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ABSTRACT

A new missile guidance law is proposed for the control of impact time which provides an improved

time-to-go calculation by removing error due to trajectorycurvature and also provides a family

of trajectories for trajectory planning purposes. Unlike conventional optimal guidance laws, the

proposed law is non explicit in time-to-go and the linearization of the engagement kinematics in

order to gain a closed form solution is not necessary.
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CHAPTER 1: INTRODUCTION

Missiles play a central role in modern warfare operations and provide one of the most versatile

and flexible weapons platforms in existence. From short range air-to-air to medium and long

range ballistic applications, missile systems are capableof neutralizing a wide range of threats. As

technology advances, threat capability becomes increasingly evasive with more effective counter

measures. Modern missile technology must be able to effectively outperform threat capability

under a wide range of battlefield scenarios.

It has become apparent that the next generation of missile technology must be able to act in a

cooperative or coordinated manner in order to maintain an effective offensive or defensive role.

The term cooperative in this context is used rather loosely but the technical implications are far

reaching. Here, the term cooperative is used to infer that multiple missiles work together as a team

in order to neutralize a target. Multiple missiles sharing guidance related data on a target have a

greater probability of achieving a target kill when the target is being actively sensed from multiple

missile vantage points.

The enhancement of target state estimation as well as targetmotion prediction is an encouraging

possibility. The applications of such a weapons system are immediate, such as the simultaneous

arrival in order to overwhelm defensive countermeasures asin the case of ship Close-in Weapons

Systems (CIWS). Simultaneous arrival on a CIWS system can completely overwhelm the system

and greatly increase the probability of a direct strike on the intended target. In other scenarios, a

delayed impact time with specified arrival interval betweenmissiles is desirable as in the case of

bunker neutralization. Missiles can arrive one-by-one in short delayed time intervals to maximize

the explosive effect of the preceding warhead and pulverizethe target.

The technical challenges of a cooperative guidance approach, however, are immense. Any co-
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operative engagement is going to require control, in some way, of the missiles arrival time at a

particular location, which inherently requires the calculation of the time-to-go until impact. From

a technical standpoint, this is very difficult since missiledynamics form an under-actuated system,

meaning some aspects of the missiles operation cannot be controlled. In fact, most missiles have

no control over the longitudinal velocity, making any coordinated effort to control a missiles timed

approach to a target extremely difficult. This is why the term”cooperative” is generally meaning-

less and is intended only for illustrative purposes to motivate the larger problem. The problem is

in fact one of ”impact time control” first and foremost. Once aviable solution to the impact time

control problem is found, any number of cooperative algorithms found in the open literature can

be applied.

Without enhanced methods of impact time control, cooperation cannot be considered, and although

work has been conducted in the last decade to further the problem, much of the work is based on

simple linear models moving at constant velocity. The true problem formulation involves con-

siderable nonlinearity, missile acceleration, and disturbances due to wind and other unmodeled

behaviors.

The control of impact time for an under-actuated missile canbe dealt with most effectively from

a trajectory planning approach as long as improvements are made to the time-to-go calculation.

If the computed time-to-go is accurate enough, then the trajectory planning can be employed to

either increase or decrease the approach time to the target.This method is straight forward if the

missile velocity is constant, or near constant. In this case, changes to the trajectory arc-length can

correct for any error between a desired impact time and the currently calculated impact time. The

vast majority of missiles, however, exhibit considerable changes in velocity which are difficult to

model and inherently contain disturbances which further corrupts calculations for the time-to-go.

Even in this case, an improved time-to-go calculation cannot take into account errors introduced

by the missiles acceleration. Even though acceleration profiles can be modeled, some error will
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always associated with such estimates.

In general, two types of error can be expected with the time-to-go calculation. The first is error

due to trajectory curvature. All current methods of computing time-to-go involve the line-of-sight

between the missile and target and the relative closing speed, generally referred to as the range-

over-range-rate method. The calculation is updated several times a second during the engagement.

This calculation method generates precise results as long as the missile is heading directly at the

target, as is the case in a head-on intercept or tail chase scenario. However, in many engagement

scenarios a considerable amount of trajectory curvature ispossible as the missile maneuvers to

make intercept. The line-of-sight based calculation does not account for curvature and a consider-

able error is possible. The second type of possible error in the range-over-range-rate method is due

to missile accelerating along the trajectory, which is nearly impossible to compensate for unless

the acceleration profile is perfectly known.

Considerable improvements can be made if the time-to-go could be calculated along the trajectory

arc-length instead of the line-of sight. This removes the error due to curvature, leaving only the

error due to acceleration which can be dealt with through atmospheric modeling. Formulating a

time-to-go calculation in terms of arc-length is problematic for several reasons. First, a future

known path must be established from the missiles current position to the target. This means inte-

grating the guidance law into the future to find the missiles closest point of approach to the target

and then numerically calculating the arc-length along the resulting path. However, iterative cal-

culations of the arc-length are not possible in real-time due to the high computational cost as the

time-to-go must be updated many times a second.

The only remaining option is to compute the time-to-go from aclosed form solution of the tra-

jectory arc-length. The problem with this approach is that few closed form solutions exist for

trajectories of order higher than two. Certain approximations of arc-length can be made but then
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error is reintroduced and little improvement is gained. An ideal solution to the problem would

be to have a higher order family of trajectories for which an exact closed form solution for arc-

length exists. With the existence of a family of trajectories, trajectory planning could be utilized in

conjunction with the resulting improvement in time-to-go to gain better control over impact time,

especially under rapidly changing velocity due to atmosphere and gravity.

The guidance law proposed here that aims to provide these desirable capabilities is called Quad-

Segment-Polynomial-Trajectory, or QSPT for short. The idea behind QSPT is to utilize multiple

second order polynomial trajectories joined together in a smooth, continuous fashion while lever-

aging the closed form solution to arc-length which is possible for second order polynomials. If

enough second order segments are used, free design variables result, giving rise to a family of

trajectories which can be used to adjust the impact time through trajectory planning. The resulting

trajectory appears to exhibit higher order polynomial characteristics yet has a closed form solution

to arc-length, thus removing error in the time-to-go calculation due to curvature. In addition, since

QSPT is a defined trajectory between the missile and target, estimating the acceleration due to

atmosphere, drag, and gravity along the known path becomes atrivial process.

Some major contrasts can be made between QSPT and optimal guidance laws. The first pertains to

how closed form solutions are obtained for the optimal guidance law. The engagement kinematics

between a missile and target are highly nonlinear as will be shown in chapter 6. In order to

solve the resulting optimal control problem, a solution forthe resulting two-point boundary value

problem must be found but due to the nonlinearities involved, no closed form solution exists and

a numerical solution is once again too computationally costly. In order to gain a closed form

solution the engagement kinematics are linearized and in the process, valuable fidelity is lost in

the process which can result in poor performance under certain real-time conditions. In addition,

many optimal guidance laws are explicit in time-to-go and error in the calculation can also induce

poor performance.
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In contrast, QSPT does not require the linearization of the engagement kinematics and fully utilizes

the nonlinear kinematics in the final form of the guidance law. The QSPT guidance law is also non-

explicit in time-to-go which is not generally the case with most optimal guidance laws. Guidance

parameters are derived from the QSPT trajectory and are usedas input to the guidance law. The

actual trajectory asymptotically converges to, and remains on the QSPT generated trajectory. The

time-to-go computation of QSPT is based on an exact closed form calculation of the arc-length

and is free from error due to curvature. This coupled with thefamily of trajectories generated by

QSPT provides better control over the impact time than with conventional means.

This document is organized as follows. In chapter 2 a search of the existing work in the open liter-

ature is given. The literature survey covers a broad range ofguidance law work that is segregated

into 7 groups. In chapter 3, a general overview of missile types, the phases of flight, and the basic

components and subsystems of a missile are given. In chapter4, equations of motion common to

both standard guidance laws as well as the guidance law derivation for QSPT is given. The highly

nonlinear dynamic equations of motion are simplified into nonlinear kinematic models and further

into linear basic models commonly found in simplified guidance derivations. Chapter 5 discusses

the basic types of performance indices commonly used to derive optimal guidance laws. Chapter 6

provides a comprehensive development of the optimal guidance law and at the end of that chapter

a detailed discussion of the various computation methods for time-to-go is given. In chapter 7

the problem is formulated and the kinematic equations of motion to be used in the guidance law

synthesis is presented. Chapter 8 introduces QSPT and a trajectory set with specified boundary

conditions is derived. Chapter 9 derives both the open and closed loop guidance laws for QSPT

and chapter 10 details the optimization of a QSPT trajectory. Chapter 11 derives the improved

arc-length based time-to-go algorithm and discusses the procedure involved in pre-flight analysis.

Chapter 13 details the Genex guidance law which is used in performance comparisons against

QSPT. Chapter 14 shows the results obtained from a simulation of the performance of QSPT. The
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QSPT time-to-go calculation versus the standard range-over-range-rate calculation is compared,

as well as robustness of QSPT, effectiveness of the impact time control, and a full performance

comparison with the Genex guidance law in the presence of noise. In the next chapter, a search of

the existing work in the open literature is given.
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CHAPTER 2: LITERATURE REVIEW

Searching the open literature, we can segregate existing work into 7 groups. In group 1, general

references can be found on classical and modern guidance laws in [1, 2, 3, 4]. Each of these

references provide a clear and basic understanding of the general guidance problem, equations of

motion, and missile components and subsystems.

In group 2, we find works of [5, 6, 7] which formulate optimal guidance laws with constraints

on impact angle. In these works, missile velocity is considered constant and linearized models of

either the missile kinematics or engagement kinematics areused. In these works, no consideration

is given to the control of impact time and the standard methods of computing time-to-go are uti-

lized. In fact, while numerous papers are found concerning optimal guidance with terminal angle

constraints, very few works pertaining to impact time constraints can be found. This comprises

group 3. In this group, reference [8] formulates an optimal guidance law with impact angle as

well as impact time constraints and [9] considers a time-optimal formulation with impact angle

constraints. In each of these works, missile velocity is constant and linearized models are used in

the development. The work in [10] considers an optimal formulation for just impact time control

alone. An interesting note about this work is the independent variable in the state model is in terms

of distance instead of time. This is done to avoid impact timefrom explicitly becoming a terminal

boundary condition since it is an unknown parameter. However, missile velocity is considered con-

stant and the model used is linear. Reference [11] considerstime-of-flight control as well as range

extension for precision munitions. Atmosphere and disturbances are considered in this work which

make is well suited for some general performance comparisons in the simulation study. However,

[11] uses range-over-missile-velocity for calculating the time-to-go.

Attempts to improve estimates of time-to-go for both classical and modern guidance laws comprise
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group 4, [12, 13, 14, 15, 16, 17, 18]. In most of these works, linear models are used in the formula-

tion and missile velocity and acceleration profiles are assumed to be fully known or modeled with

linear and or linear piecewise equations. No in-flight correction due to disturbance is proposed.

The work of [12] attempts to improve on this by deriving a recursive algorithm to correct the time-

to-go estimate when either a heading angle error is present or changes in path length occurs. It

does not take into account changes in time-to-go due to drag or atmospheric disturbances. The

change in path length, however, is estimated from the deviation from a straight line path.

The works contained in group 5, [19, 20, 21], considers the development of optimal guidance laws

when the missile velocity is not constant. In reference [20], the derived guidance law relies on

predicted velocity profiles which can be updated to compensate for error. However, the law is

derived using linearized models and is explicit in a terminal time boundary constraint.

Searching the literature further, we find scarce results forgroup 6; cooperative guidance laws for

missiles. In references [22] and [23], optimal formulations are derived to address the issue of

cooperative salvo attack on a target, however, both works assume constant velocity and in [23],

the time-to-go estimation methods of [12] are utilized. In [22], attempts to estimate time-to-go

are done using an arc-length approximation of the expected engagement. The resulting equation

is approximated since closed form solutions for arc-lengthare impossible to derive in many cases.

In [24], a discussion of cooperative missile research work and the problems associated with it are

addressed.

In group 7, a path planning approach to guidance synthesis istaken. Reference [26] takes a some-

what similar approach as QSPT Guidance in that distance is segmented and a spline-based trajec-

tory is developed. However, this work uses the standard range-over-missile-velocity for time-to-go

calculation and the terminal boundary constraints are a function of the impact time.
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CHAPTER 3: MISSILE PHASES OF FLIGHT

In this chapter a brief outline of the different phases of flight and guidance systems that dominate

for that particular phase. Finally, a brief description of amissiles subsystems such as guidance and

flight controls are given.

Depending on the type of missile system considered, three phases of flight generally exist which

require different guidance schemes for each. In the case of short range missiles, the distance from

the launch point of the missile to the target is typically small, and a single phase of flight is all that

is required to reach the target. Differing phases of flight certainly result for longer range missiles

and precision munitions. The distances involved require robust boost phase to generate enough

kinetic energy to reach the target long after the boost phasehas ended.

Boost Phase

The boost phase is designed to generate enough missile kinetic energy to reach the target long

after the boost phase has ended. In the case of certain precision guided munitions, the boost phase

powers the warhead to high altitudes and the potential and kinetic energy accumulated during

this phase is enough to enable the warhead to reach long downrange distances to a target. The

high levels of longitudinal acceleration make guiding the missile a challenge, and so the primary

objective for these weapons is to achieve a desired altitudeat burnout. In the case of cruise missiles,

the boost phase is relatively short and is designed to generate an adequate forward velocity for the

missile.
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Midcourse Phase

The midcourse phase begins directly after the end of the boost phase and guides the missile over

long distances towards a target. One example of a midcourse guidance law is TERCOM, or Terrain

Contour Matching, which is used primarily in cruise missileapplications. The primary objective in

midcourse guidance is to guide the missile to a location close enough to the target for the homing

phase to take over. This is generally called target acquisition in which active radar seekers acquire

and lock on to the target. Once this is accomplished, the homing phase can begin.

Homing Phase

In this phase, the guidance objective becomes one that reduces the miss distance between the

missile and the target while expending as little control energy as possible. The radar seeker is

returning range and range rate data to the guidance computers and a Latax or lateral acceleration

steering command is generated by the guidance algorithm to steer the missile in a manner that

reduces the miss distance. Many different types of guidancelaws for use in the homing phase can

be found in the open literature.

Basic Subsystems of the Missile

Central to missile performance is the flight control and guidance system as shown in figure 3.1. The

flight control is responsible for two performance objectives; stabilizing the body rates, and con-

trolling lateral acceleration. The guidance system receives target related data from (in some cases)

on-board active radar or infrared sensors and computes a command to steer the missile towards the

target. The steering command is generally, for skid-to-turn missiles, a lateral acceleration, more
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commonly referred to as latax. Therefore, the guidance system calculates a desired latax command

and the flight control attempts to track this command while stabilizing the body rates. Care must

be taken to ensure the guidance system does not over-commandthe missile. Every missile has a

limit to its maneuvering capability and the potential for the guidance system to issue commands

the missile cannot achieve is a possibility unless constraints are imposed in the guidance design.

Figure 3.1: Basic components of a missile system

The target state signals generated by the RF seekers are typically corrupted by noise which must

be removed by the target state estimators and filters before reaching the guidance processor. In

the next chapter, a standard set of dynamic equations representing a 6 dof missile are presented

and systematically simplified for use in both standard guidance formulations as well as the QSPT

derivation in future chapters.
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CHAPTER 4: EQUATIONS OF MOTION FOR GUIDANCE SYNTHESIS

In the open literature, many suitable models for the equations of motion of a body can be found.

All of the models, regardless of how simplistic they may be, are derived from highly nonlinear

equations of motion which represents the translational, rotational, and aerodynamic properties

of the body in its configuration space. For most guidance law derivations, the use of nonlinear

equations of motion do not yield closed form solutions to theresulting two-point boundary value

problem. In fact, only linear equations of motion will yieldsuch closed forms. This issue will be

addressed in considerable detail in chapter 6. For the time being, we will derive several different

models which are useful for conducting simulation studies on air vehicles. The 6 dof nonlinear

equations of motion for a missile or aircraft are as follows

u̇ = Fx + gx + rv − qw

v̇ = Fy + gy + rv − qw

ẇ = Fz + gz + rv − qw

ṗ =
IzzL+ IxzN − (Ixz (Iyy − Ixx − Izz) p+ (I2xz + Izz (Izz − Iyy) r) q)

IxxIzz + I2xz

q̇ =
(M − (Ixx − Izz) pr − Ixz (p

2 − r2))

Iyy

ṙ =
IxzL+ IxxN − (Ixz (Iyy − Ixx − Izz) r + (I2xz + Ixx (Ixx − Iyy) p) q)

IxxIzz + I2xz
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ẋI = (cos γ cosχ) u+ (− cosφ sinχ+ sinφ sin γ cosφ) v + (sinφ sinχ+

+ cos φ sin γ cosφ)w

ẏI = (cos γ sinχ)u+ (cosφ cosχ+ sinφ sin γ sinφ) v + (− sin φ cosχ+

+ cos φ sin γ sinφ)w

żI = (sin γ)u+ (sinφ cos γ) v + (cosφ cos γ)w

φ̇ = p+ (q sinφ+ r cosφ) tan γ

γ̇ = q cosφ− r sinφ

χ̇ =
(q sinφ+ r cos φ)

cos γ
,

(4.1)

where the following variables are defined as

[

u v w

]T

missile velocity in body coordinates
[

p q r

]T

missile rotational rates in body coordinates (roll rate, pitch rate, yaw rate)

[

xI yI zI

]T

missile position in inertial coordinates

[

Fx Fy Fz

]T

forces in body coordinates (xB , yB, zB respectively)

[

Mx My Mz

]T

moments in body coordinates (Roll moment, pitch moment, yawmoment)

[

φ γ χ

]T

roll position, flight path angle, heading angle with sideslip and angle-of-attack

given as

βA = sin−1

(

vA

VA

)

αA = tan−1

(

wA

uA

)

(4.2)
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and gravity components, velocity, wind shear, and forces and moments,

gx = −g sin γ

gy = g sin φ cos γ

gz = g cosφ cos γ

VA =
√

u2A + v2A + w2
A,

(4.3)













uA

vA

wA













=













u

v

w













−HB

I
w̄, (4.4)

Fx = Cxq̄S + Tx

Fy = Cyq̄S + Ty

Fz = Czq̄S + Tz

Mx = Clq̄S +MTx

My = Cmq̄S +MTy

Mz = Cnq̄S +MTz
.

(4.5)

Matrix HB

I
is the inertial to body coordinate transformation andw̄ is the vector of wind-shear

components. If we assume quiescent atmosphere with no wind,w̄ = 0, then













uA

vA

wA













=













u

v

w













. (4.6)
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The dynamic equations of motion given by (4.1) are highly nonlinear and coupled both dynamically

and aerodynamically. In other words the rotational equations for ṗ, q̇, and ṙ are cross-coupled

with one another as well as coupled into the translational velocity equations ofu̇, v̇, andẇ. In

addition, the aerodynamic expressions embedded in both therotational and translational dynamics

are themselves cross-coupled with one another. In order to gain a closed form solution for guidance

law development, considerable simplifications must be made.

The figures that follow illustrate the relationship betweenthe body coordinates and the fixed inertial

coordinates as well as the relationship between the velocity components, incidence angles, and

moments. In figure 4.1, the relationship between the body coordinates and the velocity vector

through the incident angles are shown. Figure 4.2 shows the moments that relate to the body

coordinate system. The moments cause the body axis system torotate out of alignment with

the fixed inertial system through the Euler angles ofφ, γ, andχ as shown in figure 4.3. In the

subsection that follows, a progressive simplifications aremade to the 6 dof nonlinear model in

order to gain more simplified equations to work with.
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Figure 4.1: Aerodynamic incident angles in relation to bodycoordinates

Figure 4.2: Forces and moments in relation to body coordinates
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Figure 4.3: Inertial angles in relation to body coordinates

Simplified Nonlinear Model

The first simplifying assumptions we can make on (4.1) is to consider

• Roll angleφ = 0, roll rateφ̇ = 0

• Incidence anglesβ = 0, α = 0

• Assume missile has tetragonal symmetry, all inertial cross-coupling terms vanish, that is

Ixz = 0.

Assuming a zero roll angle and roll angle rate decouples a considerable portion of the dynamic

equations. An assumption of zero incidence angles also removes the dependency on aerodynamic

parameters which must be estimated using software such as Missile Datcom or obtained through

wind tunnel testing. Becauseβ = 0, α = 0, we can immediately say thatu = VA, v = 0 w = 0.

This assumption indicates that the velocity vectorVA remains aligned with the missiles longitudinal
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axis. Additionally, most missiles exhibit tetragonal symmetry which eliminates off-diagonal terms

in the moment of inertial tensor. These simplifying assumptions lead directly to the nonlinear

kinematic model given as

V̇ = FxB
+ gx

q̇ =
My

Iyy

ṙ =
Mz

Izz

ẋI = V cos γ cosχ

ẏI = V cos γ sinχ

żI = V sin γ

γ̇ = q

χ̇ =
r

cos γ
.

(4.7)

It should be apparent that even though zero incidence angleswere assumed, some aerodynamic

related components still remain. In this case,FxB
is the total longitudinal drag, and the moments

remain primarily as a result of their dependence on control surface deflections. This model is

useful for preliminary design of flight control systems.

Simplified Nonlinear Model without Aero Parameters

Next, we can assume the missile to be a point mass. Under this assumption, the moments vanish

as

My = 0, Mz = 0, (4.8)
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and therefore the remaining body rates become

q̇ = 0, ṙ = 0. (4.9)

This results in equation

V̇ = FxB
+ gx

ẋI = V cos γ cosχ

ẏI = V cos γ sinχ

żI = V sin γ

γ̇ = q

χ̇ =
r

cos γ

(4.10)

The last two equations in (4.10) imply that under the previous assumption, the body ratesq andr

become the inertial rateṡθ andψ̇. The question remains, how is this model controlled? With the

vanishing of the moments, the control surface deflections that used to control the motion are now

gone. We can solve this problem by deriving some simple equations to eliminateq andr. First, we

consider two orthogonal planes,xy andxz, where the forces due to control and gravity are applied

and sum the forces in each plane as,

Fxyapplied + Fxygravity = m
√

ẍ2 + ÿ2 = m

√

V 2 sin2 (χ) χ̇2 + V 2 cos2 (χ) χ̇2

Fxzapplied + Fxzgravity = m
√
ẍ2 + z̈2 = m

√

V 2 sin2 (γ) γ̇2 + V 2 cos2 (γ) γ̇2.

(4.11)
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Substitution ofχ̇ = r andγ̇ = q, and taking the square root gives

m−1
(

Fxyapplied + Fxygravity

)

= V r

m−1
(

Fxzapplied + Fxzgravity

)

= V q.

(4.12)

and therefore the ”pseudo controls”q andr are determined to be

r =
1

V

(

axyapplied + axygravity
)

q =
1

V

(

axzapplied + axzgravity
)

(4.13)

Substitution of the expressions forq andr gives

V̇ = FxB
+ gx

ẋI = V cos γ cosχ

ẏI = V cos γ sinχ

żI = V sin γ

γ̇ =
1

V

(

axzapplied + axzgravity
)

χ̇ =
1

V cos γ

(

axyapplied + axygravity
)

(4.14)

where the controls are defined to beuχ = axyapplied anduγ = axzapplied, and the gravity terms are
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axygravity = 0, axzgravity = g cos γ. The final form of the equations of motion are given as

V̇ = FxB
+ gx

ẋI = V cos γ cosχ

ẏI = V cos γ sinχ

żI = V sin γ

γ̇ =
1

V
(uγ + g cos γ)

χ̇ =
1

V cos γ
uχ.

(4.15)

The equations of motion given in (4.15) will be the equationsused to derive the proposed guidance

law in upcoming chapters. In the next subsection, however, we further simplify the equations of

(4.15) into a completely linear system, which is useful for the optimal guidance derivations in

chapter 6.

The Linearized Model

From the nonlinear kinematic model in (4.15), further simplifying assumptions can are made in

order to reduce the equations into fully linear ones suitable for optimal guidance synthesis which

will be derived in chapter *. For now, the following simplifying assumptions are made

• Constant velocity,̇V = 0

• Small anglesγ andχ

• Ignore gravity
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• Planar motion - eitherxy or xz plane

In addition, the equations of (4.15) can be linearized with the use of t he small angle approximation,

which is a direct result of the Taylor Series expansion. The following trigonometric functions have

the approximated values under the assumption of small angle

cos γ ≈ 1− γ2

2
≈ 1

sin γ ≈ γ

tan γ ≈ γ.

(4.16)

Applying these assumptions results in

ẋI = V ẋI = V

ẏI = V χ żI = V γ

χ̇ =
1

V
uχ γ̇ =

1

V
uγ

(4.17)

An immediate consequence of the small angle linearization is the fact that the planes of operation

have been decoupled as shown in (4.17). This is a typical design procedure in the development of

certain guidance laws in that planar motion is assumed and the guidance law is synthesized for the

two individual planes, i.e. the altitude/downrange plane,and the crossrange/downragne plane. In

the next chapter, performance indices common to guidance applications are discussed.
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CHAPTER 5: PERFORMANCE INDICES

In this chapter a discussion of performance indices is givenin order to motivate the process of

”optimization”. Many times it is claimed that some process or result is optimal, but one must ask, to

what has this result or process been optimized with respect to? In other words, what is the criterion

for which this claim of optimization can be made. In the case of missile flight, particularly the three

phases previously discussed, time, fuel, control (or divert) energy, and terminal constraints such

as miss distance and angle must be considered in the problem formulation. For instance, during

the midcourse phase, the missile must reach the point of target acquisition as quickly as possible

using as little fuel as possible. Therefore, in the design ofthe control law, these constraints are

considered and the optimization process yields a guidance law optimized with respect to minimum

time and fuel usage. In the case of the homing phase, certain terminal constraints must be achieved

such as impact angle or impact time while at the same time keeping the divert energy required to

achieve a zero miss distance as minimal as possible.

The primary objective in the optimization process is to specify some ”performance index” which

is related directly to the states of the dynamic system that must be controlled; i.e. control energy,

fuel, time. The performance index, typically denoted asJ , is itself minimized through a process to

be discussed in the next section.

There are, in general, two types of performance indices common to missile guidance applications

which appear in practical use with some minor variations of each for the more simplistic cases.

The first type is given as

J =

∫ tf

t0

(

1

2
z̄Qz +

1

2
ūRu

)

dt (5.1)

where the over-bar indicates a transpose. This is a Lagrange-type performance index where only
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an integral term is present. The basic premise behind this index is to take the weighted square

of the state and the control integrated over the time span, and the find the controlu such thatJ is

minimized. The net affect is a balancing act between state excursions inz versus control excursions

in u. The second type of performance index is given as

J =
1

2
‖ z (tf) ‖2 +

∫ tf

t0

(

1

2
z̄Qz +

1

2
ūRu

)

dt (5.2)

This is known as a Bolza-type index. In this case, an extra term which considers the terminal

state is included in addition to the original integral term.The integral portion of the index has

the same function as that previously discussed. The addition of the terminal state penalty ensures

that a specified terminal objective is met. In the case of missile guidance, some common terminal

objectives are generally impact angle and zero miss distance. As stated previously, more simplistic

variations of the first and second types can occur and often do. The following is an example of the

second type in which only the control is under the integral term. Once again, in the minimization

of this index, the controlu is found which minimizesJ . The control energy is thus kept to a

minimum over the time span while the terminal objective is achieved.

J =
1

2
‖ z (tf) ‖2 +

1

2

∫ tf

t0

ūRudt. (5.3)

The most basic performance index used in guidance applications is the result of further simplifying

(5.3) where only the integral of the control squared remainsas

J =
1

2

∫ tf

t0

ūRudt. (5.4)

In this performance index, no terminal state constraint or terminal state penalty under the integral

exists. The minimization ofJ results in the controlu that minimizes the control energy over the

time of flight. This is by far the simplest performance index that can be applied to find a closed
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form guidance law. It is however devoid of the terminal constraints that are many times necessary

in more advanced guidance applications. However, with increasing complexity of the performance

index comes increasing difficulty is achieving a closed formsolution, which is essential in guidance

law development. As will be seen in the next chapter, even themost basic guidance law derivation

can be a complex procedure.

Performance Index Weights

In (6.12),Q andR reflect the relative importance of achieving each objective; penalizing control

effort over the time interval versus achieving the desired terminal state. For guidance laws designed

for use in the homing phase, terminal constraints such as miss distance and the angle of impact are

most important in achieving an effective target kill. Minimizing the miss distance is important for

obvious reasons, however, specification of the terminal impact angle can maximize the lethality

of the warhead, depending on the type of target. The weighting factors of the performance index

would then place high priority on the terminal constraints while perhaps lowering the importance

of the control energy expended during flight. In the next chapter, we will derive a basic optimal

guidance law and note the importance of the control weights in the result.
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CHAPTER 6: BASIC OPTIMAL GUIDANCE LAW

Formulation of the optimal guidance law is based on the performance index which has been chosen

to achieve specific objectives, i.e., minimum control energy, desired terminal angle, zero terminal

miss distance. The minimization ofJ , however, must result in a controlu which is not only in

closed form as specified in the last chapter, but which is feasible also. In other words,u must also

satisfy the equations of motion. Many real life examples of this can be found. A hiker for instance,

can find the minimum-time path to get off of a mountain by jumping over a ledge which drops

vertically to the ground. Obviously, this is not a feasible path for the hiker to take and his path

down the mountain should be constrained to one that is easy totraverse and will not kill him. The

same concept is essentially true for a missile. IndexJ can be minimized but can the missile follow

the path commanded byu?

In order to derive a guidance law that achieves the objectives of the performance index and results

in a feasible control, motion constraints must be adjoined to the performance index and then certain

conditions for optimality are then applied to find the optimal control u. The issue at hand is the

fact that the optimal control is generally a function of the costate, which results from adjoining

the dynamic constraints to the performance index. Aside from the original system dynamics, the

adjoining process gives rise to additional costate dynamics which tend to be heavily coupled into

the state. In order to solve for the control and eliminate thecostate variables from the final solution,

the two-point boundary value problem must be solved. Typically, only linear dynamics result in

a closed form solution to this type of differential equationand hence the linear model derived in

chapter 4 will now be leveraged.
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Deriving the Engagement Dynamics

To begin the guidance law derivation, relative equations ofmotion between the missile and target

must be formulated. The linear missile model of equation (4.17) is a key component and can can

be used to describe target motion as well. We can define the following relative variables for the

development as

• pr = relative distance between missile and target (miss distance)

• vr = relative velocity

• ar = relative acceleration

• subscriptsM andT denote missile and target, respectively

• bold-face variables indicate vector quantities.

The relative dynamics are then expressed as

prx,y,z
= pTx,y,z

− pMx,y,z

vrx,y,z
= vTx,y,z

− vMx,y,z

arx,y,z
= aTx,y,z

− aMx,y,z
,

(6.1)

and therefore

prx,y,z
=













xIT

yIT

zIT













−













xIM

yIM

zIM













,vrx,y,z
=













vxT

vyT

vzT













−













vxM

vyM

vzM













, arx,y,z
=













axT

ayT

azT













−













axM

ayM

azM













. (6.2)
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From this, we define the state vector as

ζ =

[

prx,y,z
vrx,y,z

]

, (6.3)

with the corresponding state model for the relative dynamics

ζ̇ = f (ζ) + g (ζ)u. (6.4)

The standard performance index of

J =
1

2
ζ̄ (tf )Qζ (tf ) +

1

2

∫ tf

t0

ūRudt, (6.5)

is used which imposes a terminal state constraint. As mentioned previously, a closed form solution

to this problem is potentially not possible due to the nonlinearities present, specifically inf (ζ) and

g (ζ).

We can, however, formulate (6.4) using the nonlinear kinematic model of (4.15) and then fully

linearize the system in order to proceed with the development. From (4.15), the nonlinear relative

equations of motion are given as

ẍT − ẍM =
(

aTxy
cos θT sinψT − aTxz

sin θT cosψT

)

−

− (cos θM sinψMuxy − sin θM cosψMuxz)

ÿT − ÿM =
(

−aTxz
sin θT sinψT + aTxy

cos θT cosψT

)

+

+
(

sin θM sinψMaMxz
− cos θM cosψMaMxy

)

z̈T − z̈M = aTxz
cos θT − aMxz

cos θM .

(6.6)
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Linearizing equation (6.6) gives

arx = ẍT − ẍM = 0

ary = ÿT − ÿM = aTxy
− aMxy

arz = z̈T − z̈M = aTxz
− aMxz

,

(6.7)

which is a chain of integrators. Some observations can be drawn from equation (6.7) which sug-

gests several things,

• thexy, xz planes are decoupled by the linearization process

• the control action is approximately in they andz directions and perpendicular tox

• the relative dynamics including miss distance variablepr form a double integrator system.

The next assumption that is made is that target accelerationin (6.7) is zero. Then, we can assign

the controlu as the missile acceleration in they andz directions as

ary = −ÿM = −uy

arz = −z̈M = −uz.
(6.8)

The acceleration equations in (6.8) are decoupled from one another and therefore, the guidance

synthesis can take place individually for each. We carry outthis procedure for thexy plane only,

as the process for thexz plane follows in an exact manner.

Considering the chain of integrators formed by (6.8), the state vector is defined as

ζ =

[

pr vr

]

(6.9)
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wherepr andqr are scalars and equal topr = yr, vr = vry . We arrive at the linear state space

model

ζ̇ = Aζ +Bu (6.10)

where

A =







0 1

0 0






B =







0

−1






. (6.11)

The state model of (6.10) will eventually result in a closed form guidance law as will be shown

next. The closed form, however, would not be possible without making the necessary linearizations

and corresponding assumptions discussed here. The processof finding the optimizing controlu

for a chosen performance index subject to the linearized motion constraints of (6.10), will proceed

next.

Optimization

Referring back to the standard performance index of (6.5) as

J =
1

2
ζ̄ (tf )Qζ (tf ) +

1

2

∫ tf

t0

ūRudt. (6.12)

we will specify the terminal state as the miss distance whichwe desire to be zero at the end of

flight (target strike). The next step involves adjoining themotion constraints to the performance

index as

J =
1

2
ζ̄ (tf )Qζ (tf ) +

1

2

∫ tf

t0

[

ūRu+ λ
(

Aζ +Bu− ζ̇
)]

dt, (6.13)
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whereλ is a vector of costates. The Hamiltonian, which is defined next, is very important in

deriving the optimal control. The Hamiltonian is given as

H =
1

2
u2 + λ (Aζ +Bu) . (6.14)

Specific conditions for optimality are then

λ̇ (t) = −∂H
∂ζ

, (6.15)

∂H

∂u
= 0, (6.16)

subject to the costate boundary conditions of

λ (tf ) =
∂

∂ζ

(

1

2
ζ̄ (tf )Qζ (tf )

)

. (6.17)

With the weighting matrices defined as

Q =







b 0

0 c






R =







r 0

0 r






, (6.18)

the terminal state constraints are then expressed as

1

2
ζ̄ (tf )Qζ (tf ) =

[

pr vr

]







b 0

0 c













pr

vr






. (6.19)

The terminal state formulation of equation (6.19) leaves open two design options. For intercept

problems,b > 0, c = 0, and for rendezvous problemsb > 0, c > 0.
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Equations (6.15) and (6.16) results in, respectively

λ̇ = −Aλ, u = R−1λB (6.20)

and therefore by adjoining the motion constraints to the performance index we gain a second

dynamic system of costates in which the optimal control is a function of. Substitution of the

optimal controlu into the state model (12.4) gives

ζ̇ = Aζ +BR−1λB. (6.21)

The complete state/costate dynamic system is then expressed as







ζ̇

λ̇






=







A −BR−1B

0 −A













ζ

λ






(6.22)

whereA ∈ ℜ2x2 andBR−1B ∈ ℜ2x2. Our job now is to solve the state system of (6.22) in order to

find solutions for the state and costate trajectories ofζ andλ. Once a closed form for trajectories

are found, the optimal control given in (6.20) can then be expressed solely as a function of the state

variables.

The system of (6.22) results in a two-point boundary value problem where the state derivative must

be integrated from initial time to the terminal time subjectto initial state boundary conditions, and

the costate derivative must be backwards integrated from the terminal time to the initial time subject

to the terminal boundary conditions given by (6.17). A couple of solution methods exist for solving

these types of linear two-point boundary value problems andcan be found in the open literature.

However, the requirement of a linearized system should be clear, and is exactly the reason no

closed form solution can be found for more complex and/or nonlinear systems. The integration
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of (6.22) is complicated by the fact that the state and costate are cross coupled and only a linear

system of this form will have a solution.

We can proceed in finding a solution, if we denote the state matrix of (6.22) as

F =







A −BR−1B

0 −Ā






. (6.23)

From linear system theory, we can find a solution for the statevector by computing the matrix

exponential

Φ = eF(t−t0) = I+ (t− t0)F+
(t− t0)

2

2!
F2 +

(t− t0)
3

3!
F3. (6.24)

This results in a state solution from initial time to the current time as







ζ (t)

λ (t)






=







Φ11 (t− t0) Φ12 (t− t0)

Φ21 (t− t0) Φ22 (t− t0)













ζ0

λ0






(6.25)

where the transition matrix is calculated to be







Φ11 Φ12

Φ21 Φ22






=



















1 (t− t0)
(t−t0)

3

6r
− (t−t0)

2r

0 1 (t−t0)
2

2r
− (t−t0)

r

0 0 1 0

0 0 − (t− t0) 1



















. (6.26)

Unfortunately, this form is not suitable for guidance sinceit expresses the elements of the transition

matrix as the results of an integration from initial time to current time, which is not useful. These

equations must be integrated from the current time to final time. If we consider the time-to-go as

tgo = tf − (t+ t0) , (6.27)
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wheret0 = 0, and write equation (6.24) in terms of the desired time interval, we have







Φ11 Φ12

Φ21 Φ22






=



















1 (tf − t)
(tf−t)

3

6r
−(tf−t)

2r

0 1
(tf−t)

2

2r
−(tf−t)

r

0 0 1 0

0 0 − (tf − t) 1



















=



















1 tgo
t3go
6r

− tgo
2r

0 1
t2go
2r

− tgo
r

0 0 1 0

0 0 −tgo 1



















, (6.28)

and therefore






ζ (tf)

λ (tf )






=







Φ11 (tgo) Φ12 (tgo)

Φ21 (tgo) Φ22 (tgo)













ζ (t)

λ (t)






. (6.29)

The optimal guidance law is now explicit in time-to-go, as isoften the case with many guidance

laws. Pre-multiplying the first equation of (6.29) by Q gives

Qζ (tf) = QΦ11ζ (t) +QΦ12λ (t) . (6.30)

The second equation of (6.29) gives

λ (tf ) = Φ22λ (t) . (6.31)

From the costate boundary condition of (6.17), we know that

λ (tf) = Qζ (tf ) (6.32)

and therefore we can equate (6.30) and (6.31) as

Φ22λ (t) = QΦ11ζ (t) +QΦ12λ (t) . (6.33)
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which results in a costate solution in terms of the state as

λ (t) = [Φ22 −QΦ12]
−1
QΦ11ζ (t) . (6.34)

Equation (6.34) now permits us to replace the costate variable in the optimal control of (6.20) as

u = −R−1B [Φ22 −QΦ12]
−1
QΦ11ζ (t) . (6.35)

Equation (6.35) in its current form is not very useful and requires some further simplifications. We

can simplify the terms inside of the inversion as

Φ22 −QΦ12 =







1 0

−tgo 0






−







b 0

0 c













t3go
6r

− t2go
2r

t2go
2r

− tgo
r






=







(

1− bt3go
6r

)

bt2go
2r

−
(

tgo +
ct2go
2r

)

(

1 + ctgo
r

)






, (6.36)

and then algebraically compute the inversion

(Φ22 −QΦ12)
−1 =

1

det







(

1 + ctgo
2

)

− bt2go
2r

(

tgo +
ct2go
2r

) (

1− bt3go
6r

)






, (6.37)

where

det =
1

[(

1− bt3go
6r

)

(

1 + ctgo
r

)

+
(

tgo +
ct2go
2r

)

bt2go
2r

] . (6.38)

Next, combining (6.37) with (6.35) gives

u = −R−1B
1

det







(

1 + ctgo
2

)

− bt2go
2r

(

tgo +
ct2go
2r

) (

1− bt3go
6r

)






Q







1 tgo

0 1






ζ (t) , (6.39)
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with the guidance law expressed in terms of the state variables as

u = −R−1B
1

det







(

1 + ctgo
2

)

− bt2go
2r

(

tgo +
ct2go
2r

) (

1− bt3go
6r

)






Q







1 tgo

0 1













pr

vr






. (6.40)

Equation (6.40) can be simplified to reveal the cartesian form of the Proportional Navigation guid-

ance law. If we set the weights ofb = 1 andc = 0 for an intercept and considerr = 0 for no

weight on control effort, we can simplify the matrix and determinate expressions of

u = −1

r

(

1

1 +
t3go
3r

)

[

0 −1

]







1
bt2go
2r

tgo 1− bt3go
6r













b 0

0 c













pr + vrtgo

vr






, (6.41)

and finally arrive at the cartesian form of PN as

u = − 3

t2go
(pr + vrtgo) . (6.42)

This is an expected result since the well known ProportionalNavigation Guidance law is an optimal

guidance law under the initial assumptions used to begin this derivation. It can be shown that the

optimal performance of this law, and others of its type, degrades considerably when the given

assumptions do not hold true in real life, such as the target accelerating or evasively maneuvering.

In addition, since (6.42) is explicit in time-to-go, the optimality of the guidance law depends to

some degree on the fidelity of the time-to-go calculation. Aswill be discussed in the next chapter,

the calculation of time-to-go can contain potential error.
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Time-to-go Calculation for Homing Phase Target Intercept

Two standard methods for computing the time-to-go exist in the open literature. The first is the

range-over-range rate given by

Tgo =
r

ṙ
, (6.43)

and the second method is the range-over-missile-velocity given as

Tgo =
r

V
. (6.44)

Each of the computation methods in (6.43) and (6.44) are based on the line of sight between the

target and missile. In real-time applications, these equations are calculated for a snap-shot in

time where the velocity and line-of-sight is considered to be constant. The equations are then

continuously updated at regular intervals throughout the flight engagement to provide a current

estimate of the time-to-go.

The fact that both calculations are based on the line-of-sight raises the concern of potential error

in the time-to-go calculation, and in fact, this concern is valid. If the missile is on a straight-line

collision course with the target, then each of the given time-to-go calculations will provide an

exact value. However, as the trajectory deviates from the ideal straight-line scenario, each of the

calculation methods begin to produce more error simply because of the trajectory curvature. This

induced error in the guidance law, as well as other error sources will be discussed next.

Potential Errors in the Optimal Guidance Law

The basic guidance law of (6.42) is optimal, as long as the original assumptions hold in real-time

applications. For instance, an assumption of zero missile and target acceleration was made. If this
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condition holds true in reality, then (6.42) will perform well and the miss distance will be zero or

very close to zero under these conditions. The guidance law is even quite tolerable to some degree

of error in the time-to-go calculation.

The primary issue is, many missile/target engagements do not accommodate such ideal assump-

tions. If acceleration of the missile is present due to atmospheric drag, and the target is evasively

maneuvering as well, the optimal solution begins to degradeand the miss-distance increases, in

some cases, to the point of missing the target completely. Certainly if there is considerable maneu-

vering, the additional trajectory curvature adds error to the time-to-go calculation further effecting

performance of the guidance law. The reasons for such a degrade in performance should be clear;

in order to gain the closed form solution of (6.42), the velocity had to be considered constant and

the engagement kinematics linearized. This constitutes a considerable loss in fidelity but, it does

result in a closed form solution.

Barring the potential error that results from simplifying assumptions and the linearization process,

it will be shown in chapter 14 that even under constant velocity and stationary target engagement

conditions, trajectory curvature alone can produce several seconds of error in the time-to-go cal-

culation which in turn has an effect on the optimality of the guidance law. All of these potential

errors should be taken into consideration based on the mission at hand. For instance, in conducting

a tactical surface-to-air missile strike on an aircraft flying in a straight line and at a constant altitude

and speed, the guidance law of (6.42) with the correspondingchoice for the time-to-go equations

of either (6.43) or (6.44), would perform well. On the other hand, this choice would be inadequate

for striking an evasively maneuvering target or in a case where the missile itself undergoes a rapid

change in velocity with atmospheric disturbances present.

The wide range of specific applications is simply too large tocover in this work, however, im-

provements can be made to existing methods and applied to a difficult missile guidance problem
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in order demonstrate the proposed design and intent of this work. In the chapter that follows, the

specific guidance problem of interest will be defined as well as the configuration space, equations

of motion, and the trajectory sets to be designed.
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CHAPTER 7: PROBLEM FORMULATION

The scope and intent of this work will now become clear; to improve upon existing methods both in

guidance law formulation as well as the time-to-go calculation in order to more effectively control

the impact time of a missile engaging a target in the presenceof and atmosphere, gravity and

disturbance. Very little has been discussed concerning thecontrol of impact time since a cursory

survey of the basic guidance problem was necessary first. Existing guidance laws allow little

freedom in design because of the need for a closed form solution, and the methods for solving the

two-point boundary value problem required to archive the desired solution leaves little room for

variations in the design. While the literature survey presented several published research papers

on impact time control guidance laws, the work is restrictedby the need for a closed form solution

and thus many simplifying assumptions are made which do not account for potential error in the

calculations such as time-to-go nor do they account for disturbance and nonlinearity.

Defining the Problem

The problem of achieving a prescribed impact time for a guided munition on a stationary target

located at some terminal position in the downrange/crossrange plane is considered. The trajectory

is analytically designed in closed form, and unlike existing methods, the time-to-go is analytically

computed from the trajectory arc-length. Although projectile velocity changes due to gravity,

drag, and atmosphere, the time-to-go can be estimated online based upon the current velocity

and the remainder of the trajectory length. For this work, initial conditions for generation of the

guidance solution is considered to be trajectory apogee after boost phase or the deployment point

from the bay-door of an aircraft. This particular guidance problem was chosen for its nonlinear

complexity regarding the rapid change in velocity and atmospheric disturbances and an effective
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solution for this problem can possibly have a wide ranging series of applications not only for

missile applications but unmanned ariel aircraft avoidance applications as well.

Configuration Space and Equations of Motion

The distances considered in this work are less than 100 nautical miles and therefore the earths

curvature and ellipticity are not considered. The 3 DOF configuration space is shown in figure 7.1

and the kinematic equations of motion used for guidance law synthesis is given by

V̇ = −ad − g sin (γ) (7.1)

χ̇ =
1

V cos (γ)
uχ (7.2)

γ̇ =
1

V
(uγ − g cos (γ)) (7.3)

ẋ = V cos (γ) cos (χ) (7.4)

ẏ = V cos (γ) sin (χ) (7.5)

ż = V sin (γ) , (7.6)

where the set of initial(0) and terminal(T ) conditions is given by











(x0, y0) , (x0, z0) , (χ0, γ0)

(xT , yT ) , (xT , zT ) , (χT , γT ) .
(7.7)

Velocity vectorV is contained within the configuration space consisting of downrangex, and

crossrangey, altitudez. Divert controlsuχ anduγ in (2) and (3) are normal toV , acceleration

due to dragad is in the negative direction ofV , χ andγ are the heading and flight path angles,

respectively. The gravity value used in this work is9.81m
s2

. Divert controls have no effect on
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Figure 7.1: Configuration Space

the magnitude ofV since they are each normal toV . Only drag and gravity has an effect onV .

Equation (7.1) contains unknown dragad to be compensated for by trajectory planning and the

corresponding impact time control. Note that from thus point forward, the subscriptI for x, y, and

z is dropped for neatness of the equations. The family of trajectories are prescribed next.

Trajectory Parameterization

In the proposed development, segments of crossrange and altitude trajectories are chosen analyti-

cally within the family of second order polynomials of the form

yn (x) = ayn + cynx+ κynx
2

zn (x) = azn + cznx+ κznx
2
, (7.8)

wheren denotes the index of segments. Parameterization of the trajectories should be chosen to

satisfy dynamic equations (4) to (6), or equivalently

∂y

∂x
= tan (χ) ,

∂z

∂x
=

tan (γ)

cos (χ)
, (7.9)
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which are obtained by dividing (4) into (5) and (6), respectively. In fact, the equations in (7.9)

are satisfied for all time if the trajectories in (7.8) satisfy (7.9) at the initial and terminal conditions

given by (7.7). Therefore, the six boundary conditions provided by (7.7) map into the path planning

boundary conditions required by (7.8) according to











(x0, y0) ,
∂
∂x
y1 (x0) = tan (χ0)

(xT , yT ) ,
∂
∂x
y4 (xT ) = tan (χT )

(7.10)

and










(x0, z0) ,
∂
∂x
z1 (x0) =

tan(γ0)
cos(χ0)

(xT , zT ) ,
∂
∂x
z4 (xT ) =

tan(γT )
cos(χT )

.
(7.11)

In the next chapter we introduce the proposed guidance law.
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CHAPTER 8: QUAD-SEGMENT-POLYNOMIAL-TRAJECTORY

GUIDANCE

In chapter 6, potential error sources involving the standard guidance methods were outlined. Specif-

ically, the problems associated with the calculation of time-to-go and the possible improvements

that would be of benefit if they were possible. It was discussed that the line-of-sight based time-

to-go does not account for curvature of the trajectory and thus error in the calculation can result.

When the control of impact time becomes necessary, however,a less error prone equation other

than the choices of (6.43) and (6.44) will be required. Otherenhancements can be made to im-

prove the performance as well such as alleviating the need tolinearize the equations of motion.

The development of the QSPT Guidance law aims to provide the following design benefits of

• an arc-length based time-to-go calculation

• no linearization of the kinematic equations of motion required

• guidance law non-explicit in time-to-go

• family of trajectories available

The benefits of the first three items can be readily seen from the previous chapter discussions. The

availability of a family of trajectories is of great benefit to the trajectory planning required in order

to deal with the under-actuation problem of missiles. It will form the basis for the control of the

impact time. In the next section we define the mathematical structure of QSPT Guidance.
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Design of QSPT

A unique solution to the arc-length based time-to-go problem is sought which provides a closed

form solution for the arc-length of the trajectory set givenin (7.8). The solution proposed here

and shown in figure 8.1 is to use multiple second order trajectories, in this case four, and connect

them all in a smooth and continuous manner to form a single trajectory. Under these conditions,

the trajectory would be capable of achieving multi-directional curvature similar to higher order

polynomials while providing a closed form solution for arc-length. Much design work is required

first and thus the formulation of the QSPT time-to-go will be presented in chapter 11 once all of

the necessary groundwork is completed.

Figure 8.1: Crossrange profile - segmentation of downrange

Figure 8.1 illustrates the basic structure of a QSPT trajectory. The downrange axis between the

initial missile location and the target location is segmented into four equal length segments as

xα = x0 +
1

4
(xT − x0)

xβ = x0 +
1

2
(xT − x0) (8.1)

xδ = x0 +
3

4
(xT − x0) .
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These downrange locations serve as points to enforce boundary conditions. For any QSPT trajec-

tory, there exists two initial and two terminal boundary conditions. Additional boundary conditions

are found at locationsxα, xβ , andxδ which serve to connect the segments together and are referred

to as internal boundary conditions.

Choice of Four Segments

A second order polynomial has available three coefficients and can therefore only satisfy three

boundary conditions. A typical trajectory, if a planar one is considered, must satisfy at least two

initial and two terminal boundary conditions. That is, initial position and orientation as well as ter-

minal position and orientation. The design of QSPT is required to not only satisfy these boundary

conditions, but it must also have a free design coefficient available. The choice of four quadratic

segments will yield a total of twelve available coefficients; two for the initial conditions, two for

the terminal conditions, and seven to satisfy the internal boundary conditions. This leaves one

remaining coefficient to use for trajectory planning purposes.

Referring to figure 8.1, two initial conditions of position and orientation are imposed at the down-

range location ofx0, and two terminal conditions of position and orientation are imposed at lo-

cationxT . The first of the internal conditions enforcing position andorientation is imposed at

locationxα. Position and orientation is imposed at locationxδ as well. The central tie point at

locationxβ enforces not only position and orientation, but curvature also. The internal boundary

locations ofxα andxδ are designated to be points of inflection for the trajectory and is the reason

curvature is not enforced at those locations. The tie point at xβ is designed to join the two halves

together in a smooth and continuous manner and is the reason for enforcing the additional con-

straint of curvature at that location. In the next section, we proceed with the development of the

coefficient equations for the trajectory set ofyn (x) in (7.8), keeping in mind the same equations
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apply for the coefficients ofzn (x).

QSPT Coefficients

Step 1, Solve the coefficients of segment 1 with respect to initial boundary conditions. Therefore,

solve

y1 (x) = a
y
1 + c

y
1x+ κ

y
1x

2 (8.2)

for ay1, c
y
1 subject to the initial boundary conditions of (7.10). This results in,

a
y
1 = y1 (x0)− c

y
1x0 − κ

y
1x

2
0

c
y
1 =

∂

∂x
y1 (x0)− 2κy1x0.

(8.3)

Step 2, join segment 1 to segment 2 by enforcing the internal boundary conditions of (??). This

requires solving the equations

y1 (xα) = y2 (xα)

∂

∂x
y1 (xα) =

∂

∂x
y2 (xα)

(8.4)

for ay2 andcy2 which results in

a
y
2 = a

y
1 + c

y
1xα + κ

y
1x

2
α − c

y
2xα − κ

y
2x

2
α

c
y
2 = c

y
1 + 2κy1xα − 2κy2xα.

(8.5)
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Step 3, similar to step 1, solve segment 4 subject to the terminal boundary conditions of (7.10).

This results in

a
y
4 = yT − c

y
4xT − κ

y
4x

2
T

c
y
4 =

∂

∂x
y4 (xT )− 2κy4xT .

(8.6)

Step 4, join segment 4 to segment 3 by enforcing the internal boundary conditions of (??). This

requires solving the boundary equations

y3 (xδ) = y4 (xδ)

∂

∂x
y3 (xδ) =

∂

∂x
y4 (xδ)

(8.7)

for ay3 andcy3 which results in

a
y
3 = a

y
4 + c

y
4xδ + κ

y
4x

2
δ − c

y
3xδ − κ

y
3x

2
δ

c
y
3 = c

y
4 + 2κy4xδ − 2κy3xδ

(8.8)

Step 5, join segment 3 to segment 2 by enforcing the boundary conditions in (??). This requires

solving the equations

y2 (xβ) = y3 (xβ)

∂

∂x
y2 (xβ) =

∂

∂x
y3 (xβ)

∂2

∂x2
y2 (xβ) =

∂2

∂x2
y3 (xβ)

(8.9)
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which results in a vector matrix expression. Simultaneously solving these equations forκy1, κ
y
2, κ

y
3

gives












κ
y
1

κ
y
2

κ
y
3













=













C
y
11 C

y
12 C

y
13

C
y
21 C

y
22 C

y
23

C
y
31 C

y
32 C

y
33













−1 











D
y
11

D
y
21

D
y
31













= C−1D (8.10)

where

C
y
11 = −x20 + x2α + 2x0xβ − 2xαxβ

C
y
12 = −x2β + 2xαxβ − x2β

C
y
13 = x2δ − 2xβxδ + x2β

C
y
21 = 2 (x0 − xα)

C
y
22 = 2 (xα − xβ)

C
y
23 = 2 (xβ − xδ)

C
y
31 = 0

C
y
32 = −2

C
y
33 = 2

(8.11)

and

D
y
11 = y1 (x0) +

∂

∂x
y1 (x0) (xβ − x0)− y4 (xT )+

+
∂

∂x
y4 (xT ) (xT − xβ)−

− κ
y
4

(

x2T − x2δ − 2xTxβ + 2xβxδ
)

D
y
21 =

∂

∂x
y1 (x0)−

∂

∂x
y4 (xT )− 2κy4 (xδ − xT )

D
y
31 = 0.

(8.12)
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Applying these coefficient equations to the design of the altitude trajectoryzn simply requires

replacingy1 (x0) , yT (xT ) with z1 (x0) , z4 (xT ) respectively. Therefore, the full set of coefficient

equations are given as

az1 = z1 (x0)− cz1x0 − κz1x
2
0

cz1 =
∂

∂x
z1 (x0)− 2κz1x0

az2 = az1 + cz1xα + κz1x
2
α − cz2xα − κz2x

2
α

cz2 = cz1 + 2κz1xα − 2κz2xα

az3 = az4 + cz4xδ + κz4x
2
δ − cz3xδ − κz3x

2
δ

cz3 = cz4 + 2κz4xδ − 2κz3xδ

az4 = zT − cz4xT − κz4x
2
T

cz4 =
∂

∂x
z4 (xT )− 2κz4xT ,

(8.13)













κz1

κz2

κz3













=













Cz
11 Cz

12 Cz
13

Cz
21 Cz

22 Cz
23

Cz
31 Cz

32 Cz
33













−1 











Dz
11

Dz
21

Dz
31













= C−1D, (8.14)
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Cz
11 = −x20 + x2α + 2x0xβ − 2xαxβ

Cz
12 = −x2β + 2xαxβ − x2β

Cz
13 = x2δ − 2xβxδ + x2β

Cz
21 = 2 (x0 − xα)

Cz
22 = 2 (xα − xβ)

Cz
23 = 2 (xβ − xδ)

Cz
31 = 0

Cz
32 = −2

Cz
33 = 2,

(8.15)

and

Dz
11 = z1 (x0) +

∂

∂x
z1 (x0) (xβ − x0)− z4 (xT ) +

+
∂

∂x
z4 (xT ) (xT − xβ)−

− κz4
(

x2T − x2δ − 2xTxβ + 2xβxδ
)

Dz
21 =

∂

∂x
z1 (x0)−

∂

∂x
z4 (xT )− 2κz4 (xδ − xT )

Dz
31 = 0.

(8.16)

Next, we look at the roles the coefficient equations play in the control of impact time.

Coefficient Equations and Impact Time Control

In this section, the functionality of the coefficient sets must be defined, as each set takes on a

different role when trajectory planning is required for impact time control. The functionality is

determined specifically by the choice of the free variablesκ
y
4 andκz4. For a constant trajectory in
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space, free variablesκy4 andκz4 are initialized to the optimizing values designed in chapter 10 and

remain constant throughout the flight as does all of the associated coefficients. For impact time

control on the other hand, the following guidelines are now defined

• Crossrange is trajectory planned for impact time adjustment:

– κ
y
4 is a time varying function initialized to the optimizing value

– equation (8.12) becomes time varying as well

– equation (8.11) is constant if target is stationary

• Altitude trajectory remains constant:

– κz4 is initialized to optimizing value and remains throughout flight

– all z-related coefficients are constant if target is stationary

It will be shown in the next section that coefficient time-rates-of-changėay1,2,3,4, ċ
y
1,2,3,4, κ̇

y
1,2,3, are

driven strictly by the time-rate-of-change ofκy4.

Free Variable, Time Varying Coefficients

In this work, free variableκy4 is prescribed as the state solution to the simple first order system

κ̇
y
4 = µ, (8.17)

for which controlµ is designed in section VII to impose changes in crossrange trajectory arc-length

in order to satisfy impact time constraints. Therefore, thecorresponding impact time control is de-

signed for the crossrange trajectory only, since perturbing the altitude trajectory could have unfore-

seen consequences in terms of range extension. Because of this, free variableκz4 is held constant
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at the optimizing value and therefore, coefficient derivativesȧzn, ċ
z
n, κ̇

z
n equal zero. Furthermore,

since (8.17) is of first order, second derivativesäyn, c̈yn vanish, hence, explaining the differences

between̈yn andz̈n in the closed loop equations of chapter 9.

To find expressions for the coefficient derivatives, we beginwith (8.10) and group theD matrix

according to terms involvingκy4. From direct inspection of (8.12) we find













D11

D21

D31













=













f11 + g11κ
y
4

f22 + g22κ
y
4

0













(8.18)

where

f11 = y (x0)− y4 (xT ) +
∂

∂x
y1 (x0) (xβ − x0) +

+
∂

∂x
y4 (xT ) (xT − xβ)

g11 = −x2T + x2δ + 2xTxβ − 2xβxδ

f22 =
∂

∂x
y1 (x0)−

∂

∂x
y4 (xT )

g22 = 2 (xT − xδ)

(8.19)

which then results in












κ
y
1

κ
y
2

κ
y
3













= C−1

























f11

f22

0













+













g11

g22

0













κ
y
4













. (8.20)

Matrix C−1 as well as the equations in (8.19) are constant. Given (8.17), the derivative of (8.20) is
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therefore












κ̇
y
1

κ̇
y
2

κ̇
y
3













= C−1













g11

g22

0













µ. (8.21)

Then, finding the coefficient derivatives of (8.3), (8.5), (8.6), and (8.8) gives

ȧ
y
1 = −ċy1x0 − κ̇

y
1x

2
0

ċ
y
1 = −2κ̇y1x0

ȧ
y
2 = ȧ

y
1 + ċ

y
1x1 + κ̇

y
1x

2
α − ċ

y
2x0 − κ̇

y
2x

2
α

ċ
y
2 = ċ

y
1 + 2κ̇y1x1 − 2κ̇y2x1

ȧ
y
3 = ȧ

y
4 + ċ

y
4xδ + x2δµ− ċ

y
3xδ − κ̇

y
3x

2
δ

ċ
y
3 = ċ

y
4 + 2xδµ− 2κ̇y3x3

ȧ
y
4 = −ċy4xT − x2Tµ

ċ
y
4 = −2xTµ.

(8.22)

The coefficient derivatives of (8.21) and (8.22) are thus strictly driven by the prescribed first order

system of (8.17).

If a trajectory is desired which requires changes to the impact time, as in the case of the crossrange,

the coefficient derivative equations of (8.21) and (8.22) are implemented and initialized to values

set by (8.3), (8.5), (8.6), and (8.8) with the proper optimizing value ofκy4 chosen. If no changes

to the impact time are required, as in the case of the altitudetrajectory, the coefficient values are

initialized by (8.3), (8.5), (8.6), and (8.8) with the optimizing value forκz4 chosen. Thesez-related

coefficients remain constant throughout the engagement. The design of both open and closed loop

the guidance laws is given next.
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CHAPTER 9: GUIDANCE DESIGN AND IMPLEMENTATION

In this chapter, an open loop and closed loop guidance law is designed explicit in the trajectory set

of (7.8) and given in terms of the control inputs ofuχ anduγ.

Open Loop Guidance Law

The open loop guidance law is derived directly from the equations of (7.2)-(7.6). Dividing (7.2)

and (7.3) by (7.4) gives the open loop guidance law as

uχ =
∂χ

∂x
V 2 cos2 γ cosχ, uγ =

∂γ

∂x
V 2 cos γ cosχ + g cos γ, (9.1)

where according to (7.8) and (7.9), the angular profiles derived in terms of QSPT are given as

χ = tan−1

(

∂

∂x
yn

)

γ = tan−1

(

∂
∂x
zn

cos
(

tan−1
(

∂
∂x
yn
))

)

,

(9.2)

where
∂

∂x
yn = cyn + 2κynx,

∂

∂x
zn = czn + 2κznx. (9.3)

The bottom equation forγ in (9.2) can be simplified by realizing that

cos

(

tan−1

(

∂

∂x
yn

))

=
1

√

1 +
(

∂
∂x
yn
)2
, (9.4)
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which gives

γ = tan−1





∂
∂x
zn

√

1 +
(

∂
∂x
yn
)2



 . (9.5)

The partial derivatives required by (9.1) are given as

∂χ

∂x
=

2κyn
1 + (cyn + 2κynx)

2

∂γ

∂x
=

2
(

κzn + cynκ
z
n

(

∂
∂x
yn
)

− cznκ
y
n

(

∂
∂x
yn
))

√

1 +
(

∂
∂x
yn
)2
(

1 +
(

∂
∂x
yn
)2

+
(

∂
∂x
zn
)2
)
.

(9.6)

which completes the open loop guidance law.

Closed Loop Guidance Law

Alternatively, we can implement the corresponding closed-loop guidance design. To this end,

define

ey = y − yn, ez = z − zn, (9.7)

whereyn andzn are given by (7.8) for the period of time when thenth segment of the trajectories

are being implemented. Second order time derivatives of (9.7) are explicit in the controlsuχ and

uγ through the equations

ÿ = −ad cos γ sinχ− sin γ sinχuγ + cosχuχ

z̈ = −ad sin γ − g + cos γuγ

ÿn = 2ċynẋ+ 2κyn (ẋ)
2 + 4κ̇ynxẋ+ cynẍ+ 2κynxẍ

z̈n = cznẍ+ 2κzn (ẋ)
2 + 2κznxẍ,

(9.8)

56



whereẋ is given from (4), and̈x is given by

ẍ = −ad cos γ cosχ− sin γ cosχuγ − sinχuχ. (9.9)

It should be noted that the distinct differences betweenÿn andz̈n in (9.8) relating to the coefficient

time derivatives are due to the design choices imposed on thefree variablesκy4 andκzn which was

discussed in chapter 8.

It follows from the second derivative of (9.7), and the substitution of (9.9) into (9.8), that the error

system is given by






ëy

ëz






= A+B







uχ

uγ






, (9.10)

where

A =













−ad cos γ sinχ−
(

2ċynẋ+ 4κynxẋ+ 2κyn (ẋ)
2)

+ ∂
∂x
ynad cos γ cosχ

−ad sin γ − g − 2κzn (ẋ)
2 + ∂

∂x
znad cos γ cosχ













, (9.11)

B =







cosχ+ ∂
∂x
yn sinχ, − sin γ sinχ+ ∂

∂x
yn sin γ cosχ

∂
∂x
zn sinχ, cos γ + ∂

∂x
zn sin γ cosχ






. (9.12)

The controls ofuχ, uγ can be written in terms of a pseudo control as







uχ

uγ






= B−1 (ν − A) , (9.13)

such that the error system of (9.10) results in the chain of integrators as







ëy

ëz






=







νy

νz






. (9.14)
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A stabilizing control for (9.14) can then be designed as

νy = −kyey − k′yėy

νz = −kzez − k′z ėz.

(9.15)

Therefore, the closed loop guidance law is







uχ

uγ






= B−1

















ky(yn − y) + k′y(ẏn − ẏ)

kz(zn − z) + k′z(żn − ż)






−A











, (9.16)

under which the actual trajectories converge asymptotically and exponentially to the guidance tra-

jectories ofyn and zn. Drag accelerationad is estimated in real time using the data from the

onboard accelerometer.

Inversion Matrix Singularities

The inversion matrix of (9.12) becomes singular if the flightpath angle reaches±π
2
, however, the

slope of second order polynomials cannot reach vertical angles as that would require the partial

derivative ∂
∂x
yn to be undefined. Therefore, the inversion of (9.12) can neverreach a singularity

under normal operation. On the other hand, it is a requirement in some cases that a precision

munition reach a vertical angle in order to drop in on a targetfrom directly above. An easy solution

to this problem is to reparameterize (7.8) in terms of a new independent variable, such asz, and

switch the guidance law accordingly. This can be done at a point when the projectile is close to

the target. Under the reparameterization, (7.8) can operate at vertical angles and the switched form

guidance law is free of singularity at±π
2
. In this case, we restrict the heading angle toχ < ±π

2
,

which is a reasonable constraint to impose. The derivation of the switched guidance law is outlined

in appendix X and will also be demonstrated in the simulation.
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Robustness of the Guidance Law

The QSPT guidance law given in (9.16) utilizes all of the known nonlinear terms of the equations

of motion and incorporates then into the final form of the guidance law. The net effect is that

the guidance law cancels-out the nonlinear terms and creates a linear chain of integrators which

is easily stabilized. Therefore the original tracking problem has been converted to a stabilization

problem. The nonlinearities of the guidance law are calculated online and used to dynamically

create the linear system which is sometimes referred to as Dynamic Inversion or Input/Output

Linearization. This is of course different from the processtaken in chapter 6 where the nonlinear

terms are linearized and then the guidance law is derived forward from that point. This is an

excellent control synthesis approach as long as all of the nonlinearity has been modeled properly.

In reality, there is always modeling error and certainly disturbances present. The question that

must be asked is, how robust is the guidance law to error and disturbance? The quidance law is

explicit inχ andγ which are sensed and delivered to the guidance law by the Inertial Measurement

Unit (IMU), which has error and uncertainly associated withit. The performance of the guidance

law under these conditions will be analyzed in chapter 14.
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CHAPTER 10: QSPT TRAJECTORY OPTIMIZATION

Chapter 6 demonstrated the difficulty in finding a closed formsolution for a guidance law when the

kinematics involved are less than ideal. The process of linearization gave us the ideal linear system

we needed in order to obtain a useful closed form result. Now,an optimization must be found for

QSPT subject to the appropriate constraints. The optimization process taken in this chapter begins

similarly to the one taken in chapter 6 but quickly diverges primarily because for QSPT, adjoining

the motion constraints to the performance index is not necessary since a feasible trajectory already

exists. QSPT can be shown to satisfy the equations of (7.9), and therefore, we know that the control

u that minimizesJ will also satisfy (7.9).

The terminal constraints are enforced by the QSPT boundary conditions and therefore terminal

constraints associated with the performance index are not required. The corresponding optimiza-

tion will be shown to boil down to a parameter optimization problem in which the QSPT free

variable is found to produce a minimum control energy trajectory. We first assume constant veloc-

ity, which further simplifies the equations of motion as

ẋ = V cos γ cosχ (10.1)

ẏ = V cos γ sinχ (10.2)

ż = V sin γ (10.3)

γ̇ =
1

V
(uγ − g cos γ) (10.4)

χ̇ =
1

V cos γ
uχ. (10.5)

The objective is to design control inputsu = [uχ, uγ] such that a minimum amount of control

energy is expended during flight. The equations of motion arehighly nonlinear and no closed
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form solution will exist for the two-point boundary value problem. If the equations of (10.5)

are linearized, then the methods of chapter 6 are employed and the problem becomes a standard

guidance law development.

The main point of this chapter is to leverage the free design variablesκy4 andκz4 to achieve the

minimum control energy objective. We start by considering the QSPT trajectory segments of

yn = ayn + cynx+ κynx
2, zn = azn + cznx+ κznx

2, (10.6)

and note that these trajectories satisfy the equations of (10.5) if they equivalently satisfy

∂y

∂x
= tanχ,

∂z

∂x
=

tan γ

cosχ
, (10.7)

at the initial and terminal boundary conditions. This step is key in the optimization of QSPT. Since

trajectories exist which satisfies the equations of motion,adjoining the dynamic constraints to

the chosen performance index becomes unnecessary since theadjoining process is done to ensure

the minimization ofJ satisfies the original equations. Being able to circumvent this step is a

tremendous advantage since it essentially converts the overall optimization problem to one which

is a parameter optimization problem.

Three Dimensional Optimization

Beginning with the simple performance index of

J =
1

2

∫ tf

t0

uTRudt, (10.8)
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where the control

u = [uχ uγ]
T
, (10.9)

is a vector of the kinematic controls given by (9.1) and superscriptT denotes the transpose. For

convenience, the2× 2 weighting matrixR is chosen as unity.

The flightpath and heading angles are written explicitly in terms of QSPT as

χ = tan−1

(

∂y

∂x

)

, γ = tan−1





∂z
∂x

√

1 +
(

∂y

∂x

)2



 . (10.10)

where
∂y

∂x
= cyn + 2κynx,

∂z

∂x
= czn + 2κznx. (10.11)

Neglecting gravity, the next step is to utilize the kinematic controls of (9.1) and substitute for the

angles as

uχ =
∂χ

∂x
V 2 cos2



tan−1





∂z
∂x

√

1 +
(

∂y

∂x

)2







 cos

(

tan−1

(

∂y

∂x

))

(10.12)

uγ =
∂γ

∂x
V 2 cos



tan−1





∂z
∂x

√

1 +
(

∂y

∂x

)2







 cos

(

tan−1

(

∂y

∂x

))

(10.13)

where the partial derivatives, given by (9.6) and repeated here for convenience, are given as

∂χ

∂x
=

2κyn
1 +

(

∂y

∂x

) ,
∂γ

∂x
=

2
(

κzn + cynκ
z
n

(

∂
∂x
yn
)

− cznκ
y
n

(

∂
∂x
yn
))

√

1 +
(

∂
∂x
yn
)2
(

1 +
(

∂
∂x
yn
)2

+
(

∂
∂x
zn
)2
)
. (10.14)
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Substitution of the partial derivatives and simplificationgives

uχ =
2κynV

2

√

1 +
(

∂y

∂x

)2
(

1 +
(

∂y

∂x

)2
+
(

∂z
∂x

)2
)
, uγ =

2V 2
(

κzn + κznc
y
n
∂y

∂x
− κync

z
n
∂y

∂x

)

√

1 +
(

∂y

∂x

)

(

1 +
(

∂y

∂x

)2
+
(

∂z
∂x

)2
)

3

2

, (10.15)

Substitution into the performance index of (10.8) gives

J =
1

2

∫ tf

t0













2κynV
2

√

1 +
(

∂y

∂x

)2
(

1 +
(

∂y

∂x

)2
+
(

∂z
∂x

)2
)2







2

(10.16)

+







2V 2
(

κzn + κznc
y
n
∂y

∂x
− κync

z
n
∂y

∂x

)

√

1 +
(

∂y

∂x

)

(

1 +
(

∂y

∂x

)2
+
(

∂z
∂x

)2
)

3

2







2




dt. (10.17)

It would be highly beneficial to derive the final form of the performance index such that the variable

of integration is in terms ofx instead oft. The reasons for this is because there is a considerable

amount of uncertainty in the flight time. Transforming the variable of integration to distancex

allows the integration to be performed between downrange boundary conditions. It will be shown

in the simulation section that the integration with respectto time produces identical results as the

integration with respect tox using the transformation given here. The transformation isderived as

follows. Velocity can be expressed as

V =
√

ẋ2 + ẏ2 + ż2. (10.18)

Factoring outẋ and separating the differential gives

V dt =

√

1 +

(

∂y

∂x

)2

+

(

∂z

∂x

)2

dx, (10.19)
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where the change of variables is

dt =

√

1 +
(

∂y

∂x

)2
+
(

∂z
∂x

)2

V
dx. (10.20)

Applying this transform to the integral of (10.17) and simplifying gives

J =

∫ xT

x0
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2
V 3
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(10.21)

A closed form solution for this integral exists but can only be generated by a software program

such as Mathcad or some suitable equivalent. The resulting integral is of immense size and com-

plexity which cannot be reproduced here due space constraints. However, a nice feature of modern

symbolic integration utilities is that they can produce theresult in various forms suitable for direct

implementation in a simulation software such as Matlab. Theresult can be copied and pasted into

a Matblab M-file and the results tested. Once a closed form solution for the integral is obtained,

finding the minimum value forJ is simply a matter of line searching values forκ
y
4 andκz4 until the

a combination is found which produces a minimumJ .

As previously discussed, numerical optimizations are of nouse for guidance law implementation

due to the computational cost involved, however, theκ
y
4, κ

z
4 values that result from the line search

are found at the initialization stage and remain constant throughout the flight. Therefore, no in-

flight numerical routines are required in order to maintain optimality. The closed form solution to

the integral of (10.21) makes the numerical process at initialization much faster and easier since

numerical integration is not necessary.
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Velocity and the Optimal Solution

As a matter of simplicity, the velocity was considered constant in the previous development in

order to reach the final form of the performance index integral of (10.21). A logical question to

ask is what happens to the optimality of the solution when thevelocity is not constant, which is

generally the case in reality. A simple observation of (10.21) reveals that the velocity is merely a

scalar term, and the true minimization ofJ depends explicitly on the QSPT parameters. That is

not to say that the velocity does not effect the control energy; it in fact directly impacts the control

energy. For instance, the control energy generated for two identical trajectories will be less for a

missile traveling at a lower speed than one traveling at a higher speed. The point here is that if the

QSPT trajectory is optimized properly, it will generate theminimum possible control energy for a

given velocity.

Planar Optimization

The three dimensional optimization of the previous sectionis an important result, however, it would

be beneficial to investigate the planar optimization as possibly a simpler sub-optimal solution to

the 3D problem. A comparison between the two approaches is given in chapter 14. Certainly if

QSPT guidance is to be used in a planar application, then the results of this section should be used

as the optimal solution.

The process involves separately optimizing the trajectories in their respective planes of operation,

i.e., thexy andxz planes. If gravity is ignored and velocity assumed to be constant, then choosing
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γ = 0 in the kinematic model gives the nonlinear planar equationsof motion for the crossrange as

ẋ =V cosχ (10.22)

ẏ =V sinχ (10.23)

χ̇ =
1

V
uχ. (10.24)

From this model, the kinematic control is then given as

uχ = V 2∂χ

∂x
cos (χ) (10.25)

with the equation forχ for the correspondingnth segment given as

χn = tan−1 (cyn + 2κynx) . (10.26)

The partial derivative is then
∂χ

∂x
=

2κyn
1 +

(

∂y

∂x

) . (10.27)

The standard performance index is then

J =

∫ tf

t0

u2χdt, (10.28)

for which a minimization ofJ results in a minimization of control energy for the crossrange tra-

jectory. Substitution of (10.26) into (10.25) and (10.25) with the corresponding partial derivative

into (10.28) gives the performance index for thenth segment as

Jn =

∫ tf

t0

[

2κynV
2

1 + (cyn + 2κynx)
2 cos

(

tan−1 (cyn + 2κynx)
)

]2

dt, (10.29)
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which simplifies to

Jn =

∫ tf

t0

4 (κyn)
2
V 4

(

1 + (cyn + 2κynx)
2
)3dt. (10.30)

We derive a change in the variable of integration in a similarmanner as the transformation used in

the three dimensional optimization as

dt =

√

1 + (cyn + 2κynx)
2

V
dx, (10.31)

which when substituted fordt in (10.30) gives

Jn =

∫ xf

x0

4 (κyn)
2
V 3

(

1 + (cyn + 2κynx)
2
)

5

2

dx. (10.32)

A closed form solution for the integral of (10.32) is then given as

Jn =
2κynV

3
(

2 (cyn)
3 + 12 (cyn)

2
κynx+ 24cyn (κ

y
n)

2
x2 + 3cyn + 16 (κyn)

3
x3 + 6κynx

)

3
[

1 + (cyn + 2κynx)
2
]

3

2

, (10.33)

which when evaluated at the boundary conditions for the correspondingnth segment, can then be

minimized with respect toκy4 as

J = min
κ
y
4

{

J1

∣

∣

∣

xα

x0

+ J2

∣

∣

∣

xβ

xα

+ J3

∣

∣

∣

xδ

xβ

+ J4

∣

∣

∣

xT

xδ

}

. (10.34)

which results in the optimizing value∗κy4. The minimization of (10.34) involves a simple numerical

line search ofκy4 values at the initialization stage before launch. This sameprocess is followed for

choice ofχ = 0 which results in an altitude trajectory minimization of control energy. If gravity is

ignored, the same general design equations result. Simulation results will show the effectiveness

of the approach.
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CHAPTER 11: IMPROVED TIME-TO-GO

In chapter 6, we discussed standard methods for the calculation of time-to-go and the potential

error that can corrupt the calculation. In this chapter, a closed form solution for the arc-length

of a QSPT trajectory is derived. The resulting time-to-go calculation is free from the error due to

trajectory curvature. Constant velocity is considered first and then the case of non constant velocity

will be addressed. The equation for time-to-go is given as

Tgo =
S

V
(11.1)

whereS is the closed form solution for trajectory arc-length and is

S =

∫ xT

x0

√

1 +

(

∂y

∂x

)2

+

(

∂y

∂x

)2

. (11.2)

The equation of (11.2) must be integrated from the initial position to the terminal position while

spanning all four segments subject to the corresponding internal boundary conditions. In light of

this, the integral of (11.2) becomes

S =

∫ xα

x0

√
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(11.3)
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A closed form general solution of the integrals can be found representing eachnth segment as

Sn =
1

4







a + b ln (c) + d ln (2)
(

(κyn)
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2
) 3

2


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
, (11.4)

where
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The total initial arc-length is then given as

S = S1

∣

∣

∣

xα

x0

+ S2

∣

∣

∣

xβ

xα

+ S3

∣

∣

∣

xδ

xβ

+ S4

∣

∣

∣

xT

xδ

. (11.5)

Equation (11.5) gives the initial arc length of the trajectory at the beginning of the engagement.

In real time applications, (11.5) can be continuously updated with the current downrange value

for an updated time-to-go calculation. It will be shown in chapter 14 that under constant velocity,

(11.1) produces a linear response over the engagement and istherefore not subject to error due

to trajectory curvature. In this case, the time-to-go initially computed at the beginning of the

engagement is, in fact, the impact time.
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Equations for Impact Time

The removal of curvature error is a substantial improvementover existing methods for computing

time-to-go. If the velocity is constant along the trajectory, then the time-to-go response over the

engagement is perfectly linear and the impact time is easilydetermined to be the initial time-to-go.

Since the velocity is constant, the impact time remains constant in time. This can be proven in the

following manner. The impact time is computed as

TI = Tgo + t. (11.6)

Finding the time derivative of (11.6) gives

ṪI = Ṫgo + 1, (11.7)

where the time-to-go rate is derived from (11.1) as

Ṫgo =
V Ṡ − SV̇

V 2
, (11.8)

and therefore the impact time rate is

ṪI =
V Ṡ − SV̇

V 2
+ 1. (11.9)

The time-rate-of-change of arc-length,Ṡ, is the negative of the velocity tangent to the curve. That

is, Ṡ = −V . If the velocity is also constant,̇V = 0, equation (11.9) reduces to

ṪI = 0, (11.10)

70



thus demonstrating that for constant velocity, the impact time remains constant in time and equal

to the initially computed time to go.

A brief observation of equation (11.9), however, shows thatwhen the velocity is not constant, or

V̇ 6= 0, equation (11.9) is nonzero and given by

ṪI = − V̇ S
V 2

. (11.11)

Therefore, acceleration of the missile along the trajectory causes changes in the impact time over

the engagement. This can be problematic from the fact that exact changes in a missiles acceleration

can never be known exactly due to unknown or unmodeled disturbances in the atmosphere. One

way to deal with such problems is to conduct preflight modeling and simulation of the mission

in order to gain nominal estimates forV̇ and ultimately a reference model profile ofTI over the

engagement.

Preflight Analysis Methods

The standard approach for conducting a preflight analysis involves integrating the chosen guid-

ance law into the future to find the point of closest approach to the target. This can be an involved

process because most guidance laws are explicit in time-to-go. The resulting estimated trajectory

and corresponding time-to-go can vary considerably if any disturbances are present. A particular

advantage provided by QSPT is that once all of the required boundary conditions are determined,

a trajectory fixed in space results and the arc-length is immediately known. Therefore, with a

fixed path established, the missiles motion along the trajectory can be simulated before launch

using nonlinear drag tables as well as nonlinear atmospheric models. This results in more reli-

able estimates of the acceleration along the trajectory andhence, the changes in the impact time.
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Unmodeled disturbances can be corrected by the impact time control.

The first step in the analysis process is to design a desired QSPT trajectory by establishing the

boundary conditions for the engagement. Trajectory set (7.8) along with the corresponding co-

efficient equations of (8.10), (8.12), (8.13), (8.14), and (8.16) are implemented. The next step

involves simulating equations (7.1)-(7.6) with the closedloop guidance law equations of (9.16).

The simulation can output equation (11.6) plotted over the downrange distance as shown in figure

11.1.
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Figure 11.1: Preflight impact time model

Preflight data modeling such as the one produced in figure 11.1provides a desired reference model

for the impact time control to use when adjusting for unmodeled disturbances. In the plot, the

effects of the acceleration along the trajectory can be observed. At approximately7000 meters

downrange, the munition begins to reach terminal velocity and the acceleration reduces to low lev-

els. Because of the effects of equation (11.9) and (11.10), the projected final impact time converges

to a constant value. In the next chapter a very simple impact time control is designed.
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CHAPTER 12: IMPACT TIME CONTROL DESIGN

In this chapter, we leverage the family of trajectories provided by QSPT and the impact time refer-

ence model derived at preflight to design a very simple, yet effective impact time controller, which

for simplicity, was chosen as a Bang-Bang control. Certainly more advanced designs are possible.

The control is designed for the free variable state model of (8.17) shown again for convenience as

κ̇
y
4 = µ, (12.1)

to smoothly and continuously adjust the trajectory to compensate for error between the real-time

calculation of the impact time and the preflight reference model. To that end, the real-time calcu-

lated impact time is given from (11.6) as

TI = Tgo + t, (12.2)

Equation (12.2) is expected to contain some error due to unmodeled disturbance. We define the

impact time reference model developed from preflight asT̂I . Formulating the impact time error

gives

e = TI − T̂I . (12.3)

The Bang-Bang control for the prescribed linear system of (8.17) is then given as

µ =























δ if e > 0

0 if e = 0

− δ if e < 0,

(12.4)
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whereδ is found empirically. The control of (12.4) is designed to command the state trajectory

of κy4 to a location which drives the error in (12.3) to zero, or as close as possible. A decision

logic is employed to ensure the state trajectory ofκ
y
4 travels in a direction which minimizes (12.3).

It should also monitor the rate-of-change of error versus the amount of applied controlµ, since

a reduction in error may not always be possible due to wind disturbance late in flight when little

trajectory planning can be applied to correct the error. Theperformance of this simple control will

be shown to be effective in reducing the impact time error to fractions of a second in the presence

of disturbances.
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CHAPTER 13: GUIDANCE LAW COMPARISON FOR PERFORMANCE

EVALUATION

The QSPT guidance law has been developed to provide certain advantages over standard optimal

guidance laws. In chapter 14, those advantages will be demonstrated through simulation. It should

also be shown that the performance of QSPT is comparable to other guidance laws with respect to

various measures of optimality such as control energy requirements as well as the satisfaction of

any required terminal constraints such as miss distance andterminal impact angle. This chapter is

dedicated to preparing the comparison models as well as establishing a fair evaluation criterion.

The Genex Guidance Law

The Genex guidance law presented here is reproduced from [27], and will be used to compare

QSPT against. The simplest form of Genex is given below as

u =
V 2

R
[K1 (̂r− v̂) +K2 (v̂f − v̂)] , (13.1)

where

K1 = (n + 2) (n+ 3) , K2 = − (n+ 1) (n+ 2) , (13.2)

and the guidance commands

u =

[

ux, uy, uz

]T

, (13.3)

are given in inertial coordinates. The gains are a function of n, a user selected integer gain. An

acceptable initial setting forn is 0, however, increasing the value ofn increases the trajectory

curvature. Therefore, a family of trajectories is possiblewith Genex, which makes it a suitable law
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for comparison. This form of Genex assumes longitudinal controllability, which is not the case for

a wide range of missiles. Another form of Genex that addresses this issue is given as

u =
V 2

R
[K1 (r̂− v̂ cos δ) +K2 (v̂f − v̂ cosµ)] , (13.4)

where

cos δ = r̂ · v̂, cosµ = v̂f · v̂, (13.5)

and the guidance commands are normal toV and given in inertial coordinates. For the purposes

of this work, (13.4) will be utilized since the under-actuation problem is being considered. The

primary issue to consider is that the guidance commandu of equation (13.4) is given in terms of

inertial coordinates. Unfortunately, the equations of motion given in (13.6) require the guidance

commands in terms ofuχ anduγ, and therefore, a transformation must be derived in order touse

Genex with our chosen equations of motion.

Model Used for Comparison

Both QSPT and Genex will be simulated using the kinematics given below as

V̇ = −ad − g sin γ

χ̇ =
1

V cos γ
uχ

γ̇ =
1

V
(uγ − g cos γ)

ẋ = V cos γ cosχ

ẏ = V cos γ sinχ

ż = V sin γ,

(13.6)
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whereg = −9.81m
s2

and the negative sign has been included in the equations.

The QSPT guidance law issues control commands inuχ anduγ, making QSPT fully compatible

with the given kinematic model. The Genex guidance law, on the other hand, issues acceleration

guidance commands in inertial components, i.e.,ux = ẍ, uy = ÿ, uz = z̈. Therefore, a coordinate

transformation must be derived such that commands are generated in terms of the control inputs

uχ, uγ required by (13.6).

The transformation of Genex commanduz intouγ is easily found from the derivative ofż in (13.6)

as

z̈ = uz = cos γγ̇ = cos γuγ, (13.7)

and therefore the transformation is found as

uγ =
uz

cos γ
. (13.8)

The remaining transformation forux anduy into uγ can be found by determining̈x and ÿ from

(13.6) as

ẍ = ux = − sin γ sinχuγ + cosχuχ (13.9)

ÿ = uy = − sin γ cosχuγ − sinχuχ. (13.10)

Solving (13.9) foruγ in gives

uγ =
ux + sinχuχ
− sin γ cosχ

, (13.11)
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which is substituted into (13.10) as

uy = − sin γ sinχ

[

ux + sinχuχ
− sin γ cosχ

]

+ cosχuχ

= tanχ [ux + sinχuχ] + cosχuχ,

(13.12)

which then leads to the final transformation of

uχ = cosχ [uy − ux tanχ] . (13.13)

With the given input transformations, the Genex guidance law is now compatible with the equations

of motion given in (13.6).
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CHAPTER 14: SIMULATION STUDY

The following simulation results demonstrate the effectiveness of the optimization algorithms, the

improved performance of the time-to-go algorithm as well asshow robustness of the guidance law

to measurement error. Two impact time control cases are alsopresented. Case 1 analyzes the

ability of the proposed guidance law to reduce the impact time error under a range of unknown

disturbances. Case 2 is similar but employs a different engagement scenario.

QSPT Optimization Performance

Table 14.1 shows control energies with corresponding arc-lengths computed for the crossrange

trajectory. The initial conditions ofx0 = 0, y0 = 0, χ0 = −π
4
, and the terminal conditions of

xT = 10, 000, yT = 10, 000, χT = −π
4
, were chosen.

Table 14.1: Crossrange control energy minimization

κ
y
4 value total control energy arc-length

−8.0000× 10−4 1.7111× 105 1.7001× 104

−7.0000× 10−4 1.6896× 105 1.6437× 104

−5.0000× 10−4 1.6879× 105 1.6123× 104

−∗4.5929× 10−4 1.6859× 105 1.6173× 104

−3.0000× 10−4 1.6893× 105 1.6777× 104

−2.0000× 10−4 1.8257× 105 1.7571× 104

−1.0000× 10−4 2.1755× 105 1.8737× 104

79



The numeric minimization of (10.34) for the given boundary conditions results in∗κyn = −4.5929×

10−4, the starred value in the table. Multiple simulation runs were executed forκy4 on either side

of the computed minimum with the corresponding control energy. Results show equation (10.34)

to be an effective optimization with respect to control energy.

The three dimensional optimization produces the same result for three dimensional trajectories,

however, the line search ofκy4 andκz4 is more intense from a computational standpoint.

Monte Carlo Performance Comparison

The previous sections analyzed the control energy optimality of QSPT and then compared that

performance to that of Genex. However, other measures of a guidance laws performance should

be taken into consideration, such as terminal miss distanceerror and terminal angle error. In many

cases, the terminal error measures are more important than the minimization of control energy due

to lethality requirements. In the following Monte Carlo test, Terminal miss distance, terminal angle

error, and control energy are measured in the presence of random wind disturbance. The statistical

properties are as follows,

Wind: 0 to20m
s

, random draw,1σ

Wind Direction: 0 to2π, random draw,1σ.

In addition to the random variables, a dynamic lag is added tothe equations of motion to simulate

the effects of the airframe/flight control and the damping and natural frequency is given asζ =

0.60, ωn = 1hz. For these given conditions, the Monte Carlo simulation wasrun 200 times each

for QSPT and Genex with the following average and worst case values of These results not only

show that QSPT is more optimal in the sense of control energy expenditure, but the ability to

achieve the desired terminal constraints with less error isbetter as well.
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Table 14.2: Average values for 200 runs each

Terminal Miss Control Energy γTe
χTe

QSPT 0.3421 7.6203× 103 0.0035 0.0037
Genex 0.4168 7.6744× 103 0.0077 0.0097

Table 14.3: Worst case value over 200 runs

Terminal Miss Control Energy γTe
χTe

QSPT 0.3963 8.488× 103 0.0942 0.0478
Genex 0.4603 9.7868× 103 0.0389 0.0928

Comparison of Guidance Commands

In this section, a comparison of the guidance commands for QSPT and Genex is given using the

initial and terminal conditions of table 14.5. Figures 14.1and 14.2 show theuχ anduγ guidance

commands, respectively. The step discontinuities in the commands occur at the points of inflection

of the trajectory at the downrange segmentation points ofxα andxδ. Figures 14.3 and 14.4 show

theuχ anduγ commands generated by the Genex guidance law. Since commands generated by

each of the guidance laws are lateral accelerations, the step discontinuities found in the QSPT

commands are as expected because of the second order nature of QSPT.
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Figure 14.1:uχ command for QSPT
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Figure 14.2:uγ command for QSPT
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Figure 14.3:uχ command for Genex
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Figure 14.4:uγ command for Genex
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Performance of Time-to-go Algorithm

The time-to-go comparison plot of fig. 14.6 was generated forconstant velocity along the trajectory

of fig. 14.5, which has a considerable amount of curvature. For clarity, the crossrange/downrange

projection of the trajectory has been included in all 3-D plots. Figure 14.6 demonstrates that the

time-to-go response generated by (11.1) over the engagement is linear and is thus not effected by

curvature of the trajectory. In other types of applicationswhere the velocity along the trajectory

could actually be constant, the initially calculated time-to-go is in fact the final impact time as seen

in figure 14.6. The performance of the switched form guidancelaw and reparameterized trajectory

of the appendix can also be observed in figure 14.5. The switched form guidance law takes control

at the downrange, crossrange, and altitude positions of10, 000, 10, 000, 1000, respectively.
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Figure 14.5: Trajectory with Curvature
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Figure 14.6: Comparison of QSPT time-to-go versus Genex

In contrast, it can be seen in figure 14.6 the time-to-go generated with the Genex guidance law of

[6] which uses the range-over-missile-velocity method. The velocity was constant and the initial

and terminal angles were the same ones used to generate fig. 14.5. The effects of trajectory

curvature on the standard time-to-go calculation can clearly be seen. The initial calculation of

time-to-go is 43.3 seconds but the actual final impact time is48 seconds, nearly a 5 second disparity

in time even for constant velocity and a stationary target.

Robustness of the Guidance Law

The remaining simulation results in this section were generated using a 1962 Standard Atmosphere

along with tabular drag profiles for a generic projectile. Itis assumed that the positional measure-

ments provided by the IMU are perfect. However, since the inversion matrix of the guidance law

is explicit in anglesγ andχ, gyro errors consistent with a tactical grade IMU are considered. In

addition, a percent-error in sensed drag accelerationad is considered as well. Table 14.4 lists the
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error values used to obtain the following results.

Table 14.4: Sensor and gyro error

Error Type Units Measure Value

Drag Acceleration m
s2

% 3.0

Gyro Bias deg

HR
1σ 3.0

Gyro Scale Factor ppm 1σ 300

Gyro Random Walk Noise deg√
HR

nom 0.02

Gyro bias, scale factor, and noise are considered in addition to 3% error in the sensed drag accel-

eration. Figures 14.7 and 14.8 contrast the measured valuesagainst the true values forχ andγ,

respectively, produced along the trajectory of figure 14.5.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Enagagment Time (s)

H
ea

di
ng

 A
ng

le
 (

ra
d)

 

 

True Heading Angle

Measured Heading Angle

Figure 14.7: True heading angle versus measured
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Figure 14.8: True flight path angle versus measured

Figures 14.9 and 14.10 show the tracking error performance of the guidance law using perfect

measurements ofχ andγ. In contrast, figures 14.11 and 14.12 show the crossrange andaltitude

tracking performance of (9.16) in response to the measurement errors listed in table 14.4. The

proposed guidance law demonstrates good tracking performance with negligible deterioration.
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Figure 14.9: Crossrange tracking performance under no disturbance
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Figure 14.10: Altitude tracking performance under no disturbance
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Figure 14.11: Crossrange tracking performance subject to the disturbances of table 1
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Figure 14.12: Altitude tracking performance subject to thedisturbances of table 1

Impact Time Control-Case 1

For the final portion of this study, an unknown wind disturbance of 15m
s

in the positive down-

range direction is considered and in addition to the measurement errors of table 14.4, an unknown

lumped nonlinear disturbance is also employed. The wind disturbance spans the full altitude of the

engagement from 10,000 meters to the ground and remains constant over that range. The combined

effect of the wind and disturbances without any control overimpact time produces a final impact

time of 48.825 seconds. The pre-flight analysis consideringdrag and atmosphere, but excluding

the unknown disturbances, determines a desired impact timeof 53.7 seconds. This requires the

corresponding impact time control to correct for an error of4.875 seconds over the the engage-

ment. The desire is to reduce the error in impact time to fractions of a second under these given

conditions. Table 14.5 provides the initial and terminal conditions for the engagement.
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Table 14.5: Initial and terminal conditions, case 1

Variable Units Initial Terminal

Velocity m
s

400 –

Downrange m 0 10,100.0

Downrange m 0 10,100.0

Altitude m 10,000.0 0

χ radians 0 π
4

γ radians 0 −π
2

Required Impact Time s – 53.70
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Figure 14.13: Comparison between impact time profiles, desired versus achieved
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Figure 14.14: Resulting trajectory under impact time control
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Figure 14.15: Bang bang control commands
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Figure 14.16: Error comparison between controlled and uncontrolled impact time
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Figure 14.17: State trajectory ofκy4

Figure 14.13 contrasts the difference between the impact time reference model and the resulting

in-flight impact time and shows that under the Bang-Bang control signals of figure 14.15, the

corresponding impact time error was reduced to 0.577 seconds. Figure 14.17 shows the state
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trajectory forκy4 generated by the control and figure 14.14 is the trajectory that results. Figure

14.16 compares the effect of the control on the impact time error. In that figure, the uncontrolled

impact time response is shown against the controlled impacttime. The proposed guidance law

demonstrates a good ability to reduce the error of (12.3) under heavy disturbances.

In the previous simulation scenario, the constant wind disturbance extended from apogee to the

ground. It is difficult to exactly achieve a prescribed impact time under these conditions since

the correction of impact time error relies on trajectory planning. Therefore, the ability to correct

for disturbances late in flight diminishes. In addition, thetrajectory must satisfy impact angle

requirements and thus takes priority over satisfying impact time. In the next simulation run, we

consider the wind to taper off with lower altitude and reduceto zero near the ground in order to

show an improvement in impact time control.
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Figure 14.18: Impact time with wind tapering off

Figure 14.18 shows a considerable improvement in the impacttime error when the wind diminishes

in the lower altitudes. In this scenario, the impact time control is capable of reducing the error to
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0.05 seconds, a vast improvement if the disturbances are minimal in the final few seconds of the

engagement.
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Figure 14.19: Impact time with no wind

Figure 14.19 shows a perfect satisfaction of the desired impact time with negligible or no wind.

Few works exist in the open literature to conduct a fair comparison against. However, the work of

[11] considers a time-of-flight control problem for a guidedprojectile with several error sources.

While the overall scope of that work also considered range maximization, some brief comparisons

can be made. In [11], a prescribed impact time is achieved as long as perfect knowledge of both

muzzle exit velocity and wind is known. The performance of the algorithm is expected to dete-

riorate under measurement error, and the requirement is then to bring the impact time dispersal

between weapons to within approximately 2.0 seconds. As demonstrated in the previous three

impact time control scenarios, the proposed QSPT guidance algorithm can reduce the impact time

error to well below 1 second under a series of unknown disturbances.
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Impact Time Control-Case 2

In case 2, all of the previous measurement errors are considered and an unknown wind disturbance

of 7m
s

in the positive downrange direction is present. Table 14.6 details the engagement parameters.

Table 14.6: Initial and terminal conditions, case 2

Variable Units Initial Terminal

Velocity m
s

400 –

Downrange m 0 10,000.0

Downrange m 0 10,000.0

Altitude m 10,000.0 0

χ radians π
4

− π
18

γ radians 0 −π
4

Required Impact Time s – 56.16

From the preflight analysis stage, a desired impact time was determined to be 56.16 seconds. The

unknown wind disturbance causes the projectile to reach thetarget earlier at 54.17 seconds. The

corresponding impact time control reduced the impact time error to 0.298 seconds as shown in

figure 14.22. Figure 14.20 shows the optimized trajectory set by ∗κ
y
4 and∗κz4 with no impact time

adjustment. In contrast, figure 14.21 shows the trajectory which results from impact time control.
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Figure 14.20: Minimum curvature trajectory with no impact time control
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Figure 14.21: Trajectory resulting from controlled impacttime
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CHAPTER 15: CONCLUSION

Simulation results show a considerable improvement in the time-to-go calculation of QSPT versus

the result generated by the Genex guidance law using the range-over-missile-velocity computation.

For the constant velocity comparison, error due to trajectory curvature has been eliminated, thus

improving the fidelity of the result. For applications wherethe velocity along the trajectory is

constant, the initially calculated time-to-go is in fact the final impact time.

Further comparison with Genex shows that QSPT is more optimal with respect to control energy

expenditure over the flight. Since the design of Genex assumes a linear system, the presence of

nonlinearity as well as accelerations tend to degrade the optimal solution, which is not the case

with QSPT since nonlinearity of the system is considered in the generation of the guidance law. A

better comparison measure is one in which terminal constraint satisfaction as well as control energy

is considered. In the Monte Carlo runs that were presented, QSPT is shown to be an improvement

over Genex with respect to terminal miss distance error, terminal impact angle error, and control

energy expenditure for a wind range of wind disturbances.

In the final comparisons, QSPT was shown to reduce the impact time error down to fractions of

a second under heavy disturbances. The improved time-to-gocalculation along with an improved

preflight estimate of the final impact time and robustness of QSPT provides considerable improve-

ment over existing results.
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