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ABSTRACT 

A computer simulation demonstrates the feasibility of 

a technique for performing spatial frequency analysis on an 

incoherent scene in one dimension using an electronically 

addressable spatial light modulator {SLM). By applying a · 

biased sinusoidal variation to the SLM transmittance, the 

real and imaginary parts of the Fourier transform are 

available and readily yield both magnitude and phase of the 

Fourier transform. 

In addition to the Fourier transform this simulation 

investigates t~e use of a simple binary pulse train 

transform for the sake of reducing system complexity and 

increasing speed of operation. 
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INTRODUCTION 

Although coherent systems of Fourier analysis based on 

Fraunhofer diffraction have produced many useful results in 

the laboratory, there is room for further development of 

incoherent optical processors capable of Fourier analysis 

in less artificial environments, where coherent illumination 

is impossible or impractical. 

This study will consist of a computer simulation of a 

particularly straightforward approach to measuring the 

spatial frequency content of an incoherently illuminated 

scene. The basic approach employed is motivated by viewing 

an integral transform as the area under a product of two 

functions; namely the function to be transformed and the 

kernel function which characterizes the transform. The 

quantity to be transformed in this study represents the 

luminous intensity of an incoherent scene. The transform 

kernel is represented by the spatial variation in 

transmittance of a spatial light modulator (SLM). One type 

of spatial light modulator appropriate for implementing this 

approach would be a high resolution liquid crystal SLM 

consisting of an array of individually addressable pixels 

with gray scale capability (Boreman and Raudenbush 1986). 

The amount of light from the scene transmitted. by the SLM is 
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equal to the product of the luminous intensity of the image 

and the transmittance function of the SLM. The integral of 

the product, 

(image intensity) x (transmittance of SLM) 

is obtained by collecting all the light transmitted by the 

SLM with a photocell or CCD array. This approach is equiv-

alent to the correlation of an image with successive tar­

gets of increasing spatial frequency in order to obtain the 

Fourier coefficients (Rogers 1977, p. 33; Armitage and 

Lohman 1965). The proposed implementation is seen schemati-

cally in Figure 1. 

incoherent 

scene 

imagery. 

optics 

SLM 

incoherent 

image 

Figure 1: Schematic -diagram of incoherent spatial frequency analyzer 

Since the transmittance function of the SLM cannot 

represent negative quantities it is necessary to add a 

constant bias to the transform kernel to ensure that it is 

always positive. For example the one-dimensional Fourier 

transform can be implemented by a SLM with transmittance 



functions of the form 

T(x;u) = B + Mcos(2Tiux) 

and T(x;u) = B + Msin(2Tiux) 

where u represents the spatial frequency variable. The 

result of adding the constant bias term to the transform 

kernel is a reduction in contrast. 

3 

The idea of performing Fourier analysis using an 

incoherent optical processor was tested by H.C. Montgomery 

of the Bell Laboratories as early as 1938. The apparatus 

tested by Montgomery measured the magnitude and phase 

of 30 spectral components of a function f(x) recorded 

on a photographic transparency as a gradation in the 

density of the film. The film containing f(x) was 

illuminated by an incandescent lamp and condensing lens 

system. An image of the function to be analyzed was focused 

on a screen with sinusoidal variation in density of the 

form B[l + Mcos(nx)]. The total light transmitted by 

the cosine screen was measured by a photocell which in 

effect performed the operation of outputting the 

integral of the product of f(x)cos(nx). A different screen 

was required for each frequency to be measured. This 

process was automated with a mechanical arrangement of cams 



and levers which loaded the cosine screens from a drum­

shaped magazine. 
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The magnitude and phase of the spectral components were 

obtained by moving the cosine screen through one complete 

period and recording the position of the cosine screen where 

the maximum transmitted light is received. The magnitude of 

the maximum is proportional to the magnitude of that 

particular frequency component and the position indicates 

the phase of that component. An alternative method is to 

shift the cosine screen by a quarter cycle and thereby 

measure the integral of the product f(x)sin(nx). The two 

measurements yield the real and imaginary parts of the 

spectral component which is readily converted to the polar 

form. 

Montgomery's optical harmonic analyzer was used for 

speech sound analysis taken from the sound track on motion 

picture film. 

The analyzer implemented by Montgomery was limited by 

the technology available in 1938. Producing high quality 

cosine transparencies with uniform modulation and average 

transmission was one difficulty. The mechanically 

complicated . nature of the analyzer and necessity for 

accurate alignment were also limiting factors. 

These limitations are largely mitigated by the use of 

an electronically addressable SLM, and a number of processor 



architectures which might have been otherwise too complex 

mechanically, now become feasible. 

5 



THEORETICAL BACKGROUND FOR THE FOURIER TRANSFORM 

In the context of incoherent spatial frequency 

processing with an SLM, it is advantageous to express the 

Fourier transform, F(u), in rectangular form: 

F(u) =./"·f(x)cos(2Tiux)dx - j./"•f(x)sin(2Tiux)dx 
-m -m 

where f(x) represents a real valued one dimensional scene 

function and u represents spatial frequency in cycles per 

unit distance of x. Throughout this paper f (x) will denote 

a real valued function of x. It will be convenient to 

define the symbols Fc{u) and F5 (u) to be the first and 

second integrals respectively in the above equation. The 

Fourier transform can then be written in the compact form: 

~ {u) is the real part of the Fouri~r transform and it is 

an even function or u, i.e., Fc(-u) = Fc{u), provided that 

f(x) is a real valued function. F5 {u) is the negative of the 

imaginary part of F(u) · and it is an odd function of u, i.e., 

~(-u) = -~(u), if f(x) is real valued. In this paper Fc(u) 

and F
5

{u) will be referred to as the cosine transform and 

sine transform respectively of the function f{x). 

however, that Fc(u) as defined is not equal to 

8 



2,/,.•f(x)cos(2Uux)dx unless f(x) is an even function nor 
0 

is F~u) equal to 2,f,,•t(x)sin(2Uux)dx unless f(x) is an odd 
0 

function. 

The magnitude of the Fourier transform, fF<u>I ~ can 

be expressed in terms of Fe(u) and F
5 

(u) as: 

I F(u) I = VFc (u) 2 + F (u) 2 
5 

I F(u)I is an even function of u provided that f(x) and 

therefore Fe(u) and F
5

(u) are real functions. 

The phase of the Fourier transform, arg(F(u)], can 

also be expressed in terms of Fe{u) and F
5

{u) as follows: 

arg [ F ( u ) ] = -arct an [ F 
5 

( u ) /Fe { u ) ] , i f Fe { u ) > 0 

7 

arg[F{u)] =TI - arctan[F
5

(u)/Fe{u)], if Fe{u)<O and F
5

{u)<O 

arg(F{u)] = -TI - arctai:i[F
5 

(u)/F e {u)], if Fe (u) <0 and F
5 

(u) >0 

The phase of the Fourier transform is an odd function of u. 

It is interesting to note that the cosine transform as 

defined above only "sees" the even part of f(x) and the sine 

transform only "sees" the odd part of f(x). This property 

is evident if f(x) is expressed as the sum of its even part, 

e(x), and odd part, o(x), where e{x) = 0.5[f{x) + f(-x)] 

and o{x) = 0.5[f{x) - f{-x)]. Fe(u) and F
5

(u) simplify 
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as shown below. 

F (u) 
c 

= 2 J ""e ( x) cos ( 2Tr ux) dx 
0 

/ ao ..-o/ao F
5

(u) =,.-- e<x)~in(2ftUx)dx + o(x)sin(2Tiux)dx 
-ao -ao 

=2 /""cc x)sin( 2Trux)dx 
0 

Therefore only e(x) is seen by Fc(u) and only o(x) is seen by 

F
5 

( u) . 

Implementing The Fourier Transform 

By superimposing a sinusoidal variation on a d-c bias 

in the transmittance function of a spatial light modulator, 

it should be possible to implement the two integrals in the 

Fourier transform optically. If the transmittance of the 

SLM is of the form B + Mcos(2Tiux), then the total luminous 

intensity emanating from an illuminated image and 

transmitted through the SLM is given by the product 

f(x)[B+Mcos(2Tiux)]. If all the light transmitted by the SLM 

is collected by a photocell or CCD array, the output of the 

detector will be the integral of the above product, i.e., 

~~(x)[B + Mcos(2Trux)]dx. 
-OD 
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By interpreting f{x) to be zero outside the limits of the 

image, the above integral can be expressed as: 

Bf ~(x)dx + M f "°rcx)cos(2fTux)dx = BF(O) + MFc (u) 

-00 -00 

which contains the desired quantity, Fe {u), plu s a bias term, 

BF( 0). The d-c bias term, BF(O), can be measured before 

applying the cosinusoidal variation to the transmittance of 

the SLM, stored, and then subtracted from the measurement 

taken with modulation (assuming a stationary scene). The 

modulation depth, M, is a known constant. Therefore it is 

possible to determine Fe (u) using an SLM having transmit-

tance with a cosinusoidal variation of frequency in the x 

direction (or any direction of interest) and a light detec-

tor to obtain the integral of the product f(x)cos{2Tiux). By 

shifting the cosinusoid a quarter cycle it is possible to 

obtain Fs (u) in a similar fashion. Thus, the complete 

Fourier transform, magnitude and phase or real and imaginary 

parts, can be obtained from two measurements of the inco-

herent image at each spatial frequency of interest. 

The advantage of the SLM is the relative speed and 

ease with which the spatial frequency of the imposed 

sinusoidal variation can be changed, allowing the 

measurement of a large number of frequency components as 

fast as the trigonometric function values can be generated 
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and applied to the SLM. The loss in contrast caused by the 

addition of the d-c bias level can be readily compensated 

for digitally before the processed image is displayed. 

Accurate representation of a sinusoidal variation in 

the SLM transmittance places an upper limit on the 

frequencies that can be measured. As shown below, even a 

crude representation using only four quantization levels 

would require six columns of pixels per cycle, thereby 

limiting the number of cycles representable per unit 

distance x. 

Figure 2: Approximation to cosinusoid using only six 
columns of pixels per cycle. 

Also, in a near real time application, the time 

required for the calculation or look up of ~he trigonometric 

function values may be significant. Therefore, for the sake 

of increased frequency range, speed, and simplicity, it is 

of interest to investigate the use of a raised square pulse 

train in place of the trigonometric functions. 
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A square pulse train can be represented with as few as 

two pixels per cycle thus increasing the upper frequency 

limit by a factor of three over the sine and cosine trans­

forms. Generation of the binary transmittance function on 

the SLM can be implemented at higher speeds than attainable 

with a scheme involving the calculation or look-up of trigo­

nometric function values. 

In place of the cosine function appearing in the real 

part of the Fourier transform, a raised square pulse train 

which is symmetric about the origin could be used to 

extract frequency information from the even part of f(x). 

In a similar manner the sine function can be replaced with a 

square wave having odd symmetry plus a d-c bias to 

extract frequency information from the odd part of f{x). 

The following chapter will explore the relationship of such 

pulse train transforms to the Fourier transform and provide 

examples illustrating some of the properties of square pulse 

train transforms. 



THE EVEN AND ODD PULSE TRAIN TRANSFORMS 

The even pulse train transform will be defined as: 

EPTX[f(x)] =f ;e(x;u) f(x) dx 
-00 

where Ke(x;u) is the even square pulse train shown below. 

Figure 3: 

1 

The kernel function for the even pulse train 
transform. 

The parameter u indicates the fundamental frequency in the 

Fourier series expansion of Ke{x;u). A closed form 

eXpression for Ke{x;u) is given by: 

Ke{x;u) = 0.5 + 0.5 sgn[cos(2Tiux)]. 

The functional notation for the even pulse train transform 

will be Pe(u) = EPTX[f(x)]. 

12 
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In a manner analogous to the cosine Fourier transform, 

the even pulse train transform only "sees" the even part of 

the scene function. The above characteristic becomes 

apparent upon expressing Ke(x;u) as a d-c bias plus an even 

square wave ESW(x;u) which oscillates between +1 and -1, 

with fundamental frequency u , i.e., 

Ke(x;u) = 0.5 + 0.5 ESW{x;u). 

Substituting f(x)= e(x) + o(x) into the expression for the 

even pulse train transform yields: 

EPTX[f(x)] = f 00 

(0. 5 + 0. 5ESW(x;u) ](e(x) + o(x) ]dx 
-00 

= 0.5 L ... e(x)dx + 0.5 ~o 

+0.5L"'_ ESW(x;u) e(x)dx 

\ (QD ... 0 
+0.5 ESW(n;u) o(x)dx 

~Q) 

Therefore the even pulse train transform only reflects 

characteristics of the even part of f(x), e(x). 

In order to see the relationship between the even 

pulse train transform and the Fourier cosine transform it is 

necessary to substitute the Fourier series expression for 



Ke(x;u) into the equation for EPTX[f(x)]. The Fourier 

series expression for Ke(x;u) is: 

Ke(x;u) = 1/2 + (2/TI){cos(2Tiux) 

- (1/3) cos(2TI(3u)x] 

+ (1/5) cos[2TI(5u)x] 

- (1/7) cos[2TI(7u)x] + ... } 

14 

Therefore, the even pulse train transform can be written as: 

EPTX[f{x)] = Pe(u) = (~(0)/2) 
+ (2/TI){F {u) · -(1/3)F {3u) 

c c 

+ ·{1/5) Fc(5u) -(1/7)Fc(7u) + ... } 

From the above expression it is apparent that the even pulse 

train transform is made up of a d-c bias term, F(0)/2, plus 

an alternating series of compressed or rescaled Fourier 

cosine transforms. 

The odd pulse . train transform will be defined as: 

OPTX[f(x)] = /
00

Ko(x;u)f(x)dx 
-GD 

where Ko(x;u) is the odd square wave plus d-c bias 

shown below. 
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Figure 4: 
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The kernel function for the odd pulse train 
transform. 

-
5 -2u 

The functional notation for the odd pulse train 

x 

transform will be Po(u) = OPTX[f(x)]. Although Ko(x;u) is 

not, strictly speaking, an odd function, it will serve the 

1~ 

purpose of extracting spatial frequency information from the 

odd component of the scene function f(x). This can be seen 

by writing Ko(x;u) as an odd square wave OSW(x;u) which 

oscillates between +1 and -1 with fundamental frequency u 

plus a d-c bias, Ko(x;u) = 0.5 + 0.5 OSW(x;u), and 

wr i ting f(x) = e(x ) + o(x). 

OPTX[f(x)] = / 00

[0. 5 + O. 5 OSW(x; u) ][e(x) + o(x) ]dx 
-CD . 

= .s/me(x)dx + .s/""'osw(x;u)e(x)dx 
-QC -CID 

+ . 5 /mo(x)dx + . 5 /""°"osW(x;u)o(x)dx 
- 00 

= 0.5 F(O) + 0.5 /"Osw(x;u)o(x)dx 
-ac 
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where F(O) = Fourier transform evaluated at u=O. Therefore 

the odd pulse train transform only "sees" the odd part of 

the scene function. 

In order to see the relationship between the Fourier 

sine transform and the odd pulse train transform of f(x), it 

is necessary to replace Ko(x;u) with its Fourier series 

expression. 

Ko(x;u) = 1/2 + (2/TI){sin(2Tiux) + (1/3)sin[2TI(3u)x] 

+ (1/5) sin[2TI(5u)x] 

+ (1/7) sin[2TI(7u)x] + ... } 

The odd pulse train transform of f(x) can then be expressed 

as a sum of Fourier sine transforms. 

OPTX[f(x)] = 0.5F(O) + (2/TI){F
5

(u) + (1/3)F
5

(3u) 

+ (1/5)F
5

(5u)+ ... } 

In order to gain some insight into the significance of 

the higher order terms in the series expressions for the 

even and odd pulse train transforms, a computer program was 

written in BASIC which computes and graphs EPTX[f(x)] and 

OPTX[f{x)] as a function of spatial frequency, u. The 

program, PTX, calculates the area under the product 

K(x;u)f(x) for both the even and odd pulse trains for a 
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range of spatial frequency values entered by the user. The 

program was modified to also plot the raised cosine and sine 

Fourier transforms to model the result of a sinusoidal 

variation in the SLM transmittance function for comparison. 

Consider the simple example of a single square pulse 

of unit width centered about the origin. 

-1/2.S.x<l/2 
f(x) = lOrect{x) = 

otherwise 

Figure 5(b) shows the graph of the raised Fourier 

cosine transform of the scene with luminous intensity f(x), 

5(a), that would be measured if the SLM were given a 

cosinusoidal variation in transmittance of the form 

T(x;u) = 0.5 + 0.5cos(2Tiux). 

The result is proportional to the Fourier cosine transform 
\ 

Fc(u) plus a d-c bias level. 

Figure 5(c) shows the graph of the even pulse train 

transform, EPTX[f(x)]. Figure 5{d) shows the raised Fourier 

cosine transform superimposed on the graph of the even pulse 

train transform for comparison. 

It is interesting to note that the raised Fourier 

cosine transform and the even pulse train transform coincide 
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for u = 0,1,2,3,4, ... in this example. The maximum 

deviation of EPTX[f(x)] from the raised cosine transform 

occurs at spatial frequencies u = .5,1.5,2.5, .... The even 

pulse train transform is qualitatively very similar in shape 

to the raised cosine transform. 

The odd pulse train transform and the raised Fourier 

sine transform are shown in Figure 5(e). Both OPTX[f(x)] 

and the raised sine transform are equal to the constant 

value F(0)/2 since F (u) = 0 for an even scene function. 



PROPERTIES OF EPTX[f(x)] AND OPTX[f(x)] 

Given that the even pulse train transform and odd 

pulse train transform are linear integral transforms, i.e., 

EPTX[af(x) + bg(x)] = a EPTX[f(x)] + b EPTX(g(x)] 

OPTX[af(x) + bg(x)] = a OPTX[f(x)] + b OPTX(g{x)] 

it is of interest to investigate other properties of the 

pulse train transforms for comparison with properties of the 

Fourier transform. 

Change of Scale Property 

If the Fourier transform of f(x) is F(u) then the 

Fourier transform of f(ax) is (1/(af )F(u/a) or 

(1/faf )[Fc(u/a)-jF
5
(u/a)]. This result can be substituted 

directly into the expressions for EPTX[f(ax)] and 

OPTX[f(ax)]. 

EPTX[f(ax)] = F (0)/(2f ar> + c21nfaf >{F (u/a) c c 

-(1/3)Fc(3u/a)+ (1/5)Fc(5u/a) + ... } 

=( l/lal)Pe(u/a) 

21 



OPTX[f(ax)] = F(0)/(2fal) + { 2/1Tfal){F
5

(u/a) 

+(1/3)F 5 (3u/a)+ (1/5)F {5u/a) + ... } 
s 

=( 1/lal )Po (u/a) 

The change of scale property for the even and odd pulse 

train transforms is identical to the Fourier transform 

property. 

Figure 6 shows the raised Fourier cosine transform, 

6{b), and the even pulse train transform, 6(c), of 

f{x) = 10rect(5x). As f {x) is compressed, the spatial 

frequency content spreads out to higher frequencies. 

22 

Comparison with Figure 5 reveals that the maxima and minima 

have indeed moved from 1.5, 2.5, 3.5, etc. in Figure 5 to 

five times those values in Figure 6: 7.5, 12.5, 17.5, etc. 

The maximum value of both the raised cosine transform 

and the even pulse train transform has been scaled to 1/5 of 

the value in Figure 5, as expected, since the total area under 

f(x) in Figure 6 is 1/5 of the total area in Figure 5. 
I 

The raised Fourier sine transform and odd pulse train 

transform (not shown) are again constant at one-half the 

area of the scene function i.e., F(0)/2 = 1, since f(x) is 

still an even function and F 5 (u) = 0. 

Figures 7 and 8 show another example of the change of 

scale property. Figure 7 shows the raised Fourier cosine 

transform, 7(b),and the even pulse train transform, 7{c), of 
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a gaussian pulse, f(x) = 10exp(-Tix 2 ). The raised Fourier 

cosine transform yields a gaussian pulse plus d-o bias equal 

to F(0)/2. The even pulse train transform in Figure 7{c) 

differs from the raised Fourier cosine transform primarily at 

very low frequencies but it is qualitatively very similar 

otherwise. The raised Fourier sine transform and odd pulse 

train transform (not shown) are both constant and equal to 

F{0)/2 = 5 since F
5

{u) = 0. 

Figure 8 shows the raised Fourier cosine transform and 

even pulse train transform of the narrow gaussian pulse 

f(x) = 10exp(-25Tix2 ) which has a total area of 2. 

Comparing the raised Fourier cosine transform, B{b), and even 

pulse train transform, B{c), with the corresponding plots in 

Figure 7, clearly shows the effect of the change in scale, 

i.e. as the scene function is compressed in the spatial 

domain, the transform spreads out in the frequency domain. 

Shifting Property 

If the Fourier ,transform of f{x) is F{u)=Fc(u)-jF 5 (u) 

it is well known that the Fourier transform of f(x-a) is 

F(u)exp[-j2Tiua]. The re·al part of F(u)exp(-j2Tiua] is the 

Fourier cosine transform of f(x-a) and the negative 

imaginary part of F(u)exp[-j2Tiua] is the Fourier sine 

transform of f(x-a), for f(x) real valued. 
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f (x-a) ..---... cosine transform ~F c (u) cos ( 2Tiua)-F 
5 

( u) sin( 2lTua) 

f (x-a) ...-- sine transform ~ F c (u) sin( 2lTua) +F
5 

( u) cos ( 2lTua) 

27 

The above results can be substituted directly into the 

expressions for the even and odd pulse train transforms of a 

shifted function. 

EPTX[f(x-a)] = <F(0)/2)+ (2/TI){Fc(u)cos(2Tiua)-F
5

(u)sin(21Tua) 

-(1/3)[Fc(3u)cos{2TI(3u)a)-F
5

(3u)sin(21T(3u)a)] 

+(1/5)[Fc(5u)cos{21T(5u)a)-F
5

(5u)sin{21T{5u)a)] ... } 

OPTX[f(x-a)] =(F(0)/2)+ (2/TI){Fc(u)sin{2Tiua)+F
5

(u)cos{21Tua) 

+(l/3)[Fc(3u)sin{2TI(3u)a)+F
5 

(3u)cos{21T(3u)a}] 

+(1/5)[Fc(5u)sin(2lT{5u)a)+F
5

(5u)cos(21T{5u)a)] ... } 

It is instructive to consider the special case of an 

even scene function f(x). If f(x) is an even function then 

the Fourier sine transform of f(x) is zero, i.e., F5 {u)=O, 

and the Fourier transform shift theorem takes a particularly 

simple form. 

f { x-a) ... .,,......__cosine transform-~ ..... F c {u) cos { 21Tua) 

f(x-a)-~..__- sine transform-----i~·Fc {u)sin{21Tua) 

From the above expressions it is apparent that if one starts 

with an even real function f(x) {which has the purely real 



Fourier transform Fc(u)), and then shifts it by a distance 

"a", the result is a complex Fourier transform of the form 

Fc(u)cos(2Tiua)-jFc(u)sin(2Tiua) in which the real and 

imaginary parts are oscillatory within an envelope, which is 

the transform of the original unshifted function. 
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For the case of the even and odd pulse train trans­

forms of an even function f(x), the shifting property can be 

simplified to the form shown below. 

EPTX[f(x-a)] = (F(0)/2) + (2/TI){Fc(u)cos(2Tiua) 

-(1/3)Fc(3u)cos(2TI(3u)a) 

+(1/5)Fc(5u)cos(2TI(5u)a) ... } 

OPTX[f(x-a)] = (F(0)/2) + (2/TI){Fc(u)sin(2Tiua) 

+(1/3)Fc(3u)sin(2TI(3u)a) 

+(l/5)Fc(5u)sin(2TI(5u)a) ... } 

Comparison of the above equations with the formulae for the 

even and odd pulse train transforms of an unshifted scene 

reveals that each term in the unshifted EPTX and OPTX 

expressions is multiplied by a cosine or sine coefficient 

when the scene is shifted. As a result of multiplying the 

terms of the unshifted transfo.rm by coefficients which 

oscillate between +1 and -1, EPTX[f(x-a)] and OPTX[f(x-a)] 

oscillate within an envelope determined by EPTX[f(x)] and 



OPTX[f(x)] respectively. This property is illustrated by 

the following examples. 

Figure 9 shows the raised Fourier cosine (b) and sine 

(c) transforms of a shifted square pulse (a). As expected, 

the Fourier sine and cosine transforms of the shifted pulse 

oscillate within an envelope equal to the transform of the 

unshifted square pulse {see Figure 6) . 

Figure 10 shows the even pulse train transform (b) 
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and odd pulse train transform (c} of the same shifted square 

pulse as Figure 9. The dotted line is the even pulse train 

transform of the unshifted square pulse (see Figure 6). 

Again it is apparent that the transform of the shifted scene 

function oscillates within an envelope determined by the 

even pulse train transform of the unshifted function. 

Figures 11 and 12 show similar results for the square 

pulse originally shown. in Figure 5 but shifted 0. 5 units to 

the right. 

An interest~ng variation is obtained when a sort of 

"symmetric shifting" is introduced, i.e., starting with an 

even, real valued function f(x} define a new function g(x} 

by the equation: 

g(x) = 0.5[f(x +a) + f(x - a)]. 

The new function g(x) will be an even function also since 
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f {x) is even. Therefore the Fourier transform of g{x) will 

be an even, real valued function of the spatial frequency, u. 

This permits the study of shifting effects without 

generating a complex valued Fourier transform. The odd 

pulse train transform of g(x) will be a constant equal to 

G{0)/2 since G5 {u) = 0. 

Figure 13 shows the raised Fourier cosine transform 

{b) and the even pulse train transform {c) of a pair ~f 

gaussian pulses that would be generated from "symmetric 

shifting" of the scene function f{x) = 20exp(-36lTx 2 ] 

which yields: 

• 
g(x) = 10exp[-36TI{x + 0.7) 2

] + 10exp(-36TI{x - 0.7) 2
]. 

The raised Fourier cosine transform {b) and even pulse train 

transform {c) of the unshifted scene function, f{x), are 

shown in Figure 14 for comparison. The raised Fourier sine 

transform and odd pulse train transform {not shown) are 

constant for both f {x) and g{x) and equal to one-half the 

total area under f{x), i.e., F{0)/2 = G(0)/2 = 10/6. 

Figure 15 shows the raised Fourier cosine transform 

{b) and even pulse train transform (c) of a narrow even 

pulse pair (a): 

g(x) = 10rect[20{x+0.8)] + 10rect[20{x-0.8)]. 
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(c) Even pulse train transform of f(x). 
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The even pulse pair is generated by the "symmetric shifting" 

of the single narrow pulse f{x) = 20rect.[20x] shown in 

Figure 16 with its raised Fourier cosine transform (b) and 

even pulse train transform (c). 

Comparison of figures 15 and 16 once again illustrates 

that the transform of the shifted scene function oscillates 

within an envelope determined by the transform of the 

unshifted function for both the even pulse train transform 

as well as the raised Fourier cosine transform. 

The raised Fourier sine transform and odd pulse train 

transform of f {x) and g(x) are constant and equal to one­

half the total area under the functions. 

It is of interest to compare the even pulse train 

transforms of the narrow square pulse of Figure 16 and the 

not so narrow square pulse of Figure 5 from the standpoint 

of using a narrow pulse to approximate an impulse. If the 

highest spatial frequency of interest in a particular 

application happens to be ten, then the narrow square pulse 

of Figure 16 is indistinguishable from an ideal impulse as 

far as the even pulse train transform is concerned since the 

EPTX shown in Figure 16{c) is flat up to u = 10. 

Figure 17 illustrates the same shift properties as 

Figure 15 but the change in scale makes it possible to get a 

detailed view of the even pulse train transform of the pulse 
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pair. The dotted line on Figure 17{c) is the even pulse 

train transform of an unshifted pulse, f{x) = 20rect{3.33x). 

Convolution Property 

If the Fourier cosine and sine transforms of the real 

valued functions f(x) and g(x) are Fc{u), F
5

{u), Gc{u) and 

G
5

( u) respectively, then the following convolution property 

holds for the Fourier cosine and sine transforms: 

f(x)* g{x)-4--cosine trans.-~.-Fc (u)Gc(u)-F5 (u)G
5
{u) 

f ( x) * g { x) • s in e trans . ~ F c { u) G 5 { u) + F 5 ( u) G c { u) 

where f(x) * g(x) = /
00

f( r)g(x-r)dr. 
-cm 

Substituting the above results into the expressions 

for the even and odd pulse train transforms yields the 

following result. 

EPTX[f{x) * g(x)] = (F(O)G{0)/2) 

+ {2/TI){[Fc(u)Gc(u) - F 5 (u)G5 {u)] 

'-(1/3)[Fc(3u)Gc{3u) - F5 (3u)G 5 (3u)] 

+(1/5)[Fc(5u)Gc(5u) - F 5 (5u)~ 5 (5u)] ... } 

OPTX[f(x) * g°Cx)] = (F(O)G(0)/2) 

+(2/TI){[Fc(u)G 5 (u) + F5 (u)Gc(u)] 

+(1/3)[Fc(3u)G 5 (3u) + F5 (3u)Gc(3u)] 

+(1/5)[Fc(5u)G 5 (5u) + F5 (5u)Gc(5u)] ... } 



In order to gain some insight into the even and odd 

pulse train transform convolution properties consider the 

special case of f (x) and g(x) even so that F (u) = 0 and 
5 

G
5

(u) = 0. If f(x) and g(x) are even functions, then the 
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cosine transform of f(x) * g(x) simplifies to F (u)G (u) and c c 

the sine transform of f(x) * g(x) is zero. The even and odd 

pulse train transforms of f(x) * g(x) in this special case 

simplify as shown below. 

EPTX[f(x) * g(x)] = (F(O)G(0)/2) 

+ (2/TI){Fc(u)Gc(u) - (1/3)Fc(3u)Gc(3u) 

+ (1/5) Fc(5u)Gc{5u) ... } 

OPTX[f{x) * g(x)] = F(O)G{0)/2 

Now compare the above expression to EPTX[f{x)] EPTX[g(x)] 

shown below. 

EPTX[f(x)] EPTX[g(x)] = (F(O)G(0)/4) 

+(F{O)/TI}{Gc(u) - ( 1/3)Gc(3u) + ... } 

+(G(O)/TI){Fc(u) - (1/3)Fc(3u) + ... } 

+(2/11) {Fc(u) - (1/3)Fc(3u) + ... }{Gc(u) - (1/3)Gc(3u) + ... } 

The d-c bias terms F{O) and G(O) generate unwanted multiples 

of EPTX[f{x)] and EPTX[g(x)] in the above expression. Since 

F{O) and G(O) are readily measured, these terms can be 
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suppressed electronically. Suppressing F{O) and G{O) yields 

the following expression: 

{EPTX[f(x)] - F{O)}{EPTX(g{x)] - G{O)}= 

(2/TI)2 {Fc{u) - (1/3)Fc(3u) + ... }{Gc(u) - (1/3)Gc(3u) + ... } 

= (2/TI)2 {Fc(u)Gc(u) +higher order terms} 

In order to see the significance of the higher order 

• terms, consider the simple example of f{x) = 10rect(5x), 

shown in Figure 18(a). Let h(x), Figure 19(a), be equal to 

the convolution of f{x) with itself, i.e.: 

h(x) = f{x) * f{x) = 
co -100 x , x <0.2 

otherwise 

Since f{x) and h{x) . are even, real functions of x, 

their Fourier transforms will be even, real functions of u, 

equivalent to the Fourier cosine transforms. 

F(u) = Fc(u) = 2sinc(u/5) 

H(u) = ·Hc{u) = F(u)xF{u) = 4sinc 2 {u/5) 

The Fourier sine transforms of f {x) and h{x) are equal to 

zero. Therefore OPTX[f{x)] = F(0)/2 = 1.0 and 

OPTX['h(x)] = H{0)/2 = 2. O. Substituting these expressions 



for Fc(u) and Hc(u) into the equations for EPTX[f{x)] and 

EPTX[h{x)] yields the following result. 

EPTX[f{x)] = 1.0 + {2/TI){2sinc(u/5) 

-(1/3)[2sinc{3u/5)] 

+( 1/5) [2sinc{ 5u/5)] ... } 

EPTX[h(x)] = 2.0 + (2/TI){4sinc (u/5) 

-{1/3)[4sinc (3u/5)] 

+(1/5)[4sinc {5u/5)] ... } 
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Dropping the d-c term from EPTX[f(x)] and squaring does not 

yield the transform of h{x) exactly due to the higher order 

terms and the factor of {2/TI). 

Figure 18(c) shows the result of first subtracting the 

d-c term from EPTX[f(x)], squaring, and then restoring the 

d-c level for comparison with EPTX[h(x)] shown in Figure 

19(b). Figure 19(c) shows Figure 18(c) superimposed on the 

graph of EPTX[h(x)] for comparison. 

The convolution properties of the even and odd pulse 

train transforms ~re not directly analogous to the 

convolution properties of the Fourier transform due to the 

presence of the higher order terms. If the approximation 

obtained by suppressing the d-c terms is not accurate enough 

for a given application then it would be necessary to use 

the sinusoidal variation in SLM transmittance. 
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After suppressing the d-c term in the raised sine and 

cosine transforms, the application of the convolution 

property is exact. The raised cosine transform of 

f(x) * g(x) is given by: 

f ~f(x) * g(x)](B + Mcos(21Tux)]dx 
- cc 

=Bf °f<x> * g(x)dx + M f~f(x) * g(x)]cos(21Tux)dx 

-~ -~ 

Similarly the raised sine transform of f(x) * g{x) is given 

by: 

If it were necessary for example to obtain the 

magnitude of the Fourier transform of f(x) * g(x} by multi-

plying the magnitudes of the separate Fourier transforms it 

would be necessary to perform the following steps: 

(1). Measure and store F{O) and G{O) by making 

the SLM as transparent as possible and 

multiply by the appropriate scaling 

factor. 



(2). Measure the raised sine and cosine 

transforms of f(x) and g(x) separately. 

{3). Subtract the d-c bias level from the 

result of step (2) and multiply by the 

appropriate scaling factor. 

( 4). Obtain I F(u)l
2 

f G(u)j
2 

by adding the squares 

of the cosine transform and the sine 

transform obtained in step (3). 

Edge Effects 
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By assuming that the image luminous intensity is zero 

beyond the portion seen by the spatial light modulator, the 

scene function is in effect being multiplied by a 

rectangular window, w(x). The Fourier transform of the 

product f(x)w(x) is equal to the convolution of F(u) with 

W(u) where W(u) is the Fourier transform of · the rectangular 

window. If the left and right edges of the window function 

are at +k then W{u) = 2ksinc(2ku) {where 

sinc{Q) = sin{TIQ)/(TIQ)). 

Figure 20 shows the effect of rectangular windowing on 

the Fourier cosine transform of the raised cosine scene 

function f{x) = 5 + 5cos(9Tix). If not for the windowing, 

the Fourier transform would consist of one impulse at the 

origin for the d-c component and an even impulse pair at 

u = +4.5. As a result of convolving the Fourier transform of 
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the window, W(u) = 2sinc{2u), with the three impulses making 

up the transform of the unwindowed scene, the sinc{2u) 

function is replicated and shifted to the location of each 

impulse as seen in Figure 20(b). 

Figure 20(c) shows the even pulse train transform of 

the windowed cosine scene function. The even pulse train 

transform is qualitatively very similar to the raised 

Fourier cosine transform F i gure 20{b), however it yields a 

slightly sharper peak at the waveform frequency u = 4.5 than 

the raised Fourier cosine transform. 

Because the scene function is even F5 {u) = 0 and the 

odd pulse train transform and raised Fourier sine transform 

(not shown) are both constant and equal to F(0)/2 = 5. 

Figure 21 shows the raised Fourier cosine transform 

(b) and raised Fourier sine transform (c) of the scene 

function, {a), 

f(x) = [5 + 5sin(9.5Tix)]rect(x/2). 

The even part of f(x) is e(x) = 5rect(x/2) and the odd part 

of f(x) is o{x) = 5sin{9.5Tix)rect{x/2). 

The Fourier cosine transform only sees the even part 

of f (x) which is a square pulse of height 5 and width 2 

centered at the origin. The expected result of the raised 



Fi•ure 21: (a) t(x) = (5 + 5sin(9.5Ux)]rect(x/2). 
(b) Raised Fourier cosine transform of f(x). 
(c) Raised Fourier sine transform of f(x). 



Fourier cosine transform is: 

(F(0)/2) + 0.5Fc(u) = 5 + 5sinc(2x). 

The Fourier sine transform only sees the odd part of 

f(x). As expected, Figure 21(c) shows an impulse at 

u = 4.75 convolved with W{u) = 2sinc(2u) which in effect 

yields a shifted version of W{u). 

Figure 22 shows the even pulse train transform (b), 

and odd pulse train transform (c) of the scene function (a), 

f(x) = [5 + 5sin(9.5Tix)]rect(x/2) 
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for comparison with Figure 21. Because the even pulse train 

transform only sees the even part of the scene function, 

Figure 22{b) is identical to the even pulse train transform 

of the square pulse, 5rect{x/2). The odd pulse train 

transform shown in Figure 22(c) is similar to the raised 

Fourier sine transform of Figure 21{c), with a pronounced 

peak at the sinusoidal waveform frequency o"f u = 4.75. 

Figure 23 shows the raised Fourier cosine transform 

(b), and the even pulse train transform (c), of an even 

pulse train (a), 

f(x) = {5 + 5sgn[cos{lOTix]}rect{x/2). 
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The fundamental frequency of the even pulse train scene 

function is u 0 = 5. Both the raised Fourier cosine 

transform and the even pulse train transform show pronounced 

peaks at u = 5 as expected. The even pulse train transform 

exhibits sharper peaks since the kernel function coincides 

with the scene function when u = 5. 

Since the scene function f (x) is an even function, the 

Fourier sine transform is zero, i.e ., F5 (u) = 0, and the 

raised sine transform and odd pulse train transforms (not 

shown) are constants equal to F(0)/2 = 5. 

Figure 24 shows the raised Fourier cosine transform 

(b) and raised Fourier sine transform (c) of the scene 

function {a), 

f(x) = {5 + 5sgn[sin(lOTix)]}rect{x/2) 

which is an odd square wave plus d-c bias multiplied by a 

rectangular window function. The Fourier cosine transform 

only sees the even part of f(x) which is: 

e{x) = 5rect{x/2). 

Therefore the Fourier cosine transform is: 

(F(0)/2) + 0.5Fc{u) = 5 + 5sinc(2x). 
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Figure 24: (a) f(x}={~ • ~sgn(sin(lOnx)J}rect(x/2). 
(b) Raised Fourier cosine transform of f(x). 
(c) Raised Fourier sine transform of t(x). 
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The Fourier sine transform only sees the odd part of f{x) 

which is: 

o{x) = 5sgn[sin{lOTix)]rect(x/2). 

The Fourier sine transform shows a pronounced peak at the 

fundamental frequency of the scene function, u 0 = 5. 

Figure 25 shows the even pulse train transform (b), 

and odd pulse train transform {c), of the scene function 

(a), 

f(x) = {5 + 5sgn[sin{10Tix)]}rect(x/2) 

for comparison with Figure 24. 

The even pulse train transform,{b), only responds to 

the even part of f {x) which is the square pulse, 

e{x) = 5rect(x/2). 

Therefore Figure 25(b) is identical to EPTX[5rect(x/2)]. 

&7 

The odd pulse train transform only responds to the odd 

part of f{x) which is: 

o{x) = 5sgn[sin{10Tix)]rect(x/2). 

When the odd pulse train transform kernel lines up perfectly 

with the scene function (which occurs when u = 5) the odd 
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Figure 25: (a) f(x) = {5 + 5sgn(sin(10ffx)]}rect(x/2). 
(b) Even pulse train transform of f(x). 
(c) Odd pulse train transform of f(x). 
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pulse train transform is equal to the total area under the 

scene function, which causes the sharp peak at u = 5. 

Summary Of EPTX and OPTX Properties 
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The superposition and scaling properties of the even 

and odd pulse train transforms are directly analogous to the 

properties of the Fourier transform. 

The shifting property of the pulse train transforms is 

very similar to the shifting property of the Fourier 

transform in that the transform of the shifted function 

oscillates within an envelope determined by the transform of 

the unshifted function. Although no simple closed form 

expression for the oscillating coefficient has been 

obtained, it is apparent from the simulation that the 

fundamental frequency of the oscillation,u
0

, is the same as 

that for the Fourier sine and cosine transforms, namely 

u = a where "a" is the distance of the shift. It is also 

apparent tha~ the oscillating coefficient, which multiplies 

the transform of the unshifted function in order to generate 

the transform of the shifted function, oscillates between +1 

and -1. 

When the series expressions for the pulse train 

transforms of f{x) and g{x) are multiplied in order to 

obtain an approximation to the transform of f{x) * g{x) it 

is necessary to first suppress the d-c bias level. The 
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error in the approximation results from the cross 

multiplication of the higher order terms in the series. If 

a given application required use of the Fourier convolution 

property it would be necessary to apply a sinusiodal 

variation to the transmittance of the SLM. 



SEQUENCY ANALYSIS AND THE WALSH TRANSFORM 

Another form of optical processing related to spatial 

frequency analysis is the more general sequency analysis 

employing the Walsh transform (Beauchamp 1984). Since 

frequency analysis refers specifically to the resolution of 

a signal into sinusoidal components, it is necessary to 

generalize the concept of frequency analysis when discussing 

the resolution of a function with respect to a non­

sinusoidal basis set. 

Sequency is defined to be one half the average number 

of zero crossings per unit time or distance (Harmuth 1972). 

In the context of the non-negative quantities considered in 

this study, sequency would represent one half the average 

number of crossings of the d.c. bias level. Thus it is 

clear that frequency can be viewed as a special case of 

sequency. 

The Walsh functions are a set of orthogonal rectangular 

waveforms taking only the values +1 and -1. . The Walsh 

functions are defined to be zero outside of the limited time 

base T or distance base L. The first six Walsh functions 

plotted over the spatial interval,-L/2 ~ x ~ L/2, are shown 

below. The first argument in the notation WAL(n,x) indicates 

the number of zero crossings per unit distance x. 
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WALCLX> 

Figure 26: The First Six Walsh Functions 



An alternate notation introduced to reflect even and 

odd symmetry in the Walsh functions is the CAL and SAL 

symbolism shown below. 

CAL(k,x) = WAL(2k,x) 

SAL(k,x) = WAL(2k-l,x) 

In the above notation k represents the sequency of the CAL 

or SAL function. The CAL functions are even and · the SAL 

functions are odd. 
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In a manner analogous to the Fourier Series, a function 

which is zero outside of the interval -L/2 s x s L/2 can be 

represented as a sum of CAL and SAL functions as shown 

below. 

00 

f(x) = L c CAL(k,x) + d SAL(k,x) 
k k 

k=O 

Where d = 0 and c and d are given by the expressions 
0 k k 

below. 

JL/2 
c = £ f (x) CAL(k,x) dx 

k -L/2 

JL/2 
d = t f (x) SAL{k,x) dx 

k -L/2 
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One practical drawback to the use of Walsh transforms 

is the awkwardness encountered in the mathematical 

representation of the Walsh functions. One method for 

generating the Walsh functions recursively starting with 

WAL(O,x)=l, is the difference equation given below (Harmuth 

1972). 

B A 
WAL(2r+s,x) = (-1) {WAL(r,2x+0.5) + (-1) WAL(r,2x-0.5)} 

Where -0.5 < x ~ 0.5, r = 0,1,2 , s = 0 or 1 and 

A = s + INT(r/2) and B = r + s. Here INT(r/2) represents 

the largest integer smaller or equal to (r/2). 

The relationship between the Fourier and Walsh series 

can be obtained by substituting the Walsh function expansion 

of f(x) into the formula for the Fourier Series coefficients. 

This exercise reveals the lack of any particularly compact 

relationship between the Fourier frequency domain and the 

Walsh sequency domain. An infinite number of Walsh terms 

are required to construct a single sinusoidal frequency. 

One of the distinctive and important properties of 

frequency domain analysis is that the magnitudes of the 

spectral components do not change when the function analyzed 

is shifted, i.e. frequency content is invariant to shifting 

in the time or space domain. The Walsh transform does not 
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exhibit the property of invariance of sequency content with 

respect to shifting. 

The lack of a shift theorem for the Walsh transform 

also leads to another important contrast with Fourier 

analysis, the lack of a convolution theorem. When working 

with frequency analysis in the Fourier domain, the inverse 

transform of the product F(u)G(u) is equal to the convolu­

tion of f(x) and g(x). The lack of a similar relationship 

between the products of Walsh transforms and convolution in 

the time or spatial domain is a major drawback to sequency 

analysis. One consequence of the above characteristic is 

that no simple expression for the correlation of two 

functions in terms of their Walsh transform coefficients 

exists. 

Despite the inherent limitations of sequency analysis, 

there have been some applications in which Walsh transforms 

have been used to advantage. Waveform synthesis of certain 

discontinuous functions is sometimes more efficiently 

handled with Walsh functions. Walsh coded masks have been 

successfully used in a multi-slit spectrometer to improve 

the signal-to-noise ratio of the measurements (Harwit and 

Sloane 1979). 



CONCLUSION 

This computer simulation demonstrates the feasibility 

of obtaining the real and imaginary part of the Fourier 

transform at each spatial frequency of interest from two 

measurements on an incoherent scene using a spatial light 

modulator with a biased sinusoidal transmittance function. 

The complete magnitude and phase of the Fourier transform 

are readily calculated from the real and imaginary parts. 

A reduction in system complexity can be realized with 

a binary pulse train as the transform kernel at the expense 

of some accuracy. However, the salient features of the 

transform are intact to such an extent that the apparatus 

would be useful in applications where a pulse train 

transform signature is measured, stored and then tracked. 

Other advantages of the pulse train transforms include 

increased speed of operation resulting from the simple 

binary nature of the kernel and the ability to look at 

higher frequency components for a given SLM resolution. All 

of these analytical operations can be carried out on 

incoherent scenes, at high resolution, without moving parts 

and without the necessity of bipolar or complex filter 

functions. 
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The pulse train transforms exhibited sharper features 

than the corresponding raised Fourier sine and cosine 

transform as a result of the well-defined edges of the 

kernel function, which in effect sweep across the scene being 

analyzed as the frequency of the pulse train increases. 

These considerations make the SLM based processor an 

ideal candidate for practical application to robotic vision 

and inspection systems, where some limited information on 

Fourier frequency content is desired from an incoherent 

object scene. 

Apart from the fact that Fourier frequency analysis and 

Walsh sequency analysis both represent the resolution of a 

signal into orthogonal components, the interpretation of the 

two domains is quite different. The great differences that 

exist between the Fourier frequency domain and the Walsh 

sequency domain are the direct result of the differences in 

the fundamental properties of the respective basis function 

sets. In the case of Fourier frequency analysis, we are 

resolving the complex signal into a set of elementary 

functions which happen to be the eigenfunctions of the most 

widely used system model, namely linear shift invariant 

(LSIV) systems. The trigonometric functions possess a 

shifting property that .gives rise to the useful convolution 

properties of the Fourier transform. Walsh functions on the 

other hand do not possess a similar shifting property and 
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are not elementary in that their analytical representation 

is rather complex. Walsh functions have found certain 

applications of a data reduction and transmission nature in 

the digital realm because of their binary nature and some 

efficient software and hardware realizations. In contrast 

to the Even and Odd Pulse Train transforms, which are more 

like binary approximations to the Fourier cosine and sine 

transforms, the Walsh transform takes the signal into a 

totally different domain with a totally different 

interpretation from the frequency domain. 



APPENDIX 

The BASIC program PTX plots the scene function, f (x), 

and then calculates and plots the even and odd pulse train 

transforms for up to 480 equally spaced frequency values 

over the range entered by the user. 

The first step in evaluating the even and odd pulse 

train transforms is the calculation and storage of the 

indefinite integral of the scene function at 480 equally 

spaced points along the x axis. PTX achieves this by 

applying the trapezoid rule at each step in the original 

evaluation of f(x). PTX evaluates f(x) at 480 points and 

stores these values in the array H(!). At each point·PTX 

also calculates the incremental area 0.5(~x)[H{I) + H(I-1)] 

and stores the cumulative area in the array G{!) so that 

G{I) = G(I-1) + 0.5(Ax)[H(I) + H{I-1)]. 

The even pulse train transform is calculated by 

summing the area under each part of the (pulse train)x(image 

function) product. 

/;.e(x;u) f(x) dx 
-00 
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where 4N 4~ 1 is the leading edge of the Nth pulse and 4N 4~ 1 

is the trailing edge of the Nth pulse of an even pulse train 

of fundamental frequency u. LN and UN are the lower and 

upper limits of the summation determined by the boundaries 

of the scene. In theory LN and UN could be replaced by 

- • and +CID respectively since the image intensity is assumed 

to be zero for x < XL and x > XU. 

The odd pulse train transform is calculatf;'Ci in a ·simi-

lar manner with the exception that the coordinates of the 

leading and trailing edges of the Nth pulse are 2N + 1 and H 
· 2u u 

respectively. Therefore OPTX[f(x)] is given by: 

PTX plots f(x) and the pulse train transforms on axes 

scaled according to the subroutines at lines 9000 and 

10000 respectively. The BASIC program listing for PTX is 

given on the following pages. 



1 'THE PROGRAM PTX PLOTS THE SCENE FUNCTION ,FNSN, 
2 'DEFINED BY THE USER IN LINE 190 WITH THE AXES 
3 'SCALED AS SPECIFIED IN LINES 9000-9450. 
4 ' 
5 'PTX THEN CALCULATES THE EVEN PULSE TRAIN 
6 'TRANSFORM (EPTX) OF THE SCENE FUNCTION 
7 'AT 480/XR EQUALLY SPACED FREQUENCIES, 
8 'PLOTS THE EVEN PULSE TRAIN TRANSFORM 
9 '(WITH AXES SCALED PER LINES 10000-10450), 
10 'AND STORES THE DATA IN THE FILE SPECI-
11 'FIED BY THE USER IN LINE 200. 
12 ' 
13 'PTX THEN CALCULATES THE ODD PULSE TRAIN 
14 'TRANSFORM (OPTX) OF FNSN AT 480/XR EQUALLY 
15 'SPACED FREQUENCIES, PLOTS THE OPTX WITH 
16 'THE SAME SCALE AS USED FOR THE EPTX AND 
17 'STORES THE DATA IN THE FILE SPECIFIED BY THE 
18 'USER IN LINE 201. 
19 ' 
20 'SUMMARY OF USER ADJUSTABLE PARAMETERS 
21 '(1) LEFT & RIGHT EDGE OF SCENE (XL,XU) 
22 '(2) LOWER & UPPER FREQ RANGE (LF,UF) 
23 '(3) RESOLUTION PARAMETER XR:PTX EVALUATES 
24 ' EPTX AND OPTX AT 480/XR EQUALLY SPACED 
25 ' FREQUENCIES BETWEEN LF AND UF. 
26 ' 
27 'PROCEDURE FOR USE OF PTX 
28 '(1) DEFINE SCENE FUNCTION OVER THE RANGE 
29 ' (XL,XU) IN LINE 190. 
30 '(2) NAME FILE TO RECEIVE OUTPUT DATA IN 
31 ' LINES 200-201. FILES WILL CONTAIN 
32 ' 480/XR DATA POINTS. 
33 '(3) SET PARAMETER XR IN LINE 200 
34 '(4) IF SCALED AXES ARE DESIRED SEE LINES 
35 , 9000 & 10000. 
36 '(5) RUN 'PTX AND PROGRAM WILL PROMPT FOR 
37 ' COORDINATES OF SCENE EDGES (XL,XU) 
38 ' AND FREQUENCY LIMITS (LF,UF) 
40 , 
140 LPRINT CHR$'( 27) "N"CHR$( 3); 
141 REM Skips over perf, leaving 3 spaces 
150 PI=3.141592654#:P4=4*PI 
160 TO$=TIME$ 
170 SW=O 
180 DIM F(480) :DIM G(480):DIM H(480) 
190 DEF FNSN(X)=5*(SGN(X+.1)-SGN(X-.1)) 
200 OPEN "0",1, "RECT-E3.DAT":XR=2! 
201 OPEN "0",2, "RECT-03.DAT" 
202 REM FILES WILL CONTAIN 480/XR VALUES 
205 TXR=XR:LPRINT:LPRINT 
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210 INPUT "ENTER THE LOWER FREQ AND UPPER FREQ";LF,UF 
211 IF LF>UF THEN TEMP=LF:LF=UF:UF=TEMP ELSE 215 
215 INPUT "ENTER XL AND XU";XL,XU:DSX=ABS(XU-XL)/479 
220 CLS 
230 YMAX=O:YMIN=O! 
240 REM 
250 XMIN=LF :XMAX=UF:IF SW=O THEN XMIN=XL:XMAX=XU ELSE 260 
260 IF SW=O THEN XR=l ELSE XR=TXR 
280 DX=ABS(XMAX-XMIN)/479 
290 US=INT(lOO*XMAX+.5)/lOO:LS=INT(lOO*XMIN+.5}/100 
295 OUTLIM=ABS(XU): IF OUTLIM<ABS(XL) THEN OUTLIM=ABS(XL) 
300 CLS 
310 FOR I=l TO 480 
320 IF I=l THEN 340 
330 IF (I MOD XR)<>O THEN GOTO 510 
340 V=XMIN+DX*(I-1) 
350 IF SW=O THEN A=FNSN(V):H(I)=A:GOTO 460 ELSE A=O 
360 V4=4*V 
362 IF OUTLIM*V4<1 THEN A=G(480):GOTO 460 ELSE A=O 
364 IV4=1/V4 
370 UN=INT(XU*V+.25):LN=INT(XL*V+.75) 
380 A=O 
390 FOR N=LN TO UN 
400 WT1=(4*N-l)*IV4:WT2=(4*N+l)*IV4 
410 IF WTl < XL THEN Wl=XL ELSE Wl=WTl 
420 IF WT2 >XU THEN W2=XU ELSE W2=WT2 
425 IF W2<XL THEN LPRINT V4;WT1;Wl;WT2;W2 
430 GOSUB 770 
440 A=A+AREA 
450 NEXT N 
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460 F(I)=A: IF SW=l THEN WRITE #1,F(I):GOTO 480 ELSE 470 
470 IF I=l THEN G(I)=O ELSE G(I)=G(I-1)+.5*DSX*(H(I)+H(I-1)) 
480 REM G{I) CONTAINS THE CUMULATIVE AREA OF SCENE 
490 IF YMIN >F{I) THEN YMIN=F{I) 
500 IF YMAX < F(I) THEN YMAX =F(I) 
510 NEXT I 
520 CLS 
525 LPRINT:LPRINT 
530 IF SW=O THEN GOSUB 9000 
540 IF SW=l THE.N GOSUB 10000 
550 SW=SW+l:IF SW=2 THEN CLOSE #1 ELSE 220 
560 PRINT "YMAX="; YMAX, "YMIN="; YMIN 
570 GOTO 1000 
760 END 
770 Il=l+(Wl-XL)/DSX:Jl=INT(Il):Pl=Il-Jl 
772 Fl=H(Jl):Gl=G{Jl+l) 
780 I2=1+(W2-XL)/DSX:J2=INT(I2):DW={W2-Wl) 
782 P2=I2-J2:F2=H{J2):G2=G(J2) 
785 AA=Fl*DSX*{l-Pl)+(G2-Gl)+F2*DSX*P2 
790 IF DW<DSX THEN AREA=DW*Fl ELSE AREA=AA 
800 RETURN 



810 END 
1000 REM LINES 1000-1320 COMPUTE THE OPTX OF FNSN 
1010 OUTLIM=ABS(XU): IF OUTLIM<ABS(XL) THEN OUTLIM=ABS(XL) 
1020 CLS 
1030 IF XL>O THEN IO=l ELSE IO=l+INT(l-XL/DSX) 
1040 FOR I=l TO 480 . 
1050 IF I=l THEN 1070 
1060 IF (I MOD XR)<>O THEN GOTO 1240 
1070 V=XMIN+DX*(I-1) 
1080 A=O 
1090 T=INT(XL*2*V):U=INT(XU*2*V) 
1095 Tl=(ABS(T))MOD 2:01={ABS(U))MOD 2 
1097 MTEST=(ABS{XL)+ABS(X0))*2*V 
1100 IF MTEST<l THEN A=G{480)-G(IO):GOTO 1210 ELSE A=O 
1110 IV2=1/(2*V) 
1120 UN=U-Ul:LN=T+Tl 
1130 A=O 
1140 FOR N=LN TO UN STEP 2 
1150 WTl=N*IV2:WT2=WTl+IV2 
1160 IF WTl < XL THEN Wl=XL ELSE Wl=WTl 
1170 IF WT2 >XU THEN W2=XU ELSE W2=WT2 
1180 GOSUB 1290 
1190 A=A+AREA 
1200 NEXT N 
1210 F{I)=A: WRITE #2,F(I) 
1240 NEXT I 
1250 CLS 
1260 CLOSE #2 
1265 GOSUB 10000 
1280 END 
1290 Il=l+(Wl-XL)/DSX·:Jl=INT{ Il) :Pl=Il-Jl 
1295 Fl=H(Jl):Gl=G(Jl) 
1300 I2=1+{W2-XL)/DSX:J2=INT(I2):DW=(W2-Wl):P2=I2-J2 
1305 F2=H(J2):G2=G{J2) 
1307 AA=Fl*DSX*(1-Pl)+(G2-Gl)+F2*DSX*P2 
1310 IF DW<DSX THEN AREA=DW*Fl ELSE AREA=AA 
1320 RETURN 
1330 END 
9000 'THIS SUBROUTINE SCALES THE AXES 
9001 'FOR THE SCENE FUNCTION FNSN. 
9002 'LINE 9240 SPECIFIES THE LOWER LIMIT 
9003 'OF THE X AXIS AND LINES 9250-9340 
9004 'LABEL THE X AXIS AT 10 EQUALLY 
9005 'SPACED .POINTS 
9006 'LINE 9360 SPECIFIES THE LOWER LIMIT 
9007 'OF THE Y AXIS AND LINES 9370-9450 
9008 'LABEL THE Y AXIS AT 10 EQUALLY 
9009 'SPACED POINTS. 
9020 REM .FINAL SCALING FOR X=-1 TO +1 Y=0-10 
9090 CLS 
9230 FOR 1=130 TO 610 STEP 48:LINE (I,175)-{I,180):NEXT I 
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9240 SYMBOL (130,190),"-1",l,l,3:REM X-AXIS SCALE 
9250 SYMBOL ( 110, 190), "-. 8", 1, 1, 3 
9 2 6 0 SYMBOL ( 218 , 19 0 ), " - . 6 " , 1, 1 , 3 
9270 SYMBOL (266,190),"-.4",1,1,3 
9 2 8 0 SYMBOL ( 3 14, 19 0 ), " - . 2 " , 1 , 1, 3 
9290 SYMBOL (370,190),CHR$(48),l,l,3 
9 3 00 SYMBOL ( 418 , 19 0 ) , " . 2 " , 1, 1, 3 
9 310 SYMBOL ( 4 6 6 , 19 0 ), " . 4 " , 1, 1 , 3 
9 3 2 0 SYMBOL ( 5 14, 19 0 ) , " . 6 " , 1 , 1 , 3 
9 3 3 0 SYMBOL ( 5 6 2 , 19 0 ) , " . 8 " , 1 , 1 , 3 
9 3 40 s YMBO L ( 6 10, 19 0 ) J II 1 .. , 1 , 1 ' 3 
9360 SYMBOL (114,177),CHR$(48),l,1,3:REM Y-AXIS SCALE 
9370 SYMBOL (114,158),CHR$(49),1,1,3 
9380 SYMBOL (114,140),CHR$(50),1,1,3 
9390 SYMBOL (114,123),CHR$(51),1,1,3 
9400 SYMBOL (114,105),CHR$(52),l,1,3 
9410 SYMBOL (114,88),CHR$(53),l,1,3 
9420 SYMBOL (114,70),CHR$(54),1,1,3 
9430 SYMBOL (114,52),CHR$(55),l,1,3 
9440 SYMBOL (114,34),CHR$(56),1,1,3 
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9450 SYMBOL (114, 16),CHR$(57), 1, 1,3:SYMBOL(106, 1), "10", 1, 1,3 
9460 FOR I=l TO 180 STEP 18:LINE (130,I}-(135,I}:NEXT I 
9470 LINE (130,l)-(130,180):LINE(130,180)-(610,180) 
9480 RY=ABS(YMAX-YMIN):DY=180/RY:Yl=(YMAX-F(l))*DY 
9490 PSET (130,Yl):P=130:Q=Yl 
9500 FOR I=2 TO 480 
9510 IF (I MOD XR}<>O THEN GOTO 9550 
9520 Y=(YMAX-F(I))*DY 
9530 PSET(I+l30,Y) 
9540 LINE (P,Q)-(I+l30,Y):P=I+130:Q=Y 
9550 NEXT I 
9560 MAX=INT(lOO*YMAX+.5)/lOO:MIN=INT(lOO*YMIN+.5)/100 
9580 LOCATE 10,40,0 
9590 RESTORE 
9600 DEF SEG 
9610 FOR ADRp=O TO 4 
9620 READ CODE 
9630 POKE ADRS,CODE 
9640 NEXT ADRS 
9650 CALL 0 
9660 DATA &H55,&HCD,&H05,&H5D,&HCB 
9690 RETURN 
9700 END 
10000 REM SCALES X AND Y AXIS FOR THE TRANSFORM. 
10010 REM 
10020 REM FINAL SCALING FOR X=l-10,Y=l-10 
10030 LPRINT:LPRINT:LPRINT:LPRINT 
10220 CLS 
10230 FOR I=130 TO 610 STEP 48:LINE (I,175)-(I,180):NEXT I 
10240 SYMBOL (130,190),CHR$(48),1,1,3 
10250 SYMBOL (178.190l.CHRS(49).1.1.3 



10260 SYMBOL (226,190),CHR$(50),1,1,3 
10270 SYMBOL (274,190),CHR$(51),1,1,3 
10280 SYMBOL (322,190),CHR$(52),1,1,3 
10290 SYMBOL (370,190),CHR$(53),1,1,3 
10300 SYMBOL·(418,190},CHR$(54),l,l,3 
10310 SYMBOL (466,190),CHR$(55),1,1,3 
10320 SYMBOL (514,190),CHR$(56),l,l,3 
10330 SYMBOL {562,190),CHR$(57),1,1,3 
103 4 0 SYMBOL ( 6 10, 19 0 ) , " 10 " , 1 , 1 , 3 
10360 SYMBOL {114,177),CHR$(48),1,1,3:REM Y-AXIS SCALE 
10370 SYMBOL (106,158),''.2",1,1,3 
10 3 8 0 s YMBOL { 106 , 14 0 ), " . 4 II , 1, 1 , 3 
10390 SYMBOL ( 106, 123), ". 6 11

, 1, 1, 3 
10400 SYMBOL { 106, 105), II. 8 II' 1, 1, 3 
10410 SYMBOL (114,88),CHR${49),1,1,3 
10 4 2 0 SYMBOL { 100, 7 0 ) , " 1. 2 " , 1 , 1, 3 
1043 0 SYMBOL { 100, 5 2 ) , II 1. 4 II , 1, 1 , 3 
104 4 0 SYMBOL ( 100, 3 4 ) , " 1. 6 " , 1 , 1 , 3 
10450 SYMBOL (100, 16), "1.8", 1, 1,3:SYMBOL{114, 1), 11 2 11

, 1, 1,3 
10460 FOR I=l TO 180 STEP lB:LINE (130,I)-(135,I):NEXT I 
10470 LINE (130,1)-(130,180):LINE(130,180)-{610,180) 
10480 RY=ABS{YMAX-YMIN):DY=180/RY:Y1=(YMAX-F{1))*DY 
10490 PSET (130,Yl):P=130:Q=Yl 
10500 FOR I=2 TO 480 
10510 IF (I MOD XR)<>O THEN GOTO 10550 
10520 Y=(YMAX-F(I))*DY 
10530 PSET(I+l30,Y) 
10540 LINE {P,Q)-(I+130,Y):P=I+130:Q=Y 
10550 NEXT I 
10560 MAX=INT{lOO*YMAX+.5)/lOO:MIN=INT(lOO*YMIN+.5)/100 
10580 LOCATE 10,40,0 
10590 RESTORE 
10600 DEF SEG 
10610 FOR ADRS=O TO 4 
10620 READ CODE 
10630 POKE ADRS,CODE 
10640 NEXT ,ADRS 
10650 CALL 0 
10660 DATA &H55,&HCD,&H05,&H5D,&HCB 
10665 RETURN 
10700 END 
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The BASIC program, TRIGTX, plots the scene function, 

f(x), and calculates and plots the raised cosine and sine 

transforms for up to 480 equally spaced frequency values 

over the range entered by the user. 
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TRIGTX uses a Simpson's rule numerical integration to 

calculate the area under the product f(x)[.5 + .5cos(2Tiux)] 

at each of 480/XR frequencies to obtain the raised cosine 

transform. XR is a resolution parameter which allows the 

user to set the number of frequencies to be evaluated. The 

output is stored in the file named by the user in line 200. 

The raised sine transform is evaluated in a similar manner 

by finding the area under the product f(x)[.5 +.5sin{2Tiux)] 

and the output is stored in the file named in line 205. 

TRIGTX plots the raised cosine and sine transforms on 

axes scaled according to the subroutine following line 

10000. 

TRIGTX can be used to plot the result of any integral 

transform with real valued kernel function by merely 

replacing the factors [.5 + .5cos(2Tiux)] and 

[.5 + .5sin(2Tiux)] in lines 822 and 824 with the new kernel 

functions of interest. 



1 'THE PROGRAM TRIGTX PLOTS THE SCENE FUNCTION 
2 'DEFINED BY THE USER IN LINE 190. 
4 , 
5 'TRIGTX THEN CALCULATES THE RAISED COSINE 
6 'TRANSFORM (RCTX) OF THE SCENE FUNCTION 
7 'AT 480/XR EQUALLY SPACED FREQUENCIES, 
8 'PLOTS THE RAISED COSINE TRANSFORM 
10 'AND STORES THE DATA IN THE FILE SPECI-
11 'FIED BY THE USER IN LINE 200. 
12 , 
13 'TRIGTX THEN CALCULATES THE RAISED SINE 
14 'TRANSFORM (RSTX) OF FNSN AT 480/XR EQUALLY 
15 'SPACED FREQUENCIES,PLOTS THE RSTX WITH 
16 'THE SAME SCALE AS USED FOR THE RCTX AND 
17 'STORES THE DATA IN THE FILE SPECIFIED BY THE 
18 'USER IN LINE 205. 
19 ' 
20 'SUMMARY OF USER ADJUSTABLE PARAMETERS 
21 '(1} LEFT & RIGHT EDGE OF SCENE (XL,XU) 
22 '(2) LOWER & UPPER FREQ RANGE (LF,UF) 
23 '(3) RESOLUTION PARAMETER XR:TRIGTX EVAL-
24 ' UATES RCTX & RSTX AT 480/XR EQUALLY SPACED 
25 ' FREQUENCIES BETWEEN LF AND OF. 
26 ' 
27 'PROCEDURE FOR USE OF TRIGTX: 
28 '(1) DEFINE SCENE FUNCTION OVER THE RANGE 
29 ' (XL,XU) IN LINE 190. 
30 '(2) NAME FILE TO RECEIVE OUTPUT DATA IN 
31 ' LINES 200,205. FILES WILL CONTAIN 
32 ' 480/XR DATA POINTS. 
33 '(3) SET PARAMETER XR IN LINE 200 
36 '(4) RUN TRIGTX AND PROGRAM WILL PROMPT FOR 
37 ' COORDINATES OF SCENE EDGES (XL,XU) 
38 ' AND FREQUENCY LIMITS (LF,UF) 
125 , 
140 LPRINT CHR$(27)"N"CHR$(3); 
145 REM SKIPS OVER PERF, LEAVING 3 SPACES 
150 PI=3.141592654#:PI2=2*PI 
160 TO$=TIME$:SW=O 
180 DIM F(480) :DIM G(480) 
190 DEF FNSN(X)=lO*(SGN{X-.8)-SGN(X-.9)) 
200 OPEN "0",1, "CTX.DAT":XR=2! 
205 OPEN "O", 2, "STX. DAT" 
206 REM FILES WILL CONTAIN 480/XR VALUES 
210 INPUT "ENTER THE LOWER FREQ AND UPPER FREQ";LF,UF 
211 IF LF>UF THEN TEMP=LF:LF=UF:UF=TEMP ELSE 215 
215 INPUT "ENTER XL AND XU";XL,XU 
220 CLS 
230 YMAX=O!:YMIN=O! 
250 IF SW=O THEN XMIN=XL:XMAX=XU ELSE XMIN=LF:XMAX=UF 
280 DX=ABS(XMAX-XMIN)/479 
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290 US=INT(lOO*XMAX+.5)/lOO:LS=INT(lOO*XMIN+.5)/100 
310 FOR I=l TO 480 
320 IF I=l THEN 340 
330 IF (I MOD XR)<>O THEN GOTO 510 
340 V=XMIN+DX*{I-1) 
350 IF SW=O THEN F(I)=FNSN{V):GOTO 490 ELSE GOSUB 800 
360 F(I)=AREA 
460 IF SW=l THEN WRITE #1,F(I) ELSE WRITE #2,F(I) 
490 IF YMIN >F{I) THEN YMIN=F(I) 
500 IF YMAX < F(I) THEN YMAX =F(I) 
510 NEXT I 
520 CLS 
530 LPRINT:LPRINT 
540 IF SW=O THEN GOSUB 9000 
550 IF SW=l THEN GOSUB 10000 
560 IF SW=2 THEN GOSUB 10000 
750 LPRINT: SW=SW+l: IF SW=2 THEN CLOSE #1 
752 IF SW=3 THEN CLOSE #2 
755 IF SW<3 THEN 220 
760 END 
800 KK=159 
810 DELTA={XU-XL)/(KK.-l):X=XL 
820 FOR J2=1 TO KK 
822 IF SW=l THEN G{J2)=FNSN(X)*(.5+.5*COS{PI2*V*X)) 
824 IF SW=2 THEN G(J2)=FNSN(X)*(.5+.5*SIN(PI2*V*X)) 
826 X=X+DELTA:NEXT J2 
830 ODD=O 
840 FOR J2=3 TO (KK-2) STEP 2:0DD=ODD+2*G(J2): NEXT J2 
850 EVEN=O 
860 FOR J2=2 TO KK-1 STEP 2:EVEN=EVEN+4*G(J2):NEXT J2 
870 AREA={DELTA/3)*{G(1)+EVEN+ODD+G(KK)) 
880 RETURN 
890 END 
9000 'THIS SUBROUTINE SCALES THE AXES 
9001 'FOR THE SCENE FUNCTION FNSN. 
9002 'LINE 9240 SPECIFIES THE LOWER LIMIT 
9003 'OF THE X AXIS AND LINES 9250-9340 
9004 'LABEL THE X AXIS AT 10 EQUALLY 
9005 'SPACED POINTS 
9006 'LINE 9360 .SPECIFIES THE LOWER LIMIT 
9007 'OF THE Y AXIS AND LINES 9370-9450 
9008 'LABEL THE Y AXIS AT 10 EQUALLY 
9009 'SPACED POINTS. 
9020 REM FINAL SCALING FOR X=-1 TO +1 Y=0-10 
9090 CLS 
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9230 FOR 1=130 TO 610 STEP 48:LINE (I,175)-{I,180):NEXT I 
9240 SYMBOL ( 130, 190), "-1",1, 1, 3: REM X-AXIS SCALE 
9 2 5 0 SYMBOL ( 170, 19 0 ), " - . 8 " , 1 , 1 , 3 
9260 SYMBOL (218, 190), 11

-. 6", 1, 1, 3 
9 2 7 0 s YMBOL { 2 6 6 , 19 0 ) , II - • 4 II , 1 , 1, 3 
9 2 8 0 s YMBO L { 314' 19 0 ) , It - • 2 II ' 1, 1 , 3 
9290 SYMBOL (370,190),CHR${48),1,1,3 
9 3 00 s YMBO L { 418 , 19 0 ) , II • 2 11 

, 1 , 1 , 3 
9 310 s YMBOL ( 4 6 6 , 19 0 ) , II • 4 II , 1 , 1 , 3 
9 3 2 0 s YMBO L { 5 14, 19 0 ) , II • 6 II , 1 , 1 , 3 
9330 SYMBOL {562,190), ".8",1,1,3 
9 3 4 0 s YMBO L ( 6 10' 19 0 ) , II 1 II ' 1 ' 1 ' 3 
9360 SYMBOL (114,177),CHR${48),1,1,3:REM Y-AXIS SCALE 
9370 SYMBOL {114,158),CHR$(49),1,1,3 
9380 SYMBOL (114,140),CHR$(50),1,1,3 
9390 SYMBOL (114,123),CHR$(51),l,1,3 
9400 SYMBOL (114,105),CHR$(52),1,1,3 
9410 SYMBOL (114,88),CHR$(53),1,1,3 
9420 SYMBOL (114,70),CHR$(54),1,1,3 
9430 SYMBOL (114,52),CHR$(55),1,1,3 
9440 SYMBOL (114,34),CHR$(56),1,1,3 

79 

9450 SYMBOL (114,16),CHR$(57),l,1,3:SYMBOL(106,1), 11 10",1,1,3 
9460 FOR I=l TO 180 STEP 18:LINE (130,I)-(135,I):NEXT I 
9470 LINE (130,l)-(130,180):LINE{130,180)-(610,180) 
9480 RY=ABS(YMAX-YMIN):DY=180/RY:Yl=(YMAX-F{l))*DY 
9490 PSET {130,Yl):P=130:Q=Yl 
9500 FOR 1=2 TO 480 
9510 IF (I MOD XR)<>O THEN GOTO 9550 
9520 Y=(YMAX-F{I))*DY 
9530 PSET(I+130,Y) 
9540 LINE (P,Q)-{I+130,Y):P=I+130:Q=Y 
9550 NEXT I 
9560 MAX=INT(lOO*YMAX+.5)/lOO:MIN=INT(lOO*YMIN+.5)/100 
9580 LOCATE 10,40,0 
9590 RESTORE 
9600 DEF SEG 
9610 FOR ADRS=O TO 4 
9620 READ CODE 
9630 POKE ADRS,CODE 
9640 NEXT ADRS 
9650 CALL 0 
9660 DATA &H55,&HCD,&H05,&H5D,&HCB 
9690 RETURN 
9700 END 
10000 REM SCALES X AND Y AXIS FOR THE TRANSFORM. 
10010 REM 
10020 REM FINAL SCALING FOR X=l-10,Y=l-10 
10030 LPRINT:LPRINT:LPRINT:LPRINT 
10220 CLS 



10230 FOR !=130 TO 610 STEP 48:LINE {!,175)-{I,180):NEXT I 
10240 SYMBOL {130,190),CHR${48),l,1,3 
10250 SYMBOL (178,190),CHR${49),l,l,3 
10260 SYMBOL {226,190),CHR${50),l,l,3 
10270 SYMBOL (274,190),CHR$(51),l,1,3 
10280 SYMBOL (322,190},CHR$(52),l,l,3 
10290 SYMBOL (370,190},CHR$(53),1,l,3 
10300 SYMBOL (418,190),CHR${54),l,l,3 
10310 SYMBOL (466,190),CHR$(55),l,1,3 
10320 SYMBOL (514,190),CHR$(56),l,l,3 
10330 SYMBOL (562,190),CHR$(57),1,1,3 
10340 SYMBOL (610,190), 11 10",l,l,3 
10360 SYMBOL (114,177),CHR$(48),l,1,3:REM Y-AXIS SCALE 
10 3 7 0 s YMBO L ( 10 6 ' 15 8 ) , II • 2 II ' 1 , 1 ' 3 
10 3 8 0 s YMBOL ( 106 ' 14 0 ) , ... 4 II , 1, 1 , 3 
103 9 0 s YMBO L ( 106 , 12 3 ) , II • 6 II , 1 ' 1 , 3 
10400 SYMBOL (106,105), ".8 11 ,l,l,3 
10410 SYMBOL (114,88),CHR$(49),l,l,3 
10 4 2 0 s YMBOL ( 100, 7 0 ) , II 1. 2 II ' 1 ' 1 , 3 
10 4 3 0 s YMBO L ( 100, 5 2 ) , II 1. 4 II , 1 , 1 , 3 
10440 SYMBOL ( 100, 3 4) , "1. 6", 1, 1, 3 
10 4 5 0 s YMBO L ( 100, 16 ) , II 1. 8 II , 1 ' 1 ' 3 : s YMBO L ( 114, 1 ) , II 2 .. , 1, 1 , 3 
10460 FOR I=l TO 180 STEP 18:LINE (130,I)-(135,I):NEXT I 
10470 LINE (130,1)-(130,180):LINE(130,180)-(610,180) 
10480 RY=ABS{YMAX-YMIN}:DY=180/RY:Yl=(YMAX-F(l))*DY 
10490 PSET (130,Yl):P=130:Q=Yl 
10500 FOR !=2 TO 480 
10510 IF {I MOD XR)<>O THEN GOTO 10550 
10520 Y=(YMAX-F{I))*DY 
10530 PSET(I+130,Y) 
10540 LINE (P,Q)-{I+130,Y):P=I+130:Q=Y 
10550 NEXT I 
10560 MAX=INT(lOO*YMAX+.5)/lOO:MIN=INT(lOO*YMIN+.5)/100 
10580 LOCATE 10,40,0 
10590 RESTORE 
10600 DEF SEG 
10610 FOR ADRS=O TO 4 
10620 READ CODE 
10630 POKE ADRS,CODE 
10640 NEXT ADRS . 
10650 CALL 0 
10660 DATA &H55,&HCD,&H05,&H5D,&HCB 
10665 RETURN 
10700 END 
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