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ABSTRACT 
 

In recent years, technological advances have shown a strive for more automated processes in 

agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in 

many applications, including disease detection and yield prediction. In this thesis, an octorotor 

UAV is presented that was designed, built, and flight tested, with features that are custom-designed 

for strawberry orchard disease detection. To further automate the disease scouting operation, 

geolocation, or the process of determining global position coordinates of identified diseased 

regions based on images taken, is investigated. A Kalman filter is designed, based on a linear 

measurement model derived from an orthographic projection method, to estimate the target 

position. Simulation, as well as an ad-hoc experiment using flight data, is performed to compare 

this filter to the extended Kalman filter (EKF), which is based on the commonly used perspective 

projection method. The filter is embedded onto a CPU board for real-time use aboard the octorotor 

UAV, and the algorithm structure for this process is presented. In the later part of the thesis, a 

probabilistic data association method is used, jointly with a proposed logic-based measurement-

to-target correlation method, to analyze measurements of different target sources and is 

incorporated into the Kalman filter. A simulation and an ad-hoc experiment, using video and flight 

data acquired aboard the octorotor UAV with a gimballed camera in hover flight, are performed 

to demonstrate the effectiveness of the algorithm and UAV platform.  
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CHAPTER 1  
 INTRODUCTION 

 

1.1    UAVs in Agriculture 

 

Autonomous robotics is a growing technological trend that is finding many applications in 

agriculture [1], where reductions in labor time, human error, and costs, as well as an increase in 

overall production due to these robots has been seen. As one kind of autonomous robot, unmanned 

aerial vehicles (UAVs) have been widely used agricultural applications, such as pesticide 

application [2], crop yield estimation [3], and invasive species identification [4]. One of the newer 

agricultural applications of UAVs is disease detection through remote sensing [5], where UAVs 

are carrying sensing equipment in order to obtain higher resolution images when compared to 

satellite imagery [6][7], as well as for their quick turnaround time, ability to hover, and low cost 

[8][9]. This process can aid to quantifiably indicate disease in crops [8] and, in some cases, at early 

stages before symptoms are visible [10]. Once disease has been detected, the images containing 

suspected regions are mapped to their physical location, through georeferencing methods 

[3][9][11]. To further advance the disease detection process, the suspected disease position can be 

localized directly from the images, which cannot currently be done through georeferencing. For 

this, the geolocation problem is investigated [12]-[16], which is essentially a filtering problem to 

estimate the position of a target.  
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1.2    Research Mission 

 

Our research mission, at the UCF ARCLab, is to develop an autonomous robot network, 

consisting of a UAV and an unmanned ground vehicle (UGV), that can detect diseases in 

strawberry orchards using spectral technology, without human input [5]. The UAV will rapidly 

scan the strawberry field autonomously, with a spectral camera on-board, taking continuous 

spectral images of the trees below. The plant leaves in the images will be analyzed for 

abnormalities, either in water stress, radiation levels, or other readings, depending on the typically 

known disease symptoms. The spectral camera associates the intensities being analyzed to the 

pixelated image of the field where such a suspected region lies, allowing the pixel coordinates of 

the suspected region to be extracted. These pixel measurements are then used to geolocate the 

suspected regions in real space, through the work presented in this thesis. The suspected diseased 

leaf positions are then converted into GPS coordinates and sent through radio telemetry to the 

UGV. The UGV then traverses the corresponding strawberry row autonomously, based on the 

given GPS coordinates. The ground robot arrives at each suspected plant, further analyzes the plant 

to verify the disease type, collects a leaf sample with a manipulator arm (if the disease type is 

unknown), and returns the sample to the users.  

 

1.3    Geolocation Methods 

 

Geolocation methods generally differ based on the sensors used (e.g. laser range-finders [13], 

electro-optical infrared sensors [14], or gimballed cameras [15] [16]) and on the model derived. 

Since image-based sensors are widely used in agricultural disease detection applications, only the 
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geolocation methods based on this type of sensor are reviewed here. Campbell and Wheeler 

perform geolocation using a gimballed camera on an UAV to locate moving vehicles in [15], which 

accounts for a moving target in its dynamic model, derives a perspective projection based 

measurement model, and applies a square root implementation of a sigma point filter for a de-

centralized target localization approach, where the number UAV states being estimated is reduced. 

Sohn et al [16] uses a single-antenna GPS and gimballed camera to track a stationary target from 

a fixed-wing UAV, and a recursive averaging filter is used based on a normalized line of sight 

(LOS) and triangulation approach. While this approach relies on only two sensors for target 

localization, it requires vehicle Euler angle estimation without direct angle measurements that 

causes a bias in the target localization algorithm, which must be compensated for.  

Both of these approaches rely on nonlinear projection models which can encounter issues when 

the target distance from the sensor is not known. Additionally, mostly all nonlinear projection 

models used rely on nonlinear filtering designs, which are not optimal and generally have high 

computational cost. Here, the depth issue is mitigated by two assumptions. First, by using a face-

down gimbal configuration [12], the flight altitude can be considered as the target distance. 

Second, small agricultural crops, such as strawberry plants, can be considered shallow objects 

when seen from aerial images because of the small depth compared to the flight altitude, where 

estimation in two dimensions is valid [17][18]. With these two assumptions, the orthographic 

projection model [17] can be used, which is linear in the states. In turn, a linear Kalman filter can 

be designed to estimate the position of the suspected disease area. The Kalman filter is chosen over 

other filtering methods because it is optimal in minimizing the covariance trace of the estimate 

error for linear systems [19]. 
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1.4    Data Association for Multi-Target Estimation 

 

 Since aerial images are generally acquired at high altitudes for disease detection, it is likely 

that multiple diseased regions of plants will appear in each image. Multi-target estimation and 

tracking has been widely studied through the use of data association techniques in many 

applications (e.g. naval ship tracking [20], missile, tracking [20] [23], space debris tracking [24]). 

Generally, there are two data association approaches: Bayesian and non-Bayesian [20]. The 

Nearest Neighbor approach is a non-Bayesian approach which considers the nearest measurement 

to the predicted measurement for updating the filter, which is not computationally intensive but 

doesn’t consider whether the nearest measurement is a correct one [21] [22]. Other non-Bayesian 

approaches, like the Track-Splitting approach and the Maximum Likelihood method, are based on 

evaluating the likelihood function and also assume that the accepted track is the correct one [21].  

Bayesian approaches, like the Probabilistic Data Association Filter (PDAF), associate to each 

measurement a probability of being correct based on its innovation from the predicted 

measurement [20][23]. The Optimal Bayesian approach is similar to the PDAF except that it 

considers all measurements encountered in all previous time for a fully optimal estimation whereas 

the PDAF only uses the current available measurements [20][21]. While this filter performs better 

than the PDAF, its associated computational cost grows with time [21]. Li et al uses a PDAF for 

trajectory tracking of space debris through visual measurements in a cluttered environment [24]. 

The PDAF uses a validation gate to only consider measurements of statistical importance to the 

trajectory, which is contradictory in the case of multiple targets where measurements should not 

be discarded. Hence the Joint Probabilistic Data Association Filter (JPDAF) was proposed in [20], 

which uses a single validation region for all measurements, determines the measurement-to-target 
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correlation, and calculates the joint probability for all measurements (in order to maintain a 

uniform false measurement probability for all targets). This can, however, cause heavy 

computational burdens [25]. Additionally, the PDAF and JPDAF assume that target trajectories 

have already been initialized [21]. A logic-based multi-target initiator is presented in [20] for a 

target-based approach to multi-target estimation, as opposed to the JPDAF which is measurement-

based.  

 

1.5    Contribution of Thesis 

 

In this thesis, a geolocation algorithm is developed based on pixelated measurements from a 

gimballed camera in face-down configuration, and UAV GPS values, to be used to determine the 

location of multiple suspected disease regions directly from the images. A linear measurement 

model is derived based on the shallow structures assumption, appropriate for small agricultural 

crops. The PDAF technique is adopted for associating measurements because of its computational 

simplicity and better performance when compared to the non-Bayesian methods. A logic based 

method, considering topics used in the JPDAF of [20], is proposed for trajectory initialization 

(when a measurement is outside a target validation region), trajectory merger (when a 

measurement corresponds to two trajectories), and trajectory termination (when no measurements 

reside in that target validation region). This was chosen in conjunction with the PDAF for multi-

target trajectory estimation over the JPDAF or the Optimal Bayesian approach to avoid the 

computational burdens of considering all measurements for all targets and determining their joint 

probabilities [20], since computation requirements can be of issue aboard the UAV. The addition 

of geolocation to the disease detection process allows the suspected regions to be directly localized 
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autonomously in the initial scouting phase. This crucial step will also bridge the information gap 

between the tasks of the UAV in the initial scouting phase and the verification and recollection 

tasks of the UGV, by providing the UGV with position coordinates for its portion of the mission, 

directly from the scouting results of the UAV. Additionally, the designed Kalman filter geolocation 

approach is based on conditions pertinent to small crops and is less computationally intensive than 

the typically used Extended Kalman Filter, based on the perspective projection. To the best of the 

authors’ knowledge, it is the first time a data association technique is used in for locating multiple 

diseased plants in agriculture, allowing for simultaneous geolocation of multiple diseased regions 

autonomously from on-board the UAV. 

 

1.6    Thesis Outline 

 

In CHAPTER 2, the custom-designed disease detection octorotor UAV platform is presented, 

along with its performance specifications and design requirements. The geolocation problem is 

formulated and the proposed method is derived in CHAPTER 3. CHAPTER 4 consists of 

validating the proposed geolocation method through simulation and an ad-hoc experiment, by 

comparing it to a nonlinear, extended Kalman filter approach based on the commonly used 

perspective projection model. The real-time implementation of the geolocation method on a CPU 

on-board the octorotor is presented as CHAPTER 5. In CHAPTER 6, the multi-target geolocation 

problem is defined, a logic-based approach for measurement-to-target correlation is proposed, the 

probabilistic data association technique used is shown, and both these additions are incorporated 

into the Kalman filter appropriately. Simulation results of the multi-target geolocation method are 

shown in CHAPTER 7, and an ad-hoc experiment using real flight data and images is discussed in 
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CHAPTER 8, both to validate the multi-target geolocation approach. Conclusions are given in 

CHAPTER 9. 
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CHAPTER 2  
OCTOROTOR UAV PLATFORM 

 

2.1    Disease Detection Platform Specifications 

 

Rapid disease scouting and detection in strawberry orchards is to survey the field with an aerial 

platform equipped with a disease detection pixelated sensor, acquire images of the field, determine 

abnormal regions in the images, run the proposed geolocation algorithm to pinpoint coordinates 

for said regions, and send these coordinates back to the users. Considering a typical strawberry 

field size, a platform is designed to endure a 20-minute flight time with at least 5 pounds of 

payload, with the specifications listed in Table 2.1.1 below. In order to acquire a series of images 

about detected regions of suspected disease, the platform must be able to hover over an area.  

 

Table 2.1.1 Octorotor overall specifications 

Full Wingspan, m 1.5 

Vehicle weight, kg 8.9 

Landing area, m2 2.5 

Height, m 0.73 

Payload weight, kg 3.3 

Total weight, kg 12.3 (26.9lb) 

Estimated flight time, min 22.6 

Actual flight time, min  > 18 

Maximum current, A 154.4 
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Taking the above two requirements into consideration, an octorotor is designed with a light-

weight Tarot™ carbon fiber frame, eight 400 KV rated brushless Navigation Series T-motors™, 

and 15x5 inch carbon fiber propellers. The vehicle is powered by four 22.2 V Turnigy Nano-tech™ 

Li-Po batteries, supplying 8,000 mAh each, in parallel for a total current capacity of 32 Ah. The 

eight-rotor configuration is chosen to increase the individual motor efficiency by reducing the load 

experienced by each motor, shown in Table 2.1.2. Based on the octorotor weight, hover is 

performed at about 67%-70% throttle.  

 

Table 2.1.2 Motor performance specifications 

Throttle, 

% 

Current 

required, A 

Power required, 

W 
Thrust, kg 

Angular 

velocity, RPM 

Efficiency, 

g/W 

50 4.8 105.6 1.04 4,385 9.8 

65 7.4 164.3 1.46 5,190 8.9 

75 11.8 262 1.97 6,015 7.5 

85 15.2 337.5 2.33 6,545 6.9 

100 19.3 428.5 2.71 7,060 6.3 

 

 

The octorotor flight maneuvers are governed by the Copter APM 2.6™ flight controller, which 

commands eight Turnigy Plush™ series, 40 A electronic speed controllers (ESCs), that regulate 

power to the brushless motors. The ESCs, in turn provide appropriate power to the APM 2.6 board, 

as shown in the avionics diagram of Figure 2.1.1. This flight controller also has autonomous GPS 

based waypoint navigation functionality. The GPS module aboard the octorotor is a uBlox LEA-6 
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with 2.5 m-4 m circular error probability. Latitude, longitude, and altitude values from the GPS 

are logged by the flight controller for later use. An RGB camera is used to acquire the images 

during experiments. 

 

 

Figure 2.1.1 Octorotor flight avionics layout diagram  

 

A custom casing is designed and built to protect the sensor onboard via a strong fiberglass 

structure and automated doors, seen in Figure 2.1.2 below. This casing uses a range finder to detect 

proximity to the ground and actuates the doors to shield the lens from any dust or particles. A 

robust landing gear is also designed in-house to be low cost and to accommodate for the overall 

weight of the octorotor and the additional height required by the gimballed protection casing. A 

Legacy DSLR 3-axis aerial brushless gimbal™ is installed, which uses two accelerometers to 

counteract the rotational motion of the octorotor in flight. The gimbal is placed in a face-down 

configuration, which is necessary for the studied orthographic projection method.  
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Figure 2.1.2 Octorotor platform 
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CHAPTER 3  

GEOLOCATION PROBLEM FORMULATION 

 

3.1    Geolocation Overall Structure 

 

The geolocation problem in general is a state estimation problem with pixelated measurements 

that are modeled as functions of the position vector components of the plant. It is assumed that the 

pixel measurements of the suspected regions, detected based on the intended identification scheme, 

are provided already. As an optional step, nearby pixels can be joined into contour regions and the 

region centroids can be taken as the pixel measurements. Once so, the geolocation problem begins 

and this proposed method can be applied to estimate the position trajectories for each target. 

The target plants are stationary at their roots and move only according to the winds that disturb 

them, reducing the position estimation to that of a stationary target. Therefore, any large scale, 

small frequency movement in the predicted measurement trajectories of the filter can be attributed 

to movement of the UAV in hover. For an orthographic projection, the sight vector of the camera 

will need to be perpendicular to the ground plane, to minimize any errors that can be introduced 

by an inclined image plane [12]. This assumption is valid for the hardware setup because of the 

ability of the gimbal aboard to counteract the octorotor attitude motion while maintaining the 

camera face-down at all times. Additionally, this allows the altitude of the UAV, which is directly 

measured, to be used to deal with the depth issue encountered when modeling from a 2-D image 

to the 3-D real space. Furthermore, it is assumed that the height of each plant is constant and 

minuscule compared to the flight altitude. This combination allows for the depth of the plant in 

the image to be ignored and reduces the estimation problem to two dimensions, for the x and y 

components of position. A position error bound of 0.5m or less in either direction is desired, in 
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order to avoid possibly misleading the estimation onto an incorrect orchard row, which are 

generally spaced over twice that distance apart. 

 

3.2    Process Model 

 

Each target plant is stationary, meaning that the state dynamics can be modeled as zero, plus a 

process noise term, as shown in 

0

0

L

L

L

x

y

   
     

  
x w       ( 3.2.1 ) 

This process noise accounts for disturbances (e.g. wind gusts) and is assumed to be zero-mean, 

Gaussian white noise with a variance matrix Q as 

 ~ 0,N Qw             ( 3.2.2 ) 

 

3.3    Orthographic Projection Based Measurement Model 

 

The relation between the measured pixels in the image and the target position being estimated, 

needs to be derived. The octorotor position, given in latitude, longitude, and altitude, are received 

from the GPS and barometer onboard. These measurements are used to determine the octorotor 

position L

ox as  
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            

x


 

( 3.3.1 ) 

where the superscript L denotes a local inertial frame, as seen in Figure 3.3.1 below. The octorotor 

position is determined with respect to the chosen home position, denoted by subscript h. The terms 

alt, lat, and lon, denote the altitude, latitude, and longitude respectively and are taken at both the 

home position and the octorotor’s current position. The term on the right of the expression 

represents the translation relative to the home position and the term on the left represents the 

rotation from Earth Centered Inertial frame, ECI, to the local inertial frame, L. RE is the radius of 

the Earth at the current latitude and C(.) and S(.) denote the cosine and sine functions respectively. 

 

 

Figure 3.3.1 Earth-centered-inertial and local inertial Earth model 
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The rotation matrix from the local inertial frame L to the octorotor body frame B is given as  

   

   

   

   

   

   

1 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1

B

L

C S C S

R C S S C

S C S C

   

   

   

       
       

        
              

  ( 3.3.2 ) 

The last matrix in this rotation, places the vector from an East-North-Up orientation into a North-

East-Down (NED) one, commonly used in aircraft modeling [26]. The angles , θ, and ψ are the 

Euler angles for the roll, pitch, and yaw rotations respectively. An additional rotation matrix is 

required between the octorotor frame and the camera frame, denoted by superscript C. Based on 

the gimbal structure, a 3-1-2 rotation sequence was used,   

   

   

   

   

   

   

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

C

B

C S C S

R R R R C S S C

S C S C

  

   

   

   

     
     

       
           

     ( 3.3.3 ) 

The corresponding Euler angles for the gimbal were labeled α, β, and γ for its roll, pitch, and yaw 

respectively, and the gimbal pitch angle β is defined at 90 degrees when facing the ground. The 

camera position vector in the local frame is expressed as  

   (2) (1)

3 2 3 1 2 1

T
L L B T T T C T T T B B

c o L c b o bR R R R R R R              x x x x x x x       ( 3.3.4 ) 

where the numbers 1, 2, 3 denote the intermediate frames at each joint of the gimbal in the order 

they are encountered, shown in Figure 3.3.2 below. The superscript T describes the transpose of 

the matrix and lowercase b is in reference to the base of the gimbal. Note that each relative vector, 

from one intermediate point to another, must be rotated back to the octorotor body frame B by a 
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respective rotation matrix before being superimposed. The final addition results in the position 

vector camera with respect to the octorotor in the body frame B, which is then rotated to the inertial 

frame L and added to the octorotor position vector, resulting in the camera position vector in the 

inertial frame.  

 

 

Figure 3.3.2 Gimbal model 

 

For the orthographic projection model, shown in Figure 3.3.3, the vector from the camera 

origin to each target in the image plane, and the vector from the camera origin to each target in 

real space must lie along the same line [12][15]. Therefore, the former vector can be regarded as a 

scaled version of the latter. The latter can be expressed as the relative vector between the targets 

and the camera, as viewed in the camera frame, 

 ,C C L L

rel L cR x x x      ( 3.3.5 ) 
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where xL is the unknown position vector of the target plant and the subscript rel denotes that it is 

the relative vector. 

 

 

Figure 3.3.3 Orthographic projection model 

 

By applying the correct scaling to convert the remaining 2-D vector from meters into pixels, 

will result in the orthographic measurement model 

0 0

0 0

p x C

rel

p y

x l

y l

   
     
   

y x v         ( 3.3.6 ) 

where y is the measurement. Note that the depth component of the camera vector, once rotated to 

the camera frame, makes no contribution to an orthographic projection [12][17]. The scaling 

variables lx and ly were determined experimentally by capturing an image of an object of known 
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dimensions aligned perpendicularly and at a known distance. The pixel span of the object in the 

image is then measured and related to the physical dimension of the object as 

,
ref p ref p

x yL L

c ref c ref

z x z y
l l

z x z y

   
       

   

          ( 3.3.7 ) 

where zref, xref, and xp are the experimental distance, object dimension, and pixel span respectively 

and L

cz is the camera altitude. These scaling variables are camera specific and in units of pixels per 

meter. The sensor noise term vi is zero-mean Gaussian white noise with a constant covariance 

matrix Rv as  

 ~ 0, vN Rv           ( 3.3.8 ) 

The relation of position to pixels resulted in a linear expression and is a combination of an 

unknown term and a known term plus noise, explicitly separated below in an expansion of 

Equation (3.3.6), 

   

   

       

       
2,1 2,2 2,1 2,2 2,3

3,1 3,2 3,1 3,2 3,3

C C C L C L C L L
Lx L x L x L c x L c x L c

LC C C L C L C L L

y L y L y L c y L c y L c

l R l R l R x l R y l R z zx

yl R l R l R x l R y l R z z

                      
   

y v     ( 3.3.9 ) 

where the subscripts of the rotation matrix denote its individual components by row and column 

and zL is the assumed height of each plant. The known term of the output from Equation (3.3.9) 

can be subtracted directly from the measured pixels, as  

LD C   y y x v                 ( 3.3.10 ) 

where 
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   

   
2,1 2,2

3,1 3,2

C C

x L x L

C C

y L y L

l R l R
C

l R l R

 
 
 
 

         ( 3.3.11 ) 

and 

       

       
2,1 2,2 2,3

3,1 3,2 3,3

C L C L C L L

x L c x L c x L c

C L C L C L L

y L c y L c y L c

l R x l R y l R z z
D

l R x l R y l R z z

    
 
    
 

      ( 3.3.12 ) 

Note that the measurement matrix C is constant for each target and the vector D is composed of 

all known terms. 

 

3.4    Kalman Filter for Geolocation Estimation 

 

A continuous time Kalman filter [19] is derived to execute the position estimation. In the form 

for continuous systems, the Kalman filter is formulated by combining the prediction and correction 

steps into a single differential equation for the state estimate and one for its covariance. Since the 

system for this problem is modeled with no dynamics, the state estimate is solely dependent on the 

measurement update. Using the derived measurement model, the state estimate vector is denoted 

as  

ˆ
ˆ

ˆ

x

y

 
  
 

x          ( 3.4.1 ) 

and the predicted measurement as 

 ˆ ˆCy x      ( 3.4.2 )  

The Kalman gain is calculated using the estimation covariance matrix P, as 
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1T

vK PC R           ( 3.4.3 ) 

This Kalman gain is the optimal gain matrix that minimizes the trace of the error covariance 

[19]. Since the target is modeled as stationary, its estimate depends only on the pixel 

measurements. Hence, the target position estimate and its covariance are updated, respectively, 

as 

    0
ˆ ˆ ˆ ˆ, 0K C  x y x x x           ( 3.4.4 ) 

and 

 1

0, 0T

vP Q PC R CP P P               ( 3.4.5 ) 

where 0x̂  and 0P  are the initial conditions for the estimate and its covariance, respectively. 

These filter equations were updated using a Euler integration scheme. 
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CHAPTER 4  
PERSPECTIVE PROJECTION BASED EXTENDED KALMAN FILTER 

FOR COMPARISON 
 

4.1    Perspective Projection Based Measurement Model 

 

In order to demonstrate the effectiveness of the orthographic projection based geolocation 

estimator, a comparison between the commonly used perspective projection based method will be 

performed. The perspective projection model is derived from the orthographic projection model 

by relaxing the assumption that the image plane remains parallel to the strawberry field. However, 

the condition that the target, its projection in the image, and the camera point of origin lie in-line 

still holds. The relative vector of the target as seen from the camera in the camera frame is still 

expressed as in Equation (3.3.5) above. In the perspective projection, it is assumed that the target 

relative vector and the target projection in the image plane can be related by a scalar variable. The 

measurement equation can be expressed, in three dimensions, as  

  ,C C L L

per p p rel p L c p

p

f

x S S R S R

y

 
 

     
 
 

y x x x     ( 4.1.1 ) 

where Sp is the scalar variable and the distance from the camera to the image plane is known as 

the focal length, f. Observing the first component of the previous expression, the new scalar 

variable can be determined as  

  1C L L

p L cf S R x x      ( 4.1.2 ) 
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where  1C

LR  is the first row of the rotation matrix from frame “L” to frame “C”. Rearranging the 

expression, the scalar can be solved for, as 

  1
p C L L

L c

f
S

R


x x
     ( 4.1.3 ) 

The remaining two components of the measurement equation are expressed as 

  
  

  
  

,

,

2

1

3

1

C L L

x per L c

C L L

L cp

per C L L
p

y per L c

C L L

L c

l fR

Rx

y l fR

R

 
 

  
    

  
 
 
 

x x

x x
y

x x

x x

         ( 4.1.4 ) 

where the new scale factors are used to convert the two components from meters to pixels 

respectively. Note that the perspective projection measurement equation contains the target 

position in the numerator and denominator of each term, which makes it nonlinear.  

 

4.2    Extended Kalman Filter 

 

Since the measurement model for the perspective projection based method is nonlinear, an 

extended Kalman filter is used, which deals with nonlinearities by linearizing the model at the 

current estimate of each time step. In order to update the Kalman gain and covariance expressions 

effectively, the measurement nonlinearity is addressed by constructing a Jacobian matrix through 

linearization. Since the linearization creates an approximation that leaves out higher order terms, 

the extended Kalman filter is considered a sub-optimal estimation method [19]. First, the 

measurement equation will be rewritten in terms of four parameters as 
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x

p

per

p y

i
x j

y i

j

 
  

    
    

 

y       ( 4.2.1 ) 

where  

  , 2C L L

x x per L ci l fR x x          ( 4.2.2 ) 

  , 3C L L

y y per L ci l fR x x           ( 4.2.3 ) 

and  

  1C L L

L cj R x x       ( 4.2.4 ) 

The Jacobian, evaluated at the estimate, can then be expressed as 

   

   

2 2

ˆ
2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x x
x x

p p

L L

y yp p
y yL L

i ij j
j i j i

x x y yx x

j jx y
H

i iy y j j
j i j i

x x y yx y

j j

                     
  

                
                 

 
 

x

      ( 4.2.5 ) 

where  

   , ,2,1 2,2
,

ˆ ˆ

C Cx x
x per L x per L

i i
l f R l f R

x y

 
 

 
    ( 4.2.6 ) 

   , ,3,1 3,2
,

ˆ ˆ

y yC C

y per L y per L

i i
l f R l f R

x y

 
 

 
     ( 4.2.7 ) 

and 
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   
1,1 1,2

,
ˆ ˆ

C C

L L

j j
R R

x y

 
 

 
      ( 4.2.8 ) 

The Kalman gain can now be expressed, using the Jacobian matrix in place of the previous 

measurement matrix, as  

1T

vK PH R             ( 4.2.9 ) 

This Kalman gain is used to update the position estimate and its covariance, respectively, as 

    0
ˆ ˆ ˆ ˆ, 0perK  x y y x x           ( 4.2.10 ) 

and 

 1

0, 0T

vP Q PH R HP P P       ( 4.2.11 ) 

where the predicted measurement, ˆ
pery , is found by evaluating the perspective projection 

measurement equation at the position estimate, x̂ . 

 

4.3    Comparison Simulation Settings  

 

A simulation was conducted to compare the two projection methods side by side. The octorotor 

position was simulated at (28.599887°, -81.196495°, 20m) with the home position set at 

(28.599859°, -81.196549°, 0m), latitude, longitude, and altitude, respectively. Expressed in the 

local frame, the octorotor position vector is (5.274, 3.115, 20)m. The camera position vector, 

calculated from the octorotor position vector and the gimbal dimensions, is (5.233, 3.095, 19.74)m. 

The simulated Euler angles for the UAV and gimbal, respectively, are (0°, 0°, 0°) and (0°, 90°, 

0°). Note that the gimbal pitch angle reflects the face-down configuration. A simulated target was 
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placed at (28.599891°, -81.196499°, 0.04m) or (4.883, 3.560, 0.04)m, which is about 0.35m and 

0.45m away from the octorotor in the x and y directions, respectively. Measurements are simulated 

using both projection methods respectively, with an added Gaussian measurement noise with 

covariance of 16pixel2 in each direction. The scale factors for the orthographic projection based 

model are chosen as 33.33pixel/m in both directions. The measurement matrix C is found as a 

diagonal matrix with its diagonals as 33.33pixel/m each and the known parameter D is (-174.3, 

103.2)pixel. For the nonlinear perspective projection model, the scale factors are chosen as 

19,048pixel/m in each direction, in order to reproduce measurements of similar magnitudes, for 

comparison purposes. The focal length is 0.035m and the Jacobian Matrix H is calculated as a 

diagonal matrix with a value of 33.841pixel/m in each diagonal. Note the closeness in magnitude 

of the measurement matrices for the linear and nonlinear projection methods, which comes as a 

result of choosing the perspective scale factors to reproduce similar measurements as in the linear 

fashion. The filter matrices, Q, Rv, and P0, are chosen as diagonal matrices with values of 

0.0025m2/s, 16s∙pixel2, and 0.27m2 for each diagonal in the respective matrix, and the estimate is 

initialized below the octorotor position at  0
ˆ 5.274 3.115

T
mx  (corresponding to the center of 

the image). These values are used for both filtering methods. The simulation is run for a duration 

of 15s with a time step of 0.05s.  

 

4.4    Simulation Results and Discussion 

 

The position estimation results for both filters in both directions are plotted in Figure 4.4.1 

below, as well as the actual target position. It is seen that both filters perform very similarly, 

reaching their target with a settling time of 1.6s and 1.2s for the Kalman filter and EKF, 
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respectively and with a maximum encountered position error of 0.11m for the Kalman filter and 

0.072m for the EKF in either direction, as shown in Table 4.4.1 below. It should be noted that the 

clearest distinction between the performance of the two filters is the computational time, where 

the EKF is more intensive in that it must reevaluate the Jacobian matrix at each time step.  

 

 

Figure 4.4.1 Actual simulated target position and position estimate for both KF and EKF in both 

directions 
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Table 4.4.1 Simulation results comparing KF and EKF performance 

 

Orthographic Projection 

Geolocation 

Perspective Projection 

Geolocation 

x y x y 

Actual position, m 4.883 3.560 4.883 3.560 

Estimated position, m 4.882 3.559 4.891 3.551 

Final position error, m 0.001 0.001 -0.008 0.009 

Maximum position error, m 0.108 -0.110 0.070 -0.072 

Actual output, pixel 308.3 224.5 308.1 224.3 

Predicted measurement, pixel 308.2 224.4 308.4 224.5 

Minimum covariance trace, m2 0.012 0.0118 

Settling time, s 1.60 1.20 

Computational time, s 0.222 0.658 

 

 

For better comparison, the simulated measurements for both projection methods, along with 

the predicted measurements of the corresponding filter, were plotted separately per direction as 

Figure 4.4.2 for the x direction and Figure 4.4.3 for the y direction, respectively. It is shown that 

the filters were both successful in removing the Gaussian measurement noise, as designed.  
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Figure 4.4.2 Simulated and predicted measurements for the perspective projection with EKF and 

orthographic projection with KF, in the x direction 
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Figure 4.4.3 Simulated and predicted measurements for the perspective projection with EKF and for the 

orthographic projection with KF, in the y direction 

 

The covariance trace is shown to be minimized for both the KF and EKF in Figure 4.4.4 below. 

Both plots demonstrate almost identical performance in the regard of optimally minimizing the 

covariance. Overall, this simulation demonstrates that KF and EKF, and their models, are designed 

to perform in very similar fashion, except for the notable difference in computational time, is an 

important factor when considering implementation onto the UAV.  
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Figure 4.4.4 Position estimation covariance trace for the KF and EKF, respectively 

 

4.5    Comparison Experiment Settings  

 

An ad-hoc experiment is conducted to demonstrate the effectiveness of the orthographic 

projection based geolocation approach and compare it to the perspective projection based approach 

using real flight data. A red box is placed in a grassy field to represent a diseased leaf and the 

octorotor UAV is flown in hover flight, acquiring video of the target with a Canon Powershot A90 

RGB camera. The video runs for 15.7s at a frame rate of 15fps, corresponding to a step time of 

0.0667s. A screenshot of the video with the red target is shown in Figure 4.5.1 below. The images 

acquired were post-processed in MATLAB along with the corresponding GPS values and 

rotational information from the UAV during flight.  
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Figure 4.5.1 Screenshot of the video taken from the octorotor UAV of the red box in a grassy field 

 

The identification criterion used to find the red box in each image is based on a color intensity 

scheme, where pixels with red color intensity greater than 245 and green color intensity less than 

200 are chosen. These pixels are then joined into contours with adjacent selected pixels and the 

centroid and areas of these contours are calculated. The contour with the greatest area is taken as 

the desired target and its centroid is used as the pixel measurements.  

Due to the lack ability of the gimbal controller to log the gimbal Euler angle rotations, a perfect 

gimbal assumption is taken. The gimbal was balanced to the front arm of the octorotor UAV and 

its Euler angles are taken as (0°, 90°, 0°), respectively. The UAV Euler pitch and roll angles are 

0° each, but a yaw angle of 197.8° is used, which is the average of the yaw angle measurements 

encountered during flight. The orthographic projection scale factors are calculated as 
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231.48pixel/m in both directions. The nonzero UAV yaw angle results in coupling of the x and y 

directions, which in turn gives a non-diagonal measurement matrix,  

220.40 70.76

70.76 220.40

pixel
C

m

 
  
 

          ( 4.5.1 ) 

The known adjustment vector D results in  

811.42

115.35
D pixel

 
  
 

          ( 4.5.2 ) 

and the UAV yaw angle produces a rotation matrix from the inertial frame L to the camera frame 

C as 

0 0 1

0.952 0.306 0

0.306 0.952 0

C

LR

 
 

 
 
  

           ( 4.5.3 )  

The filter covariance matrices used are 

21 0

0 1

m
Q

s

 
  
 

       ( 4.5.4 ) 

2
1722.3 0

0 1332.2
vR s pixel

 
  
 

    ( 4.5.5 ) 

and  

2

0

0.2 0

0 0.2
P m

 
  
 

           ( 4.5.6 ) 
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respectively. The position estimate was initialized at the first encountered UAV position, or (3.174, 

-1.557)m, corresponding to the center of the image frame.  

 

4.6    Experiment Results and Discussion 

 

The octorotor position, shown in Figure 4.6.1 below, depicts slight movements in all three 

directions of 1.97m, 0.7m, and 2.38m range, respectively. These movements are due to errors in 

stable hover resulting from remote controlled, manual flight. Since the octorotor yaw angle was 

about 197.8° during the flight, the octorotor movements reflect upon the position and measurement 

movements in a coupled manner. 

 

 

Figure 4.6.1 Octorotor position in all three directions, respectively 
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The measured centroid pixels of the box for the duration of the video are shown in Figure 4.6.2 

and Figure 4.6.3 below, along with the predicted measurement of both the extended Kalman filter 

and Kalman filter, in both directions respectively. It can be observed from the figures that both the 

filtering methods tracked the measurement movements very well in either direction, even though 

the measurements spanned across a range of about 400 pixels in the x direction and 240 pixels in 

the y direction. Also note that, since the UAV is flying at a non-zero yaw angle, the movement of 

the UAV in both directions is cross-coupled into the movement of the measurements, in both 

directions.  

 

 

Figure 4.6.2 Actual and predicted measurements, for both the geolocation methods, respectively, in the x 

direction 
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Figure 4.6.3 Actual and predicted measurements, for both the geolocation methods, respectively, in the y 

direction 

 

The estimated position for both the estimation methods is shown in Figure 4.6.4, for each of 

the directions respectively. The actual target position was determined by taking the octorotor 

position at the instance when the red box cross the middle of the image. The octorotor position is 

also added to the figure for comparison purposes. It is shown that the position estimates converge 

to a value with a minimal error of 0.168m and 0.058m for the Kalman filter geolocation method 

and of 0.185m and 0.051m for the extended Kalman filter geolocation method. The EKF had the 

greatest encountered error, seen in the y direction estimation plot of Figure 4.6.4 and tabulated in 

Table 4.6.1, where the maximum error is shown to be 0.769m. The maximum error for the KF was 

0.534m, which barely does not satisfy the goal of 0.5m. This can be attributed to the octorotor 

movements in flight, which violate the hover assumption.  
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Figure 4.6.4 Estimated position for both geolocation methods, along with the actual position and octorotor 

position, in the x direction 

 

Table 4.6.1 Experiment results comparing KF to EKF performance 

 

Orthographic Projection 

Geolocation 

Perspective Projection 

Geolocation 

x y x y 

Actual position, m 4.829 -1.961 4.829 -1.961 

Estimated position, m 4.995 -1.931 5.015 -1.938 

Final position error, m 0.168 0.058 0.185 0.051 

Maximum position error, m 0.534 0.373 0.598 0.769 

Minimum covariance trace, m2 0.337 0.291 

Settling time, s 0.80 0.80 

Computational time, s 0.0428 0.166 
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The trace of the covariance for both filtering methods is given in Figure 4.6.5 below, where 

convergence can be seen for both methods. However, the EKF demonstrates a point of sub-optimal 

minimization due the fact that it has to recalculate the Jacobian measurement matrix H at every 

time step, which creates region of covariance trace growth, before declining back to the its final 

value. The clearest distinction between the two methods’ performance is the computational time, 

where the EKF geolocation method performed four times slower than the KF method, shown in 

Table 4.6.1.  

 

 

Figure 4.6.5 Trace of the covariance for both filtering methods, respectively 
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CHAPTER 5  
REAL-TIME IMPLEMENTATION 

 

5.1    Real-time Implementation Hardware Setup 

 

The geolocation method is designed for low computational time, in order to be implemented 

in real-time. A Raspberry Pi 2 CPU board, or the Pi, is installed onto the octorotor UAV to host 

the geolocation algorithm. The Pi is directly connected to the APM 2.6 flight controller through 

its “power”, “ground”, RX, and TX pins, to the telemetry port of the flight controller. It is powered 

by its connection to the APM as well, since it receives 5V. Additionally, the Pi has four USB ports 

with which it can connect to its other peripheries. An RGB camera and a spectrometer can be 

connected through two of the USB ports to the Pi, or a spectral camera alternatively, for the disease 

detection portion. A USB flash drive occupies the third port and the last port is designated for the 

XBee radio telemetry device, used to communicate to the unmanned ground vehicle. A diagram 

of the flow of information is provided in Figure 5.1.1 below. The avionics will provide the flight 

measurements to the APM which will organize them and send them to the Pi through a MAVLink 

connection, established through the serial communication. This will include all flight data 

available and useful to the geolocation algorithm. Additionally, the camera setup will provide the 

image along with the suspected pixel measurements to the Pi directly. Once the location of the 

diseased region is known, the Pi will send those coordinates by radio frequency through the XBee 

telemetry device to the device’s pair on the UGV. 
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Figure 5.1.1 Information flow diagram for the real-time implementation 

 

5.2    Geolocation Algorithm for Real-Time Use 

 

The proposed geolocation method was coded in Python, in order to implement onto the 

Raspberry Pi 2 board. A daemon script is put into place on the Pi bash files, that will initiate the 

geolocation algorithm upon start-up of the Pi. This algorithm begins with establishing the 

MAVLink connection, in which the Pi maintains up to date with any changes in the UAV position 

and attitude information. If the gimbal controller allowed for logging capability, this would also 

be updated onto the Pi. The algorithm then runs the camera until a suspected region and its 

measurement is acquired, in which a loop is then initiated, shown in Figure 5.2.1 under the Image 

Processing component. The loop, seen in the Estimator component of Figure 5.2.1, first updates 

the UAV information through MAVLink. If this is the first time step in the estimation, it initializes 

the covariance matrices and the position estimate at the current UAV position, which corresponds 

to the center of the image. Then the Kalman filter equations are performed, updating the position 

estimate and its covariance. The current step measurements, position estimate, and covariance 

update are all logged onto the USB flash drive, along with the images.  
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An additional step is required for real-time implementation, which is to have a criterion for 

estimation convergence, in order to properly terminate the loop, shown in the Convergence 

component of Figure 5.2.1. The position estimate and its covariance, after being updated, are hence 

checked against their previous value. If the error in the estimate and its covariance are both small 

enough to satisfy a set tolerance, then convergence has occurred. The position estimate, which is 

in the local inertial frame L, is then converted back to GPS coordinates through the inverse of the 

method in which the octorotor position vector is acquired. Once this has occurred, a serial 

connection through the XBee radios is established. The XBee radio on the UGV side is connected 

to an Arduino Mega 2560. The Pi will first send a “g” indicating that it has converged and wait for 

a signal, determining whether the UGV is ready to receive data or not. Once received, the Pi will 

send the latitude and longitude values of the final estimate. If the estimator diverges, it will also 

initialize the serial communication and send a “d” over to the UGV, to indicate that a region has 

been detected, but the position estimation diverged. The Pi will then wait for confirmation from 

the UGV in the form of a “c”, which tells the Pi to continue scanning, or “k” which will indicate 

to the Pi to finish the geolocation procedure and begin the shutdown process.  
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Figure 5.2.1 Real-time geolocation algorithm structure components and objects 
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CHAPTER 6  
MULTI-TARGET GEOLOCATION WITH DATA ASSOCIATION 

 

6.1    Multi-Target Geolocation Problem Formulation 

 

The multi-target geolocation problem in this study is a set of simultaneous position estimation 

for multiple diseased leaves among many suspected measurements seen in the acquired images. 

The process for multiple target geolocation is shown in Figure 6.1.1. The required additions for 

considering multiple targets are a method for correlating each measurement to its respective target 

correctly and a method for incorporating these correlated measurements into the position estimate. 

A logic-based correlation method is proposed, where the measurements are validated based on a 

chi-squared probability criterion. The Probabilistic Data Association technique is adopted for 

measurement association. Both of these approaches are detailed in this chapter, and their roles are 

shown in Figure 6.1.1 below. 
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Figure 6.1.1 Multi-target geolocation algorithm overall structure 

 

It is assumed that there are nt diseased plants in each image, which are still considered 

stationary at their roots and their leaves move only as perturbed by winds. Any large, slow 

movements in the predicted measurement trajectories are still attributed to the UAV flight 

movements, whereas any small, faster fluctuations can be attributed to the measurement 

association. Additionally, since all plants are stationary, the position and measurement trajectories 

should be similar for all targets. Hence, the case of colliding or intersecting targets, briefly 

discussed in [20], can be ignored. The shallow plant assumption and face-down gimbal 

configuration is still valid, hence the orthographic projection measurement model still applies for 

multiple targets. The position error of 0.5m or less is still desired. 
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6.2    Multi-Target Geolocation Process Model 

 

It is assumed that there are nt diseased plants in an image. Each target plant is stationary, 

meaning that the state dynamics is modeled as 

0
, 1,...,

0

L

jL

j j tL

j

x
j n

y

   
       

  
x w      ( 6.2.1 ) 

The process noise , 1,...,j tj nw  accounts for disturbances, such as wind, and is assumed to be 

zero-mean, Gaussian white noise with variance matrix Q as 

 ~ 0, , 1,...,j tN Q j nw          ( 6.2.2 ) 

 

6.3    Multi-Target Geolocation Measurement Model 

 

The octorotor position vector in the inertial frame L, the rotation matrix from the inertial frame 

L to the octorotor body frame B, the rotation matrix from the body frame B to the camera frame C, 

and the camera position vector in the inertial frame L are all determined in the same fashion as for 

the single target geolocation, described in Section 3.3. As shown in Figure 6.3.1 below, the target 

position vector, its projection in the image, and the camera origin must still lie in-line, for each 

target. The vectors between the targets and the camera, as viewed in the camera frame, are 

expressed as 

 , , 1,...,C C L L

rel j L j c tR j n  x x x      ( 6.3.1 ) 
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where xj is the unknown position vector of the jth target plant and the subscript “rel” denotes that 

it is the relative vector between the camera position vector and the jth target position vector.  

 

 

Figure 6.3.1 Orthographic projection diagram for multiple targets 

 

In addition to dealing with multiple targets, there is the added consideration of dealing with an 

even greater number of measurements, where more than one measurement is within a validation 

region for each target. Hence the measurement equation, using the orthographic projection method, 

will be expressed as 

,

,

,

0 0
, 1,..., , 1,...,

0 0

p i x C

i rel j i t m

p i y

x l
j n i n

y l

   
       
   

y x v     ( 6.3.2 ) 
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where yi is the ith measurement and nm is the total number of measurements considered, which can 

be different than the total number of targets nt. The scale factors are calculated as before and the 

measurement noise term is assumed to be a zero-mean Gaussian for each measurement i with a 

constant covariance matrix Rv as 

 ~ 0, , 1,...,i v mN R i nv      ( 6.3.3 ) 

The measurement equation for each measurement is expanded, as before, to  

, 1,..., , 1,...,

L
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i i t mL

j

x
C D j n i n

y

 
      

 
y v    ( 6.3.4 ) 

where C and D are found from Equations (3.3.11) and (3.3.12) respectively. The measurements 

are adjusted in the same fashion and result in  

, 1,..., , 1,...,

L

j

i i i t mL

j

x
D C j n i n

y

 
       

 
y y v    ( 6.3.5 ) 

 

6.4    Logic-Based Measurement-to-Target Correlation Approach 

 

Estimating a target position is strongly dependent on whether the measurements originate from 

the target of interest or from other sources, such as other targets, false alarms, or disturbances. In 

the case of identifying targets by color or spectral intensity thresholding, as occurs in agricultural 

disease detection, a common occurrence is that false-alarm sources satisfy the threshold 

momentarily, due to varying lighting or other applicable conditions, which can provide misleading 
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measurements. More importantly however is the occurrence of multiple suspected regions in an 

image, which is the primary motivator for addressing uncertain measurements in this case. 

For single target measurement probabilistic data association, a validation region is formed to 

include the more probable measurements in the estimation, based on chi-squared probability 

analysis, and disregard the other measurements [20]. However, this discards the possibility of 

estimating additional targets outside the set validation region. Instead, all measurements are to be 

analyzed for their fit into the existing target validation regions, and considered as new targets if 

they do not fit into any region, similar to topics discussed in [20]. If a target trajectory no longer 

contains any valid measurements, it can be discontinued. The target estimates are expressed as 

ˆ
ˆ , 1,...,

ˆ

j
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j

x
j n

y

 
  
 

x       ( 6.4.1 ) 

and their predicted measurements as 

ˆ ˆ , 1,...,j j tC j n y x       ( 6.4.2 ) 

A validation criterion was established based on the innovation of the ith measurement from the 

jth target, as 
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η η
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where  is the innovation tolerance based on chi-squared probability, as done in [20]. Note that 

the total number of measurements changes with each acquired image, and the total number of 

targets changes based on the decisions made in this approach. The innovation is determined as 

,
ˆ ˆ , 1,..., , 1,...,j i i j i j t mC j n i n     η y y y x     ( 6.4.4 ) 
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where yi is the ith pixel measurement, ˆ
jy is the jth target estimated pixels, and the target innovation 

covariance Sj is 

, 1,...,T

j j v tS CP C R j n        ( 6.4.5 ) 

Each of these
ji values are placed into a binary matrix  , as shown in Figure 6.4.1 below. If 

measurement i satisfies the above criterion (its corresponding column contains at least one positive 

value) then it is considered as a possible measurement for target j (which is the target 

corresponding to the row where the nonzero value resides). Once all targets are checked and the 

corresponding column of the binary matrix is filled, further conditions are evaluated for that 

measurement. If measurement i does not belong to any target, denoted by an empty column i in 

, or 

,
1

0
tn

j i
j




      ( 6.4.6 ) 

a new target is initialized at that measurement location (nt increases). The estimates are initialized 

by inverting the measurement Equation (3.3.10) for the first measurement considered. For the case 

where a measurement corresponds to two or more targets or  

,
1

1
tn

j i
j




      ( 6.4.7 ) 

the target regions are combined into one estimate by taking the average of the two or more pixel 

estimates ˆ
jy and summing the innovation covariance of each target (nt decreases). This provides a 

new, single trajectory centered in between the previous pixel estimates with an increased validation 

region that will include all measurements previously belonging to the combined targets. It also 
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avoids needing to evaluate the joint probability of a measurement considered for multiple targets, 

which can be computationally intensive and unnecessary for stationary targets. After these checks 

have been performed for all given measurements, an additional condition is analyzed for each 

target being estimated. If a target has no measurements corresponding to it, denoted by an empty 

row j in  , or 

,
1

0
mn

j i
i




      ( 6.4.8 ) 

that target is discarded and no longer estimated (nt decreases). If not, then the probabilistic data 

association technique is performed for the remaining target tracks and their validated 

measurements.  
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Figure 6.4.1 Logic-based approach to measurement-to-target correlation flow chart 

 

6.5    Probabilistic Data Association for Each Target 

 

The measurements that fall within a target validation region are used to update the state 

estimation Kalman filter for that trajectory as follows. Depending on the level of confidence 
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desired in the measurement validation, a certain chi-squared value   is chosen which corresponds 

to a level of validation gate probability, denoted as PG. The probability of each measurement being 

the correct measurement is  

,
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        ( 6.5.1 ) 

based on a non-parametric, diffuse prior model [20], where a form of the likelihood function for 

each measurement innovation is used to determine the probabilities as 
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and where PD is the target detection probability, ,j i  is the likelihood function of measurement i, 

,0j  is the likelihood that no measurement is correct. Likewise, the probability that no 

measurement considered is correct is given as 
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where all of the measurement probabilities satisfy the Bayesian constraint that  
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Note that these parameters are dependent on the total number of measurements and targets and 

they are calculated for each target separately.  

 

6.6    Data Association in the Kalman Filter 

 

Since the approach is still modeled linearly, the continuous time Kalman filter, used in 

CHAPTER 3, is kept. The estimated states propagate nominally as  
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The probabilistic data association is incorporated into the Kalman filter through a combined 

innovation, calculated as 
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The state estimate measurement update is found to be 

ˆ , 1, , 1,...,j j j m tK i n j n  x η        ( 6.6.3 ) 

Where the Kalman gain is used in the form  

1, 1,...,T

j j j tK P C S j n       ( 6.6.4 ) 

and the covariance update, expressed in discrete form, accounting for the probabilistic data 

association, is calculated as 
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for 1,..., tj n .  

The first term in the covariance Equation (6.6.5) corresponds to the covariance for no correct 

measurements, the second is based on a covariance update weighted with the sum of measurement 

probabilities, and the last term is added based on the covariance of each measurement’s innovation 

squared, weighted with probability, from the combined innovation squared. The term in 

parentheses containing the matrix Q is the a priori covariance. These filter equations apply to each 

target trajectory that is initialized. Filter implementation was performed by using a finite time step, 

Euler integration approximation with a small time step to avoid discretization errors, as before. 
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CHAPTER 7  
MULTI-TARGET GEOLOCATION VALIDATION THROUGH 

SIMULATION 
 

7.1    Simulation Settings 

 

A simulation is performed in MATLAB to demonstrate the effectiveness of the proposed 

algorithm in distinguishing and geolocating multiple targets. The simulation runs for 10 s with a 

step size of 0.0667s, corresponding to the video frame rate used in the experiment. The home 

position (latitude, longitude, and altitude) is set at (28.599859°, -81.196549°, 0m) with the Earth 

radius of 6,373.2km. The simulated octorotor is hovering at (28.599848°, -81.1965378°, 10m), 

which is (1.09m, -1.22m, 10m) in the local frame L. A zero-mean Gaussian white noise with a 

covariance of 16m2 is added to the simulated octorotor motion in each direction. A moving average 

filter with a sliding window of 75 steps is applied to smoothen the noisy octorotor GPS signal. 

Three simulated diseased leaf targets with a constant height of 0.04m are placed at (28.59984157°, 

-81.1965374°), (28.5998495°, -81.1965488°), and (28.5998543°, -81.1965227°) latitude and 

longitude respectively.  

The camera scale factors, lx and ly, are found to be 66.67 pixels per meter in both directions. 

The targets have corresponding pixel values of (125, 126), (51, 67), and (221, 32) respectively. A 

random number of measurements from 1 to 11 is generated per target in a random distribution. 

These disturbance measurements are given a zero-mean Gaussian white noise with covariance of 

16pixel2 in both directions each. The process noise covariance matrix Q is set as a diagonal matrix 

with values of 2 m2/s. The filter estimates are initialized at the first valid measurement for that 

target, as mentioned above, and the estimate covariance P is initialized per target as a diagonal 
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matrix with 0.25 m2 in both the x and y direction diagonals. The detection probability is chosen as 

1 and a chi-squared parameter of 4 is selected, which corresponds to a gate probability of 0.865. 

  

7.2    Simulation Results and Discussion 

 

As shown in Figure 7.2.1, the simulated UAV position is noisy in all three directions and the 

moving average filter is used to smoothen them, which matches well with the anticipated values. 

There are shifts displayed in the moving average filter components for the octorotor motion in 

Figure 7.2.1, especially at the beginning of the filter where the number of values being averaged 

is low. 

 

 

Figure 7.2.1 Simulated octorotor motion along with the moving average filter in each direction 
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An image frame with the proposed correlation method and data association technique is 

displayed in Figure 7.2.2 below, where the predicted measurement for each of the three simulated 

targets is shown in the center of its corresponding validation region. The multiple measurements 

per region are displayed as well as the boundary points of the region.  

 

 

Figure 7.2.2 Measurement correlation and association performed in an image frame 

 

Figure 7.2.3 and Figure 7.2.4 show the estimated and actual pixel values of the three targets. 

The random measurements per target, placed along a Gaussian distribution, cause fluctuations in 

the output estimate based on their probability of being the correct measurement. These fluctuations 
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are bounded, as the measurements all stayed within the validation gate. Similar arguments can be 

made for the position estimates of the three targets, shown below in Figure 7.2.5 and Figure 7.2.6.  

 

 

Figure 7.2.3 Actual and estimated output in the x direction for each target 
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Figure 7.2.4 Actual and estimated output in the y direction for each target 

 

 

Figure 7.2.5 Actual and estimated position in the x direction for each target 
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Figure 7.2.6 Actual and estimated position in the y direction for each target 

 

The trace of the state covariance matrix, seen in Figure 7.2.7, is shown to converge to a small 

constant with minor fluctuations present due to the data association being performed. 
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Figure 7.2.7 Trace of the estimate covariance matrix for each target 

 

Overall, as shown in Table 7.2.1, the filter estimated the three targets accurately, and the 

position error is bounded by 5.4cm, which is much less than half of the width dimension of a 

typical strawberry row. 
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Table 7.2.1 Simulation results for actual and estimated target position 

 
Target 1 Target 2 Target 3 

x y x y x y 

Actual position, m 1.133 -1.936 0.020 -1.057 2.569 -0.523 

Estimated position, m 1.116 -1.956 0.043 -1.047 2.616 -0.469 

Position error, m 0.017 0.020 -0.023 -0.010 -0.047 -0.054 

Actual output, pixel 125.2 124.5 51.0 67.5 221.0 31.9 

Predicted measurement, pixel 124.7 125.1 50.4 66.2 221.4 32.2 

Minimum covariance trace, m2 0.197 

Settling time, s 0.667 

Computational time, s 0.132 
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CHAPTER 8  
MULTI-TARGET GEOLOCATION EXPERIMENT 

 

8.1    Experiment Settings 

 

Four red targets are placed in close proximity on a grass field and the octorotor is hovering 

above while recording the video as shown in Figure 8.1.1. A segment of the video is truncated 

from the raw video. This video is 12.6s long, with 189 frames at a time step of 0.0667s or 15 fps, 

and the image size is (240x150)pixel. With the fast gimbal system onboard, the camera is assumed 

to be well balanced and always in a face-down position.  

 

 

Figure 8.1.1 Video frame of the targets in the field 
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The video is pre-processed to obtain the target pixel locations. A color threshold that accepts 

pixels with a red intensity above 150 and a green intensity below 143 is used. Then the pixels are 

grouped into contours and all resulting contour centroids are considered as possible target 

measurements. Note that this relaxes the condition used in the previous comparison experiment, 

where only one contour, with the greatest area, was taken as the measurement. It is worth 

mentioning that a different identification scheme will need to be implemented when a spectral 

camera, instead of an RGB camera, is used in disease detection applications.  

The settings of home position, Earth radius, plant height, detection probability, chi-squared 

parameter, and validation gate probability, are the same as those shown in the simulation 

validation. The octorotor GPS measurements are converted to local frame position with Equation 

(3.3.1). The average octorotor yaw angle encountered throughout the flight was 35.36°. The gimbal 

is aligned to the front arm of the octorotor, as before, and perfect performance was assumed. The 

scale factors are found to be 75.09pixel/m and 76.04pixel/m for the range of altitude encountered. 

The measurement matrix and adjust vector, respectively, are  

48.943 34.988

35.432 49.564

pixel
C

m

 
  

  
        ( 8.1.1 ) 

and  

53.03

31.36
D pixel

 
  

 
      ( 8.1.2 ) 

The position of target 2 is determined by identifying an image frame where the target is in the 

middle of the image, and taking the octorotor GPS latitude and longitude at this frame as the target 

position. The other target positions are determined relative to target 2 and can be seen in Table 

8.2.1 in the experiment results. Due to the proximity of the targets to each other, small values for 
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the diagonals of covariance matrices P0, Q, and R of 0.01 m2, 0.05 m2/s, and 10 pixel2 respectively, 

are chosen. 

 

8.2    Experiment Results and Discussion  

 

The octorotor position trajectory is plotted first in Figure 8.2.1 below, where it is observed that 

the octorotor shifted 0.39m, 1.148m, and 2.11m in each direction, respectively. Because there is a 

35.36° yaw angle, the UAV movement effects in the target position and measurement estimations 

are cross-coupled in direction.  

 

 

Figure 8.2.1 Octorotor position in all three directions, respectively  
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An image frame with the measurement correlation and data association being performed on 

the flight video is provided as Figure 8.2.2. The circles indicate the predicted measurement location 

for each target in the image, the yellow stars indicate the multiple measurements validated for each 

target, and the blue stars indicate the boundaries of the validation region for that time step. It will 

be noted that target 4 (on the bottom right) receives no measurements for a time from 3s5s, in 

which the estimation trajectory is terminated, then reinitialized when the measurements reappear. 

This occurs because the red box for target 4 did not satisfy the identification criterion for a time 

due to lighting. Additionally, multiple false alarm spots further away from the targets satisfy the 

identification criterion for a time, are estimated, then terminated when the measurements 

disappear.  

 

 

Figure 8.2.2 Image frame of the flight video with correlation and data association approaches applied 
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The predicted measurements for each of the target estimations appear in the x and y directions 

in Figure 8.2.3 and Figure 8.2.4, respectively. The predicted measurements are shown to have 

many small, fast fluctuations, due to the considered of multiple measurements in each time step to 

propagate the predicted measurement for each target. In the x direction, the larger, slow shifts, due 

to the octorotor motion in flight, tend to only move the estimate by about 20pixel per target track. 

In the y direction, however, the shifts appear to move the estimated measurements about 70pixel 

per track, which correlates with the magnitude of octorotor movement seen above, although cross-

coupling is present. The disappearance of target 4 is reflected in the predicted measurement plots. 

 

 

Figure 8.2.3 Predicted measurements in the x direction for each target 
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Figure 8.2.4 Predicted measurements in the y direction for each target 

 

The target actual and estimated positions are given in Figure 8.2.5 and Figure 8.2.6 below, for 

the x and y directions, respectively. The position estimate trajectories converged in each direction, 

within a bound. The maximum error values encountered for each target in each direction is given 

in Table 8.2.1 below. The greatest error seen in any of the trajectories was 0.383m in the x direction 

of the estimate for target 4, which satisfies the goal of a position error less than 0.5m. Therefore, 

the approach presented in this thesis has demonstrated that it is effective for geolocation of multiple 

diseased strawberry trees. 

The covariance trace plot for each of the target estimations is provided in Figure 8.2.7 below. 

Each plot is shown to converge to its respective value, shown in Table 8.2.1, albeit with minor 

fluctuations due to the data association. It should be noted how the trace for target 1 increases at 

certain points along the trajectory. This is due to measurements appearing outside the validation 
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gate for the target 1 trajectory, which creates a new target for that step. In the following step, a 

common measurement is seen between the two trajectories, the two are joined, and their covariance 

is superimposed, creating this jump in the trace plot from one step to another.  

 

 

Figure 8.2.5 Actual and estimated position in the x direction for each target, respectively 
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Figure 8.2.6 Actual and estimated position in the y direction for each target, respectively 

 

 

Figure 8.2.7 Estimate covariance trace for each target, respectively  
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Table 8.2.1 Experiment results for actual and estimated target positions 

 
Target 1 Target 2 Target 3 Target 4 

x y x y x y x y 

Actual 

position, m 
0.996 -1.035 1.065 -1.491 1.465 -1.212 1.445 -1.613 

Estimated 

position, m 
0.959 -1.086 0.850 -1.643 1.505 -1.456 1.216 -1.903 

Position error, 

m 
-0.037 -0.051 -0.215 -0.152 0.040 -0.244 -0.229 -0.290 

Maximum 

position error, 

m  

0.311 0.370 0.360 0.309 0.353 0.377 0.383 0.367 

Min. 

covariance 

trace, m2 

0.022 0.0168 0.0175 0.018 

Computational 

time, s 
0.0444 
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CHAPTER 9  
CONCLUSION 

 

9.1    Concluding Remarks 

 

A custom-designed octorotor UAV for disease detection in strawberry orchards is presented. 

The requirements used to design the octorotor, along with its overall features and specifications 

are provided. A geolocation method based on an orthographic projection measurement model is 

derived, in order to geolocate the diseased region from the images where it is encountered. It is 

based on assumptions applicable to the disease detection scenario for strawberry plants, and is 

tailored for use on-board through low computational time. This method is linear and uses a Kalman 

filter for its position estimation. The proposed method is then compared to nonlinear method using 

an extended Kalman filter, based on the commonly used perspective projection measurement 

model, in both simulation and an ad-hoc experiment using real flight data. The two filters are 

shown to perform well and in similar fashion, however the proposed geolocation method has less 

error and requires less computational time. The geolocation algorithm was then adjusted and 

implemented onto a Raspberry Pi 2 board for real-time implementation. This geolocation method 

will allow the detected disease to be localized in real-time aboard the UAV and in the initial 

scouting phase, further advancing the disease detection process towards becoming an autonomous 

process.  

The geolocation method is extended to deal with multiple diseased regions. A logic-based 

method is proposed to perform proper measurement-to-target correlation by analyzing each 

measurement-to-target relationship based on Chi-squared probability. Then a probabilistic data 

association technique is used to determine the probability of each validated measurement being 
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the correct image location for that suspected target being estimated. The measurement is then 

weighted by its probability and associated into the Kalman filter estimation for its target. As 

compared to other association approaches, this association method is also less computationally 

intensive. The proposed multi-target geolocation method was validated through simulation and 

experiment and was demonstrated to meet the desired position error. Overall, this method will 

allow for multiple diseased regions to be geolocated simultaneously in the initial scouting phase 

of the disease detection process. 

 

9.2    Future Work 

 

Future work will include accounting for octorotor maneuvers using a maneuvering, multi-

target tracking technique. This will allow the method to be used on fixed-wing UAV as well. The 

proposed correlation approach and probabilistic data association technique will be incorporated 

onto the Raspberry Pi 2 for real-time multi-target geolocation. An adaptive method for determining 

the covariance weight matrices Q, R, and P0, in real-time will also be developed. A method for 

incorporating the position estimation into the flight trajectory and control of the UAV will be 

developed. Testing in real-time with a spectral camera on-board, and with a proper disease 

identification scheme, in a strawberry orchard setting is desired.  
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