Virtual resistance based DC-link voltage regulation for Microgrid DG inverters.

2016

Siddhesh Shinde

University of Central Florida

Find similar works at: http://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Electrical and Computer Engineering Commons

STARS Citation

Shinde, Siddhesh, "Virtual resistance based DC-link voltage regulation for Microgrid DG inverters." (2016). Electronic Theses and Dissertations. 5251.
http://stars.library.ucf.edu/etd/5251

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
VIRTUAL RESISTANCE BASED DC-LINK VOLTAGE REGULATION FOR MICROGRID DG INVERTERS

by

SIDDHESH SHINDE
B.E. University of Mumbai, 2012

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Electrical and Computer Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida

Fall Term
2016

Major Professor: Issa Batarseh
ABSTRACT

This research addresses the practical issues faced by Microgrid Distributed Generation (DG) inverters when operated in islanded mode. A Microgrid (MG) is an interconnection of domestic distributed loads and low voltage distributed energy sources such as micro-turbine, wind-turbine, PVs and storage devices [3]. These energy sources are power limited in nature and constrain the operation of DG inverters to which they are coupled. DG inverters operated in islanded mode should maintain the power balance between generation and demand. If DG inverter operating in islanded mode drains its source power below a certain limit or if it is incapable of supplying demanded power due to its hardware rating, it turns on its safety mechanism and isolates itself from the MG. This, in turn, increases the power demand on the rest of the DG units and can have a catastrophic impact on the viability of the entire system [8].

This research presents a Virtual Resistance based DC Link Voltage Regulation technique which will allow DG inverters to continue to source their available power even when the power demand by the load is higher than their capacity without shutting off and isolating from the MG.
Dedicated to my parents who inspired me
ACKNOWLEDGMENTS

I always thought a miracle is meeting the right person at the right time in life; I want to thank Dr. Issa Batarseh for giving me an opportunity to work with him at Florida Power Electronics Center and contribute to his research. I would like to thank Mr. Charlie Jourdan and Dr. Hussam Alattrash for providing intellectual insights throughout my research; I consider them as my ideal who not only inspired me but also helped me build a strong foundation for learning and facing real-life challenges.

I am grateful to the research group at FPEC - Milad Tayebi, Anirudh Pise, Mahmood Alharbi, Xi Chen, Michael Pepper and Christopher Hamilton for their support and intellectual discussions. I am thankful to my committee members Dr. Issa Batarseh, Dr. Nasser Kutkut and Dr. Mikhael Wasfy who gave me their guidance and expert judgment during the completion of the thesis. I am thankful to Ms. Carol Ann Dykes for her kindness in helping me editing this document.

Finally, I am grateful to my family, friends for their kind understanding and constant support.
TABLE OF CONTENTS

LIST OF FIGURES ... x

LIST OF TABLES ... xv

CHAPTER 1: INTRODUCTION .. 1

1.1 Microgrid .. 1

1.1.1 Microgrid Structure and Control .. 2

1.2 Microsources ... 5

1.2.1 Inverters with Photovoltaic Microsource ... 8

1.2.2 Inverters with Battery Microsource .. 9

1.3 DG Unit Control Strategies .. 9

1.3.1 Droop based Control Strategy .. 11

1.3.2 Virtual Synchronous Machine Based Control Strategy ... 15

1.4 Power Limit Management for Grid-Forming Inverters ... 18

1.5 Outline of the Thesis ... 19

CHAPTER 2: CONTROLS OF THE GRID-FOLLOWING INVERTERS .. 21
2.1 Basic Blocks of the Inverter ... 21

2.2 PLL for Grid-following Inverters .. 23
 2.2.1 PLL Structure .. 24
 2.2.2 PLL Modeling and Control Design .. 26
 2.2.3 PLL Implementation ... 30

2.3 OCR for Grid-following Inverter .. 35
 2.3.1 OCR Dynamics ... 36
 2.3.2 OCR Plant Modeling and Controller Design 38
 2.3.3 OCR Hardware Results .. 42
 2.3.4 OCR Implementation .. 43

CHAPTER 3: GENERATOR EMULATION CONTROL FOR THE INVERTERS 47

3.1 Dynamic Properties of Synchronous Generator 48
 3.1.1 P-\(\omega\) Droop Control ... 52
 3.1.2 Damping and Inertial Properties of Synchronous Generator 54

3.2 Generator Emulation Controls .. 55
3.2.1 Impedance emulation ... 56

3.2.2 Droop-based PLL .. 58

3.3 GEC Implementation and Design Consideration 62

3.3.1 Design of stator inductor L_s and DC resistance R_{dc} 63

3.3.2 Design of Proportional Gain for Droop-Based PLL 65

3.3.3 Simulink Implementation of GEC .. 69

3.4 GEC Inverter Hardware Results .. 71

CHAPTER 4: VIRTUAL RESISTANCE BASED DC-LINK VOLTAGE REGULATION FOR GEC INVERTERS ... 76

4.1 DC-link voltage regulator for Grid-following Inverter 76

4.2 DC-link voltage regulator for GEC grid-forming Inverter using virtual resistance technique ... 79

4.3 Modeling and Control Design for DC-link voltage regulator 83

4.4 Implementation of Virtual Resistance based DC-link Voltage Regulator 90

4.5 Results of Virtual Resistance based DC-link Regulator 94

CHAPTER 5: CONCLUSION ... 96
APPENDIX: EXPERIMENTAL SETUP ... 98

LIST OF REFERENCES .. 101
LIST OF FIGURES

Figure 1-1: Simplified structure and controls of the Microgrid .. 3

Figure 1-2: Stages of inverter based DG ... 6

Figure 1-3: Categorization of the inverter based DG controls ... 10

Figure 1-4: Q-E and P-ω Droop control ... 13

Figure 1-5: Implementation of PQ droop control strategy .. 14

Figure 1-6: Implementation of VSG control strategy ... 17

Figure 2-1: Basic Blocks of grid-following inverter .. 21

Figure 2-2: Basic structure of PLL ... 24

Figure 2-3: S-domain representation of PLL ... 27

Figure 2-4: PLL uncompensated loop gain ... 29

Figure 2-5: PLL compensated loop gain ... 30

Figure 2-6: PLL Simulink Implementation ... 30

Figure 2-7: Low pass filter implementation ... 32

Figure 2-8: Digital PI-controller implementation .. 33
Figure 2-9: Implementation of NCO ... 35

Figure 2-10: Output current regulator loop model ... 36

Figure 2-11: Inverter stage model for developing $G_id(s)$ 38

Figure 2-12: Output current regulator with PI and feedforward control 39

Figure 2-13: OCR uncompensated loop gain .. 41

Figure 2-14: OCR compensated loop gain ... 42

Figure 2-15: Hardware results for OCR .. 43

Figure 2-16: OCR loop and inverter average model 43

Figure 2-17: Inverter average model ... 44

Figure 2-18: OCR implementation ... 46

Figure 3-1: Basic block of power generator system 48

Figure 3-2: Electrical characteristics of synchronous generator 49

Figure 3-3: Dynamic model of synchronous generator 51

Figure 3-4: Dynamic model of synchronous generator with droop control 52

Figure 3-5: P-ω droop negative slope relationship ... 53
Figure 3-6: GEC impedance emulation ... 57
Figure 3-7: S-domain model of PLL .. 58
Figure 3-8 Dynamic model of PLL .. 60
Figure 3-9: Modified characteristics of emulated impedance network 63
Figure 3-10: P-ω droop curve for PV and battery DG inverters 67
Figure 3-11: P-ω droop curve .. 67
Figure 3-12: Peak output current vs Phase error ... 68
Figure 3-13: GEC Implementation in Simulink .. 70
Figure 3-14: Implementation of GEC block .. 71
Figure 3-15: Output current at 59.30 Hz .. 72
Figure 3-16: Output current at 59.40 Hz .. 72
Figure 3-17: Output current at 59.50 Hz .. 73
Figure 3-18: Output current at 59.60 Hz .. 73
Figure 3-19: Output current at 59.70 Hz .. 74
Figure 3-20: Output current at 59.80 Hz .. 74
Figure 3-21: Output current at 59.90 Hz... 75

Figure 4-1: Single stage grid-following inverter ... 77

Figure 4-2: Grid-forming Inverters operated in islanded mode. 80

Figure 4-3: GEC based grid-forming inverter .. 81

Figure 4-4: Virtual resistance integrated emulated impedance network 82

Figure 4-5: Dynamic model of DC-link voltage ... 85

Figure 4-6: Virtual resistance model... 86

Figure 4-7: Dynamic model of virtual resistance based DC-link voltage regulator 87

Figure 4-8: Uncompensated DC-link voltage regulator loop gain 88

Figure 4-9: Compensated DC-link voltage regulator loop-gain............................ 90

Figure 4-10: Dynamic model of DC-link voltage and DC-link voltage regulator 91

Figure 4-11: Virtual resistance embedded in GEC model 93

Figure 4-12: GEC inverter with virtual resistance based DC-link voltage regulator 94

Figure 4-13: DC-link voltage regulator... 95

Figure 5-1: Power-limited P-\(\omega\) droop curve of GEC inverter 97
Figure A-1: GEC inverter setup layout... 99

Figure A-2: GEC inverter experimental setup.. 100
LIST OF TABLES

Table 1-1: Droop characteristics based controls ... 15

Table 2-1: Values of PLL gain .. 28

Table 2-2: System parameters for designing OCR ... 40

Table 3-1: Inverter parameters to design stator inductor L_s ... 64

Table 3-2: Parameters to calculate droop PLL gain ... 68

Table 4-1: Inverter parameters to designing DC-link voltage regulator loop 87
CHAPTER 1: INTRODUCTION

The increase in diverse power demand and environmental concerns has challenged the reliability of the conventional power system which is based on a centralized architecture. Distributed Generation (DG) offers an opportunity to achieve higher power system reliability and efficiency due to its distributed nature. The increase in the penetration of DG brings about a concept of the microgrid [2]. A microgrid is an interconnection of domestic distributed loads and low voltage distributed energy sources such as micro-turbine, wind-turbine, PVs and storage devices [3]. These energy sources are power limited in nature and place constraints on the operation of DG units to which they are coupled. In this research, the emphasis is placed on power-limit management techniques which allow DG units to remain connected to the microgrid even when sourcing low power. This avoids overloading of the rest of the resources connected in the microgrid thus improving microgrid stability.

1.1 Microgrid

With the increase in DG and distributed storage (DS) on the low voltage (LV) side of the grid, it is not technically or economically feasible to extend the traditional command and control philosophy of the grid to these devices [1]. Microgrid technology is used to overcome this problem. Microgrid forms the coordinated group of energy sources, storages, and loads that can collectively interact with the main grid as a unified, coherent system [1]. Microgrids provide a higher degree of freedom from controllability and
Operability perspective as the burden of control and communication shifts away from the centralized grid controller. They allow integration of distributed generation and distributed storages on the LV side of the grid in a systematic and cohesive manner and ensure the stability of the electrical network.

From a customer’s point of view, microgrids increase the power reliability since they combine the reliability of the grid with that of DGs which are capable of producing power independently. They also improve power quality since microgrids have the distinct ability to create intentional islands (separate from the grid) in the event of grid interruption. From the utility operator’s perspective, microgrids improve power quality by offering transient suppression capabilities since microgrid DG units can source part of transient load current locally thus reducing the magnitude and severity of the transient seen by rest of the power system [1]. If a power quality disruption occurs on the customer’s side, the microgrid can island itself and prevent the disturbance from propagating to the grid. Islanding also enhances the ability of the grid to perform a black-start [1]. The capability of a microgrid to disconnect from the grid and to form an island is beneficial for both customers and grid operators as it improves reliability and power quality.

1.1.1 Microgrid Structure and Control

Figure (1-1) shows the simplified structure and controls of the microgrid. Microgrids are placed in the low voltage (LV) and medium voltage (MV) distribution system [3]. They are connected to the utility at the point of common coupling (PCC) via a static switch (SS).
This switch is controlled by power management unit operated by the microgrid central controller (MGCC). The Power management unit continuously monitors the voltage and severe short circuit faults occurring either at the grid end or microgrid end and commands the static switch to the island the microgrid thus ensuring reliability and stability [5]. The MGCC sends predefined control signals to the local microsource controller (MC) and load controller (LC) to perform power balancing and also optimizes microgrid operation based on electricity market price.

Figure 1-1: Simplified structure and controls of the Microgrid

Microgrids can operate in both grid-connected and islanded mode. In grid-connected mode, DGs can share loads with the grid. Whereas in the islanded mode, microgrids
operate autonomously and interconnected DGs share the load amongst themselves. In order to maintain stability and operate a microgrid economically, the proper control structure is required. The principle roles of the Microgrid control structure are voltage and frequency regulation in both operating modes, accurate load sharing, DG coordination, microgrid resynchronization with the main-grid, power flow control between main grid and the microgrid and optimizing the microgrid operating cost [11]. As shown in the figure (1-1), a microgrid possesses an advanced control structure at different layers to carry out these functionalities. Each control layer has particular implications and operates at different rates. This control strategy forms a hierarchical control. The control of a microgrid can be mainly classified into four levels: local/primary, secondary, central/emergency and global controls [3]. The local/primary control provides references for the voltage and current loops operated within the DG unit. These inner level control loops are also known as zero-level control loops [11] and have a fast-dynamic response. The main function of this control is to provide voltage and current regulation within the DG unit. Secondary control has a slower dynamic response compared to the primary control and is mainly use to compensate for the deviations in the voltage and frequency caused by the primary control. In secondary control, the microsource controller compares the microgrid frequency and terminal voltage of the DGs with the reference values and produces error signals; these error signals are then processed by the frequency, and voltage controllers and the resulting signals are sent to the primary controller of the DGs to take corrective measures. Central/emergency control is carried out by MGCC which interfaces between the MG and other MGs as well as higher distribution network [3]. This control manages
power flow between the microgrid and the main grid and is primarily responsible for MG stability. It is also responsible for taking protective actions in case of power disturbances. The MGCC communicates with the distribution network and market operator and optimizes microgrid operation. Central/emergency control is the slowest control that works on the top level. The global control is a centralized control which allows the MG to operate at an economic optimum and organizes the relation between the MG and the distribution network as well as other connected MGs [3].

In this research, the focus is primarily on microsource power limit management performed by the primary/local control of the microgrid hierarchical control structure. A novel control technique is developed to carry out power balance between the energy source connected to the DG and the load.

1.2 Microsources
A DG unit supplies power to the microgrid using energy sources connected to them. These energy sources are called microsources. A microgrid can consist of a diverse range of energy sources; it can be renewable energy sources like photovoltaics panels, wind turbines, fuel cells or can consist of natural gas or fossil fuels. A Microgrid may also include storage technologies such as batteries, ultra-capacitors and flywheel energy storage which are interfaced using distributed storage (DS) units. Energy sources can be connected to the microgrid using either mechanical means (e.g. synchronous generators, internal combustion engine) or by electrical means; that is by using a power electronics
inverter. DG units can be classified into two categories: rotating machine based DGs and inverter based DGs. This research focuses on inverter based DGs.

The Microsource for an inverter based DG can either source DC power (e.g. Photovoltaic) or non-utility-grade AC power (e.g. wind-turbine). This power is then converted to utility-grade AC with the desired magnitude, frequency, and phase angle through the interfacing power converters [10]. Voltage source inverters (VSI) with sinusoidal-PWM are commonly used to convert DC power to utility grade AC. DG units with power converters can consist of one or multiple power processing stages. The type and number of power conversion stages depends on the nature (DC or AC) of the power source, its capacity, and dynamic characteristics.

Figure 1-2: Stages of inverter based DG
Figure (1-2) shows various power conversion stages in inverter based DG. A single stage conversion system consists of a microsource (e.g. P.V., battery) directly connected to the DC-AC inverter stage via a DC-link. In two-stage conversion system, the microsource (e.g. P.V., battery, Fuel cell) is first connected to DC-DC converter to boost the microsource output voltage to the desired level and is then connected to DC-AC inverter stage via the DC-link. In the case of a multi-stage conversion system, the microsource (e.g. micro-turbine, wind turbine) output is first connected to the AC-DC rectification stage then to the DC-DC boost stage to bring output voltage to the desired level and finally connected to DC-AC inverter stage via a DC-link. These power processing configurations have varying benefits depending upon the microsource.

Inverter-based DGs are further classified into two subgroups depending upon their control strategies. 1) Grid-forming inverters - this type of inverter control causes their microsource to behave as a regulated voltage source, and therefore these inverters are capable of operating in standalone mode. 2) Grid-following inverters - this type of inverter control causes their microsource to behave as a regulated current source, and requires grid voltage and frequency as a reference for proper operation [3]. There are three types of DG units; mechanical/rotating machine based DGs, grid-following based DGs, and grid-forming based DGs. All of these DGs have a unique dynamic response which characterizes their behavior in the microgrid. Dynamics of grid-forming based inverters is covered in section 1.3, dynamics of the grid-following inverters and rotating machine are
covered in chapter 2 and chapter 3 respectively. The following section 1.2.1 addresses the inter-source dynamics of photovoltaic and battery microsources.

1.2.1 Inverters with Photovoltaic Microsource

Using photovoltaic (PV) microsources in the microgrid is popular since it produces clean energy and has zero fuel cost. Since PV panels do not store energy, it is possible to rapidly change the output voltage of the PV panel with the help of DC-DC power stage to track its maximum power point (MPP) and extract maximum power. PV based DG can consist of an intermediate DC-DC power stage to perform the function of MPP tracking and boosting the output voltage of PV to the level needed for the inverter power stage.

Both grid-following and grid-forming inverters control techniques can be used to integrate PV based DGs into a microgrid. PV output power depends on upon incident solar irradiation and therefore varies slowly. Thus short-term energy required by the load transient in the case of the grid-forming inverter is only supported by a small capacitor connected in the inverter stage which acts as a small storage element. The capacitor is usually sized to provide the instantaneous power difference between DC-DC stage and inverter stage. Although PV sources have an inherently slow dynamic response and are usually used with grid-following inverters, they can also act like grid-forming inverters with small transient support capability.
1.2.2 Inverters with Battery Microsource

Batteries are crucial for microgrid operations since they are used as an energy storage in the microgrid and are categorized as distributed storage (DS). They are capable of sourcing power above their rating for the brief period provided the RMS power is below that of continuous power rating [10]. This characteristic allows battery-based inverters to source the short term energy required by a load transient. Battery based DG units are usually operated in the grid-forming mode.

Battery-based DGs can consist of intermediate DC-DC stage to boost battery voltage to the level required for the inverter power stage. Battery based DG usually has a bi-directional power stage which can charge and discharge the battery as required.

1.3 DG Unit Control Strategies

Inverter based DGs in the microgrid can be either grid-following inverters or grid-forming inverters depending on their control strategies. Grid-following inverters cannot be operated independently and require that a voltage source is present on the network. Grid-forming inverters can be operated in standalone mode as well as grid-connected mode. For microgrid operation grid-forming inverters are crucial, and their control strategy is discussed in this chapter. The control strategy of grid-following inverters is discussed in chapter 2.

The grid-forming inverter’s primary function is to provide voltage and frequency stabilization, offer plug and play capability to the DGs, accurately share real and reactive
power and reduce DC circulating current caused by differences in the voltage magnitude or DC offset [11]. There are several control strategies proposed for grid-forming inverters in the literature. They can be widely classified into droop based control strategies and Virtual Synchronous Generator (VSG) based control strategies. Both mimic the characteristics of a synchronous generator (SG). The only difference is that the VSG possesses virtual inertia and damping properties which emulate the dynamic characteristics of a SG while droop based control does not possess virtual inertia and damping properties, and emulates only the steady-state characteristics of a SG [12]. Droop control can be considered as a case of VSG control, where both the inertia and damping factor are set to zero [12].

Figure 1-3: Categorization of the inverter based DG controls
A VSG control based inverter can supply real power during short-term frequency transients as well as steady state. Both the control methods are discussed in the following sections 1.3.1, 1.3.2 and figure (1-3) shows the categorization of these controls.

1.3.1 Droop based Control Strategy

The conventional droop based control method is primarily used for operating DGs in parallel for microgrid applications. This control method does not require a communication link between inverters and thus improves reliability and redundancy. Also, such a system is easier to expand because of the plug and play feature of the module which allows replacing one unit without stopping the whole system [6]. Droop control emulates the static characteristics of a SG, i.e. active power is increased with a decrease in system frequency, and reactive power increases with a decrease in the terminal voltage as shown in figure (1-4). The principles of conventional droop method can be explained by considering an equivalent circuit of a VSC connected to an AC bus [11]. Assuming the VSC is connected to the AC bus using inductive line impedance and negligible resistance, it can be shown that for small value of power angle \(\delta \), real and reactive power output, \(P_o \) and \(Q_o \) delivered to common AC bus can be given by equation (1-1).

\[
\begin{align*}
P_o & \approx \frac{|V_o| |E_i| \delta}{\omega L_s} \\
Q_o & \approx \frac{|V_o| (|E_i| - |V_o|)}{\omega L_s}
\end{align*}
\]

(1-1)

These equations show that the active power strongly depends on the phase difference (\(\delta \)) between the inverter output voltage \(E_i \) and AC bus voltage \(V_o \) and reactive power strongly
depends on the difference in amplitude of output voltage and AC bus voltage, E_i and V_o respectively. This principle can be integrated into the voltage source inverter using well-known PQ droop method [6] which is expressed by equation (1-2).

$$\begin{align*}
\omega_i &= \omega_0 - m_P \cdot (P_i - P_0) \\
E_i &= E_0 - n_Q \cdot (Q_i - Q_0)
\end{align*}$$

(1-2)

Where ω_i and E_i are the output frequency and voltage of the i^{th} inverter in the microgrid, ω_0 and E_0 are the nominal frequency and voltage of the inverter respectively, P_i and Q_i are average active and reactive power sensed at the terminal of the inverter, respectively, and m_P and n_Q active and reactive droop slopes, respectively. Droop constants m_P and n_Q affect network stability and are chosen based on converters power rating and maximum allowable voltage and frequency deviation [11] as shown in equation (1-3)

$$\begin{align*}
m_P &= \frac{\omega_{\text{max}} - \omega_0}{P_i - P_{i,\text{max}}} \\
n_Q &= \frac{E_{i,\text{max}} - E_i}{Q_i - Q_{i,\text{max}}}
\end{align*}$$

(1-3)
Implementation of the PQ control strategy on a VSI is shown in figure (1-5). This control strategy delivers active and reactive power based on predetermined references. It consists of three control structures. 1) PQ controller: This control senses AC bus voltage and current and produces average P and Q values. These average values are multiplied by respective droop constants m_p, n_q and are then are compared with the respective references ω_0, E_0 to produce the reference voltage. 2) Voltage controller: This controller compares the reference voltage with the actual voltage and produces the current reference. 3) Current controller: The controller produces the current reference that drives the voltage source inverter using duty cycle modulator.
The Droop method is based on local measurement of the network state variable which makes DG truly distributed and redundant since they do not depend on cable for reliable operation [6]. However, conventional droop control faces limitations due to frequency and amplitude deviation, active and reactive power coupling, circulating current due to line impedance mismatch and inability to supply harmonics and transient current required by the load [6]. These potential drawbacks are widely addressed in the literature by modifying conventional droop control. These techniques are listed in the table (1-1) as described in reference [6].
Table 1-1: Droop characteristics based controls

<table>
<thead>
<tr>
<th>Droop characteristics based controls</th>
<th>Advantages over conventional droop control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droop variants</td>
<td></td>
</tr>
<tr>
<td>VPD/FQB droop control</td>
<td>• To carry out droop control when the transmission line is resistive</td>
</tr>
<tr>
<td>Complex line impedance</td>
<td>• Decouples Active and reactive controls</td>
</tr>
<tr>
<td></td>
<td>• Improves voltage regulation</td>
</tr>
<tr>
<td>Virtual structure based methods</td>
<td></td>
</tr>
<tr>
<td>Virtual output impedance control</td>
<td>• Improves power sharing</td>
</tr>
<tr>
<td></td>
<td>• Improves system stability</td>
</tr>
<tr>
<td>Enhanced virtual output impedance</td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>• Can handle linear non-linear load</td>
</tr>
<tr>
<td></td>
<td>• Reduces harmonics voltage at PCC</td>
</tr>
<tr>
<td>Compensated based methods</td>
<td></td>
</tr>
<tr>
<td>Adaptive voltage droop control</td>
<td>• Improves voltage regulation</td>
</tr>
<tr>
<td></td>
<td>• Improves system stability under heavy load</td>
</tr>
<tr>
<td>Synchronized reactive power</td>
<td>• Improves power sharing</td>
</tr>
<tr>
<td>compensation</td>
<td></td>
</tr>
</tbody>
</table>

1.3.2 Virtual Synchronous Machine Based Control Strategy

This type of grid-forming control is able to emulate the transient characteristics of the SG—such as damping effects and inertial behavior. These characteristics are embedded in the
VSI by different types of VSM topologies and are listed in reference [3]. The emulation of the inertia requires an energy buffer with sufficient capacity to represent the energy storage effect [13]. Therefore, when emulating virtual inertia on inverter based DGs, DC-link energy storage of the inverter acts as a kinetic energy storages reservoir of the SG. Proper management of DC-link energy storage is crucial for grid-forming inverters since they provide virtual inertia to the system.

The most common implementation of the VSM model is based on the traditional swing equation of the SG. Other types of VSM models such as Generator Emulation Control (GEC) provide an inertial response to variations in grid frequency. GEC is based on emulating electrical characteristics of a SG in the VSI. In this section, a swing equation based VSM model is described referring to [3] and the details of GEC model will be introduced in chapter 2.

Figure (1-6) shows a swing equation based VSM model. Since the active power flow of a VSM is associated with speed and angular position of virtual inertia with respect to the grid voltage [14] reactive power control of the VSM is considered separately. A VSG model consists of a swing equation which captures the inertial and damping properties of the SG. The swing equation is realized as shown in the equation (1-4)

\[P_{in} - P_{out} = J(\omega - \omega_0) \frac{d(\omega - \omega_0)}{dt} - D(\omega - \omega_0) \] (1-4)
Figure 1-6: Implementation of VSG control strategy

Here, P_{in} is the available power from the microsource, P_{out} is the calculated output power, J is the moment of inertia of the rotor, ω is the angular velocity of the virtual rotor, ω_0 is the grid angular velocity and D is the damping factor. Output power and grid angular velocity is calculated and given as input to the VSG model. The VSG model calculates virtual rotor angular velocity deviation ω_m, which is then integrated to calculate virtual machine phase angle θ_m. As mentioned above, reactive power based voltage calculation is done separately using PI controller and virtual machine voltage V_m is obtained. These two parameters are combined to produce the voltage reference V_{ref} which is then used by the PWM module to drive the switches.
1.4 Power Limit Management for Grid-Forming Inverters.

For the grid-forming inverter, active power is dictated by the droop controller or VSM based model. Active power \(P \) is proportional to the deviation of grid frequency \(\omega \) from the nominal frequency \(\omega_0 \). When the grid-forming inverters are operated in the islanded microgrid, the deviation of microgrid system frequency will cause the inverter to source active power. This is the underlying concept of P-\(\omega \) droop control. When load in the islanded microgrid increases, the microgrid frequency droops / falls below the nominal value and this causes the online inverters in the microgrid to source required active power. The amount of active power inverters can source depends upon their power rating and the availability of the power form their microsource. If power demanded is higher than the ability of the inverter to source power, its DC-link voltage decreases. When the DC-link voltage falls below peak-grid voltage, the inverter tends to over-modulate the DC-link voltage and produces harmonics which are undesirable. Typically, when DC-link voltage falls below the predefined value, (usually lower than maximum grid peak voltage) the inverter protection relay opens, and inverter is isolated from the microgrid network. This behavior increases power demand on the rest of the inverters connected in the microgrid and may led to unpredictable load shedding or black-outs. To avoid this situation, DC-link voltage regulation is essential to power limit the grid-forming inverters and allow them to continue to source their available power.

In this research, the power-limited nature of the grid-forming inverter is highlighted, and a DC-link voltage regulation technique is developed for power limit management. This
technique is developed on a Generator Emulation Control (GEC) based grid-forming inverter which gives the inverter an ability to shape its $P-\omega$ droop curve and continue to source power to the load without getting isolated.

1.5 Outline of the Thesis

The primary objective of this thesis is to demonstrate the power limit management or DC-link voltage regulation of the DG inverters operated in islanded mode. This strategy is demonstrated on GEC based grid-forming inverter and implemented using virtual resistance based technique.

Chapter 1 summarized the basic microgrid structure and a hierarchical control at different layers of MG. It introduced different types of microsources and their dynamics and the inverter stages. The chapter classified various control strategies for DG inverters and outlined the difference between droop based control and VSM based control. Finally, it described the role of power limit management and laid out the importance of DC-link voltage regulation in DG inverters.

Chapter 2 Introduces the basic controls of the grid-following inverters and explains phase lock loop (PLL) and output current regulation blocks (OCR). It describes dynamics, modeling, control design, and implementation of PLL as well as OCR. These blocks are essential in developing GEC based grid-forming inverters.
Chapter 3 summarizes Generator Emulation controls which is one of the control strategies for grid-forming inverters. It formulates the damping and inertial properties of synchronous generator and droop controls which form the basis for developing GEC. Later in this chapter technique to design and implement the GEC control are given.

Chapter 4 summarizes DC-link voltage regulation for grid-following inverters. It brings into light the importance of DC-link voltage regulation for the safe operation of the DG inverters and introduces a virtual resistance technique to regulate the DC-link voltage of GEC grid-forming inverters. A modeling and control design for the DC-link voltage regulator is developed, and results are presented to demonstrate the concept.

Chapter 5 summarizes the results of the virtual resistance based DC-link voltage regulation and shows how this technique shapes $P-\omega$ droop characteristics of GEC inverter and carry out power limit management.
CHAPTER 2: CONTROLS OF THE GRID-FOLLOWING INVERTERS

Grid-following inverters cannot be operated independently and require a voltage source to be present on the network. Grid following inverters are also known as grid-tied inverters. The primary function of grid-following inverters is to source current to the grid with a power factor close to one. Grid voltage provides frequency and voltage reference signals to these inverters which are important to perform synchronization and carry out control functions. The following section introduces basic blocks of the inverter which are used to carry out synchronization and control functions.

2.1 Basic Blocks of the Inverter

Figure 2-1: Basic Blocks of grid-following inverter
Figure (2-1) shows the basic blocks of the grid-following inverter. It consists of an inverter power stage with phase lock loop (PLL) used for synchronization, an output current regulator (OCR) and DC-link voltage regulator or Bus Voltage Regulator (BVR) for regulating output current and DC-link voltage respectively.

1. Phase Lock Loop:

The phase lock loop (PLL) tracks the grid voltage and creates a carrier signal which synchronizes in phase and frequency with that of the grid voltage. PLL does this by controlling the phase of the carrier signal such that the phase difference between grid voltage and carrier signal remains minimum [17]. The advantage of using PLL is that it is immune to the distortions and amplitude variations of grid voltage and produces high-quality constant amplitude sinusoidal reference. This sinusoidal reference is scaled by DC-link voltage regulator loop and later given to OCR loop.

2. Output Current Regulator:

The output Current Regulator is responsible for shaping the output current of the inverter. OCR regulates output inductor current of the inverter stage. It compares the sensed inductor current of the inverter with a sinusoidal reference which is the scaled version of PLL and generates the control signal. This control signal is given to duty modulator block to generate SPWM signals. Dynamics of OCR loop makes inverter stage behave as a regulated current source.
3. DC-link voltage regulator:

The DC-link voltage regulation loop controls DC-link voltage. DC-link voltage regulator loop senses DC-link voltage and compares it with the reference DC-link voltage to produces a slow varying control signal. Value of the DC-link reference is kept slightly above the peak voltage of the grid and is typically 200 V for 120 V_{ac} system. Slow varying control signals modulates the amplitude of the sinusoidal current reference generated by PLL and is further given to the OCR. DC-link voltage regulator maintains the power balance between the output power and input available power by controlling the amplitude of sinusoidal reference given to OCR proportional to DC-link voltage.

2.2 PLL for Grid-following Inverters

This section discusses the PLL structure, modeling and control design for the grid-following inverter. Properties of PLL are of particular interests as they are used to reproduce damping and inertial dynamics of the synchronous generator into the GEC based grid-forming inverters. Even though the PLL structure used for GEC based inverter is the same as a grid-following inverter, the controller design for PLL employed in GEC based inverter is different and is highlighted in chapter 3.
2.2.1 PLL Structure

In grid-following inverters, PLL is mainly used to synchronize inverter output current with the grid voltage, when unity power factor is desired. PLL tracks the fundamental grid voltage in the presence of harmonics and provides a clean sinusoidal reference. PLL can be regarded as high order bandpass filter with the zero-phase distortion [15].

In this research, all-digital PLL (ADPLL) type of PLL is used. The four main components of PLL are 1) phase detector, 2) low pass filter 3) compensator and 3) numerically controlled oscillator. Figure (2-2) shows the basic structure of PLL.

![Figure 2-2: Basic structure of PLL](image)

1. Phase Detector:

The phase detector (PD) consist of a multiplier block. Phase detector multiplies reference signal or sensed grid voltage (v_o) with that of carrier signal typically a quadrature signal (v_q). Equation (2-1) and (2-2) shows the reference and carrier signal respectively and equation (2-3) shows the product of the two signals.
\[v_o(t) = A_1 \cos(\omega t + \phi_1(t)) \] \hfill (2-1)

\[v_q(t) = A_2 \sin(\omega t + \phi_2(t)) \] \hfill (2-2)

\[v_o(t).v_q(t) = A_1.A_2.K_d[\sin(\phi_1(t) - \phi_2(t)) + \sin(2\omega t + \phi_1(t) + \phi_2(t))] \] \hfill (2-3)

Where, \(K_d \) is the gain of multiplier and its value is 0.5. \(A_1 \) and \(A_2 \) are the amplitude of reference and quadrature signal respectively and are scaled to unity. It can be seen form equation (2-3) that multiplier output consists of two terms, the first term is the function of phase difference and second term consists of twice the frequency. The useful information regarding phase difference resides in the first term and, high frequency term is removed using low pass filter.

2. Low pass filter:

A low pass filter (LPF) is used to remove twice the frequency term \(2\omega t \). Since the frequency of the reference signal (grid voltage) is 60 Hz, \(2\omega t \) has the frequency of 120Hz. This component is attenuated using low pass filter with sufficiently small cutoff frequency. The output of Low pass filter is the error signal which contains the phase difference information.

3. Compensator:

The compensator is employed to reduce the phase difference between the reference signal and the carrier signal to zero. PI compensator is usually used to achieve this task.
PI compensator is designed to achieve zero steady-state error and fast transient response by appropriately choosing crossover frequency and phase margin. The output of compensator is correction signal which is given as an input to the numerically controlled oscillator.

4. Numerically Controlled Oscillator:

The numerically controlled oscillator (NCO) produces periodic signals, the frequency of which changes based on a control signal applied externally [16]. The input to the NCO is a correction signal from compensator added with base signal. The base signal in case of NCO is a numerical value which is responsible for producing a center frequency of 60Hz. Output of NCO consists of direct term (v_d) which is in phase with reference voltage and quadrature term (v_q) which is 90° phase shifted with respect to reference signal. Both of these terms are categorized as carrier signals. In this case, since multiplier type phase detector is employed, v_q term is compared with the reference signal so that it gives phase difference term. In other words, v_q term is considered as a feedback signal.

2.2.2 PLL Modeling and Control Design

PLL controls the phase of its carrier signal such that the error, the difference between its phase and the input signal is kept minimum while the frequency of its signal is kept the same as the input signal [16]. Correction signal from compensator causes the frequency of carrier signal generated by NCO to change; this change is translated as a change in phase at the output of phase detector. Thus, PLL can be thought of the perceiving only
the phase difference. Figure (2-3) shows the s-domain representation of the PLL blocks. Integral at the output of NCO is used to convert the frequency into the phase.

\[
\phi_{in} \xrightarrow{K_d} \phi_e \xrightarrow{K_{lpf}} G_c(s) \xrightarrow{K_{nco}} \frac{1}{s} \xrightarrow{\phi_o}
\]

Figure 2-3: S-domain representation of PLL

In figure (2-3), \(K_d\) is the gain of the phase detector, \(K_{lpf}\) is the gain of the low pass filter and \(K_{nco}\) is the gain of NCO. The close loop transfer function is given by equation (2-4), where \(G(s)\) contains all the gains of forward path and \(H(s)\) contains the gains in the feedback path, in this case feedback path, gain is one.

\[
\frac{\phi_o}{\phi_{in}} = \frac{G(s)}{1+G(s)H(s)} = \frac{K_dK_{lpf}G_c(s)K_{nco}}{s+K_dK_{lpf}G_c(s)K_{nco}} \tag{2-4}
\]

PI controller is used as a compensator. To design PI controller, uncompensated loop gains \(G(s)\). \(H(s)\) of the PLL is required and is given by equation (2-5). Values of the gains are listed in table (2-1).

\[
G(s).H(s) = K_dK_{lpf}K_{nco} \frac{1}{s} \tag{2-5}
\]
Table 2-1: Values of PLL gain

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Gain values</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_d</td>
<td>0.5</td>
</tr>
<tr>
<td>K_{lpf}</td>
<td>1</td>
</tr>
<tr>
<td>K_{nco}</td>
<td>5000</td>
</tr>
</tbody>
</table>

Value of K_d is obtained from equation (2-3), gain of the low pass filter, K_{lpf} is unity and has 5Hz crossover frequency, and the gain of NCO, K_{nco} is derived in equation (2-6). Where, 0.0754 is obtained from equation (2-13). Bode plot of uncompensated loop gain is shown in figure (2-4).

$$K_{nco} = \frac{2\pi \times 60}{0.0754} = 5000$$

(2-6)
PI controller type is of the “inverted zero” form as shown by equation (2-7). Based on the uncompensated bode plot, values of k_p and f_z are chosen to create desired crossover frequency (f_c) and phase margin (Φ_m).

$$ G_c(s) = k_p + \frac{k_i}{s} = k_p \left(1 + \frac{2\pi f_z}{s} \right) $$

(2-7)

PI controller is designed for crossover frequency of 4Hz and phase margin greater than 70°, by choosing k_p as 0.01 and f_z as 0.8 Hz. Figure (2-5) shows the compensated loop gain $G_c(s). G(s). H(s)$.

Figure 2-4: PLL uncompensated loop gain

PLL uncompensated loop gain
2.2.3 PLL Implementation

PLL implementation on Simulink is shown in figure (2-6).
1. Gain block:

Gain block is used to scale down grid voltage to ± 1V.

2. ZOH block:

ZOH is used to samples the scaled grid voltage, v_o at 5KHz sampling rate.

3. Phase detector:

Phase detector is simply a multiplier block which multiplies sampled v_o with quadrature component v_q.

4. Low pass filter:

Required crossover frequency (f_c) is 5Hz with gain (G) of unity and sampling frequency (f_{sample}) is 5kHz. Digital IIR low pass filter is given by the form shown in equation (2-8).

$$H(z) = \frac{b_0}{1+(b_0-1)z^{-1}} \quad (2-8)$$

Where, $b_0 = \frac{G}{\tau f_{sample}}$ and $\tau = \frac{1}{2\pi f_c}$

Substituting values in equation (2-8), we get equation (2-9).

$$H(z) = \frac{0.006283}{1-(0.993717)z^{-1}} \quad (2-9)$$
Equation (2-9), is implemented as shown in figure (2-7), where z^{-1} is unit delay of 200e-6 sec.

![Figure 2-7: Low pass filter implementation](image)

5. PI controller

PI controller is designed in section “2.2.2”.

$$k_p = 0.01$$

$$k_i = 2\pi f \cdot k_p = 0.05026$$

These values are in the continuous domain are digitally implemented by backward Euler approximation. By substituting $s \rightarrow \frac{z^{-1}}{zT_s}$ in equation (2-7). Digital PI controller is obtained as shown in equation (2-10). Implementation of digital controller is shown in figure (2-8).

$$G_c(z) = k_p + k_i \cdot T_s \cdot \frac{z}{z-1} \quad (2-10)$$
\[k_{p,digital} = 0.01 \]

\[k_{l,digital} = 2.\pi.f_z.k_{p,digital}.T_s = 0.05026 \left(\frac{1}{5kHz} \right) = 0.01005e - 3 \]

These gains are implemented with a negative sign to correct the phase of the direct component at the output of NCO.

![Digital PI-controller implementation](image)

Figure 2-8: Digital PI-controller implementation

6. Numerically controlled oscillator

NCO is based on the theory of complex number multiplication. Complex number can be represented by two-dimensional vector, \(Re[n] + j Im[n] \).

Where, \(\text{Magnitude} = \sqrt{Re[n]^2 + Im[n]^2} \) and \(\text{angle} = \tan^{-1} \left(\frac{Im[n]}{Re[n]} \right) \)
Multiplication of two polar complex number results into multiplication of magnitude and addition of angles. This property is critical in building complex number based oscillator. This property is shown in equation (2-11)

\[(M_1 \angle \theta_1)(M_2 \angle \theta_2) = (M_1 M_2) \angle (\theta_1 + \theta_2)\] \hspace{1cm} (2-11)

For 5kHz sampling rate, number of samples that can represent one entire cycle of 60Hz is given by equation (2-12)

\[\text{samples} = \frac{f_{\text{sampling}}}{f_{\text{cycle}}} = \frac{50kHz}{60Hz} = 83.33\] \hspace{1cm} (2-12)

In polar coordinate form to cover entire unit circle using 83.33 samples, angle requirement can be given by equation (2-13)

\[\text{angle} = \frac{2\pi}{\text{sample}} = \frac{2\pi}{83.33} = 0.0754\] \hspace{1cm} (2-13)

If the angle of 0.0754 is accumulated in an array with a sampling frequency of 5kHz, the entire cycle of 60Hz can be formed in 83.33 samples. For implementation, complex numbers in rectangular form are much easier to operate as they can be represented in an array. The same property as mentioned in equation (2-11) can be duplicated in complex numbers in rectangular form, by multiplying them with their previous value and considering the initial value of real part as one.

Equation (2-14) shows the multiplication of complex number with its previous value. Where ‘n’ represents present value in the array.
\[\{Re[n] + j Im[n]\} \cdot \{Re[n - 1] + j Im[n - 1]\} \]

(2-14)

In equation (2-14), by substituting initial conditions; \(Re[n - 1] = 1\) and \(Im[n - 1] = 0\) and keeping value of \(Im[n] = 0.0754\) and value of \(Re[n]\) as \(\cos(0.0754)\) i.e. 0.9971, consecutive multiplication with previous complex number, produces cosine function in \(Re[n]\) array and sin function in \(Im[n]\) array. This forms the oscillator and is shown in figure (2-9). To maintain the sustained oscillations, magnitude of real part is compensated using a simple proportional controller. Input (in) is base value 0.0754 plus the correction signal.

![Figure 2-9: Implementation of NCO](image)

2.3 OCR for Grid-following Inverter

Grid-following or grid-tied inverters are designed to inject current into the grid. Typically, the single current control loop is employed to regulate the flow of current into the grid [7]. OCR is of specific interest as its design and implementation remain the same for both
grid-following and GEC based inverters. Dynamics, modeling and control design of OCR are discussed in this section.

2.3.1 OCR Dynamics

Figure 2-10: Output current regulator loop model

Figure (2-10) shows the model of inverter with current controller $G_c(s)$. In the frequency range of concern, the loop frequency response can be approximated by equation (2-15) [1].

$$\text{Loop}_{OCR}(s) = \frac{\omega_c^2}{s^2} \quad (2-15)$$

Where ω_c is crossover frequency which determines the bandwidth of the controller and is based upon the controller parameters $G_c(s)$ and plant dynamics. Transfer function of the inductor output current $i_{Lo}(s)$ to the grid voltage $v_o(s)$ can be derived by equation (2-16) [1].
\[\frac{i_{lo}(s)}{v_o(s)} = \frac{-1/s \cdot L_o}{1 + \text{LoopOCR}(s)} = \frac{-1}{s \cdot L_o} \cdot \frac{-1}{1 + \omega_c^2/s^2} \] (2-16)

In the frequency range of interest, it can be further approximated by equation (17) [1]

\[\frac{i_{lo}(s)}{v_o(s)} = \frac{-s^2/\omega_c^2}{s \cdot L_o} = \frac{-s}{\omega_c^2 \cdot L_o} \] (2-17)

The inductor current induced by the grid voltage \(v_o \) resembles that flowing in a “virtual capacitor” connected across it of the value given by equation (18) [1].

\[C_{ocr} = \frac{-s}{\omega_c^2 \cdot L_o} \] (2-18)

In addition, with \(C_{ocr} \) capacitor inverter output filter has small capacitor \(C_o \), thus the resultant capacitor at the output on the inverter can be given by equation (2-19)

\[C_{total} = C_{ocr} + C_o \] (2-19)

The value of \(C_{ocr} \) depends upon crossover frequency, ideally cross over frequency is chosen as 10 % to 20 % of that of switching frequency [7]. In case of the inverter connected to the infinite bus, grid voltage \(v_o \) acts as infinite current sink and can be modeled as a short circuit, this causes capacitor connected at the output of the inverter to open, and not contribute to OCR dynamics. In case of inverter connected to the electric power system, \(v_o \) can have some impedance and the inverter output capacitor contribute to the OCR dynamics. For GEC based inverter, dynamics of these capacitors are considered to prevent sustained oscillations and resonance above line.
2.3.2 OCR Plant Modeling and Controller Design

![Block diagram of inverter stage model](image)

Figure 2-11: Inverter stage model for developing $G_{id}(s)$

For designing current controller, inductor current to control $G_{id}(s)$ transfer function is required. This transfer function is derived using figure (2-11) which consists of inverter output filter connected in between inverter voltage $d.V_{dc-link}$ and the grid voltage v_o. Inverter output filter comprises of output inductor L_o with resistance R_o and output capacitor C_o.

Since the dynamics of the OCR loop are developed to make inverter behave as a regulated current source, the grid impedance (Z_{grid}) can be modeled as zero. Short circuit across the capacitor makes it open and inductor current to control $G_{id}(s)$ transfer function can be given by equation (2-20).

$$G_{id}(s) = \frac{\hat{I}_L}{\hat{V}_s} = \frac{V_{dc-link}}{sL_oR_o}$$ \hspace{1cm} (2-20)
Current controller $G_c(s)$ is designed based on $G_{id}(s)$, and is chosen as proportional integral (PI) with feedforward (FF) as shown in figure (2-12), where H is the current sensor gain. PI+FF has faster transient response and converges to desire value with no steady-state error compared to the PI-only type of controller [7]. Equation (2-21) shows the close loop transfer function of OCR with PI+FF controller. It shows that the inductor current i_L is only influenced by i_{ref} term as grid voltage v_o term cancels out by the addition of feed forward term. PI+FF controller, G_c for the inverter stage is designed based on system parameters listed in table (2-2).

$$i_L = \frac{G_c V_{dc-link}/s L_o}{1 + H G_c V_{dc-link}/s L_o} i_{ref} - \frac{1/s L_o}{1 + H G_c V_{dc-link}/s L_o} v_o + \frac{V_{dc-link}1/s L_o}{1 + H G_c V_{dc-link}/s L_o} V_{dc-link}^{-1} v_o \quad (2-21)$$
Table 2-2: System parameters for designing OCR

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power level ((P))</td>
<td>200 V</td>
</tr>
<tr>
<td>Grid voltage ((v_o))</td>
<td>120 (V_{rms})</td>
</tr>
<tr>
<td>Grid Frequency ((f_o))</td>
<td>60 Hz</td>
</tr>
<tr>
<td>DC-link voltage ((V_{bus}))</td>
<td>200 V</td>
</tr>
<tr>
<td>Output inductor ((L_o))</td>
<td>3.55 mH</td>
</tr>
<tr>
<td>Output inductor resistance ((R_o))</td>
<td>0.273 Ohms</td>
</tr>
<tr>
<td>Switching frequency ((f_{sw}))</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Current sensor gain ((H))</td>
<td>0.8</td>
</tr>
</tbody>
</table>

PI controller type is of the “inverted zero” form as shown in equation (2-22). To design PI controller, uncompensated loop gain \(G_{id}(s).H(s)\) is first plotted as shown in figure (2-13). Based on the bode plot values of \(k_p\) and \(f_z\) are chosen to create desired cross over frequency \((f_c)\) and phase margin \((\Phi_m)\).
\[G_c(s) = k_p + \frac{k_i}{s} = k_p \left(1 + \frac{2\pi f_z}{s} \right) \] (2-22)

Figure 2-13: OCR uncompensated loop gain

PI controller is designed for crossover frequency 1.2 kHz and phase margin greater than 80°, by choosing \(k_p \) as 0.1678 and \(f_z \) as 120Hz. Figure (2-14) shows the compensated loop gain \(G_c(s). G_{id}(s). H(s) \).
2.3.3 OCR Hardware Results

OCR loop is implemented on hardware and results are obtained as shown in figure (2-15). A resistive load of 5 ohms is connected in parallel to inverter output and AC voltage source. i_{ref} is programmed to source 1.1 A RMS current into the load. In the result, green waveform is the grid voltage, blue waveform is the inductor current and red waveform, is output current.
Figure 2-15: Hardware results for OCR

2.3.4 OCR Implementation

Figure 2-16: OCR loop and inverter average model
OCR implementation on Simulink is shown in figure (2-16). It consists of an average model of the inverter and OCR loop. In averaged inverter model, duty modulator is not required, and output of OCR can be directly fed. OCR loop functions and updates duty at 20kHz frequency. Sensed voltage and current are also sampled at 20kHz frequency.

1. Inverter average model

Inverter average model consists of the implementation of the model shown in figure (2-10), without the output capacitor. Inductor current is obtained by integrating voltage across it and dividing it by value of inductance. Implementation of averaged inverter model is shown in figure (2-17).

![Inverter average model diagram](image)

Figure 2-17: Inverter average model

2. OCR loop

PI controller for OCR is designed in section “2.3.2”. $k_p = 0.1678$ $k_i = 2\pi f_z$. $k_p = 126.518$
OCR loop compares reference current with actual inductor current and gives an error to PI controller. PI is implemented digitally using backward Euler approximation. By substituting \(s \rightarrow \frac{z-1}{z.T_s} \) in equation (2-22). Digital PI controller is obtained as shown in equation (2-23).

\[
G_c(z) = k_p + k_i.T_s \frac{z}{z-1} \tag{2-23}
\]

\(k_{p,\text{digital}} = 0.1678 \)

\(k_{i,\text{digital}} = 2.\pi.f_z.k_{p,\text{digital}}.T_s = 126.518\left(\frac{1}{20kHz}\right) = 6.3259e-3 \)

\(k_{p,\text{digital}} \) and \(k_{i,\text{digital}} \) are used in PI controller implementation. Output of PI controller is then added with feedforward output voltage. FF term reduces the effect of the output voltage on the inductor current and keeps duty small avoiding integral saturation. D(t)+FF term is then fed to average inverter model. OCR loop implementation in shown in figure (2-18).
Figure 2-18: OCR implementation
CHAPTER 3: GENERATOR EMULATION CONTROL FOR THE INVERTERS

Generator Emulation Control (GEC) is the type of VSM strategy which emulates inertia and damping characteristic of the synchronous generator into the inverter. GEC reproduces electrical characteristic of the synchronous generator using “virtual emulation” technique. This technique incorporates virtual components into the inverter using computation method.

Among all the VSM strategies, Generator Emulation Control (GEC), encompasses a practical and robust approach to address grid instability problems by creating a virtual inertia into the power system. Inverters with GEC support voltage regulation by sourcing / sinking reactive power and frequency regulation with the help of power-frequency droop controls embedded in GEC. Droop properties can also be used by inverters with GEC to mimic the parallel-operation characteristics of synchronous generators which are responsible for load sharing [4]. GEC also considers the power-limited nature of DG sources like battery capacity, battery state of charge, available power from renewable energies as well as the power rating of the inverter and their effect on DC link voltage [1]. All these capabilities make GEC based inverter truly holistic in practical scenarios.

In this chapter dynamic properties of the synchronous generator are discussed, and equations for their inertial and damping properties are derived. These properties are then programmed into the inverter with the help of “virtual emulation technique” and “droop-based PLL.”
3.1 Dynamic Properties of Synchronous Generator

Figure 3-1 shows the basic blocks of a power generator system. The power generator system consists of an energy source, prime mover, and a synchronous generator. The energy source supplies fuel to the prime mover which converters the fuel energy into the rotational kinetic energy. This rotational kinetic energy is further used to drive the rotor of the synchronous generator. The synchronous generator is electro-mechanical machines which converters mechanical energy to the electrical energy. Governor and Automatic Voltage Regulator (AVR) are the controllers used to maintain generator output frequency and voltage respectively. The Governor connected to the prime mover regulates its rotational speed based on the power demand. The AVR monitors generator terminal voltage and sends correction commands to exciter which then adjusts rotor field current.
to maintain the terminal voltage. In the case of thermal power plant, the energy source can consist of fossil fuel, nuclear reactor, geothermal resources, renewable resources, etc. and prime mover can include steam turbine, gas turbine, internal combustion engine, microturbine, etc.

Figure 3-2: Electrical characteristics of synchronous generator

Dynamics of the synchronous generator at line frequency are obtained by considering its electrical characteristics as shown in figure (3-2). The model consists of electromotive force (EMF) V_s, in series with stator winding inductance L_s and ohmic resistance R_s [1]. Considering negligible armature winding resistance R_s and small value of power angle δ, real and reactive power output, P_o and Q_o can be given by equations (3-1) and (3-2) [1]. These equations show that the generator active power strongly depends upon the phase difference (δ) between induced voltage V_s and output voltage V_o of the generator and reactive power strongly depends upon the difference in amplitude of output and induced voltage, V_o and V_s [1].

$$P_o \approx \frac{|V_o| \cdot |V_s| \cdot \delta}{\omega \cdot L_s} \quad (\text{3-1})$$
\[Q_o \approx \frac{|V_o| \cdot (|V_s|-|V_o|)}{\omega L_2} \quad (3-2) \]

Frequency of induced EMF \(\omega_s \) is determined by rotational speed of rotor and construction of machine, and is given by equation (3-1), where \(n \) is number of poles and \(\omega_{mech} \) is the mechanical rotational speed of the rotor [1].

\[\omega_s = n \cdot \omega_{mech} \quad (3-3) \]

However, the voltage amplitude of the induced EMF \(|V_s| \) is proportional to the rotor flux \(\phi \) and operational frequency [1] and is given by equation (3-4).

\[|V_s| \propto \omega_{mech} \cdot \phi \quad (3-4) \]

Rotational kinetic energy is stored in the rotating mass of the generator system, i.e. prime mover, and synchronous machine rotor. This kinetic energy is given by equation (3-5), where \(E_{\text{kinetic}} \) is kinetic energy and \(J \) is moment of inertia of rotating mass.

\[E_{\text{kinetic}} = \frac{1}{2} \cdot J \cdot \omega_{mech}^2 \quad (3-5) \]

Rate of change of kinetic energy \(E_{\text{kinetic}} \) is equivalent to difference between prime mover power input \((P_{in}) \) and electrical power output \((P_o) \) neglecting any losses [1]. Substituting equation (3-3) into equation (3-5) gives equation (3-7).

\[\omega_s = \frac{n^2}{J \cdot \omega_s} \cdot \int (P_{in} - P_o) \cdot dt \quad (3-6) \]

\[\omega_s = k_{\text{rotor}} \cdot \int (P_{in} - P_o) \cdot dt \quad (3-7) \]
Where, $\bar{\omega}_s$ is narrow frequency fluctuation around the nominal frequency ω_s[1]. Equation (7) reveals that induced EMF frequency ω_s depends upon the integral of instantaneous difference between P_{in} and P_o and rotor parameters.

The power angle, δ, can be expressed as the integral of instantaneous difference between the electrical frequency of the induced EMF, ω_s, and that of the grid, ω_{grid} [1]. Thus, by substituting δ in equation (3-1) with integral of instantaneous difference between ω_s and ω_{grid}, we get equation (3-9).

$$P_o = \frac{|v_s|}{\omega_s L_s} \int (\omega_s - \omega_{line}) \cdot dt \quad (3-8)$$

$$P_o = k_s \int (\omega_s - \omega_{line}) \cdot dt \quad (3-9)$$

Equation (3-7) and (3-9) reveals a natural negative feedback mechanism that relates the rotor speed and real power output [1] and is shown in figure (3-3).

Figure 3-3: Dynamic model of synchronous generator
3.1.1 P-ω Droop Control

If active power demanded by the load is higher than the active power generated by the power generator, the electrical torque of the synchronous machine increases compared to mechanical torque causing its rotor to deaccelerate and reduce mechanical frequency of prime mover ω_{mech} and therefore electrical frequency ω_s. Whereas when the active power produced by the generator is higher than active power demanded by the load, ω_{mech} and ω_s of the generator increases. Thus, a controller is required to sense the demanded power and adjust input power of the generator to maintain the electrical frequency, ω_s. This operation is performed by governor; it compares the rotational speed
of the machine with the reference value and proportionally increases/decrease input power by controlling fuel input to the prime mover. This type of control is called P-\(\omega\) droop control. Figure (3-4) shows the simplified droop control applied to the dynamic model of synchronous generator, droop is assumed as instantaneous [1]. In figure (3-4) instead of comparing mechanical speed of prime mover \(\omega_{\text{mech}}\), the model compares electrical frequency of induced EMF \(\omega_s\) with reference frequency \(\omega_{\text{ref}}\). In P-\(\omega\) droop control input power to the power generator is dynamically adjusted to follow a negative-sloped relationship to rotating speed (\(\omega_s\)) [1] as shown in figure (3-5).

![P-\(\omega\) droop control diagram](image)

Figure 3-5: P-\(\omega\) droop negative slope relationship

Depending upon the operating mode of the synchronous generator, the droop control objective changes. The synchronous generator can be operated in parallel with, 1) infinite
bus, 2) dedicated load or 3) EPS (electric power system). In the case of an infinite bus, an increase in power demand does not affect frequency or voltage of the bus. Thus droop action cannot take place. To engage droop control, reference frequency ω_{ref} of droop controller is increased above its nominal value thus creating relative difference between reference frequency ω_{ref} and actual electrical frequency ω_s. This difference causes droop control to source power. For dedicated load, droop acts like negative feedback mechanism and adjusts the input power based on the frequency deviation. EPS has finite number of generators operated in parallel and supporting a common load, in this case droop limits the frequency deviation, provides damping and delivers added benefit of automatic power sharing [1].

3.1.2 Damping and Inertial Properties of Synchronous Generator
In EPS, when active power demand increases suddenly, the difference is created between electrical torque and mechanical torque, resulting into frequency excursion. The difference in torque is shared out between inertial properties and damping properties of the synchronous generator, which slows down the change in frequency and stabilizes generator operation. These properties of synchronous generator are crucial as synchronous generator could react quickly to the sudden power demand and reduce df/dt reducing excursion of line frequency. The response of real power output to short term EPS frequency transient is dominated by stator dynamics or damping property and is approximated by equation (3-10) [1].
\[
\frac{P_0(s)}{\omega_{line}(s)} \approx \frac{P_0(s)}{-\Delta \omega(s)} = \frac{-k_s}{s}
\]

(3-10)

Whereas droop characteristics dominate the response of output power to slower variation in EPS frequency and are approximated by the equation (3-11) [1].

\[
\frac{P_0(s)}{\omega_{line}(s)} \approx \frac{1}{-\omega_s(s)/P_o(s)} = -k_{droop}
\]

(3-11)

Equation (3-10) and (3-11) shows the damping and inertial properties of synchronous generator respectively. From these equations, it is evident that high-frequency dynamics are dominated by stator characteristics and low-frequency dynamics are dominated by droop characteristics [1]. These dynamic properties of the synchronous generator are reproduced in GEC based inverter.

3.2 Generator Emulation Controls

GEC is a combination of control loops that operates in a cohesive manner in various frequency ranges to shape the inverter’s behavior [1]. GEC reproduces electrical characteristics of the synchronous generator as described by equations (3-1) and (3-2) using impedance emulation technique. This technique allows emulating these characteristics into the inverter without power losses associated with it [1]. A PLL is used to create virtual EMF source in the inverter which reproduces inertial and damping dynamics as outlined in equations (3-10) and (3-11).
3.2.1 Impedance emulation

Impedance emulation is the control method in which virtual components are incorporated into the inverter by reproducing their electrical characteristics through computation method [1]. GEC current estimator measures the terminal voltage of the inverter and computes the value of the current that should be produced by the inverter. This computed value is fed to lower level controls responsible for forcing the inverter to generate the current [1].

From figure (3-2), equation for output current I_o of the synchronous generator can be derived, considering R_s as zero, and is given in equation (3-12)

$$I_o = \frac{1}{L_s} \int (V_s - V_o) \, dt$$ \hfill (3-12)

Equation (3-12) captures the behavior of synchronous generator. Impedance emulation technique can be used to force the output current of the inverter to follow the relation described by this equation, as shown in figure (3-6) [1].
Figure 3-6: GEC impedance emulation

I_o calculated by GEC current estimator is given as a reference to OCR loop. OCR loop further shapes the output inductor current of the inverter according to the reference current. By creating phase difference between emulates EMF V_s and grid voltage V_o, active power can be controlled, this conforms with equation (3-1). Phase difference between V_s and V_o is created using droop-based PLL in the inverter and is discussed in section “3.2.2”. By keeping the amplitude of emulated EMF V_s as constant value equal to nominal grid voltage, GEC based invert can support voltage regulation. If grid voltage V_o is higher than the emulated EMF voltage V_s, reactive power sinks into the inverter, whereas when the
grid voltage V_o is lower than emulated EMF V_s, GEC inverter sources reactive power, these characteristics conforms with equation (3-2). There inherently exist volt-var droop control into GEC based inverter.

3.2.2 Droop-based PLL

Figure (3-6) shows the basic diagram of GEC implementation. It is seen that active power can be controlled by creating phase difference between emulates EMF V_s and grid voltage V_o, where emulated EMF V_s is derived from PLL. To use PLL for creating intentional phase difference required for emulated EMF, a property of PLL called “steady state phase error” or “velocity error” is used.

![Figure 3-7: S-domain model of PLL](#)

Phase error to input transfer function of PLL is derived from s-domain model shown in figure (3-7) and represented in equation (3-13)
\[\phi_e = \frac{\phi_{in}}{1 + G(s)H(s)} = \frac{s}{s + K_dK_{lpf}g_c(s)K_{nco}} \cdot \phi_{in} \] (3-13)

Final value theorem is applied to the phase error to input transfer function of PLL, to realize the state of the error after the transient stage. During the transient stage, the input signal of PLL does a phase change or frequency jump. The error signal generated by PLL during this stage oscillates due to the large difference between NCO signal and incoming signal phase before reaching steady state [17]. PLL compensator is used to damp this oscillation and reduce the phase error.

To see the steady state behavior of PLL for a step change in the input signal frequency, input signal represented by equation (3-14) is applied to transfer function given in equation (3-13), and final value theorem is used.

\[\phi_{in}(t) = (\omega_c - \omega_o)t = \Delta\omega t \] (3-14)

Where, \(\Delta\omega\) is the difference between input signal frequency \(\omega_o\) and NCO center frequency \(\omega_c\). Since PLL is capable of detecting only the phase, step change in frequency is represented as phase ramp and is given by equation (3-15)

\[\phi_{in}(s) = \frac{\Delta\omega}{s^2} \] (3-15)

Equation (3-16) shows the final value theorem applied to the phase error to input transfer function of PLL with phase ramp as an input.
\[\lim_{t \to \infty} \phi_e(t) = \lim_{s \to 0} s \phi_e(s) = \lim_{s \to 0} \frac{s}{s + K_d K_{lpf} G_c(s) K_{nco}} \cdot \frac{\Delta \omega}{s^2} \] (3-16)

Equation (3-16) reveals that there exists steady state error for step change in frequency and is the function of \(K_d, K_{lpf}, G_c(s) \) and \(K_{nco} \) given by equation (3-17)

\[\phi_e = \frac{\Delta \omega}{K_d K_{lpf} G_c(s) K_{nco}} \] (3-17)

To remove this steady state phase error, compensator \(G_c(s) \) with integral gain is required, as described in section “2.2.2”. To use PLL for emulated EMF, \(G_c \) is chosen as finite proportional gain (P) without an integral term. This results into residual phase shift proportional to the frequency deviation from center frequency [1]. This type of PLL is called as droop-based PLL. Value of phase error then depends on \(K_d, K_{lpf}, P \) and \(K_{nco} \) and is shown in equation (3-18)

\[\phi_e = \frac{\Delta \omega}{K_d K_{lpf} P K_{nco}} \] (3-18)

Figure 3-8 Dynamic model of PLL
Droop based PLL creates a phase difference between emulates EMF V_s and grid voltage V_o based upon frequency change and recreates generator power frequency dynamics. Figure (3-8) shows the dynamics model of PLL as mentioned in reference [1]. Equation (3-19) captures the response of output power to the variation in the line frequency, where k_{PLL} is feedback gain of PLL and is unity.

$$\frac{P_o(s)}{\omega_o(s)} = k_s \cdot -\frac{1/s}{1+k_{PLL}/s} = -\frac{k_s}{k_{PLL}} \cdot \frac{1}{s/k_{PLL}+1} \quad (3-19)$$

Behavior of PLL can be approximated at different frequencies range, at relatively high frequency, response of PLL can be approximated by equation (3-20), and at relatively low frequency, response of PLL can be approximated by equation (3-21)

$$\frac{P_o(s)}{\omega_o(s)} \approx -\frac{k_s}{s} \quad (3-20)$$

$$\frac{P_o(s)}{\omega_o(s)} \approx -\frac{k_s}{k_{PLL}} \approx -k_{droop} \quad (3-21)$$

Equation (3-20) and (3-21) are a reproduction of equation (3-10) and (3-11) respectively. Thus, a droop-based PLL reproduces damping and inertial behavior that defines power-frequency characteristics of synchronous generator [1].

By substituting $\Delta \omega$ in equation (3-18) with $(\omega_c - \omega_o)$, we obtain equation (3-22).

$$\phi_e = \frac{(\omega_c-\omega_o)}{K_dK_{ipf}P K_{nco}} \quad (3-22)$$
From equation (3-22) it is observed that center frequency (ω_c) of PLL can influence steady state phase difference and therefore the output power. Center frequency can be used to prioritize the resource utilization. By increasing center frequency higher than nominal (60 Hz), DG inverter can be engaged to source power at higher grid frequency (>60 Hz), whereas by reducing center frequency lower than nominal, DG inverter can be engaged to source power at lower grid frequency (<60 Hz).

3.3 GEC Implementation and Design Consideration

GEC require specific values of the electrical components to be incorporated into current estimator. The prime parameter of current estimator is stator inductor, L_s. Practical implementation of the GEC into the inverter requires an integration of additional electrical components into the current estimator. These additional components consist of DC resistance and capacitance which reduces DC current build up in current estimator and damping resistance and capacitance which improves inverter response to harmonic distortion in load current. Figure (3-9) shows the modified characteristic of emulated impedance network. In this research, for simplicity, current estimator is implemented using stator inductor, L_s and dc-resistance R_{dc}.
3.3.1 Design of stator inductor L_s and DC resistance R_{dc}

Stator inductor is designed based on required volt-var droop performance of the inverter. L_s dictates voltage regulation performance of the inverter in response to reactive loading [1]. Reactive power sourcing capability of the inverter depends upon the allowable power factor. The typical power factor of 0.9 lead and 0.9 lag is acceptable in grid connected inverters. Stator Inductor L_s, is designed based on maximum ability of inverter to source leading or lagging reactive power and acceptable voltage swing ΔV, L_s is designed based on the equation (3-23) as given in reference [1]

$$Z_{Ls} = \frac{\Delta V}{I_{Q_{max}} - I_{Q_{min}}} \quad (3-23)$$

Typically, voltage swing, ΔV of $\pm 5\%$ is allowable in power system. Based on this equation value of L_s is derived. Parameters of the inverter are given in table (3-1).
Table 3-1: Inverter parameters to design stator inductor L_s

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter power (P)</td>
<td>$200 , \text{W}$</td>
</tr>
<tr>
<td>Invert output voltage or grid voltage (V_o)</td>
<td>$120 , V_{\text{rms}}$</td>
</tr>
<tr>
<td>Inverter output current (I_o)</td>
<td>$1.66 , I_{\text{rms}}$</td>
</tr>
<tr>
<td>Allowable power factor (PF)</td>
<td>0.9 lead and 0.9 lag</td>
</tr>
<tr>
<td>Allowable voltage swing (V)</td>
<td>$12 , V$</td>
</tr>
<tr>
<td>Nominal output frequency (f)</td>
<td>$60 , \text{Hz}$</td>
</tr>
</tbody>
</table>

Apparent power (S):

$$S = \frac{P}{PF} = 222.22 \, \text{VA}$$

Reactive power (Q):

$$Q = \sqrt{|S|^2 - |P|^2} = \pm 96.85 \, \text{Var}$$

Reactive current (I_q):
\[I_{Q_{\text{max}}} = \frac{+Q}{V} = 0.807 \, A \quad I_{Q_{\text{min}}} = \frac{-Q}{V} = -0.807 \, A \]

Substituting above values in equation (3-23)

\[Z_L = 2\pi f L_s = \frac{12}{0.807 - (-0.807)} = 7.434 \]

For nominal frequency \(f \) is 60Hz, value of \(L_s \) is be obtained and is given in equation (3-24)

\[L_s = 19.72 \, mH \approx 20 \, mH \quad (3-24) \]

DC current builds up due to computational artifacts in the GEC system [1]. \(R_{dc} \) DC resistance is used to limit the DC current build up since they are undesirable in power system. \(R_{dc} \) is placed in series with stator inductance \(L_s \) and usually is in vicinity of 5e-3 ohms [1].

\[R_{dc} = 7.8133 \, mOhm \quad (3-25) \]

3.3.2 Design of Proportional Gain for Droop-Based PLL

The design of proportional gain for droop-based PLL is based on desired P-\(\omega \) droop characteristics of the inverter. IEEE 1547 provides standards for DGs interconnection with the electric power system. According to IEEE 1547, for DG less than 30kW, frequency trip thresholds are 59.3Hz for under frequency and 60.5Hz for over frequency [18]. In
order to comply with these standards, $P-\omega$ droop characteristics should be designed to operate within this range.

As mentioned in section “3.2.2” center frequency can be used to prioritize resource utilization. Center frequency can be chosen differently for different energy resources to engage droop control at different frequencies. Due to powerful economic incentives, DG inverters with PV are expected to operate at their maximum power all the time [10], and their center frequency can be programmed such that they source full power near nominal frequency. Whereas DGs with batteries are usually used to provide short-term energy requirements to provide stability and expected to source maximum power at the frequency lower than nominal frequency. This makes them act like ancillary services for microgrid, particularly for frequency regulation.

Figure (3-10) shows the two different $P-\omega$ droop characteristics for DG inverter with PV and DG inverter with battery. Both the inverters are 200 W inverters. DG inverter with PV has its center frequency programmed at 60.25 Hz which is much below the over frequency trip limit, and has a $P-\omega$ droop slope of 0.8kW/Hz this results into maximum power at 60Hz. Whereas DG Inverter with battery is programmed with the center frequency at 59.95 Hz with a $P-\omega$ droop slope of 0.8kW/Hz. This causes a battery based DG inverter to source maximum power at 59.70 Hz which is much above - under frequency trip limit.
In this research, the 200 W inverter is used with center frequency programmed at 60Hz and a $P-\omega$ droop slope of 0.285kW/Hz as shown in figure (3-11).

The inverter has to produce 2.35 A peak current at 59.30 Hz to source 200 W of output power. Phase error for creating 200W of power is calculated based on equation (3-26).
\[
I_{pk} = \frac{V_{s,pk} \angle \phi_e^\circ - V_{o,pk} \angle 0^\circ}{2\pi(f)(L)} = \frac{120\sqrt{2} \angle \phi_e^\circ - 120\sqrt{2} \angle 0^\circ}{2\pi(59.30)(0.02)}
\] (3-26)

Equation (3-26) is plotted in figure (3-12), and phase error required to produce 2.35 A (200 W) power is shown.

![Peak output current vs Phase error](image)

Figure 3-12: Peak output current vs Phase error

By creating phase error of 5.924° or 0.1034 radians, 200 W power is sourced at 59.30 Hz. The phase error is listed in the table (3-2) along with the other PLL parameters.

Table 3-2: Parameters to calculate droop PLL gain

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Gain values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_d)</td>
<td>0.5</td>
</tr>
<tr>
<td>(K_{lpf})</td>
<td>1</td>
</tr>
<tr>
<td>(K_{nco})</td>
<td>5000</td>
</tr>
<tr>
<td>Parameters</td>
<td>Gain values</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ϕ_e</td>
<td>0.1034 rad</td>
</tr>
<tr>
<td>ω_c</td>
<td>$2\pi 60$ rad/s</td>
</tr>
<tr>
<td>ω_0</td>
<td>$2\pi 59.30$ rad/s</td>
</tr>
</tbody>
</table>

Proportional gain is obtained by substituting PLL parameters from table (3-2) in equation (3-27)

\[
P = \frac{\Delta \omega}{K_d K_{ipf} \phi_e K_{nco}} = \frac{2\pi 60 - 2\pi 59.30}{(0.5)(0.1034)(5000)} = 0.01701
\]

(3-27)

3.3.3 Simulink Implementation of GEC

GEC implementation in Simulink is shown in figure (3-13), input to the GEC block is a sinusoidal reference signal from PLL which creates phase difference proportional to change in frequency. The output of GEC block is given as a current reference to OCR block to control the inverter output inductor current.
Inside the GEC block equation (3-12) is implemented. Integral is implemented using backward Euler approximation. Equation (3-28) shows the scaling of L_s.

\[
\frac{1}{sL_s} \rightarrow \frac{T_s}{L_s} \cdot \frac{z}{z-1}
\]

(3-28)

Where, T_s is sampling time and is 50usec and ‘z’ is the delay block with delay of 50e-6 sec. Implementation of GEC block is shown in figure (3-14).
3.4 GEC Inverter Hardware Results

The experiment is performed by connecting 4A load in parallel to the GEC inverter and an AC source. AC source here acts as EPS. The frequency of EPS is then changed from 60 Hz to 59.30 Hz to show an increase in power demand. As EPS frequency decreases inverter responds to it by increasing output current (power) and follows P-\(\omega\) droop characteristics.

The response of inverter output current at different frequencies is captured and shown in figure (3-15) – (3-21). In these results, yellow and blue waveforms are digital signals \(V_o\) and \(V_s\) respectively, and are monitored using DAC, they are monitored to show the effect of decreasing frequency on their phase difference. Red is output current \(I_o\) and green is actual output voltage \(V_o\).
Figure 3-15: Output current at 59.30 Hz

Figure 3-16: Output current at 59.40 Hz
Figure 3-17: Output current at 59.50 Hz

Figure 3-18: Output current at 59.60 Hz
Figure 3-19: Output current at 59.70 Hz

Figure 3-20: Output current at 59.80 Hz
Figure 3-21: Output current at 59.90 Hz
CHAPTER 4: VIRTUAL RESISTANCE BASED DC-LINK VOLTAGE REGULATION FOR GEC INVERTERS

DC-link voltage regulation is used to carry out average power balance between inverter output power and available input power from the energy source. It regulates the DC-link voltage of the inverter slightly above the peak voltage of the grid, which inherently leads to average power balance.

For the grid-forming inverters used in a microgrid, DC-link voltage regulator limits the demanded power by shaping its $P-\omega$ droop characteristics based on available input power from the microsource. DC-link voltage regulator is crucial for operating grid-forming inverter and its control dynamics and implementation are discussed in this chapter.

4.1 DC-link voltage regulator for Grid-following Inverter

Figure (4-1) shows the single stage grid-following inverter with the DC-link voltage regulator. I_{ref} dictating the output current of the inverter and hence the output power. If I_{ref} is set to source power higher than the power available from the microsource, DC-link voltage of the grid decreases. If the DC-link voltage falls below peak-grid voltage, the current from the grid rushes into the inverter via switching bridge body diode and inverter becomes uncontrollable. Normally lower limit is placed on DC-link voltage to disconnect inverter in this situation.

Average power balance between the output power and available input power is maintained by DC-link voltage regulator loop by controlling I_{ref}. DC-link voltage regulator
loop compares the DC-link voltage V_{DC} of the inverter with the reference value $V_{DC,\text{ref}}$ and controls the amplitude of I_{ref}. If V_{DC} is greater than $V_{DC,\text{ref}}$, voltage error is positive and compensator increases the amplitude of I_{ref}, and if V_{DC} is less than $V_{DC,\text{ref}}$, voltage error is negative and compensator decreases the amplitude of I_{ref}. In steady state, I_{ref} set by DC-link voltage regulator is just right so that V_{DC} is equal to $V_{DC,\text{ref}}$ and average power delivered to the grid matches the power generated by the microsource.

Figure 4-1: Single stage grid-following inverter
The difference between average power from the microsource P_{in} and instantaneous output power $p_o(t)$ flows through capacitor $C_{DC-link}$. This capacitor is used as a low frequency energy storage and the power flowing from it is given by equation (4-1)

$$P_c(t) = P_{in} - p_o(t)$$

$$= P_{in} - (V_{o,pk} \sin \omega t \cdot I_{o,pk} \sin \omega t)$$

$$= P_{in} - p_o(sin^2 \omega t) \text{ where } P_o = V_{o,pk} \cdot I_{o,pk} / 2$$

$$= P_{in} - P_o(1 - \cos 2\omega t)) \quad (4-1)$$

The capacitor is sized based on the energy storage requirement. When P_{in} is greater than $p_o(t)$, energy is supplied to the capacitor and it gets charged whereas, when P_{in} is less than $p_o(t)$, energy is sourced by the capacitor, and it gets discharged. In steady state, there is no net change in capacitor stored energy because average power delivered to grid is maintained equal to available average power by DC-link voltage regulator. Thus, in grid-following inverter, DC-link voltage regulator carries out average power balance by directly controlling I_{ref}.

78
4.2 DC-link voltage regulator for GEC grid-forming Inverter using virtual resistance technique

In GEC grid-forming inverters, the output power of the inverter is based on the P-ω droop characteristics of the inverter. Figure (4-2) shows the GEC grid-forming inverters operated in islanded mode.

In islanded microgrid, GEC inverter operating voltage and frequency are determined by the total load and the sources connected in the EPS. To source demanded power by the load, the GEC inverter creates a proportional phase difference between emulated EMF V_s and output voltage V_o by drooping or reducing output voltage frequency ω_0 below its center frequency ω_{center}. This allows the sharing of the load among the GEC inverters connected in the microgrid. Thus with increase in the load power, GEC inverters droops their output voltage frequency ω_0, and sources power depending upon their P-ω droop characteristics.
In this configuration, a situation may arise when the inverter cannot further source power to the load due to its operating limitation such as in-availability of sufficient power from the microsource or limited rating of the inverter [1]. If the inverters are still allowed to follow their $P-\omega$ droop curve and source power to the load, the DC-link voltage of these inverters will drop below its nominal value, resulting in under voltage limit fault and disconnecting them from the microgrid network. This behavior may abruptly increase power demand on the rest of the sources connected in the microgrid and overload them until corrective actions are taken by the higher level control of the microgrid. This may lead to cascades failure and can have a catastrophic impact on the viability of the entire system [8].
To avoid this scenario, power limiting GEC inverter is necessary when the power demanded is higher than its ability to source power. This will allow GEC inverter to continue to source its available power and give some leverage (advantage) for higher level control to take corrective actions.

Figure (4-3) shows the GEC based grid-forming inverter. It is seen that GEC machine produces I_{ref} based on the $P-\omega$ droop characteristics and gives it to the inverters OCR loop. OCR loop further controls the output current of the inverter. To maintain the average
power balance, a mechanism is required to control I_{ref} when power demanded by the P-ω droop is higher than the available power.

$\text{Figure 4-4: Virtual resistance integrated emulated impedance network}$

I_{ref} is controlled in GEC inverter by incorporating virtual resistance component into the emulated impedance network as shown in figure (4-4). Virtual resistance acts as a control handle for the DC-link voltage regulator loop. Output current of the current estimator I_o which sets the current reference I_{ref} is reduced by the current flowing into the virtual resistance I_{Rv} as given by equation (4-2)

$$I_{ref} = I_o - I_{Rv} \quad (4-2)$$

The conductivity (g) of the virtual resistance is controlled to control the I_{ref} when the inverter is commanded to operate beyond its power capability. Sensed DC-link voltage V_{DC} is compared with the DC link reference voltage $V_{DC,ref}$ and the error signal V_{error} is
generated. If the DC link voltage falls below the DC link reference voltage, the voltage error becomes positive and the compensator G_c increases the conductivity of the virtual resistance. This increases I_{Rv} and in turn decreases I_{ref}, from equation (4-2). This mechanism limits the output current of the GEC inverter and restores the DC link voltage to the reference value. Thus, the virtual resistance based DC-link voltage regulator shapes the $P\cdot\omega$ droop curve and does not allow the inverter to operate beyond its power capability. If the DC-link voltage is higher than the DC-link voltage reference, the error voltage becomes negative and limiter logic disables the virtual resistance based DC-link voltage regulator, and $P\cdot\omega$ droop control of the inverter controls the output power.

4.3 Modeling and Control Design for DC-link voltage regulator

Dynamics of DC-link voltage are governed by power flowing in the DC-link capacitor given by equation (4-1). Therefore, DC-link voltage is composed of slow varying signals and harmonic component 2ω. To derive DC-link voltage, current in the DC-link capacitor is required and is given by equation (4-3)

$$i_{DC-link}(t) = \frac{P_{in}-P_o(t)}{v_{DC-link}(t)} \quad (4-3)$$

Ripples in the DC-link voltage are much smaller than the average DC-link voltage since ripples are usually tens of volts and DC-link voltage is typically hundreds of volts [19].

$$v_{DC-link}(t) = V_{DC-link,avg} + \text{ripple}(t)$$
Considering, $\text{ripple}(t) << V_{\text{DC-link,avg}}$

Thus, DC-link voltage can be considered as averaged DC-link voltage and is given by equation (4-4)

$$v_{\text{DC-link}}(t) \approx V_{\text{DC-link,avg}} \quad (4-4)$$

Substituting equation (4-4) in equation (4-3), to derive current in the DC-link capacitor.

$$i_{C_{\text{DC-link}}}(t) = \frac{P_{\text{in}} - p_o(t)}{v_{\text{DC-link,avg}}} \quad (4-5)$$

Dynamic Voltage across DC-link is obtained by integrating the DC-link capacitor current as shown in equation (4-6)

$$v_{\text{DC-link}}(t) = \frac{1}{c_{\text{DC-link}}} \int \frac{P_{\text{in}} - p_o(t)}{v_{\text{DC-link,avg}}} \, dt \quad (4-6)$$

This model leads to dynamic DC-link voltage which is not linear and not time-invariant because of output power $p_o(t)$ is instantaneous power.

To develop DC-link voltage regulator controller, a linear and time invarient model is required. To make dynamic model linear and time invariant, average output power needs to be considered, $p_o(t) \Rightarrow P_{o,\text{avg}}$. Substituting equation $P_{o,\text{avg}}$ in equation (4-6), we obtain dynamic equation for DC-link voltage which is linear and time invariant and is given by equation (4-7).
\[v_{DC-link}(t) = \frac{1}{c_{DC-link} \cdot V_{DC-link,avg}} \int P_{in} - P_{o,avg} \cdot dt \]

\[(4-7) \]

A dynamic model of DC-link voltage is shown in figure (4-5).

![Dynamic model of DC-link voltage](image)

In GEC inverters, P-ω droop control gives the demanded power, \(P_{demand} \) based on system frequency, \(\omega_o \). In case of demanded power higher than the available power, virtual resistance based DC-link regulation activates as mentioned in section 4.2 and dissipates part of demanded power, thus reducing it. Referring to Figure (4-4), average power dissipated by virtual resistance is given by equation (4-8)

\[P_{Rv} = \frac{V_{\text{rms}}^2}{R_v} = V_{\text{rms}}^2 \cdot g \]

\[(4-8) \]

Where, \(g \) is the conductivity of the virtual resistance and \(P_{Rv} \) is the average, virtual power is dissipated across virtual resistance \(R_v \). Equation (4-9) show the average output power, \(P_{o,avg} \) left after reducing virtual power from the demanded power, \(P_{demand} \).
\[P_{o,avg} = P_{demand} - P_{R_v} \] \hspace{1cm} (4-9)

Equation (4-8) and (4-9) forms the model of virtual resistance and is shown in figure (4-6).

\[g(t) \rightarrow V_{\text{rms}}^2 \rightarrow P_{R_v} \rightarrow P_{o,avg} \rightarrow P_{\text{demand}} \]

Figure 4-6: Virtual resistance model

A dynamic model of DC-link voltage and the model of virtual resistance are connected in a closed loop as shown in figure (4-7). Dynamic DC-link voltage \(v_{DC-link}(t) \) is compared with DC-link a reference voltage \(V_{DC-link} \) and error is given to compensator \(G_c \). Compensator \(G_c \) produces the correcting signal \(g(t) \) based upon voltage error, \(v_{\text{error}}(t) \). Plant \(G_{vg}(s) \) of dynamic model is given by equation (4-10)

\[
G_{vg}(s) = \frac{v_{DC-link}(s)}{g(s)} = \frac{V_{\text{rms}}^2}{c_{DC-link}V_{DC-link,\text{avg}}} \frac{1}{s} \] \hspace{1cm} (4-10)
Figure 4-7: Dynamic model of virtual resistance based DC-link voltage regulator

DC-link compensator G_c is designed based on loop gain $G_{vg}(s) \cdot H(s)$, where $H(s)$ is unity.

System parameters to design virtual resistance based DC-link regulator are listed in Table (4-1)

Table 4-1: Inverter parameters to designing DC-link voltage regulator loop

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{DC-link,avg}$</td>
<td>200 V</td>
</tr>
<tr>
<td>$V_{o,rms}$</td>
<td>120 V</td>
</tr>
<tr>
<td>$C_{DC-link}$</td>
<td>400 uF</td>
</tr>
<tr>
<td>P_o</td>
<td>200 W</td>
</tr>
</tbody>
</table>
Compensator G_c is inverter zero type of PI controller as shown in equation (4-11). To design PI controller, uncompensated loop gain $G_{vg}(s). H(s)$ is first plotted as shown in figure (4-8).

Based on the bode plot values of k_p and f_z are chosen to create desired cross over frequency (f_c) and phase margin (Φ_m).

$$G_c(s) = k_p + \frac{k_i}{s} = k_p \left(1 + \frac{2\pi f_z}{s}\right)$$

(4-11)

Figure 4-8: Uncompensated DC-link voltage regulator loop gain

The PI controller for the DC-link voltage regulator is designed to maintain DC-link voltage typically higher than peak AC voltage and lower than rated voltage of DC-link capacitor. In this case [19], DC-link voltage is regulated at 200V. Typically it is desired that the DC-
link voltage regulator loop bandwidth is set high so that it can quickly respond to changes in DC-link voltage and regulate it. Another constraint in designing DC-link voltage regulator loop is second order harmonics distortion in output current. According to IEEE1547 standard, THD is required to be less than 5% at rated power [19]. Therefore, to design DC-link voltage regulator with high bandwidth, it is imperative to reduce second order harmonics on DC-link capacitor voltage. Second order harmonics are placed at 120Hz \((2\omega)\), to reduce these harmonics, digital IIR low pass filter is implemented. This filter has a cut of frequency of 50 Hz and it reduces the harmonics on sensed DC-link voltage. The PI controller is designed for crossover frequency of 45 Hz and phase margin greater than 71°, by choosing \(k_p\) as 0.001479 and \(f_z\) as 15Hz. Figure (4-9) shows the compensated loop gain \(G_c(s) \cdot G_{vg}(s) \cdot H(s)\).
Figure 4-9: Compensated DC-link voltage regulator loop-gain

4.4 Implementation of Virtual Resistance based DC-link Voltage Regulator

Implementation of dynamic model of DC-link voltage and regulator are shown in figure (4-10).
Figure 4-10: Dynamic model of DC-link voltage and DC-link voltage regulator

A dynamic model of DC-link voltage is implemented in Simulink. This model is a non-linear model as output power is instantaneous power. Output power is then subtracted from the input power to obtain power in the DC-link capacitor. DC-link voltage is then derived implementing equation (4-6). The integral block is initialized with 200 V value to avoid divide by zero error. ZOH block samples the DC-link voltage at 5 kHz frequency and gives it to low pass filter.

Digital IIR Low pass filter is implemented to filter out second harmonic 2ω term on DC-link voltage. The implementation is same as LPF filter in PLL. Required crossover frequency (f_c) is 50Hz with gain (G) of unity and sampling frequency (f_{sample}) is 5 kHz. Digital IIR low pass filter is given by the form shown in equation (4-12).

$$H(z) = \frac{b_0}{1 + (b_0 - 1).z^{-1}} \quad (4-12)$$
Where, \(b_0 = \frac{G}{\tau f_{\text{sample}}} \) and \(\tau = \frac{1}{2\pi f_c} \)

Substituting values into equation (4-12), we get equation (4-13).

\[
H(z) = \frac{0.0628}{1-(0.9371)z^{-1}}
\] \hspace{1cm} (4-13)

Where, \(z^{-1} \) is the unit delay of 200e-6 sec. Equation (4-14) is implemented inside LPF block, in figure (4-10).

The PI controller is designed in section “4.3”, and the implementation is similar to the PI controller implementation in PLL.

\[k_p = 0.001479 \]
\[k_i = 2\pi f_z k_p = 0.1393 \]

These values are in the continuous domain and are digitally implemented by backward Euler approximation. By substituting \(s \rightarrow \frac{z^{-1}}{zT_s} \) in equation (4-11), digital PI controller is obtained as shown in equation (4-14).

\[
G_c(z) = k_p + k_i T_s \cdot \frac{z}{z^{-1}}
\] \hspace{1cm} (4-14)

\[k_{p,\text{digital}} = 0.001479 \]
\[k_{i,\text{digital}} = 2\pi f_z k_{p,\text{digital}} T_s = 0.1393 \left(\frac{1}{5kHz} \right) = 0.02786e - 3 \]
Equation (4-14) is implemented inside PI-controller block in figure (4-10). Saturation block is implemented to make control voltage zero when it goes negative. This block disables virtual resistance based DC-link voltage regulator when DC-link voltage is higher than DC-link reference. Virtual resistance embedded in GEC model is shown in figure (4-11).

Figure 4-11: Virtual resistance embedded in GEC model

Virtual resistor’s conductivity, g computed by PI controller is given as an input to GEC model. g multiplied by the output voltage gives the current in the virtual resistance I_{RV}. This current is then subtracted from actual output current I_o and the reference current I_{ref} is generated. Figure 4-12. shows the integration of virtual resistance based DC-link voltage regulator in GEC inverter.
4.5 Results of Virtual Resistance based DC-link Regulator

To demonstrate the concept of power limited inverters, GEC programmed inverters were operated with input power limited to 148 Watts and step changing the power demand from 57 Watts to 200 Watts. Power demand was emulated by changing the frequency of AC source from 59.80 Hz corresponds to 57 Watts to 59.30 Hz corresponds to 200 Watt. Figure (4-13) shows the drop-in DC-link voltage (green) as the current increase higher than 1.74A. The controller takes action, and Integral output (yellow) increases to compensate the change in DC-link voltage. Virtual resistance current (I_{Rv}) (blue) increases which in turn decreases output current (pink) as it follows equation (4-2). This brings DC-link voltage back to 200 V.
Figure 4-13: DC-link voltage regulator
CHAPTER 5: CONCLUSION

Inverters operated in a microgrid are categorized mainly into grid-forming inverter or grid-following inverters. This research focuses on grid-forming inverters which can be operated independently of the grid, i.e. in islanded microgrid. Generator Emulation Control strategy (GEC) for grid-forming inverters is demonstrated in this research. GEC inverter emulates dynamic properties of synchronous generator like damping and inertia which makes grid-forming inverter behave like a synchronous generator.

Correlation between GEC inverter and the synchronous generator is drawn based on the dynamic equations. Modeling, control design and implementation of all the control blocks is carried out in this research. Hardware results for GEC are presented in section 3.4, which confirms the $P-\omega$ droop characteristics of GEC inverter.

The power-limiting nature of the grid-forming inverters is analyzed, and the control problems associated with it are mentioned. Virtual resistance based DC-link voltage regulation technique is introduced to maintain the average power balance in grid-forming inverters. This technique can be easily integrated into GEC model, and DC-link voltage regulation can be carried out. Modeling, control design and implementation for virtual resistance based DC-link voltage regulator is carried out in this research.

Results for virtual resistance based DC-link voltage regulator are shown in section 4.5. These results confirm the regulation of DC-link voltage when power demand is higher than the power available. In the experiment, the input power of the GEC inverter is limited
to 148 Watts. When power demanded by the load is higher than 148 Watts, frequency of the system droops below 59.48 Hz and $P-\omega$ droop characteristics of GEC inverter dictates the inverter to source power more than 148 W. Since the inverter cannot source any more power than 148 W, its DC-link voltage starts to collapse. This event activates virtual resistance based DC-link voltage regulator and average power balance is maintained by shaping $P-\omega$ droop control as shown in figure (5-1)

![P-\omega droop curve](image1.png) ![P-\omega droop curve power limited](image2.png)

Figure 5-1: Power-limited P-\omega droop curve of GEC inverter

Thus, $P-\omega$ droop characteristics of GEC inverter are shaped to maintain average power balance and allow the inverter to source its available power. Virtual resistance based DC-link voltage regulation carries out power limit management in grid-forming inverters.
APPENDIX: EXPERIMENTAL SETUP
To test the GEC inverter along P-ω droop curve, resistive load of 400W is connected in between GEC inverter and AC source where AC source can be thought of as electric power system (EPS). To emulate the effect of increase in load, AC source frequency is manually decreased. This causes the Inverter to source proportional power according to its P-ω droop gain.

Figure A-1 shows the basic layout of inverter connection. Load power P_{Load} is shared by power from EPS $P_{AC,EPS}$ and power form the inverter $P_{AC,inv}$. Input power for the Inverter is given by DC source P_{DC}. Figure A-2 shows the experimental setup of the GEC inverter.

![Diagram of GEC inverter setup layout]

Figure A-1: GEC inverter setup layout
Figure A-2: GEC inverter experimental setup
LIST OF REFERENCES

