
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Adaptive Discrete Cosine Transform Image Compression Applied Adaptive Discrete Cosine Transform Image Compression Applied

to Visual Flight Simulators to Visual Flight Simulators

Nancy A. Burrell
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Burrell, Nancy A., "Adaptive Discrete Cosine Transform Image Compression Applied to Visual Flight
Simulators" (1986). Retrospective Theses and Dissertations. 4934.
https://stars.library.ucf.edu/rtd/4934

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4934?utm_source=stars.library.ucf.edu%2Frtd%2F4934&utm_medium=PDF&utm_campaign=PDFCoverPages

ADAPTIVE DISCRETE COSINE TRANSFORM
IMAGE COMPRESSION APPLIED

TO VISUAL FLIGHT SIMULATORS

BY

NANCY ANN BURRELL
B.S.E.,University of Central Florida,1982

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the
College of Engineering

University of Central Florida
Orlando,Florida

Fall Term
1986

ABSTRACT

A visual flight simulator requires a huge amount of

image data to be stored in the database. To make a

photo-based system feasible an image compression scheme must

be devised to compress the data.

An adaptive discrete cosine transform (DCT)

technique is used to compress 24 bit color images to an

average of 3 bits per pixel. The bits for the image are

distributed based on the relative activity in different

parts of the scene. A software implementation of this

technique is applied to some sample database images.

Results and error analysis are presented.

TABLE OF CONTENTS

NOMENCLATURE

INTRODUCTION •

Chapter

I .

II.

III.

IV.

REQUIREMENTS

ADAPTIVE OCT METHOD

IMPLEMENTATION

Discrete Cosine Transform
Adaptive Assignment Code . .
Standard Deviation Matrices • • . .
Bit Assignment Matrices
Quantization ..•....••
Decompression

RESULTS •

. iv

1

3

5

7

. . . 7
9

• • • 12
• • 12

• • • • 1 3
• • • • • 1 5

. 18

Subjective Error Analysis
Objective Error Analysis .

. 18
• • • • • • • • 2 1

v. CONCLUSIONS • • 2 2

APPENDIX • • • • • 2 5

REFERENCES • 48

iii

RGB

BPP

DCT

AAC

BAM

SDM

QLUT

NOMENCLATURE

Red, Green, Blue color data

Bits per pixel

Discrete cosine transform

Adaptive assignment code

Bit assignment matrices

Standard deviation matrices

Quantization lookup tables

iv

INTRODUCTION

A database for a visual flight simulator can be made

up of aerial photographs. These color photographs of rural

and urban areas are high resolution (1 to 4 foot) and are

stored as 24 bit per pixel (BPP) red (R), green (G) and blue

(B) color quantization.

Because of the enormous amount of data needed for

this database, it must be stored in a compressed form and

decompressed as necessary. The decompression should be

fairly simple and quick. The data needs to be compressed

from 24 to 3 BPP average without degrading the image below

acceptable levels. Since the application is for a visual

flight simulator, the subjective image degradation is very

important both in terms of absolute and relative error. The

discrete cosine transform (DCT) technique is generally

accepted as yielding a high compression ratio with a fairly

low amount of operations required for decompression. An

adaptive technique takes into account the variations of

activity within a scene. Less bits are used to code areas

of relative low activity, such as a desert, than would be

used for areas of high activity, such as a city.

number

An optimal block

of transform

size is determined, as well as

coefficients to be retained

2

the

for

acceptable results.

and reconstructed

investigated.

Error measurement between the original

images, both subjective and objective, is

CHAPTER I

REQUIREMENTS

The images to be compressed are high resolution

color photographs to be used as database for a visual flight

simulator. Donovan [l] has defined a requirement to store

50 billion pixels on disk for a high resolution flight

simulator database. The data needed for the realtime image

is retrieved and stored in memory boards in the simulator

hardware. To keep the amount of memory needed to a

reasonable amount, it is necessary to compress the data to

an average of 3 bits per pixel. Since the 24 BPP color

image is actually 8 BPP red, 8 BPP green and 8 BPP blue,

each color is processed separately and is compressed to an

average of 1 BPP. The decompression technique must require

little hardware and minimal processing time.

A frequency domain transform technique, such as the

discrete cosine transform, has advantage over a spatial

domain one for compression because the transform contains

3

4

information about the entire image, in varying degrees, in

each coefficient. Therefore, the coefficients having a

lesser effect on the image can be eliminated, resulting in a

data compression.

Also, any error term is spread throughout the image,

perhaps making its effects less important when a coefficient

is discarded. The adaptive DCT has a fairly simple

decompression algorithm. Habbi [2] states that the cosine

transform has been shown to have a better mean square error

performance than the Fourier or Hadamard transforms, and is

easier to implement than the Karhunen-Loeve.

Error analysis between the original and

reconstructed images consist of both objective and

subjective measurements. The objective error is calculated

using a mean square error method. The subjective analysis

will consider absolute and relative errors. Relative errors

are color

change in

shifts between transform block,

error between pixels. Absolute

incorrect color.

representing a

error is an

CHAPTER II

ADAPTIVE DCT METHOD

The DCT technique is chosen because it is a fast

algorithm to implement and has excellent compression ratios

as Chen [3] states. The adaptive DCT breaks the image into

transform blocks of 4 x 4, 8 x 8 or 16 x 16 pixels. The

smaller transform blocks give greater adaptivity but require

more processing.

The adaptivity is in distributing the bits over the

image. The transform blocks are compared and assigned an

average number of bits based on the activity within the

block. These are termed the adaptive assignment codes

(AAC).

The database for use with the adaptive DCT can be

generated by processing a large group of images and

calculating standard deviation matrices (SDM), bit

assignment matrices (BAM) and quantization lookup tables

(QLUTs). These then become part of the database and any

images being compressed can access them. The DCT is

5

6

performed and the coefficients are normalized by the

corresponding SDM. The corresponding BAM value points to

the QLUT table to use and the normalized coefficient is the

address to the table.

The output is the quantization code used to

represent a particular coefficient. The adaptive assignment

code is overhead information carried along with each block

to be used for image reconstruction. The AAC is used to

access the proper BAM and SDM files. The BAM value

to the proper inverse quantization table (IQLUT).

stored as the compressed image is the address to the

The output is the normalized DCT coefficient.

multiplied by the corresponding SDM and the

transform is performed. The output of this

reconstructed image.

points

The code

table.

This is

inverse

is the

CHAPTER III

IMPLEMENTATION

A block diagram of the adaptive coding scheme is

shown in Figure 1. Because of the limited images available,

there was no database generated of bit assignment matrices,

standard deviation matrices and quantization lookup tables.

These are calculated for the image being processed only. A

copy of the code used in the implementation is included in

the appendix.

Discrete Cosine Transform

The transform matrix C for the discrete cosine

transform can be expressed for a N x N transform block as:

1/2
C = N [Cjm],

where

Cjrn ={ ~ cos(2j + l)* rn * PI/2N,

7

m=O
j=O,N-1 m=l,N-1.

SE
PA

RA
TE

IN

TO

R,
G

,B

EN
ER

GY

CA
LC

UL
AT

IO
N

AD
AP

TI
VE

AS

SIG
NM

EN
T

CO
DE

ST
AN

DA
RD

DE

V
IA

 TI
 OU

M

AT
RI

CE
S

BI
T

AS
SIG

NM
EN

T
M

AT
RI

CE
S

DI
SC

RE
TE

CO

SI
NE

TR

AN
SF

OR
M

-
-
-

NO
RM

AL
 I

 ZA
T

I O
N

t-
--

-f

QU
AI

HI
ZE

F
ig

u
re

1

.
A

d
ap

ti
v

e
OC

T
co

m
p

re
ss

io
n

.
co

9

The two-dimensional transform is then

T(m,n) = C * I(j,k) * C',

where

I (j,k)=original pixel intensity at j,k
and

T(m,n)=transformed coefficients in position m,n.

The transform converts the image data to a set of

coefficients representing the energy distribution. Each

coefficient contains information about the whole image. The

de term represents the average image brightness. The other

coefficients are increasing frequency terms containing image

edge information. The number of coefficients retained

affects the resolution of the image.

10

Adaptive Assignment Code (AAC)

The image is divided into transform blocks of size N

x N. The energy content of each transform block is measured

by the variance between its pixels. These energies are

compared and the AAC is assigned as described in Pacelli [4]

by:

where

and

AACi = { TRUNC[Xi],
1,
8,

l<x<9
x<l
x>9,

TRUNC = real to integer truncation,
i = transform block,
Xi = Log2(SIGi**2/2) - D/N,
N = number of pixels per block,
SIGi**2 = variance of the ith transform block,
D = distortion

N
L AACi =N*(AAC for desired bit rate).

i=1

From Pacelli [4], the AACs for 1 BPP compression are

defined as shown in Table 1.

11

TABLE 1

ADAPTIVE ASSIGNMENT CODES FOR 1 BIT PER PIXEL

AAC AVG BPP

1 .375

2 .375

3 .6875

4 1.0

5 1.3125

6 1.625

7 1.9375

8 2.25

12

Standard Deviation Matrices (SDM)

The standard deviations are calculated between each

coefficient in a transform block and the corresponding

coefficients in other blocks assigned the same AAC. These

eight resulting matrices are the SDMs. The SDMs are used to

determine the bit assignment matrices (BAMs), or number of

bits assigned to each coefficient for a particular AAC

class. The coefficients of the DCT are normalized by the

corresponding standard deviation.

Bit Assignment Matrices (BAM)

The BAMs allocate the bits per transform block

between the coefficients in the block. The BAMs

calculated as in Pacelli [4] by:

where

and

Nij=Trunc[(log2 SIGij)-D],

Nij=(i,j)th element in the BAM,
TRUNC = real to integer truncation function,
SIGij =Standard deviation from the (i,j)th position

of the SDM

D = distortion term, incremented on
successive iterations.

are

The number of bits assigned to each coefficient in a

block cannot exceed the total number of bits allocated to

that block by the AAC. Therefore, iterations are done so

that

where

13

Row Col
2= L Nij=Ntot,
i=l j=l

Row = the number of coefficients per row of a block,
Col = the number of coefficients per column of a block,
Ntot = the number of bits corresponding to the AAC,

multiplied by the number of coefficients
in the block.

Quantization

The normalized coefficients are grouped according to

their corresponding BAM value. All coefficients using the

same BAM are grouped together into a bin and normalized to

be in the range of 0 to 2**N-l, where N is the number of

bits assigned by the BAM. For example, coefficients

assigned a BAM of 3 BPP would be normalized to range from 0

to 7. These are the output lev~ls. The output levels can

be optimized by using statistical methods to distribute the

coff icients throughout the bin. Each level within the bin

would then ideally contain coefficients which are close

enough in value to be adequately represented by an average.

[5] •

and

where

and

14

One such optimization method is Max's algorithm, Max

This is defined by

Xi=(Yi+Yi-1) I 2

Xi+l
~ (X-Yi) P(x)dx=O,
Xi

i,=2, ..• N

i=l,2, ••• N-1

N
Xi

=
=

the number of quantization levels,
end points of the N levels,

Yi = output level corresponding to each input range,

P(x) = input amplitude probability density as defined
by the histogram.

This algorithm is solved by iterative calculations,

changing the choice of Yl until a solution is found. These

are the output levels to be stored in the QLUTs. All

coefficients are processed to create the QLUTs. To then

access the correct one, the normalized coefficient is fit

into one of the levels and the appropriate QLUT is

addressed. This output is the value of the compressed image

at that location. When this is done for all of the

coefficients in all of the transform blocks, the compressed

image is now complete and can be stored with an average of 1

BPP.

15

Decompression

The decompression requires the database information

containing the SDMs, BAMs and the inverse quantization

lookup tables {IQLUTs), which are formed when the QLUTs are

being addressed. For each element in the compressed image

there is an IQLUT value, which corresponds to the

coefficient average value assigned to that output level

during quantization.

In addition the decompression requires the AAC

assignment for each block in the image. The flow of

decompression is shown in Figure 2.

The AAC is extracted for each location in the

compressed image. From this, BAM can be accessed. The

level of the location is the value in the compressed image.

Knowing the BAM value and this level, the proper IQLUT table

can be accessed. The normalized DCT value is the value in

the IQLUT. Inverse normalization can be done, using the

SDMs, yielding an average DCT value.

SE
PA

RA
TE

IIH

O

R,
G,

B
I N

V E
RS

E
QU

AN
T!

ZA
TI

ON

I N
V E

RS
E

OR
MA

L I
 ZA

 TI
 ON

AC
CE

SS

SO
M

IQ
LU

TS

rn
vE

RS
E

DI
SC

RE
TE

CO

SIN
E

TR
AN

SF
OR

M

EX
TR

AC
T

AA
C

AC
CE

SS

BA
M

F
ig

u
re

2.

A

d
ap

ti
v

e
OC

T
d

ec
o

m
p

re
ss

io
n

.

tl

1-
-1

 °'

17

The DCT values can now be run through an inverse

transform:

I'(j,k) = C' * T(m,n) * C

where

I' (j,k)= the pixel intensity,
T(m.n)= the transformed coefficients in position M,N

and

C is defined previously.

The result of the inverse DCT is the reconstructed image.

CHAPTER IV

RESULTS

The resultant images obtained from the 24 to 3

per pixel compression and reconstruction are shown in

3. The upper left image is the original image

right is the image with 16 X 16 tranform block

retaining 8 X 8 coefficients per block. The lower

image was obtained with a block size of 8 X 8 pixels ,

bits

Figure

Upper

sizes,

left

8 x 8

coefficients per block retained, and the lower right used a

block size of 4 X 4 and retained 2 X 2 coefficients per

block. Better results are obtained when this technique is

applied over the entire 512 by 512 image, rather than just

256 by 256 as in Figure 3. Time constraints made it

difficult to do that large an image here.

18

19

Subjective Error Analysis

The upper right image in Figure 3 has the largest

block size and the shortest processing time.The image blocks

are noticeable. There are some color shifts between the

blocks and some slight incorrect color •

The image with the 8 X 8 block size ,which is lower

left in Figure 3, is of poor quality due to the relatively

few bits per coefficient • With 8 coefficients retained

there is no reduction in data

the bits assigned must be spread

over

over

the spatial domain and

the whole transformed

image. The color is very good in this case and the picture

streaks could perhaps be filtered out. When the 8 X 8 block

size is used with 4 coefficients retained, the blocks are

evident due to too few coefficients being retained.

The lower right image of Figure 3 has the smallest

block size, but only retains 4 coefficients per block. The

color shifts are very obvious and incorrect color is very

evident. The reduced number of coefficients causes

unacceptable image degradation.

20

Figure 3. Results obtained from the adaptive DCT.

21

Objective Error Analysis

The error between the original image and the

reconstructed image can be calculated by the mean-square

error technique. The error at each pixel in the image is

the absolute difference between the pixel intensities

measured in red, green and blue. The absolute mean-square

error over the image is calculated by:

N-1
ABS E= L

j=O

N-1
L
i=O

2 2
(R(i,j)-R'(i,j))+(G(i,j)-G'(i,j))

2
+(B(i,j)-B' (i,j)) IN

The relative error between pixels is calculated by:

N-1 N-1 2
REL E= L L (ES(i,j)-ES(i-1,j)),

j=O k=O
2

+(ES(i,j)-ES(i,j-1)) I N '

where N is the number of pixels.

The results obtained from the compression of the 16

X 16 blocks are a mean-squared error of 507 and a relative

error of 304. For the 8 X 8 the mean-squared error is 652

and the relative error is 449. For the 4 X 4 in Figure 3

the mean-squared error is 7474 and the relative error is

1526.

CHAPTER V

CONCLUSIONS

The results obtained indicate that compressing to 3

BPP is too much compression for a high quality visual

database. More bits per pixel are necessary for smooth,

clear images. When too many coefficients are retained there

are fewer bits per coefficient and the results are very

blurred edges and streaks through the image. When too few

are retained there are prominent color shifts between blocks

and incorrect color within blocks. The blocks become very

evident. The results obtained in the 16 X 16 with 256

coefficients per block would be sufficient perhaps for

background in a simulator system with a highly detailed

cut-out where the pilot is directly looking. This area of

high resolution would have to be compressed to greater than

3 BPP.

Ideally, a large collection of images would be used

when generating the database for this technique. The SDM ,

22

23

QLUT and BAM assignment criteria would then be based on

transform block comparisons between a larger variety of

image information per adaptive assignment code. This could

lead to a more accurate statistical data pool for the use of

future images. New image transform blocks would be assigned

an AAC and would then access the proper BAMs, QLUTS and SDMs

already available. The process would be much quicker and

the results should be better.

The adaptive technique could be applied over a whole

database of image sequences. The same technique of

comparing relative activity of blocks within an image can be

applied to comparing activity between image frames in the

database. Images that are relatively inactive may not need

the overall average of 3 BPP, while very busy images may

fare better with a higher average of bits per pixel. A

classification system could be set up for classifying images

by comparing the activity of images in the database. A

coding scheme similar to the AAC can be used to assign a

maximum number of bits per pixel to each image, with the

overall database average being 3 BPP.

By redistributing the available bits over the entire

database and then redistributing within each image, more

accurate results can be obtained without affecting the

ultimate goal of minimal storage.

The quantization is an essential part of the

adaptivity. The data must be quantized as efficiently as

24

possible without degrading the results too severely. Due to

time limitations, an optimal quantization scheme was not

achieved, but one such as in Max [5] should be very

effective. The method used uniformly groups values within a

bin into the levels of the bin. Each level ends up with

approximately the same number of entries. Max's method

takes into account the values being grouped together, as

of certain ranges of values well as the probability

occurring for a particular bin. With this knowledge the

distribution of coefficients between the levels of a bin

could be optimized.

There is room for improving the adaptivity. For a

visual flight simulator, desiring high resolution for

tactical missions training the image must be very high

quality. The adaptive DCT method requires large amounts of

computer time and space to implement when setting up the

database. After a database is generated however the process

should be considerably simplified.

APPENDIX

PROGRAM COMPRESS
c
C THIS PROGRAM USES AN ADAPTIVE OCT METHOD TO . COMPRESS AN IMAGE
c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER I,J,M,K,N,FUNIT,N ROWS,N COLS,CONSTANT,L
INTEGER R,C,PIXEL,IOS,MINR,MAXR,MINB,MAXB,MING,MAXG
INTEGER IMAGE SIZE
BYTE BITE
EQUIVALENCE {BITE,PIXEL)

C READ THE IMAGE INTO THE RED, GREEN AND BLUE COLOR ARRAYS
c

c
c
c

c

INITIAL FLG=O
DBGFLG=O
PRINT*,' DO YOU WANT DIAGNOSTICS TURNED ON l=YES O=NO'
READ*,DBGFLG
DISTORT AAC=l024
DISTORT-BAM=l

OPEN QUANTIZE ARRAY

OPEN(UNIT=l2,NAME='IQLUT.DAT' ,TYPE='UNKNOWN'
&,FORM='FORMATTED')

OPEN(UNIT=l4,NAME='CSCENE1.DAT' ,TYPE='UNKNOWN' I

& FORM='UNFORMATTED')
OPEN(UNIT=l5,NAME='BAMFILE.DAT' ,TYPE=' UNKNOWN',

& FORM='FORMATTED')
OPEN(UNIT=l6,NAME='SDMFILE.DAT' ,TYPE=' UNKNOWN',

& FORM='FOR~ATTED')
OPEN(UNIT=l7,~AME='AACFILE.DAT' ,TYPE='UNKNOWN' I

& FORM='FORMATTED')
PRINT* I I IMAGE SIZE= I

READ*,IMAGE_SIZE

C READ I~ 512X512 ARRAY
OPEN(UNIT=lO,

& NAME='BIGSCSN.DAT' I

& TYPE='OLD' ,FORM='UNFORMATTED' ,ERR=lOO)
DO I=O,IMAGE SIZE-1
READ(lO,ERR~lOl)(RED IMAGE(I,J),J=O,IMAGE SIZE-1)
READ(l0,ERR=l02)(GRE-IMAGE(I,J),J=O,IHAGE-SIZE-l)
READ(l0,ERR=l03)(3LU=IMAGE(I,J),J=O,IMAGE=SIZE-l)

ENDDO
CLOSE(UNIT=lO)

25

C SET UP VARIABLE PARAMETERS TO BE PASSED IN COMMON
IF(INITIAL FLG.EQ.0) THEN

50 PRINT*,' BLOCK SIZE• '
PRINT*,' 4X4,8X8,16Xl6, ENTER 4,8 OR 16'
READ(S,*,ERR•SO) BLK SIZE
N ROWS•BLK SIZE -
N-COLS•BLK-SIZE
NOM BLKS=IMAGE SIZE/BLK SIZE

END IF - -
c
C RED,GREEN,BLUE LOOP
c

c

c

00 K•l,3
I F (K.EQ.l)COLOR•l
IF(K.EQ.2)COLOR=2
IF(K.EQ.3)COLOR=3

DO J=O,IMAGE SIZE-1
DO I=O,IMAGE SIZE-1

IF(K.EQ.l) IMAGE(I,J)=RED IMAGE(I,J)
IF(K.EQ.2) IMAGE(I,J)=GRE-IMAGE(I,J)
IF(K.EQ.3) IMAGE(I,J)=BLU-IMAGE(I,J)

END DO -
END DO

C CALCULATE THE OCT
CALL CALC OCT

C CALCULATE THE EijERGY OF EACH BLOCK
CALL CALC ENERGY

C CALCULATE THE AfiAPTIVE ASSIGNMENT CODE
CALL CALC AAC

C Cr..LCULATE THE STANDARD DEVIATION MATRICES
C.t..LL CALC SOM

C CALCULr..TE THE BIT ASSIGNMENT MATRICES
Cr..LL CALC BAM

C 'JOR.."P,LIZF.: THE COEFFICIENT
CALL NORMAU Z E

C C.; LL QUANTIZE
CALL QUANTIZE

c
C DO NEXT COLOR IMAGE- END OF K LOOP, RESET INITIAL FLAG

INITIAL FLG=l
C WRITE COMPRESSED IMAGE TO FILE

N=NUM BLKS*N COEF ROW

c

c

c

c
100

DO I=O,N-1 - -
WRITE(l4)(IMAGE(J,I),J=O,N-1)

END DO

ENDDO !END OF K LOOP

PRINT*,' OPENED AND WROTE C-IMAGE '
CLOSE(UNIT=FUNIT)
CALL LIB$FREE LUN(FUNIT)
CLOSE(l2) -
CLOSE (14)
CLOSE(lS)
CLOSE(l6)
CLOSE(l7)

STOP

PRINT*, '
STOP

ERROR IN OPENING IMAGE FILE IOSTAT =

101 PRINT*,' ERROR READING RED FILE IOSTAT =',!OS
STOP

'

102 PRINT*,' ERROR READING GREEN FILE IOSTAT =',IOS

103
c

STOP
PRINT*,'

END
END PROGRAM

ERROR READING BLUE FILE IOSTAT =' ,IOS

26

,!OS

c
C DO NEXT COLOR IMAGE- END OF ~ LOOP, RESET INITIAL FLAG

INITIAL FLG•l
C WRITE COMPRESSED IMAGE TO FILE

N•NUM BLKS*N COEF ROW

c

c

c

c
100

DO I•O,N-1 - -
WRITE(l4)(IMAGE(J,I),J=O,N-l)

END DO

ENDDO !END OF K LOOP

PRINT*,' OPENED AND WROTE C-IMAGE '
CLOSE(UNIT=FUNIT)
CALL LIB$FREE LUN(FUNIT)
CLOSE(l2) -
CLOSE(l4)
CLOSE (15)
CLOSE(l6)
CLOSE(l7)

STOP

PRINT*, I
STOP

ERROR IN OPENING IMAGE FILE IOSTAT =

101 PRINT*,' ERROR READING RED FILE IOSTAT =I , IOS
STOP

'

102 PRINT*,' ERROR READING GREEN FILE IOSTAT =' .IOS

103
c

STOP
PR! NT*, I

END
E~D PROGRAM

ERROR READING BLUE FILE IOSTAT =' , !OS

27

,IOS

C***
SUBROUTINE CALC_ENERGY

c
C THIS ROUTINE CALCULATES THE ENERGY PER TRANSFORM BLOCK WITHIN
C AN IMAGE MEASURED AS THE VARIANCE BETWEEN PIXELS
c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER C,R,R BLK NUM,C BLK NUM,X,Y,J,K,I
REAL TEMP_AVG~DEV(l6,16),TEMP_SD,AVG,MIN,MAX

C CALC ENERGY PER TRANSFORM BLOCK
c

c

MIN=99999
MAX=-99999
DO I=l,NUM BLKS

DO J=l,NUM BLKS
ENERGY(I-;J)=O

END DO
END DO

DO R BLK NUM = l,NUM BLKS
00-C BLK NUM = l,NUM BLKS

X ~ (R-BLK NUM-l)*BLK SIZE
Y = (C=BLK=NUM-l)*BLK=SIZE

C CALC THE AVG
TEMP SD=O.
TEMP-AVG=O.

c

c

DO J = X,X+BLK SIZE-1
DO K = Y,Y+BLK SIZE-1

TEMP AVG= FLOAT(IMAGE(K,J)) +TEMP AVG
ENDDO

END DO
AVG = TEMP_AVG/FLOAT(BLK_SIZE*BLK_SIZE)

C FI ND EACH DEVIATION
c

DO J = X,X+BLK SIZE-1
DO K = Y,Y+BLK SIZE-1

28

c

c

DEV(K-Y+l,J-X+l) = FLOAT(IMAGE(K,J)) - AVG
IF (DBGFLG. EQ. 3) PRINT*, I DEV = I, DEV(K-Y+l ,J-X+l)

TEMP SD= DEV(K-Y+l,J-X~ll*DEV(K-Y+l,J-X+l) +TEMP SD
If(DBGFLG.EQ.J)?RINT*,' TEMP_SD I ,TEMP_SD

c
C CALC VAR
c

&

ENDDO
END DO

ENERGY(C BLK NUM,R BLK NUM)=TEMP_SD/(BLK_SIZE*BLK_ SIZE)
IF(ENERGY(C SL~ NUM,R BLK NUM).LT.5) THEN

ENERGY(C_BLK_NUM,R_BLK_NUM)=S.
ENDIF
IF (DBGFLG. EQ. 3)
PRINT*,AVG,TEMP_SD,ENERGY(C_BLK_~UM,R_BLK NUM)

END DO
END DO

c
C FIND THE AVERAGE OF ALL THE BLOCKS
c

c

AVG = 0.0
DO R BLK NUM = l,NUM BLKS

00-C BLK NUM = l,NUM ~LKS
AVG=AVG+ENERGY(C BLK NUM,R BLK NUM)

END DO - - -
ENDDO
AVG=AVG/FLOAT(NUM_BLKS*NUM_BLKS)

C FIND THE STANDARD DEVIATION OF ALL THE BLOCKS
c

c

c

TEMP SD=O
DO R-BLK NUM = l,NUM BLKS

DO-C BLK NUM = l,NUM BLKS
TEMP SD=TEMP SD +(ENERGY(C BLK NUM,R BLK NUM)-AVG)**2

ENDDO - - -
ENDDO
TEMP_SD=TEMP_SD/FLOAT(NUM_BLKS*NUM_BLKS)

RETURN
END

29

C**
c

c

c

c

SUBROUTINE CALC_AAC

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER R_NUM,C_NUM,CNT,FUNIT,X,Y
REAL I,PREVI,DELTA,DISTORT NOW
REAL F_BLK_SIZE,AAC_SUM,TEMP,RAAC(l28,128),PAAC_SUM,SAVE

F BLK SIZE FLOAT(BLK_SIZE*BLK_SIZE)
CNT =-0
AAC SUM=O
PAAC SUM=O
PREVI=ll.O
I=lO.O
DELTA=l.O
SAVE=DISTORT AAC
DISTORT NOW=DISTORT AAC

50 CONTINUE -
CNT = CNT + 1
AAC SUM=O.O
DOR NUM = l,NUM BLKS

DO-C NUM = l,NUM BLKS
TEMP=ENERGY(C NUM,R NUM)/2.0
IF(TEMP.LT.0.0001) THEN

RAAC(C NUM,R NUM) = 1
ELSE - -

Ra.AC(C NUM,R NUM)=(ALOG(TEMP) / ALOG(2.0))
$ -DISTORT=NOW/ (F BLK SIZE)

END IF
IF(DBGFLG.EQ.l)PRINT*,' RAAC I ,RAAC(C NUM,R_NUM)
AAC SUM AAC SUM + RAAC(C_NUM,R_NUM)

END DO
ENDDO

C S UM THE BPP OVER THE ENTIRE IMAGE
AAC SUM=AAC SUM / NUM BLKS**2
IF(CNT.EQ.l) PAAC SUM=AAC SUM
IF(CNT.LT.12) THEN -

IF(AAC SUM.GT.4.) THEN
TE~ P = I
I=I+DELT:\
IF (.NOT.(I.GT.PREVI.AND.TE~P.GT.PREVI)) THE N

DELTA=DELT . .\ / 2.
I=PREVI+DELT.;

ELSE
PREVI=TEMP

E~DIF

IF (I . GT. 12.) I= 12.
DISTORT ~ow= 2.**I
IF(DBGFLG.EQ.l)PRINT*,AAC SUM,I,PREVI,DISTORT_NOW
GOTO 50

ELSEIF(AAC SUM.LT.4) THEN
IF(AAC SUM.GT.PAAC SUM) THEN

PAAC-SUM=AAC SUM
SAVE-;-DISTORT=NOW

END IF
TEMP = I
!=I-DELTA
IF(.NOT. (I.LT.PREVI.AND.TEMP.LT.PREVI)) THEN

DELTA=DELTA/ 2.

30

l=l?REVI-DELTA
ELSE

ENDIF
IF(I.LT.l.) I=l.
DISTORT NOW = 2.**I
IF(DBGFLG.EQ.l)PRINT*,AAC SUM,I,PREVI,DISTORT NOW
GOTO 50 - -

ELSE
C THE AVG OF THE AVG BPP ASSIGNED BY THE AAC
C IS lBPP OVER THE ENTIRE IMAGE

c

GOTO 101
ENDIF

ENDIF
IF(DBGFLG.EQ.20) THEN

PRINT*,' AAC EQUALITY FAILED TO CONVERGE SAVE =',SAVE
ENDIF
DISTORT NOW=SAVE
DO R NUM = l,NUM BLKS

00-C NUM = l,NUM BLKS
TEMP=ENERGY(C NUM,R NUM)/2.0
IF(TEMP.LT.0.0001) THEN

RAAC(C NUM,R NUM)=O
ELSE - -

RAAC(C NUM,R NUM)=(ALOG(TEMP)/ALOG(2.0))
$ -DISTORT=NOW/(F_BLK_SIZE)

END IF
END DO

ENDDO

C IF IT CONVERGES
101 CONTINUE
c

c

00 R NUM=l,NUM BLKS
00-C NUM=l,NUM BLKS

IF(RAAC(C NUM,R NUM).LT.l.O)THEN
AAC(C NUM,R NUM)=l

ELSEIF(RAAC(C-NUM,R NUM).GE.9.0)THEN
AAC(C NUM,R=NUM)=S

ELSE
AAC(C NUM,R_NUM)=INT(RAAC(C_NUM,R_NUM))

END IF
END DO

ENDDO

C WRITE THE AAC COMPARE DATA TO FILE IF RGB DONE

25
c

DO C NUM=l,NUM BLKS
WRITE(l7,25)(AAC(C NUM,X),X=l,NUM_BLKS)

END DO
FO~~AT(lX,<NUM BLKS>I2)

C TABLE OF AVG BITS PER WORD FOR AACS

c

SET(l)=.375
SET(2)=.375
SET(3)=.6875
SET(4)=1.0
SET(S)=l.3125
SET(6)=1.625
SET(7)=1.9375
SET(8)=2.25

RETURN
END

31

C*****************"*****************"""***************
SUBROUTINE CALC SOM

c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER X,Y,R NUM,C NUM,M,N,X LOC,Y LOC,CODE,START
REAL TEMP(l6,T28),AVG,SQDEV - -
REAL TEMP SUM(l6,128),SD
INTEGER FUNIT,CNT(8)

C DO FOR EACH AAC
c

c

c

00 CODE=l,8
CNT(CODE)=O

ENDOO
DO X=l,16

00 Y=l,128
TEMP(X,Y)=O
TEMP SUM(X,Y)=O

ENDDO-
ENDDO

DO CODE=l,8
START = (CODE-1) * N_COEF_ROW

C DO FOR EACH XFORM BLOCK
c

c

DO R NUM = l,NUM BLKS
DO-C NUM = l,NUM BLKS

X=(R NUM-l)*N COEF ROW
Y=(C-NUM-l)*N-COEF=ROW

C USE COEFFICIENTS OF BLOCKS FOR SAME AAC TO CALCULATE SOM
c

c

c

IF(AAC(C NUM,R NUM).EQ.CODE)THEN
CNT(CODE)=CNT(CODE)+l

IF(DBGFLG.EQ.l)PRINT*,' CODE CNT ',CODE,CNT(CODE)
X LOC = 1

C DO FOR EACH COEFF LOCATION
c

c

DON = X,N COEF ROW+ (X-1)
Y LOC = 1

DOM = Y,N COEF ROW+ (Y-1)
TEMP(Y LOC,X LOC+START)=DCT(M,N)+

& TEMP(Y Loc;x LOC+START)
Y LOC = Y LOC + 1

EN ODO
X LOC

END DO
END IF

ENDDO
END DO

X LOC + 1

C ALL OF CODE X ARE DONE AND ADDED TO TEMP
c
C EACH BLOCK
c

DO R NUM = l,NUM BLKS
DO-C NUM = l,NUM BLKS

X ~ (R_NUM-l)*N_COEF ROW

32

c
C EACH COEFFICIENT
c

IF(AAC(C NUM,R NUM).EQ.CODE) THEN
X LOC -; 1 -
oO N = X,N COEF ROW + (X-1)

Y LOC = 1- -
Do M = Y,N COEF ROW + (Y-1)

C IF(DBGFLG.EQ.l)PRINT*:• TEMP ',TE-MP(Y LOC,X LOC+START)
AVG=TEMP(Y LOC,X LOC+START)/FLOAT(CNT(CODE))

C TAKE CARE OF THE CASE OF-ALL ZERO COEFFICIENTS
IF(ABS(AVG).LT.0.000001) THEN

c

&

c

c

ZERO ARRAY(Y LOC,X LOC+START) 0
ELSE - - -

ZERO ARRAY(Y LOC,X LOC+START) 99
ENDIF - - -

SQDEV={DCT(M,N)-AVG)**2
TEMP SUM(Y LOC,X LOC+START)=
TEMP=SUM(Y=LOC,X=LOC+START)+SQDEV

Y LOC = Y LOC + 1
ENDOO
X LOC X LOC + 1

ENDDO
ENDIF

END DO
ENDDO

C TAKE R~S OF DEV
c

c

IF(CNT(CODE).NE.O)THEN
DO X LOC = l,N COEF ROW

00-Y LOC = l~N COEF ROW
SD~SQRT(TEMP-SUM(Y LOC,X LOC+START) / FLOAT(CNT{CODE)))
IF(SD.GT.O.l) THEN- -

SDM{Y LOC,START+X_LOC) = SD
ELSE

SDM(Y LOC,START+X LOC) =O
END IF

E~DDO

ENDDO
ELSE
DO X LOC = l,N COEF ROW

DO-Y LOC = l~N COEF ROW
SDM(Y_LOC,START+X=LOC) 0

END DO
END DO
END IF

C END OF THAT AAC CODE
c

END DO
C WRITE TO DATAFILE IF RGB DONE

PRINT*, I COLOR ',COLOR
c

DO CODE=l, 8
DO Y=l,N COEF ROW

x LOC=(cooE=l)*N COEF ROW+l
WRITE{l6,25)(SDM(Y,X)~X=X_LOC,X_LOC+N_COEF_ROW-l)

33

E~UDO

ENDOO
25 FORMAT(lX,<N_COEF_ROW>F8.3)
c

c

RETURN
END

C***
c

SUBROUTINE CALC BAM
c

c

c

c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER CODE,X_LOC,Y_LOC,XX,CNT,FUNIT,X,Y
INTEGER INT,YY,NUM DIS,END X LOC,END Y LOC
REAL BAM_SUM,TEMP,BAM_AVG,SAVE,BEST
REAL INITIAL,NBPBLK,DISTORT NOW
LOGICAL POSSIBLE,SOLN -

INITIAL=DISTORT BAM

00 X LOC=l, 128
DO Y LOC=l, 16

BAM(Y LOC,X LOC)=O
ENDDO - -

END DO

DO CODE = 1,8
DISTORT NOW=INITIAL
SOLN=.FALSE.

NBPBLK=SET(CODE)*N COEF ROW*N COEF ROW - -
BEST=O
C~T = 0
SAVE=O

XX= (CODE-1) * N COEF ROW+ 1
50 CONTINUE

BAM SUM=O
BAM-AVG=O
POSSIBLE=. F.\LSE.
CNT = C>lT + l
DO X LOC = XX,XX+N COEF ROW-1

00-Y LOC = l,~ COEF ROW
IF(SDM(Y LOC,X LOC).NE.0) THEN
TE~P=ALOG(SDM(Y LOC,X LOC))/ALOG(2.0)
BAM(Y LOC,X LOC)=INT(TEMP-DISTORT NOW)
IF(BAM(Y LOC,X LOC).GT.8) BAM(Y LOC,X LOC)=8
IF(BAM(Y-LOC,X-LOC).LT.0) BAM(Y-LOC,X-LOC)=O
POSSIBLE~. TRUE~ - -

ELSE
c
C ASSIGN 0 BITS WHERE THERE ARE NO COEFFICIE>JTS 2XCEPT O'S
c

IF(ZERO ARR.\Y(Y LOC,X LOC).EQ.0) THE~
BAM(Y LOC,X_LOC)=O

ELSE
C ASSIG~ l BIT WHERE THERE IS ~O STANDARD DEVIATION

BAM(Y LOC,X_LOC)=l
E~DIF

ENDIF

34

c

c

BAM SUM = BAM(Y LOC,X LOC) + BAM SUM
END DO- - -

ENDOO
IF(.NOT •• POSSIBLE) goto 789

BAM_AVG=BAM_SUM/FLOAT(N_COEF_ROW**2)

IF(CNT.LT.50) THEN
IF(BAM SUM.LT.NBPBLK) THEN

IF((NBPBLK-BAM SUM).LT.1.0) GOTO 30
IF(DISTORT NOW~EQ.O) THEN

CNT = 49-
ELSE

DISTORT NOW = DISTORT NOW - .a2
IF(DISTORT NOW.LT.a.a) DISTORT NOW o.o

C SAVE THE BEST BUT NOT OPTIMAL VALUE -

c

SAVE=DISTORT NOW
BEST=BAM SUM-
SOLN=. TRUE.

GOTO Sa
ENDIF

ELSEIF(BAM SUM.GT.NBPBLK) THEN
IF(DISTORT NOW.EQ.la.a) THEN

CNT = 49-
ELSE

DISTORT NOW= DISTORT NOW+ .a2
IF(DISTORT NOW.GT.10.0) DISTORT NOW 10.0
GOTO Sa -

E~DIF

ELSE
C IF(DBGFLG.EQ.6)THEN
C PRINT*,' BAM MATCH CODE
C ENDIF

GOTO 30
C THEY ARE EQUAL SO RETURN

ENDIF
c

ELSE
c
C IF CNT > 50 FIX BITS
c
789 IF(DBGFLG.EQ.5)

I ,CODE

& PRI~T*, 1 BAM CALC FAI~ED TO CONVERGE
c

CODE = ',CODE

C USING LAST BEST ASSIGNMENT (IF EXISTI~G) AND DISTRIBUTE
C REMAINING BITS
c
C RE-INITIALIZE BAM

c

c

DO X LOC=XX,XX+N COEF ROW-1
DOY LOC=l,N COEF ROW

BAM(Y LOC,X-LOC)~O
ENDDO - -

ENDDO

IF(SOLN) THEN
DISTORT NOW=SAVE

DO X LOC = XX,XX+N COEF ROW-1
DOY LOC = l,N COEF ROW

IF(SDM(Y LOC,X LOC).NE.0) THEN
TEMP=ALOG(SDM(Y_LOC,X_LOC))/ALOG(2.0)

35

BAM(Y_LOC,X_LOC)=l~T(TEMP-DISTORT NOW)
IF(BAM(Y_LOC,X_LOC).GT.8) BAM(Y LOC,X LOC)=8
IF(BAM(Y_LOC,X_LOC).LT.O) BA.M(Y-LOC,X-LOC)=O
POSSIBLE=.TRUE. - -

ELSE
BAM(Y LOC,X LOC)=O

ENDIF - -
ENDDO

ENDDO
C FIND OUT HOW MANY BITS ARE REMAINING

NBPBLK=NBPBLK-BEST
END IF

c
C DO ASSIGNING OF BAM VALUES
c

c

c

NUM DIS=INT(NBPBLK)
END-Y LOC=O
END-X-LOC=XX-1
DO WHlLE(NUM DIS.GT.0)

END Y LOC=END Y LOC+l
END-X-LOC=END-X-LOC+l
IF(END X LOC.GT~XX+N COEF ROW-1) END X LOC=XX
IF(END-Y-LOC.GT.N COEF ROW) END Y LOC=l
DO x LOC~XX,END X-LOC

DO-Y LOC=l,END Y LOC
IF{NUM DIS.GT.O) THEN

IF(BAM(Y LOC,X LOC).LT.B)THEN
BAM(Y LOC,X LOC)=BAM(Y LOC,X LOC)+l
NUM DlS=NUM-DIS-1 - -

END If -
ENDif

E~DDO

ENDOO
E~DDO

END IF

30 ENDOO
C END Of CODE LOOP
c
C WRITE BAM DATA TO fILE WHE N ALL RGB ARE DONE
c

c
PRINT*,' COLOR I ,COLOR

DO CODE=l,8
DO Y=l,N COEF ROW

X LOC=(CODE~l)*N COEF ROW+l
WRITE(l5,25){BAM(Y,X)~X=X_LOC,X_LOC+N COEF ROW-1)

ENDDO
END DO

25 FORMAT(lX,<N_COEF_ROW >I2)
c

RETURN
END

36

C**
SUBROUTINE CALC DCT

c
C THIS ROUTINE CALCULATES THE DISCRETE COSINE TRANSFORM
C FOR EACH TRANSFORM BLOCK IN THE IMAGE
C CALLED FOR EACH XFORM BLOCK
c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER J,K,M,N,R_BLK_NUM,C BLK NUM,X,Y,XX,YY
INTEGER P,Q,N COEF
REAL C(O:Sll,0:511),PI,R COEF,SQRT
REAL FJ,FK,FM,FN,RN,FREQ~SUM
REAL NORM

C COEFFICIENTS TO RETAIN
IF(INITIAL FLG.EQ.O)THEN

500 PRINT*,' NUMBER OF COEFFICIENTS PER ROW'
READ(5,*,ERR=500)N_COEF

c

c

N COEF ROW=N COEF
IF(DBGFLG.EO~l) PRINT*,' N_COEF_ROW I ,N_COEF_ROW

END IF

RN=FLOAT(BLK SIZE)
PI = 3.1415926
E SCALE=0.70710678
NORM=FLOAT(4)/(RN*RN)

C CLEAR OCT ARRAY

c

c

c

c

DO N=O,NUM BLKS*N COEF ROW-1
DO M=O,NUM BLKS*N COEF ROW-1

DCT(M,N)=O -
END DO

EN ODO

DO R BLK NUM = l,NUM BLKS
IF(DBGFLG.EQ.2) PRINT*,' R_BLK NUM
XX=(R BLK NUM-l)*N COEF ROW
X=(R BLK NUM-l)*BLK SIZE
DO C-BLK-NUM = l,NUM BLKS
IF(DBGFLG.EQ.2) PRINT*,' C_BLK_NUM
Y=(C BLK NUM-l)*BLK SIZE
YY=(C_BLK_NUM-l)*N_COEF_ROW

FN=-1.0
DO N=XX,N COEF ROW+XX-1

FN=FN+l.O -
FM=-1.0
DO M=YY,N COEF ROW+yy-1

FM=FM+l.O -
FJ=-1.0
DO J=Y,Y+BLK SIZE-1

',R_BLK_NUM

I ,C_BLK_~UM

FJ=FJ+l.O -
C(J,M)=COS(((2.0*FJ+l.O)*PI*FM) / (2.*RN))
FK=-1.0
DO K=X,X+BLK_SIZE-1

FK=FK+l.O
C(K,N)=COS(((2.0*FK+l.O)*PI*FN)/(2.*rn))

DCT(M,N)=FLOAT(IMAGE(J,K))*C(J,M)*C(K,N)+DCT(M,N)

37

c

t;NDDO
ENDDO
DCT(M,N)=DCT(M,N)*NORM

C IF FIRST TERM CALC THE DC VALUE
IF(M.EQ.YY) THEN

DCT(M,N)=DCT(M,N)*E SCALE
ENDIF -
IF(N.EQ.XX) THEN

DCT(M,N)=DCT(M,N)*E SCALE
ENDIF -

END DO
END DO

C CALCULATED ALL OF THE COEFFICIENTS
ENDDO

END DO
C DONE FOR ALL BLOCKS
25 FORMAT(lX,2I5,Fl2.6)

RETURN
END

C***
c

SUBROUTINE NORMALIZE
c
C NORMALIZE EACH COEFFICIENT BY ITS CORRESPONDING SOM VALUE
c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER X,Y,XX,Y LOC,X_LOC,R_NUM,C_NUM,N,M
REAL NORM
INTEGER BIN

C EACH BLOCK
c

c

DO R NUM = l,NUM BLKS
00-C NUM = l,NUM BLKS

X - (R NUM - l} * N COEF ROW
Y = (C=NUM - 1) * N-COEF=ROW

C EACH COEFFICIENT
c

X LOC=O
DON = X,N COEF ROW+ (X-1)

x LOC=X Ioc+l
Y-LOC=O-
DO M = Y,N COEF ROW+ (Y-1)

y LOC=Y LOC+l-xx = (AAC(C NUM,R NUM)-l)*N_COEF_ROW
IF(DBGFLG.EQ~44) THEN

BIN=BAM(Y LOC,XX+X LOC)
IF(BIN.EQ~O) THEN -

PRINT*,' DCT SOM ',DCT(M,N),SDM(Y_LOC,XX+X_LOC)
ENDIF'

END IF
IF(SDM(Y LOC,XX+X LOC).NE.0) THEN

NORM = SDM(Y LOC~XX+X_LOC)
DCT(M,N) = DCT(M,N)/NORM

END IF
ENDDO

ENDDO
END DO

38

c
ENDDO

RETURN
END

C***

39

C***
SUBROUTINE QUANTIZE

c
C THIS ROUTINE IS USED TO TAKE ALL OF THE COEFFICIENTS ASSIGNED
C THE SAME NUMBER OF BITS AND CONSTRUCT A HISTOGRAM, PERFORM

40

C MAX'S ALGORITHM , AND ASSIGN THE QUANTIZATION LEVELS TO BE OUTPUT.
c

c

c
c

c

c

IMPLICIT NONE
INCLUDE 'COLOR.INC'

INTEGER CNT(0:8),BIN,R NUM,C NUM,X,Y,N,M
INTEGER I,J,LEVEL,II,STARTI
INTEGER XLOC,YLOC
REAL MIN(0:8),MAX(0:8),FACTOR
INTEGER LOC,LEVELS,DELTA,END INDEX
REAL IQLUT(0:8,0:255) -
REAL TEMP
INTEGER*2 K,L
INTEGER START(256)
REAL IQLUT AVG
LOGICAL SWITCH

PRINT*,' ENTERING QUANTIZE I

DO BIN=0,8
CNT(BIN)=O
MAX (BIN) =-99999
MIN (BIN) =99999

END DO
DO I=0,8

DO J=0,255
IQLUT(I,J)=O

ENDDO
ENDDO

C IF(DBGFLG.EQ.69)
C & PRINT*,' BIG LOOP' ,NUM_BLKS,BLK_SIZE,N_COEF_ROW
c

DO R ~UM=l,NUM BLKS
DOC NUM=l,NUM BLKS
X=(~ NUM-l)*N-COEF ROW
Y=(C=NUM-l)*N=COEF=ROW

~ COLLECT ALL NORMALIZED COEFS TO BE CODED WITH THE SAME ~U~ OF BITS
C PER PIXEL (AS PER BAM)
c

c

XLOC=O
DO N=X,N COE: ROW+(X-1)

XLOC=XLOC+l -
YLOC=O
DO M=Y,N COEF ROW+(Y-1)

YLOC=YLOC+l

LOC=(AAC(C NUM,R NUM)-l)*N_COEF_ROW+l
BIN=BAM(YLOC,LOC+XLOC-1)
CNT(BIN)=CNT(BIN)+l
PTRM(BIN,CNT(BIN))=M
PTRN(BIN,CNT(BIN)}=N

c
C FIND MAX AND MIN VALUE FOR EACH BIN CATEGORY

41

c
IF(DCT(M,N).LT.MIN(BIN))

& MIN(BIN)sDCT(M,N)
IF(DCT(M,N).GT.MAX(BIN))

& MAX(BIN)•DCT(M,N)
C IF(DBGFLG.EQ.69)PRINT*,BIN,MIN(BIN),MAX(BIN),M,N,DCT(M,N)
C END N LOOP

END DO
C END K LOOP

END DO
C END C NUM LOOP

- ENDOO
C END R NUM LOOP

- ENDDO
c

c

c

PRINT*,' ENTERING SORT'
DO BIN=l,8

PRINT*,' SORTING BIN ',BIN
IF(CNT(BIN).GT.0.AND.MIN(BIN).NE.MAX(BIN)) THEN

SWITCH=.TRUE.
STARTI=l
DO WHILE(SWITCH)

SWITCH=.FALSE.
DO I=STARTI,CNT(BIN)-1

IF(DCT(PTRM(BIN,I),PTRN(BIN,I)).GT.
& DCT(PTRM(BIN,I+l),PTRN(BIN,I+l))) THEN

M=PTRM(BIN,I)
PTRM(BIN,I)=PTRM(BIN,I+l)
PTRM(BIN,I+l)=M

N=PTRN(BIN,I)
PTRN(BIN,I)=PTRN(BIN,I+l)
PTRN (BIN, I+l) =N
IF(.NOT.SWITCH) STARTI=I-1
IF(STARTI.LT.l) STARTI=l
SWITCH=. TRUE.

ENOIF
ENDDO

ENDDO
ENDIF

ENDDO

PRINT*,'EXITING SORT'
C LOAD THE IQLUT VALUES FOR BIN 0

C IF(DBGFLG.EQ.1000) WRITE(33,33)
33 FORMAT(' BIN 0 ',//,' OCT M N')

IF(CNT(O).GT.O)THEN
DO I = l,CNT(O)

IQLUT_AVG =IQLUT_AVG + DCT(PTRM(O,I),PTRN(O,I))
ENDDO
IQLUT(O,O)=IQLUT AVG / ~~0AT(CNT(O))
DO I=l,CNT(O) -

IMAGE(PTRM(O,I),PTRN(O,I))=O
END DO

ELSE
IQLUT(0,0)=0.

ENDIF
WRITE(l2,329) IQLUT(O,O)

329 FORMAT(lX,Fl4.9)
c

C DETERMINE QLUT FOR BIT ASSIGNMENT
C FORM QLUTS
c

c

c

c

c

00 BINzl,8
IF(CNT(BIN).GT.O •• AND.MAX(BIN).NE.MIN(BIN)) THEN

LEVELS.:1:2**BIN
START(l)cl
DELTA=NINT(FLOAT(CNT(BIN))/FLOAT(LEVELS))
IF(DELTA.LT.l)DELTA=l
DO I=2,LEVELS

START(I)=DELTA+START(I-1)
END DO

DO I =l, LEVELS
IQLUT AVG=O
IF(START(I).Lt.CNT(BIN))THEN

IF(I.EQ.LEVELS)THEN
END_INDEX=CNT(BIN)

ELSE
END_INDEX=START(I+l)

ENDIF

IF(END_INDEX.GT.CNT(BIN)) END_INDEX=CNT(BIN)

DO J=START(I),END INDEX
IQLUT AVG=IQLUT-AVG+DCT(PTRM{BIN,J),PTRN(BIN,J))
IMAGE(PTRM(BIN,J),PTRN(BIN,J)}=I-1

42

END DO
IQLUT(BIN,I-l)=IQLUT_AVG/FLOAT(END_INDEX-START(I)+l)

c
ELSE !NOTHI~G IN BOX

IQLUT(BI~,I-1)=99.

END IF
E~DDO

ELSEIF(MAX(BIN).EQ.Ml~(BIN))THEN

DO J=l,CNT(BIN)
IMAGE(PTRM(BIN,J),PTRN(BIN,J))=O

ENDDO
IQLUT(BIN,O)=MAX(BIN)

ENDIF
WRITE(l2,29)(IQL UT(BIN,LEVEL),LEVEL=0,255)

2 9 FORMAT (1X,32 (8 (F 14. 9) , //))
ENDDO
RETURN
END

PROGRAM DECOMP
c
C THIS ROUTINE IS USED TO DECOMPRESS THE IMAGE
C FROM THE ADAPTIVE OCT METHOD
c

c

c

IMPLICIT NONE
INCLUDE 'DECOMP.INC'

INTEGER* 2 RED_BUF (0: 511) ,GRE BUF (0: 511) , ·BLU BUF (0: 511)
BYTE DC RED IMAGE(0:511),DC GREEN IMAGE(0:511)
BYTE DC-BLUE IMAGE(0:511),BITE -
REAL MAX(0:8T,LEV(8),NORM,NORM DCT,RNO
REAL SQRT,IQLUT ARRAY(0:8,0:25S),SDM(16,128)
INTEGER LEVEL,C~BAM(16,128)
INTEGER*2 C RED IMAGE(0:511,0:511)
INTEGER AAC(l28~128),COLOR
INTEGER*2 C GREEN IMAGE(O:Sll,0:511)
INTEGER*2 C-BLUE IMAGE(0:511,0:511)
INTEGER BIN;xx,K;J,I,R NUM,C NUM,X,Y,N,M
INTEGER POS,FUNIT,IOS,CODE,YY,PIXEL,XLOC,CONSTANT
INTEGER TEMPX,YLOC,IMAGE SIZE
EQUIVALENCE (BITE,PIXEL)-

C DEFINITION OF THE MAXIMUM VALUE POSSIBLE FOR EACH BIT
C ASSIGNMENT (0-8 BITS CORRESPONDS TO 0-255 LEVELS)
c

c

c

&
c

&
c

&
c
c OPEN

&

c
444

PRINT*,' ENTER BLK SIZE (16,8,4) '
READ*,BLK SIZE
PRINT*,' IMAGE SIZE I

READ*,IMAGE_SIZE

NUM BLKS=IMAGE SIZE/BLK SIZE
PRINT*,' ENTER-NUM COEF PER BLOCK'
READ*,N COEF_ROW

OPEN(UNIT=l7,NAME='AACFILE.DAT',TYPE='UNK~OWN',
FORM='FORMATTED')

OPEN(UNIT=l5,NAME='BAMFILE.DAT',TYPE='UNKNOWN',
FOR~='FORMATTED')

OPEN(UNIT=l6,NA~S='SDMFILE.DAT' ,TYPE='UNKNOWN',
FORM=' FORMATTED')

COMPRESSED IMAGE FILE
OPEN(UNIT=l4,NAME='CSCENE1.DAT',TYPE='UNKNOWN',

FORM='UNFORMATTED',RECL=l28,IOSTAT=IOS,ERR=22)

FOR~AT(lX, 8I4)
N=NUM BLKS*N COEF ROW
DO I=O,N-1 - -

READ(l4,ERR=23,IOSTAT=IOS)(C_RED_IMAGE(K,I),K=O,N-l)
C WRITE(70,444)(C_RED_IMAGE(K,I),K=O,N-l)

EN ODO
DO I=O,N-1

READ(l4,ERR=23,IOSTAT=IOS)(C_GREEN_IMAGE(K,I),K=O,N-l)
C WRITE(70,444)(C_GREEN_IMAGE(K,I),K=O,~-l)

END DO
DO I=O,N-1

READ(l4,ERR=23,IOSTAT=IOS)(C_BLUE_IMAGE(K,I),K=O,N-l)
C WRITE(70,444)(C_BLUE_IMAGE(K,I),K=O,N-l)

43

ENDDO
c
C CLOSE FILE

CLOSE(UNIT=l4)
c
C OPEN THE IOLUT FILE

OPEN(UNIT=l2,NAME='IOLUT.DAT',TYPE=
& 'UNKNOWN',FORM='FORMATTED')

c
C PROCESS THE RED, GREEN AND BLUE IMAGE SEPARATELY

DO K=l,3
IF(K.EQ.l)COLOR=l
IF(K.EQ.2)COLOR=2
IF(K.EQ.3)COLOR=3
PRINT*,' COLOR= ',COLOR
DO J=O,NUM BLKS*N COEF ROW-1

DO I=O,NUM BLKS*N COEF ROW-1
IF(K.EQ.l) IMAGE(I,J)~C RED IMAGE(I,J)
IF(K.EQ.2) IMAGE(I,J)=C-GREEN IMAGE(I,J)
IF(K.EQ.3) IMAGE(I,J)=C-BLUE lMAGE(I,J)

END DO - -
END DO

C READ IN THE IQLUT ARRAY
READ{l2,37) IQLUT ARRAY(0,0)

37 FORMAT(lX,Fl4.9) -
00 BIN=l,8

C PRINT*,' BIN = ',BIN
READ{l2,28)(IQLUT ARRAY(BIN,LEVEL),LEVEL=0,255)

28 FORMAT(lX,32(8(Fl4.9),//))
END DO

c
C READ IN ."A.AC

DOC NUM=l,NUM BLKS
READ(l7,234)(AAC(C NUM,R NUM),R NUM=l,~UM BLKS)

END DO -
c
C READ IN BAM

c
C READ

234
235
236
c

DO CODE=l,8
XLOC=(CODE-l)*N_COEF_ROW+l
DO Y = l,N COEF ROW

READ(l5,235)(BAM(Y,X),X=XLOC,XLOC+~_COEF_ROW-l)
END DO

E'.'JDDO

IN SDM
DO CODE=l,8

XLOC=(CODE-l)*N COEF_ROW+l
DO Y = l,N COEF ROW

READ(l6,236)(SDM(Y,X),X=XLOC,XLOC+N_COEF_ROW-l)
ENDDO

ENDDO
FORMAT(lX,<NUM BLKS>I2)
FORMAT(lX,<N COEF ROW>I2)
FORMAT(lX,<N=COEF=ROW>F8.3)

C PROCESS EACH TRANSFORM BLOCK
DO R NU~=l,NUM BLKS

X=(R NUM-l)*N-COEF ROW
DO C-NUM=l,NUM BLKS

Y=(C NUM-l)*N-COEF ROW
XLOC~O - -
DO N=X,N_COEF_ROW+X-1

44

c

XLuC=XLUC+l
YLOC=O
DO M=Y,N COEF ROW+Y-1

YLOC=YLOC+l -

C HAVE AN OVERHEAD FILE ASSOCIATED WITH EACH IMAGE
C CONTAINING THE AAC ARRAY AND IQLUT ARRAY FOR THE IMAGE,
C ALSO HAVE THE BAM AND SOM.
c
C INVERSE QUANTIZATION

LEVEL=IMAGE(M,N)
C PRINT*,' LEVEL ',LEVEL
C DETERMINE BIT ASSIGNMENT

TEMPX=(AAC(C NUM,R NUM)-l)*N COEF ROW
BIN=BAM(YLOC~TEMPX+XLOC) -

c
C CALCULATE THE NORMALIZED OCT COEFFICIENT

NORM DCT=IQLUT ARRAY(BIN,LEVEL)
IF(NORM DCT.EQ~99.0) THEN
PRINT*~' BIN LEVEL =99 ',BIN,LEVEL

ENDIF
C INVERSE NORMALIZATION

NORM=SDM(YLOC,TEMPX+XLOC)
IF(NORM.EQ.O)THEN

DCT(M,N)=NORM DCT

c

c

ELSE -
DCT(M,N)=NORM*NORM_DCT

ENDIF

END DO
END DO

ENDDO
ENDDO

C PERFORM THE INVERSE DCT
CALL CALC IDCT

c
DO I=O,IMAGE SIZE-1

DO J=O,IMAGE SIZE-1
IF(K.EQ.l) THEN

C RED IMAGE(I,J)=~INT(IDCT(I,J))
ELSEIF(K.EQ.2) THEN

C GREEN IMAGE(I,J)=~INT(IDCT(l,J))
ELSEIF(K:EQ.3) THE~
C_BLUE_IMAGE(I,J)=~I~T(IDCT(I,J))

ENDIF
END DO

ENDDO
C END OF K LOOP

ENDDO
c
C CLOSE THE IQLUT ARRAY

CLOSE(UNIT=l2)
c
C OPEN NEW COLOR IMAGE FILE

PRINT*,' ABOUT TO OPEN NEW FILE '
c

&

&

CALL LIB$GET LUN(FUNIT) I

OPEN(UNIT=FUNIT,NAME='DCMTLEFT.SCN',TYPE='UNKNOWN ,
FORM='UNFORMATTED' ,DEFAULTFILE='.SCN',
RECL=l28,RECORDTYPE='FIXED' ,IOSTAT=IOS,ERR=lOO)

PRINT*,' OPENED DC FILE '

45

C CONVERT TO BYTE FORMAT FROM INTEGER
c

c

DO I~O,IMAGE SIZE-1
DO J•O,IMAGE SIZE-1

PIXEL=(C RED IMAGE(I,J}}
DC RED IMAGETJ)=BITE
PIXELz(C GREEN IMAGE(l,J)}
DC GREEN-IMAGE(J}=BITE
PIXEL=(C-BLUE IMAGE(I,J))
DC BLUE YMAGETJ)=BITE

ENDOO -

C WRITE IN ALTERNATING RGB
WRITE(FUNIT)(DC RED IMAGE(POS),

& POS=O,IMAGE SIZE=l)
WRITE(FUNIT)(oC GREEN IMAGE(POS),

& POS=O,IMAGE SIZE-1)
WRITE(FUNIT)(DC BLUE IMAGE(POS),

& POS=O,IMAGE SIZE-T)
END DO -

c
CLOSE(UNIT=FUNIT)
CALL LIB$FREE_LUN(FUNIT)

c
STOP

22 PRINT*,' ERROR OPEN FILE -c IMAGE IOSTAT=' , IOS
STOP

23 PRINT*,' ERROR READING c IMAGE IOSTAT=', !OS
STOP

100 PRINT*, I ERROR OPEN DC IMAGE IOSTAT= I , IOS
STOP

101 PRINT*,' ERROR WRITING DC IMAGE IOSTAT= I , IOS
STOP

c
END

C END PROGRAM
c

c

SUBROUTINE CALC_IDCT
c
C THIS SUBROUTINE CALCULATES THE INVERSE OCT FOR THE
C DECOMPRESSION
c

c

c

c

IMPLICIT NONE
INCLUDE 'DECOMP.INC'
INTEGER J,K,M,N,R NUM,C NUM,X,Y,XX,YY,I
REAL FJ,FK,FM,FN,SQRT,PI,RN,C(O:Sll,O:Sll)
REAL SUM,FREQ,E_SCALE

DO J=O,BLK SIZE*NUM BLKS-1
DO I=O,BLK SIZE*NUM BLKS-1
IDCT(I,J)~O -

ENDDO
END DO

PI=3.1415926
RN=FLOAT(BLK SIZE)
E SCALE=.707l0678

DO R_NUM=l,NUM_BLKS

46

c

c

c

c

c

X=(R NUM-l)*BL~ ~~~~
XX=(R NUM-l)*N COEF ROW
DO c NUM•l,NUM-BLKS-

Y•(C NUM-l)*BLK SIZE
YY•(C NUM-l)*N COEF ROW
FK•-1~0 - -
DO K•X,BL~ SIZE+X-1

FK•FK+l.O
FJ•-1. 0
DO J=Y,BLK SIZE+Y-1

SUM=O.O -
FJ=FJ+l.O
FM=-1. 0
DO M=YY,YY+N COEF ROW-1

FM=FM+l. 0 -
C(J,M)=COS((2.0*FJ+l.O)*PI*FM/(2.*RN))

FN=-1.0
DO N=XX,XX+N COEF ROW-1

FN=FN+ 1. 0 - -
C(K,N)=COS((2.0*FK+l.O)*PI*FN/(2.*RN}}

FREQ=DCT(M,N}
IF(M.EQ.YY} THEN

FREQ=FREQ*E SCALE
ENDIF -
IF(N.EQ.XX} THEN

FREQ=FREQ*E_SCALE
END IF

SUM=SUM+FREQ*C(J,M)*C(K,N}

END DO
END DO

PRINT*, ' SUM I ,SUM
IF(SUM.LT.0) SUM=O
IDCT(J,K)=SUM

C END OF LOOP THRU COEFFICIENTS
END DO

END DO
C END OF THE PIXELS FOR THE XFOR~ BLOCK

ENDDO
E~DDO

C END OF BLOCKS

c

c

PRINT*,' LEAVING !OCT I

RETURN
END

47

REFERENCES

[l] Donovan, Ken. "Photographic Texture Quantification and
Compression." General Electric PIR T~RF-633-KBD-010
[1986]. . '

[2] Habibi,Ali and Robison,Guner s. "A Survey of
Picture Coding." IEEE Computer, (May 1974):

Digital
22-34.

[3] Chen,W.H., and Smith,C.H. "Adaptive Coding of
Monochrome and Color Images." IEEE Transactions on
Communications, (November 1977): 1285-1292.

[4] Pacelli J., "A Comparison of Data Compression Schemes
on Visible and Radar Imagery." General Electric TIS
No.820SDS058, December 1981.

[5] Max J., "Quantizing for Minimum Distortion." IEEE
Transactions on Information Theory, (March 1960):
7-12.

[6] Frost,v.s. and Minden,G.J. "A Data Compression
Technique for Synthetic Aperture Radar Images." IEEE
Transactions on Aerospace and Electronic Systems,
(January 1986): 47-54.

[7] Yamaguchi, H. "Efficient Encoding of Colored Pictures
in RGB Components." IEEE Transactions on
Communications, (November 1984): 1201-1209.

[8] Murakami, Hitomi and Yamamoto, Hideo. "Theoretical
Comparison between DPCM and Transform Coding
Regarding the Robustness of Coding performance for
Variation of Picture Statistics." IEEE Transactions
on Communications, (December 1984): 1351-1357.

[9] Hague, Munsi Alaul. "A Two-Dimensional Fast Cosine
Transform." IEEE Transactions on Acoustics, Speech
and Signal Processing, (December 1985): 1532-1539.

48

49

[10] Gonzalez,R.C. and Wintz,Paul. Digital Image
Processing. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1983.

	Adaptive Discrete Cosine Transform Image Compression Applied to Visual Flight Simulators
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	NOMENCLATURE
	iv

	INTRODUCTION
	01
	02

	CHAPTER I. REQUIREMENTS
	03
	04

	CHAPTER II. ADAPTIVE DCT METHOD
	05
	06

	CHAPTER III. IMPLEMENTATION
	Discrete Cosine Transform
	07
	08

	Adaptive Assignment Code
	09
	10
	11

	Standard Deviation Matrices (SDM)
	Bit Assignment Matrices (BAM)
	12

	Quantization
	13
	14

	Decompression
	15
	16
	17

	CHAPTER IV. RESULTS
	Subjective Error Analysis
	18
	19
	20

	Objective Error Analysis
	21

	CHAPTER V. CONCLUSIONS
	22
	23
	24

	APPENDIX
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	REFERENCES
	48
	49

