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ABSTRACT 

For many centuries, chemists have dedicated many labor-intensive hours to improving the 

quality of life for mankind by developing synthetic methods for the production of compounds 

which fulfill the needs and meet the demands of society.  However, the innovation of such 

compounds has frequently come at the cost of detrimental side-effects that do not always present 

themselves until many years, or even decades, following their initial application.  Many 

compounds in this category come in the form of globally-distributed halogenated molecules which 

are toxic to many living organisms, susceptible to bioaccumulation and resistant to biodegradation 

processes. Such compounds are classified as persistent organic pollutants (POPs), and require safe, 

sustainable and economically viable remediation techniques due to their destructive effects on 

organisms and the environment In the work done for this dissertation study, three particular POPs, 

which can be further classified as Polychlorinated Aromatic Hydrocarbons (PCAHs), were 

studied: pentachlorophenol (PCP), hexachlorobenzene (HCB) and pentachloroanisole (PCA).  

Chlorophenols are highly toxic compounds, usually found in soils, water, and effluents 

resulting from industrial activities. These environmentally-persistent compounds have been found 

to exhibit probable carcinogenic properties by the United States Environmental Protection Agency 

and the International Agency for Research on Cancer. The most toxic chlorophenol is PCP, which 

has a regulated maximum contaminant level (MCL) of 0.03 mg/L in water. Due to the high toxicity 

of PCP, it is necessary to treat water and soils that have tested positive for concentrations above 

the MCL. The aim of this work is to demonstrate the capabilities of using ball-milled zero-valent 

magnesium powder with various amendments, such as acetic acid (as an activator) and ethanol for 

the dechlorination of PCP. The dechlorination processes of these various combinations were 
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compared in an attempt to determine the most effective system for the degradation of PCP to 

phenol. Three systems with powerful capabilities of treatment were studied: ball-milled 

magnesium powder, ball-milled magnesium carbon (Mg/C), and mechanically alloyed magnesium 

with palladium. The results of these studies indicate that the most rapid and complete PCP 

dechlorination is achieved using mechanically alloyed Mg/Pd and a matrix consisting of at least 

0.02 g Mg0/mL of ethanol and 10 µL acetic acid/mL of ethanol, in which case 20 ng/µL of PCP 

was dechlorinated to phenol in approximately 15 min. with a carbon mass balance of 94.89%.  

Hexachlorobenzene (HCB), like many chlorinated organic compounds, has accumulated 

in the environment from agricultural and industrial activity. After its introduction as a fungicide in 

1945, the extensive use of this toxic chemical has instigated its infiltration into all food types. 

Prohibition from commercial use was enforced in the United States in 1966 due to animal, and 

possible human, carcinogenic effects. Because of the health risks and the adverse impact on various 

ecosystems, remediation of this contaminant is of vital concern. The objective of this study is to 

evaluate the proficiency of activated-magnesium metal in a protic solvent system to enhance the 

reductive dechlorination of HCB. Experimental results were compared with those predicted by 

quantum chemical calculations based on Density Functional Theory (DFT). Multivariate analysis 

detected complete degradation of HCB within 30 minutes, having a rate constant of 0.222 min-1, 

at room temperature. Dechlorination was hypothesized to proceed via an ionic mechanism, and the 

main dechlorination pathways of HCB in 1:1 ethanol/ethyl lactate were HCB → PCBz → 1,2,4,5-

TCB; 1,3,4,5-TCB → 1,2,4-TriCB; 1,3,5-TriCB → 1,4-DiCB; 1,3-DiCB. The direct relationship 

between the decreasing number of Cl substituents and dechlorination reaction kinetics agrees with 

the ΔG values predicted by the computational model. Therefore, the lowest energy pathway for C-
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Cl bond dissociation predicted computationally agrees with the experimentally determined kinetic 

data. The experimental results from these studies have helped to improve our understanding of the 

dechlorination mechanisms, thereby offering insight into the most efficient pathways for 

remediation in the environment. This methodology shows promise for the development of an 

economic and sustainable field application for the treatment of other chlorinated aromatic 

compounds. In further work, developments will be made in the modification of the system to allow 

for the implemetation of field-scale applications.  

Chloroanisoles are compounds that have similar properties to chlorophenols, but have a 

higher tendency to bioaccumulate and resist degradation because of their lipophilicity. They are 

not manufactured for commercial use, but exist in equilibrium with chlorophenols in the 

environment through biological transformation. Due to the toxicity of both compounds, a strategy 

for remediation is highly sought after. This study has served to develop an approach to meet the 

needs for this treatment, based on the successful treatment of PCPs using zero-valent magnesium 

(ZVMg) discussed in Chapter 1. The results of the method, which makes use of ZVMg/C in 

acidified ethanol, are compared for both target analytes. Both substrates were degraded to less-

chlorinated byproducts within the first four hours; however PCP vanished at a faster rate with no 

detection at seven minutes. The more heavily-chlorinated byproducts showed faster degradation 

rates for both compounds, which also had 2,4-dichlorinated congeners in common as major 

byproducts. The mole balances of PCA and PCP were 92.6% and 94.8%, respectively. Further 

studies were done to enhance degradation kinetics by re-spiking with acetic acid after two weeks. 

Although complete degradation was still not achieved, a slight improvement was observed for both 
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compounds, more so with respect to PCP. Kinetic data followed pseudo first-order trends for the 

degradation of both PCA and PCP. 
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CHAPTER ONE: THREE MAGNESIUM TREATMENT SYSTEMS FOR 

THE DEGRADATION OF PENTACHLOROPHENOL 

 

Some of the contents of this chapter are reproduced from our published work:  

A.M. Garbou, C.A. Clausen C.L. Yestrebsky, Chemosphere, 2017, 166, pgs.267– 274. 

 

Introduction 

Chlorinated phenols (CPs) are produced in large quantities; annual global production is 

estimated to be around 150,000 tons. CPs have a variety of different applications, mainly in wood 

preservation. They are also found in fungicides, bactericides, herbicides, insecticides, mold 

inhibitors, antiseptics and disinfectants. CPs have seen use as starting materials for certain 

pesticides as well as dyes and pigments, and are formed as byproducts during the bleaching of pulp 

with chlorine, in municipal chlorination of drinking water and in incomplete 

incineration.(Trapido, Hirvonen et al. 1997) Improper management of industrial wastes, 

accidental spills, leakages, runoff, domestic sewage, and liberal use of pesticides in crops has 

resulted in the prevalence of CPs in natural waters and soil (the MCL for total CPs is 0.01 

mg/L).(Cass, Freitas et al. 2000) Even at low concentrations, CPs present difficulties in 

maintaining water quality for human consumption.(Hwang, Hodson et al. 1986, Cass, Freitas et 

al. 2000, Torres, Hernandez et al. 2010) This is because highly toxic organic compounds, such 

as polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/ PCDF), are 

generated when PCP undergoes a photochemical reaction.(Kim and Carraway 2003, Chen, 
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Huang et al. 2007) Since the toxicity of CPs increases with the number of chloro groups 

substituted on the ring, pentachlorophenol (PCP) is the most problematic of the CPs.(Kim and 

Carraway 2003) The persistence and toxicity of CPs have incited public awareness and desire to 

remediate polluted sites, thereby preventing further risks to ecosystems.(Trapido, Hirvonen et al. 

1997, Cass, Freitas et al. 2000)  

Chlorinated phenols are harmful to plant and animal life. Since the toxicity of 

chlorophenols increases with the number of chloro groups substituted on the ring and there are five 

positions on a phenol ring which allow for substitution, pentachlorophenol (PCP) is the most 

problematic of the chlorinated phenols.(Doyle, Miles et al. 1998) In addition to their 1980 (Doyle, 

Miles et al. 1998) suspension in the United States, PCP has been banned contemporarily in most 

European countries. This is due to the high toxicity of their xenobiotic daughter compounds which 

are normally found in the industrial effluents of pulp, paper, oil, petrochemicals, synthetic plastics, 

timber, and other aforementioned products.(Torres, Hernandez et al. 2010) In other countries, 

however, chlorophenols still see steady production. For example, Mexico has an important oil and 

petrochemical industry which refines around 10,000 barrels of crude oil annually, yielding nearly 

100 kg of phenols.(Torres, Hernandez et al. 2010) Contamination persists even around 

abandoned facilities such as an old PCP factory found in Taiwan.(Chen, Huang et al. 2007)  

Chemical and physical properties control the environmental behavior of each individual 

CP. As the number of substituted chloro groups increases, there is an increase in melting/boiling 

point and a decrease in water solubility. Since CPs are weak acids, there is a direct relationship 

between increasing pH and water solubility.(Kim and Carraway 2003, Chen, Huang et al. 2007) 

For instance PCP, which is fully chlorinated, has a pKa of 4.60 and is less soluble than 4-
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chlorophenol, which has a pKa of 9.5.(Kim and Carraway 2003) The acidic properties of the 

phenolic hydroxyl group of PCP (pKa = 4.60) (Buhr, Genning et al. 2000) contribute to its 

adsorption to wooden surfaces by the chemical bonding of functional group coupling, as in the 

case of lignins.(Buhr, Genning et al. 2000) Physical properties also have an effect on the 

environmental behavior of CPs. With a high vapor pressure of 1.1×10–2 Pa (at 20 °C), PCP can 

volatize from the treated material, thereby contaminating indoor environments .(Buhr, Genning 

et al. 2000) Due to the risk of these compounds to marine life and human health, they have been 

included on the list of the eleven priority phenol derivatives compiled by the United States 

Environmental Protection Agency.(Solanki and Murthy 2011) 

Past and Current Remediation Options 

Biodegradation  

CPs are persistent, toxic, and omnipresent in the environment. Furthermore, the ever-

increasing discharge of these compounds has caused various problems in water and wastewater 

treatment systems.(Solanki and Murthy 2011) Because of their carcinogenic potential, and 

bioaccumulation, remediation of these pollutants is of great importance.(Buhr, Genning et al. 

2000) In recent developments, physical-chemical and biological systems have been put into place 

for the degradation of CPs that are present in aquatic ecosystems. Work has been done to study the 

biodegradation of 4-chlorophenol by the bacterium Pseudomonas putida,(Li and Loh 2007) the 

biodegradability of 2,4-dichlorophenol in an upflow anaerobic sludge bed bioreactor(Chen, 

Huang et al. 2005) and the treatment of wastewater containing 2,4,6-trichlorophenol in a hybrid-

loop bio-reactor scheme .(Eker and Kargi 2007) Although ample research has been done on the 
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biodegradation of CPs, traditional treatment technologies are insufficient,(Cass, Freitas et al. 

2000) mainly because highly CPs are always xenobiotic and toxic to microorganisms, and also due 

to the inability of the bacteria to function under standard conditions.(Kim and Carraway 2003)  

Reductive Dechlorination by Zero-valent Metals (ZVM) 

In the last 20 years, the use of zero-valent metals (ZVM) such as iron, zinc and magnesium 

has shown great promise for in situ remediation of chlorinated aromatic hydrocarbons such as 

PCP.(Grittini 1997, Kim and Carraway 2000, Kim and Carraway 2003, Chen, Huang et al. 

2007) Although rapid PCP dechlorination was observed in a study conducted by Ravary and 

Lipczynska-Kochany (Kim and Carraway 2003) using zero-valent iron (ZVI), the results may be 

at least partially due to loss of the analyte from adsorption. In a series of batch experiments 

performed by Kim and Carraway (Kim and Carraway 2003) reductive dechlorination of penta-, 

tetra-, and trichlorophenol by zero-valent zinc (ZVZ), begot less-chlorinated reduction products of 

their respective phenols. However, the experiment showed no further dechlorination for the 

remainder of the 25-day period. Kinetic research evaluating the efficiency and mechanism of PCP 

degradation utilizing nanoscale zero-valent iron (ZVI) has been accomplished successfully by 

Chen, et al.(Chen, Huang et al. 2007) Further studies have confirmed ZVZ to be better suited than 

ZVI for PCP removal due to its greater reduction potential.(Kim and Carraway 2003) Despite 

the much higher reactivity of ZVZ than ZVI towards CPs, limited work has been made of ZVZ on 

account of the discharge of toxic Zn species released from zinc particles. These species may 

present a risk to the environment.(Kim and Carraway 2003) 
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Bimetallic Systems 

Although reductive dechlorination is possible with single metallic reaction systems, 

bimetallic systems can be much more efficient even at normal temperature and pressure. Bimetallic 

systems consist of two metals, one of which has negative reduction potential due to its zero-valent 

form (e.g. Fe0, Zn0 and Mg0). This component of the system has the potential to give off hydrogen 

when water activates corrosion from the anode. The great positive reduction potential of the other 

component of the bimetallic system (e.g. Pd4+-Pd0, Ag+-Ag0) offers catalytic hydrogenation, as 

well as reduction of the target analyte by forming a metal hydride (M-H) from the hydrogen 

produced by the anodic corrosion.(Solanki and Murthy 2011) In work done by Grittini,(Grittini 

1997) such degradation byproducts as phenol, 2,4,6-triCP and 2,3,4,5-tetraCP were observed using 

a Pd-Fe bimetallic system. Trends have been observed in the success of bimetallic systems which 

rely on the great negative reduction potential of zero-valent magnesium (ZVMg) to give off 

hydrogen for reductive dechlorination.(Coutts, Devor et al. 2011) Successful synthesis of a 

magnesium nanocatalyst and Mg-Ag 

bimetallic catalyst systems have been accomplished in research performed by Jignasa, et 

al.(Solanki and Murthy 2011) After analyzing the results using scanning electron microscopy 

(SEM) and dynamic light scattering (DLS), optimal success was achieved with the Mg-Ag 

bimetallic nanocatalyst.  

One advantage of using magnesium over iron is its reactivity under aerobic conditions. To 

prevent the formation of oxide layers on the surface of iron, studies must be performed in an 

anaerobic environment.(De Vor, Carvalho-Knighton et al. 2009) This is due to the slightly 

water-soluble limiting oxide shell that forms on its surface. When zero-valent iron comes into 
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contact with oxygen, an insoluble oxide layer forms on the surface of the iron that prevents 

electrons from being released in solution to reductively dechlorinate the substrate.(Maloney, 

DeVor et al. 2011) This necessitates an anaerobic environment under which ZVI studies must be 

conducted. Magnesium, however, can be used freely under normal atmospheric conditions. (Doyle, 

Miles et al. 1998) Furthermore, the great negative reduction potential of magnesium offers more 

free-energy to drive the reaction than iron or zinc, as shown in the standard reduction potential 

equations below(Maloney, DeVor et al. 2011):  

Mg2+ + 2e−→ Mg0, E0 = −2.37 V  

Fe2+ + 2e−→ Fe0, E0 = −0.44 V  

Zn2+ + 2e−→ Zn0, E0 = −0.76 V  

ZVMg for Reductive Dechlorination 

Due to the advantages of magnesium as an electron-donating zero-valent metal, 

magnesium has been made use of to great effect in polychlorinated biphenyl (PCB) degradation 

studies. Kinetic studies on the hydrodehalogenation degradation of PCB-151 performed by 

Maloney and associates (Maloney, DeVor et al. 2011) determined the ideal reaction conditions 

with magnesium powder and alcohol solvents using a variety of carboxylic acids. These studies 

have concluded that the best results for rapid dechlorination of PCB-151 are accomplished with a 

ratio of 0.02 g of Mg per one mL of ethanol and 10 µL of acetic acid per one mL of ethanol. The 

results showed an approximate degradation rate of 1.25 ngµL-1min-1 for 50 ng/µL of PCB-

151.(Maloney, DeVor et al. 2011) In another study done by Doyle et al.,(Doyle, Miles et al. 1998) 

complete hydrodehalogenation of a mixture of PCB congeners (Aroclor 1221) to biphenyl was 
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achieved utilizing a Mg/Pd bimetal system. Additionally, other halogenated analytes such as DDT 

(1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane) and a variety of chlorophenols, naphthalenes and 

polychlorinated dibenzo-p-dioxins have seen successful degradation using Mg/Pd in different 

solvent systems.(Engelmann, Doyle et al. 2001, Hadnagy, Rauch et al. 2007, Patel and Suresh 

2007) In recent work, Dr. Christian Clausen, Dr. Cherie Geiger and co-workers (DeVor, 

Carvalho-Knighton et al. 2008, De Vor, Carvalho-Knighton et al. 2009, Coutts, Devor et al. 

2011) of the Industrial Chemistry Laboratory (University of Central Florida) proved a bimetallic 

system of mechanically alloyed magnesium and palladium (1% on graphite) to be effective in 

degrading PCBs.  This leads the research of the Industrial Chemistry Laboratory in the direction 

of a pentachlorophenol degradation investigation.   

Ball-milling Procedure  

Ball-milling offers a preparation method for catalyzed bimetallic systems to be able to 

function in aqueous solvent systems with minimal oxidation. Previous preparation methods have 

involved in situ synthesis of the bimetallic system through a spontaneous oxidation process 

between Pd4+ and zero-valent metal, followed by immediate application. (Morales, Hutcheson et 

al. 2002, Patel and Suresh 2007) However, these procedures must be performed at the time of 

treatment, and do not allow for convenient long-term storage of the reactants. Additionally, 

oxidation on the surface of the un-altered metal leads to rapid formation of insoluble oxides which 

decrease reactivity. Research done by Huot et al. and Soave et al. 

(Huot, Liang et al. 2001) has shown that the ball-milling process enhances the reactivity of zero-

valent magnesium metal by cracking the superficial hydroxide/oxide layer, which changes the  
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microstructure creating more surface defects. Figure 19 in Appendix A illustrates a drastic 

decrease in the concentration of PCB 151 by degradation with ball-milled ZVMg over time, 

compared to the changes observed with unmilled ZVMg. (Maloney, DeVor et al. 2011) The 

proven efficacy of the novel technique of ball-milling has offered promising leads in the 

advancement of degradation technology, and serves as an influence to the pentachlorophenol 

degradation investigation covered in this paper.   

Materials and Methods 

Neat PCP standards were obtained from Accustandard and standard solutions were 

prepared by diluting the neat standards to their desired concentration with absolute ethanol from 

Pharmco-AAPER. Inc. Absolute ethanol, Optima® grade hexane, toluene, potassium carbonate and 

acetic anhydride were obtained from Fisher Scientific (Ottawa, ON.). Glacial acetic acid (≥99.8%) 

was acquired from Acros Organics through Fisher Scientific. Micro-scale unmilled magnesium 

(∼4 µm) was obtained from Heart Metals, Inc (Tamaqua, PA). Palladium on graphite (5 wt.%) and 

sodium sulfate were obtained from Sigma-Aldrich Chemicals. Helium gas, for gas 

chromatography-mass spectrometry (GC/MS) analysis, was purchased from Air Gas (Atlanta, 

GA). All chemicals were high purity (≥98%) and ACS reagent, analytical grade. All chemicals 

were used in the form in which they were received unless otherwise noted. A precision microscale 

analytical balance (Model AE 260-S from Mettler-Toledo AG, Greifensee, Switzerland) was used 

to measure the different Mg loadings.  
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Ball-milling Procedure  

Magnesium activity is increased through ball-milling, a process in which the passivated 

hydroxide/oxide surface layer is cracked, thereby creating more surface defects which change the 

microstructure.(Maloney, DeVor et al. 2011) In this study magnesium powder, magnesium carbon 

(Mg/C), and ZVMg mechanically alloyed with palladium on carbon, were ball-milled under 

optimized conditions. The ball-milling was performed using a Red Devil 5400 series paint shaker 

fitted with custom plates to hold milling canisters, which provided 670 rpm for ball milling of the 

metal.(Coutts, Devor et al. 2011) The canister and balls are made of stainless steel. Magnesium 

powder (85 g) was introduced into the canister with 16 steel balls of 1.5 cm diameter having a total 

mass of 261.15 g, corresponding to a ball/powder mass ratio of 3:1. The canister was sealed under 

argon atmosphere. The milling duration was 45 minutes. Additionally, to obtain ~10 wt% ball-

milled magnesium/carbon, 76.5 g Mg powder and 8.5 g of graphite (C) were introduced into the 

canister. The material was ball-milled for 30 minutes using the aforementioned paint mixer. 

Finally, a ~0.1 wt% palladium on magnesium powder mixture was prepared in a similar fashion 

by ball-milling 83.2 g Mg with 1.8 g of 5% palladium on carbon in a stainless steel canister for 30 

minutes using the aforementioned paint mixer.  

Experimental Procedure  

Experiments were conducted in 20 mL clear glass vials. Ball-milled Mg (0.25 g) and 5 mL 

of a 20 ng/µL (75.09 μM) PCP in absolute ethanol solution were added. Next, glacial acetic acid 

(50 µL) was added, and the vials were then placed on a Thermo Scientific MaxQ 4000 orbital 

shaker table operated at 200 rpm, at room temperature (∼26 ◦C) for the appropriate amount of time. 
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At designated time points, the glass vials were taken off of the shaker table and sonicated for 5 

minutes. Then 5 mL samples of the solution were centrifuged for 10 minutes and filtered using a 

nylon syringe filters with 0.45 µm pores. Due to the relative polarity, chemical reactivity and low 

vapor-pressure of PCP, it was necessary to prepare a derivative in which the hydroxyl group was 

substituted with an acetate group by treating PCP with acetic anhydride.(Buhr, Genning et al. 

2000) This was done in order to minimize adsorption and prevent tailing of the chromatographic 

peaks.(Zuin, Da Silva Airoldi et al. 1999) The organic phase, containing the derivatized PCP, 

was separated, dried over Na2SO4 for 5 minutes and transferred to a clean 4 mL screw-cap vial. 

Then 2 mL were pipetted into a GC-vial for analysis.  

 Analysis  

All of the experiments were conducted in duplicate. The toluene/hexane extracts were 

analyzed for residual PCP and its degradation byproducts on an Agilent 6850 series II GC/MS 

equipped with an autosampler and an Agilent 5975 mass spectrometer. An Rxi®-5HT capillary 

column (30 m × 0.25 mm i.d.; 0.25 µm film thickness) was used with helium as a carrier gas, with 

a flow rate of 2.0 mL/min and a gas velocity of 53 cm/s. The instrument parameters were as 

follows: after an initial temperature of 100 ◦C was held for 2 minutes, the column was ramped at 

10 ◦C/min to 250 ◦C and then held for 2 minutes prior to cool down. The temperature of injector 

and detector were maintained at 250 and 280 ◦C respectively. Injection volumes were set at 2 µL 

and were performed in splitless mode. The limit of detection (LOD= 3Sb/m), and the limit of 

quantitation (LOQ= 10Sb/m) were calculated in order to determine the minimum concentration 

which is detectable at a known confidence, and the lowest concentration of analyte which can be 

measured by the instrument, respectively. These calculations are vital for validating the efficacy 
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of the method, with lower values indicating better accuracy. A calibration plot for PCP and its 

chlorinated phenol byproducts was prepared in the concentration range of interest and was found 

to be linear with correlation coefficient values at >0.99. This plot is shown in Figure 20 (Appendix 

A). Eluted compounds were identified by comparing sample mass spectra to reference spectra 

catalogued by the National Institute of Standards and Technology (NIST). PCB-153 (2,2',4,4',5,5'-

hexachlorobiphenyl) was used as an internal standard for the analyses. Degradation was measured 

by disappearance of the PCP peak and confirmed (as opposed to adsorption to the Mg) by the 

appearance of lower chlorinated congeners. Selected ion monitoring (SIM) parameters are shown 

in Appendix A (Table 1). Separate analyses were conducted to monitor the changes in pH of all 

three ZVMg reaction systems over the duration of one week. For this study, 1 mL aliquots of the 

ethanol solution were collected from the samples, at chosen time points, and then transferred into 

vials where they were diluted 9:1 with deionized water. The pH of each of the solutions was then 

measured using an Accumet Research AR15 pH meter. Back-calculations of the hydrogen ion 

concentrations in the non-aqueous solvents were then conducted to understand the reaction 

conditions based on the observed change in pH.  

Dissertation Objectives 

The objective of this research is to compare the dechlorination processes of ZVMg systems 

to establish a technology for use as an ex situ application for the remediation of PCP. This research 

focuses on three systems with great capabilities of treatment: ball-milled magnesium powder, ball-

milled magnesium carbon (Mg/C), and mechanically alloyed ZVMg with a catalyst, in this case 
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palladium, creating a bimetallic system capable of dechlorinating PCP very rapidly to less toxic 

CPs.      

Results and Discussion 

 Degradation of PCP with ball-milled Mg, Mg/C, and mechanically alloyed Mg/Pd 

A kinetic study of these treatment systems was performed in an ethanol solvent system 

with an initial PCP concentration of 66.72 µM, closed in a vial with acetic acid, (to keep the surface 

of the ball-milled ZVMg clean from the formation of thick oxide/hydroxide layers, so that the 

ethanol can establish contact), (Elie, Clausen et al. 2012) at room temperature. The data on the 

time-dependent concentration of PCP from these studies, in each metal system, are illustrated in 

Figure 1. The LOD and LOQ were determined to be 2.14 µM and 7.14 µM, respectively. The plot 

below illustrates a rapid decrease in the concentration of PCP, with no detection of PCP after 30 

min for any of the magnesium systems. After 4 min, reduction in PCP concentration showed that 

the percent degradation for PCP with ball-milled ZVMg, ZVMg/C, and mechanically alloyed 

ZVMg/Pd was 17.19%, 68.29% and 33.32%, respectively. After 15 min of treatment, PCP 

concentrations decreased by an average of 36.6% and 62.4% when treated with ZVMg and 

ZVMg/Pd, respectively. However, no PCP was detected after treatment with ZVMg/C. In previous 

studies, (Elie, Clausen et al. 2012) faster reaction kinetics were observed using ball-milled 

ZVMg/C than  either milled or unmilled ZVMg. This is due to the protection offered by the layers 

of graphite on  the metal surface which prevent an oxide layer from forming, as confirmed by 

Scanning Electron Microscopy (SEM) (Elie, Clausen et al. 2012) (Figure 21 in Appendix A). 

These results are in agreement with the observations made by Bouaricha et al. (Bouaricha, 
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Dodelet et al. 2001) This protection, combined with the added cleaning effect of the glacial acetic 

acid on the ball-milled metal after exposure to air, afforded maximum reactivity for the surface of 

the metal to accomplish the degradation. (Elie, 2012) Another explanation for the enhanced 

reaction kinetics of ZVMg/C is the difference in its particle diameter compared to the unmilled 

and ball-milled ZVMg (9 μm versus 18 and 14 μm, respectively). (Elie, 2012) 

 

Figure 1: Respective degradation of PCP with the activated Mg, Mg/C, and mechanically alloyed 

Mg/Pd systems after 15 min of treatment in acidified ethanol.  
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for all three reaction systems, can be found in Appendix A (Figure 22). Additional 

chromatograms showing the formation of dechlorination byproducts for each system over the 

course of one hour can also be found in Appendix A (Figure 23).    

Concentration of Dechlorination Byproducts and Mole Balance over Time 

The appearance of many degradation byproducts of PCP became evident in the mass 

spectra of the sample taken at different time points over a six day study on the three magnesium 

systems. As presented in Figure 2, the reductive dechlorination of the PCP by ZVMg and the 

production of tetra-, tri-, di-, mono-chlorinated phenols and phenol itself were observed. The 

graphic data detailing the formation of the minor byproducts is presented in the Appendix A 

(Figure 24). Results from the ZVMg/Pd system (Figure 24-C) showed that the degradation of PCP 

yielded 12 different congeners of dechlorination byproducts including 2 isomers of tetra-, 4 

isomers of tri-, 3 isomers of di-, 2 isomers of mono chlorinated phenols and phenol. Similar trends 

were observed for ZVMg and ZVMg/C systems (Figure 24-A,B). However, two notable 

byproducts observed from the dechlorination of PCP in ZVMg system were 3,5-DiCP and 3-CP. 

ZVMg/C system showed the same degradation byproducts as ZVMg with the exclusion of 2,3,4-

TriCP.       
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Figure 2: Dechlorination of PCP with the activated (a) Mg, (b) Mg/C, (c) mechanically alloyed 

Mg/Pd reducing systems. Each data point represents the mean ± error calculated from duplicate 

samples. 
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Figure 3: Mole balance and percent chlorinated byproducts plus phenol for PCP/Mg systems 

after six days of degradation. No CPs were detected for Mg/Pd system. 

Dechlorination kinetics were faster for higher-chlorinated chlorophenol congeners. The 

dechlorination kinetics showed an increasing trend in the order of ZVMg < ZVMg/C < ZVMg/Pd. 

The majority of the PCP degradation occurred within the first four minutes with ball-milled 

ZVMg/C, while little degradation occurred from the ZVMg and ZVMg/Pd systems, as indicated 

in Figure 1. Despite the early success of the ZVMg/C system, the difference in concentration 

throughout the variety of different possible congeners which formed as byproducts fell within the 

range of 0-30 µM with no particular preference for phenol formation. In the ZVMg/Pd alloyed 

system, however, phenol formation increased rapidly in proportion with the disappearance of the 

67.80

56.07

0.00

22.07

31.62

94.89

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Mg Mg/C Mg/Pd

%
A

v
e
ra

g
e
 C

 (
μ

m
o

le
s
)

Mole balance at 6 days of degradation

%Phenol

%Chlorophenols



 

17 

lower CPs, concluding with a 94.89% phenol formation at six days of degradation, showing the 

highest mole balance for all three systems, as illustrated in Figure 3.  

Previous Study for the Analysis of the Magnesium Particle Surface  

One of the challenges to using Mg in an ethanol solvent system is the formation of 

magnesium ethoxide, Mg(OCH2CH3)2. According to the results of the pH study, the basicity of 

the solutions increased over the duration of one week after adding ZVMg to the reaction vials. The 

solutions from the zero-hour time point were all acidic, each having a pH of 4.4. The back-

calculations of the solutions for all ZVMg systems was alkaline beyond the thirty minute time 

point, with a pH range of 10.5 – 11.1. This lends merit to the idea that there is a build-up of the 

solid white ethoxide precipitate which prevents the PCP reactant from absorbing to the active sites 

on the surface of the magnesium metal. In previous SEM studies conducted in the Industrial 

Chemistry Laboratory at UCF, (Novaes-Card, 2013) particles of unused ball-milled magnesium 

were compared with particles used in the degradation of PCBs. The images from this study were 

able to confirm signs of corrosion and pitting from the oxidation of the magnesium surface. In 

addition to this corrosion, clumpy aggregates of smooth material, which is conjectured to be a 

combination of both Mg(OH)2 and Mg(OH)(OCH2CH3), were found on the surface (see Figure 25 

in Appendix A).   

The poor ethanol solubility of Mg(OH)2  leads to a significant reduction in the degradation 

rate of the analyte over time (Cass, Freitas et al. 2000). This occurrence is suspected to contribute 

to declining dechlorination rates observed after approximately 24 hours. In the same study, 

(Novaes-Card, 2013) Energy Dispersive Spectroscopy (EDS) was used to  
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help characterize the identity of the smooth and pitted areas on the surface of the used ball-

milled magnesium particles. This confirmed the presence of Mg(OH)2 on the pitted areas; the 

smooth areas, however, contained an excess of oxygen and carbon compared to magnesium 

indicating the likelihood of Mg(OH)(OCH2CH3). (Novaes-Card, 2013). 

Effect of the Addition of Acetic Acid on the Dechlorination Reaction  

In the most recent kinetic study on the degradation of PCP using ZVMg/C, samples were 

prepared in the same way and left on the shaker table for two weeks before being re-spiked with 

an additional 50 µL of glacial acetic acid and shaken for two more weeks. The samples were then 

analyzed for the concentration of PCP and its degradation byproducts on the previously mentioned 

GC-MS. As illustrated on the graph in Figure 4, there was a slight increase in the concentration of 

monochlorinated phenols (namely, 2-, 3- and 4-CP [which are ortho, meta and para, respectively]).  

However, complete degradation to phenol was still not observed. Therefore, the additional 

glacial acetic acid was beneficial, but more work needs to be done in order to successfully 

accomplish complete degradation without the use of a palladium catalyst. SEM imaging needs to 

be performed on the surface of the metal particles in order to access the adjustments that need to 

be made to optimize the reaction conditions.   
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Figure 4: Degradation of PCP by ball-milled ZVMg/C in acidified ethanol with addition of acetic 

acid after two weeks.  

Degradation Kinetics  

In previous studies, kinetic data has shown a pseudo-first order trend with respect to the 

rate of the degradation for the target analyte in the presence of excess ZVM.(Elie, Clausen et al. 

2013) The results from this particular study were obtained using concentrations of 10.42 mmol of 

ZVMg and 0.375 mmol of PCP, corresponding to a molar ratio of 28:1 (Mg:PCP). 

The pseudo-first-order results have been demonstrated in the kinetic data obtained from 

studies performed on both PCP degradation and phenol formation with all ZVMg systems. Tables 

2 and 3 (in Appendix A) show the natural log of PCP and phenol concentration at each time point. 



 

20 

The data in Figure 5, corresponding to the disappearance of PCP, were plotted following a pseudo-

first-order model showing linear correlation coefficients (R2 values) of 0.9488, 0.9464 and 0.9602 

for ball-milled ZVMg, ZVMg/C and mechanically alloyed ZVMg/Pd, respectively. Figure 6 shows 

the data corresponding to the formation of phenol for ZVMg, ZVMg/C and ZVMg/Pd with the 

respective linear correlation coefficients of 0.9488, 0.9464 and 0.9602. The values in Figure 5 and 

6 indicate that the experimental data is in good agreement with a pseudo-first-order kinetic model. 

The rate constants were obtained from duplicate measurements in which the natural log of the 

value of each PCP and phenol concentration (in μM) was taken at its respective time point. 

Initially, the ZVMg/C system showed the fastest PCP degradation kinetics, as reported in Figure 

5. The rate constants for PCP degradation were calculated to be 0.0383, 0.237 and 0.0595 min-1 

for ZVMg, ZVMg/C and ZVMg/Pd, respectively. However, the rate constants for phenol 

formation were calculated to be 0.0259, 0.0268 and 0.1652 h-1 for ZVMg, ZVMg/C and ZVMg/Pd, 

respectively, as shown in Fig 6. It follows that the ZVMg/Pd system, which has the highest natural 

log of its rate constant for phenol formation, shows the fastest kinetics, which agrees with the trend 

illustrated in the mole balance in Figure 3 as well as the plots shown in Figures 2C and 6. Although 

the ZVMg/Pd system had the most overall success in degrading PCP, the ZVMg/C system was 

more effective in the beginning, with diminishing returns after approximately 24 hours. A possible 

explanation for this observation is the obstruction of the reactive site by the formation of a 

magnesium hydroxide/ethoxide precipitate when magnesium ionizes and reacts with an anionic 

species from the solvent system; however future investigations of the metal’s surface are necessary 

to confirm this. Data of the pseudo-first order kinetics for PCP degradation and phenol formation 

are presented in tables 2 and 3 in Appendix A.     
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Figure 5: Pseudo-first-order kinetics plot for PCP degradation with activated magnesium 

reducing systems in ethanol.  
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Figure 6: Pseudo-first-order kinetics plot for phenol formation from dechlorination of CPs with 

activated magnesium reducing systems in ethanol. 
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therefore it quickly reduces the concentration of higher chlorinated, more toxic CPs. The results 
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of these studies indicate that all magnesium systems were powerful for PCP degradation, no PCP 

was detected after 30 minutes of degradation and the majority of the PCP degradation occurred 

within the first four minutes with ball-milled ZVMg/C. After 30 minutes, mechanically alloyed 

Mg/Pd proved to be the most efficient system for the PCP dechlorination with a matrix consisting 

of at least 0.02 g Mg0/mL ethanol and 10 µL acetic acid/mL ethanol, in which case 20 ng/µL of 

PCP was dechlorinated to phenol in approximately 15 minutes with a carbon mass balance of 

94.89%. The dechlorination kinetics showed an increasing trend in the order of ZVMg < ZVMg/Pd 

< ZVMg/C for PCP degradation. However, the increasing trend of kinetics for phenol formation 

(complete dechlorination) followed the order of ZVMg < ZVMg/C < ZVMg/Pd.    
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CHAPTER TWO: COMPUTATIONAL AND EXPERIMENTAL 

METHODS FOR THE DECHLORINATION OF 

HEXACHLOROBENZENE 

Introduction 

Regulatory History of HCB 

Hexachlorobenzene (HCB) is a highly toxic, degradation-resistant, semi-volatile 

polychlorinated aromatic compound which has seen widespread contamination in water, air and 

soil due to its extensive use as a fungicide and wood preservative.(Beurskens, Dekker et al. 1994, 

Duan and Adrian 2013, Jiang, Wang et al. 2015, Ren, Kang et al. 2015) According to the 

Toxics Release Inventory Database of the U.S. Environmental Protection Agency (EPA), 16,000 

kilograms of HCB were released into the environment in 2001 alone from a sample of monitored 

industries.(Jiang, Wang et al. 2015) As a result of its low volatility (vapor pressure 3.4×10-4 kPa) 

and hydrophobic nature (log Kow: 5.73/ aqueous solubility: 0.005 mg/L at 25 °C), HCB is highly 

toxic to living organisms due to its accumulation in fatty tissue.(Lin, Hung et al. 2013, Ren, Kang 

et al. 2015) It is also carcinogenic to animals, and presents reasonable evidence for posing 

carcinogenic risks to humans.(Pavlostathis and Prytula 2000, Brahushi, Doerfler et al. 2004) 

According to the EPA, HCB has been classified as a probable human carcinogen, and has been 

assigned a maximum contaminant level (MCL) of 0.001 mg/L with a maximum contaminant level 

goal (MCLG) of zero.(Pavlostathis and Prytula 2000) Because of its nine-year half-life,(Zhang, 

Zheng et al. 2007, Chen, Wang et al. 2015) ubiquitous application, and tendency to 

bioaccumulate, HCB is listed as one of twelve Persistent Organic Pollutants (POPs) by the 
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Stockholm Convention on Persistent Organic Pollution restricting the production and use of POPs, 

effective May 2004.(Fennell, Nijenhuis et al. 2004, Kengara, Doerfler et al. 2013, Ren, Li et 

al. 2014, Zhang, Wang et al. 2014, Jiang, Wang et al. 2015, Yan, Mao et al. 2015) Despite the 

prohibition of its production, HCB is still released into the environment as an industrial byproduct 

from the production of many pesticides and chlorinated solvents, as well as through incomplete 

combustion.(Miyoshi, Nishio et al. 2004, Su, Liu et al. 2014) Residues of HCB have been found 

in soil, fish, wildlife and food products throughout the world.(Pavlostathis and Prytula 2000) 

Municipal waste incineration has been known to generate HCB and create pollution in waste 

streams near chloroalkali and wood-preserving plants.(Pavlostathis and Prytula 2000, Brahushi, 

Doerfler et al. 2004) Other evidence of unwanted HCB contamination can be found in pine 

needles and human tissues in the industrialized region of north-east China.(Yan, Mao et al. 2015) 

Due to the inadvertent continued production and slow degradation of HCB a powerful, sustainable 

and cost-effective approach for in situ remediation technology is necessary.  

Current Treatment for HCB Contaminated Materials 

The most common practice for HCB treatment in the environment is oxidative remediation 

through incineration, which is nearly 100% effective at destroying HCB; however it comes at the 

expense of generating highly carcinogenic compounds such as polychlorinated dibenzo-p-furans 

(PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs).(Loiselle, Branca et al. 1997, Zhang, 

Zheng et al. 2007, Xiao, Jiang et al. 2011, Cravotto, Garella et al. 2013, Su, Liu et al. 2013, 

Ren, Kang et al. 2015) Other studies have been done using high temperature (~400 oC) thermal 

degradation in fly ash via a dechlorination/hydrogenation reaction pathway, however little is 

known about the interactions of HCB with the calcium oxide in fly ash or its byproducts, since the 
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concentrations of the dechlorinated products are too low to be studied.(Yin, Gao et al. 2013) 

Certain techniques involving electron beam and γ-irradiation have also been employed for HCB 

degradation, but these procedures are costly and energetically inefficient.(Zacheis, Gray et al. 

1999, Yin, Wada et al. 2001, Zhang, Zheng et al. 2007) A more energetically efficient method 

uses electrode potentials in aqueous solutions, however this technique is not effective due to the 

poor water solubility (~10-8 M) of HCB.(Merica, Banceu et al. 1998) In more recent studies 

certain techniques involving biodegradation and microbial degradation have been 

employed,(Beurskens, Dekker et al. 1994, Watanabe and Yoshikawa 2008, Duan and Adrian 

2013, Jiang, Wang et al. 2015, Yan, Mao et al. 2015) however, anaerobic microorganisms are 

hard to acquire and only incomplete degradation has been accomplished under anaerobic 

conditions. In addition, not much information is available on the microbial metabolism of HCB in 

an aerobic environment, and anaerobic microorganisms that can accomplish the dechlorination of 

penta- or hexachlorobenzene have yet to be isolated, or even identified.(Wu, Milliken et al. 2002, 

Yan, Mao et al. 2015) Furthermore, the toxicity of chlorobenzenes increases with chlorine 

substitutions, which decreases the efficiency of microbial degradation.(Zacheis, Gray et al. 2000) 

It stands to reason that a novel technique is needed to treat anaerobic environments, where soil, 

sediments and sewage are contaminated with HCB. One promising technique for the treatment of 

HCB is reductive dechlorination using zero-valent metals.(Zheng, Yuan et al. 2009)  

Degradation with Zero- valent Metal 

Reductive dechlorination of organic compounds has been studied intensively over the past 

few decades using zero-valent metals, such as zero-valent iron (ZVI), zero-valent zinc (ZVZ) and 

zero-valent magnesium (ZVMg), with the support of catalysts such as copper, silver, palladium 
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and platinum. ZVI has shown promise as an effective reducing agent for the dechlorination of 

polychlorinated hydrocarbons. Many different contaminants have been the subject of study for 

remediation using ZVI, particularly nano-scale ZVI due to its increased surface reactivity as a 

consequence of increased surface area.(Shih, Hsu et al. 2010, Su, Hsu et al. 2012, Chen, Pan et 

al. 2014) In several studies conducted on polychlorinated hydrocarbons, rapid and complete 

dechlorination was achieved through the reduction potentials of bi-metallic systems including 

iron/palladium, iron/silver and iron/lead.(Zheng, Yuan et al. 2009, Coutts, Devor et al. 2011, 

Nie, Liu et al. 2012, Nie, Liu et al. 2013, Nie, Liu et al. 2013) Cost -effective dechlorination of 

HCB was accomplished by using microscale and nanoscale ZVI alloyed with Cu.(Zheng, Yuan 

et al. 2009, Zhu, Luan et al. 2010, Su, Hsu et al. 2012) Most of these metals, particularly Pt, Pd 

and Ag, have been known to effectively enhance the dechlorination kinetics, however these 

methods are not economically viable for practical use in large scale remediation projects.(Xiao 

and Jiang 2014) The main disadvantage of using iron is the formation of an insoluble surface 

oxide layer which prevents the reduction that takes place through the release of electrons in 

solution.(De Vor, Carvalho-Knighton et al. 2009) This disadvantage weakens the efficiency of 

iron to reductively dechlorinate polychlorinated aromatic hydrocarbons in aerobic 

environments.(Zheng, Yuan et al. 2009) 

An alternative zero-valent metal that can be used in the treatment of polychlorinated 

hydrocarbons is ZVZ, which has higher negative reduction potential (Zn2+ + 2e−→ Zn0, E0 = −0.76 

V) than ZVI (Fe2+ + 2e−→ Fe0, E0 = −0.44 V). Despite the higher reactivity of ZVZ towards 

polychlorinated hydrocarbons than ZVI, limited use has been made of ZVZ because of toxic Zn 

species released into the environment from zinc particles.(Kim and Carraway 2003) Magnesium, 
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however, has a much higher negative reduction potential (Mg2+ + 2e−→ Mg0, E0 = −2.37 V) than 

ZVI or ZVZ, making it a more effective reducing agent. In addition, the surface of Mg has a 

protective layer of magnesium oxide, preventing corrosion under aerobic conditions. However, the 

formation of magnesium oxides in alcohol solutions can obstruct the dechlorination reaction, 

thereby retarding the rate at which it takes place.(Elie, Clausen et al. 2012) The advantages of 

magnesium over iron have afforded many electron-donating opportunities in degradation studies 

involving PCBs. Much work has been done to optimize the ideal reaction conditions for the 

degradation of PCBs by Maloney and associates.(Maloney, DeVor et al. 2011) Kinetic studies 

performed on PCB-151 using magnesium powder and a variety of alcohols and carboxylic acids 

have successfully yielded degradation rates of up to 1.25 ngµL-1min-1.(Maloney, DeVor et al. 

2011) Complete dechlorination of the variety of PCBs found in Aroclor 1221 was accomplished 

by Doyle et al.(Doyle, Miles et al. 1998) using a Mg/Pd bimetallic system; this alloy had the 

potential to completely convert every PCB in the mixture to biphenyl. It stands to reason that the 

catalytic effects of Pd provide a lower energy pathway for rapid dechlorination; however Pd is 

expensive and impractical for use in field applications. A more practical approach for overcoming 

the passivation of the magnesium surface formed by a MgO/Mg(OH)2 layer is the ball-milling of 

magnesium powder with carbon in the form of graphite. This is because the activation of the 

surface of the magnesium is greatly enhanced by the presence of carbon, thereby improving the 

reactivity of magnesium.(Elie, Clausen et al. 2013) In a study performed by Marc R. Elie,(Elie, 

Clausen et al. 2012) at the Industrial Chemistry Laboratory at the University of Central Florida 

(UCF), a 94% conversion of benzo[a]pyrene to less toxic hydrogenated cyclic compounds using 
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activated magnesium powder ball-milled with carbon (i.e. graphite) in acidified ethanol 

solution,was accomplished within 24 hours.(Elie, Clausen et al. 2012)  

Theoretical Modeling for the Dechlorination of HCB with Mg0/C 

Degradation of HCB with zero-valent metals has led to the formation of different 

byproducts, which may or may not be more benign than the original compound. In order to better 

understand the mechanism of degradation, theoretical modeling can be used for accurate 

calculations of chemical reactivity. The quantum mechanical calculation type that was used for 

mechanism and byproduct pathway analysis in this work is called Density Functional Theory 

(DFT). It is very important to perform both experimental and theoretical studies for the 

dechlorination of HCB, since the toxicity of byproducts is affected by the way in which they are 

formed. If experimental studies on the kinetics of the reaction are consistent with the theoretical 

calculations, then verification of the reliability of the calculation is satisfactory. In previous 

experiments that were conducted on the photodegradation of HCB, theoretical DFT calculations 

were used to make accurate predictions for the pathway of degradation.(Yamada, Naito et al. 

2008)  

Methods  

Materials and Chemicals 

Neat HCB standards were acquired from Accustandard and standard solutions were 

prepared by diluting the neat standards to the desired concentrations with a 1:1 absolute ethanol/ 

ethyl lactate solution. Absolute ethanol, ethyl L(-)lactate, 97%, and Optima® grade n-hexane, 95%,  
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were obtained from Fisher Scientific (Ottawa, ON.). Glacial acetic acid (≥99.8) was 

obtained from Acros Organics through Fisher Scientific. Sodium sulfate was acquired from Sigma-

Aldrich Chemicals. Micro-scale unmilled magnesium (∼4 µm) was obtained from Heart Metals, 

Inc (Tamaqua, PA). PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl) was used as an internal standard 

for the analyses, and was purchased from Accustandard. Helium gas, used for gas 

chromatography-mass spectrometry (GC/MS) analysis, was purchased from Air Gas (Atlanta, 

GA). All chemicals were of high purity (≥98%) and ACS reagent, analytical grade. All chemicals 

were used as they were received unless otherwise specified. A precision microscale analytical 

balance (Model AE 260-S from Mettler-Toledo AG, Greifensee, Switzerland) was utilized in the 

measurement of the different Mg loadings. 50, 100 and 1000 µL (calibrated) Eppendorf Research® 

pipettes (from Eppendorf, Hamburg, Germany) were used to dispense the standards and solutions. 

                    Ball-milling Procedure  

The activity of the magnesium is enhanced through ball-milling, a process by which the 

passivated hydroxide/oxide surface layer can be cracked, thus creating more defects in the surface 

which allow change to the microstructure.(Maloney, DeVor et al. 2011) In this study, magnesium 

carbon (Mg/C) was ball-milled under optimized conditions. The ball-milling was accomplished 

using a Red Devil 5400 series paint shaker fitted with custom-made plates to support milling 

canisters, which accommodated a rotation of 670 rpm for the process of ball-milling the 

metal.(Coutts, Devor et al. 2011) The canister and balls are made of stainless steel. To produce 

~10 wt% ball-milled magnesium/carbon, 76.5 g Mg powder and 8.5 g of graphite (C) were mixed 

into the canister with 16 stainless steel balls of 1.5 cm diameter having a total mass of 261.15 g, 
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corresponding to a 3:1 ball/powder mass ratio. The canister was sealed under an argon atmosphere. 

The material was ball-milled for 30 minutes using the aforementioned paint mixer.    

Experimental Procedure  

The reaction was carried out in 20 mL clear glass vials. First, 250 mg of ball-milled Mg/C 

and 4.95 mL of a 20 ng/µL (70.23 μM) HCB in 1:1 ethanol/ethyl lactate solution were mixed. 

Next, 50 µL of glacial acetic acid were added, and the vials were then secured on a SK-300 shaker 

table set to 200 rpm at room temperature (∼21 ◦C) for the appropriate amount of time. At the 

designated time points the reaction vials were removed from the shaker table, and after being 

extracted in 5 mL of hexane they were placed in the sonicator for 5 minutes. After sonication, 

samples of the solution were filtered using nylon syringe filters with 0.45 µm pores. The resulting 

filtered solutions were then added to glass centrifuge tubes with 4 mL of D.I. water and centrifuged 

for 10 minutes. The organic supernatant containing the HCB was removed, dried over Na2SO4 for 

5 minutes and then transferred to clean 4 mL glass screw-cap vials. Then 950 µL from each were 

pipetted into autosampler vials for analysis, along with 50 µL of PCB-153 solution as an internal 

standard.  

Analysis  

The samples were run in duplicate. The hexane extracts were analyzed for left over HCB 

and its degradation byproducts on an Agilent 7820A series II GC-MS furnished with an 

autosampler and an Agilent 5977E mass spectrometer. The capillary column used was an Rxi®-

5ms (30 m × 0.25 mm i.d.; 0.25 µm film thickness) with helium as a carrier gas, a flow rate of 2.0 

mL/min, and an average gas velocity of 51.016 cm/s. The oven temperature program was set 
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according to the following method: after warming up to an initial temperature of 30 ◦C, it was held 

for 4 minutes, then the column was ramped up at a rate of 10 ◦C/min to 250 ◦C and held for 2 

minutes prior to cooling down. The injector and detector temperatures were maintained at 250 and 

280 ◦C respectively. Injection volumes were set at 2.5 µL and were executed in pulsed splitless 

mode. Calibration plots for HCB and its chlorinated benzene byproducts were prepared within the 

appropriate concentration range and were found to be linear with correlation coefficient values of 

above 0.998 as shown in Figure 26 (Appendix B). The identity of the eluted compounds were 

confirmed by running a variety of chlorobenzene standard solutions, and comparing the mass 

spectra of the samples to mass spectra referenced from the catalog of the National Institute of 

Standards and Technology (NIST). The degradation rate was measured by the disappearance of 

the HCB peak and confirmed by the formation of lower chlorinated congeners. Selected ion 

monitoring (SIM) parameters are presented in Appendix B (Table 4).  

Computational Method 

All calculations were performed using Gaussian 09 molecular orbital calculation software 

with B3LYP method to track the degradation pathways. The 6-31+G(d,p) basis set was chosen to 

conduct geometry optimizations and energy level calculations. In all calculations, the Polarizable 

Continuum Model (PCM) was applied for solvent calculation to evaluate the effect of the solvent. 

The static dielectric constant was set to 20.3 and the dynamic dielectric constant was set to 1.93 

for the 1:1 mixed ethanol:ethyl lactate solvent in all cases. The dielectric constants were calculated 

using the volume ratio of the two solvents and their dielectric constants.  
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Dissertation Objectives 

Due to the effectiveness, convenience and environmental benevolence of magnesium, as 

well as the advancements in ball-milling technology with enhanced kinetics provided by the 

addition of graphite, a successful approach to the remediation of HCB has been established through 

the work done in the Industrial Chemistry Laboratory at UCF. The goal of this study is to evaluate 

the efficacy of activated magnesium metal in a protic co-solvent system of 1:1 ethanol:ethyl lactate 

and to propose the degradation pathway. This kinetic data will provide a better understanding of 

the optimal methodology for implementing an application for the ex situ remediation of HCB. 

Agreement of kinetic data with DFT calculations will ensure the accuracy of the research. 

Results and Discussion 

 Degradation of HCB with Ball-milled ZVMg/C  

A kinetic study of the degradation of HCB treated with ball-milled ZVMg/C was performed 

in a solvent system consisting of ethanol and ethyl lactate at an initial analyte concentration of 

70.23 µM in a closed vial with glacial acetic acid at room temperature. Figure 7 shows the data for 

this study; the bars indicate the concentration of HCB as it decreases with time. The graphic 

representation shows an abrupt decrease in the concentration of HCB after 5 min, with no detection 

of HCB after 30 min. The GC-MS results for concentration reduction showed that the percent 

degradation for HCB at the 5 min time point was 57.2%. A greater reduction of HCB concentration 

was observed after 10 min of treatment, showing an 81.5% decrease. Only a trace amount of HCB 

was detected at the 30 min time point, with a reduction of 98.5% from the initial concentration. 
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An overlay of the chromatograms from this study, representing the diminution of the analyte peak 

as a function of time, is provided in Appendix B (Figure 27).   

 

Figure 7: Data corresponding to the degradation of HCB with the activated Mg/C system after 1 

hr of treatment in 1:1 acidified ethanol:ethyl lactate. 

 Concentration of Dechlorination Byproducts and Mole Balance over Time 

The formation of dechlorination byproducts of HCB became the subject of study in a nine 

day time period, over which the mass spectra of the samples were analyzed periodically. The GC 

analysis indicated that the degradation products of HCB are lower chlorinated benzenes. 

According to the results, the seven different congeners of byproducts, including penta-, 2 isomers 

of tetra-, 2 isomers of tri-, and 2 isomers of di-chlorinated benzene rings, that were produced are 

shown in Figure 8 (which presents the distribution of chlorinated benzenes with respect to reaction 

time at room temperature). After an abrupt disappearance of HCB, the subsequent removal of 

chloro groups quickly produced pentachlorobenzene (PCBz), followed by two tetrachlorobenzene 
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isomers: 1,2,3,5-TCB and 1,2,4,5-TCB. Further dechlorination reduced the concentration of the 

TCB isomers, replacing them with two trichlorobenzene isomers: 1,2,4- and 1,3,5-

trichlorobenzene (TriCB). The dechlorination of the TriCBs, which occurred at a slower rate than 

that of PCBz and the TCBs, generated two isomers of di-chlorobenzene: 1,3- and 1,4-DiCB. There 

was no detectable formation of mono-chlorinated or non-chlorinated benzene. The mass balance, 

which is the sum of the micromoles of HCB and all of its daughter compounds compared to the 

zero-hour concentration of HCB, was above 80% for the initial degradation time points. A gradual 

decrease in the mole balance, indicating the presence of other undetected by-products, was then 

observed. After nine days of degradation a final average mole balance of 79.2% was achieved, as 

portrayed in Figure 8. The by-product yielding the highest concentration was 1,2,4-

trichlorobenzene, which was generated from both isomers of tetrachlorobenzene.   

 

Figure 8: Experimentally observed degradation byproducts of HCB with the activated Mg/C 

reducing system in 1:1 ethanol/ethyl lactate solvent. Each data point represents the mean±error 

calculated from duplicate samples. 
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As the study shows, the kinetics of dechlorination were faster for heavier congeners of 

chlorobenzene. Figure 7 shows that the vast majority of HCB was degraded within the first ten 

minutes of the study. The success of the ZVMg/C reaction system was maximal in the early stages 

of the study as evidenced by the predomination of 1,2,4-TriCB, which has half the chlorine mass 

of the parent compound.  The formation of magnesium ethoxide, Mg(OCH2CH3)2,  from the 

reaction of Mg with the ethanol solvent system imposed some limitations on this experiment. The 

build-up of this solid white ethoxide precipitate prevents the analyte reactant from adsorbing onto 

the active sites of the magnesium metal surface. Consequently, a significant reduction in the 

degradation rate of the analyte, and therefore the concentration of lower-chlorinated congeners, is 

observed after 24 hours.(Cass, Freitas et al. 2000) This also creates difficulty in the filtration of 

the samples. The presence of ethyl lactate in the solvent system controls the pH, keeping it low 

enough to hinder the formation of hydroxide and/or ethoxide in solution, although this is a 

temporary remedy. 

Degradation Kinetics  

Data from previous kinetic studies has shown a pseudo-first order trend for the degradation 

rate of various target analytes in the presence of excess zero-valent metal.(Pavlostathis and 

Prytula 2000, Elie, Clausen et al. 2013) The UCF Industrial Lab has observed the same results 

in the kinetic studies performed under the same conditions to collect the data in this project. A 

pseudo-first-order relationship for the degradation reaction of HCB, with respect to time, in a 

system using consistent concentrations of ZVMg/C has always been the guaranteed outcome. The 

kinetic data from this specific project were obtained using concentrations of 10.42 mmol of 

ZVMg/C and 0.35 mmol of HCB, which correspond to a molar ratio of 30:1 (Mg:HCB). As shown 
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in Figure 9, the natural log of HCB concentration was plotted against time to show a pseudo-first 

order decay model with respect to the disappearance of HCB, with a linear correlation coefficient 

(R2 value) of 0.9627. Tabulated data corresponding to Figure 9 can be found in Appendix B (Table 

5). The rate constant of 0.2223 min-1 that was obtained was evaluated from the natural log of four 

duplicate measurements of each HCB concentration value (in μM).  

 

Figure 9: Pseudo-first-order kinetics plot for HCB degradation with activated magnesium 

reducing systems in 1:1 ethanol/ethyl lactate co-solvent system.  

Prediction of the Degradation Pathways for Daughter Compounds by Quantum Chemical 

Calculation 

The free energies (ΔG) of the reaction have been calculated using Gaussian 09 molecular 

orbital calculation software with B3LYP method to track the degradation pathways.: xCl–PCBz 

+ H = (x-1)Cl–PCBz + Cl, where x is the number of Cl substituents in the polychlorinated benzene 

(PCBz) molecule (not to be confused with the PCBz abbreviation for pentachlorobenzene used 

throughout this article). Tables 6 and 7 in Appendix B list the ΔG and activation energy data, 
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respectfully, of the reaction as calculated with Gaussian 09 for each chlorinated position in HCB 

and its degradation products. 

 Experimentally, the main products were identified as penta-, tetra-, tri- and di-chlorinated 

benzene congeners. However, no experimental evidence of the formation of 1,2,3,4-TCB, 1,2,3-

TriCB, 1,2-DiCB, monochlorobenzene or benzene was observed.  As previously mentioned, the 

main tetrachlorinated products were 1,2,4,5-TCB and 1,3,4,5-TCB, the main trichlorinated 

products were 1,2,4-TriCB and 1,3,5-TriCB, and the main dichlorinated products were 1,4-DiCB 

and 1,3-DiCB. Thus, the main experimental dechlorination pathways are: HCB→ PCBz→ 1,2,4,5-

TCB; 1,3,4,5-TCB→ 1,2,4-TriCB; 1,3,5-TriCB→ 1,4-DiCB; 1,3-DiCB, as shown in Figure 8.    

In general, the tendency of the dechlorination reaction decreases with decreasing number 

of Cl substituents in the chlorinated benzene molecules according to the ΔG values. The energy 

analysis also shows that for each step the ΔG is different, which may explain why specific products 

were observed during the experiment while others were not. When x=5, the possible products are 

1,2,3,4-, 1,2,4,5-, and 1,3,4,5-TCB. Among all the products, the reaction that produces 1,2,4,5-

TCB, which is the major product observed from the experiment, has the lowest ΔG value (-30.07 

kcal/mol). The minor product, 1,3,4,5-tetrachlorobenze, has a slightly higher ΔG value (-29.69 

kcal/mol). The calculated ΔG value for 1,2,3,4-TCB was -27.50 kcal/mol which, being greater 

than that of the other two isomers, may explain why it was not observed experimentally. When 

x=4, the possible products are 1,2,3-, 1,2,4- and 1,3,5-trichlorobenze. The 1,2,4-TriCB converted 

from both TCB reactants is the major product while the 1,3,5-TriCB is the minor product, however 

there was no yield for 1,2,3-TriCB. When x=3, the major product is 1,4- dichlorobenzene in the 

experiment, which also agrees with the ΔG data in the table S3 (-26.10 kcal/mol). 1,3-
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dichlorobenze from 1,3,5-trichlorobenzene is also found in the reaction mixture. With a theoretical 

ΔG value of -23.63 kcal/mol, there was no production of 1,2-DiCB from the degradation of the 

only possible trichlorinated parent, which is 1,2,4-TriCB.    

 

Figure 10: Distribution of HCB and the degradation products with ZVMg/C in 1:1 ethanol:ethyl 

lactate solvent at room temperature. 
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The following theoretical main pathways have been predicted by estimation of the 

compound produced through dechlorination at the lowest free energy position (Figure 10): HCB 

→ PCBz → 1,2,4,5-TCB; 1,3,4,5-TCB → 1,2,4-TriCB; 1,3,5-TriCB → 1,4-DiCB; 1,3-DiCB. 

These pathways were compared with the experimentally observed pathways shown in Figure 8 

and found to be perfectly synchronized. Therefore the experimental degradation pathways of HCB 

in 1:1 ethanol:ethyl lactate solvent, as well as those of the photodegradation pathways of HCB in 

hexane, IPA, and methanol solvents,(Yamada, Naito et al. 2008) were predicted reliably through 

the theoretical calculations of the bond dissociation energies with Gaussian 98W using the 

B3LYP/6-311G method. It is expected that the degradation pathways of various chlorinated 

aromatic compounds in many solvents can be predicted using this method.   

Proposed Mechanism for Reductive Dechlorination Pathways 

Reduction of a wide range of functional groups can be accomplished using a system of 

magnesium in ethanol. This is because the Mg/MeOH system conveniently facilitates a reductive 

reaction by the transfer of a single electron. It is believed that reduction reactions such as this are 

likely to take place through the transfer of a hydrogen atom with the help of magnesium.(Miyoshi, 

Nishio et al. 2004) The ionization of small alkali metals, such as iron, zinc and aluminum, can be 

achieved by hydrogen donors which are slightly acidic, such as hydroxyl or amino groups. When 

magnesium is introduced into a solution of 1:1 ethanol:ethyl lactate, the magnesium can form a 

partial bond to a halogen atom on a halide molecule and induce bond cleavage through the 

formation of a Grignard reagent, followed by the reductive displacement of a hydrogen atom on 

an ethanol molecule resulting in a dehalogenation via a proton transfer (Figure 11). Due to the 
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nature of its similarity to the Grignard-Zerewitinoff reaction such reactions are referred to as 

Grignard-Zerewitinoff-like reactions.(Wang 2013)  

In the first step of the mechanism, a magnesium atom donates electron density to one of 

the chlorine atoms on the HCB molecule, forming an ionic intermediate which is stabilized by the 

protic solvent system. This intermediate then goes on to form a Grignard reagent (TS1), which is 

the rate-limiting step. A proton transfer then takes place between TS2 and an ethanol (or possibly 

ethyl lactate) molecule with very small activation energy. The carbon atom is displaced by the 

hydrogen, leaving behind PCBz and chloroethoxymagnesium, in a similar style to the Zerewitinoff 

reaction. All of the steps in this reaction are exothermic, and the C-Cl bonding energy is 

approximately 80 kcal/mol, as confirmed by the computational method with the basis set 6-

31+G(d,p). It should be noted that no radical transition states were calculated by the method, which 

is a reasonable claim since this a reductive dechlorination reaction with ZVMg without UV 

involved. In previous studies in which a radical mechanism was confirmed using energy 

calculations, ultraviolet light played a critical role.(Yamada, Naito et al. 2008) 
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Figure 11: Proposed hydrodechlorination mechanism for HCB by ZVMg/C in 1:1 ethanol:ethyl 

lactate solvent. 

An energy scheme of the ionic channel through which the removal of the first chlorine 

atom on HCB is removed is shown in Figure 12. The rate limiting step in which TS1 is formed 

from HCB is represented by the first curve, and then it is shown that TS2 is formed at a much 

lower energy level, corresponding to its relatively minimal energy of activation. The PCBz product 

is then formed very rapidly in an exothermic reaction. This process will repeat with the chloro 

groups that have been removed experimentally, and may persist as long as the metal is still active.  
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+  

Figure 12: Energy scheme of the ionic mechanism for HCB dechlorination. 

Conclusion 

In the studies that were performed at ambient conditions, ball-milled ZVMg was proven to 

be more efficient than iron or zinc as a reagent for the reductive treatment of HCB, and possibly 

other chlorinated benzenes. Within the detection limits of the GC-MS, nearly 100% of the HCB 

was found to be degraded within the first 30 min of the study, and the majority of the HCB 

degradation occurred within the first ten minutes. PCBz, as well as other lower-chlorinated 

congeners such as tetra-, tri- and dichlorobenzenes, were identified and quantified using GC-MS 

methodology. However, no monochlorinated benzene or benzene itself were detected. The main 

dechlorination pathways of HCB in 1:1 ethanol/ethyl lactate were HCB → PCBz → 1,2,4,5-TCB; 

1,3,4,5-TCB → 1,2,4-TriCB; 1,3,5-TriCB → 1,4-DiCB; 1,3-DiCB. The reaction kinetics followed 
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a pseudo-first order trend, and degradation rates were found to be slower for lower-chlorinated 

congeners. The average mole balance observed over a nine day study was 79.2%. Experimental 

results were consistent with quantum mechanical calculations showing the same ΔG values for the 

predicted degradation reaction pathways. Other calculations that were performed were successful 

in explaining the reaction mechanism and showing that it took place through ionic transition states 

in a Grignard-Zerewitinoff-like reaction. Ultimately, reductive dechlorination using zero-valent 

metals in conjunction with bioremediation will provide a safe and effective way to overcome 

challenges seen in the remediation of lower-chlorinated aromatic compounds, with possible 

applications for aliphatic halohydrocarbons.  
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CHAPTER THREE: DEGRADATION COMPARISON OF 

PENTACHLOROPHENOL VERSUS PENTACHLOROANISOLE  

Introduction 

Background 

Chloroanisoles are extremely toxic, possibly carcinogenic compounds(Cheng, Ekker et 

al. 2015) which have a strong tendency to accumulate in the environment. Compared to 

chlorophenols, which have a hydroxyl substituent, chloroanisoles are less toxic but have a methoxy 

substituent which is the source of their lipophilic nature.(Goswami, Recio et al. 2007) Because of 

this lipophilicity, chloroanisoles tend to bioaccumulate in the tissue of living organisms such as 

rats, mice and certain fish(Goswami, Recio et al. 2007), where they can be converted into much 

more toxic chlorophenols.(Campoy, Alvarez-Rodriguez et al. 2009) In a 2015 publication, an 

ecotoxicological study(Cheng, Ekker et al. 2015) on the effects of PCA on the development of 

zebrafish has shown morphological deformation and developmental problems with the central 

nervous system, and an imbalance of hormone levels. For the same reason, chloroanisoles have a 

tendency to resist biodegradation in soils and humic materials, where they may stay for decades. 

However, due to the high Henry's Law constant of most chloroanisoles, volatilization from moist 

soils is possible. If found in aquatic environments, chloroanisoles cannot convert to chlorophenols 

through hydrolysis, but can accumulate in the atmosphere, with estimated half-lives of 5.7 hours 

in rivers and 6.9 days in lakes.(Cserjesi and Johnson 1972) As chloroanisoles exist as vapors in 

the atmosphere, they undergo photochemical reactions which produce hydroxyl radicals and have 

a half-life of 15 days.(Meylan and Howard 1993) Their mobilization in aquatic and terrestrial 
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environments, as well as the atmosphere, has allowed chloroanisoles to find their way into the oils 

and fats of certain foods and organic constituents in beverages. One chloroanisole in particular, 

2,4,6- trichloroanisole (2,4,6-TCA), is responsible for fungi which spoil the aroma of certain 

beverages such as wine and sake, and foods such as chicken, eggs and dried fruits; this causes 

great expense to industries, particularly wine making.(Carasek, Cudjoe et al. 2007, Goswami, 

Recio et al. 2007, Recio, Alvarez-Rodriguez et al. 2011, Bai, Zhang et al. 2016)  

Sources of PCA in the environment 

Although PCA has been used industrially it is not manufactured for commercial use, 

despite its presence in the environment.(Yuan, Goehl et al. 1993, Cheng, Ekker et al. 2015) 

Compounds that come from pesticides and industrial wastes, such as hexachlorobenzene (HCB), 

pentachloronitrobenzene (PCNB) and hexachlorocyclohexane (lindane), can be the source of 

pentachlorophenol (PCP), which exists in equilibrium with pentachloroanisole (PCA) in the 

environment as shown in Figure 13.(Marco and Kishimba 2007) Therefore, the presence of PCA 

is indicative of PCP and PCNB contamination from a nearby source.(Marco and Kishimba 2007) 

Also, due to the fact that anisoles are less toxic to prokaryotes than to eukaryotes, methylation of 

PCP to PCA is catalyzed in the environment under aerobic conditions by microorganisms found 

in soils and sediments.(Lamar and Dietrich 1990, Marco and Kishimba 2007, Vorkamp and 

Riget 2014) This can be dangerous to humans and other eukaryotes since the production of PCA 

can occur in buildings with moist conditions, where the scent of mold can indicate their 

presence.(Lorentzen, Juran et al. 2016) Since PCA is a microbial volatile organic compound 

(MVOC), it can propagate through the air and cause adverse health effects to those undergoing 

exposure.(Lorentzen, Juran et al. 2016)   
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Figure 13: Examples of several sources of PCP in the environment. 

Current Treatment for PCA Contaminated Materials 

Despite the known toxicological effects of PCA on living organisms and the economic 

strain it imposes on the food and beverage industries, minimal work has been done on developing 

a technique for its remediation.(Goswami, Recio et al. 2007) Biodegradation studies on 

trichloroanisoles (TCAs, particularly 2,4,6-TCA) have been conducted using certain strains of 

bacteria, the most successful being Xanthomonas retroflexus INBB4.(Bai, Zhang et al. 2016) 

However, this species was only able to remove one chloro group, transforming the 2,4,6-TCA into 

2,6-dichloro-para-hydroquinone (2,6-DCHQ), which was then be mineralized.(Cheng, Ekker et 

al. 2015) Complete dechlorination of 2,4,6-TCA has been accomplished by the same group 
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through biodegradation using an enzyme from white-rot fungi  which produced 1,2,4-

trihydroxylbenzene (1,2,4-THB), which mineralized into CO2, H2O and Cl-.(Campoy, Alvarez-

Rodriguez et al. 2009) Alternatively, chemical methods involving activated peroxides have been 

found to dechlorinate both TCA and PCA. These methods make use of catalysts such as Cu2+, 

Co2+, Mn2+ or MoO4
2- to activate hydrogen peroxides, forming high-energy hydroxyl or singlet-

oxygen radicals which are very destructive to the anisolic compound found in the corks of wine 

bottles.(Recio, Alvarez-Rodriguez et al. 2011) These methods are safe, practical and affordable, 

but more work needs to be done to optimize their industrial implementation. Treatment of mono-

(Quint, Park et al. 1996, Quint 2006) and tri-chlorinated(Careri, Mazzoleni et al. 2001) anisoles 

using radiolysis in neutral aqueous media and heptane, respectively, has also been investigated, 

with successful degradation as monitored by chromatography. However, this technique is 

expensive and can lead to the formation of high-energy radicals.   

Since chlorophenols and chloroanisoles coexist in the environment, the main objective of 

this research is to compare degradation techniques of chlorophenols to those of chloroanisoles, 

thereby determining if one can be applied towards the remediation of both. The direction of the 

research, which has been influenced by remediation technologies involving the redox reactions 

that occur on the surface of zero-valent metals, will continue in accordance with the success seen 

using zero-valent magnesium (ZVMg). ZVMg, which has a greater redox potential than that of 

iron or zinc, in addition to lower oxide obstruction on its surface than that of iron(De Vor, 

Carvalho-Knighton et al. 2009) and lower toxicity than zinc,(Kim and Carraway 2003) is the 

preferred candidate for the zero-valent metal used in this study.(Doyle, Miles et al. 1998) Catalysts 

such as palladium have been used in conjunction with magnesium in the past, and have shown 



 

49 

enhanced reaction kinetics.(Doyle, Miles et al. 1998) However, ball-milling with graphite has 

been proven to improve reactivity at a lower cost by activating of the surface of the magnesium 

and keeping it clean of oxide layer formation.(Elie, Clausen et al. 2012, Elie, Clausen et al. 2013) 

Systems using the reduction potential of ZVMg ball-milled with graphite to form a homogeneous 

powder, referred to as ZVMg/C, have been used in previous studies to successfully dechlorinate 

PCP, as explained in detail in Chapter 1 of this dissertation. In this study the technology being 

used relies upon the reduction potential of ball-milled ZVMg/C to degrade PCA in an acidified 

ethanol solvent system. Kinetic studies were performed to test the efficacy of the ZVMg/C reaction 

system and results were compared to those for PCP.   

Methods  

Materials and Chemicals 

Neat PCA standards were provided from Accustandard and standard solutions were 

prepared by diluting the neat standard to the required concentrations in absolute ethanol solution. 

Absolute ethanol and Optima® grade n-hexane, 95%, were supplied from Fisher Scientific (Ottawa, 

ON.). Glacial acetic acid (≥99.8) was obtained from Acros Organics through Fisher Scientific. 

Micro-scale unmilled magnesium (∼4 µm) was acquired from Heart Metals, Inc. (Tamaqua, PA). 

PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl) was purchased from Accustandard and utilized as an 

internal standard for the analyses. Helium gas, used for gas chromatography-mass spectrometry 

(GC/MS) analysis, was purchased from Air Gas (Atlanta, GA). All chemicals were of high purity 

(≥98%) and ACS reagent, analytical grade. All chemicals were used as they were received unless 

otherwise specified. A precision microscale analytical balance (Model AE 260-S from Mettler-
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Toledo AG, Greifensee, Switzerland) was utilized in the measurement of Mg loadings. Standards 

and solutions were dispensed using 50, 100 and 1000 µL (calibrated) Eppendorf Research® 

pipettes (from Eppendorf, Hamburg, Germany). 

Ball-milling Procedure  

The activity of the magnesium is enhanced through ball-milling using the process described 

in Chapter 1 & 2, by which the passivated hydroxide/oxide surface layer can be cracked, thus 

creating more defects in the surface which allow change to the microstructure.(Maloney, DeVor 

et al. 2011) In this study, magnesium carbon (Mg/C) was ball-milled under optimized conditions. 

The ball-milling was accomplished using a Red Devil 5400 series paint shaker fitted with custom-

made plates to support milling canisters, which accommodated a rotation of 670 rpm for the 

process of ball-milling the metal.(Coutts, Devor et al. 2011) The canister and balls are made of 

stainless steel. To prepare ~10 wt% ball-milled magnesium/carbon, 76.5 g Mg powder and 8.5 g 

of graphite (C) were mixed into the canister with 16 stainless steel balls of 1.5 cm diameter having 

a total mass of 261.15 g, corresponding to a 3:1 ball/powder mass ratio. The canister was sealed 

under an argon atmosphere. The material was ball-milled for 30 minutes using the aforementioned 

paint mixer.    

 Experimental procedure  

The reaction was performed exactly the same as in Chapter 2, using 20 mL clear glass vials 

with 250 mg of ball-milled Mg/C and 4.95 mL of a 20 ng/µL (71.34 μM) PCA in ethanol solution. 

Next, 50 µL of glacial acetic acid were added and the vials were secured on a SK-300 shaker table 

set to 200 rpm at room temperature (∼21 ◦C) for the appropriate amount of time. At the designated time 
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points, the reaction vials were detached from the shaker table, extracted in 5 mL of hexane and 

shaken for 2 minutes. After that, samples of the solution were filtered using nylon syringe filters 

with 0.45 µm pores. The resulting filtered solutions were then added to glass centrifuge tubes with 

4 mL of D.I. water and centrifuged for 10 minutes. The organic supernatant containing the PCA 

was removed then transferred to clean 4 mL glass screw-cap vials. Then 950 µL from each vial 

were pipetted into autosampler vials for analysis, along with 50 µL of PCB-153 solution as an 

internal standard.    

Analysis  

The samples were run in triplicate. The hexane extracts were analyzed for left over PCA 

and its degradation byproducts on an Agilent 7820A series II GC-MS furnished with an 

autosampler and an Agilent 5977E mass spectrometer. The capillary column used was an Rxi®-

5ms (30 m × 0.25 mm i.d.; 0.25 µm film thickness) with helium as a carrier gas, a flow rate of 2.0 

mL/min, and an average gas velocity of 51.016 cm/s. The oven temperature program was set 

according to the following method: after warming up to an initial temperature of 50 ◦C for 4 

minutes, the column was ramped up at a rate of 10 ◦C/min to 250 ◦C and held for 2 minutes prior 

to cooling down. The injector and detector temperatures were maintained at 250 and 280 ◦C 

respectively. Injection volumes were set at 3 µL and were executed in pulsed splitless mode. A 

calibration plot for PCA was prepared within the appropriate concentration range and was found 

to be linear with a correlation coefficient value of about 0.99. The identities of the eluted 

compounds were confirmed by running PCA and anisole standard solutions and comparing the 

mass spectra of the samples to mass spectra referenced from the catalog of the National Institute 
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of Standards and Technology (NIST). The degradation rate was measured by the disappearance of 

the PCA peak and confirmed by the formation of lower chlorinated congeners. 

Results and Discussion 

Degradation rate of PCA compared to PCP with ball-milled ZVMg/C  

A kinetic study on PCA degradation using a treatment system of ball-milled ZVMg/C was 

performed at room temperature using an initial analyte concentration of 71.34 µM in a closed vial 

with ethanol and glacial acetic acid. The data for this study was compared with that from the PCP 

study, which is detailed in Chapter 1. Figure 14 shows the comparison of the decrease in 

concentration of both analytes, as measured by GC-MS, plotted against time. The results for 

reduction in concentration show that the degradation percentage of PCA at the 2 min time point 

was 31.7%. An abrupt decrease of 86.2% in PCA concentration took place at approximately 7 min. 

Between 7 minutes and 4 hours, concentration reduction decreased at a more gradual rate, with 

just a trace amount of the analyte detected at the 4 hour mark. No PCA was detected at the 6 hour 

time point. In comparison, the overall degradation rate of PCP was much steadier, however its rate 

of degradation was much faster than that of PCA. 

Concentration and mole balance for daughter compounds of PCP and PCA over time 

Over a two-week time period, the formation of degradation byproducts of PCA were 

analyzed as samples were extracted periodically and run on a GC-MS. As indicated by the results 

of the GC analysis in Figure 15a, the products of PCA degradation were characterized to be lower 

chlorinated anisoles. Among the twelve different byproducts observed, there were two tetra- (first  
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appearing at 5 min.), five tri- (first appearing at 10 minutes), three di- (first appearing at 45 

minutes [with 2,4-DiCA appearing in the greatest abundance]), and one monochlorinated anisole 

(first appearing at 1 day in trace amounts), as well as trace amounts of completely dechlorinated 

anisole (first appearing at 4 days). Faster rates of degradation occurred with the more highly 

chlorinated anisoles, such as the two tetrachlorinated congeners which disappeared after 20 

minutes. Two of the dichlorinated congeners: 2,4,6-TriCA (previously mentioned to be responsible 

for the odors found in wine) and 2,3,6-TriCA, were gone after one hour while detection of 3,4,5-, 

2,3,5- and 2,4,5-TriCA ceased after two, four and fourteen hours, respectively. All of the 

dichlorinated, monochlorinated and non-chlorinated anisoles were detected until the end of the 

study. The observed mole balances for both analytes were satisfactory, with PCA having a 92.6% 

mole balance and PCP a 94.8% mole balance. 

In the six-day time period during which the degradation study for PCP took place, a greater 

rate of disappearance for the concentration of the analyte was observed in a shorter time than for 

the PCA study. This agrees with the trend observed in studies which have compared the rate of 

biodegradation for the two analytes.(Goswami, Recio et al. 2007) As seen in Figure 15b, 13 

different byproducts were generated during this study including two tetra-, three tri-, four di- and 

three monochlorinated phenols, as well as phenol. As observed in the degradation study for 

chloroanisoles, there was an agreement in the faster degradation rate for higher-chlorinated CP 

congeners, and the major product was also found to be the 2,4-DiCP congener of dichlorophenol, 

although the overall yield was lower than 2,4-DiCA. In contrast to the PCA study, the dichlorinated 

congeners all appeared in much smaller concentrations, with the 3,5-DiCP congener being 

completely removed. The final concentration of phenol was much lower than that of the final 
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concentration of anisole, indicating that more of the di- and mono-congeners were converted to 

phenol. 

 

Figure 14: PCA and PCP degradation with the activated ZVMg/C system after 6 hours of 

treatment in acidified ethanol. 

One possible side-reaction that may impose a hindering effect on the degradation of either 

analyte is the formation of either magnesium hydroxide or magnesium ethoxide 

(MgOH/Mg(OCH2CH3)2) from the ionization of magnesium in the ethanol solvent system.(Cass, 

Freitas et al. 2000) A solid white hydroxide/ethoxide precipitate may adsorb onto the magnesium 

metal surface, thereby blocking the active sites. This may contribute to a significant reduction in 

the degradation rate of the analyte, shown by a leveling-off in the rate of decline in concentration 

0

10

20

30

40

50

60

70

80

0 2 5 7 10 15 20 30 45 60 120 240 360

C
o

n
c

. 
(μ

M
)

Treatment Time (mins)

PCP/Mg/C

PCA/Mg/C



 

55 

which is observed after approximately 24 hours for both PCA and PCP, however with a more 

constant plateau for PCA. Possible evidence of this can be perceived in the difficulty experienced 

while filtering the samples. Further studies have been conducted to optimize the reactivity of this 

system, and are discussed in the following section. 

 

Figure 15: Experimentally observed degradation byproducts of (a) PCA 

after two weeks of treatment, and (b) PCP after six days of treatment 

with the activated ZVMg/C reduction system in acidified ethanol. 
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Dechlorination of PCA by ball-milled ZVMg/C in acidified ethanol with periodic addition of 

acetic acid 

In a more recent kinetic study on the degradation of both PCA and PCP with ZVMg/C, 

samples were prepared in the same way using an ethanol solution spiked with glacial acetic acid 

and then attached to the shaker table for two weeks. Instead of a Thermo Scientific MaxQ 4000 

shaker table, an SK-300 shaker table was used at ∼21 ◦C instead of 26 ◦C. The samples were then 

detached so that 50 more µL of the glacial acetic acid could be added, and the samples were then 

shaken for two more weeks. Analysis of the samples for the concentration of both analytes and 

degradation byproducts was then completed using the same GC-MS. Figure 16 shows a decrease 

in the variety of congeners observed as byproducts for both analytes, although all of them are 

relatively low in number of chloro groups substituted. There were three degradation byproducts of 

PCA: 2,4-DiCA, 3,5-DiCA and 4-CA. PCP yielded six different byproducts: 3,5-DiCP, 2,4-DiCP, 

3,4-DiCP, 2-CP, 3-CP and 4-CP. The number of congeners observed as byproducts for each 

analyte did not change, however there was an increase in the di- and monochlorinated byproducts 

of both analytes, indicating progress in the reduction of the congeners. The major product observed 

for PCA degradation was 2,4-DiCA, and that of PCP degradation was 4-CP. Neither anisole nor 

phenol were produced from this study. The change in reaction conditions may have been 

responsible for this, either due to the change in the motion of the shaker table (from a rocking 

motion to an orbital motion), but most likely due to the change in temperature. Further work, 

including SEM imaging of the metal surface, needs to be done to establish the reason for the 

incomplete degradation observed. 
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Figure 16: Degradation of PCA and PCP by ball-milled ZVMg/C in acidified ethanol with 

addition of acetic acid after two weeks. 

Degradation of PCA with ZVMg/Pd system based on prior work with PCP 

In a previous effort to dechlorinate PCP, a ball-milled mixture of zero-valent magnesium 

and palladium was used in the aforementioned acidified ethanol solvent system. The results 

showed that, over one week, complete dechlorination of PCP to phenol was achieved. In order to 

produce similar success with PCA, a new study was conducted in which a trace amount (~0.1%) 

of palladium was ball-milled with the zero-valent magnesium and applied to the reaction system. 

The results in Figure 17 show that the palladium was a success, and that by one week PCA was 

dechlorinated completely to anisole (left). However, no anisole started to form until 24 hours after 

the beginning of the reaction; whereas the first trace amounts of phenol were detected within the 

first four hours of the PCP study (right) on which this PCA study was based. At four hours, there 

were still trace amounts of PCA present in solution, whereas all PCP was gone by then in the 

original study. At four days, all of the trichlorinated congeners of PCA byproduct were gone, leave 
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only 2,4-DiCA and anisole. Similarly, there was only one dichlorinated congener (3,4-DiCP) left 

with phenol at the four-day time point of the PCP study. Overall, the results proved to be 

satisfactory for the one-week complete dechlorination of both analytes using the zero-valent 

magnesium system with support from only trace amounts of palladium. The use of palladium, even 

at such a low amount, is still impractical for field applications and further experiments will be done 

to improve the ZVMg/C system. 

  

Figure 17: One week study for the degradation of PCA and PCP by ball-milled ZVMg/Pd in 

acidified ethanol. 

Degradation kinetics and suggested effect on the reaction mechanism 

In previous kinetic studies, data has been shown to follow a pseudo-first order trend with 

respect to the rate of analyte degradation in the presence of excess zero-valent metal (Elie et al., 
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2013). As reported in Chapter 1, results from the PCP degradation kinetic study were obtained 

using concentrations of 10.42 mmol of ZVMg/C and 0.375 mmol of PCP, corresponding to a molar 

ratio of 28:1 (Mg:PCP). The data from the results showed an expected trend of pseudo-first order 

kinetics. Under the same reaction conditions with PCA as the target analyte, a pseudo-first order 

trend was also confirmed. The data in Figure 18, which corresponds to the decline in PCP and 

PCA concentrations, were plotted following a pseudo-first order model showing coefficients of 

determination (R2 values) of 0.9464 and 0.9793 for PCP and PCA, respectively. As shown in 

Figure 18, the rate constant of PCP degradation is slightly higher than that of PCA showing that it 

underwent dechlorination at a marginally faster rate. 

 

Figure 18: Pseudo-first-order kinetics plot for PCA and PCP degradation with 

activated magnesium reducing systems in acidified ethanol.  
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A possible explanation for the difference in reaction kinetics is the difference in the 

strength of electron withdrawing groups between the substituents. PCA has a methoxy group on 

the ring, which is electron-withdrawing by induction. However, since the oxygen atom is attached 

to an aryl group on one side and to a methyl group on the other side, this weakens the inductive 

effect of the oxygen rendering the chloro substituents on the ring richer in electron density. On the 

other hand, PCP, which has a hydroxyl substituent, experiences stronger inductive electron 

withdrawing effects from the oxygen atom due to the lack of electron donation from the hydrogen 

to which it is bonded. As suggested by the computational data in Chapter 2, the lowest energetic 

pathway for the dechlorination reaction of hexachlorobenzene in the same reaction solution is 

through the mechanism of the Grignard-Zerewitinoff-like reaction. If this is also the lowest-energy 

pathway for the dechlorination of PCP and PCA then the zero-valent magnesium, which has a 

thermodynamic preference for the ionization to Mg2+, is more attracted to the electron-deficient 

chloro substituent of the PCP ring, therefore causing the expected PCP Grignard reagent to form 

at a faster rate. 

Conclusion 

Chloroanisoles are compounds that exhibit similar properties to and coexist in equilibrium 

with chlorophenols. Although they are less toxic than chlorophenols, their methoxy substituent 

makes them more lipophilic and causes them to have higher bioaccumulation and more resistance 

to biodegradation than chlorophenols. One specific congener, 2,4,6-TCA, is responsible for the 

contamination of certain foods and beverages, chiefly the tainting of corks used in wine bottles. 

Chloroanisoles are not manufactured for commercial use; however they can be synthesized in 
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nature from chlorophenols through biotransformation and biomethylation. Therefore, work needs 

to be done to develop methods of treatment for both PCA and PCP. Despite the toxicological 

effects and economic detriment resulting from the presence of PCA in the environment, little work 

on the remediation of chloroanisoles has been published. This study has served to develop an 

approach to meet the needs for this treatment based on the approach for the treatment of PCPs 

discussed in Chapter 1. The results of the method, which makes use of ZVMg/C in acidified 

ethanol, are compared for both target analytes. As reported from the results that were found within 

the GC-MS detection limits, complete degradation of PCP to less chlorinated byproducts was 

achieved within the first seven minutes while PCA degradation was completed within the first four 

hours, with the majority of the degradation occurring within the first seven minutes. The rate of 

degradation was higher for the more heavily-chlorinated byproducts, with the 2,4-disubstituted 

congeners of each substrate favored as major degradation byproducts. There was a satisfactory 

mole balance observed of 92.6% for PCA and 94.8% for PCP. After ~24 hours, the rate of 

degradation plateaued for each analyte, with a more consistent trend of stagnation for PCA. A 

possible explanation for the termination of the reaction is an obstructing effect imposed on the 

active site of the zero-valent magnesium via the formation of either magnesium hydroxide or 

magnesium ethoxide (MgOH/Mg(OCH2CH3)2).
 Further studies were done in order to overcome 

the difficulties presented by the ethoxide formation. In a recent four-week experiment, samples of 

PCP and PCA were re-spiked with acetic acid after two weeks of degradation in order to facilitate 

lasting effects of the reaction system. Although complete degradation was still not achieved, even 

after re-spiking, the kinetic data from both experiments agreed that PCP can be degraded to its 

major product of 4-CP at a higher rate than PCA can be degraded to its major product of 2,4-DiCA. 
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One study has shown that complete degradation of either substrate is accomplished through the 

use of ZVMg/Pd in one week, but this is an impractical approach for environmental remediation. 

Kinetic data has shown that the reaction rate for the degradation of both PCP and PCA follow a 

pseudo first-order trend. PCP has a slightly higher rate constant, which may be due to the stronger 

inductive effects of the hydroxyl substituent. Ultimately, the conditions for the reductive 

dechlorination reaction of PCA and PCP using ZVMg/C in an acidified ethanol system need to be 

optimized in order to achieve complete degradation so that this system can be put into practice for 

large-scale in situ remediation of PCA and PCP. SEM analysis on the surface of the metal will be 

performed before and after ball-milling in order to characterize the barrier imposed upon the 

reactive site. 
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CHAPER FOUR: CONCLUSIONS  

From a practical point of view, the study from Chapter 1 demonstrated that ball-milled 

magnesium powder with various amendments can be an excellent candidate for treatment of CPs. 

Magnesium has dramatically enhanced reactivity for PCP degradation in comparison with other 

metals, including iron and zinc. Lower CPs can also be treated by magnesium, even if they showed 

slower reaction rates than PCP. It should be noted that the more chlorine on the phenol ring, the 

more toxic are the CPs (Kim and Carraway 2003) and magnesium has higher reactivity for highly 

CPs, making the reduction of higher chlorinated, more toxic CPs rapid and favorable. The results 

of these studies indicate that all magnesium systems were powerful for PCP degradation, no PCP 

was detected after 30 minutes of degradation and the majority of the PCP degradation occurred 

within the first four minutes with ball-milled ZVMg/C. After 30 minutes, mechanically alloyed 

Mg/Pd proved to be the most efficient system for the PCP dechlorination with a matrix consisting 

of at least 0.02 g Mg0/mL ethanol and 10 µL acetic acid/mL ethanol, in which case 20 ng/µL of 

PCP was dechlorinated to phenol in approximately 15 minutes with a carbon mass balance of 

94.89%. The dechlorination kinetics showed an increasing trend in the order of ZVMg < ZVMg/Pd 

< ZVMg/C for the PCP degradation. However, the increasing trend of kinetics for the phenol 

formation (complete dechlorination) was in the order of ZVMg < ZVMg/C < ZVMg/Pd.    
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In the studies that were performed, ball-milled ZVMg/C was proven to be more efficient 

at ambient conditions than iron or zinc as a reagent for the reductive treatment of HCB, and 

possibly other chlorinated benzenes. Within the detection limits of the GC-MS, nearly 100% of 

the HCB was found to be degraded within the first 30 min of the study, and the majority of the 

HCB degradation occurred within the first ten minutes. PCBz, as well as other lower-chlorinated 

congeners, such as tetra-, tri- and dichlorobenzenes were identified and quantified using GC-MS 

methodology. However, no monochlorinated benzene or benzene itself were detected. The main 

dechlorination pathways of HCB in 1:1 ethanol/ethyl lactate were HCB → PCBz → 1,2,4,5-TCB; 

1,3,4,5-TCB → 1,2,4-TriCB; 1,3,5-TriCB → 1,4-DiCB; 1,3-DiCB. The reaction kinetics followed 

a pseudo-first order trend, and degradation rates were found to be slower for lower-chlorinated 

congeners. The average mole balance observed over a nine day study was determined to be 79.2%. 

Experimental results were consistent with quantum mechanical calculations showing the same ΔG 

values for the predicted degradation reaction pathways. Other calculations that were performed 

were successful in explaining the reaction mechanism and showing that it took place through ionic 

transition states in a Grignard-Zerewitinoff-like reaction. Ultimately, reductive dechlorination 

using zero-valent metals in conjunction with bioremediation will provide a safe and effective way 

to overcome some of the challenges that were seen in the past with the remediation of lower-

chlorinated aromatic compounds, with possible application for aliphatic halohydrocarbons.  

Chloroanisoles are compounds that exhibit similar properties to and coexist in equilibrium 

with chlorophenols. Although they are less toxic than chlorophenols, their methoxy substituent 

makes them more lipophilic and causes them to have higher bioaccumulation and more resistance 

to biodegradation than chlorophenols. One specific congener, 2,4,6-TCA, is responsible for the 
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contamination of certain foods and beverages, chiefly the tainting of corks used in wine bottles. 

Chloroanisoles are not manufactured for commercial use; however they can be synthesized in 

nature from chlorophenols through biotransformation and biomethylation. Therefore, work needs 

to be done to develop methods of treatment for both PCA and PCP. Despite the toxicological 

effects and economic detriment resulting from the presence of PCA in the environment, little work 

on the remediation of chloroanisoles has been published. This study has served to develop an 

approach to meet the needs for this treatment based on the approach for the treatment of PCPs 

discussed in Chapter 1. The results of the method, which makes use of ZVMg/C in acidified 

ethanol, are compared for both target analytes. As reported from the results that were found within 

the GC-MS detection limits, complete degration of PCP to less chlorinated byproducts was 

achieved within the first seven minutes while PCA degradation was completed within the first four 

hours, with the majority of the degradation occurring within the first seven minutes. The rate of 

degradation was higher for the more heavily-chlorinated byproducts, with the 2,4-disubstituted 

congeners of each substrate favored as major degradation byproducts. There was a satisfactory 

mole balance observed of 92.6% for PCA and 94.8% for PCP. After ~24 hours, the rate of 

degradation plateaued for each analyte, with a more consistent trend of stagnation for PCA. A 

possible explanation for the termination of the reaction is an obstructing effect imposed on the 

active site of the zero-valent magnesium analyte via the formation of either magnesium hydroxide 

or magnesium ethoxide (MgOH/Mg(OCH2CH3)2).
 Further studies were done in order to overcome 

the difficulties presented by the ethoxide formation. In a recent four-week experiment, samples of 

PCP and PCA were re-spiked with acetic acid after two weeks of degradation in order to facilitate 

lasting effects of the reaction system. Although complete degradation was still not achieved even 
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after re-spiking, the kinetic data from both experiments agreed that PCP can be degraded to its 

major product of 4-CP at a higher rate than PCA can be degraded to its major product of 2,4-DiCA. 

One study has shown that complete degradation of either substrate is accomplished through the 

use of ZVMg/Pd in one week, but this is an impractical approach for environmental remediation. 

Kinetic data has shown that the reaction rate for the degradation of both PCP and PCA follow a 

pseudo first-order trend. PCP has a slightly higher rate constant, which may be due to the stronger 

inductive effects of the hydroxyl substituent. Ultimately, the conditions for the reductive 

dechlorination reaction of PCA and PCP using ZVMg/C in an acidified ethanol system need to be 

optimized in order to achieve complete degradation so that this system can be put into practice for 

large-scale in situ remediation of PCA and PCP. SEM analysis on the surface of the metal surface 

will be performed before and after ball-milling in order to characterize the barrier imposed upon 

the reactive site. 
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER ONE 
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Figure 19: Comparison studies of PCB-151 degradation using ball-milled ZVMg powder vs. 

ZVMg powder as received. The ball-milling procedure is a beneficial activation process for the 

ZVMg powder since it significantly increases the rate of dechlorination of PCBs.* 

 (*Maloney, P.; DeVor, R.; Novaes-Card, S.; Saitta, E.; Quinn, J.; Clausen, C. A.; Geiger, C. L., 

Dechlorination of polychlorinated biphenyls using magnesium and acidified alcohols. J. Hazard. 

Mater. 2011, 187, 235-240) 
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Figure 20: Calibration curves for PCP and its chlorinated byproducts. 
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Table 1: Mass Spectrometry (MS) Selected Ion Monitoring parameters for the degradation of 

PCP in ethanol and acetic acid. 

 

 

 

 

  

Compound 
Retention 

Time (min) 

Molecular 

Ion (m/z) 

Fragment Ions  

(m/z) 

Pentachlorophenol (PCP) 11.983 266 264, 178, 152 

2,3,4,6-Tetrachlorophenol (TCP) 10.086 232 230, 178, 165 

2,3,4,5-TCP 9.928 - - 

2,3,6-Trichlorophenol (TriCP) 8.683 198 196, 165, 152 

2,3,5-TriCP 8.187 - - 

2,4,5-TriCP 8.799 - - 

2,3,4-TriCP 8.509 - - 

2,4-Dichlorophenol (DiCP) 7.022 162 160, 146, 126 

3,5-DiCP 6.718 - - 

2,3-DiCP 6.929 - - 

3,4-DiCP 6.211 - - 

2-Chlorophenol (CP) 4.641 128 126, 112, 106 

3-CP 4.360 - - 

4-CP 4.087 - - 

Phenol 3.054 94 78, 57 

PCB-153 (Internal Standard) 16.821 360 358,242 
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Figure 21: SEM images of a) unmilled ZVMg powder b) ball-milled ZVMg powder and c) ball-

milled ZVMg/C powder.*  

(*Elie, M. R.; Clausen, C. A.; Geiger, C. L., Reduction of benzo[a]pyrene with acid-activated 

magnesium metal in ethanol: A possible application for environmental remediation. J. Hazard. 

Mater. 2012, 203-204, 77-85)  
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Figure 22: Chromatograms from GCMS of PCP degradation at different time points, for all three 

reaction systems in acidified ethanol and Ball-milled a) ZVMg, b) ZVMg/C, and c) mechanically 

alloyed ZVMg/Pd (11.9min is PCP peak).  
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Figure 23: Chromatograms from GCMS of PCP degradation byproducts after 1 hr in acidified 

ethanol and Ball-milled a) ZVMg, b) ZVMg/C, and c) mechanically alloyed ZVMg/Pd (2.89min 

Phenol, 6.41-7.17min DiCP, 8.21-9.12min TriCP, 9.93-10.6min TCP and 16.5min PCB-153; 

internal standard). 
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Figure 24: Dechlorination of PCP with the activated (a) Mg, (b) Mg/C, (c) mechanically alloyed 

Mg/Pd reducing systems. Each data point represents the mean ± error calculated from duplicate 

samples.  
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Figure 25: SEM images of ball-milled ZVMg particles a) before dechlorination and b) after 

dechlorination.*  

(*Novaes-Card, S. Magnesium and Acidified Ethanol Based Treatment Systems for Extraction and 

Dechlorination of Polychlorinated Biphenyls from Contaminated Oils, Paints, and Soils. 2013). 
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Table 2: Data of the pseudo-first order PCP degradation duplicate runs of the reaction of 66.72 

μM of PCP with 2.08×106 μM ZVMg in 5 ml acidified ethanol.  

Mg 

 
Mg/C 

 
Mg/Pd 

 

Time (min) ln (PCP) (μM) 
Time 

(min) 
ln (PCP) (μM) 

Time 

(min) 

ln (PCP) 

(μM) 

0 4.20±0.013 0 4.20±0.013 0 4.20±0.013 

1 4.10±0.006 1 3.77±0.044 1 4.08±0.025 

2 4.09±0.026 2 3.48±0.116 2 4.03±0.006 

3 4.03±0.021 3 3.18±0.260 3 3.86±0.025 

4 4.01±0.019 4 3.05±0.117 4 3.79±0.064 

6 4.03±0.017 6 2.75±0.190 6 3.76±0.016 

8 4.01±0.005 - - 8 3.69±0.009 

10 3.93±0.001 - - 10 3.59±0.006 

15 3.74±0.028 - - 15 3.22± 0.108 

30 2.96±0.139 - - - - 

Rate constant = 

0.0383±0.0031 

Rate constant = 

0.2370±0.0282 

Rate constant = 

0.0595±0.0046 

R2=0.9488 R2=0.9464 R2=0.9602 
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Table 3: Data of the pseudo-first order phenol formation of dechlorination of chlorinated phenols 

with activated magnesium reducing systems in ethanol and acetic acid.  

Mg Mg/C Mg/Pd 

Time (hr) 
ln (phenol) 

(μM) 
Time (hr) 

ln (phenol) 

(μM) 
Time (hr) 

ln (phenol) 

(μM) 

- - - - 
3 

0.4661±0.113

6 

- - - - 5 1.585±0.1348 

- - - - 7 2.225±0.1006 

- - - - 10 2.548±0.0181 

- - - - 14 2.70±0.0784 

- - 18 0.990±0.0455 18 3.41±0.0483 

- - 24 1.25±0.0102 24 - 

48 0.280±0.0725 48 1.71±0.0241 48 - 

96 1.27±0.192 96 3.13±0.0544 96 - 

144 2.77±0.0909 - - 144 - 

Rate constant = 

0.0259±0.0032 

Rate constant = 

0.0268±0.0015 

Rate constant = 

0.1652±0.0352 

R2=0.985 R2=0.993 R2=0.846 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER TWO
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Figure 26: Calibration curves for HCB and its chlorinated byproducts. 
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Table 4: Mass Spectrometry (MS) Selected Ion Monitoring parameters for the degradation of 

HCB in 1:1 ethanol/ethyl lactate solvent and acetic acid.

Compound Retention 

Time (min) 

Molecular 

Ion (m/z) 

Fragment Ions  

(m/z) 

Hexachlorobenzene (HCB) 19.714 284 249, 282 

Pentachlorobenzene (PCBz) 17.497 250 215, 248 

1,2,4,5-Tetrachlorobenzene 

(TCB) 

14.996 216 179, 214 

1,3,4,5-TCB 14.986 - - 

1,2,4-Trichlorobenzene 

(TriCB) 

12.79 182 145, 180 

1,3,5-TriCB 12.073 - - 

1,3-Dichlorobenzene (DiCB) 9.933 148 146,147 

1,4-DiCB 10.053 - - 

Monochlorobenzene 

(monoCBz) 

6.901 112 77 

Benzene (Bz) 3.626 78 51 

PCB-153 (Internal Standard) 25.361 360 358,242 
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Figure 27: Chromatograms from GCMS of HCB degradation at different time points within 1 hr 

in 1:1 acidified ethanol/ethyl lactate and Ball-milled ZVMg/C, (19.71 min is HCB peak, 15.67 

min is 1,2,3,4-TCB, 14.99 min is 1,2,4,5-TCB, 12.79 min is 1,2,4-TriCB, 12.08 is 1,3,5-TriCB 

and 25.36 min is PCB-153; internal standard). 
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Table 5: Data of the pseudo-first order PCP degradation duplicate runs of the reaction of 66.72 

μM of PCP with 2.08×106 μM ZVMg in 5 ml acidified ethanol.  

Time (min) ln (HCB) (μM) 

0 4.19±0.03 

5 
3.34±0.07 

10 
2.50±0.03 

15 0.76±0.04 

Rate constant = 0.22±0.03 

R2=0.9627 
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Table 6: ΔG data of the reaction calculated with Gaussian 09 software with B3LYP method for 

each chlorinated position in HCB and its degradation products. 

x Reactant Product ΔG (kcal/mol) 

6 1,2,3,4,5,6-hexachlorobenzene 1,2,3,4,5-pentachlorobenzene -30.75 

5 

1,2,3,4,5-pentachlorobenzene 1,2,3,4-tetrachlorobenzene -27.50 

1,2,3,4,5-pentachlorobenzene 1,2,4,5-tetrachlorobenzene -30.07 

1,2,3,4,5-pentachlorobenzene 1,3,4,5-tetrachlorobenzene -29.69 

4 

1,2,3,4-tetrachlorobenzene 1,2,3-trichlorobenzene -26.72 

1,2,3,4-tetrachlorobenzene 1,2,4-trichlorobenzene -26.24 

1,2,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene -26.68 

1,3,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene -27.06 

1,3,4,5-tetrachlorobenzene 1,3,5-trichlorobenzene -29.05 

3 

1,2,3-trichlorobenzene 1,2-dichlorobenzene -26.15 

1,2,3-trichlorobenzene 1,3-dichlorobenzene -28.49 

1,2,4-trichlorobenzene 1,2-dichlorobenzene -23.63 

1,2,4-trichlorobenzene 1,4-dichlorobenzene -26.10 

1,3,5-trichlorobenzene 1,3-dichlorobenzene -23.97 

2 

1,2-dichlorobenzene chlorobenzene -25.18 

1,3-dichlorobenzene chlorobenzene -22.84 

1,4-dichlorobenzene chlorobenzene -22.71 

1 Chlorobenzene Benzene -21.61 
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Table 7: Activation energies data of the reaction calculated with Gaussian 09 software with 

B3LYP method for each chlorinated position in HCB and its degradation products.  

x Reactant Product Ea (kcal/mol) 

6 1,2,3,4,5,6-hexachlorobenzene 1,2,3,4,5-pentachlorobenzene 11.123 

5 

1,2,3,4,5-pentachlorobenzene 1,2,3,4-tetrachlorobenzene 15.72 

1,2,3,4,5-pentachlorobenzene 1,2,4,5-tetrachlorobenzene 12.35 

1,2,3,4,5-pentachlorobenzene 1,3,4,5-tetrachlorobenzene 13.02 

4 

1,2,3,4-tetrachlorobenzene 1,2,3-trichlorobenzene 17.07 

1,2,3,4-tetrachlorobenzene 1,2,4-trichlorobenzene 14.41 

1,2,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene 17.27 

1,3,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene 16.47 

1,3,4,5-tetrachlorobenzene 1,3,5-trichlorobenzene 14.75 

3 

1,2,3-trichlorobenzene 1,2-dichlorobenzene 18.48 

1,2,3-trichlorobenzene 1,3-dichlorobenzene 15.67 

1,2,4-trichlorobenzene 1,2-dichlorobenzene 22.55 

1,2,4-trichlorobenzene 1,4-dichlorobenzene 19.39 

1,3,5-trichlorobenzene 1,3-dichlorobenzene 21.46 

2 

1,2-dichlorobenzene chlorobenzene 20.82 

1,3-dichlorobenzene chlorobenzene 24.14 

1,4-dichlorobenzene chlorobenzene 24.72 

1 Chlorobenzene Benzene 26.22 
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Figure 28: Minimum energy conformation of benzene.  
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Figure 29: Minimum energy conformation of chlorobenzene.  
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Figure 30: Minimum energy conformation of 1,3-DiCB.  
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Figure 31: Minimum energy conformation of 1,2-DiCB.  
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Figure 32: Minimum energy conformation of 1,4-DiCB.  
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Figure 33: Minimum energy conformation of 1,2,3-TriCB.  
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Figure 34: Minimum energy conformation of 1,2,4-TriCB.  
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Figure 35: Minimum energy conformation of 1,3,5-TriCB.  
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Figure 36: Minimum energy conformation of 1,2,3,4-TCB.  
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Figure 37: Minimum energy conformation of 1,2,3, 5-TCB.  
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Figure 38: Minimum energy conformation of 1,2,4,5-TCB.  
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Figure 39: Minimum energy conformation of PCBz.  
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Figure 40: Minimum energy conformation of HCB.  
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