
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Data Structure Implementation and Investigation for a Prolog Data Structure Implementation and Investigation for a Prolog

Language Interpreter Language Interpreter

Hector Iurcovich
University of Central Florida

 Part of the Systems and Communications Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Iurcovich, Hector, "Data Structure Implementation and Investigation for a Prolog Language Interpreter"
(1986). Retrospective Theses and Dissertations. 4905.
https://stars.library.ucf.edu/rtd/4905

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/276?utm_source=stars.library.ucf.edu%2Frtd%2F4905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4905?utm_source=stars.library.ucf.edu%2Frtd%2F4905&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA STRUCTURE IMPLEMENTATION AND INVESTIGATION FOR
A PROLOG LANGUAGE INTERPRETER

BY

HECTOR IURCOVICH
B.S.E., University of Central Florida, 1985

THESIS

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering in the

Graduate studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Fall Term
1986

A developmental

constructed in the

ABSTRACT

Pro log language interpreter is

c programming language. The data type

format is a subset of that of the Project Aquarius Prolog

Engine proposed and under development at the University of

California, Berkeley. The design of the Prolog interpreter

is part of an investigation at UCF in design of expert

system architectures for real time applications.

The interpreter facilities of data structure definition

and manipulation are developed and applied. The list data

structure is used as an example data structure.

The scheme for representing structured data is based on

the Lisp cons cell. Run-time generated lists are represented

by car and cdr pairs and are maintained separately from data

structures which are part of the Prolog program.

A data memory is used to augment the environment memory

of the Prolog interpreter. The advantages and disadvantages

of the proposed structure and implementation scheme are

discussed.

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation

to his major professor, Dr. Brian Petrasko, for his guidance

and encouragement during this study. The author would also

like to extend his gratitude to Dr. Harley Myler and Dr.

Robert L. Walker for serving on the committee and reviewing

this report.

Thanks are especially due to Ms. Candie Steward,

editorial assistant University Library, for her help in the

proper preparation of this thesis.

My special thanks to my family for their support which

enabled the author to complete his study program.

iii

TABLE OF CONTENTS

LIST OF TABLES . . v

LIST OF FIGURES . . vi'

CHAPTER

I. INTRODUCTION 1
2
4
7

Expert Systems
Overview of the Prolog Language . . .
Unification Process and Backtracking . . .

II. THE PROLOG INTERPRETER 8
Comparison of P5 to Project Aquarius . . . 13
Interpreter Operation 14
Interpreter Functions 15

III. THE DATA STRUCTURE FACILITY. 20
Implementation of a Data Structure for P5 . 20
Implementation of the List Data Structure . 21
Data Structure Format in P5 24
Data Structure Facility Operation . . 26
The Makelist Program Example 27

IV. SUMMARY AND CONCLUSIONS . . 32

APPENDIX A
APPENDIX B
APPENDIX C

REFERENCES

SAMPLE RUN OF MAKELIST EXAMPLE 35
INTERPRETER PROGRAM MODULES LISTINGS . 37
FLOWCHARTS OF INTERPRETER MODULES . . . 53

. 56

iv

1.

2.

3 •

4.

LIST OF TABLES

DATA TYPES CODES

MEMORY ORGANIZATION OF P5 . .

UNIFICATION CASES .

DATA STRUCTURE MEMORY .

5. PROGRAM STEPS AND RESULTING BINDINGS

v

. 10

. 11

. • 18

• • 2 6

. . . 31

1.

2.

3 .

4.

5.

LIST OF FIGURES

Block Diagram of a Prolog System

Word Format in P5

Value Field Format for Data Types

9

9

. 10

String-Based Representation of a List in P5 23

List-Based Representation 23

vi

I. INTRODUCTION

Prolog is an accepted and developing language, being

used in the design of many expert systems. The Japanese are

using it for fifth generation systems design and it is the

base language of knowledge information processors being

designed at the University of California, Berkeley. Prolog

is now available on the personal computer and is being

discussed in the "small system" environment. This will

increase its popularity and acceptance.

A research effort directed at the design of special

purpose prolog-based engines for application in real time

systems is underway at the University of Central Florida. At

present an object code interpreter PS, is specified for the

Prolog development project.

The objective of this study is to add a data structure

facility to the object code interpreter.

The following chapters will overview the Pro log

language and discuss the architecture of the interpreter.

Chapter II is a description of the interpreter. Chapter III

presents the design of the data structure facility under the

current architecture.

Chapter IV,

suggestions for the

architecture.

Summary and

modification

Expert Systems

Conclusions,

and extension

2

contains

of the

Expert systems are used to solve problems of realistic

complexity with relative high performance. They should also

be able to explain the solution. Most expert systems

consist of a database to hold knowledge, and an inference

engine used to process the knowledge base and generate

solutions.

Computer based problem solving can be based on "State

Space Search." This scheme entails starting with an initial

state, testing for a final state or goal state, and if

failure, then generating and testing new states using

available rules and operators. The search method used

could range from a depth-first search to a breadth-first

search or some guided depth-first search using an evaluation

function.

Current research and development efforts in expert

systems

These

focus on Pattern Directed Inference systems (PD!) .

are systems where knowledge is represented by

"formalisms" called rules or structures or clauses which are

searched by the inference engine for patterns associated

with the current state and the goal state.

3

Current issues in PDI systems include knowledge

representation and performance. Knowledge is represented as

rules sets (production systems) , generalized graphs

(association nets or object oriented systems) and predicate

logic (logic programming systems).

An important element in performance is the use of

strategies or heuristics to reduce the space search domain.

Logic programming systems, such as Prolog, have a fixed

strategy which is simply the ordering of rules and facts.

Production systems provide for alternative strategies.

These systems consist of a rule set, working memory and an

interpreter. Rules are condition-action pairs. The

conditions are object-attribute-value (OAV) triples; these

are the "patterns" referred to in the definition of Pattern

Directed Inference systems. The actions will alter working

memory, perform computations, and do input/output. Working

memory contains data (OAVs) and the data structure which is

modified. It also contains the goal. The interpreter

operates in a recognize-act cycle. It matches conditions,

selects the rules, and terminates on no matches. Some of the

advantages of these systems over Prolog are that the

interpreter views all matches and selects the next rule

using conflict resolution strategies, whereas the Prolog

strategy is to select the first valid match in a search of

the database.

4

The conflict resolution concept embodies the use of

meta-rules.{10} The addition of strategies in logic

programming systems is a current research effort.{9}

Overview of Prolog Terminology and Processing

The Prolog language is an interactive language founded

on symbolic logic and based on a formal mathematical system

from a subset of classical logic. It performs its

computations by pattern matching over its data elements, a

process called unification.

The unification of items is successful if the items

(and the data elements associated with the items) are the

same or are compatible. Thus a set of data elements unify

if, given the relationship between these data elements,

there are no conflicts with respect to their value.

Successful unification can result in the binding of data

elements.

Prolog is a language that is simple and easy to learn

yet it is powerful for many applications {8}. Most current

Prolog implementations use the following terminology and

definitions. A constant is an alphanumeric symbol that

begins with a lowercase letter. A variable is represented by

an alphanumeric symbol that begins with an uppercase letter.

5

A clause is a primitive Prolog expression. A clause has

a head and may have a body. The clause head has a name,

predicate or functor, and arguments. Clauses with the same

name constitute a Procedure.

A clause without a body is referred to as a fact. The

functor is a relationship and the arguments are ordered

elements of the relationship. The following is an example of

a fact. The first argument is the father, the second

argument is the son.

father(robert,gary).

A clause with a body is referred to as a rule. The term

rule is used to represent a clause which has both a head

and a body.

For example, the following is a rule that could be part

of the database.

grandfather(X,Y) :- father(X,Z), father(Z,Y).

The head of this rule (clause head) contains two

arguments, X and Y, which are two of three local variables

used in the rule expression. When the rule is activated as a

result of unification of the rule (clause) head with a

calling clause head, the local variables in the rule head

6

are bound to the arguments (constants or variables) of the

calling clause head.

The body of the rule consists of calls to the database

for rules and facts. The subsequent unifications bind the

unbound local variables. On termination of the rule, marked

by the period (.),the bound local variables are bound to

the calling variables and thus the unification of the

calling rule head is completed.

The term goal is associated with the calling clause

head and the body consists of subgoals. For the goal to be

met, all the subgoals must be met.

The body contains two subgoals and an additional local

variable; z. This local variable links the two clauses of

the body. The second father clause in the body will use the

value bound to Z by the first father clause.

Arguments in Prolog are in general called terms; these

can be constants, variables, or as discussed in Chapter III,

data structures, which are compound terms.

In P5, there are privileged constants. The constant NIL

is used to delimit the end of a clause or data · structure. A

variable can become bound to a constant, another variable

or a data structure. Variables are local to rules and are

essentially indices. A data structure is an object which

consists of a functor followed by a sequence of terms as

arguments. This is discussed in detail in Chapter III.

7

Unification Process and Backtracking

Unification is the pattern matching method used by

Prolog to bind values (i.e., constants).

Many different unification cases arise due to the

possible types of data words. For example, two constants

unify only if they are the same constant. If a variable has

not yet been bound then it will unify with a constant or

another variable. Two data structures will unify if all of

the respective subelements of the structures unify.

All information regarding bindings must be kept in

memory. This is necessary for returning a value for the

calling variables of a calling rule, and for backtracking.

Backtracking occurs when, during unification, a fact or

a rule cannot be found that unifies with a subgoal.

Therefore the interpreter must return to its last successful

unification, called a choice point, and undo the bindings

that caused it to fail; and retry the unification of the

goal (subgoal of the present rule) with the next rule or

fact in the database with the same functor.

II. THE PROLOG INTERPRETER

The main objective of the interpreter is as a

development tool. The long-term objectives are to examine

the partitioning of an inference engine into functional

components that can be optimized for specific applications.

For example the control component can include additional

search strategies instead of the standard top-down

left-right Prolog scan of the database. Other components

that can be added and/or optimized include the addition of

pre-fetch of rules and capabilities for tracing the

solution process.

The P5 Prolog interpreter is an object code interpreter

in which memory is structured as strings. A list processing

system, XLISP, is being investigated as a host system. The

host system will provide facilities for Prolog source code

translation, I/O, and memory management.

The Prolog interpreter expects its data organized in

tables and string memory. This data is generated by a Prolog

source compiler. In this version the memory is declared and

initialized in a header file. The following sections will

describe the data types used by the interpreter and its

memory organization.

8

The following is a block diagram of a Prolog system.

PROLOG PROGRAM RESPONSES

(Data Base of QUERIES
Rules and Facts) -~~~~~~~~~

PRO LOG
INFERENCE

ENGINE

USER TERMINAL

Figure 1. Block Diagram of a Prolog System.

9

The P5 interpreter uses the following data word format:

Words are 16 bits in length where the four most significant

bits are used for the type. The twelve least significant

bits are called the value. The value field may have

subfields as in the case of structures. In this case there

is an eight bit value field (the functor) and a four bit

arity field. The following figure shows data word format of

P5.

1Type(15:12] Value [11:0]

Figure 2. Word Format in P5.

10

The following table describes the data type assignments

for the P5 interpreter.

TABLE 1. DATA TYPE CODES

TYPE [15,12] CODING HEX VALUE

Structure llXX
Clause (SC) 1100 c
Data structure (SD) 1101 D
Built-in (SB) 1110 E
Procedure (SP) 1111 F

Reference OlXX
Variable (RV) 0100 4
Pointer (RP) 0101 5
Reference Pointer Fact 0110 6
Reference Pointer-Rule 0111 7 -

Constant ooxx
Constant (C) 0000 0
Constant NIL (NIL) 0001 1 -
Constant EOS (EOS) 0010 2 -

LINK (NOT USED) lOXX

The following illustrates the Value Field for Data Types:

[15:12] [11:4] [3:0]

Type SC Value or Functor Arity

[15:12] [11:10] [9:0]

Type SD Struc Type I Value

[15:12] [11:0]

Type SL Pointer to Flist

Figure 3. Value Field Format for Data Types.

11

P5 accesses a number of memories. Table 2 presents an

overview of the P5 memory organization.

TABLE 2. P5 MEMORY ORGANIZATION

MEMORY AREA FUNCTION

M[] STRING MEMORY WITH FACTS AND RULES
DATA ELEMENTS ARE 16 BITS IN LENGTH
ACCESSED BY GSP AND RSP POINTERS

STB[] STRUCTURE TABLE CONTAINS POINTERS TO
M[] AND FLIST[].

FLIST [] USED FOR PROCEDURES. ELEMENTS ARE
POINTERS TO M[] MEMORY.

A[] A MEMORY USED FOR CONTROL AND
BINDING INFORMATION.

The M memory is implemented as a string and it contains

rules and facts and is terminated by the End_of_String or

EOS data word.

A rule consists of rule head arguments (single data

words) followed by subgoal(s). Each subgoal begins with a

Structure Clause data word, which includes the functor and

its arity (number of arguments), and is followed by the

arguments of the subgoal. The rule is terminated by the

privileged constant NIL.

12

A Query or initial goal(s) is translated to the subgoal

format and is appended to the end of the M memory string.

The Structure Table memory, STB, is used to locate

rules and facts in M memory. It contains data types

Structure Rule, Structure_Fact, and Structure_List. In P5,

STB is a table structure which is accessed by the pointer

(functor) in the subgoal SC data word. For cases where the

facts or rules have the same functor or search key, it is

necessary to not only search STB but also FLIST.

The FLIST memory is used in the case of procedures. A

procedure contains clauses with the same clause head

functor. The structure table, STB, is linked to the string

of pointers in FLIST by the data type Structure_List.

The A memory or rule activation memory contains the

state and binding information. It is a linked record

structure. Activation records are terminated by a NIL data

word.

The A memory records contain a header field where

information for backtracking is kept. It also contains the

argument binding records. These records contain four fields

C,V,G, and F.

The c field normally contains the bound value or

constant, the v field contains the bound variable, the G or

Goal field contains the pointer to the head of the calling

13

clause or subgoal, and the F field contains zero or an index

of the FLIST string. Thus the F Field marks (by

dereferencing) the match clause in the program string. If F

is zero, or the index points to NIL in FLIST, there are no

further matches and the goal fails.

Comparison of P5 to Project Aquarius

The UCF Prolog interpreter can be compared to other

developmental Prolog systems. The following statements

address the differences and similarities of the UCF Prolog

interpreter P5, and the Prolog system of the Aquarius

project at University of California at Berkeley.

In the Project Aquarius {3}, the Prolog source code is

translated to an instruction set proposed by Warren{l},

which includes instructions such as get_c, unify_c and

call_p (procedure) . This is assembled and is resident in the

host computer, an NCR/32, in an area called the code space.

It is accessed by the Prolog Engine {6}. The Aquarius system

has data types Reference, Constant, Structure and List. The

data type Reference is associated with a variable and points

to data words which are bound to the variable. The data type

Constant holds a value and has a field which specifies the

14

type of value. The Structure and List data types are used to

point to values in the heap in the data space. All data

words are cdr coded. In the cdr coded scheme a bit of each

data word indicates whether the current element is a car or

a cdr. Thus lists can be stored sequentially in memory by

just using car elements, a cdr element is used when a

discontinuity is present and the reminder of the list needs

to be indicated. This is a typing of each structure element

so that it can be processed as a list.

The data space for Aquarius is in the host and consists

of various structures, namely, Environment Frames, Choice

Point Frames, Trail Stack and Heap.

The A memory in P5 is used for all of the above except

the Heap. This is the data structure memory (DM) which is

added to P5 in Chapter III.

Interpreter Operation

The interpreter is presented a query which is a

goal(s). The goal is appended to the program string in M

memory and an activation record is created in the A memory

if the goal is matched with a rule in the program string.

15

The found rule is processed. The subgoals of the rule string

constitute new goals, each of which must be unified. Each

subgoal or new goal which is a rule adds goals to the search

process.

This "stacking of goals" is implemented

structure of the A memory. When a match is to a rule

by the

the A

memory is "pushed." A new activation record is created and

once the rule has been unified, the A memory is "popped."

The interpreter continues processing until the A memory

is "popped" to the query activation record. At this point

the query has been unified with the program and the

bindings, which have been made during the process, are in

the query activation record. This is presented to the I/O

facilities as a response to the query.

A virtual goal stack is implemented by storing the goal

string pointer as a reentry point to the program string, in

the A memory.

Interpreter Functions

P5 is written in the C Language. The interpreter is

organized as functions with specific tasks. The major global

variables are the goal string pointer, gsp, the activation

memory pointer, ap, a flag of the type of clause under

16

match, rule flag (rf), and the pointer to the clause (rule

or fact) under match, Rule_String_Pointer (rsp) . Additional

global variables are also used.

The main() module accesses the goal element pointed to

by the gsp (this is initially set at the time the query is

appended to the program string) . The goal element is

examined for type and value. Depending on the goal element

type the following actions are taken :

If the goal element is a structure clause, SC, then

fetch() is called to find a matching rule or fact in the

database. Fetch sets the rule string pointer, rsp, and

returns a value to indicate a matching rule element was

found. Fetch also determines whether the match was a rule

or a fact (rf) . In the case of a rule, new subgoals need to

be satisfied; therefore push() is called to create a new

activation record in A[] memory.

The arguments of the goal string and the head

arguments of the rule string must be unified. The module

unify() is called for this purpose.

Other possible goal elements examined by main() are NIL

and EOS. The element NIL leads to a pop() since it indicates

the end of the current goal string. The EOS element is

found when the virtual goal stack is empty, therefore no

more processing is required.

17

The interpreter displays state information at this

point for debugging and tracing purposes.

The fetch() module will try to find a matching functor

for the current goal. The current implementation uses the

goal element value and arity as a pointer to the Structure

Table, STB. This table contains elements which are reference

pointers (RP_R or RP_F) to rules or facts in M memory, or

the Structure List data element, SL. The latter indicates

that there is a number of matches. The value field of the

SL element is a pointer to FLIST memory and leads to a list

of pointers to the requested functors in the M memory. The

SL value is the fact rule marker (frm) and is used to

remember the position in flist of the current match. The frm

is used in the construction of a binding record in the A

memory.

Fetch will also set a global variable rf to indicate

that it has found a rule or a fact. Upon return to main(),

the global variables arity (arity), rule string pointer

(rsp), and the flist marker (frm) are set.

The unify() module tries to unify the arguments pointed

to by the gsp and rsp. The number of arguments to be unified

is given by the arity of the functors. The variable bindcnt

is used to remember the number of bindings resulting from

the current unification. This is necessary in case of

18

non-unify. In unify(), the elements are examined for type

and value. If the goal element is a reference variable, and

it is bound, then the goal element takes this bound value.

A five bit key (fkey) is used to select the cases that can

be considered for unification. The key is formed by

combining the rule flag (rf) and the first two type bits of

the goal element and the rule element.

The following table shows the possible unification

cases that are handled by the interpreter.

TABLE 3. UNIFICATION CASES

UNIFY FKEY TYPE

FCC 00000 Fact Constant Constant

RCC 10000 Rule Constant Constant

FCV xxxxx {No variables in Facts}

RCV 10001 Rule Constant Variable

RW 10101 Rule Variable Variable

FDD 01111 Fact Structure Structure

RDD 11111 Rule Structure Structure

FDV 01101 Fact Structure Variable

RDV 11101 Rule Structure Variable

RVD 10111 Rule Variable Structure

FVD 00111 Fact Variable Structure

19

P5 is a flexible system with a lot of room for

expansion and improvement. The following chapter describes

the data structure addition to P5.

III. THE DATA STRUCTURE FACILITY

The data types in the initial P5 interpreter are

variables or constants which are represented by a single

data word. There is no global storage, which is consistent

with the concept of a functional language. Each rule, upon

activation is passed calling arguments which consist of

single words. Upon termination the rule returns arguments

which are also single words. Modern versions of Prolog {8},

and the Project Aquarius {3}, provide for data types of

compound objects and structures, respectively.

Implementation of a Data Structure for P5

A data structure facility for P5 is proposed. Data

structures which are included in the source code are

translated to a data structure format, and placed in a new

memory, Data Memory or DM. The pointer to the structure

position in DM is placed in a table, Data Structure Table,

DSTB. The table address, or the Structure Key, is made the

Value field of a new data type Structure Data.

It is anticipated that a number of special data

structures will be useful in a Prolog environment. One such

20

21

structure is the LIST structure. Thus the Structure Data

type is designed with a type field.

Implementation of the List Data Structure in P5

The common syntax and semantics associated with lists

is to be added to P5 source code notation for arguments with

respect to the following source code examples. The object

code representation of a list is discussed below.

An argument which is a list of three elements can be

represented as [A.B.C]. using the infix notation, the

functor is the "·"· The empty list is denoted by the

element [NIL].

A data structure can be implemented as a block of

contiguous words (a string) in a data memory space. This

would be the same as the format for a clause structure which

is a fact (i.e., father(a,b)) . Note that the functor and

arity would be a Structure Data word which is stored in a

table.

Another more common way to think of a list is as a

structure of arity two, whose functor is the "·"· The first

argument is a value, the head of the list, and the second

argument is a pointer to the remainder or tail of the list.

The first or second argument may also contain the constant

NIL to indicate an empty list or a list of one element.

22

In list processing systems, lists are usually processed

from head to tail using a recursive procedure that accesses

the elements of the list until the element NIL is reached.

In P5 List type data structures are found in two forms, a

string format, and a list format.

In the string-based format a list structure is

represented as a block of contiguous words in a data memory.

A structure type word points to a string of data words which

can be constants, variables or other lists. Thus under this

scheme lists are represented as a string of data words.

In the list-based scheme the primary structured data

element is a list cell similar to the cons cell {7}. The

cons cell contains two elements, the car and cdr. The car is

the current head of the list and the cdr is the tail of the

list. Thus a list structure is represented as cons cells

which are linked by their cdr elements. A list name (the

Key) is assigned for each List data structure and stored in

a structure data table. The list name or the Key is used to

reference the first cons cell in data memory. This scheme

requires more storage necessary for representing list

structures than the string-based scheme. These schemes are

displayed in figures 4 and 5. The indirection through the

table DSTB is shown as a broken pointer. For small systems

the functor can be replaced with a pointer since a name or

key is not needed for a list data structure.

23

SOURCE LIST [A,B,C]

TYPE:SD STRUCTURE TYPE FUNCTOR

TYPE VALUE

c A

c B

c c

c NIL

Figure 4. String-Based Representation of a List in P5.

SOURCE LIST [A,B,C]

TYPE:SD STRUCTURE TYPE FUNCTOR

TYPE VALUE

C A

SD LIST FUNCTOR

C B

SD LIST FUNCTOR

c c

SD LIST FUNCTOR

Figure 5. List-Based Representation.

24

In the current architecture source lists are stored in

data memory DM as strings. The lists can have any number of

words and must be terminated by the constant NIL. Any new

(run-time) lists are two-word (tuples or word pairs) which

are based on the Lisp cons cell.

In Common Lisp {7}, a-lists or association lists have a

number of attributes which would be useful in Prolog. An

a-list is a list of conses, where each cons is an

association. The car of the cons is called the key, and the

cdr is called the datum. Association lists provide for

nested structures.

In the run-time lists the car can be a constant,

variable or structure data word and the cdr can be a

constant, variable or a structure data word.

An example of list creation will be presented in which

the final form of the list consists exclusively of cons

cells. This type of list has the worst case cost in terms of

dereferencing. The source code list structure has the best

case dereferencing cost.

Data Structure Format in P5

Source code structures are translated to a

Structure Data data word followed by argument data words.

25

The format for a Structure Data data word is:

[15:12] [11:8] [7:0]

Type: SD Structure Type Structure Key

For the List type, no structure Key is given in the

source code, but is assigned by an I/O process. The object

form of a List structure is a string in data memory, DM, and

a Reference Pointer in a data structure table, DSTR. The

structure Key which was assigned is used in the

Structure Data data word and the list is represented by this

data word.

The following shows the contents of Data Memory for a

Structure List [a,b,c].

dm = {

OXOOOA I* c, A First element is constant A */

OXOOOB I* c, B Second element is constant B */

oxoooc I* c, c Third element is constant c */

OXlOOO /* NIL End of List */

}

The following table describes the new data memory

facilities added to P5.

26

TABLE 4. DATA STRUCTURE MEMORY

MEMORY AREA FUNCTION

DSTB[] DATA STRUCTURE LOOKUP TABLE CONTAINS
POINTERS TO A DATA STRUCTURE IN DM[]
MEMORY

DM[] DATA STRUCTURE MEMORY: LISTS AND
STRUCTURES ARE SUPPORTED IN THIS
AREA

BUFFER[] MEMORY USED FOR RUN-TIME GENERATION
OF DYNAMIC DATA STRUCTURES

The Data structure Table memory, DSTB[], contains

elements of type Reference_Pointer, RP. Thi~ table is used

to store the pointers to Data Structure Memory, DM. The

Buff er Memory is used to temporarily store the car and cdr

pairs for run-time generated data structures. Since the Data

Structure Table and Data Memory may need to be updated at

run-time, two additional variables, dmend and dstbend, are

defined to indicate the current end of these memories.

Data Structure Facility Operation

During unification, the unify() module examines the

types of the arguments of the goal string and rule string.

27

If the element types are both data structures, the module

dp() is called to access the data structures using the data

structure dstb[] (lookup) table. The results are pointers to

the first arguments of each structure in dm[] memory. The

dp() module informs the calling module if the two data

structures unify.

The unification is performed by the

Unify module, du(). Unification of the

proceeds until the element NIL is reached.

Data

list

Structure

elements

The operation of the interpreter is presented via an

example. This example demonstrates the creation of lists at

run-time.

Procedure:

(Ml) :

(M2) :

Procedure:

(Dl) :

(D2) :

The Makelist Program Example

makelist(X,Y) o

makelist(l,[1]).

makelist(N,[NIREST]) :- decrement(N,Nl),

makelist(Nl,REST).

decrement(X,Y).

decrement(3,2).

decrement(2,1).

28

The program steps in the makelist example are included

in Table 5.

A Query, makelist(3,L)? starts the session (Step 1).

The source code is translated to object code and appended to

the program string by the I/O processor. The procedure

makelist is referenced and the first clause of makelist, Ml,

is unified with the query (Step 2). This will fail because

the constant 3 is not equal to the constant 1. The

interpreter will look for another clause in the makelist

procedure. It will find M2 which is a rule. The rule head

arguments will be unified. Since the match is a rule, new

subgoals will have to be satisfied and a new activation

record is initialized by the push() module (Step 3). The

unification succeeds and the following bindings are added to

the new activation record in A memory: (3/N) or constant 3

to reference variable N and (L/SD2) or calling variable L to

a structure_Data, SD2, which represents the elements

[NIREST]. The first subgoal of M2 is examined and Dl is

accessed (Step 4). The unify module will attempt to unify

decrement(N,Nl) with decrement(3,2). Since the goal element

is a reference variable and is bound to 3, the first two

arguments unify. The second arguments also unify and a

binding record is added to the current activation record

(2/Nl) constant 2 to reference variable Nl.

29

The second subgoal of clause M2 is examined and clause

Ml is accessed. The unification of makelist(Nl, REST) with

makelist(l,[1]) will fail since Nl was bound to 2 (Step 5).

The interpreter will select clause M2 as the match. M2 is a

rule and Push() is called to create a new activation record.

The rule head arguments are unified as makelist(Nl,REST)

with makelist(N,[NIREST]) (Step 6). This passes and the

following bindings are added to the current activation

record, (2/N) and (REST/[NIREST]) where [NIREST] is SD2.

Again the subgoal decrement is examined and Dl is

accessed. This fails since N is bound to 2 (Step 7). The

next clause in procedure decrement, D2, leads to unification

of decrement(N,Nl) with decrement(2,1). This passes since N

was bound to 2 (Step 8). A new binding, (1/Nl) Nl bound to 1

is added to the current activation record.

The next subgoal leads to unification of

makelist(Nl,REST) with makelist(l,[1]). Since Nl is bound to

one, this clause in procedure makelist passes (Step 9). The

resulting binding (SDl/REST) is added to the current

activation record. SDl contains [1.NIL].

With successful unification of makelist, the end of

clause M2 is reached (Step 10), the element NIL is found and

the pop() module will identify the calling variable, REST,

in the current activation record. Rest is bound to SD2.

30

The pop() module will call buildata() and analyze the

contents of SD2 which is [NIREST]. The bindings for these

local variables, (2/N) and (SD2/REST) are obtained and a new

data structure, SD3, is created. SD3 is a cons cell with car

= 2 and cdr = SDl. SD3 is created with N=2 and REST = SDl =

1. This new data structure is stored in dm memory. This

results in a new binding record with calling variable REST

bound to a created data structure SD3. Note that SD3 = 2,SDl

and SDl = 1,NIL. The current activation record is

and the returned binding is appended to the

activation record.

"popped"

previous

At this point

pop() ' (Step 11)

the

due

interpreter recognizes a second

to the end of the first clause M2

called. The first activation record is searched for calling

variables. It is found that L is bound to SD2 where L is

the calling variable. The module buildata() examines the

contents of SD2 and finds [N,REST]. The bindings for these

local variables are: N bound to 3 and REST bound to SD3.

A new data structure, SD4, is created. SD4 is a cons

cell with car = 3 and cdr = SD3. Note that SD3 = 2,SDl arid

SDl = 1,NIL. A binding record is constructed with L bound

to SD4. This is returned to the Query activation record.

The end of the query string makelist(3,L)? is the end

of the program string. The I/O processor is called and the

response L = [3,2,1] is output.

31

It should be noted that in Turbo Prolog, an infix

notation for decrement is used. Built-Ins are special

functors that would normally be used to implement the

decrement procedure. The module main() would recognize the

Built-In data type (SB) and call a host system routine.

TABLE 5. PROGRAM STEPS AND RESULTING BINDINGS

STEP ACTION GOAL RULE/FACT BINDINGS

1. Query ml(3,L)?

2. Unify ml (3, L) ml (1, [1]) FAIL

Push

3. Unify ml (3, L) ml (N, [NI REST] 3/N L/SD_2

4. Unify dee (N ,Nl) dec(3,2) 2/Nl

5. Unify ml(Nl,REST) ml (1, [1]) FAIL

Push

6. Unify ml(Nl,REST) ml (N, [NI REST]) 2/N REST/SD_2

7. Unify dec(N,Nl) dec(3,2) FAIL

8. Unify dec(N,Nl) dec(2,1) 1/Nl

9. Unify ml(Nl,REST) ml (1, [1]) SD_l/REST

10. POP. SD_3/REST

11. POP. SD_4/L

12. END. L = [3,2,1]

IV. SUMMARY AND CONCLUSIONS

The Prolog language has been proven to be useful for

many applications. This study has added to the interpreter

PS, the facility for the list data structure operation.

The interpreter is a good tool for the investigation of

possible architectures and the understanding of the Prolog

processing environment. The data types are extensively

used by the interpreter. They provide means for memory

organization and error checking.

The proposed data structure facility for PS was

implemented and tested. The example program makelist

demonstrates the processing involved in the run-time

generation of new list data structures.

The design decisions involving the choice of the data

structure representation and implementation were presented.

The choice for data structure implementation involved many

trade-offs in terms of ease of representation and

efficiency. The following decisions were adopted for list

structure representation in PS. The source code list data

structures are to be represented as contiguous words of

memory (strings) and terminated by the constant NIL.

32

33

The run-time generated data structures use the Lisp

cons cell, where the car can be an element of type constant

or variable, and the cdr can be of type Structure Data or

the constant NIL.

The cons cell scheme used for run time structures adds

flexibility to the interpreter in terms of the type of

structures that can be represented but it introduces a cost

in terms of dereferencing. The new data structure memory

added to P5 can be updated at run time.

It should be noted that DM can grow very large since

each activation of a procedure which creates lists adds to

DM. This can be costly, especially in the case of recursive

procedures. For this reason the cons cell format and

indirection through a table is adopted. The table contains

maximum size pointers; double word pointers can also be

considered. This is especially important in P5 since

run-time memory management is not specified.

The c programming language was used to write the

interpreter because of its functionality and low level

handling capabilities. The interpreter was compiled and

executed under Lattice C and Aztek C compilers. It should be

easily portable to other machines.

A Host system, XLISP, will be added to provide a

suitable environment for development. With this capability

the interpreter can be further tested and improved.

34

Further efforts should be centered on developing the

front-end part of Prolog system. Some of these are the

compiler of Prolog source strings to interpreter code

strings used by P5 and the development of Built-Ins and I/O

facilities.

APPENDIX A

SAMPLE RUN OF MAKE LIST EXAMPLE

The initialized memory structures are included in
Appendix B.

MAIN gsp= 23 ge=c012
FETCH
UNIFY ge= 3 re= 1 rf = 0
UNDO fliste=7006
PUSH
UNIFY ge= 3 re=400a rf = 1
BIND. C= 3 V= 400a G = 24 F= 3
UNIFY ge=400f re=d002 rf = 1
BIND. C= 400f V= d002 G = 24 F= 3

MAIN gsp= 8 ge=c022
FETCH
UNIFY ge=400a re= 3 rf= 0
UNIFY ge=400b re= 2 rf = 0
BIND. C= 2 V= 400b G = 9 F= 5

MAIN gsp=ll ge=c012
FETCH
UNIFY ge=400b re= 1 rf = 0
UNDO fliste=7006
PUSH
UNIFY ge=400b re=400a rf= 1
BIND. C= 2 V= 400a G = 12 F= 3
UNIFY ge=400e re=d002 rf= 1
BIND. C= 400e V= d002 G = 12 F= 3

MAIN gsp= 8 ge=c022
FETCH
UNIFY ge=400a re= 3 rf= 0
UNDO fliste=6014
UNIFY ge=400a re= 2 rf = 0
UNIFY ge=400b re= 1 rf = 0
BIND. C= 1 V= 400b G = 9 F= 6

MAIN gsp=ll ge=c012
FETCH
UNIFY ge=400b re= 1 rf= 0
UNIFY ge=400e re=dOOl rf = 0
BIND. C= dOOl V =400e G = 12 F= 2

35

MAIN
POP

gsp=l4

MAIN gsp=l4
POP
END OF RUN

ge=lOOO

ge=lOOO

CONTENTS OF A MEMORY

C Field
NIL

V Field G Field F Field

NIL

NIL

NIL

NIL

4005

3
400f

2

2
400e

1
dOOl

3
400f

2
d003

4005
d004

4001

400a
d002
400b

400a
d002
400b
400e

400a
d002
400b
400e

4001
400f

la

18
18

9

c
c
9
c

18
18

9
70le

la
7031

0

3
3
5

3
3
6
2

3
3
5

7027

0
703a

Contents of Data structure Memory:

dm(l] = 1
dm(2] = 1000
dm(3] = 400a
dm[4] = 400e
dm[5] = 1000
dm(6] = 2
dm(7] = dOOl
dm(8] 1000
dm(9] = 3
dm[lO]= d003
dm(ll]= 1000

36

gsre= 26 arl= o

gsre= 26 arl= 3

gsre= 14 arl= 10

gsre= 26 arl= 3

gsre= 26 arl= O

APPENDIX B

INTERPRETER HEADER FILE

/*FILE NAME MLH.H*/
#define type(x)
#define value(x)
#define gete(x,y)

((x) >>12)
((x) & OXOFFF
((x) (y))

#define MAS KT OXFOOO /* mask
#define MAS KV OXOFFF /* mask
#define MASKRK OXOFF6 I*

type
value

#define EOS OX2000 /* end of string element
#define MASKF OXOOFF /*
#define SD OXOOOD /* structure data type
#define SC oxoooc /* structure clause type
#define RV OX0004 I* reference variable type
#define NIL OXOOOl /* NIL type
#define RPF OX0006 /* reference ptr fact type
#define RPR OX0007 /* reference ptr rule type
#define SL OXOOOF /* structure list type
#define c oxoooo I* constant type
#define RC OX7000 /*

/* symbol table variables / functors */
/* ml = 1 FUNCTOR */
I* dee = 2 FUNCTOR */
/* N = A RV */
/* Nl = B */
/* REST= E */
I* L = F */
/* SDl= 1 */
/* SD2= [N REST] */
/* *I
/* ml(1, 1) . */
/* ml(N,[N I REST]) :- dec(N,Nl)

'
ml(Nl, REST) .

I* goal ml(3,L) ?

unsigned int m[50] = {
oxoooo, /* O: *I
oxoooo, /* 1: ml(fact */
OXOOOl, /* 2: 1, constant = 1 */
OXDOOl, /* 3 : 1) SDl */
oxoooo, I* 4: . nil */

37

*/
*I
*/
*/
*/
*/
*/
*/
*/
*I
*/
*I
*/
*/

*/
*/

oxoooo, /* 5: ml(rule */
OX400A, /* 6: N RVA *I OXD002, /* 7: Nl,REST SD2 */
OXC022, I* 8: dee(*I OX400A, /* 9: N RV */
OX400B, /*10: Nl RV *I
OXC012, /*11: ml(*/
OX400B, /*12: Nl, RV */
OX400E, /*13: REST) RV *I
OXlOOO, /*14: . nil */ oxoooo, /*15: DEC(*/
OX0003, /*16: 3' constant */
OX0002, /*17: 2) constant */
oxoooo, /*18: . nil *I oxoooo, /*19: DEC(*I
OX0002, /*20: 2, constant */
OXOOOl, /*21: 1) constant *I oxoooo, /*22: . nil */
OXC012, /*23: ml(SC arity 2 */
OX0003, /*24: 3' constant *I
OX400F, /*25: L) RV call */
OX2000 /*26: EOS END OF QUERY *I

} ;

unsigned int stb[lO] ={

/* STRUCTURE TABLE */
OXlOOO, /* O:C,NIL */
OXFOOl, /* l:SL,l LIST OF ml */
OXF004, /* 2:SL,4 list of dee */
OXlOOO /* 3:C,NIL */

} ;

unsigned int flist[lOJ ={

/* FLIST *I
OXlOOO, I* O:C,NILL
Ox6002, /* l:RPF, ml
OX7006, /* 2:RPR, ml
OX2000, I* 3:EOS
OX6010, /* 4:RPF, DEC
OX6014, I* 5:RPF, DEC
OX2000 /* 6:EOS

} ;

unsigned int a[l50] ={

/*STATE MEMORY A

OXlOOO, /*O:C,NIL

*/
*/
*/
*/
*/
*/
*/

*I

*/

38

39

OXOOlA, /*l:gsre=26(EOS) */
oxoooo, /*2:arl=O */
Ox4005, /*3:C=RV:5 */
OX4001, /*4:V=RV:l(PASSED VAR)*/
OXOOlA, /*5:G=26(EOS) */
OXOOOO, /*6:F=NULL */
o,
o,o
} ;

unsigned

OXlOOO,
OXOOOl,
OXlOOO,
OX400A,
OX400E,
OXlOOO

unsigned

OXlOOO,
OX5001,
OX5003,
OXlOOO

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int dm[40] = {
/* data space memory for lists*/
/*O CONSTANT NIL *I
/*l CONSTANT 1 SDl */
/*2 CONSTANT NIL */
/*3 RV N a SD2 *I
/*4 RV REST e *I
/*5 NIL *I

} ;

dstb[lO]= { int
/*
/*O
/*l
/*2
/*3

data structure lookup table */

} ;

int
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int
int
int
int
int

CONSTANT NIL */
REFERENCE POINTER SDl */
REFERENCE POINTER SD2 */
CONSTANT NIL */

dgev
drev
dgsp
drsp
duf
dgspv
drspv

= O;
= O;

= O;
= O;
= O;

= O;
= O;

gsh = O;
gsp = 23;
rsp = O;
rf = O;
arity = O;
ge = O;
get = O;
gev = O;
re = O;
ret = O;
rev =O;
stbe = o;
stbet = O;

I*
/*
/*
/*
/*
/*
I*
I*
/*
I*
I*
I*
I*

pointer to goal string
goal string pointer
rule string pointer
rule = 1 fact = o
of arguments
goal element
goal element type
goal element value
rule element
rule element type
rule element value
structure table element
structure table element

head */
*I
*I
*I
*I
*I
*/
*I
*I
*/
*/
*/

type */

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

stbev = O; /*
fliste = O;/*
flistet= O;/*
flistev= O;/*
tap = O; /*
ap = 7; /*
arc = 3; /*
frm = O; /*
functor=O; /*
uf = o; !*
found = O; /*
bindcnt=O; /*
endlist=O; /*
i =O; /*
gkey = O; /*
rkey = O; /*
fkey = O; /*
tge = O; /*
tta = O; /*
ta [1so J ; !*
tx (100] ; /*
x=O; /*
iap=O; /*

key=O; /*
dstbend = 3;/*
dmend = 6;/*
newds = O;/*
buffer(20]; /*
ddge = O;
ddgev = O;
ddget = O;

structure table element
flist element

flist element type
flist element value
temporary a pointer
a memory pointer
activ record pointer
fact rule marker
functor
unify flag o or 1
fetch flag
of bindings

goal key
rule key
fact key
temporary goal element

temporary a memory

end of dstb marker
end of dm marker

40

value*/
*I
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

new data structure variable
buff er area for new SD

*/
*/
*/

41

INTERPRETER MODULE MAIN()

#include "mlh.h" /* HEADER FILE WITH INITIALIZED MEMORIES*/
#include "mldp.c" /* DATA STRUCTURE UNIFY MODULE */
#include "mlf .c" /* FETCH MODULE */
#include "mlu.c" /* UNIFY MODULE */

main ()
{

while((ge = gete(m,gsp++)) != EOS)
{
get = type(ge); gev = (ge & MASKV) ;

printf("MAIN gsp=%2d ge=%x \n",gsp-1,ge);
switch(get)

{
case SC: found = fetch() ;

if (found == 1)
{if (rf == 1) push() ;
uf=unify() ;

}
break;

case NIL: pop() ;
break;

default: printf(" get error =%x\n",get);
break;

}

/* printout of state of Prolog machine */
printf (" c Field V Field G Field F Field\n");
for (i=O; i < ap) {
if(ai == OXlOOO) { printf("NIL");

printf(" gsre=%3d arl=%3d \n",ai+l,ai+2); i+=3;
}

printf (" %4x %4x %4x %4x\n"
,ai,ai+l,ai+2,ai+3); i+=4;

}
if (found != 1)

{ printf("FETCH ERROR:functor=%x
frm=%x\n",functor,frm);

break;
}

if (uf == o)
{ printf ("UNIFY ERROR:gsp=%d rsp=%d arc=%d

ap=%d\n",gsp,rsp,arc,ap);
break;

}
if (ge==O)

{ printf ("Error with ge\n");
break;

}
}/* end of while */

printf ("END OF RUN\n");
printf (" C Field V Field G Field F Field\n");
for (i=O; i < ap ;) {
if (ai == OXlOOO) { printf ("NIL") ;
printf(" gsre=%3d arl=%3d \n",ai+l,ai+2); i+=3;

}
printf (" %4x %4x %4x %4x\n"

,ai,ai+l,ai+2,ai+3); i+=4;
}

printf ("Data structure Memory\n");
for (i=l;i < dmend; i++) printf(" dm%2d = %4x \n",i,dmi);

} /* END OF MAIN */

INTERPRETER MODULE PUSH()

push(
{

42

aap++=OXlOOO; /* NIL for end of curr. function activation
record (arc)*/

aap++=gsp+arity; /*goal string re-entry point (gsre)*/
aap++=arc; /* back link to arl; arc becomes arl after

push */
arc=ap; /* new arc body pointer;gsre and arl

pointers are head*/
printf ("PUSH\n");

return;
}

/* START OF POP */

pop()
{

INTERPRETER MODULE POP()

unsigned int temp,tarc,i;
tta=O;x=O;iap=arc;rf=O;
aap++=OXlOOO;
gsp=aarc-2;
tarc=ap+2;

printf ("POP\n");

while(iap < ap-2
{

/* buildta while loop */

element*/
temp=aiap; temp=temp>>12;/*get next Cfield

if (temp == RV)/*test for calling variable*/
{

key=aiap+l; /*get Vfield element*/
/*check for data structure*/

43

if(type(key) == OXOOOd){ buildata(key,iap); goto here; }

findbv () ; /*use f indbv to get ap of
matching Vfield*/

printf("POP3. tap=%d iap=%d\n",tap,iap);

if (tap != O) buildta(iap) ;/*build RC,tx
for copyta*/

}/*close of sucessful test*/
here: iap=iap+4;

}/*repeat for next arc arecord*/
/* end of buildta */

/* start of copy arl to new arc */

iap=(a(arc-1)-2);
while(aiap != OxlOOO) /* debug */

{
aap++=aiap;
iap++;

}
/* end of copy */

44

/* start of copy of returned constants (RC's) to new arc */

if (tta !=O)
{

copyta() ;
}/*copy RC's*/

arc=tarc;

i=arc-2;
return;

/* END OF POP */
}

bind ()

{
printf("BIND. ");
aap++=re;
aap++=ge;
aap++=gsh;
aap++ = frm;
printf (" C=%4x V=%4x G=%4d

\n",aap-4,aap-3,aap-2,aap-l);
return;

}

F=%4d

buildta(iap)
int iap;
{

}

if (tta == 0) x=O;/*initialize sort pointer*/
txx++=tap-l;txx++=tta;/*build tx*/
tatta++=atap-1; /*C in Cfield*/
tatta++=aiap; /*V " v " */
tatta++=(iap+l RC); /*apV in Gfield*/
tatta++=(tap+l RC); /*ape in Ffield*/
return;

copyta ()
{

int intchgf,temp,i,x;

45

if (tta/4 > 1)/* if more than one Rerecord then sort */

{

}

for(i=O; i=tta/4-l;i++) /*sort tx */
{

}

intchgf=O;
for (x=O; x=tta/2-1; x+=2)

{

}

if (txx > txx+2)
{

}

temp=txx;txx=txx+2;txx+2=temp;
temp=txx+l;txx+l=txx+3;txx+3=temp;
intchgf=l;

if (intchgf == 0) break;/*exit ifor loop*/

for(i=O; i=tta/2 ;i+=2) /* copy ta to a */
{

}

return;

for(tta=txi+l; tta=txi+1+4; tta++)
aap++=tatta++;

/* if sort isn't needed then copy ta to a */
for(tta=O;tta <= 3; tta++) aap++=tatta;
return;

/* END OF COPYTA */
}

buildata(keyl,iapoint)
unsigned int keyl, iapoint;
{
int jix=l;
int kk = l;
dgev = value(keyl);
dgsp = dstbdgev;
dgspv = value(dgsp);
while((ddge = dmdgspv++) != OXlOOO) {

ddget=type(ddge);
ddgev=value(ddge);
if (ddget -- RV) { key = ddge; findbv();

if (tap != O) bufferjix = atap-1;
if (tap == 0) bufferjix = ddge;
}

if (ddget != RV) bufferjix = ddge;
j ix = j ix + 1;

} /*end of while */

46

/* create new data structure with new values of variables */
newds = OxDOOO I dstbend; /* generate SD(dstbend) D003*/
dstbdstbend = newds;
dstbend++;
for (kk=l; kk < 3; kk++){

dmdmend++ = bufferkk;}
dmdmend++ = OXlOOO; /* add the nil */

buildnewta(iapoint);
}

buildnewta(iap)
unsigned int iap;
{

}

tatta++=newds;
tatta++=aiap;
tatta++=(iap+l
tatta++=(tap+l

return;

/*C New structure Data
/*V returned Variable

RC) ; /*apV in Gf ield
RC) ; /*ape in Ff ield

*/
*/
*/
*/

fetch(

{

INTERPRETER MODULE FETCH()

extern unsigned int functor, stbe, stbet, stbev;
extern unsigned int fliste, flistet, flistev;
extern unsigned int stb;
extern unsigned int flist;
extern unsigned int gev,arity,rf,rsp,frm;

arity =(gev & OXOOOF) ;
functor = gev; functor= functor>>4;
printf ("FETCH \n");

if ((stbe= stbfunctor) -- OX2000) return(O);
stbet = stbe>>12;stbev = (stbe & OXOFFF);
switch (stbet)

{
case 6 :frm = O;rsp = stbev;rf = O;

break;
case 7 :frm = O;rsp = stbev;rf = 1;

break;
case 15 :frm = stbev;

if((fliste = flistfrm++) == OX2000
printf("perror(3)");

OXOFFF) ;

break;

flistet =fliste>>12;flistev=(fliste &

switch(flistet)
{
case 6 :rsp = flistev;rf = O;

break;
case 7 :rsp = flistev;rf = 1;

break;
default:printf("perror(4)");

} break;
default:printf("perror(5)") ;break;
}

return(l);
}

47

unify ()
{

INTERPRETER MODULE UNIFY()

unsigned int rfkey;
unsigned int dflag;
dflag = O;
gsh =gsp;bindcnt = O;
i = l;endlist = O;

while(endlist -- o)
{
if (i > arity) break;
i++;
ge = gete(m,gsp); gsp++;
re = gete(m,rsp); rsp++;
get = type(ge) ;gev = value(ge);
ret = type(re) ;rev = value(re);

printf("UNIFY ge=%4x re=%4x rf=%d\n",ge,re,rf);

if (get == RV) { key=ge; findbv() ; }
gkey=get & OXOOOC; rkey=ret >> 2 ;
rfkey = rf << 4;
fkey= gkey I rkey I rfkey ;
if(rf != O){tge = ge ;ge = re;re = tge;}

switch(fkey) /* fkey= rf(R or F),gtype(C or
V) ,rtype(C or V) */

{
/* case FCC*/

case 0: if (ge
,_

re){gsp = gsh; endlist
undo() ;

48

=

i=l;gsp = gsh;bindcnt=O;

undo () ;

} break; /* case FCC */
/* case RCC *I

case 16: if (ge != re){ gsp=gsh; endlist =

i=l;gsp = gsh;bindcnt=O;
} break; /* case RCC */

case 4 : bind() ;bindcnt++;break;
/* case FVC */
case 17 : bind() ;bindcnt++;break;
/* case RCV */
case 21 : bind() ;bindcnt++;break;
/* case RVV */

/* here start structure data cases */
/* case FDD: Data structure with Data struc under Fact */

case 15 : dflag = dp(ge,re) ;if(dflag --
0) {endlist =undo();

printf ("dp failed\n");
i=l;gsp = gsh;bindcnt=O;

} break;
/* case RDD: Data structure with Data struc under Rule*/

case 31 : dflag = dp(ge,re) ;if(dflag.==
O){endlist =undo();

printf ("dp failed\n");
i=l;gsp = gsh;bindcnt=O;
} break;

/* case RDV: Data structure with a Variable under Fact*/
case 29 : bind(); bindcnt++; break;

/* case FDV: Data structure with a Variable under Rule*/
case 13 : bind(); bindcnt++; break;

/* case RVD: Variable with a Data structure under Rule*/
case 23 : bind(); bindcnt++; break;

/* case FVD: Variable with a Data structure under Fact*/
case 7 : bind(); bindcnt++; break;

49

default :printf("Error fkey=%d\n",fkey) ;break;
}

}
if (endlist == 1) return(O);
if(rf != O){gsp = rsp;rf = O;}
return(l);
}
findbv() /* search for bound variable */
{
unsigned int temp;
if (rf == o) tap=arc+l; else tap=aarc-1+1;
if (tap == 1) return; /* start of a */;
while(tap < ap) /*test for end of arc record*/

{
if (atap-1 == OXlOOO) break; /*test for end of arl record*/

if (atap == key)/*test for V-field entry = key*/
{

tge = atap-1;/* if Cfield entry is a C then
replace ge*/

temp=tge>>12; /* and return. tap is at Vfield
for return*/

tap=O;
return;
}

if (temp
{

}
tap+=4;

}

!= 4)
/*from inside while*/
ge=tge; get=type(tge); gev=tge&OXOFFF;
return;

}

undo ()
{

if (rf == l)printf("perror(200)");
printf("UNDO fliste=%x \n",flistfrm);
if ((frm == O) I I (fliste = flistfrm) == EOS)
return(l);
ap=ap-(4*bindcnt);
fliste=flistfrm++;
flistet=fliste>>12;flistev=fliste&OXOFFF;

switch(flistet)
{case 6 :rsp=flistev;rf=O;break;
case 7 :rsp=flistev;rf=l;push() ;

break;

50

default:printf("flistet error=%x\n",flistet) ;return(l);
break;

}
return(O);

}

INTERPRETER MODULE DP()

/* subprogram name dp.c */
/* this will be called when in unify (structure data,
structure data) */

dp(dge,dre)
unsigned int dge,dre;
{

dgev = value(dge);
drev = value(dre);
dgsp = dstbdgev;
drsp = dstbdrev;

duf = du(dgsp,drsp);
if (duf -- 1) return(l);
if (duf == O){ printf("dp error\n"); return(O) ;}

}

/* start of du.c */

du(dgsp,drsp)
unsigned int dgsp,drsp;
{
unsigned int flag;
unsigned int rfkey;

dgspv = value(dgsp);
drspv = value(drsp);
flag = O;

/* this will loop thru all elements of list until NIL is
reached */
while ((dmdgspv != OXlOOO) I I (dmdrspv != OXlOOO))

{
ge=dmdgspv;
re=dmdrspv;
dgspv++;
drspv++;

printf ("DUl.Goal element=%4x
rf=%d\n",ge,re,rf);

get = type(ge) ;gev = value(ge);
ret = type(re) ;rev = value(re);

Rule element=%4x

if (get == RV) { key = ge; findbv() ; }

51

gkey = get & OXOOOC; rkey=ret >> 2
rfkey = rf << 4;
fkey= gkey I rkey I rfkey ;
if(rf != O){tge = ge ;ge = re;re = tge;}

switch(fkey) /* fkey= rf(R or F),gtype(C or
V),rtype(C or V) */

{

case O: if(ge !=re){ flag= 1; /*case
FCC*/

printf ("Contants do not unify\n");
} break;

case 4 bind() ; bindcnt++;
case FVC */

case 21 bind() ;bindcnt++;
case RVV */

case 17 bind() ;bindcnt++;
case RCV *I

default :printf ("error in DU
fkey=%d\n",fkey) ;break;

} /* end of switch */
} /* end of loop */

break;

break;

break;

if (flag == 1) return(O) ;/* which one comes first? */
if(rf != O){gsp = rsp;rf = O;}

return(l);
} /* end of function du */

52

/*

I*

/*

APPENDIX C
FLOWCHART OF MAIN MODULE

>---y----G
g e = m [gsp + +]

ge_t

found =0

53

Ari1y = f (ge _ v)
functor = f(ge _ v)

RP F

rm =
rsp =stbe_

li=O

FLOWCHART OF FETCH MODULE

RP R

frm = 0
rsp =stbe_v
Ii= 1

fliste =flist[stbe
fliste t
fliste-v

rsp = fliste _ v
rf = 0

RP R

rsp = fliste _ v

rf = 1

54

gsh = gsp
bindcnt = 0

i = 1

i+ +
ge =f(gsp + +)
re =f(rsp + +)
ge_t ge_v

Fkey

FLOWCHART OF UNIFY MODULE

>---- interchange ge and re

RCV RVV

8 8

55

LIST OF REFERENCES

{l} Warren, David H. Prolog-The Language and its
Implementation Compared with Lisp.Edinburgh, Scotland:
University of Edinburgh, 1977.

{2} Degroot, Doug. Prolog and Knowledge Information
Processing: A Tutorial. New York: IBM Research, T.J.
Watson Research Center, 1984.

{3} Despain, Alvin M. and Patt, Yale N. "Aquarius--A High
Performance Computing System for Symbolic/Numeric
Applications, IEEE Proceedings. October, 1984.

{4} Campbell, J. A. Implementations of Prolog. New York:
Ellis Horwood Limited, 1984.

{5} Clocksin, W.F. and Mellish, c.s. Programming in
Prolog. New York Springer-Verlag, 1981.

{6} Dobry, T.P., Patt, Y.N., and Despain, A.M. "Design
Decisions Influencing the Microarchitecture for a
Prolog Machine," Micro 17 Proceedings. October, 1984.

{7} Steele, Guy Jr. Common Lisp: The Language.
Burlington, Massachussets: Digital Press, 1984.

{8} Turbo Prolog-The Natural Language of Artificial
Intelligence. Boreland International, 1986.

{9} Despain, Alvin M. and Chang, Jung-Herng "AND
Parallelism of Logic Programs Based on A Static
Data Dependency Analysis," IEEE Proceedings.
February, 1985.

{10} Jackson, Peter. Introduction to Expert Systems.
Addison-Wesley, 1985.

56

	Data Structure Implementation and Investigation for a Prolog Language Interpreter
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	LIST OF TABLES
	v

	LIST OF FIGURES
	vi

	I. INTRODUCTION
	01
	Expert Systems
	02
	03

	Overview of Prolog Terminology and Processing
	04
	05
	06

	Unification Process and Backtracking
	07

	II. PROLOG INTERPRETER
	08
	09
	10
	11
	12
	Comparison of P5 to Project Aquarius
	13

	Interpreter Operation
	14

	Interpreter Functions
	15
	16
	17
	18
	19

	III. THE DATA STRUCTURE FACILITY
	Implementation of a Data Structure for P5
	20

	Implementation of the List Data Structure in P5
	21
	22
	23

	Data Structure Format in P5
	24
	25

	Data Structure Facility Operation
	26

	The Makelist Program Example
	27
	28
	29
	30
	31

	IV. SUMMARY AND CONCLUSIONS
	32
	33
	34

	APPENDIX A. SAMPLE RUN OF MAKELIST EXAMPLE
	35
	36

	APPENDIX B. INTERPRETER HEADER FILE
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52

	APPENDIX C. FLOWCHARTS OF INTERPRETER MODULES
	53
	54
	55

	LIST OF REFERENCES
	56

