsa. 'o 'r.>'IJ==>~ - 1)-(n-1).sa ·o~ '.S==>~1 

$a 'on-1 c.> '$==>rm Sa '{:Jc.>'$ 

That is, derivation (5.3.2) is of the form 

SSS==>~ $a '6 'c.> 'S==>l!f,,,-n$a 'oc.> 'S==>:'m $a' (Jc.>'$; 

and we have the established the desired result. 

The next lemma shows how two derivations may be interleaved in an ESP 

grammar. Additionally, this lemma demonstrates how e-rules can be used to 

prevent this type of interleaving. 



LEMMA 5.4 

a E:~+, and the following derivations exist in G: 

SS$==>~cx1A1y1; 

• P1==>rm.v1; 

$S$==>~cx2A2y2; 

fJ2==>~v2. 

Then either 

• A1 ==>rm rJ1; 

• A2==>rmrJ2; 
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(i) For all k>O, there exist zc~+, such that PREF1(z)=PREF1(a), and 

(5.4.1) SSS==>~ Sa.1 {JffJ2z$==>~$a1 {Jfv2zS; 

or, 

(ii) There exist 't9- and ~' in VJ such that 

P1==>~1'==>v1; 

fJ2==>~1' I ==>v2; 

where PREF'1 (1')~PR.E'Ji'1 (1J'), and there ·exists Zin NE(G) such that 

either 1'=Zv1 or 1' '=Zv2. 

Proof. 

i,j >0. We first show that if n 1 =0, then n 2 =O. Assume, for the sake of con-

tradiction, that but That is, and 

R Ev I > + ,, I TT. B N d ,, 'E"'. N "d th JJ2=7 2 == rrnV 2 v 2 , J'E '"G' E , an v 2 , v 2 LA • ow cons1 er e 

following derivation 

(5.4.2) $S$==>~Sa1/J1A1X1Y1 $=$a1v1A1x1y1S==>rin 

+ 
Applying Lemma 3.6 to derivation (5.4.2), we conclude that v 1 has only <+ and =, 

and v 1 <.._v 1 • But v 1 =ai; hence a has only <+ and ~ and a<+ a. Now consider 

the derivation 
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(5.4.3) $S$==>~$a2fhA2x2y2$==>~$a2(hfJ2A2x2x2y2S==>~ 

6 a2 fJ2f32 r.J2x 2x 2Y 2 $ = $ a..27 Bv '2"1 Bv '2 r.J2x 2x 2Y 2 $ = = >~ 

1Ja27Bv '2v "2v '2r.J2X2X2Y26==>~ 

Obviously, v 2 "v 2 '=v 2 =ai is not the empty string. We consider three different 

cases and in each case derive a contradiction to the fact that a has only <+ and 

+ = and a<+ a. 

CASE 1 

Applying Lemma 3.6 to derivation (5.4.3), we get that v " 2 +> v '2 , and we 

have a contradiction to a having only <+and!, and a<+ a. 

CASE 2 

Applying Lemma 3.6 to derivation (5.4.3), we get that v '2 +> v '2 , but, 

v ' 2 =ai. Hence a+> a, and we have a contradiction to a<+ a. 

CASE 3 

Again applying Lemma 3.6 to derivation (5.4.3), we conclude that 

v ''2 +> v ''2 , which similar to the previous case implies a +>a, a contradiction to 

a<+ a. 

From the arguments given above, we conclude that if n 1 =O, then n2 =O. 

Now, choose m.tl such that m,xn. 1 ~-n. 2 , and (l+1)xj>rnxi>j. Then, for 

each k>O, the following pair of derivations exist in G. 



(5.4.5) $S$==>~ $a1(3f(JfR'v1 r.J1 x~ +m.+1 Y1 $==>;:,,,xn1 

$a 1 (J fv riv 1 c.J1 x f +m + 1 y 1 $. 
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Let {J=v'f', 0 1 ={3F, 6={32aixm-i, a.'=a1(3f, a=a.2, G)'=v1r.J1xt+m.+1y1, and 

r.J=a<L+ 1 )xj-ixm.r.J2x~+ 1 y2 • With this notation, derivations (5.4.4) and (5.4.5) 

can be rewritten as follows: 

(5.4.6) $S$==>~ $a0(..)$==>~$a(:JG)$; 

• mxn1 
(5.4.7) $S$==>rm.1Ga 'o '(,.)'$==>rm. Sa "{Jr.J ·s. 

All the conditions of Lemma 5.3 are satisfied. Thus, either derivation (5.4. 7) is of 

the form 

• m.xn1-n?_ n2 
(5.4.8) $S$==>rm. $a 'o '(,.)'$==>nn ~a. '6(,.)'S==>rm.Scx '{Jr.J'S, 

or, there exist ~ and 19 ' such that 

'5==>r~1'==>(J, 

,_ • - - > • .a • - -> R u - - nn-v· -- fJ' 

where either PREF1 (iJ)-FPREF1 (1' '), and there exists Z in N E(G) 

such that either 'fJ.=Z {3 or 1' '=Z (3. 

If the latter conclusion holds, we observe that 6=/haixm.-i, and 6 '={Jf", 

and conclude that that conclusion (ii) of the lemma holds. On the other hand, if 

the first conclusion above holds, we may choose~ =aixm-i""' and write deriva-

tion (5.4.8) as 

and we have shown that conclusion (i) holds. 



92 

We now present the iteration theorem f~r E'SPi languages. 

THEOREM 5.5 Let L=L(G) be an ESPi language, where G=(N,I:,P,S) is an 

ESPi grammar. Assume that for all j, 1 <j <i +2, there exists s1 EL, with G

factorization uiviwixiYi such that v 1 Ea+, for some aEI:+, and for all 

k, j <k<i+2, there exist r1c>O, and zk E:~+, such that 

(2) 

Then, there exist p, q, 1 <p <q <i +2, such that for all m.~O, 

Proof. For all 1 ~j ~i +2, si EL with G-factorization u1 v;w1 x1 y1 implies that 

the following derivations exist in G (see Theorem 2.21) 

$S$==>~aiAiyi; 

fJ1 ==>~'llj· 

Moreover, for each pair of integers j,/c, 1<j<k<i+2, we can apply Lemma 5.4 

to the derivations induced by G-factorizations of si and sk and conclude that 

either (5.5.1) or (5.5.2) holds. 

(5.5.1) for all n>O, there exist 

PREF1 (z '.t )=PREF1 (a), and 

$S$==>~ Sa..1 {Jf(J1c z '1c $= =>:m $ai {Jfv1c z A:$, 

(5.5.2) there exist TJi and '{).Jc in Ve such that 

f31 ==>~1'j ==>vi; 

fJ1c = = >~ ,,,k = = >111c • 

such that 

where PR.F:F 1 (1'1 )~PREF1 CTJ.1c), and there exists Bin N~(G) such 

that either 1'j =B111, or 13k =Bu1c. 
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But, N ,;( G) U ~ E"J has exactly i +1 members ~nd it is not possible for conclusion 

(5.5.2) to hold for every pair of integers j ,k, 1<j <k<i +2. Thus, we can find 

p ,q, 1 ~p <q ~i +2, such that by applying Lemma 5.4 to the derivations induced 

by G-factorizations of Sp and sq, we may conclude that there exists z 'q EE+, 

such that PREF1(zq)=PREF1(a), and for all n~O the following derivations 

exists in G 

Furthermore, from derivations ind.uced by G-factorization of sq and assump

tion (2) of the lemma it follows that the following derivations exist in G. 

T T T +1 2 
Let a=a'=e, {3=UpVpq' t5=ap(:Jpq' w=vpWpXpq yp, and w'=vq WqXqZq· 

With this notation, derivations (5.5.4) and (5.5.5) are of the following form 

(5.5.6) $S$==>~1Jat5w$==>.;,,,,$a{3w$, 

(5.5.7) $S$==>~$a '{3w'$, 

and Lemma 5.2 applies. Hence, derivation (5.5. 7) is of the form 

(5.5.8) SSS==>~Sa 'ow'S==>.;,,,,sa '{3w'$. 

That is, 

Now set n of the derivation (5.5.3) to rq and apply Lemma 5.2 to derivations 

(5.5.3) and (5.5.9) with a=a'=ap/J;q, {J=vq, t5=(Jq, w=z'q, and 

w'=vqwq:zqzq, and conclude that derivation (5.5.9) is of the form 
I 
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(5.5.10) $S$==>~$cxJJ {3;q {3qVqWqXq Zq $==>~Sap {3;flvqVqWqXq Zq $= 

Sap (3;qvlwqxq zq $. 

Moreover, it follows from the derivations induced by G-factorization of sq that the 

following derivation exists in G 

Again, we can apply Lemma 5.4 to derivation (5.5.11) and derivation (5.5.1 O) 

written as 

With notation {J=VqWqXq, O=Aq, a=aq{Jq, a '=aq{J;q{Jq, W=Xqyq, and w'=zq, 

to conclude that derivation (5.5.12) is of the form 

But Aq ==>,.~n.VqAqxq and Aq ==> •wq. Hence, for all m.~O, we have that 

5.2 The Hierarchy of ESPi Languages 

In Chapter 3, we showed that the class of simple precedence languages was 

properly included in the class of ESP1 languages. This section extends this 

result by showing that the descriptive power of ESP languages is directly related 

to the number of i-;-rules allowed. That is, for all i, i>O, the class of ES Pi 
I 

languages is properly included in the class of ESPi+1 languages. To establish 

. i+2 -
this result, we prove that for all i, i~O, the language l'i. = U la.ion 11 xn I n~1 J 

. j=1 
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is E'SPi + 1 but not BSPi. 

THEOREM 5.6 For all i~O, the class of ESPi languages is properly included 

in the class of ESPi+1 languages. 

i+2 . 
Proof. Let lij, = U ~aion 1J xn I n>1 i. Consider the grammar G;, shown below. 

j=1 

G;.: 

s --+ aiXi 1<j~i+2 

x-J --+Ai Xi Cj1 2<j <i +2 

X· J 
__.A· 

'J Ci1 2<j <i + 2 

A· '3 --+ Zj 0 2-<j~i+2 

C· ] --+ Cj-11 

C2 4 1 

zi --+ E 2~j<i +2 

X1 --+ A,X11 

x, __. A 1 1 

A, ... a 

The sets L, L,;, R, and Re for G;, are shown in Table 4. Table 5 shows the EP 

relations for (;;,. 



s x i 

~ 

.:!: 

s 

X-1 

C· 1 

A· 'J 

Z· 1 

L 
ai,a 1 

Aj,Zj 

Gj-1, · · · , C2, 1 

z. 
J 

¢ 

A1,0 

0 
> 

L '~ R 
¢ Xj,X1,1 

0 1 

¢ 1 

0 0 

¢ ¢ 

¢ 1 

¢ 0 

Table 4. L, LE, R, Re for G;,, 2<-j ~i +2. 

c i A ,; z i ·~ x 1 A 1 a; 

.:r <+ -

.:r <+ <+ <+ 

z <+ 
<+ <+ 

.:!: <+ 

<+ 

R E:. 

¢ 

¢ 

¢ 

¢ 

¢ 

¢ 

¢ 

a1 0 

+> 
.:!:: -

<+ 
+> 
<+ 
+> 

<+ 

-r:able 5. The EP relations for GJ,, 2 ~j~i +1, 2 ~k <j. 
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1 

<+ +> 
.:!: 

<+ 

.:!: +> 

.:!: 

.:!: 

+> 
-+> +> 

Obviously, .L;, =L(G;), ~ is AUi, EP relations for ~ are pairwise disjoint, and 

Gt has i + 1 &-rules. Moreover, for all j, 2<-j ~i +2, 

p(Zi )=l(ai,O),(Ai,OH, 

and we have that for all j, k:. 2~j, k ~i +2, j ~k, p(Zi) npCZ.t )=r/J. Additionally, 

for all j, 2<-j<i +2, the rightmost symbol of no production in ~ Is related to Z; 

and (S,S)~p(Zj). Hence, G;, is ESPi+1 , and L;, is an ESP1.+1 language. To this 
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end, we show that L;, is not an E'SPi language. 

Assume, for the sake of contradiction that for all i>O, L;, =L ( G;.), where G;, 

is an ESPi grammar. Let n be the integer from the iteration theorem for 

context-free languages, and for all j, 1 ~j ~i +2, consider si =aion 1 jxn in L;,. 

In each G-factorization UjVjWjXjYj of si, we must have that 

b · 
'Uj = aio 1, 

V - - Oci 
1 - ' 

for some ci >0, and bi, di, ei, f i';?:.0. Otherwise, we will have a violation for 

u;v1 w 1 xiYi being a G-factorization for si. Now, for each pair of integers 

j, k, 1<j<k<i+2, choose rk such that jx(bj+T1cXcj+2xc1c+dk)>e1c+kxc1c, 

and I t _ 1;x(b;+rkxe;+2xc,t+d,t)-(e,1:+kxej) Th f II · k 1< ·<k<.+2 e zk - • en, or a 1, , -1 . _.,, , 

the string = 
a _Obi +r,1: xe1 +2xe1:; +dk 1 j xb1. +r,1: xe1. +2xe1' +d1:; T . M f h · 

1 belongs to .z.-'i. oreover, or eac 3, 

and k, 1<j<k<i+2, vi, v1c EO+, x1c, Yk' and Z'Jc belong to 1+. Hence, all of the 

conditions of the iteration theorem for ESPi languages are satisfied . Thus, 

there must exist p,q, 1~p<q<k+2, such that for all . m.~O, 

rq m.+i m b I t L B t rq m+i m. · f th f 1.LpVp Vq WqXq Zq e ongs 0 • u , 'l.LpVp Vq WqXq Zq IS 0 e orm 

C1.p QbP OTqXc.P 0(7n+1)xcq odq1eq 1mxqxcqZq = 

C1.p 
Ob.P +rq xe.P +(7n +1 )xcq +dq 

1 
eq 

1
7n xq xcq 1px(bp+rq xc.P +2xe9 +dcr)-(s11 +q Xeq) = 

0-p Ob.P +rqxe.P +(m +1 )xcq +d111 .P x(bP +rq xc.P +2xcq +dq)+(m-1)xq xeq. 

1 

Hence, for all 7n~O, we must have 
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p x(bp +rq XCp +(m. +1 )Xcq +dq) = p x(bp +1:°q XCp +2Xcq +dq )+(m. -1 )xq XCq. 

That is, for all m.~O, we must have that 

pX(7n+1)Xcq = 2xpxcq+(7n-1)xqxcq. 

But, for 'In =2, this implies that p x3xcq = 2xp xcq +q xcq. That is, 

p xcq =q xcq. But, p, q, and cq are all greater than zero. Hence, we must have 

p =q. This is contradictory to the assumption that p >q. Thus, L;. is not ESPi· 

The hierarchy of ESP languages is shown in Figure 7. 

ESP 

ES.Po 

Figure 7. The hierarchy of epsilon simple precedence languages. 
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5.3 Closure Properties of ESPi Languages 

The closure properties of ESPi languages under the operations union, inter-

section, and homomorphism are discussed in this section. We show that for each 

i, i~O, the class of ESPi languages is not closed under any of these operations. 

LEMMA 5.7 For each i, i>O, the class of ESPi languages is not closed 

under intersection. 

Proof. For each i, i~O, consider the languages L;,, and L 'i defined below . 

. +1 
l;, =.,, u l ai on 1 i xn I n > 1 ~ u ~x k yk z i I k ,; ~ 1 J 

j=1 

1, ·i = i ~1 ~a; on 1 i xn I n ~ 1 J u ~x k y i z i 11c ,; > 1 J 
j=1 

Grammars Gi, and G'.;,, shown below, are ES Pi grammars defining 4, and 

L 'i, respectively. The EP relations for Gi, and G'i are shown in Tables 6 and 7. 
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s -> a:ixi 

x-] ->A-'1 x-] C-1 ] 2<j<i+1 

Xj ->Ai Ci1 

A-'] -> Zj O 

c-J -> Ci_1 1 

C2-> 1 

Z-J ->e 

x, -> A,X, 1 

x, -> Ai1 

A1 ->O 

S->EF 

E->:z:Ey 

F ->z F 

F ->z 



s 

x-J 

X· J 

A· '1 

C· 'J 

G '·· '£. 

__. a·X· ') J 

4 Ai X; 

4 Ai Cj1 

4 z. 0 
J 

4 Ci_1 1 

C2 4 1 

Z· J 
4& 

x, 4A 1X,1 

x, 4 A 1 1 

A, .... 0 

S 4 FE 

E __. y E z 

E __. y z 

F 4% F 

F 4% 
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C;1 2<j<i+1 

2<j<i +1 

3<j-:;;i +1 

2<j<i +1 



x 
y 
z 
s 

s 
X; 
C; 
A; 
Z; 
Xi 
ck 
A1 
~ 

F 
a; 
a1 
0 
l 

x 
y 
z 
$ 

s 

S X C A ; ; ,,. Z C X A ; •lo 1 1 E F a,- ai 0 1 x 'U 

- <+ <+ 
~ ,. ...!.. <+ <+ <+ - +> <+ 

= = 
..!:. 

.I <+ <+ = ~ ..!:. 

- <+ <+ +> 
= <+ <+ 

+> +> 
+> 

~ <+ ~ 

+> 
= 

<+ <+ <+ <+ 

Table 6. The EP relations for ~' 2 <j<i +1, 2 '5:,k <j. 

X; C; A; Z; cl- X1 Ai E F a,- a1 0 1 x '!-/ 

..!:. <+ <+ 
~ 

..t. ..!:. <+ <+ <+ +> <+ 

= ~ 
= 

= <+ <+ ..!:. 

.!. <+ 
= <+ <+ +> 

= <+ <+ 
+> +> 

+> 
= <+ +> 

~ <+ 

<+ <+ <+ <+ 

Table 7. The EP relations for G'i, 2 ~j <i + 1, 2 <k <j. 

Now consider the language 

L;. n L ·i = ~ x k y 1c z 1c 1 k > 1 J. 
I 
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z $ 

+> 

+> 

<+ 
+> 

+> 

+> 
<+ +> 

·z $ 

+> 

+> 

~ +> 

+> 

~ 

+> +> 

This language is known not to be context-free [4]. Obviously, every ESPi 
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language is context-free. Therefore, for all j, j~O, Lj nL j is not context-free, 

and we have the desired result. 

LEMMA 5.8 For each i, i~O, the class of ES Pi languages is not closed 

under union. 

Proof. For each i, i ~O, consider the languages L;,, and L 'i defined below. 

i +1 -
L;, = f U f ai 0 n 1 J xn I n > 1 J 

j=1 

2Xi +2 _ . 
L'i =~ U fajon 1 JXn I n~1 J 

j=i+2 

Obviously, both I'i, and L 'i are ES Pi languages. Now consider 

2xi+2 . 
L;, u L 1i = ~ u f ai on 1 ) Xn I n ~ 1 J. 

j=1 

Using an argument similar to the one used in Theorem 5.6, we can show that 

L;, UL 'i is at least ESP2xi +1 · Hence, the class of ESPi languages are not 

closed under union. 

LEMMA 5.9 For each i, i>O, the class of ES.Pi languages is not closed 

under homomorphism. 

Proof. For each i, i~O_, consider the language L;, defined below. 

i +1 . (. 2) 
4 ={ U fajon 1ixn I n>1 J UfCLi+20n x -i+ xn I n>1 J. 

j=1 

Grammar G, shown below is an ESPi grammar defining G. 



G: 

s --) ai Xi 

x-1 --) A- X -'] 1 Ci1 

x-J --) Ai Ci1 

A-'] --) zi o 

c-1 
--) cJ _11 

C2 -+ 1 

z-1 -+ E 

X1 --) A1X11 

X1 -+ A11 

s 4~+2Xi+2 

Define the homomorphism h as follows: 

h(a·) =a-'J 1 

h(O) = 0 

h(1) = 1 

h(x) = 1 

i+2 -
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2<j<i+1 

Obviously, h(D;,)=~ U ~aion 11xn I n~1 j, is not ESP.;,. Hence, the class of 
j=1 

ESPi languages is not closed under homomorphism. 



CHAPTER 6 

PROPERTIES OF EPSILON PRECEDENCE GRAMMARS 

In Chapter 3, we have shown that the class of . ESP grammars are properly 

included in the class of EWP grammars. Also, in that chapter, we established that 

the classes of ESP and EWP languages are equivalent. Additionally, we proved in 

Chapter 4 that every deterministic context-free language is described by some 

EWP grammar. 

The purpose of this chapter is to explore the inclusion relationships between 

ESP and EWP grammars and languages and the other known classes of context-

free grammars and languages. We show that the classes of EWP and ESP gram-

"lars are properly included in the well-known classes of context-free grammars 

with e-rules which describe exactly the class of deterministic context-free 

languages. The equivalence of ESP languages with the class of deterministic 

context-free languages in turn implies that the hierarchy of ESP languages esta-

blished in Chapter 5 exhausts the class of determ.inistic context-free languages. 

This resul~ is of particular importance since the hierarchies of LL(k) and strict 

deterministic languages cover only a subset of deterministic context-free 

languages. 

We begin by generalizing the SR(s ,k) concept [ 44] to obtain a larger class 

we shall call Extended SR(s ,k ), or ESR(s ,k) for short. The class of ESR(s ,k) 

grammars is then used as a vehicle to establish some desired properties. Recall 
I 

from definition 2.1 4 that a state of an SR(s ,k) parser is deterministic if there are 

no "shift-reduce" conflicts and no conflicts with '-'accept." "Reduce-reduce" con-

105 
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flicts, however, are permitted provided they can be resolved by looking "s" sym

bols below the shortest right-part among the conflicting productions. Our gen

eralization allows for "shift-reduce" conflicts if they can be resolved in a manner 

similar to "reduce-reduce" conflicts. 

DEFINITION 6.1 Let G=(N, ~ ,P, S) be a reduced context-free grammar. For 

s ,k ~O, let C 5 ,k be the canonical collection of SR(s ,k) states for G. Furthermore, 

let A( y) E:Cs ,k denote the SR(s ,k) state defined by 7E Ve 8 • Then G is said to be 

an ESR(s ,k) grammar: 

i) For k =O, if [X-+a.p],[ Y-+o.]Et\(y) then {J=e, and if [x .... ap.],[Y .... p.] EA(-y) 

then not both [X .... a.,B],[ Y ..... p] belong to the same state. 

ii) Fork >0, 

a) If [z .... as. Pl v]EA(SUF'1'"'s(S)) where z~s·, then e~Ji'JRS'l'Jc(pv) 

or a=e and [Z ..... Splv]~L\(t;) 

b) If [A .... a.p I u] and [B .... oa. Iv] belong to A(-y) where v EEFFk ({3u) 

then not both [A-+. ap I u] and [B-+o .a Iv] belong to the same state. 

c) If [A .... oa.plu] and [B~a. Iv] belong to A(-y) where vEEFFk(,Bu) 

then not both [A_.6. a{J I u] and [84 .a Iv] belong to the same state. 

As our first result in this chapter, we establish that every ESR(m.,n) gram

mar is also (m.,n)BRC. 
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THEOREM 6.2 The class of ESR(s ,k) grammars is included in the class of 

(s ,k )BRC grammars. 

Proof. We proceed by assuming G is not (s ,k )BRC and then show G is not 

ESR(s ,k ). Suppose in the augmented grammar G', there are rightmost deriva-

tions: 

S'==>~aACJ==>rrn ape.> 

S' = =>~ -y Bx= =>rm -yox =a' {Jy 

where yE:~·, fx f <f yf, SUFF5 (a')=SUFF5 (a), PREF1t;(c.>)=PRF:F1t;(y) and 

B-->o~A-->p. We must consider two cases: 

CASE 1. x=y. 

If x =y, then 7o=cx. '{J and f3 is a suffix of o or vice versa. In either case 

[B_.o. I PREF1c:(y)] and [A-->{3. I PREF1c:(y)] belong to A(SUFFs(70)); this fol-

lows because 

Suppose 6=1Jf3. Then 

SUF'F's (a{J) = 
SUFFs(SUFF5 (a){J) = 
SUFFs(SUFFs(o. '){3) = 
SUFFs(a '(J). 

[B-->1J.{3 I PREF1t;(y)]EA(SUFFs(-y1J))=A(SUFF~(a ')),and 

[A-->.{3 I PREF1c:(y)]E:A(SUFF5 (a))=A(SUFFs(a ')). 

Clearly, if k =O, condition ( i) of Definition 6.1 is violated and if k >0, condition 

( ii-c) of Definition 6.1 is violated. The argument assuming {3=1J6 is similar. Thus 

for the case x =y we have ~hown G not to be ESR(s,k ). 
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CASE 2 . lxl<IYI· 

In this case we consider two subcases: 

a) Ix l<IYI~ I oxl 

a·p I Y 

from the second derivation that [8~0 1 .62 I PREF1c(x)] EA(SUFF5 (yo 1 )) = 
A(SUFF5 (a '{3)). From the first derivation we also have 

[A4p. I PREFk;(GJ)] EA(SUFFs(afJ)) = A(SUFFs(a '{J)). Now either 

(1=72o1, where 7=7172 or c51 = o '1 (J. If (1=72o1, then we have the following: 

[8461.62 J PREF1c(x)] EA(SUFF5 (a '{J)), 

(A 4 7261. I PREF1c (tA>)] EA(SUFF8 (a' {J)), 

PREF1c(tA>)=EFF1c (02PREF1c(x )), 

[84.6102 I PREF1c(x)] EA(SUFF8 (7)), 

[A472.01 IPREF1c(tA>)] E A(SUFFs(a72)) = A(SUFFs(a'72)) = 

A(SUFFs (7172)) = 

A(SUFFs (7)). 

Again, if k =O, condition ( i) of Definition 6.1 is violated and if k >0, condition 

(ii-b) of Definition 6.1 is violated. On the other hand, if 01 =6 ·,p, then we 

have the following: 

[846 '1(1.02 1 PREF1c (x)] EA(SUFF8 (a '(J)), 

[A4/l I PREF1c(tA>)] EA(SUFFs(a '{J)), 

PREF1c(tA>)=EFF1c (02PREF1c(x )), 

[846/ 1./M2 J PREF1c (x )] EA(SUFF5 (70 '1))= A(SUFFs(a ')) = 

A(SUFFs (a)), and 

[A4.{J I PREF1c(tA>)] EA(SUFFs(a)). 
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Similar to the previous case, if k =O, conditior ( i) of Definition 6.1 is violated 

and if k >0, condition (ii-c) of Definition 6.1 is violated. Therefore, in this 

case, we have shown that G is not (s ,k )BRC. 

b) lxl<lyl>lo.xl 

y' v x 
a' I {J 

Let y =v ox for some v El.:+. The second derivation can be written as: 

S ' ==>~7'Z.x'==>rm 7 ·1'11.9-2.x '=a 'fJ1'2.x '==>~a '(JvB.x ==>a ·pv 6x =a· f3y, 

br where Z-+1'11'2 is the first production in the rightmost derivation to form 

the substring a ~p. Now by identifying z~19- 1 1'2 with the production B-+o and 

recalling that PREFk(r.J)=PREFk(y), where '62:.r'==>~yEI!•, an argu-

ment similar to that in part (a) can be applied to arrive at a violation to the 

conditions of Definition 6.1. Hence, G is not ESR(s ,k ). 

In each case, we have shown that if G is not (s ,k )BRC, then it is not 

ESR(s ,k ). Hence, we conclude that if G is (s ,k )BRC, then it is ESR(s ,k ). That is, 

the class of ESR(s ,k) grammars is included in the class of (s ,k )BRC. 

COROLLARY. If G is ESR(s ,k ), then G is not ambiguous. 

Proof. This is a direct result of the fact that BRC grammars are unambiguous and 

every ESR(s ,k) grammar is also (s ,k )BRC. 

We now show that the inclusion of ESR(s ,k) grammars in the class of 

(s ,k )BRC is proper. 1 That is, not every (s ,k )BRC grammar is also ESR(s ,k ). Con-

sider the grammar G with the following productions. 



S->aAc 
S->bbB 
A--+bbc 
B--+bcc 

The canonical collection of SR( 1, 1) states for G is shown below. 

A(e) A(b) A(a) 
[S' --+.Sf e] [S--+b.bBI & ] [S--+a.Acl & ] 

[S->.aAcfe] [S--+bb.Bf e] [A-->.bbBf c] 
[S->.bbBI & ] [B->.bccfe] 

[B--+b.cc) & ] 

[A->b.bcf c] A(A) 
A(S) [A->bb,.cfc] [S->aA.cf &] 

[S' -+SJ&] 
A(c) 

A(B) [B--+ be.cf & ] 
(S--+bbB.f t:-] [B--+bcc.f & ] 

[S--+aAc.f &] 
[A ··•bbc.lc] 
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In A(c) the items [B--+bc.cf &] and [A->bbc.fc] produce a "shift-reduce" con

flict, and since the items [B--+.bccf &] and [A->b.bcfc] both belong to A(b), G is not 

ESR( 1, 1 ). However, G is ( 1, 1 )BRC since the left context of A is "a" and the left 

.J context of Bis "bb." Only one symbol below the handle is required to resolve the 

conflict when "bbc" is on top of the stack. 

We now turn to exploring the relationship of ESR( 1, 1 ) grammars to EWP 

grammars. The key to our analysis is a result presented in lemma 6.3 which 

- relates the EP relations <+, :! , and +> defined for a pair of symbols (X,Y) to the 

items existing in the SR state A(X). 

LEMMA 6.3 Let G=(N, :E. ,P, S) be an EWP grammar. Let C 1,1 be the canoni-

cal collection of all SR( 1 , 1 ) states for the augmented grammar G'. 

6.3.1 The item [X->.fe]EA(&) if and only if$+>$. 

Proof. If [X->.fe]EA(&), then either X=S or S==>~Xa==>~e. In either case 
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.eEL(G) and it follows from the definition of EP relat!ions that $ +> $. If $ +> $, then 

EEL(G). Therefore, S==>r~X==>nn e, for some XE:N. It follows from definition 

of A(e) that [X4. I e]EA(e). 

6.3.2 The item [X4.Jv]E:A(e), v-:Fe if and only if$+> v. 

Proof. If [X4.fv]E:A(e), v-:Fe then the derivation S'==>S==>:m.Xa==>:m 

Xv~== >v ~ must exist in the augmented grammar, G'. It follows that v belongs 

to Li;(S) and that $ +> v. If $ +> v, then from the definition of EP relations we 

have v EL1;(S). Thus there is a production_p:X 4& and leftmost derivation Tr1pn2 

such that S==>::J.X'iJ==>l:n,'iJ==>l:n2v ~EL:+. By rearranging rr1pTr2 we obtain 

a rightmost derivation, n '1pn.12 such that S==>~1aXv r.J==>fmav r.J==>~2v c..>. 

Now if a=e, then it follows from definition of A(e) that [X4. Iv ]E.t\(e). If cx~e, 

then acN+, 7r ' 2 =Tr"q, q :Z ·!t>f:CP and S'==>~1 Pav CJ ==>::;;,zv r.J==>~v r.>. 

In this case [Z4. Iv ]EA(e). 

6.3.3 The item [X4a.fe]EA(7), -y~e, if and only if 7+> $. 

Proof. If [X4a.le]EA(7), -y-:F&, then either 7=SUFF1 (a) or a=e and there is an 

item l=[C41ly.A.AJe] in A(y) such that [X4.1£]E: closure (I) and AA.==»~e. In 

either case from the definition of A(7) it follows that -y belongs to R(S) LJR1:(S). 

Thus 7+> $. If 7+> $ then from the definition of EP relations we have 

7ER(S)UR1:(S). Thus there exists a derivation S' ==> S ==>~1'X==>~1'a, 

where SUFF1(1'-a)=7. This implies the item [X4a. I e] belongs to A(7). 

6.3.4 The item [X4a.Jv ]EA(7), 7-:F&,v -:Fe if and only if 7+> v. 

Proof (only if). Suppose [X-+cx. J v ]E:A(7), where -y~e and v "#e. Then either 

7=SUFF1(a), or a=e and there is an item l=[A-+1'-7.B.A I c..>] in A(7) such that 

[X4. Iv ]E closure (I). We consider several subcases. 
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SUBCASE 6 .3.4.a 7=SUF'Ji~ 1(a). 

In this case there must exist a production A .... oB'{JCPE:P, BEN, ~E:NULL(G) • 

and CcVo such that Xc~B~LJR(B)UR1:(B) and v c~C~LJL(C)Uli:(C). It follows 

from Definition 3.2 that 7 +> v. 

SUBCASE 6.3.4.b a=e. 

Here we have v EL,;(B) or v EFJRST1 () .... r..>) and B E:NULL(G). If v EL,;(B), then 

7! B implies at once that 7+> v. If v cFJRST1 (Ar..>) and B cNull(G), then either 

v =c.> and ""A.E:Null ( G).' or where '{). EN1Lll ( G) • and 

vE:~C~LJL(C)LJL,;(C). In the latter case we have r!:c and it follows directly 

from Definition 3.2 that 7+> v. Finally, if v =c.> and BA.E.Null ( G)+, then v is a 

valid right context of A .... 67B"A. and there must exist a production 

Proof (if). Suppose 7+> v, 7:Ff.;,v #e. Several cases arise. 

SUBCASE 6.3.4.c + 7= Z, Z E: N, and v EL,;(Z). 

In this case A_,.cx.y Z {JE P and I =[A .... a.7. Z p I u ]EA( 7) for some u E:I! Ute J. By 

argument similar to the one given in ( 2) above there must be an item [x __.. I v] in 

the closure(!) and thus in A(7). 

SUBCASE 6.3.4.d 
f; 

y=v. 

In this case there is A .... a.7Z 1 Z 2 · · · ZnvfJE P such that ZiE NULL(G), 

1~i<n. But then l=[A .... a7.Z 1 Z 2 · · • Zn.vofu] ·E:A(y) for some u EI!UteJ. 
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Since Z1E Null(G), Z1==>+e and it follows that there is an item [X-*.ft]E 

closure(!) for each tEFlRST1(Z2 · Znvou). Since ZiE Null(G), it follows 

that [X-*. f v ]E closure(l)cA(7). 

SUBCASE 6.3.4.e 7! B ,7cL(B) ULe(B ). 

The argument is similar to the one given in the previous subcase. We 

observe that there is l=[A4CX")'.Z1 Z 2 ···Zn.Bo Ju] EA(7) such that 

v EFIRST1 (Z2 · · · Zn Bou). The rest is obvious. 

SUBCASE 6.3.4.f y:! v ,7ER( Y) LJRi;( Y). 

In this case there is a production A4aY6v f3E P such that o==>~ e. Thus 

• z • z • we have S==>rm1'A c..>==>19-a Yuv f:lc..> ==>rm.1'cx.Yuv c..>' ==>rm1'a Yv c..>'. Now 

if 7ER(Y), then 19-a Yv c..> '==>~ 1'aA.Zv c..>' 

[Z_4°'1'")'. Iv ]EA()'). If 7ERi;(Y), then we have 

==>nn 'iiaA.vB pv c..> ', where 7clB i LJR(B) and 

==>rm 1'A.i¥7v c..>' and 

1'a Yv r..> '= = >r~ 'fJcx)\.Zv c..> ' 

S==>:m1'aX-.¥B{Jvc..>' ==>~1'aA.°'1'Bvt:&>' and by the argument given for 

7E:R(Y) it follows there is [C40)'. Iv ]EA(7). 

From _ Y 1 ::! Y2 , it follows there is a production A_.aY16 Y2{J such that 

o==>~E. Thus we have a rightmost derivation In G of the form, 

5==>~19-Ar.>==>nn 1'aY1 6Y2{3t:&> ==>r~'t9aY16Y2t:&>', where c..>'EL:•. From 

v EL(Y2 ) LJLcC Y2) and an argument styled after that given in (2) above we can 

find a rightmost derivation, rr, such that 1'aY-10Y2c..>' ==>~1'aY1ovx 

==>;,,.1'cx Y 1 vx. By applying an argument similar to that given in (6.3.4.f) we 

obtain the desired result. 
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6.3.5 The item [X->.BP I v]EA()'), 7:Ff; iff 7<+ B. 

Proof. If an item [X->.B p Iv ]EA(7), 7:Fe, there must exist an item 

l=[C->19-7.DA.lfA>] in A(y) such that the item [X->.BPlv] belongs to closure(!). 

This implies BEL(D) and since r~ D from the definition of EP relations we have 

7<+ B. IF 7<+ B, there must exist a production C-,.19-7.DA. and XcN such that 

XEL(D) U ~D~ and X->B {3EP. C->1'7DA.EP implies that the item l=[C->1'7.DA. I CA>] 

belongs to A(7). Since X-+B{1EP, the item [X->.BP Iv] belongs to closure(!) c 

A(7). 

6.3.6 The item [X->.BP I v]EA(d, if and only if$<+ B. 

Proof. [X->.B/11 v]EA(E) implies X E~SJUL(S). Thus BEL(S) and$<+ B. The 

converse is equally straightforward. 

6.3.7 The item [X->.le]EA(e), if and only if ($,$)Ep(X). 

Proof. If [X->.le]EA(e) then from (1) above we have$+>$. Also X:FS', XEL(S) 

and XE:R(S). Therefore X +> $ and $<+ X. Thus ($,$)Ep(X). If ($,$)Ep(X), from 

definition of p we have$+>$ and from (1) above we have [X ..... le]EA(d. 

6.3.8 The item [X _,.·Iv ]cA(d, v -:Fe, if and only if ($,v )cp(X). 

Proof. If [X->.lv ]EA(~) then from (2) above we have $ +> v. Also the item 

[X ..... lv] in A(e) implies that XEL(S). Therefore $<+ X and $ +> v. Thus 

($,v) Ep(X). If ($,v) Ep(X) from definition of p we have $ -+> v and from (2) 

above we have item [X~.lv]EA(e). 

6.3.9 The item [X-··,.·le]cA(7), 7:Fe if and only if (7,$)cp(X). 

Proof. If [X-+.le]EA(7), then from Lemma 6.3.3 we have 7+> $. Also the item 

[X ..... le]EA(7) implies that there exists an item l=[C-+1'")'.AAI e] in A(7) such that 
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[X--+.le]E closure(!) and AA==>~&. This implies XEL(A)U~A~ therefore 

+ (7,X)E= U<+. Also the above item implies that XER(S)LJRE(S) therefore 

(X,$)E +>. Thus (7,$)Ep(X). If (7,$)Ep(X), from the definition of p we have 

(X,$)E: +> and from Lemma 6.3.3 we have [X--+.Je]EL\(7). 

6.3.10 The item [X--+.lv ]EA(7), /-FE:, v -Fe, if and only if (7,v )Ep(X). 

Proof. If item [X ·•.Jv]cA(7), then from Lemma 6.3.4 we have 7+> v. Also the 

item [X--+.lv ]EA(7) implies there is an item l=[A--+~7. CPI A] in G such that 

[X--+. lv]E closure (I). But this implies X EL(C)LJ~C~ and it follows that 

(7,X)E~ u<+. Furthermore, [X--+. Iv] E closure(I) implies (X,v) E c! u<+ u +> ). 

Thus (7,v )Ep(X). If (7,v )Ep(X), from the definition of p we have (X,v )E: +> and 

from Lemma 6.3.4 we have [X--+.lv]EA(7). 

We are now prepared to prove that every EWP grammar is ESR( 1, 1 ). 

THEOREM 6.4 Every EWP grammar is ESR( 1, 1 ). 

Proof. This result will be established by contradiction showing that if any 

one of conditions (ii-a), (ii-b) or (ii-c) of Definition 6.1 is violated for some 

reduced context-free grammar, G, then G is not EWP. 

CASE 1 (condition (ii-a) is violated) 

Assume therefore that [Z--+aS.p Iv ]E.A(S), where z~s· and each of the fol-

lowing conditions holds: 

(1.1) EE.FIRST 1 (pv), 

(1.2) a=&, 

( 1 .3) [Z--+.SP I v] EA( t; ). 
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Together these imply v =e and S==>:mZ6==>:mz==>r~S{J==>:ms. Thus 

G contains a cycle and cannot be EWP. 

CASE 2 (condition (ii-b) is violated) 

Assume the following for some 7, 7'EVc1 • 

(2.1) [A4a.p I u]EA(7), 

(2.2) [B4oa. Iv ]E.A(7), 

(2.3) v EEFF 1 ({Ju), 

(2.4) [A 4 .a.fl I u]E:A(7'), 

(2.5) [B40.alv]EA(7'). 

We consider two different subcases. 

SUBCASE 2.1 ( 7= &). 

In this case o=a=7'=E. Since v #t:, then by condition (2.2) and Lemma 

6.3.2, $ +> v. Furthermore, by Lemma 6.3.8, ($,v )Ep(B). Now if {J=E, then condi

tions (2.1) and (2.3) imply v =u and by Lemma 6.3.8, ($,v )Ep(A). Thus 

p(A) (lp(B)-:#¢ tor A~B and G cannot be EWP. Alternatively, if {J~e, then condi

tion (2.3) and Lemma 6.3.6 imply $ <+ v. But since $ +> v, <+ and+> are not dis

joint and G cannot be EWP. 

SUBCASE 2.2 ()'#&). Suppose a=&. Then 7 '=7. Since v #e, (2.2) and Lemma 

6.3.4 imply 7+> v. If {J=e, then there must be an item, l=[z_.~7. Co Ix ]EA(7), 

such that AE~C~ LJL(C). Thus r! A or 7<+ A. If {J=e and o=E, then Lemma 6.3.10, 

and conclusions (2.1) and (2.2) imply that p(A) np(B)-Frj:J and G cannot be EWP. 

If {J=e and 6#&, then 7=SUF'Ji'1(0) and (7,A)c(! U<+) violates Definition 3.9 

and G cannot be EWP. If {J#E, then by Lemma 6.3~5, 7<+ PR.8'11~1(fJ). Now either 
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v = PR.8'F' 1 ({J) or v EL(PRE'F 1 ((J)). In either case it follows that 7<+ v. But since 

7+> v as well, we have a contradiction to Definition 3.9 and G is not EWP. 

Now suppose a:Fe. In this case y=SUFF1(a) and by Lemma 6.3.4, and con

clusion (2.2) implies 7+> v. Also if, (17-e, then (1) and (3) imply 7! v or 7<+ v; in 

either case ( ~ U <+) n +> :F¢ and G is not EWP. If (J=~, then u =v. From (4) it 

follows 7'~A or 7'<+A. Thus, if o:Fe, then 7'=SUF'Ji'1(0) and we obtain a con

tradiction to Definition 3.9. In the case o =e, A~B implies a violation to almost 

unique invertibility and G cannot be EWP. 

CASE 3 (condition (ii-c) is violated) 

Here we assume the following hold for some 7, 7'EVc1. 

(3.1) [A40CX.{J I u]EA(7), 

(3.2) [B4 a. Iv ]EA( 7), 

. (3.3) v EEFF1(f3u), 

(3.4) [A 4 o. a{J I u] EA( 7 '), 

(3.5) [B 4. a I v ] EA( 7 '). 

The arguments here are very similar to those presented for case 2. We observe 

that if both 6 and (J are null, then either p(A) np(B):F¢, or G is not AUi. If 7=e, 

then o =a=£ and we can show ( $,v) E::( <+ n +> ). If 7¢&, then a=e implies 

(7,v )E.( <+ n +> ). For 7:Fe and a:F& {J:Fe implies (7,v )E( <+ n +> ). In case {J=e 

(and o=e) we observe 7=SUFF1 (6) and that ?'! B or 7<+ B giving a violation to 

Definition 3.9. Thus in every case contradictions ar.ise to Definition 3.6 and G 

cannot be EWP. 

Three important results follow as corollaries of theorem 6.5. 



118 

COROLLARY 1. The class of ESR( 1, 1) languages is co-extensive with the 

class of deterministic context-free languages. 

Proof. We have shown in Chapter 4 that every deterministic context-free 

language is generated by some EWP grammar. The inclusion of EWP grammars in 

ESR(1, 1) grammars implies that every deterministic context-free language is 

defined by some ESR(1,1) grammar. Moreover, Theorem 6.2 implies that ESR(1, 1) 

languages are deterministic and the result follows . 

.. 
COROLLARY 2 The class of EWP languages is co-extensive with the class 

of deterministic context-free languages. 

Proof. The inclusion of EWP grammars in the class of ESR(1, 1) grammars implies 

that EWP grammars define only deterministic context-free languages. Addition-

ally, from Theorem 4. 7 every deterministic context-free language is defined by 

some EWP grammar and the result follows. 

COROLLARY 3. The hierarchy of ESP languages exhausts the class of 

deterministic context-free languages. 

Proof. Obvious. 

Meaningful comparison of EWP grammars with simple mixed strategy and left 

context precedence grammars is not possible, since these grammars do not have 

t;-rules. Therefore, we have generalized the classes of simple mixed strategy 

and left context precedence · grammars to allow for &-rules. The resulting classes 

of grammars are then compared with ESP grammars. 
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DEFINITION 6.5 A reduced context-free gra"1mar, G=(N,l!,P,S), is said to be 

an Epsilon Mixed Precedence (EMP) grammar if 

( 1 ) G is cycle-free; 

(2) Epsilon precedence relations for Gare pairwise disjoint; 

(3) for all Z', Z" c NE:(G), Z'-#Z", p(Z') (l p(Z")=¢ where for all Z c NE:(G), 

p(Z) is defined as follows: 

pCZ>=~cx,o 1 cx,z) c c:! u<+ >, cx,o E +>, cz,o E: c:! u<+ u +> )J; 

(4) if A --+aX and B->t: are two distinct productions in P, then (X,B) ~! U<+; 

(5) for all ZEN E:(G), (S,$) £p(Z); 

(6) if A--+a and B--+a, a#:t: are distinct productions in P, then l(A) (ll(B)=¢, 

where for all YEN, l ( Y) = ~ X I (X, Y) E( ! U <+ ) ~ 

_ Definition 6.5 is similar to the definition of simple mixed strategy precedence 

grammars [5] except &-rules are allowed and instead of Wirth-Weber precedence 

relations EP relations are used. Conditions (4) and (5) are added to avoid possi

ble conflicts that may arise as the result of allowing for e-rules. The following 

corollary follows immediately from Definition 6.5. 

COROLLARY The class of ESP grammars is properly included in the class of 

EMP grammars. 

Proof. To show that ESP grammars are included in the class of EMP grammars, we 

only observe that conditions (1 )-(5) are identical to conditions (2)-(6) of the 

definition of ESP grammars and that condition ( 6) is always satisfied by Almost 

Uniquely Invertible grammars. For proper inclusion, we just observe that EMP 

grammars need not be Almost Uniquely Invertible. 
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We now turn our attention to the class of left context precedence grammars. 

Our objective here is to generalize left context precedence grammars to allow for 

· £-rules. We first give a revised definition for the set of goal variables which are 

used to define left context precedence grammars. 

DEFINITION 6.6 Let G=(N,:E,P,S) be a precedence grammar, for which the EP 

relations are pairwise disjoint. Assume that J'E v+ is ·a viable prefix of G with pre

fix representation 1/Jo · · · 1/ln of $y. 

(1) The set GL(y0)=GL($)=~S~ is called the set of goal variables of 1/Jo· 

(2) For i =1, · · · ,n the set 

GL( 1/lo · · · 1/Ji) =EA EN I there exists a derivation 

$S$==>r~1/101/11 · · · Vi-1.AzS==>~ 

1/101/11 · · · 1/li Ai x$ ,x E~ •, 1/li Ai c. y+ ~ 

U g Z ,PREF 1 (x$)) I ZEN and there exists a derivation 

$S$==>/m 1/101/11 · · · 1/Ji Zx$==>rm 1/101/11 · · · 1/lix$, x E:E ·~ 

is called the set of goal variables for $y. 

DEFINITION 6.7 Let G=(N,~,P,S) ·be a reduced context-free grammar. G is 

said to be Epsilon Left Context Precedence (ELCP) if 

( 1) G is cycle-free; 

(2) EP relations are pairwise disjoint for G; 

(3) for all z E:E •, for all vi.able prefixes of G, 7, ~ith prefix representation 

'f/lo · ~ · 1/ln of $7, the function VP, defined below is uniquely defined for G. 



VP(S7,z$)= 

( 1/lo · · · 1/ln-1 B ,z$) 

(1/Jo · · · '1/lnZ,z$) 

UNDF:FINF:D 
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if z =az ', SUFF1 (7)! a and there exists 

A E: GL ( 1/!o · · · 1/ln ) such that 

A -+'I/In a An EP ,for som.e An Ev• 

if z=az', SU.1"1"1(7)<+ a and there exists 

B EGL ('I/lo · · · 'I/In ) sue h thn.t 

B 41/Jn CAn EP and C==>:maAEP, 

for same A, and An in v• 

if S UFF 1 ( 7) +> PREF 1 (z) and there exists 

B EGL ( 1/lo · · · 'I/In) such thn.t B _.'I/In EP 

if SU.Ji1''1 (7) +> PR.E'F'1 (zl') and there exists 

(Z,PREF1(x$))EGL(1/lo · · · 1fn) 

OTHERWISE 

The above definition is identical to the definition of LCP grammars [35] 

except that instead of Wirth-Weber precedence relations, EP relations are used 

and in case of conflicts involving &-rules in addition to the contents of the stack, 

one symbol of the lookahead is examined. 

THEOREM 6.8 The class of EWP grammars is properly included in the class 

of ELCP grammars. 

Proof. Let G be an ESP grammar. Clearly, G satisfies conditions (1) and (2) of 

definition 6. 7. Let 7 be a viable prefix of G with prefix representation of 

'I/lo · · · 1/Jn of $7 and z be a symbol in~ LJ~E -J. Assume for the sake of contrad-

iction that VP($7,z$) is multiply defined. Obviously, since G is Almost Uniquely 

Invertible and have unique EP relations, there must exist B and Z, BEN, ZEN,:< G), 

such that Band (Z, SUFF1(x$)) belong to GL(1J'o · · · 1fln) where 8~1/ln, 1/Jn#-e is 
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a production in P. Suppose 1/ln =1/J 'nX. Then, SU.fa'Ji'1 (1/Jn) = SUF'.ft'1 ('J) = X and 

there exists a derivation 

SS$==>r~1/101/11 · · · 1/lnZx$=1/101/11 · · · 1/J 'nXZxS==>:m 

1/101/11 · · · 1/1 'n Xx$, x E~ • 

in G. Hence, (X,PREF1(z$))Ep(Z), and we must have that (X,Z)E(! U<+ ). But, 

P contains productions 841/J 'n 'X, and Z4~, and (X,Z)E(! U<+ ). Thus, G is not 

ESP and we have a contradiction to the assumption that G is ESP. 

We now compare strict deterministic and ESP languages, and show that for 

all n, and i, the class of strict deterministic languages of degree n is incommen-

surate with the class of ESPi languages. 

LEMMA 6.9 For all n, and i, i:?::O,n~1, the class of strict deterministic 

languages of degree n is incommensurate with the class of .ESPi languages. 

Proof. Recall from Definition 2.16 that strict deterministic languages of degree 

n are those that may be recognized by a DPDA having n states with empty stack 

in a final state. For each n, and i, i>O, n:?::1, consider the language 

i+1 -
Ln .i = ~ x my k x my k I m. ~ 1 , 1 ~k ~n j U l U aj on 1.1 xn I n > 1 j 

j=1 

Using the same argument presented in Harrison[22] showing that the 

language Ln =lxmyk xmyk I m.21, 1~k~n J is strict deterministic of degree 

at least n, we may show that L,,,,i is also strict deterministic of degree at least 

n. Similarly, using the argument presented in chapter 5, we can show that Ln,i is 

EWP; where j is at least equal to i. We now show that L,,.,-;. is indeed ESPi and 

strict deterministic of degree n. First, we present an .E'SPi grammar defining 
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Gn,i= 

s 4 81 

s 482 

S 1 4 aiXi 

x-J 4 Ai x-] Ci1 

x-J 4 Ai Ci 1 

A-') __. Zj 0 

c-J 4 Ci_1 1 

C 2 4 1 

zi 4£ 

X1 4 A1X11 

X1 4 A 11 

A1 4Q 

1~k~n 

15,k<n 

It can be easily shown that the above grammar is ESP'i and generates 

exactly L,,, ,i. Hence Ln ,i is HS Pi. Now, we give a dpda with n states recogniz-

ing exactly the sentences in 1-'n,i· 



o(q o,x ,Zo)=(qo,AH) 

o(q o,x, FJ)=(q o' CB) 

o(q o,y ,B)=(q o,D) 

o(qk ,y ,D)=(qk +1,D) 

6( qk ,x ,D) =(qk ,&) 

6(qk ,y ,A) =(qk-1,d 

o(q o,y ,A)=(qo,e) 

6(q o,ai ,Z o)=(q o,[ai ]) 

6(qo,O,[ai ])=(q 0 ,[ai,oi]) 

6(q o,O,[ai ,oi])=(q 0 ,[o]i [a1 ,oi]) 

6(q 0, 1,[ai ,oz ])=(q 0 ,[ai ,oz-1 ]) 

6(q o, 1,[aj ,O])=(q o,e) 

o(q o, 1,[0])=(q o,d 

O<k<n-1 

O~k<n-1 

O<k<n-1 

1 <j<i +1 

1<j<i+1 

1~k~i+1 

1<j<i+1, l>O 

1<j~i+1 
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Again, it can be easily verified that the n-state dpda given above, recog

nizes Ln ,i in the final state q 0 , with empty stack. Thus, we have shown the fol

lowing 

(1) For a fixed n, the class of strict deterministic languages of degree n 

includes at least one ESPi language, for all i>O. 

(2) For a fixed i, the class of ES Pi languages contain at least of strict 

deterministic language of degree n, for all n>1. 

Conclusions ( 1) and (2) above establish our desired result. 

COROLLARY For all n, and i, i>O,n~1, the class of strict deterministic 

grammars of degree n is incommensurate with the class of ESP-;. grammars. 

Proof. Obvious. 
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We conclude our comparisons by comparing ESP and LL languages. 

LEMMA 6.1 0 For all k, and i, i~O, k ~ 1, the class of LL(k) languages is 

incommensurate with the class of ESPi languages. 

Proof. It is known that the classes of LL(1) and E'SPo (simple precedence) 

languages are incommensurate. Hence, we assume that i>1 ,k > 1. Consider the 

language 

. 'i+2 
Lk,i=~xn'4> I n>1 and~c~b,c,blc+ 1 djnJu~ uajon1jxn I n>1j 

, j=1 

Using the arguments given in Aho and Ullman [ 5], showing the language 

~xn~ I n~1 and ~E~b,c,bk+1 in,~ is not LL(.k), we could establish that Lk,i is 

not LL(k ). Similarly, we can show that [,k ,i is not ESP.;,. To complete the proof, 

show that 4 ,i is LL(k +1) and ESPi +1 · The following is a LL(k) grammar which 

generates L1c ,i. 

S1~xA 

A~B 

B~bc 

B~c 

S2 .... ajXi 

Xi~OJj 

y;- .... x-1i 
1 :J 

yi_.,j 

1~j~i+2 

15j~i+2 

1~j~i+2 

1~j~i+2 
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Now consider the grammars G=(N,~,P,S) and G' =(N' ,~ ',P' ,S) given below. 

G;, 
---------
s __. akxk 1 <k <i + 1 

xk 4 Dk Xk Ek 1 <k <i + 1 

xk 4 1JJc Ek 1<k:c:;i+1 

DJc 4 zk o 1 <k~i+1 

Ek 4 Ek-1 1 1 <k~i+1 

Z1c 4E 1 <k~i +1 

D1 4Q 

E1 4 1 



S-+[xc] 

S-+[xbk+i d] 

S-+[xi,xbi+1J • 

[xi ,:rb i ]-+ [ x ] [ :r i -1 ,:rb i] 

[e,xbi]-+[xbi] 

[xb i +1 ]-+[xb i ][ b] 

[xbk+ 1]-+[x,xbk+1 ][b] , 

[xb ]-+[x ][b] 

[xb ]-+[x ][xb k + 1 d ][b] 

[xb ]-+[x ][xc ][b] 

[xb k+1 d]-+[xb k +i ][d] 

[xc ]-+[x ][xb k +1 d][c] 

[xc ]-+[x ][xc ][ c] 

[xc ]-+[xi ,xb i ][c] 

[xc ]-+[x ][c] 

[x ]-+x 

The EP relations for ~ are shown in Table 8. 
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O~i<k 

1<i<j<k+1 

1-~j~k +1 

1<i<k +1 
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s 
[z• ".~· "J Hi-----+---+----t----1~---j-----t-----ir---r--;----r-T--r-rT--t-r--r-:;:.:-t-r-1 [zl ,rl> i ] 

« 
« 

lzl ,zbtt 1J 
[% .rl>"" 'J 
(t,zti• • •1 
[z',zbl] 
[%bt '' I 
(zbl] 
tzc J 
[zb 11" 1d] 
(z] 
[bJ 
(c I 
[d) 
% 

b 
c 
d 
s 

4> '> 
« <> •> 
4> '> +> 

•> 
0 <> <> 
« « •> 
« 
<• •> 

Table 8. The EP relations for ~, O <i <j ~k. 

Clearly, ~ is EWPi and Gn is EWP0 • Let 

Gn.,i =OSJ UN UN',~ U1: ',lS'_,S i UP UP',S'). 

Then, Ln,i =L(GJc,i)· Therefore, for all k, and i, i~O, k.~1, the class of LL(k) 

languages is incommensurate with the class of ESPi languages. 

The relationship between ESP languages a~d the other classes of languages 

is summarized in Figure 8. 



Determ.injstic CFL 
BRC 
LR 
UI(2, 1) preeedenee 
SMSP 
EWP 

SIMPLE PRECEDENCE 
WEAK PRECEDENCE 
EWP0 

Figure 8. The hierarchy of deterministic context-free languages 
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CHAPTER 7 

CONCLUSIONS 

This chapter summarizes this research and suggests further research direc

tions. 

7.1 Summary 

This research has developed the theory of epsilon precedence grammars and 

languages. We have generalized different classes of precedence grammars by 

allowing for e-rules. This generalization is not trivial since we have shown that 

the class of epsilon simple precedence grammars describes all deterministic 

context-free languages; that is, they are equivalent in descriptive power to 

LR( 1) grammars. 

The existence of an infinite hierarchy among epsilon precedence languages 

was established. We demonstrated that for all i~O, the class of ESPi languages 

is properly included in the class of ESPi +1 languages. To establish the hierarchy 

of ESP languages, we have proven a new iteration theorem for the class of ESPi 

languages. This is the only exhaustive hierarchy of deterministic context-free 

languages studied in the literature. We have also shown that the hierarchy of 

epsilon precedence languages is orthogonal to the hierarchies of strict deter

ministic and LL languages; that is, for each i,; >O, L;, -Lr#:c/J and Lj-Li #:¢, 

where L;, is the class of ESPi languages and L; is either the class of LL(;) 

languages or the clas~ of strict deterministic languages of degree ; . 
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Algorithms were developed to convert arbitrary LR( 1) grammars directly to 

equivalent (2, 1 )EWP and EWP grammars. The EWP grammars produced by these 

algorithms are Viable Prefix EWP grammars. We demonstrated that EWP parsers 

for Viable Prefix EWP grammars have the viable prefix property. That is, they 

detect syntactic errors at the earliest possible time. This result is of particular 

importance since it shows for the first time that ·every deterministic context-free 

language has a (1, 1) epsilon precedence parser with the viable prefix property. 

Finally, we proved that the class of Viable Prefix EWP grammars is properly 

contained in the well-known classes of context-free grammars with i;-rules defin

ing exactly the deterministic context-free languages, thereby characterizing the 

most restrictive set of known properties for a class of grammars defining every 

deterministic context-free language while yielding viable prefix parsers. 

7 .2 FUTURE DIRECTION OF RESEARCH 

There are a number of ways in which our research may be extended. We 

conclude by enumerating some of them. 

( 1) The implementation of a parser-generating system based on epsilon pre

cedence techniques is the first obvious extension of our research. The 

epsilon precedence parser-generating system must accept LR( 1) grammars 

as input and produce a compact epsilon precedence parser as output. The 

effectiveness of different parser optimization schemes may be analyzed 

with this system. 

(2) The algorithms developed in Chapter 4 may prove to be the useful in the 

development of incremental parsers. These algorithms encode the LR state 

information into the syntax tree, permitting the effective restoration of the 

parser to any configuration using only syntax tree. 
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(3) A number of important theoretical questions remains open. The equivalence 

problem for ESPi grammars and deciding whether or not an .ESPi language 

is also ESPj, for some j <i were not addressed in our research. Also, the 

relationship of Ul(1,k) precedence grammars [4] to ESPi grammars is not 

established in our research. 

(4) Although we established that the class of Viable Prefix EWP grammars 

defines exactly the deterministic context-free languages, a number of ques

tions concerning these grammars remains unanswered. Among these · are the 

equivalence of Viable Prefix EWPi an'd Viable Prefix ESPi grammars and 

determining whether or not every EWPi language is defined by some Viable 

Prefix EWPi grammar. 
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