
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

A One Step collision Detection Method for Computer Graphics A One Step collision Detection Method for Computer Graphics

Programs Programs

Gregory T. Eichner
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Eichner, Gregory T., "A One Step collision Detection Method for Computer Graphics Programs" (1986).
Retrospective Theses and Dissertations. 4950.
https://stars.library.ucf.edu/rtd/4950

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4950&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4950?utm_source=stars.library.ucf.edu%2Frtd%2F4950&utm_medium=PDF&utm_campaign=PDFCoverPages

A ONE STEP COLLISION DETECTION METHOD
FOR COMPUTER GRAPHICS PROGRAMS

BY

GREGORY THOMAS EICHNER
B.S.E., University of Central Florida, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Fall Term
1986

ABSTRACT

The topic of this thesis is a collision detection

algorithm for use in computer programs dealing in three

dimensional graphics. Collision detection is usually

accomplished

checking if

by breaking the movement into small steps and

a collision has occurred at each of these

discrete steps. This method is a very time-intensive way to

detect for collisions and therefore, inefficient for a system

which typically moves in large increments. For this kind of

system, a method could be developed which checks once for

collisions without dividing the move into multiple small

increments. The subject of this paper is an algorithm,

developed for use in a computer program, that will allow the

user to make large movements of the objects and check for

collisions quickly and efficiently.

LIST OF FIGURES

INTRODUCTION

DATA STORAGE METHODS

MATRIX MANIPULATIONS

TABLE OF CONTENTS

ROTATION ABOUT AN ARBITRARY AXIS

COLLISION DETECTION

Theory

The Plane

The Cylinder

The Cone

The Conic

CONCLUSION

APPENDIX A

APPENDIX B

APPENDIX C

LIST OF REFERENCES

iii

•

iv

1

4

7

9

10

11

14

18

21

23

25

32

35

48

78

LIST OF FIGURES

1 • Comparison of different data storage methods . . . 6

2. Transform matrix for rotations about the x axis . . . 7

3 • Transform matrix for rotations about the y axis . . . 8

4. Transform matrix for rotations about the z axis . . . 8

5. Rotation of a line creating a plane 12

6. Rotation of a line creating a cylinder 13

7. Rotation of a line creating a cone 13

8. Rotation of a line creating a conic 14

9. Intersection point in a plane 17

10. Chord - Critical Line check 17

11. Intersection point in a cylinder •• 19

12. Chord - Critical Line check • • 21

13. Intersection Point in a cone • . . . • • • 2 2

14. Dividing a conic into two cones . . • • • 24

15. Undetected collision case • • 30

16. Rotation about an arbitrary axis 36

17. Translation of the arbitrary axis 37

18. Rotation of the Axis of Rotation 38

19. Rotation to the xz plane 39

20. Rotation to the x axis • . . . 39

iv

21. Rotation around the x axis 41

22. Rotation from the x axis • . . 42

23. Rotation to the xz plane 43

24. Rotation from the xz plane 43

25. Translation back to the aribitrary axis • 45

26. Pseudo code for Collision_ Detection 48

27. Pseudo code for Plane Check 52 -
28. Pseudo code for Cylinder_ Check 57

29. Pseudo code for Cone Check 61

30. Pseudo code for Conic_ Check 64

31. Pseudo code for Final Check 68 -

v

INTRODUCTION

When a manufacturer purchases a robot arm for his

business, he needs to set up the movement pattern for the

robot to follow. Because of the risk of possible damage to

the robot arm and its surroundings, it is usually not

desirable to perform test movements with the robot arm. A

computer program can be developed which will be able to

display the arm and its surroundings. The manufacturer would

then use the program to perform a series of test movements.

When the test movements are satisfactory for the application,

the computer will send the indicated movements to the robot

arm. The movement pattern would then be fine-tuned on the

actual arm with a greatly reduced chance of damaging the arm

or hitting anything in its surroundings.

Since the movements of the robot arm are usually in

relatively large increments, it should not be necessary to

divide the movement into many small steps and check for

collisions at each step. A more desirable system would check

for any collisions along the path of the movement in one

step. The system should flag any collisions and not allow

these moves. It should allow the user to store the moves

2

performed and edit the steps as desired. The system must

also allow the input, display and editing of the robot arm

description and the description of its surroundings. The

system should operate with a minimum of user knowledge of

computers and a maximum of user friendliness. It should be

able to display the scene so that the user has a visual image

of the current positions of all objects. This enables the

user to easily determine the next movement to be performed.

The topic of this paper is a computer program which

performs the test movements of the robot arm within its

surroundings. The paper will discuss some general methods of

defining three-dimensional images and performing object

rotations and translations. The main discussion in this

paper will be a method of detecting collisions between the

moving part of the robot arm and its environment. One way in

which this can be done is to move the objects in small,

discrete steps. It is then determined at each step if a

collision has occurred. This method of collision detection

is easy to perform but very time intensive. Therefore

another method of collision detection will be developed.

This system will be more efficient when rotations are usually

done in large increments. The system will detect for

collisions once during each rotation. This means that the

collision detection would take the same amount of time

3

whether the movement is very small or very large.

In this paper, only the case of rotating objects will

be discussed. Translating objects, objects moving in

straight lines, will not be considered in the following

discussions. However, it should be noted that the same

theory applied to rotating objects here can be applied to

translating objects also with very little modification.

DATA STORAGE METHODS

In three-dimensional graphics applications there are

two main ways to store data: the Point-Line method and the .

Shape-Location method, as presented in Interactive Computer

Graphics Data Structures, Algorithms, and Languages. The

method used most often in new applications is the Shape-

Location method. This is because it is a more natural way

for a human to define an object and because it usually

less memory to define relatively simple objects. A

takes

brief

discussion of the two methods follows, describing why the

older Point-Line method was used.

The Shape-Location definition of an object consists a

list of shape identifications, boolean

indicators, and size multipliers.

operators, location

The shape identifier

indicates which shape primitive is to be used (sphere, cube,

octahedron, etc.). The boolean operator tells whether this

primitive is to be added to or subtracted from the current

shape to obtain the desired figure. The location indicator

tells where, in the figure, the center of the shape is to be

placed. The size multiplier tells how big the primitive is

(the circle's radius, the length of one side on the cube,

4

5

etc.) . This creates a very easy-to-use figure definition

scheme. For example,

primitives. One cube,

an open box would consist of two cube

the base figure of one unit by one

unit in size, with a second cube, a little bit smaller on

each side, taken out of it (boolean operator= not). This

means that only two shape indicators, two boolean operators,

two location indicators, and two size multipliers need to be

stored.

The Point-Line definition of an object consists of the

list of points, lines, and sides. The list of points are all

of the points on the figure which are needed to describe the

object in three-dimensional space. The list of lines

indicate which points are connected together with straight

lines. The list of sides show which lines are the edge of a

side of the object. Although this method makes it harder to

create objects, it provides a much more precise definition

of the objects, than if the data itself were viewed. Using

the same example as above: the open box would require eight

point definitions, twelve line definitions, and five plane

definitions.

The Point-Line method is much more time consuming, and

more memory consuming than the Shape-Location method. It is

more difficult to define objects using the Point-Line method.

6

An advantage to the Point-Line method is that the definition

of the entire figure is always known. In order to facilitate

the collision detection, which is the thrust of this thesis,

the Point-Line method of object definition is used. The

ability to know where each and every line in the figure is

without having to generate the line made the collision

detection routine much simpler.

Point-Line Method

Points
1 (-1, 1, 1) 5 (-1,-1, 1)
2 (-1, 1,-1) 6 (-1,-1,-1)
3 (1, 1,-1) 7 (1,-1,-1)
4 (1, 1, 1) 8 (1,-1, 1)

Lines
1 Point 1 -> 2 7 Point 2 -> 6
2 Point 2 -> 3 8 Point 6 -> 7
3 Point 3 -> 4 9 Point 3 -> 7
4 Point 4 -> 1 10 Point 7 -> 8
5 Point 1 -> 5 11 Point 4 -> 8
6 Point 5 -> 6 12 Point 8 -> 5

Sides
1 Lines 1,5,6,7 4 Lines 4,11,12,5
2 Lines 2,7,8,9 5 Lines 6,8,10,12
3 Lines 3,9,10,11

Shape-Location Method

Shape Operator Location Size

-----------------~---------------------------------------
Cube

Pillar
and
not

(0,0,0)
(0,0,0.05)

2
1.9,1.95

This shows the amount of data needed to describe an

open box using both methods.

Figure 1. Comparison of different data storage methods.

MATRIX MANIPULATIONS

Any point in three-dimensional space can be represented

by the X, Y, and Z coordinates of the point. The coordinates

of the point can be modified, using standard geometric

identities, so that a translation or rotation of the point

with respect to one of the primary axis' can be simulated.

If the point is represented as a lx3 array, then the

modification needed to perform the transformation is a simple

matrix multiplication with the second matrix defined as shown

in the following figures. The derivation of these matrices

can be found in any book, such as Mathematical Elements for

Computer Graphics and Fundamentals of Interactive Computer

Graphics containing the basics for three-dimensional

graphics.

1 0 0

0 cos a. sin a.

0 -sin a cos a.

Figure 2. Transformation matrix for rotations about the X
axis.

7

8

cos p 0 -sinP

0 1 0

sinp 0 cosp

Figure 3. Transformation matrix for rotations about the Y
axis.

COf>Y

-sin/

0

sin/

cos/

0

0

0

1

Figure 4. Transformation matrix for rotations about the z
axis.

These matrices are given in the non-homogeneous form.

The homogeneous form of these matrices is 4x4. Elements

(1, 1) through (3,3) are the same as in the non-homogeneous

coordinates. The extra elements in the homogeneous

coordinates are all zeros except for the (4,4) element, which

is one. To use the homogeneous coordinate system, the points

must be represented as having four coordinates [X Y Z 1] •

When the matrices are then multiplied the result will be a

[X Y Z 1] for each point. The last element is a scaling

factor. Since the scaling factor here will always be one, it

can be ignored.

ROTATION ABOUT AN ARBITRARY AXIS

Given the matrices in the previous section it is

possible to determine a single matrix which wil~ result in

the equivalent transformation as a rotation about an

arbitrary axis.

some arbitrary

executed:

In order to perform such a rotation about

axis in space, the following steps must be

STEP 1: Translate one end of the axis to the origin of the

primary coordinate system [0 0 OJ.

STEP 2: Rotate the axis to a position where it rests exactly

on the x-axis.

STEP 3: Rotate the point around the X-axis the given number

of degrees.

STEP 4: Reverse step 2, rotate the axis back to its relative

angle with the X-axis.

STEP 5: Reverse step 1, translate the end of the axis back to

its original position.

These steps are discussed in detail in Appendix B.

9

COLLISION DETECTION

Collision detection is the process of determining

whether two objects, at least one of which is in motion, will

collide with one another. There are multiple ways to detect

for collisions. The simplest way is to move one of the

objects in very small steps, stopping at each to check for a

possible collision. This method is easy to program and works

well when the system moves in multiple small increments

(e.g., any real time graphics application which requires

animation).

This method becomes very time consuming when the

objects in the system move in large increments and the system

is not real time. It seemed to the author that the collision

detection could be done ortce for each movement of an object.

The movement would not have to be broken into many small

steps and therefore would not recursively call a collision

checking routine many times per rotation. This means that

the collision detection would take the same amount of time

whether the movement is very small or very large.

The purpose of the test program is to test the movement

of a robot arm in its environment. The motion performed by a

10

11

robot arm is almost always a rotation about the axis for the

moving joint. The following discussion only considers objects

rotating about an arbitrary axis. The idea of checking for

collisions once per movement will also work on translating

objects, however that . will not be discussed in this paper.

When an object is rotated around any arbitrary axis,

the axis of rotation, it describes a volume in space through

which it travels (it will be assumed that only one object

can move at a time). If the volume described, the volume of

rotation, contains any piece of a non-moving object, then the

objects will collide when the rotation is actually performed

so the rotation is considered illegal. In order to check for

collisions between objects in one step, the volume must be

completely defined. Each non-moving object can then be

checked to see if any part of it intrudes into the volume of

rotation.

A computer deals in numerical values and equations.

The equations which describe the volume of rotation can

become extremely complicated. Therefore, the rotating object

must be divided into simpler pieces. The simpler pieces used

in this collision detection scheme are lines. Each line in

the rotating object describes a surface as it rotates about

the axis of rotation. These volumes have simpler equations

12

which can easily be determined by the computer. Any line

rotating about another line will create a conic section

(e.g., a right cone). There are four possible conic sections

which can be created in this situation: a plane (plane,

Figure 5), a right circular cylinder (cylinder, Figure 6), a

right circular cone (cone, Figure 7), and a hyperboloid of

one sheet (conic, Figure 8).

In order to simplify all further discussion, it is

assumed that the axis of rotation is always the X-Axis. This

can be simulated by finding the matrix which will rotate the

Axis of Rotation to the X-Axis and rotating all points by

this matrix before they are used in any calculations.

y

*

z x
Figure 5. Rotation of a line creating a plane.

13

y

z x

Figure 6. Rotation of line creating a cylinder.

y

B

z x

. Figure 7. Rotation of a line creating a cone.

14

y

B

z x

Figure 8. Rotation of line creating a conic.

A plane is the conic section generated when the line

being rotated and the Axis of Rotation are perpendicular to

each other. The general equation of a plane oriented along

the X-Axis, as seen in Calculus and Analytic Geometry is:

b*Y + c*Z = d

Where b and c are constants and d is the X intercept.

Every line in all of the non-moving objects can then be

checked to see if it intrudes into the plane so determined.

If any line intrudes all further checking can be skipped

because the rotation cannot be performed without a collision.

15

The edges of the plane generated are the unrotated

line, the rotated line, an outside arc, and an inside arc.

The arcs are pieces of circles. The equation for a circle in

three dimensions is difficult to use in the rest of the

algorithm. Therefore, the inside and outside edges of the

plane are treated as part of a sphere.

Each non-moving line is checked to see if it pierces

the outer sphere. If the line does not pierce the sphere,

then no interference is possible. If it does pierce the

sphere, then the Critical Point must be found. The Critical

Point is the point where the line pierces the plane (Figure

9). The Critical Point must be within the limits of the

line. If it is not within the limits, - then no interference

is possible. If it is within the limits, then interference

is only possible if the Critical Point is within the limits

of the plane.

Next, the Critical Line must be found. The Critical

Line is the shortest line from the Critical Point to the X

Axis (because this is the center if the sphere, Figure 10).

Given this line, interference will only occur if this line

crosses the inner sphere's arc in the plane. If the line

does not cross the inner sphere's arc then no iterference

occurs. The Critical Point referred to in the pseudo-code is

the point where the Critical Line crosses the outer sphere.

16

The final step in the collision detection for this line

is to find the Chord (Figure 10). The Chord is the straight

line connecting the two ends of the arc of the inner sphere.

If the Chord and the Critical Line cross then collision only

occurs if the angle of rotation is less than 180 degrees. If

the Chord and the Critical Line do not cross then collision

only occurs if the angle of rotation is more than 180

degrees. If the angle of rotation is exactly 180 degrees

then the rotation must be broken up into two 90 degree steps.

This is because the chord will be identical to the diameter

of the circle and any Critical Line will always touch the

center point of the circle and ,therfore, the Critical Line

which indicates interference.

Appendix C shows the pseudo-code used for writing the

sample program created with this paper.

NON-MOVING LINE
~

B

z

*

y

INTERSECTION POINT

B

x

Figure 9. Critical Point in a plane.

CRITICAL
POINT

8
*

INTERSECTION
POINT

A

y

CHORD

B

-------x A

Figure 10. Chord - Critical Line check.

17

18

A cylinder is the conic section generated when a line

parallel to the Axis of Rotation is rotated about it. The

general equation of a cylinder oriented along the X-Axis, as

seen in Calculus and Analytic Geometry is:

Y*Y + Z*Z = R*R

Where R is the radius of the cylinder.

Every line in all of the non-moving objects can then be

checked to see if it intrudes into the cylinder so

determined. If any line intrudes all further checking can be

skipped because the rotation cannot be performed without a

collision.

First the direction of the non-moving line is checked

against that of the Axis of Rotation. If they are parallel,

then the line can only intrude into the cylinder if it is on

the edge of the cylinder (is the same distance from the axis

as the moving line). If the line is on the edge of the

cylinder, then the Critical Point must be found. This is the

Point where the line first intrudes on the cylinder (Figure

11). The Critical Point must be within the limits of the

line. If it is not within the limits, then no interference

is possible. If it is within the limits, then interference

is only possible if the Critical Point is within the limits

of the cylinder. If the Critical Point does not exist, then

19

no collision occurs for this line.

If the line is not parallel to the Axis of Rotation,

then the line can pierce the cylinder in up to two places.

First, find the points where the line intersects the

cylinder (the Intersection Point(s), Figure 11). If they do

not intersect or the Intersection Point(s) are past either

end of the line, then no collision occurs for this line. If

the Intersection Point(s) are not within the limits of the

cylinder then no collision occurs for this line. Otherwise,

any Intersection Point within the limits of the cylinder

becomes a Critical Point.

y

z

INTERSECTION
LINE

~

Figure 11. Critical Point in a cylinder

20

Next, the Critical Line must be found. The Critical

Line is the shortest line from the Critical Point to the x

Axis (because this is the center if the cylinder, Figure 12).

Given this line, interference will only occur if this line

crosses the arc created by the ro~ation.

The final step in the collision detection for this line

is to find the Chord. The Chord is the straight line

connecting

13) • If

the two ends of the arc of the

the Chord and the Critical

cylinder (Figure

Line cross, then

collision only occurs if the angle of rotation is less than

180 degrees. If the Chord and the Critical Line do not

cross, then collision only occurs if the angle of rotation

is more than 180 degrees. If the angle of rotation is

exactly 180 degrees, then the rotation must be broken up into

two 90 degree steps. This is because the chord will be

identical to the diameter of the circle and any Critical Line

will always touch the center point of the circle and,

therefore, the Critical Line which indicates interference.

Appendix C shows the pseudo-code used for writing the

sample program created with this paper.

CRITICAL
POINT

B
*

INTERSECTION
POINT

y

CHORD

B

------x
A

Figure 12. Chord - Critical Line check.

21

A cone is the conic section generated when both the

line being rotated and the Axis of Rotation are coplanar, in

the same plane, but the line is not parallel to the Axis of

Rotation. The general equa~ion of a cone oriented along the

X-Axis, as seen in Calculus and Analytic Geometry is:

Y*Y + Z*Z = X*X/c

Where c is a constant indicating the slope of the side of

the cone.

22

Every line in all of the non-moving objects can then be

checked to see if it intrudes into the cone so determined.

If any line intrudes, all further checking can be skipped

because the rotation cannot be performed without a collision.

The cone case is identical to the cylinder case except:

1) the line can not be parallel to the cylinder (it must

pierce the cylinder somewhere), and 2) the above equation for

a cone is used in place of the cylinder equation when

determining the Intersection Point and the Critical Point.

Appendix C shows the pseudo-code used for writing the

sample program created with this paper.

y

A

B*

z

INTERSECTION
LINE

INTERSECTION
POINT

x

Figure 13. Critical Point in a cone.

23

A conic is the conic section generated when the line

being rotated and the Axis of Rotation are not coplanar. The

general equation for a conic oriented along the X-axis, as

seen in Calculus and Anal~tic Geometr~ is:

Y*Y + z*z = (X - a)*(X - a)/c + R*R

Where a is the coordinate along the X-axis where the radius

of the conic is a minimum, c is a constant indicating the

slope of the side of the cone, and R is the minimum radius,

such that when a = 0 and the minimum radius is zero (R = 0),

the equation reduces to the cone equation given previously.

Every line in all of the non-moving objects can then be

checked to see if it intrudes into the conic so determined.

If any line intrudes, all further checking can be skipped

because the rotation cannot be performed without a collision.

However the collision detection for this case does not

need to be done this way. The logic and coding can be

simplified even more if the conic is broken up into two

sections.

pieces at

If the conic is cut into two pieces dividing the

X = a, then two conic sections are created

(Figure 14). By rotating the line about the Axis of Rotation

every point on the line keeps a constant distance from the

the axis. This means that each of the conic sections created

24

by the cut look like a cone around the Axis of Rotation.

Both of these cones can use the same logic which checks for

collisions in cones. Some minor transformation of the data

for the rotating line is required to use the same logic.

This, however, is much more efficient, in a computer program,

than writing another complete collision detection routine for

this case.

Appendix C shows the pseudo-code used for writing the

sample program created with this paper.

y

CONE #1

* I 1:0NE #2
A

x
z

Figure 14. Dividing a conic into two cones.

CONCLUSIONS

This paper discusses the one-step collision detection

algorithm in much detail. The theory behind the algorithm is

also discussed. In this section the one-step method will be

compared with the the multi-step method. The time comparison

contains very crude estimates since a program using the

multi-step method could not be found to use for comparison.

However, the results do indicate the advantage of the one

step method.

A multi-step collision detection program works in

discrete steps. It will move the rotating object a small

distance, then check to see if any objects are currently

intersecting one another. The steps are a mathematical

approximation of the actual path taken by the rotating

object. If the steps were used to generate an equation of the

rotating objects path, the function would be discontinuous.

No mater how small the steps are made there is a possibility

that this method will not find a collision because it occurs

in-between two steps. Also, this method presents a problem

in determining the size of the step. Assumptions must be

25

26

made regarding the objects in the scene so that an algorithm

to determine the size of the step can be created. As the

step gets larger the likeliehood of missing a collision gets

larger. As the step gets smaller the number of steps and

therefore the number of collision checks needed to perform a

given rotation gets larger. This causes a compromise to be

made between speed and accuracy.

A one-step collision detection method does not

approximate the path travelled by the rotating object. The

equation of the actual path is calculated. There is no

possibility of missing a collision because it occurs in

between steps. There is no trade- off between speed and

accuracy. The algorithm takes the same amount of time to

check for collisions on a one degree rotation or a one

hundred degree rotation.

In order to compare the two methods a test case must be

developed. Assume that the scene contains two cubes, one of

which is rotating and one of which is stationary. Each cube

is described by eight points, twelve lines, and six planes.

For each of the six moving planes, the multi-step

algorithm must: 1) calculate the equation of the moving

plane; and, 2) for each non-moving plane calculate the

equation of the non-moving plane and check for collisions

between the planes. This must be repeated for each step.

27

For each of the six moving planes, the one-step

algorithm must: 1) calculate the equation of the moving plane

at its final resting place; and, 2) for each non-moving

plane, calculate the equation of the non-moving plane and

check for collisions between the planes. This must be done

once per rotation. For each of the twelve moving lines, the

one-step algorithm must: 1) calculate the equation of the

surface defined by the moving line; and, 2) for each non

moving line check if the line intrudes into the given

surface.

The multi-step algorithm must calculate the equation of

forty-two planes (the six moving planes and the six non

moving planes once per moving plane: 6 + 6*6) and perform

thirty-six collision checks, once per step. The one-step

algorithm must perform the exact same calculations for the

final resting place of the rotating object and it must

calculate twelve surfaces then perform 144 additional

collision checks (each of the twelve non-moving lines once

per moving line).

Assume that the calculation of the equation of a plane,

the calculation of the equation of a surface, and a collision

check all take the same amount of time. While the one-step

method performs 222 calculations, the multi-step method

performs seventy-eight calculations per step. After only

three steps the multi-step method has performed

calculations. Even

difficult calculations

assuming that the sometimes

in the one-step method take

28

234

more

three

times as long, the fixed number of these calculations make

this method quickly become more efficient than the multi-step

method.

This paper discusses only the case of objects

about an axis. The translating objects case

rotating

is not

considered. This is because the equations of the surfaces

created by rotating objects can be much more difficult to

calculate than those created by translating objects. Using

the same theory as the rotating object case, as discussed in

this paper, the translating object case becomes very simple

to check for collisions in. Any translating line will always

define a plane. This plane must then be checked against all

non-moving planes for possible collisions. This is very

similar to the Plane Check in the rotating object case except

that while the plane in the rotating object case is wedge

shaped with rounded ends, the plane in ·the translating object

case is a parallelogram. This results in much simpler

equations and calculations.

Although this collision detection method

assumptions were made in the algorithm.

worked,

First, it

some

was

assumed that only one object could be rotated at a time.

29

Second, it was assumed that a collision will occur only if a

line from a non-moving object pierces a side of the volume

described by the rotating plane or if the two planes

intersect when the the rotating object is at its final

resting place. Since, in the system developed, the

definition of an object is dynamically determined (the

rotating object could be the hand on the first rotation, the

hand and forearm on the second rotation, and the whole arm on

the third rotation), the first assuption was deemed non

restrictive. The second assumption does not consider the

case where a very small second object is completely contained

in the volume described by the rotating plane (Figure 20).

If similarly sized objects are used, this condition would

almost never occur. Therefore a third assumption, that all

objects be similarly sized, was needed. Another step could

be included to check fbr this condition after all other

collision checks have been completed but that will not be

covered in this paper.

ROTATING
PLANE

30

FINAL RESTING
~ POSITION

Figure 15. Undetected collision case.

The system was to be developed on a micro-computer in

order to increase its potential number of users. Although

this is still deemed possible, it was only partially

accomplished. The system was written in Pascal and

implemented on an IBM PC/XT with a 640K memory. In order to

simplify development the system was divided into four parts:

1) object data manipulation, 2) object drawing and rotation,

3) scene data manipulation, and 4) scene drawing with object

rotation and collision detection. Each of these parts was

31

successfully implemented in a separate program. All but the

scene drawing program were completed. However, when a third

case on the collision detection algorithm, the Conic Check,

was being written problems developed. The author could no

longer compile the program due to memory restrictions. The

memory restrictions were not because of insufficient memory

but a restriction on the compiler, Turbo Pascal, that the

executable image of any program be 32K or less. Because of

this restriction many desirable options, such as hidden line

removal, were omitted from the system to allow for the

maximum amount of room for the collision detection algorithm.

It is the authors opinion that the system could be completely

implemented on a micro-computer if a less restrictive

compiler was found.

In conclusion, a system of programs was developed which

would check for collisons between objects without breaking

the movement of the objects up into many small steps. The

program was developed on a micro-computer to provide for a

larger number of users. Finally, the program was effective

and timely in its calculated results.

Figure

APPENDIX A

DEFINITIONS

A figure is a specific item (i.e., a chair). It is

made up of one or more objects (the seat, the back, and the

legs) which are put together to create the desired figure.

Hidden-Line Removal

Hidden-line removal is the programing for removing

those lines normally invisible to the viewer.

Homogeneous Coordinates

Homogeneous coordinates is a convienient notation for

solving the translation of coordinates in threedimensional

space, if the system is treated as a fourdimensional problem.

The coordinates in the four-dimensional system are referred

to as homogeneous coordinates. Any point (X, Y, Z) can be

translated to homogeneous coordinates simply by making the

fourth element l; (X, Y, Z, 1).

31

32

Line

A line is the straight line connecting two points in

three-dimensional space.

Line Equation

The line equation is the slope-intercept equation for a

line:

Y = m*X + b.

Object

An object is a single primitive from which a figure is

created (i.e., the back of the chair or a joint of a robot

arm) •

Matrices

A matrix is a mathematical format for representing

points in three-dimensional space. The matrix combined with

the homogeneous coordinate system provides a convenient

format for storing, displaying, and manipulating three

dimensional point data.

Menu

A menu is a list of options from which the user must

choose the next action to be performed.

33

Normal Vector

The normal vector is the vector which is perpendicular

to the indicated plane. It is also used to indicate the

orientation of a plane for hidden-surface removal routines.

Plane Equation

The plane equation can be written two ways:

1) Point-normal form

N*P + C = 0

N => Normal vector for the plane.

P => Any point on the plane, variable.

C => This is a known point on the plane.

2) Intercept form

a*X + b*Y + c*Z + d = 0

a, b, c, & d => constants.

The conversion from one form to the other is simple and the

a, b, c in the intercept form becomes the X, Y, Z coordinates

of the normal vector in the point-normal form.

Plane

A plane is the side of an object, whose edges are a

series lines.

34

Point

A point is any point in three-dimensional space defined

by an X, Y, and Z coordinates.

Polygon

A polygon is a two-dimensional, multi-sided figure.

All planes in an object are polygons.

Scene

A scene is a group of figures placed in a common

picture to create a setting. A scene is built from multiple

objects. Even though the objects are put together to create

figures, this is done in the same step where the scene is

built. It is not a separate step.

Transformations

Transformations are the mathematical operations

performed on the point data to determine the new coordinates

after a rotation or translation is performed.

Wire Frame

Wire frame drawing refers to a scene which has all of

the lines in the scene displayed (i.e. the hidden lines are

not removed).

APPENDIX B

ROTATION ABOUT AN ARBITRARY AXIS

Given the 3x3 matrices from the matrix manipulation

section it is possible to determine a single matrix which

will result in the equivalent transformation as a rotation

about an arbitrary axis. In order to perform such a rotation

about some arbitrary axis in space, the following steps must

be executed:

STEP 1: Translate one end of the axis to the origin of the

primary coordinate system [0 0 O].

STEP 2: Rotate the axis to a position where it rests exactly

on the X-axis.

STEP 3: Rotate the point around the X-axis the given number

of degrees.

STEP 4: Reverse step 2, rotate the axis back to its relative

angle with the x-axis.

STEP 5: Reverse step 1, translate the end of the axis back to

its original position.

35

36

Most of the steps refer to the "Axis of Rotation." The

transformations described are only performed on the set of

points to be rotated. The steps are described in this way so

that the reasoning behind the indicated transformation is

easy to understand.

Throughout the rest of the discussion on ROTATION ABOUT

AN ARBITRARY AXIS, the end points of the "Axis of Rotation"

will be referred to as:

A = [X Y Z]
a a a

B = [X Y Z]
b b b

Also the angle of rotation about the arbitrary axis will be

referred to as 8.

y

A

z

8
A rotation of a'

around the line AB

is positive for
clockwise rotations

(looking from point A).

x

Figure 16. Rotation about an arbitrary axis.

37

In order to perform the translation of the points to

the primary origin the following transformation matrix must

be used:

1

0

0

-x
a

0

1

0

-Y
a

0

0

1

-z
a

0

0

0

1

If the homogeneous point matrix is multiplied by this matrix,

then the result for each individual point is:

[X-X Y-Y Z-Z l]
a a a

y

B

* B

z
Figure 17. Translation of the arbitrary axis.

38

Rotating the translated axis of rotation to the primary

X-axis can be done in two steps. First rotate the translated

axis to the XZ plane, then rotate the axis to the X-axis.

In the following discussion the end points of the
* *

translated axis of rotation will be refered to as A and B •

The angle between the translated axis and the XZ plane will

be represented by alpha <n> and the angle between the rotated

axis and the X-axis will be represented by beta <P>·

y

*
8

z
Figure 18. Rotation of the Axis of Rotation.

39

y

*
8

*
A

c

Figure 19. Rotation to the XZ plane.

*
A x

c

z
Figure 20. Rotation to the X axis.

40

For a negative rotation around the Z-Axis, the transformation

matrix is:

cosa.

sinQ.

0

0

-sinO.

cosa.

0

0

0

0

1

0

0

0

0

1

For a rotation around the Y-Axis, the transformation matrix

is:

cosp

0

sinp

0

0

1

0

0

-sin{J

0

cosP

0

0

0

0

1

Multipling these two matrices together yields:

cosa.cosp -sin a. -cosa.sinp

sina.cosp cos a. -sinQ.sinp

sinp 0 cosP

0 0 0

0

0

0

1

41

To rotate the points about the primary X-axis, they

must be multiplied by the following transformation matrix:

1

0

0

z

y

0

cosB

-sinB

0

sine

cos8

x

Figure 21. Rotation around the X axis.

42

Rotating the axis back to the "translated axis"

position can be done in two steps. These steps are

identical to those performed in STEP 2, but they must be

performed in the opposite order.

y

*
B

z
Figure 22. Rotation from the X axis.

43

* A x

c

z

Figure 23. Rotation to the XZ plane.

y

*
B

x *
A

c

Figure 24. Rotation from the XZ plane.

44

For a negative rotation around the Y-Axis, the transformation

matrix is:

cosp

0

-sinp

0

0

1

0

0

sinp

0

cosp

0

0

0

0

1

For a rotation around the Z-Axis, the transformation matrix

is:

cos a.

-sina.

0

0

sina.

cos a.

0

0

0

0

1

0

0

0

0

1

Multipling these two matrices together yields:

cosQ.cosp sina..cosp sinp

-sina. cosa. 0

-sinQ.sinP 0 cosp

0 0 0

0

0

0

1

45

In order to perform th~ translation of the points from

the primary origin back to its original position, the

following transformation matrix must be used:

1 0 0

0 1 0

0 0 1

x y z
a a a

0

0

0

1

If the homogeneous point matrix is multiplied by this matrix,

then the result for each individual point is:

[X+X Y+Y Z+Z l]
a a a

y

B *

z
Figure 25. Translation~ack to the arbitrary axis.

46

Multipling the five matrices together yields the following

matrix:

where

T =
11

T =
12

T T T 0
11 21 31

T T T 0
12 22 33

T T T 0
13 23 33

T T T 1
14 24 34

cosa_*cosa.*cosp*cosp - cosa.*sina.*sinP*sin8 +

sin~*sina.*cosB + cosa*cosa.*sinP*sinP*cosB +

cosQ.*sinO.*sin{J*sin8

cosa.*sina*cosP*cosP - sina.*sinn*sinP*sinB -

cosO.*sinO.*cos e + cosa.*sina.*sin{J* sir{J *cos8 -

cosCJ..*cosd*sinP*sin8

T = cosd.*cosp*sinp + sinC1*cosP*sin8 - cosa.*cosP*sin{J*cos8
13

T
14

= x - X T
a a 11

* - y T - Z T
a 12 a 13

T =
21

T =
22

cos~*sinU*cosP*cosP + cosa*cosO.*sinP*sin8 -

cosa*sina.*cos8 + cosa.*sinO.*sin{J*sin{J*cos8 +

sinU*sinO.*sin{J*sin8

sina*sina*cos{J*cosp + cos~*sina*sinP*sin8 +

cosa*cosa.*cos8 + sina~sina.*sin{J*sinP*cosB -

sin0.*cosa..*sin{J*sin8

47

T = sinU*cosp*sinP - cos0.*cosp*sin8 - sinO.*cos{J*sinP*cosB
23

T
24

T
31

T
32

T
33

T
34

= -X T + y y T * Z T
a 21 a a 22 a 23

= cosa.* cosP* s in{J cosa*cosP*sinfJ*cosB - sina*cosP*sinB

= sinU*cosP*sinP - sinO.*cosP*sinP*cos8 + cosO.*cosP*sin8

= sinP*sinp + cosP*cos{J*cos8

= X T * - y T + z - Z T
a 31 a 32 a a 33

APPENDIX C

COLLISION DETECTION ALGORITHM IN PSEUDO CODE

procedure COLLISION_DETECT

Pseudo-code for one step collision detection.

To simplify the mathematics involved in the entire

routine, it was assumed that the axis of rotation

is the X-axis. This can be done by rotating the

Axis of Rotation to the X-axis. Then using the

matrix which performs this transformation to rotate

every point during the rest of the process.

Determine the matrix which would rotate the Axis of

Rotation to the X-axis (the Collision Transform

matrix).

find Collision_Transform;

Figure 26. Pseudo-code for Collision_Detection.

Multiply the Axis of Rotation by the Collision

Transform matrix. (Rotate it to the X-Axis.)

Axis := Axis X Collision_Transfor~;

for every Moving_Object do

for every Line in the Moving_Object do

Store the starting and ending positions of the line

(the before and after rotation positions).

get Start_Moving_Line; get End_Moving_Line;

If the line and the Axis of Rotation are mutually

perpendicular, then the rotating line will generate

a plane around the Axis of Rotation.

if (Start_Moving_Line and Axis are perpendicular) then

goto PLANE_CHECK;

else

Figure 26. Pseudo-code for Collision_Detection (cont).

49

If the line and the Axis of Rotation (now the same

as the X-axis) are parallel, then the rotating line

generates a cylinder around the Axis of Rotation.

if (Start_Moving_Line and Axis are parallel) then

goto CYLINDER_CHECK;

else

If the line and the Axis of Rotation are coplanar,

in the same plane then then rotating line will

generate a cone around the Axis of Rotation.

if (Start_Moving_Line and Axis are coplanar) then

goto CONE_CHECK;

else

goto CONIC_CHECK;

endif;

endif;

endif;

next Line in this Moving_Object;

Figure 26. Pseudo-code for Collision_Detection (cont).

50

After every line in this moving object has been

checked for possible collisions, the ending position

of each plane in the moving object must be checked

for possible collisions.

goto FINAL_POSITION_CHECK;

next Moving_Object;

end COLLISION_DETECT

Figure 26. Pseudo-code for Collision_Detection (cont)·

51

procedure PLANE_CHECK

Pseudo-code for collision detection during the

"plane case" as described earlier.

Determine the equation of the plane which the line

and the Axis of Rotation are in.

find Plane;

Determine the equation for both the inner and outer

sphere defined by the rotating line.

find Inner_Sphere; find Outer_Sphere;

for every Non_Moving_Object do

for every Line in the Non_Moving_Object do

if (Line does not intersect Outer_Sphere) then

no interference possible with this Line;

next Line;

endif;

Figure 27. Pseudo-code for Plane Check.

52

Determine if the intersection of the line and the

plane is a line, a point, or does not exist.

if (Line is parallel to Plane) then

if (Line_Start_Point is not in Plane) then

the Line does not intersect the plane;

next Line;

else

the Line and Plane intersect at Intersect_Line;

Dist 1 := distance from Center_of_Sphere to

Start_Intersect_Line;

Dist 2 := distance from Center_of_Sphere to

End_Intersect_Line;

if (Dist_l > Outer_Radius) and

(Dist_2 > Outer_Radius) then

the Line does not intersect the plane;

next Line;

endif;

else

the Line and Plane intersect at Intersect Point;

Intersect_Line:= line from Center_of_Sphere to

Intersect_Point;

end if

Figure 27. Pseudo-code for Plane_Check (cont).

53

The intersect line is a line, in the plane, which

will cross the arc which defines the inner sphere.

To check if the intersection line crosses the . arcs

of the inner sphere, find where the line crosses the

sphere boundary.

the Intersection Line and the Inner Sphere intersect - -
at Critical_Point;

Check Line:= line from Center_of_Sphere to

Critical_Point;

if (Critcal_Point is within the ends of

Intersection_Line) then

Cross Line:= line from Start of Start Moving Line - - - - -
to Start_of_End_Moving_Line;

Figure 27. Pseudo-code for Plane_Check (cont).

54

if (Angle_Rotated > 180) then

if (Cross_Line and Check Line do not cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

else

if (Cross_Line and Check_Line do cross) then

*** INTERFERENCE OCCURS AT CROSS POINT***· - ,
return;

endif;

endif;

If the routine falls through to here, then no

interference occurs with this line.

the Line does not intersect the plane;

next Line in the Non_Moving_Object;

next Non Moving Object; - -
end PLANE_CHECK;

Figure 27. Pseudo-code for Plane Check (cont).

55

procedure CYLINDER CHECK

Pseudo-code for collision detection during the

"cylinder case" as described earlier.

Determine the equation of the cylinder which the line

creates while rotating about the Axis of Rotation.

find Cylinder;

for every Non_Moving_Object do

for every Line in the Non_Moving_Object do

If the Line is parallel to the Axis of Rotation then

interference can not occur unless the distance from

the Axis of Rotation to the line is equal to the

radius of the cylinder.

if (Line and Axis are parallel) then

if (Distance_From_Line = Radius_Of_Cylinder) then

Figure 28. Pseudo-code for Cylinder_Check.

56

The critical line is the line trimmed to piece of

the line which is along the length of the cylinder.

if (Critical_Line exists) then

Critical Line := Line trimmed to Cylinder;

else

no interference possible from this Line;

next Line;

endif;

Critical_Point_l := Start_Of_Critical_Line;

Critical_Point_2 := Start_Of_Critical_Line;

else

no interference possible from this Line;

next Line;

endif;

else

Figure 28. Pseudo-code for Cylinder_Check (cont).

57

If the line and the Axis of Rotation are not

parallel, then the line will pierce the cylinder in

up to two places. These are the critical points.

if (Line pierces Cylinder) then

find Critical Point l; find Critical Point 2; - - - -
else

no interference possible from this Line;

next Line;

endif;

If the line pierces the cylinder within the arc

traced by the rotating line, then line connecting

the critical point and the center of the cylinder

and the chord of .the cylinder must be checked for

crossing. If the angle of rotation is greater than

180 degrees and the lines do not cross, then

interference occurs. If the angle of rotation is

less than 180 degrees and the lines do cross, then

interference occurs.

Figure 28. Pseudo-code for Cylinder_Check (cont).

58

for both Critical_Points do

Check Line:= line from Center_of_Cylinder to

Critical_Point;

if (Critical_Point is within Cylinder_Limits) then

Use the points from the moving lines where X is

the same as the X coordinate or the Critical point

Cross:= line from Point_Start_Moving_Line

to Point End Moving Line; - - -
if (Angle_Rotated > 180) then

if (Cross and Check_Line do not cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

else

Figure 28. Pseudo-code for Cylinder_Check (cont).

59

if (Cross_Line and Check_Line do cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

endif;

until both Critical_Points done;

endi f;

the Line does not intersect the plane;

next Line in the Non_Moving_Object;

next Non Moving Object; - -
end CYLINDER_CHECK;

Figure 28. Pseudo-code for Cylinder_Check (cont).

60

61

procedure CONE CHECK

Pseudo-code for collision detection during the

"cone case" as described earlier.

Determine the equation of the cone which the line

creates while rotating about the Axis of Rotation.

find Cone;

for every Non_Moving_Object do

for every Line in the Non_Moving_Object do

The line will pierce the cone in up to two places.

These are the critical points.

if (Line pierces . Cone) then

find Critical Point l; find Critical Point 2; - - - -
else

no interference possible from this Line;

next Line;

endif;

Figure 29. Pseudo-code for Cone_Check.

(

If the line pierces the cone within the arc traced

by the rotating line, then line connecting the

critical point and the center of the cone and the

chord of the cone must be checked for crossing. If

the angle of rotation is greater than 180 degrees and

the lines do not cross, then interference occurs.

If the angle of rotation is less than 180 degrees

and the lines do cross, then interference occurs.

for both Critical_Points do

Check Line:= line from Center_of_Cone to

Critical_Point;

if (Critical_Point i .s within Cone_Limits) then

Use the points from the moving lines where X is

the same as the X coordinate or the Critical point

Cross:= line from Point_Start_Moving_Line

to Point_End_Moving_Line;

; Figure 29. Pseudo-code for Cone Check (cont).

62

if (Angle Rotated > 180) then

if (Cross and Check_Line do not cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

else

if (Cross_Line and Check_Line do cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

endif;

endif;

until both Critical_Points done;

the Line does not intersect the plane;

next Line in the Non_Moving_Object;

next Non Moving Object; - -
end CONE_CHECK;

Figure 29. Pseudo-code for Cone_Check (cont).

63

procedure CONIC CHECK

Pseudo-code for collision detection during the

"conic case" as described earlier.

Determine the points on the start moving line and on

the end moving line which are closest to the Axis of

Rotation.

find Closest_Point_l; find Closet_Point_2;

Determine the equation of the cone which the line

would create while rotating about the Axis of

Rotation.

for both Closest_Points do

find Start_Moving_Line using Closest_Point;

find End_Moving_Line using Closest_Point;

find Cone;

for every Non_Moving_Object do

for every Line in the Non_Moving_Object do

Figure 30. Pseudo-code for Conic Check.

64

The line will pierce the conic in two places.

These are the critical points.

find Critical_Point_l; find Critical_Point_2;

If the line pierces the conic within the arc traced

by the rotating line, then line connecting the

critical point and the center of the cone and the

chord of the cone must be checked for crossing. If

the angle of rotation is greater than 180 degrees and

the lines do not cross, then interference occurs.

If the angle of rotation is less than 180 degrees

and the lines do cross, then interference occurs.

Figure 30. Pseudo-code for Conic Check (cont).

65

for both Critical_Points do

Check Line:= line from Center_of_Conic to

Critical_Point;

if (Critical_Point is within Conic_Limits) then

Use the points from the moving lines where X is

the same as the X coordinate or the Critical point

Cross:= line from Point_Start_Moving_Line

to Point_End_Moving_Line;

if (Angle_Rotated > 180) then

if (Cross and Check_Line do not cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endif;

else

if (Cross_Line and Check_Line do cross) then

*** INTERFERENCE OCCURS AT CROSS_POINT***;

return;

endi f;

endif;

endif;

until both Critical_Points done;

Figure 30. Pseudo-code for Conic_Check (cont).

66

the Line does not intersect the plane;

next Line in the Non_Moving_Object;

next Non_Moving_Object;

next Closest_Point;

end CONIC_CHECK;

Figure 30. Pseudo-code for Conic Check (cont).

67

procedure FINAL_POSITION_CHECK

Pseudo-code for collision detection checking for

interference between planes at the final resting

place of the moving plane.

for every Moving Object do

for every Plane in the Moving_Object do

Determine the equation of the moving plane.

find Moving Plane;

for every Non_Moving_Object do

for every Plane ·in the Non_Moving_Object do

Determine the equation of the non-moving plane.

find Non_Moving_Plane;

if (Moving_Plane and Non_Moving_Plane are

parallel) then

if (Moving_Plane <> Non_Moving_Plane) then

no interference possible from this Line;

next Non_Moving_Plan~;

else

Figure 31. Pseudo-code for Final Check.

68

Check every line in the non-moving plane to see if

any cross any of the moving plane lines.

for every Line in the Non_Moving_Plane do

for every Line in the Moving_Plane do

if (Moving_Line crosses

Non_Moving_Line) then

*** INTERFERENCE OCCURS ***

return;

endif;

next Moving_Line;

next Non_Moving_Line;

endif;

else

Figure 31. Pseudo-code for Final Check (cont).

69

Determine the line of intersection between the

moving plane and the non-moving plane. Then find

if the limits on the line are within the bounds of

both the moving plane and the non-moving plane.

find Intersection_Line;

limit Intersection Line within Moving_Plane;

if (Intersection_Line within

Non_Moving_Plane) then

*** INTERFERENCE OCCURS ***

return;

endif;

endif;

next Non Moving Plane; - -
next Non_Moving_Object;

next Moving_Plane;

next Moving_Object;

end FINAL_P0SITION_CHECK;

Figure 31. Pseudo-code for Final Check (cont).

70

LIST OF REFERENCES

[l] Rogers, David F., and Addams,
Elements for Computer Graphics.
1976.

J. Allan.
New York:

71

Mathematical
McGraw-Hill,

[2] Giloi, Wolfgang K. Interactive Computer Graphics Data
Structures, Algoritms, Languages. Englewood Cliffs, New
Jersey: Prentice-Hall Inc, 1978.

[3] Foley, James D., and Van Dam, Andries.
Interactive Computer Graphics. Reading,
Addison-Wessley Publishing Company, 1982.

Fundamentals of
Massachusetts:

[4] Vince, John. Dictionary of Computer Graphics. London:
Frances Pinter (Publishers), 1984.

[5] Gilbert, Phillip. Software Design and Developement.
Chicago: Science Research Associates, Inc, 1983.

[6] Crow, Franklin C. "Three-Dimensional Computer Graphics,
Part I," BYTE, March 1981.

[7] Crow, Franklin c. "Three-Dimensional Computer Graphics,
Part II," BYTE, April 1981.

[8] Shenk, Al. Calculus and Analytic Geometry. Santa Monica,
California: Goodyear Publishing Company, Inc, 1977.

[9] Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data
Structures. Chicago: Computer Science Press, Inc, 1976.

	A One Step collision Detection Method for Computer Graphics Programs
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	LIST OF FIGURES
	iv
	v

	INTRODUCTION
	01
	02
	03

	DATA STORAGE METHODS
	04
	05
	06

	MATRIX MANIPULATIONS
	07
	08

	ROTATION ABOUT AN ARBITRARY AXIS
	09

	COLLISION DETECTION
	10
	Theory
	11
	12
	13

	The Plane
	14
	15
	16
	17

	The Cylinder
	18
	19
	20

	The Cone
	21
	22

	The Conic
	23
	24

	CONCLUSIONS
	25
	26
	27
	28
	29
	30
	31A

	APPENDIX A. DEFINITIONS
	31B
	32
	33
	34

	APPENDIX B. ROTATION ABOUT AN ARBITRARY AXIS
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	APPENDIX C. COLLISION DETECTION ALGORITHM IN PSEUDO CODE
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70

	LIST OF REFERENCES
	71

