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ABSTRACT

A new missile guidance law is proposed for the control of iotpiane which provides an improved
time-to-go calculation by removing error due to trajectonyvature and also provides a family
of trajectories for trajectory planning purposes. Unlikeneentional optimal guidance laws, the
proposed law is non explicit in time-to-go and the lineaia of the engagement kinematics in

order to gain a closed form solution is not necessary.
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CHAPTER 1: INTRODUCTION

Missiles play a central role in modern warfare operations rovide one of the most versatile
and flexible weapons platforms in existence. From shorteamgto-air to medium and long
range ballistic applications, missile systems are capafsleutralizing a wide range of threats. As
technology advances, threat capability becomes incrgigsavasive with more effective counter
measures. Modern missile technology must be able to eftdgtoutperform threat capability

under a wide range of battlefield scenarios.

It has become apparent that the next generation of missilemtdéogy must be able to act in a
cooperative or coordinated manner in order to maintain gactfe offensive or defensive role.
The term cooperative in this context is used rather loosetythe technical implications are far
reaching. Here, the term cooperative is used to infer thdtipleimissiles work together as a team
in order to neutralize a target. Multiple missiles sharingdgnce related data on a target have a
greater probability of achieving a target kill when the &g being actively sensed from multiple

missile vantage points.

The enhancement of target state estimation as well as tagigdn prediction is an encouraging
possibility. The applications of such a weapons systemrameddiate, such as the simultaneous
arrival in order to overwhelm defensive countermeasures tge case of ship Close-in Weapons
Systems (CIWS). Simultaneous arrival on a CIWS system carptaiely overwhelm the system
and greatly increase the probability of a direct strike anititended target. In other scenarios, a
delayed impact time with specified arrival interval betweeissiles is desirable as in the case of
bunker neutralization. Missiles can arrive one-by-onehiorsdelayed time intervals to maximize

the explosive effect of the preceding warhead and pulvéniegarget.

The technical challenges of a cooperative guidance appydemvever, are immense. Any co-



operative engagement is going to require control, in somg wfathe missiles arrival time at a
particular location, which inherently requires the cadtign of the time-to-go until impact. From
a technical standpoint, this is very difficult since missij@mamics form an under-actuated system,
meaning some aspects of the missiles operation cannot bekbed. In fact, most missiles have
no control over the longitudinal velocity, making any caoated effort to control a missiles timed
approach to a target extremely difficult. This is why the técwoperative” is generally meaning-
less and is intended only for illustrative purposes to natéuvhe larger problem. The problem is
in fact one of "impact time control” first and foremost. Onceiable solution to the impact time
control problem is found, any number of cooperative altpong found in the open literature can

be applied.

Without enhanced methods of impact time control, coopematannot be considered, and although
work has been conducted in the last decade to further thdgmplnuch of the work is based on
simple linear models moving at constant velocity. The trugbfem formulation involves con-
siderable nonlinearity, missile acceleration, and distnces due to wind and other unmodeled

behaviors.

The control of impact time for an under-actuated missile lsamealt with most effectively from
a trajectory planning approach as long as improvements arie o the time-to-go calculation.
If the computed time-to-go is accurate enough, then thedtajy planning can be employed to
either increase or decrease the approach time to the targistmethod is straight forward if the
missile velocity is constant, or near constant. In this cakanges to the trajectory arc-length can
correct for any error between a desired impact time and thewtly calculated impact time. The
vast majority of missiles, however, exhibit consideralilariges in velocity which are difficult to
model and inherently contain disturbances which furtherugis calculations for the time-to-go.
Even in this case, an improved time-to-go calculation caitede into account errors introduced

by the missiles acceleration. Even though acceleratiofilg@saan be modeled, some error will

2



always associated with such estimates.

In general, two types of error can be expected with the tioaget calculation. The first is error

due to trajectory curvature. All current methods of compgitime-to-go involve the line-of-sight

between the missile and target and the relative closingdsggmerally referred to as the range-
over-range-rate method. The calculation is updated sewaes a second during the engagement.
This calculation method generates precise results as letigeamissile is heading directly at the

target, as is the case in a head-on intercept or tail chasarsoe However, in many engagement
scenarios a considerable amount of trajectory curvatupessible as the missile maneuvers to
make intercept. The line-of-sight based calculation da#socount for curvature and a consider-
able error is possible. The second type of possible errdremange-over-range-rate method is due
to missile accelerating along the trajectory, which is heanpossible to compensate for unless

the acceleration profile is perfectly known.

Considerable improvements can be made if the time-to-glaldmicalculated along the trajectory
arc-length instead of the line-of sight. This removes thieredue to curvature, leaving only the
error due to acceleration which can be dealt with throughoapheric modeling. Formulating a
time-to-go calculation in terms of arc-length is probleimdor several reasons. First, a future
known path must be established from the missiles currentipogo the target. This means inte-
grating the guidance law into the future to find the missilese&st point of approach to the target
and then numerically calculating the arc-length along gsiiting path. However, iterative cal-
culations of the arc-length are not possible in real-time tuthe high computational cost as the

time-to-go must be updated many times a second.

The only remaining option is to compute the time-to-go fromi@sed form solution of the tra-
jectory arc-length. The problem with this approach is tleat tlosed form solutions exist for

trajectories of order higher than two. Certain approxionaiof arc-length can be made but then



error is reintroduced and little improvement is gained. Aeal solution to the problem would
be to have a higher order family of trajectories for which aaa closed form solution for arc-
length exists. With the existence of a family of trajectsrigajectory planning could be utilized in
conjunction with the resulting improvement in time-to-gogain better control over impact time,

especially under rapidly changing velocity due to atmospla@d gravity.

The guidance law proposed here that aims to provide theseblescapabilities is called Quad-
Segment-Polynomial-Trajectory, or QSPT for short. Thaitdehind QSPT is to utilize multiple
second order polynomial trajectories joined together imaath, continuous fashion while lever-
aging the closed form solution to arc-length which is pdssibr second order polynomials. If
enough second order segments are used, free design varnablét, giving rise to a family of
trajectories which can be used to adjust the impact timeautyindrajectory planning. The resulting
trajectory appears to exhibit higher order polynomial eleteristics yet has a closed form solution
to arc-length, thus removing error in the time-to-go cadtioh due to curvature. In addition, since
QSPT is a defined trajectory between the missile and targéimating the acceleration due to

atmosphere, drag, and gravity along the known path becornessdh process.

Some major contrasts can be made between QSPT and optirdahgeilaws. The first pertains to
how closed form solutions are obtained for the optimal gucgdaw. The engagement kinematics
between a missile and target are highly nonlinear as will Hieve in chapter 6. In order to
solve the resulting optimal control problem, a solutiontfoe resulting two-point boundary value
problem must be found but due to the nonlinearities involvedclosed form solution exists and
a numerical solution is once again too computationally lgosin order to gain a closed form
solution the engagement kinematics are linearized anderptbcess, valuable fidelity is lost in
the process which can result in poor performance underioegal-time conditions. In addition,
many optimal guidance laws are explicit in time-to-go andein the calculation can also induce

poor performance.



In contrast, QSPT does not require the linearization of tigmgement kinematics and fully utilizes
the nonlinear kinematics in the final form of the guidance [aine QSPT guidance law is also non-
explicit in time-to-go which is not generally the case witbshoptimal guidance laws. Guidance
parameters are derived from the QSPT trajectory and areassetput to the guidance law. The
actual trajectory asymptotically converges to, and resnamthe QSPT generated trajectory. The
time-to-go computation of QSPT is based on an exact closed éalculation of the arc-length
and is free from error due to curvature. This coupled withfmily of trajectories generated by

QSPT provides better control over the impact time than wathventional means.

This document is organized as follows. In chapter 2 a sedrtfte@xisting work in the open liter-
ature is given. The literature survey covers a broad ranggliofance law work that is segregated
into 7 groups. In chapter 3, a general overview of missilesyphe phases of flight, and the basic
components and subsystems of a missile are given. In chépeguations of motion common to
both standard guidance laws as well as the guidance lawadi@rvor QSPT is given. The highly
nonlinear dynamic equations of motion are simplified intalireear kinematic models and further
into linear basic models commonly found in simplified guidamlerivations. Chapter 5 discusses
the basic types of performance indices commonly used teeleptimal guidance laws. Chapter 6
provides a comprehensive development of the optimal geeléaw and at the end of that chapter
a detailed discussion of the various computation methodsirfe-to-go is given. In chapter 7
the problem is formulated and the kinematic equations ofieondb be used in the guidance law
synthesis is presented. Chapter 8 introduces QSPT andeattmj set with specified boundary
conditions is derived. Chapter 9 derives both the open amskdl loop guidance laws for QSPT
and chapter 10 details the optimization of a QSPT traject@iyapter 11 derives the improved
arc-length based time-to-go algorithm and discusses theegure involved in pre-flight analysis.
Chapter 13 details the Genex guidance law which is used ifonpeance comparisons against

QSPT. Chapter 14 shows the results obtained from a simnolafithe performance of QSPT. The



QSPT time-to-go calculation versus the standard rangetevge-rate calculation is compared,
as well as robustness of QSPT, effectiveness of the impaet ¢ontrol, and a full performance
comparison with the Genex guidance law in the presence sentm the next chapter, a search of

the existing work in the open literature is given.



CHAPTER 2: LITERATURE REVIEW

Searching the open literature, we can segregate existimg iwm 7 groups. In group 1, general
references can be found on classical and modern guidanceitajt, 2, 3, 4]. Each of these
references provide a clear and basic understanding of thergleguidance problem, equations of

motion, and missile components and subsystems.

In group 2, we find works of [5, 6, 7] which formulate optimalidance laws with constraints
on impact angle. In these works, missile velocity is congdeonstant and linearized models of
either the missile kinematics or engagement kinematicased. In these works, no consideration
is given to the control of impact time and the standard methadcdcomputing time-to-go are uti-
lized. In fact, while numerous papers are found concernptgral guidance with terminal angle
constraints, very few works pertaining to impact time coaists can be found. This comprises
group 3. In this group, reference [8] formulates an optimatignce law with impact angle as
well as impact time constraints and [9] considers a timenogitformulation with impact angle
constraints. In each of these works, missile velocity isstamt and linearized models are used in
the development. The work in [10] considers an optimal fdation for just impact time control
alone. An interesting note about this work is the indepehdamable in the state model is in terms
of distance instead of time. This is done to avoid impact tiram explicitly becoming a terminal
boundary condition since it is an unknown parameter. Howenissile velocity is considered con-
stant and the model used is linear. Reference [11] condiideesof-flight control as well as range
extension for precision munitions. Atmosphere and distndes are considered in this work which
make is well suited for some general performance compagisotine simulation study. However,

[11] uses range-over-missile-velocity for calculating time-to-go.

Attempts to improve estimates of time-to-go for both cleasand modern guidance laws comprise



group 4, [12, 13, 14, 15, 16, 17, 18]. In most of these workgdr models are used in the formula-
tion and missile velocity and acceleration profiles are meglito be fully known or modeled with
linear and or linear piecewise equations. No in-flight ccticen due to disturbance is proposed.
The work of [12] attempts to improve on this by deriving a nesive algorithm to correct the time-
to-go estimate when either a heading angle error is pregerftanges in path length occurs. It
does not take into account changes in time-to-go due to dragnoospheric disturbances. The

change in path length, however, is estimated from the dewifitom a straight line path.

The works contained in group 5, [19, 20, 21], considers thveld@ment of optimal guidance laws
when the missile velocity is not constant. In reference ,[20¢ derived guidance law relies on
predicted velocity profiles which can be updated to compenfsa error. However, the law is

derived using linearized models and is explicit in a terrhimae boundary constraint.

Searching the literature further, we find scarce resultgfoup 6; cooperative guidance laws for
missiles. In references [22] and [23], optimal formulaticare derived to address the issue of
cooperative salvo attack on a target, however, both worksras constant velocity and in [23],

the time-to-go estimation methods of [12] are utilized. 22]| attempts to estimate time-to-go

are done using an arc-length approximation of the expecatgdgement. The resulting equation
is approximated since closed form solutions for arc-lemgéhimpossible to derive in many cases.
In [24], a discussion of cooperative missile research waowk the problems associated with it are

addressed.

In group 7, a path planning approach to guidance synthetakes. Reference [26] takes a some-
what similar approach as QSPT Guidance in that distancgimegted and a spline-based trajec-
tory is developed. However, this work uses the standarde-anvgr-missile-velocity for time-to-go

calculation and the terminal boundary constraints are etiom of the impact time.



CHAPTER 3: MISSILE PHASES OF FLIGHT

In this chapter a brief outline of the different phases otflignd guidance systems that dominate
for that particular phase. Finally, a brief description eh&siles subsystems such as guidance and

flight controls are given.

Depending on the type of missile system considered, thraegshof flight generally exist which
require different guidance schemes for each. In the cadecof sange missiles, the distance from
the launch point of the missile to the target is typically #pzand a single phase of flight is all that
is required to reach the target. Differing phases of fligitasely result for longer range missiles
and precision munitions. The distances involved requibeisb boost phase to generate enough

kinetic energy to reach the target long after the boost phasended.

Boost Phase

The boost phase is designed to generate enough missileckemetrgy to reach the target long
after the boost phase has ended. In the case of certainipregisded munitions, the boost phase
powers the warhead to high altitudes and the potential aneltiki energy accumulated during
this phase is enough to enable the warhead to reach long dogadistances to a target. The
high levels of longitudinal acceleration make guiding thiesite a challenge, and so the primary
objective for these weapons is to achieve a desired altatidernout. In the case of cruise missiles,
the boost phase is relatively short and is designed to genansadequate forward velocity for the

missile.



Midcourse Phase

The midcourse phase begins directly after the end of thetlpb@se and guides the missile over
long distances towards a target. One example of a midcouidamge law is TERCOM, or Terrain
Contour Matching, which is used primarily in cruise missifglications. The primary objective in
midcourse guidance is to guide the missile to a locationece®ugh to the target for the homing
phase to take over. This is generally called target acdurisih which active radar seekers acquire

and lock on to the target. Once this is accomplished, the hgiphase can begin.

Homing Phase

In this phase, the guidance objective becomes one that esdhe miss distance between the
missile and the target while expending as little controlrgneas possible. The radar seeker is
returning range and range rate data to the guidance corspndra Latax or lateral acceleration
steering command is generated by the guidance algorithrtetw the missile in a manner that
reduces the miss distance. Many different types of guidwe for use in the homing phase can

be found in the open literature.

Basic Subsystems of the Missile

Central to missile performance is the flight control and guick system as shown in figure 3.1. The
flight control is responsible for two performance objecsivstabilizing the body rates, and con-
trolling lateral acceleration. The guidance system rexsefarget related data from (in some cases)
on-board active radar or infrared sensors and computes maanhto steer the missile towards the

target. The steering command is generally, for skid-to-tarssiles, a lateral acceleration, more

10



commonly referred to as latax. Therefore, the guidancesystlculates a desired latax command
and the flight control attempts to track this command whidédsizing the body rates. Care must
be taken to ensure the guidance system does not over-conth@nussile. Every missile has a
limit to its maneuvering capability and the potential foe thuidance system to issue commands

the missile cannot achieve is a possibility unless comdsare imposed in the guidance design.

&//

State Estimation
and Filters RF Seeker
Guidance F Flight Control Flight Dynamics _‘

Figure 3.1: Basic components of a missile system

The target state signals generated by the RF seekers acaltymiorrupted by noise which must
be removed by the target state estimators and filters beédaehing the guidance processor. In
the next chapter, a standard set of dynamic equations eyineg a 6 dof missile are presented
and systematically simplified for use in both standard guegaformulations as well as the QSPT

derivation in future chapters.
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CHAPTER 4: EQUATIONS OF MOTION FOR GUIDANCE SYNTHESIS

In the open literature, many suitable models for the equataf motion of a body can be found.

All of the models, regardless of how simplistic they may be @erived from highly nonlinear

equations of motion which represents the translationagtiomal, and aerodynamic properties

of the body in its configuration space. For most guidance lavivdtions, the use of nonlinear

equations of motion do not yield closed form solutions torgmulting two-point boundary value

problem. In fact, only linear equations of motion will yieddich closed forms. This issue will be

addressed in considerable detail in chapter 6. For the temegbwe will derive several different

models which are useful for conducting simulation studiesaw vehicles. The 6 dof nonlinear

equations of motion for a missile or aircraft are as follows

U=Fy+ g, +rv—quw
v=F,+g,+rv—quw

w=1F,+g,+rv—quw

p=

1,y)7)q)

. (M - (Imm - Izz)pr - Irz (p2 _ Tz))
q= i
vy

Iyy)p) q)

r =

12



&7 = (cosycos ) u+ (—cosgsin x + singsiny cos @) v + (sin ¢ sin x+
+ cos ¢ sin~y cos @) w
Y7 = (cosysin x) u + (cos ¢ cos x + sin ¢ siny sin ¢) v 4 (— sin ¢ cos x+

+ cos ¢ sinysin @) w

(4.1)
Zr = (siny)u + (sin ¢ cosy) v + (cos ¢ cosy) w
¢ =p+ (gsind + rcos @) tan
Y =qcos¢p —rsingo
_ (gsin¢ + 1 cos ¢)
N cos 7y ’
where the following variables are defined as
T
{u v w} missile velocity in body coordinates
r T
P q r} missile rotational rates in body coordinates (roll ratéglprate, yaw rate)

r T

Ty ZI} missile position in inertial coordinates

r T

F, F, Fz:| forces in body coordinates £, vz, z5 respectively)

r T
M, M, Mz:| moments in body coordinates (Roll moment, pitch moment, yenent)

r T
b v X} roll position, flight path angle, heading angle with sidesind angle-of-attack

given as

B4 = sin™! <%) ay = tan™! <:—:) (4.2)

13



and gravity components, velocity, wind shear, and forcesraoments,

9o = —gsiny
gy = gsin ¢ cos~y
(4.3)
g, = § COS ( COS Y
Vy = [} + 04 + w3,
uaA u
Val|l — |V — H}?’V_Vu (44)
w A w
F,=C.qS + T,
F,=CyqS +1T,
F,=C.qg5S + T,
(4.5)

Mx - Cqu + MTw
M, = CuiS + My,

M, = C,,gS + Mr..

Matrix HP is the inertial to body coordinate transformation afds the vector of wind-shear

components. If we assume quiescent atmosphere with no wind), then

uA u
val — v - (46)
w A w
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The dynamic equations of motion given by (4.1) are highlylimaar and coupled both dynamically
and aerodynamically. In other words the rotational equatifor p, ¢, andr are cross-coupled
with one another as well as coupled into the translationlcity equations ofi, v, andw. In
addition, the aerodynamic expressions embedded in botiotatonal and translational dynamics
are themselves cross-coupled with one another. In ordetitcagclosed form solution for guidance

law development, considerable simplifications must be made

The figures that follow illustrate the relationship betwésmbody coordinates and the fixed inertial
coordinates as well as the relationship between the vglooinponents, incidence angles, and
moments. In figure 4.1, the relationship between the bodydiovates and the velocity vector
through the incident angles are shown. Figure 4.2 shows thrents that relate to the body
coordinate system. The moments cause the body axis systeotate out of alignment with
the fixed inertial system through the Euler anglesspfy, andy as shown in figure 4.3. In the
subsection that follows, a progressive simplificationsraggle to the 6 dof nonlinear model in

order to gain more simplified equations to work with.
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Figure 4.1: Aerodynamic incident angles in relation to bodgrdinates

Figure 4.2: Forces and moments in relation to body coordsat
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Figure 4.3: Inertial angles in relation to body coordinates

Simplified Nonlinear Model

The first simplifying assumptions we can make on (4.1) is tosaer

e Rollangle¢ = 0, roll rate¢ = 0
e Incidence angles =0, a=0

e Assume missile has tetragonal symmetry, all inertial comgpling terms vanish, that is

I, =0.

Assuming a zero roll angle and roll angle rate decouples aiderable portion of the dynamic
equations. An assumption of zero incidence angles alsowvesrtbe dependency on aerodynamic
parameters which must be estimated using software suchssl&IDatcom or obtained through
wind tunnel testing. Becauge= 0, « = 0, we can immediately say that=V,, v =0 w = 0.

This assumption indicates that the velocity vedtgremains aligned with the missiles longitudinal
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axis. Additionally, most missiles exhibit tetragonal syetny which eliminates off-diagonal terms
in the moment of inertial tensor. These simplifying assuons lead directly to the nonlinear

kinematic model given as

V:Fx3+gx
. M
q:I—y

vy
.M,
r =

IZZ

2y = V cosvycosy 4.7)

yr = V cosysiny

2y = Vsiny
Y=q
o
~ cosy’

It should be apparent that even though zero incidence amgdes assumed, some aerodynamic
related components still remain. In this casg, is the total longitudinal drag, and the moments
remain primarily as a result of their dependence on conuidfase deflections. This model is

useful for preliminary design of flight control systems.

Simplified Nonlinear Model without Aero Parameters
Next, we can assume the missile to be a point mass. Unders$isrgotion, the moments vanish

as

M, =0, M, =0, (4.8)

18



and therefore the remaining body rates become

=0, 7=0. (4.9)

This results in equation

xr = V cosycosy

yr = V cosysin y

(4.10)
zr = Vsiny
T=q
) r
X =
cos 7y

The last two equations in (4.10) imply that under the presiassumption, the body ratgsandr
become the inertial rateésand+). The question remains, how is this model controlled? With th
vanishing of the moments, the control surface deflectioasuked to control the motion are now
gone. We can solve this problem by deriving some simple émpusto eliminatey andr. First, we
consider two orthogonal planes, andz z, where the forces due to control and gravity are applied

and sum the forces in each plane as,

nyapplied _'_ meg'ravity =m x2 _'_ y2 = m\/V2 Sln2 (X) X2 + v2 COS2 (X) X2
(4.11)
szapplied _'_ szg'ravity =m xQ + 22 = m\/v2 Sln2 (7) 72 + v2 COSZ (f}/) 72
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Substitution ofy = r and+ = ¢, and taking the square root gives

_1 N
m (ny(lppl’ied + nygravity) - Vr

(4.12)
m_l (szapplied + szg'r“avity) = Vq
and therefore the "pseudo controlsandr are determined to be
1
r= V (axyapplied _'_ amyg'ravity) 4 13
1 ( " )
q= V (axzapplied + a'ngravity)
Substitution of the expressions fgandr gives
2y = V cosycosy
yr = V cosysin y
(4.14)

21 =Vsiny

) 1

= V (axzapplied + a'ngravity)
- 1

~ Vcosy

X (axyapplied _'_ amyg'ravity)

where the controls are defined to bge = a,,, ., andu, = a,., .., and the gravity terms are
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Uygravity = Us Oazyrai, = 9 €0s7y. The final form of the equations of motion are given as

V= Frop + 9s
2y = V cosycos x

yr = V cosysin x

Zp = Vsiny (4.15)
. 1
V=1 (uy +gcosy)
B 1
X Vcosyux'

The equations of motion given in (4.15) will be the equatiosed to derive the proposed guidance
law in upcoming chapters. In the next subsection, howeverfusther simplify the equations of
(4.15) into a completely linear system, which is useful foe bptimal guidance derivations in

chapter 6.

The Linearized Model

From the nonlinear kinematic model in (4.15), further sifiyohg assumptions can are made in
order to reduce the equations into fully linear ones sugtdtit optimal guidance synthesis which

will be derived in chapter *. For now, the following simplifig assumptions are made

e Constant velocity}) = 0
e Small anglegy andy

e Ignore gravity
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e Planar motion - eithery or 2z plane

In addition, the equations of (4.15) can be linearized withuse of t he small angle approximation,
which is a direct result of the Taylor Series expansion. Ttleding trigonometric functions have

the approximated values under the assumption of small angle

2

~
~1l—-——=~1
Ccos 7y 5
siny &~ (4.16)
tany ~ 1.
Applying these assumptions results in
=V =V
y[ = VX Z[ = V’}/ (417)

1 ) 1

X:Vux V=t

An immediate consequence of the small angle linearizatidhe fact that the planes of operation
have been decoupled as shown in (4.17). This is a typicajdgsbcedure in the development of
certain guidance laws in that planar motion is assumed anduldance law is synthesized for the
two individual planes, i.e. the altitude/downrange plaargj the crossrange/downragne plane. In

the next chapter, performance indices common to guidan@éapons are discussed.
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CHAPTER 5: PERFORMANCE INDICES

In this chapter a discussion of performance indices is giaeorder to motivate the process of
"optimization”. Many times itis claimed that some processasult is optimal, but one must ask, to
what has this result or process been optimized with resp&dtitother words, what is the criterion
for which this claim of optimization can be made. In the calsmissile flight, particularly the three
phases previously discussed, time, fuel, control (or thvarergy, and terminal constraints such
as miss distance and angle must be considered in the problemulation. For instance, during
the midcourse phase, the missile must reach the point aéttargquisition as quickly as possible
using as little fuel as possible. Therefore, in the desigthefcontrol law, these constraints are
considered and the optimization process yields a guidaveceptimized with respect to minimum
time and fuel usage. In the case of the homing phase, ceetamirtal constraints must be achieved
such as impact angle or impact time while at the same timeitkgépe divert energy required to

achieve a zero miss distance as minimal as possible.

The primary objective in the optimization process is to #yesome "performance index” which
is related directly to the states of the dynamic system thadtine controlled; i.e. control energy,
fuel, time. The performance index, typically denoted/ass itself minimized through a process to

be discussed in the next section.

There are, in general, two types of performance indices comtm missile guidance applications
which appear in practical use with some minor variationsawhefor the more simplistic cases.

The first type is given as

b1 1
J= / (—zQz + —uRu) dt (5.1)
o \2 2

where the over-bar indicates a transpose. This is a Lagiypgeperformance index where only
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an integral term is present. The basic premise behind thisxims to take the weighted square
of the state and the control integrated over the time spahttanfind the control: such that/ is
minimized. The net affect is a balancing act between statersions in: versus control excursions

in u. The second type of performance index is given as

1 ) Ve 1_
J = 3 | z(ty) || + 52@z+ §URU dt (5.2)

to

This is known as a Bolza-type index. In this case, an extma teghich considers the terminal
state is included in addition to the original integral terifhe integral portion of the index has
the same function as that previously discussed. The addifithe terminal state penalty ensures
that a specified terminal objective is met. In the case ofiifleigsiidance, some common terminal
objectives are generally impact angle and zero miss distakg stated previously, more simplistic
variations of the first and second types can occur and oftefilo® following is an example of the
second type in which only the control is under the integnahteOnce again, in the minimization
of this index, the control: is found which minimizes/. The control energy is thus kept to a

minimum over the time span while the terminal objective isiaced.

1 s 1 (Y
J = 3 |z (ty) | +§ uRudt. (5.3)

to

The most basic performance index used in guidance applitais the result of further simplifying

(5.3) where only the integral of the control squared remags

1 [
J:§/ aRudt. (5.4)
to

In this performance index, no terminal state constraineontnal state penalty under the integral
exists. The minimization of results in the controk that minimizes the control energy over the

time of flight. This is by far the simplest performance indbattcan be applied to find a closed
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form guidance law. It is however devoid of the terminal coaisits that are many times necessary
in more advanced guidance applications. However, wittemsing complexity of the performance
index comes increasing difficulty is achieving a closed feotution, which is essential in guidance
law development. As will be seen in the next chapter, evembst basic guidance law derivation

can be a complex procedure.

Performance Index Weights

In (6.12),Q and R reflect the relative importance of achieving each objecpenalizing control
effort over the time interval versus achieving the desiezthinal state. For guidance laws designed
for use in the homing phase, terminal constraints such asdistance and the angle of impact are
most important in achieving an effective target kill. Minzimg the miss distance is important for
obvious reasons, however, specification of the terminabrhpngle can maximize the lethality
of the warhead, depending on the type of target. The weigtitiators of the performance index
would then place high priority on the terminal constraintslesperhaps lowering the importance
of the control energy expended during flight. In the next ¢higpve will derive a basic optimal

guidance law and note the importance of the control weightise result.
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CHAPTER 6: BASIC OPTIMAL GUIDANCE LAW

Formulation of the optimal guidance law is based on the perdmce index which has been chosen
to achieve specific objectives, i.e., minimum control egedgsired terminal angle, zero terminal
miss distance. The minimization of, however, must result in a contralwhich is not only in
closed form as specified in the last chapter, but which isliéaalso. In other wordsy must also
satisfy the equations of motion. Many real life examplesd tan be found. A hiker for instance,
can find the minimum-time path to get off of a mountain by jungpover a ledge which drops
vertically to the ground. Obviously, this is not a feasibltpfor the hiker to take and his path
down the mountain should be constrained to one that is easgverse and will not kill him. The
same concept is essentially true for a missile. Indean be minimized but can the missile follow

the path commanded hy?

In order to derive a guidance law that achieves the objectiv¢he performance index and results
in a feasible control, motion constraints must be adjoindti¢ performance index and then certain
conditions for optimality are then applied to find the optimmantrol «. The issue at hand is the

fact that the optimal control is generally a function of thestate, which results from adjoining

the dynamic constraints to the performance index. Asidenftloe original system dynamics, the

adjoining process gives rise to additional costate dynsanvitich tend to be heavily coupled into

the state. In order to solve for the control and eliminatecthstate variables from the final solution,
the two-point boundary value problem must be solved. Tylyicanly linear dynamics result in

a closed form solution to this type of differential equateomd hence the linear model derived in

chapter 4 will now be leveraged.
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Deriving the Engagement Dynamics

To begin the guidance law derivation, relative equationsofion between the missile and target
must be formulated. The linear missile model of equatioh{}lis a key component and can can
be used to describe target motion as well. We can define ttevialy relative variables for the

development as

p, = relative distance between missile and target (miss disjanc

v, = relative velocity

a, = relative acceleration

subscripts\V/ andT" denote missile and target, respectively

bold-face variables indicate vector quantities.

The relative dynamics are then expressed as

prxayaz = pTx,y,z - pr,y,z

erayaz = VTx,y,z - VMx,y,z (6.1)

arx,y,z - aTx,y,Z - aMxyyyz’

and therefore

Tip LIy Vap Uz Az p Qg g
Proye = (Yrp | 7 | Ynu | 2 Vixws = | Vyr | 7 | Vynr | 2 @xyie = [ Qyp | 7 |Gy | (6.2)
RIr RIm Vzr Vzm Qzp Qzp
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From this, we define the state vector as

- [p v} | 6.3)

with the corresponding state model for the relative dynamic

¢=f(O+g(Qu (6.4)

The standard performance index of

1 t
T = 5E () Q¢ (1) + % / " aRudt, (6.5)

to

is used which imposes a terminal state constraint. As meadi@reviously, a closed form solution

to this problem is potentially not possible due to the nagdirities present, specifically ji(¢) and

9 ().

We can, however, formulate (6.4) using the nonlinear kirteamaodel of (4.15) and then fully
linearize the system in order to proceed with the developgnt@om (4.15), the nonlinear relative

equations of motion are given as

T — Ty = (aTw cos O sin Yy — ar,, sin O cos @DT) —
— (cos Oy sin Yy, — sin Oy cos Yarty,)
Ur — v = (_CLTM sin 07 sin ¢¥r + ar,, cos O cos IDT) + 6.6)

+ (sin Opr sinpran,. — cos By cos ¢Masz)

Z:T - ZM = ar,, COS@T — apm,, COS@M.
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Linearizing equation (6.6) gives

Ay, = Ii'T - IL’M =0
ar, = Yr — Ym = ar,, — G, (6.7)

Qp, = 217 — ZM = QT1,, — QM.

which is a chain of integrators. Some observations can berdfiaom equation (6.7) which sug-

gests several things,

e thexy, zz planes are decoupled by the linearization process
¢ the control action is approximately in tlyeandz directions and perpendicular o

¢ the relative dynamics including miss distance variabléeorm a double integrator system.

The next assumption that is made is that target accelerati(817) is zero. Then, we can assign

the controk, as the missile acceleration in thendz directions as

ar, = —YM = —Uy

(6.8)

Qr, = —2Zp = —Us.

z

The acceleration equations in (6.8) are decoupled from an¢har and therefore, the guidance
synthesis can take place individually for each. We carrytioistprocedure for they plane only,

as the process for the: plane follows in an exact manner.

Considering the chain of integrators formed by (6.8), tlagesvector is defined as

(= [pr vr] (6.9)
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wherep, andgq, are scalars and equal tp = y,, v, = v,,. We arrive at the linear state space

model
¢ = AC + Bu (6.10)
where
01 0
A= B = ) (6.11)
00 —1

The state model of (6.10) will eventually result in a closedri guidance law as will be shown
next. The closed form, however, would not be possible withoaking the necessary linearizations
and corresponding assumptions discussed here. The praiciisding the optimizing control
for a chosen performance index subject to the linearizedomobnstraints of (6.10), will proceed

next.

Optimization

Referring back to the standard performance index of (6.5) as

J = %g(tf)cgg (ty) + % / " dRudt. (6.12)

to

we will specify the terminal state as the miss distance winehdesire to be zero at the end of
flight (target strike). The next step involves adjoining thetion constraints to the performance

index as

J= %g(tf) QC (t) + % /tf [aRu+ A (A( + Bu— g)] dt, (6.13)

to
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where )\ is a vector of costates. The Hamiltonian, which is defined,niexvery important in

deriving the optimal control. The Hamiltonian is given as

H= %M + A (AC + Bu). (6.14)

Specific conditions for optimality are then

At) = —== 6.15
OH
e 0, (6.16)
subject to the costate boundary conditions of
M) = 2 (Seanocan 6.17)
=8¢\ 2"\ - :
With the weighting matrices defined as
b 0 r 0
Q= R = 7 (6.18)
0 c 0 r
the terminal state constraints are then expressed as
1. b 0] |pr
5 Q) = o o) . 6.19)
0 c| |v,

The terminal state formulation of equation (6.19) leavesrofwo design options. For intercept

problemsp > 0, ¢ = 0, and for rendezvous probleras> 0, ¢ > 0.
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Equations (6.15) and (6.16) results in, respectively

A= —A), uw=R'\B (6.20)

and therefore by adjoining the motion constraints to thdgperance index we gain a second
dynamic system of costates in which the optimal control isiecfion of. Substitution of the

optimal controkl into the state model (12.4) gives

¢ = AC+ BR™'\B. (6.21)

The complete state/costate dynamic system is then exprasse

: A —BR'B
? - ¢ (6.22)
A 0 —A A

whereA € R?*2 andBR~'B € #2*2. Our job now is to solve the state system of (6.22) in order to
find solutions for the state and costate trajectorie$ afid\. Once a closed form for trajectories

are found, the optimal control given in (6.20) can then baesged solely as a function of the state

variables.

The system of (6.22) results in a two-point boundary valuwblam where the state derivative must
be integrated from initial time to the terminal time subjexinitial state boundary conditions, and
the costate derivative must be backwards integrated frertetiminal time to the initial time subject
to the terminal boundary conditions given by (6.17). A ceupfisolution methods exist for solving
these types of linear two-point boundary value problemsaambe found in the open literature.
However, the requirement of a linearized system should earchnd is exactly the reason no

closed form solution can be found for more complex and/olinear systems. The integration
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of (6.22) is complicated by the fact that the state and ceste¢ cross coupled and only a linear

system of this form will have a solution.

We can proceed in finding a solution, if we denote the stateixnaft(6.22) as

A -BR'B
F = . (6.23)

0 —A

From linear system theory, we can find a solution for the stat#or by computing the matrix

exponential

(t—t0) o  (t—to)’
TR

d=Fl0) =T 4 (t —to)F + F?, (6.24)

This results in a state solution from initial time to the entrtime as

¢ (1) Py (t—to) Pra(t—to)| | Co

= (6.25)
)\ (t) (I)gl (t - to) (I)QQ (t - t()) )\0
where the transition matrix is calculated to be
L(t—t) | (ger 5w
(t—to)* (t—to)
¢ P _ 0 1 5 — | (6.26)
Dy Dy 0 0 1 0
0 0 —(t—to) 1

Unfortunately, this form is not suitable for guidance siit@xpresses the elements of the transition
matrix as the results of an integration from initial time tor@nt time, which is not useful. These

equations must be integrated from the current time to fina tilf we consider the time-to-go as

tgo =15 — (L +1t0), (6.27)
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wheret, = 0, and write equation (6.24) in terms of the desired time wrgkmwe have

[ (ts—1)’ =] [ Bo  _tgo]
1 (tf—t) 67 T or 1 tgo 6r T or
(tf—t)2 (tf—t) t.f210 tgo
Py @l [0 1 it B LR B 2l BN
g1 Doy 0 0 1 0 0 0 1 0
0 0 —(tp—t) 1 0 0 | —t, 1

and therefore

¢ (ty) _ D11 (tgo) P12 (tgo) | |C (D) . (6.29)

Al(ty) Po1 (tgo) Pao (tgo) | [A ()
The optimal guidance law is now explicit in time-to-go, a®ften the case with many guidance

laws. Pre-multiplying the first equation of (6.29) by Q gives

QC (tr) = QP (1) + QP12 (1) (6.30)

The second equation of (6.29) gives

A(ty) = Do (1) . (6.31)

From the costate boundary condition of (6.17), we know that

A(ty) = QC(ty) (6.32)

and therefore we can equate (6.30) and (6.31) as

oz () = Q11C (1) + QP12 (2). (6.33)
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which results in a costate solution in terms of the state as

A(t) = [Pog — QP1a] ' Q1 (1) .

(6.34)

Equation (6.34) now permits us to replace the costate Marialthe optimal control of (6.20) as

u=—R'B [Py — QP] ' QP1i( ().

(6.35)

Equation (6.35) in its current form is not very useful anduiegs some further simplifications. We

can simplify the terms inside of the inversion as

3 2 b3 bt?
b 0| |2 —lo (1— —i) Pae
gz — QP13 = - wooT = " T, (630
~tgo O |0 ¢ |5 =] |- (et 3E) (14 )
and then algebraically compute the inversion
c bt2
L1 )
(P2 — QP12) ™' = el ftz 2bt3 : (6.37)
<ty0 + 5 ) (1 o ﬁ)
where
1
det = : (6.38)
(1) (=) (10 + 52 B2
Next, combining (6.37) with (6.35) gives
-1 1 (1 + Ct%) _% 1 tQO
u=—R Bd—t e o Q ¢(t), (6.39)
‘ (tgo + 257’«0) (1 - 6571"()) 0 1
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with the guidance law expressed in terms of the state vasads

ct bt2
1| (1 + e — 1 tw!| |p
u=—-R'B— 1+ 2 Q ol 1P (6.40)

62 3
W (1o + 52) (1="g=)| o 1] |w

Equation (6.40) can be simplified to reveal the cartesiam fofrthe Proportional Navigation guid-

ance law. If we set the weights 6f= 1 andc = 0 for an intercept and consider= 0 for no

weight on control effort, we can simplify the matrix and detenate expressions of

bt2
1 1 1 o b 0| |pr+vrtge
u=—=- <7p> [0 _1} 2r I , (6.41)
3 t

1—% 0 c v
go 67« T

and finally arrive at the cartesian form of PN as

3
(pr + vrtgo) - (6.42)

U:—tT
go

This is an expected result since the well known Proportiblaaigation Guidance law is an optimal
guidance law under the initial assumptions used to begsdérivation. It can be shown that the
optimal performance of this law, and others of its type, ddgs considerably when the given
assumptions do not hold true in real life, such as the tamlarating or evasively maneuvering.
In addition, since (6.42) is explicit in time-to-go, the wpality of the guidance law depends to
some degree on the fidelity of the time-to-go calculationwikbe discussed in the next chapter,

the calculation of time-to-go can contain potential error.
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Time-to-go Calculation for Homing Phase Target Intercept

Two standard methods for computing the time-to-go exisheandpen literature. The first is the
range-over-range rate given by

T,, = ; (6.43)

and the second method is the range-over-missile-velotigngas

Ty = (6.44)

r
v
Each of the computation methods in (6.43) and (6.44) arecbasehe line of sight between the

target and missile. In real-time applications, these aguatare calculated for a snap-shot in
time where the velocity and line-of-sight is considered #odonstant. The equations are then
continuously updated at regular intervals throughout tiggatflengagement to provide a current

estimate of the time-to-go.

The fact that both calculations are based on the line-dftsigjses the concern of potential error
in the time-to-go calculation, and in fact, this concerna$id: If the missile is on a straight-line
collision course with the target, then each of the given tiogo calculations will provide an
exact value. However, as the trajectory deviates from thalidtraight-line scenario, each of the
calculation methods begin to produce more error simply iseaf the trajectory curvature. This

induced error in the guidance law, as well as other errorcasuwill be discussed next.

Potential Errors in the Optimal Guidance Law

The basic guidance law of (6.42) is optimal, as long as thgirmal assumptions hold in real-time

applications. For instance, an assumption of zero miseiddaarget acceleration was made. If this
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condition holds true in reality, then (6.42) will perform lvand the miss distance will be zero or
very close to zero under these conditions. The guidanced@wen quite tolerable to some degree

of error in the time-to-go calculation.

The primary issue is, many missile/target engagements tlactmmmodate such ideal assump-
tions. If acceleration of the missile is present due to aphesc drag, and the target is evasively
maneuvering as well, the optimal solution begins to degeattethe miss-distance increases, in
some cases, to the point of missing the target completelyaidgy if there is considerable maneu-
vering, the additional trajectory curvature adds errohetime-to-go calculation further effecting
performance of the guidance law. The reasons for such adiegrgerformance should be clear;
in order to gain the closed form solution of (6.42), the valohad to be considered constant and
the engagement kinematics linearized. This constitutemaiderable loss in fidelity but, it does

result in a closed form solution.

Barring the potential error that results from simplifyingsamptions and the linearization process,
it will be shown in chapter 14 that even under constant vejamd stationary target engagement
conditions, trajectory curvature alone can produce ségernds of error in the time-to-go cal-
culation which in turn has an effect on the optimality of thedance law. All of these potential
errors should be taken into consideration based on theagniashand. For instance, in conducting
a tactical surface-to-air missile strike on an aircraftriftyin a straight line and at a constant altitude
and speed, the guidance law of (6.42) with the corresponchingce for the time-to-go equations
of either (6.43) or (6.44), would perform well. On the othani, this choice would be inadequate
for striking an evasively maneuvering target or in a casere/tiee missile itself undergoes a rapid

change in velocity with atmospheric disturbances present.

The wide range of specific applications is simply too largedwger in this work, however, im-

provements can be made to existing methods and applied fGauldimissile guidance problem

38



in order demonstrate the proposed design and intent of thiik.wn the chapter that follows, the
specific guidance problem of interest will be defined as weth& configuration space, equations

of motion, and the trajectory sets to be designed.
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CHAPTER 7: PROBLEM FORMULATION

The scope and intent of this work will now become clear; toriove upon existing methods both in
guidance law formulation as well as the time-to-go caldaiain order to more effectively control
the impact time of a missile engaging a target in the preseh@d atmosphere, gravity and
disturbance. Very little has been discussed concerningdhg&ol of impact time since a cursory
survey of the basic guidance problem was necessary firststigiguidance laws allow little
freedom in design because of the need for a closed form solwind the methods for solving the
two-point boundary value problem required to archive theirée solution leaves little room for
variations in the design. While the literature survey pnése several published research papers
on impact time control guidance laws, the work is restri¢ctgdhe need for a closed form solution
and thus many simplifying assumptions are made which do camiuat for potential error in the

calculations such as time-to-go nor do they account foudisince and nonlinearity.

Defining the Problem

The problem of achieving a prescribed impact time for a gilidinition on a stationary target
located at some terminal position in the downrange/crogg@lane is considered. The trajectory
is analytically designed in closed form, and unlike exigtinethods, the time-to-go is analytically
computed from the trajectory arc-length. Although prdjectelocity changes due to gravity,
drag, and atmosphere, the time-to-go can be estimatedeobésed upon the current velocity
and the remainder of the trajectory length. For this workjahconditions for generation of the
guidance solution is considered to be trajectory apogee bftost phase or the deployment point
from the bay-door of an aircraft. This particular guidancelpem was chosen for its nonlinear

complexity regarding the rapid change in velocity and aphesic disturbances and an effective
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solution for this problem can possibly have a wide rangingeseof applications not only for

missile applications but unmanned ariel aircraft avoidsaygplications as well.

Configuration Space and Equations of Motion

The distances considered in this work are less than 100caduniiles and therefore the earths
curvature and ellipticity are not considered. The 3 DOF gumfition space is shown in figure 7.1

and the kinematic equations of motion used for guidance athgsis is given by

V = s gsin () @
) 1

X Veos (v)ux (7:2)
= 1 (uy — geos (7)) (73)
& =V cos () cos (x) (7.4)
y = V cos () sin () (7.5)
z="Vsin(v), (7.6)

where the set of initigdy and terminaly, conditions is given by

(70,%0) » (%0,20), (Xo,70) (7.7)

(.IT, yT) ) ('TT7 ZT) ) (XT7 ’YT) .
Velocity vectorV is contained within the configuration space consisting o@@angez, and
crossrangey, altitudez. Divert controlsu, andw, in (2) and (3) are normal t&", acceleration
due to dragy, is in the negative direction df’, y and~ are the heading and flight path angles,

respectively. The gravity value used in this workdigs1Z;. Divert controls have no effect on
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z —altitude

X —downrange

y—crossrange

Figure 7.1: Configuration Space

the magnitude ol” since they are each normal Y& Only drag and gravity has an effect dh
Equation (7.1) contains unknown drag to be compensated for by trajectory planning and the
corresponding impact time control. Note that from thus ptwrward, the subscript for z, y, and

z is dropped for neatness of the equations. The family ofd¢tajees are prescribed next.

Trajectory Parameterization

In the proposed development, segments of crossrange dodaltrajectories are chosen analyti-

cally within the family of second order polynomials of therfo

2

: (7.8)

zn (2) = a2 + cZx + KEa?

Yn () = a¥ + ¥z + KkYx

wheren denotes the index of segments. Parameterization of thextosjes should be chosen to

satisfy dynamic equations (4) to (6), or equivalently

92 _tan(3)
Or  cos(x)’

(7.9)
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which are obtained by dividing (4) into (5) and (6), respedliy. In fact, the equations in (7.9)
are satisfied for all time if the trajectories in (7.8) satigf.9) at the initial and terminal conditions
given by (7.7). Therefore, the six boundary conditions et by (7.7) map into the path planning

boundary conditions required by (7.8) according to

(0, %0) , 21 (x9) = tan (xo)

(7.10)
(xr,yr), Lya(27) = tan (x7)
and
(.20 o () = 2 -
(or,2r), oo (or) = B0

In the next chapter we introduce the proposed guidance law.
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CHAPTER 8: QUAD-SEGMENT-POLYNOMIAL-TRAJECTORY
GUIDANCE

In chapter 6, potential error sources involving the statidgardance methods were outlined. Specif-
ically, the problems associated with the calculation ofetitn-go and the possible improvements
that would be of benefit if they were possible. It was discdgbkat the line-of-sight based time-
to-go does not account for curvature of the trajectory and #rror in the calculation can result.
When the control of impact time becomes necessary, howavess error prone equation other
than the choices of (6.43) and (6.44) will be required. O#r@rancements can be made to im-
prove the performance as well such as alleviating the nediddarize the equations of motion.

The development of the QSPT Guidance law aims to providedihenring design benefits of

an arc-length based time-to-go calculation

no linearization of the kinematic equations of motion reedi

guidance law non-explicit in time-to-go

family of trajectories available

The benefits of the first three items can be readily seen frempitévious chapter discussions. The
availability of a family of trajectories is of great benefitthe trajectory planning required in order
to deal with the under-actuation problem of missiles. It fatm the basis for the control of the

impact time. In the next section we define the mathematicatstre of QSPT Guidance.
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Design of QSPT

A unique solution to the arc-length based time-to-go pnobie sought which provides a closed
form solution for the arc-length of the trajectory set giver(7.8). The solution proposed here
and shown in figure 8.1 is to use multiple second order trajad, in this case four, and connect
them all in a smooth and continuous manner to form a singjedi@ry. Under these conditions,
the trajectory would be capable of achieving multi-directdl curvature similar to higher order
polynomials while providing a closed form solution for dexygth. Much design work is required
first and thus the formulation of the QSPT time-to-go will regented in chapter 11 once all of
the necessary groundwork is completed.
y

)

X, X, X; X7

Figure 8.1: Crossrange profile - segmentation of downrange

Figure 8.1 illustrates the basic structure of a QSPT trajgctThe downrange axis between the

initial missile location and the target location is segneernnto four equal length segments as

1

{L'a:xo—Fz(l'T—l'o)
1

Tp = To -+ 5 (CL’T — $0) (81)
3

$5:$0+Z(1’T—1’0).
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These downrange locations serve as points to enforce bouodaditions. For any QSPT trajec-
tory, there exists two initial and two terminal boundary ditions. Additional boundary conditions
are found at locations,, x5, andz; which serve to connect the segments together and are i@ferre

to as internal boundary conditions.

Choice of Four Segments

A second order polynomial has available three coefficients @an therefore only satisfy three
boundary conditions. A typical trajectory, if a planar oseonsidered, must satisfy at least two
initial and two terminal boundary conditions. That is, ialiposition and orientation as well as ter-
minal position and orientation. The design of QSPT is regplito not only satisfy these boundary
conditions, but it must also have a free design coefficieatlavle. The choice of four quadratic
segments will yield a total of twelve available coefficierttgo for the initial conditions, two for
the terminal conditions, and seven to satisfy the intermainiolary conditions. This leaves one

remaining coefficient to use for trajectory planning pugss

Referring to figure 8.1, two initial conditions of positiongorientation are imposed at the down-
range location ofty, and two terminal conditions of position and orientatioe anposed at lo-
cationzy. The first of the internal conditions enforcing position asrtentation is imposed at
locationz,. Position and orientation is imposed at locatignas well. The central tie point at
locationzs enforces not only position and orientation, but curvatuse.aThe internal boundary
locations ofz, andx; are designated to be points of inflection for the trajectony is the reason
curvature is not enforced at those locations. The tie pding & designed to join the two halves
together in a smooth and continuous manner and is the reas@mforcing the additional con-
straint of curvature at that location. In the next sectior, woceed with the development of the

coefficient equations for the trajectory setigf(x) in (7.8), keeping in mind the same equations
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apply for the coefficients of, (z).

QSPT Coefficients

Step 1, Solve the coefficients of segment 1 with respect to init@alrdary conditions. Therefore,
solve

y1 (2) = af + o + k{z® (8.2)
for af, ¢! subject to the initial boundary conditions of (7.10). Ttesults in,

Yy _ Y y,..2
al =y (vg) — Jxg — Kixg

(8.3)

& = —uy1 (20) — 267 2.
1 8xy1(0) 170

Step 2 join segment 1 to segment 2 by enforcing the internal bogndanditions of £?). This

requires solving the equations

Y1 (Ta) = Y2 (7a)

9 9 (8.4)
%?h (Ta) = %?M (Ta)
for ay andcy which results in
ay = a¥ + clwg + K2 — By — K22
(8.5)

y_ v Y
Cy = C] + 2K]{To — 2K5Tq.
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Step 3 similar to step 1, solve segment 4 subject to the terminahbary conditions of (7.10).

This results in

Yy _ Y Y,.2
(y = Yr — X1 — kgl

0
df = —xy4 (x7) — 2K427.

0

(8.6)

Step 4 join segment 4 to segment 3 by enforcing the internal bogndanditions of £?). This

requires solving the boundary equations

Y3 (v5) = ya (v5)

9 9 (8.7)
oz 3 (x5) = o4 (ws)
for af andcj which results in
ay = af + s + Kix; — chws — K3
(8.8)

¢4 = ¢ + 2krYxs — 26425

Step 5 join segment 3 to segment 2 by enforcing the boundary camgdiin (??). This requires

solving the equations

Y2 (75) = y3 (w5)

0 0

EL (zp) = a8 (z5) (8.9)

9? 0?
@92 (xﬁ) = @93 (935)
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which results in a vector matrix expression. Simultanepsslving these equations fe#, 9,

gives

where

and

~ 4 -1 r -

Cy Cly Cly Di,
=|cy CY CY Dy | =C"'D (8.10)
Ch Ch Ch| [Dh

Y= —xp + 22 + 2075 — 22473
CYy = —xf + 2x,35 — 23
Cty = a§ — 2a5ws + 13
C3 =2 (0 — 7a)
CY =2 (zo — xp) (8.11)

Cgs =2 (xﬁ — 75)

5 =0
CY, = —2
Ciy =2

0
DY} =y (x0) + e (20) (x5 — 20) — ya (z7) +

0
+ oy (ar) (e — 2p) =

— kY (27 — 2§ — 2wpas + 2w57;5) (8.12)

0

0
D3, = 8_:cy1 (z0) — a—x?ﬂ (zr) — 2K] (25 — 27)

Dgl - O.
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Applying these coefficient equations to the design of thituale trajectoryz, simply requires
replacingy; (xo) , yr (x7) with 2, (zo), z4 (zr) respectively. Therefore, the full set of coefficient

equations are given as

z z z,.2
ai =z (xg) — cjxg — Kixg

o= %zl (o) — 2K5x0
z,..2

_z z z 2 z
Gy = Q] + C{To + KT, — CoXo — KX,

5=+ 2Ky — 2R51,

(8.13)
2 2
as = ay + ;x5 + KiT5 — CaZs — K3Ts
Z 4 z z
€3 = Cj + 2K,T5 — 2K5T5
z __ 2 202
Z z
¢ = —z (xp) — 26527
4T oz 4
—1
4 4 4 4 4
K1 11 12 13 Df,
—1
z — z z z z =
Ka C3 22 23 D3, ¢ D, (8.14)
4 4 4 z 4
K3 C3 32 33 D3,
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Cy = —xp + 12 + 22075 — 27,75

Ciy = —x% + 2x018 — 9:%

Cly = 1§ — 2x515 + 23

C51 =2 (xo — 24)

Csy =2 (x4 — x3) (8.15)

U3 =2 (xﬁ — x5)

Ci=-2
C§3 = 27
and
; 0
Dll =z (.To) + %Zl (.To) (Z’g — .To) — 24 (.TT) +
T (zr) (27 — 25) —
— Kk (27 — 2} — 2z725 + 22525) (8.16)
Dj —ﬁz (x)—gz (x7) — 2K (s — x7)
21 — 8x 1 0 8x 4\ LT 4 4 T
D3, =0.

Next, we look at the roles the coefficient equations play exdbntrol of impact time.

Coefficient Equations and Impact Time Control

In this section, the functionality of the coefficient setssnbe defined, as each set takes on a
different role when trajectory planning is required for iagp time control. The functionality is

determined specifically by the choice of the free variabieandxj. For a constant trajectory in
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space, free variables, andx; are initialized to the optimizing values designed in chafteand
remain constant throughout the flight as does all of the #ssatcoefficients. For impact time

control on the other hand, the following guidelines are nefirckd

e Crossrange is trajectory planned for impact time adjustmen
— k4 is a time varying function initialized to the optimizing v
— equation (8.12) becomes time varying as well
— equation (8.11) is constant if target is stationary

e Altitude trajectory remains constant:

— kj isinitialized to optimizing value and remains throughoigtit

— all z-related coefficients are constant if target is stationary

It will be shown in the next section that coefficient timeesxof-changéy , ; 4, ¢{ 534, A1, are

driven strictly by the time-rate-of-change ©f.

Free Variable, Time Varying Coefficients

In this work, free variable is prescribed as the state solution to the simple first orgliem

W=, (8.17)

for which controlu is designed in section VII to impose changes in crossraiggctory arc-length
in order to satisfy impact time constraints. Therefore dbesponding impact time control is de-
signed for the crossrange trajectory only, since pertgrtiie altitude trajectory could have unfore-

seen consequences in terms of range extension. Becauss, dfdl variable:; is held constant
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at the optimizing value and therefore, coefficient derxegtis’, ¢, <7 equal zero. Furthermore,

since (8.17) is of first order, second derivativés ¢ vanish, hence, explaining the differences

betweenyj, andz, in the closed loop equations of chapter 9.

To find expressions for the coefficient derivatives, we begih (8.10) and group thé matrix

according to terms involving’. From direct inspection of (8.12) we find

Dy fin + gk
Doy | = | faz + gookl (8.18)
D3, 0

where

0
fi1 =y (x0) — ya (z7) + a—xyl (x0) («Tﬁ —z9) +
0
+ %yzl (Z'T) (l’T — l’g)
g1 = —T5 + 23 + 2v775 — 27575 (8.19)

0 0
fo2 = %yl ($0) - 8_:cy4 (xT)

Go2 = 2 (xp — x5)

which then results in

"#1/ fu g11
)| = O | | | + |ga| #1] - (8.20)
K4 0 0

Matrix C~! as well as the equations in (8.19) are constant. Given (8ti& derivative of (8.20) is
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therefore

’111/ g11
Bl =C7" | go| (8.21)
Ry 0
Then, finding the coefficient derivatives of (8.3), (8.5)6)8and (8.8) gives
il = —Hwy — WYl
& = —2rYx
ay = al + &y + kil — wo — Ayl
¢y =&+ 2k — 2Ry
(8.22)

Y Y oY 2 -y Ly, 2
a3 = Gy + CT5 + Tsph — C3T5 — K3 Ty
Yo Y X

C3 = Cj + 2x510 — 2R573

Yl 2
y = —Cb — Tl

¢y = —2xrp.

The coefficient derivatives of (8.21) and (8.22) are thustygrdriven by the prescribed first order

system of (8.17).

If a trajectory is desired which requires changes to the shipae, as in the case of the crossrange,
the coefficient derivative equations of (8.21) and (8.22)iarplemented and initialized to values
set by (8.3), (8.5), (8.6), and (8.8) with the proper optimizvalue ofx} chosen. If no changes
to the impact time are required, as in the case of the altitxagectory, the coefficient values are
initialized by (8.3), (8.5), (8.6), and (8.8) with the optiimg value forx; chosen. These-related
coefficients remain constant throughout the engagememetd@&bkign of both open and closed loop

the guidance laws is given next.
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CHAPTER 9: GUIDANCE DESIGN AND IMPLEMENTATION

In this chapter, an open loop and closed loop guidance laesgded explicit in the trajectory set

of (7.8) and given in terms of the control inputs:gf andw.,.

Open Loop Guidance Law
The open loop guidance law is derived directly from the eiguatof (7.2)-(7.6). Dividing (7.2)
and (7.3) by (7.4) gives the open loop guidance law as

B 15}
Uy = a—ivz cos?ycos X, Uy = 8—;‘/2 COs 7y cos X + g cos 7, (9.1)

where according to (7.8) and (7.9), the angular profilessddrin terms of QSPT are given as

e (2)
ox

L 5. 9.2)
T cos (tan‘l (a%yn)) ’

where

n = Co + 2KV, Zn = Co + 2K, T. (9.3)

oz’ o

The bottom equation foy in (9.2) can be simplified by realizing that

COs <tan_1 (gyn)) = ;, (9.4)
O Lt (2y,)°

ox
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which gives
iZ
v = tan™! 8:(:—”2 . (9.5)
L+ (35m)

The partial derivatives required by (9.1) are given as

0_)( B 2KY
Or 1+ (% + 2k%z)°
0y _ _2(ri + i (55yn) — it (5590)) (6)

O e () (14 () (22)°)

which completes the open loop guidance law.

Closed Loop Guidance Law

Alternatively, we can implement the corresponding clokexp guidance design. To this end,

define

ey =Y —Yn, €:=2— 2, (9.7)

wherey,, andz, are given by (7.8) for the period of time when th& segment of the trajectories
are being implemented. Second order time derivatives @) ge explicit in the controls, and

u,, through the equations

1§ = —@q COS 7y Sin X — SNy SIN XU, + COS XUy
Z = —agsiny — g+ cosyu,

(9.8)
Un = 2091 + 2RY (2 ) + AR xd + U + 2rY 2k

5, = i+ 257 (1) + 2R3 0,
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wherez is given from (4), and: is given by
I = —aq cosy cos X — sil 7y Cos XU, — Sl XU, . (9.9)

It should be noted that the distinct differences betwiggand?z, in (9.8) relating to the coefficient
time derivatives are due to the design choices imposed ofmgbe/ariables:; andx? which was

discussed in chapter 8.

It follows from the second derivative of (9.7), and the sitbsbn of (9.9) into (9.8), that the error

system is given by
u
—A+B , (9.10)

where

—agcosysin y — (2¢44 + kY xd + 2KY, (x)z)
A= +%ynad COS 7y COS X ) (9.11)

—agsiny — g — 2k7 ()% + a%znad COS Y COS Y

b . . . 9 .
COS X + 7-YnSin X, —sinysinx + 5, sin~ycosx
B= 0 o . (9.12)

d : d :
5p 20 SILX, COS 7Y + 5. 2n SIN 7y COS X

The controls o, , u, can be written in terms of a pseudo control as

=B '(v—A), (9.13)

- . (9.14)
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A stabilizing control for (9.14) can then be designed as

v, = —kye, — klé
e (9.15)
v, = —k.e, — klé,.
Therefore, the closed loop guidance law is
U ko(y, —vy) + k. (0, — 9
x| _ g y(Yn —y) + Ry (G —9)| ne (©.16)
Usy ky(zp—2) + K. (2, — %)

under which the actual trajectories converge asymptdyieald exponentially to the guidance tra-
jectories ofy,, and z,. Drag acceleratiom, is estimated in real time using the data from the

onboard accelerometer.

Inversion Matrix Singularities

The inversion matrix of (9.12) becomes singular if the flighth angle reachesZ, however, the
slope of second order polynomials cannot reach verticdlearas that would require the partial
derivative%yn to be undefined. Therefore, the inversion of (9.12) can neaarh a singularity
under normal operation. On the other hand, it is a requirénmesome cases that a precision
munition reach a vertical angle in order to drop in on a tafigeh directly above. An easy solution
to this problem is to reparameterize (7.8) in terms of a nedep@ndent variable, such asand
switch the guidance law accordingly. This can be done at atpaien the projectile is close to
the target. Under the reparameterization, (7.8) can opatatertical angles and the switched form
guidance law is free of singularity 7. In this case, we restrict the heading angle(ter £7,
which is a reasonable constraint to impose. The derivafitimoswitched guidance law is outlined

in appendix X and will also be demonstrated in the simulation
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Robustness of the Guidance Law

The QSPT guidance law given in (9.16) utilizes all of the knavenlinear terms of the equations
of motion and incorporates then into the final form of the gmice law. The net effect is that
the guidance law cancels-out the nonlinear terms and cr@ali@eear chain of integrators which
is easily stabilized. Therefore the original tracking gesb has been converted to a stabilization
problem. The nonlinearities of the guidance law are catedl@nline and used to dynamically
create the linear system which is sometimes referred to ammic Inversion or Input/Output
Linearization. This is of course different from the proctssen in chapter 6 where the nonlinear
terms are linearized and then the guidance law is derivedaiar from that point. This is an
excellent control synthesis approach as long as all of timdimearity has been modeled properly.
In reality, there is always modeling error and certainlytutisances present. The question that
must be asked is, how robust is the guidance law to error astdrdance? The quidance law is
explicitin y and~y which are sensed and delivered to the guidance law by thedhigleasurement
Unit (IMU), which has error and uncertainly associated wviithThe performance of the guidance

law under these conditions will be analyzed in chapter 14.
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CHAPTER 10: QSPT TRAJECTORY OPTIMIZATION

Chapter 6 demonstrated the difficulty in finding a closed feahution for a guidance law when the
kinematics involved are less than ideal. The process céfiration gave us the ideal linear system
we needed in order to obtain a useful closed form result. Movgptimization must be found for
QSPT subject to the appropriate constraints. The optimzg@rocess taken in this chapter begins
similarly to the one taken in chapter 6 but quickly divergasarily because for QSPT, adjoining
the motion constraints to the performance index is not reeggsince a feasible trajectory already
exists. QSPT can be shown to satisfy the equations of (h@)erefore, we know that the control

u that minimizes/ will also satisfy (7.9).

The terminal constraints are enforced by the QSPT boundamgittons and therefore terminal
constraints associated with the performance index areegpiired. The corresponding optimiza-
tion will be shown to boil down to a parameter optimizatiomlgem in which the QSPT free
variable is found to produce a minimum control energy tri@jpc We first assume constant veloc-

ity, which further simplifies the equations of motion as

=V cosycosy (10.1)
y =V cosysiny (10.2)
Z=Vsin~y (10.3)
, 1

1=y (uy — gcos) (10.4)

1

( = : 10.
X Vcosvux (10.5)

The objective is to design control inpuis= [u,, u,]| such that a minimum amount of control

energy is expended during flight. The equations of motionhéglly nonlinear and no closed
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form solution will exist for the two-point boundary valuegiem. If the equations of (10.5)
are linearized, then the methods of chapter 6 are employeédh&nproblem becomes a standard

guidance law development.

The main point of this chapter is to leverage the free desaiablesx! andx; to achieve the

minimum control energy objective. We start by considerimg®SPT trajectory segments of

Yp = a’ + o+ KY2? 2, =al + a4+ kAP, (10.6)

and note that these trajectories satisfy the equation0db) if they equivalently satisfy

dy . 0z  tanvy
—~ = tan — =
Ox X 9z T cos X’

(10.7)

at the initial and terminal boundary conditions. This stekdy in the optimization of QSPT. Since
trajectories exist which satisfies the equations of motaw)pining the dynamic constraints to
the chosen performance index becomes unnecessary siragjoi@ng process is done to ensure
the minimization of.J satisfies the original equations. Being able to circumvhig $tep is a
tremendous advantage since it essentially converts thalbeptimization problem to one which

is a parameter optimization problem.

Three Dimensional Optimization

Beginning with the simple performance index of

1[4
J = 3 / u’Rudt, (10.8)

to
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where the control

u = [uy u", (10.9)

is a vector of the kinematic controls given by (9.1) and ssq@@pt 7" denotes the transpose. For

convenience, the x 2 weighting matrixR. is chosen as unity.

The flightpath and heading angles are written explicitlyeimrts of QSPT as
9z
x = tan™" (%) . y=tan! 87:”2 . (10.10)
) L+ (5)

where

Oy = ch + 2KY, 0z =c, + 2K, 1. (10.112)
Ox Oz

Neglecting gravity, the next step is to utilize the kineroaintrols of (9.1) and substitute for the

angles as

9z
Uy = g—VZ cos® | tan™* % cos (tan_l (g_y>> (10.12)
x () ‘”
9z
Uy = gy V2cos | tan™? 87“’”2 cos (tan_l <?)) (10.13)
’ 1+ (3) )

where the partial derivatives, given by (9.6) and repeatzd for convenience, are given as

o 2 07 2(wn + cmn (L) — it (L))
PG 0 i (@) (L () (22))

(10.14)
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Substitution of the partial derivatives and simplificatgines

2kY V2 2V (K2 + K5y 9L — kY2 2Y)
uX oy 2 Ay 2 92\ 2 ’ u'y N Ay dy 2 92\2 %’ (1015)
1+ (2 (1+ (3" + (32)°) (@) (14 (@) + (2))
Substitution into the performance index of (10.8) gives
2
1 (Y 2KkYV?2
-1 / n . (10.16)
2o [ \Wi+ @) (1+ (@) + (%))
2
2 z 2 y0y _ z Oy
2V (/inJrfinc%am mgcnax) it (10.17)

1+ (@) (1+ (@) + (@)

It would be highly beneficial to derive the final form of the fmemance index such that the variable

of integration is in terms of instead oft. The reasons for this is because there is a considerable
amount of uncertainty in the flight time. Transforming thei@hle of integration to distance
allows the integration to be performed between downrangadary conditions. It will be shown

in the simulation section that the integration with resgedime produces identical results as the
integration with respect to using the transformation given here. The transformatiaiers/ed as

follows. Velocity can be expressed as

V =i + 2 + 2. (10.18)

Factoring outi and separating the differential gives

oy\> [0z\°
Vdt = [1+ (== ) + (=) dx, (10.19)
ox ox
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where the change of variables is

L+ (2)° 4 (2)°
dt = \/ ("’“"‘Z (%) dz. (10.20)

Applying this transform to the integral of (10.17) and siffyphg gives

J:/m <

A closed form solution for this integral exists but can only drenerated by a software program

2
1+ (39)°) (1+ ()" (&
(10.21)

such as Mathcad or some suitable equivalent. The resutttegrial is of immense size and com-
plexity which cannot be reproduced here due space constr&lowever, a nice feature of modern
symbolic integration utilities is that they can produce tbgult in various forms suitable for direct
implementation in a simulation software such as Matlab. fEse&lt can be copied and pasted into
a Matblab M-file and the results tested. Once a closed fornttisal for the integral is obtained,
finding the minimum value foy is simply a matter of line searching values fdrandx; until the

a combination is found which produces a minimum

As previously discussed, numerical optimizations are ofis® for guidance law implementation
due to the computational cost involved, however, thig<; values that result from the line search
are found at the initialization stage and remain constamoiifhout the flight. Therefore, no in-
flight numerical routines are required in order to maintgitiraality. The closed form solution to
the integral of (10.21) makes the numerical process atliaéition much faster and easier since

numerical integration is not necessatry.
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Velocity and the Optimal Solution

As a matter of simplicity, the velocity was considered canstn the previous development in
order to reach the final form of the performance index integf#10.21). A logical question to
ask is what happens to the optimality of the solution wherviilecity is not constant, which is
generally the case in reality. A simple observation of (1Pr2veals that the velocity is merely a
scalar term, and the true minimization #fdepends explicitly on the QSPT parameters. That is
not to say that the velocity does not effect the control eyiatgn fact directly impacts the control
energy. For instance, the control energy generated for dentical trajectories will be less for a
missile traveling at a lower speed than one traveling at herigpeed. The point here is that if the
QSPT trajectory is optimized properly, it will generate thamimum possible control energy for a

given velocity.

Planar Optimization

The three dimensional optimization of the previous seds@m important result, however, it would
be beneficial to investigate the planar optimization asipfsa simpler sub-optimal solution to
the 3D problem. A comparison between the two approachevéngn chapter 14. Certainly if
QSPT guidance is to be used in a planar application, therethdts of this section should be used

as the optimal solution.

The process involves separately optimizing the trajeeson their respective planes of operation,

i.e., thexy andxz planes. If gravity is ignored and velocity assumed to be t@oristhen choosing
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~v = 0 in the kinematic model gives the nonlinear planar equatidmsotion for the crossrange as

x =V cosx (10.22)
y =V sin x (10.23)
X :%ux. (10.24)

From this model, the kinematic control is then given as

20X cos (x) (10.25)

b=V Oz

with the equation for, for the corresponding’” segment given as
Xn = tan"! (¥ + 2KV2). (10.26)

The partial derivative is then
ox  2kY
)

The standard performance index is then

(10.27)

tr
J:/ uldt, (10.28)
to

for which a minimization ofJ results in a minimization of control energy for the crosgmartra-
jectory. Substitution of (10.26) into (10.25) and (10.25)wthe corresponding partial derivative

into (10.28) gives the performance index for tié segment as

ty 2Ky T2 2
J, = / [ FnV 5 cos (tan™" (¢ + 2x¥x))| dt, (10.29)
to L1+ (

ch + 2607)

66



which simplifies to

ty y)2 /4
J = / (k) V _dt. (10.30)
to (1 + (eh + 21@?@)2)

We derive a change in the variable of integration in a simmianner as the transformation used in

the three dimensional optimization as

\/1 + (¢ 4 2k4x)

dt - dz, (10.31)
which when substituted fatt in (10.30) gives
Ty 4 (k¥ V3
J, = / (m2)" V. _dx. (10.32)
o <1 + (b + 2/1%@2) ’

A closed form solution for the integral of (10.32) is thenayivas

g, = 2RV (2(e)” + 12 ()" g o 24ey (4)"a® + 8c + 16 (sh)" 0 1 6rpe) 0 oo

3 [1 + (ch + 2;@3’@)2] :

which when evaluated at the boundary conditions for theesponding:* segment, can then be

minimized with respect te’ as

x5
+ Jy
rg

s
+ J3

Lo

Q+J2

o

J = m%n {Jl

Ra

”} . (10.34)

Ts

which results in the optimizing value’. The minimization of (10.34) involves a simple numerical
line search of:{ values at the initialization stage before launch. This sproeess is followed for
choice ofy = 0 which results in an altitude trajectory minimization of tah energy. If gravity is
ignored, the same general design equations result. Sionlasults will show the effectiveness

of the approach.
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CHAPTER 11: IMPROVED TIME-TO-GO

In chapter 6, we discussed standard methods for the catmulat time-to-go and the potential
error that can corrupt the calculation. In this chapter,as@tl form solution for the arc-length
of a QSPT trajectory is derived. The resulting time-to-glcwaiation is free from the error due to
trajectory curvature. Constant velocity is considered &éirgl then the case of non constant velocity

will be addressed. The equation for time-to-go is given as

Tgo = (111)

3
=

whereS is the closed form solution for trajectory arc-length and is

T 2 2
s= [ () (2 012

The equation of (11.2) must be integrated from the initiadipon to the terminal position while

spanning all four segments subject to the correspondimgriat boundary conditions. In light of

this, the integral of (11.2) becomes
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A closed form general solution of the integrals can be fowptesenting each” segment as

Snzl a+bln(c)+dln(2) 7 (11.4)

()

where

2
a = Iiygyn( ) + K —zn \/ (K Iiz 1+ —yn (T —l— 3Zn (x)
"oz 8 ox

b= (k4)"+ (k7)" + (ch)? (f-ﬂi)2 + ()" (54)° = 2ch ki,

e =t 2y @) D (@) )+ ) ¢ (s +(%%@02

d=2(k ) +2(k ) +2(cy) (K n) +2(n) (Iiy) — 4RV KE.

The total initial arc-length is then given as

Ts TT
+ 5,

zg Ts

s
+ 5

T

s=g"

o

+ 53

(11.5)

Equation (11.5) gives the initial arc length of the trajegtat the beginning of the engagement.
In real time applications, (11.5) can be continuously updatith the current downrange value
for an updated time-to-go calculation. It will be shown irapker 14 that under constant velocity,
(11.1) produces a linear response over the engagement émeréfore not subject to error due
to trajectory curvature. In this case, the time-to-go afiyi computed at the beginning of the

engagement is, in fact, the impact time.
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Equations for Impact Time

The removal of curvature error is a substantial improverogat existing methods for computing
time-to-go. If the velocity is constant along the trajegtdhen the time-to-go response over the
engagement is perfectly linear and the impact time is edsilgrmined to be the initial time-to-go.
Since the velocity is constant, the impact time remainsteons$n time. This can be proven in the

following manner. The impact time is computed as

Ty =Tyo +t. (11.6)
Finding the time derivative of (11.6) gives

Ty =Ty +1, (11.7)

where the time-to-go rate is derived from (11.1) as

VS-SV

Tho T (11.8)
and therefore the impact time rate is

T:VS_SV+

; 7 1. (11.9)

The time-rate-of-change of arc-length, is the negative of the velocity tangent to the curve. That

is, S = —V. If the velocity is also constant] = 0, equation (11.9) reduces to

T; =0, (11.10)
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thus demonstrating that for constant velocity, the impiace remains constant in time and equal

to the initially computed time to go.

A brief observation of equation (11.9), however, shows thagén the velocity is not constant, or
V + 0, equation (11.9) is nonzero and given by

VS

T[ — —W

(11.112)
Therefore, acceleration of the missile along the trajgotauses changes in the impact time over
the engagement. This can be problematic from the fact tlztt @hanges in a missiles acceleration
can never be known exactly due to unknown or unmodeled @iatwes in the atmosphere. One
way to deal with such problems is to conduct preflight modghnd simulation of the mission
in order to gain nominal estimates for and ultimately a reference model profile Bf over the

engagement.

Preflight Analysis Methods

The standard approach for conducting a preflight analysisives integrating the chosen guid-
ance law into the future to find the point of closest approadhé¢ target. This can be an involved
process because most guidance laws are explicit in ting®tdFhe resulting estimated trajectory
and corresponding time-to-go can vary considerably if asjudbances are present. A particular
advantage provided by QSPT is that once all of the requirechdd@ry conditions are determined,
a trajectory fixed in space results and the arc-length is idiately known. Therefore, with a

fixed path established, the missiles motion along the tr@jgacan be simulated before launch
using nonlinear drag tables as well as nonlinear atmosphaodels. This results in more reli-

able estimates of the acceleration along the trajectoryhande, the changes in the impact time.
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Unmodeled disturbances can be corrected by the impact timiead.

The first step in the analysis process is to design a desird®TQ@%jectory by establishing the
boundary conditions for the engagement. Trajectory s&) @ong with the corresponding co-
efficient equations of (8.10), (8.12), (8.13), (8.14), aBdL6) are implemented. The next step
involves simulating equations (7.1)-(7.6) with the clos$edp guidance law equations of (9.16).
The simulation can output equation (11.6) plotted over therdange distance as shown in figure

11.1.
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Figure 11.1: Preflight impact time model

Preflight data modeling such as the one produced in figuregtvides a desired reference model
for the impact time control to use when adjusting for unmedadisturbances. In the plot, the
effects of the acceleration along the trajectory can berobde At approximatelyr000 meters

downrange, the munition begins to reach terminal velocity the acceleration reduces to low lev-
els. Because of the effects of equation (11.9) and (11.4@ptojected final impact time converges

to a constant value. In the next chapter a very simple impraet tontrol is designed.
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CHAPTER 12: IMPACT TIME CONTROL DESIGN

In this chapter, we leverage the family of trajectories ted by QSPT and the impact time refer-
ence model derived at preflight to design a very simple, yett¥e impact time controller, which
for simplicity, was chosen as a Bang-Bang control. Ceryaimbre advanced designs are possible.

The control is designed for the free variable state modeBdfq) shown again for convenience as

to smoothly and continuously adjust the trajectory to conspée for error between the real-time
calculation of the impact time and the preflight referencelehoTo that end, the real-time calcu-

lated impact time is given from (11.6) as

Ty =T, + 1, (12.2)

Equation (12.2) is expected to contain some error due to defed disturbance. We define the
impact time reference model developed from preflighf'as Formulating the impact time error
gives

€ = T[ - TI~ (123)

The Bang-Bang control for the prescribed linear system dfqBis then given as

0 if e>0
p= 0 if e=0 (12.4)
-0 if e<0,
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whered is found empirically. The control of (12.4) is designed torooand the state trajectory
of x4 to a location which drives the error in (12.3) to zero, or aselas possible. A decision
logic is employed to ensure the state trajectorypfravels in a direction which minimizes (12.3).
It should also monitor the rate-of-change of error versesamount of applied contrgl, since

a reduction in error may not always be possible due to wintlihance late in flight when little
trajectory planning can be applied to correct the error. @éréormance of this simple control will
be shown to be effective in reducing the impact time errordotfons of a second in the presence

of disturbances.
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CHAPTER 13: GUIDANCE LAW COMPARISON FOR PERFORMANCE
EVALUATION

The QSPT guidance law has been developed to provide cedeamtages over standard optimal
guidance laws. In chapter 14, those advantages will be dstmrated through simulation. It should
also be shown that the performance of QSPT is comparablé&és guidance laws with respect to
various measures of optimality such as control energy rements as well as the satisfaction of
any required terminal constraints such as miss distancéeamanal impact angle. This chapter is

dedicated to preparing the comparison models as well aSliséiiag a fair evaluation criterion.

The Genex Guidance Law

The Genex guidance law presented here is reproduced frojnd@d will be used to compare

QSPT against. The simplest form of Genex is given below as

V2
u= ﬁ[Kl (F—9)+ K (Vy = V)], (13.1)
where
Ki=n+2)(n+3), Ky=—(n+1)(n+2), (13.2)
and the guidance commands
T
u = {uz,uy,uz} ) (13.3)

are given in inertial coordinates. The gains are a function,@ user selected integer gain. An
acceptable initial setting for is 0, however, increasing the value ofincreases the trajectory

curvature. Therefore, a family of trajectories is possiith Genex, which makes it a suitable law
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for comparison. This form of Genex assumes longitudinatrodiability, which is not the case for
a wide range of missiles. Another form of Genex that addeefse issue is given as
V2

uzﬁ[Kl (F —Vcosd) + Ky (v —Vcosp)], (13.4)

where

cosd =7-0, cosp =Vy-0, (13.5)

and the guidance commands are normal'tand given in inertial coordinates. For the purposes
of this work, (13.4) will be utilized since the under-acioatproblem is being considered. The
primary issue to consider is that the guidance commanflequation (13.4) is given in terms of
inertial coordinates. Unfortunately, the equations ofimrogiven in (13.6) require the guidance
commands in terms of,, andu.,, and therefore, a transformation must be derived in ordeséo

Genex with our chosen equations of motion.

Model Used for Comparison

Both QSPT and Genex will be simulated using the kinematiesrgbelow as

V = —ad — gsiny
1

= U
V cos~y

1
¥ = V(u'y — gcos?)

X

X

(13.6)
x =V cosycosy

y =V cos~ysin x

2 = Vsinvy,
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whereg = —9.817; and the negative sign has been included in the equations.

The QSPT guidance law issues control commands,iandu., making QSPT fully compatible
with the given kinematic model. The Genex guidance law, endtner hand, issues acceleration
guidance commands in inertial components, ug.= 2, u, = ¢, u, = Z. Therefore, a coordinate
transformation must be derived such that commands are @feden terms of the control inputs

Uy, u, required by (13.6).

The transformation of Genex commanginto w., is easily found from the derivative &fin (13.6)
as

Z = u, = COS7YY = COS YUy, (13.7)
and therefore the transformation is found as

Uy

Umy:

. (13.8)
cos 7y

The remaining transformation far, andw, into u, can be found by determining and4 from

(13.6) as

T = u, = —sinysin xu, + cos xu, (13.9)

§ = u, = —siny cos xu, — sin xu,. (13.10)

Solving (13.9) foru,, in gives

u, = L2 TSN (13.11)
— sin -y cos Y
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which is substituted into (13.10) as

. {ux + sin Xux}
Uy = —SINysin ) [ —————— | + COS XUy
= tan x [uy + sin xu,] 4+ cos xu,,
which then leads to the final transformation of
Uy, = cos X [uy — u, tan x| . (13.13)

With the given input transformations, the Genex guidanegdanow compatible with the equations

of motion given in (13.6).
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CHAPTER 14: SIMULATION STUDY

The following simulation results demonstrate the effemiess of the optimization algorithms, the

improved performance of the time-to-go algorithm as weBla@w robustness of the guidance law

to measurement error. Two impact time control cases arepbsented. Case 1 analyzes the

ability of the proposed guidance law to reduce the impace terror under a range of unknown

disturbances. Case 2 is similar but employs a differentgeg&nt scenario.

QSPT Optimization Performance

Table 14.1 shows control energies with corresponding emgths computed for the crossrange

trajectory. The initial conditions afy = 0, yo = 0, xo =

rr = 10,000, yr = 10,000, xr = —7, were chosen.

—g, and the terminal conditions of

Table 14.1: Crossrange control energy minimization

k4 value total control energy

arc-length

—8.0000 x 10~ 1.7111 x 10°
—7.0000 x 10~* 1.6896 x 10°
—5.0000 x 1074 1.6879 x 10°
—*4.5929 x 10~* 1.6859 x 10°
—3.0000 x 1074 1.6893 x 10°
—2.0000 x 1074 1.8257 x 10°
—1.0000 x 10~ 2.1755 x 10°

1.7001 x 10%
1.6437 x 10*
1.6123 x 10*
1.6173 x 10*
1.6777 x 10*
1.7571 x 10*
1.8737 x 10*
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The numeric minimization of (10.34) for the given boundampditions results ifixY = —4.5929 x
1074, the starred value in the table. Multiple simulation runsevexecuted for on either side
of the computed minimum with the corresponding control gneResults show equation (10.34)

to be an effective optimization with respect to control giyer

The three dimensional optimization produces the sametrésulhree dimensional trajectories,

however, the line search ef andx is more intense from a computational standpoint.

Monte Carlo Performance Comparison

The previous sections analyzed the control energy optiynafi QSPT and then compared that
performance to that of Genex. However, other measures oidagce laws performance should
be taken into consideration, such as terminal miss distamoe and terminal angle error. In many
cases, the terminal error measures are more importanttieanihimization of control energy due
to lethality requirements. In the following Monte Carlottegerminal miss distance, terminal angle
error, and control energy are measured in the presenceddmawind disturbance. The statistical
properties are as follows,

Wind: 0to207, random draw]o

Wwind Direction: 0 to 27, random draw]o.

In addition to the random variables, a dynamic lag is addeddgequations of motion to simulate
the effects of the airframe/flight control and the dampind aatural frequency is given gs=
0.60, w, = 1hz. For these given conditions, the Monte Carlo simulation m#s200 times each
for QSPT and Genex with the following average and worst cafgeg of These results not only
show that QSPT is more optimal in the sense of control enexgeraliture, but the ability to

achieve the desired terminal constraints with less errbeiter as well.
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Table 14.2: Average values for 200 runs each

H Terminal Miss Control Energy 7. XT, H
QSPT 0.3421 7.6203 x 10°  0.0035 0.0037
Genex 0.4168 7.6744 x 10°  0.0077 0.0097

Table 14.3: Worst case value over 200 runs

[ Terminal Miss Control Energy vz, xr. |
QSPT 0.3963 8.488 x 10° 0.0942 0.0478
Genex 0.4603 9.7868 x 10>  0.0389 0.0928

Comparison of Guidance Commands

In this section, a comparison of the guidance commands f&TQ&shd Genex is given using the
initial and terminal conditions of table 14.5. Figures 14t 14.2 show the, andu, guidance
commands, respectively. The step discontinuities in tmencands occur at the points of inflection
of the trajectory at the downrange segmentation points,aindxs. Figures 14.3 and 14.4 show
the u,, andu, commands generated by the Genex guidance law. Since corsrgandrated by
each of the guidance laws are lateral accelerations, tipedsteontinuities found in the QSPT

commands are as expected because of the second order fapBED
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Figure 14.1:u, command for QSPT
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Figure 14.2:w, command for QSPT
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Figure 14.3:u, command for Genex
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Figure 14.4:u., command for Genex
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Performance of Time-to-go Algorithm

The time-to-go comparison plot of fig. 14.6 was generateddastant velocity along the trajectory
of fig. 14.5, which has a considerable amount of curvature ckwity, the crossrange/downrange
projection of the trajectory has been included in all 3-Dtpld-igure 14.6 demonstrates that the
time-to-go response generated by (11.1) over the engadesrarear and is thus not effected by
curvature of the trajectory. In other types of applicatiarigere the velocity along the trajectory
could actually be constant, the initially calculated titpego is in fact the final impact time as seen
in figure 14.6. The performance of the switched form guiddaseand reparameterized trajectory
of the appendix can also be observed in figure 14.5. The sedtfhrm guidance law takes control

at the downrange, crossrange, and altitude position8,®00, 10, 000, 1000, respectively.

Figure 14.5: Trajectory with Curvature
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Figure 14.6: Comparison of QSPT time-to-go versus Genex

In contrast, it can be seen in figure 14.6 the time-to-go geadmwith the Genex guidance law of
[6] which uses the range-over-missile-velocity methode VRlocity was constant and the initial
and terminal angles were the same ones used to generate fi§. THe effects of trajectory
curvature on the standard time-to-go calculation can lgldse seen. The initial calculation of
time-to-go is 43.3 seconds but the actual final impact tird@iseconds, nearly a 5 second disparity

in time even for constant velocity and a stationary target.

Robustness of the Guidance Law

The remaining simulation results in this section were gateerusing a 1962 Standard Atmosphere
along with tabular drag profiles for a generic projectildslassumed that the positional measure-
ments provided by the IMU are perfect. However, since thergion matrix of the guidance law
is explicit in anglesy andy, gyro errors consistent with a tactical grade IMU are coaigd. In

addition, a percent-error in sensed drag acceleratjda considered as well. Table 14.4 lists the
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error values used to obtain the following results.

Table 14.4: Sensor and gyro error

Error Type Units Measure Value
Drag Acceleration = % 3.0

Gyro Bias deg lo 3.0
Gyro Scale Factor ppm lo 300

H de
Gyro Random Walk Noise \/H_QR nom 0.02

Gyro bias, scale factor, and noise are considered in addii@% error in the sensed drag accel-
eration. Figures 14.7 and 14.8 contrast the measured vagigsst the true values for and~,

respectively, produced along the trajectory of figure 14.5.

T
Measured Heading Angle

Nevhom o

True Heading Angle

Heading Angle (rad)
°
&

1 1 1 1 1
0 10 20 30 40 50 60
Enagagment Time (s)

Figure 14.7: True heading angle versus measured
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Figure 14.8: True flight path angle versus measured

Figures 14.9 and 14.10 show the tracking error performamdbeoguidance law using perfect
measurements of and~. In contrast, figures 14.11 and 14.12 show the crossrangeltndie
tracking performance of (9.16) in response to the measuresareors listed in table 14.4. The

proposed guidance law demonstrates good tracking perfarenaith negligible deterioration.

Crossrange Tracking Error (m)

I I I I I
0 10 20 30 40 50 60
Engagement Time (s)

Figure 14.9: Crossrange tracking performance under nartishce
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Altitude Tracking Error (m)
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Figure 14.10: Altitude tracking performance under no dismce
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Figure 14.11: Crossrange tracking performance subjebitdisturbances of table 1
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Altitude Tracking Err
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Figure 14.12: Altitude tracking performance subject todisturbances of table 1

Impact Time Control-Case 1

For the final portion of this study, an unknown wind disturb@amf 152 in the positive down-
range direction is considered and in addition to the measeméerrors of table 14.4, an unknown
lumped nonlinear disturbance is also employed. The windidiance spans the full altitude of the
engagement from 10,000 meters to the ground and remainsoboser that range. The combined
effect of the wind and disturbances without any control argract time produces a final impact
time of 48.825 seconds. The pre-flight analysis considetiiag and atmosphere, but excluding
the unknown disturbances, determines a desired impactdirb8.7 seconds. This requires the
corresponding impact time control to correct for an errod@&75 seconds over the the engage-
ment. The desire is to reduce the error in impact time toifsastof a second under these given

conditions. Table 14.5 provides the initial and terminaiditions for the engagement.
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Table 14.5: Initial and terminal conditions, case 1

Variable Units Initial  Terminal
Velocity m 400 _
Downrange m 0 10,100.0
Downrange m 0 10,100.0
Altitude m 10,000.0 0
X radians 0 o
v radians 0 -5
Required Impact Time S — 53.70

54

53

52

51

50

49

Impact Time (s)

481

47

’ Required 53.7-

Achieved 53.1

461

Preflight Impact Time Reference Model
In-Flight Computed Impact Time

45

L L L
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Engagement Time (s)

L
40

L
50

60

Figure 14.13: Comparison between impact time profiles redsiersus achieved
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Figure 14.16: Error comparison between controlled and ntmotled impact time
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Figure 14.17: State trajectory ef

Figure 14.13 contrasts the difference between the impaet teference model and the resulting
in-flight impact time and shows that under the Bang-Bang robrsignals of figure 14.15, the

corresponding impact time error was reduced to 0.577 secokture 14.17 shows the state
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trajectory forx{ generated by the control and figure 14.14 is the trajectaay ribsults. Figure
14.16 compares the effect of the control on the impact timarem that figure, the uncontrolled
impact time response is shown against the controlled imii@et. The proposed guidance law

demonstrates a good ability to reduce the error of (12.3guhdavy disturbances.

In the previous simulation scenario, the constant windudigtnce extended from apogee to the
ground. It is difficult to exactly achieve a prescribed imp@me under these conditions since
the correction of impact time error relies on trajectorynpleng. Therefore, the ability to correct
for disturbances late in flight diminishes. In addition, tngectory must satisfy impact angle
requirements and thus takes priority over satisfying impate. In the next simulation run, we
consider the wind to taper off with lower altitude and redteeero near the ground in order to

show an improvement in impact time control.
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Figure 14.18: Impact time with wind tapering off

Figure 14.18 shows a considerable improvementin the impaeterror when the wind diminishes

in the lower altitudes. In this scenario, the impact timetoalns capable of reducing the error to
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0.05 seconds, a vast improvement if the disturbances arnenadiin the final few seconds of the

engagement.

)

ImpactTime (s,

Preflight Impact Time Reference Model| |
Inflight Computed Impact Time
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10 20 30 40 50 60
Engagement Time (s)

Figure 14.19: Impact time with no wind

Figure 14.19 shows a perfect satisfaction of the desirecatime with negligible or no wind.

Few works exist in the open literature to conduct a fair conspa against. However, the work of
[11] considers a time-of-flight control problem for a guidemjectile with several error sources.
While the overall scope of that work also considered rangemaation, some brief comparisons
can be made. In [11], a prescribed impact time is achievedrasds perfect knowledge of both
muzzle exit velocity and wind is known. The performance & #hgorithm is expected to dete-
riorate under measurement error, and the requirement mstthbring the impact time dispersal
between weapons to within approximately 2.0 seconds. Asodstrated in the previous three
impact time control scenarios, the proposed QSPT guiddgoeithm can reduce the impact time

error to well below 1 second under a series of unknown disngbs.
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Impact Time Control-Case 2

In case 2, all of the previous measurement errors are comsid®d an unknown wind disturbance

of 72 in the positive downrange direction is present. Table 14t6its the engagement parameters.

Table 14.6: Initial and terminal conditions, case 2

Variable Units Initial  Terminal
Velocity o 400 -
Downrange m 0 10,000.0
Downrange m 0 10,000.0
Altitude m 10,000.0 0
X radians I —15
g radians 0 -
Required Impact Time S — 56.16

From the preflight analysis stage, a desired impact time wetshined to be 56.16 seconds. The
unknown wind disturbance causes the projectile to reachatiget earlier at 54.17 seconds. The
corresponding impact time control reduced the impact timerego 0.298 seconds as shown in
figure 14.22. Figure 14.20 shows the optimized trajectotygér and*x; with no impact time

adjustment. In contrast, figure 14.21 shows the trajectdmghvresults from impact time control.
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Figure 14.20: Minimum curvature trajectory with no impante control
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Figure 14.21: Trajectory resulting from controlled impacte
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Figure 14.22: Preflight reference model vs. inflight comgutepact time
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CHAPTER 15: CONCLUSION

Simulation results show a considerable improvement inithe-to-go calculation of QSPT versus
the result generated by the Genex guidance law using the+avey-missile-velocity computation.
For the constant velocity comparison, error due to trapgatarvature has been eliminated, thus
improving the fidelity of the result. For applications whehe velocity along the trajectory is

constant, the initially calculated time-to-go is in face tinal impact time.

Further comparison with Genex shows that QSPT is more optintla respect to control energy
expenditure over the flight. Since the design of Genex asswaiimear system, the presence of
nonlinearity as well as accelerations tend to degrade thienapsolution, which is not the case
with QSPT since nonlinearity of the system is consideretiéngeneration of the guidance law. A
better comparison measure is one in which terminal comstsatisfaction as well as control energy
is considered. In the Monte Carlo runs that were present8&,TQs shown to be an improvement
over Genex with respect to terminal miss distance erramiteal impact angle error, and control

energy expenditure for a wind range of wind disturbances.

In the final comparisons, QSPT was shown to reduce the imaetdrror down to fractions of
a second under heavy disturbances. The improved time-talgalation along with an improved
preflight estimate of the final impact time and robustness®PQ provides considerable improve-

ment over existing results.
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