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ABSTRACT

We formulate and analyze a mathematical model for feral cats living in an isolated

colony. The model contains compartments for kittens, adult females and adult males. Kittens

are born at a rate proportional to the population of adult females and mature at equal rates

into adult females and adult males. Adults compete with each other in a manner analogous

to Lotka-Volterra competition. This competition comes in four forms, classified by gender.

Native house cats, and their effects are also considered, including additional competition

and abandonment into the feral population. Control measures are also modeled in the form

of per-capita removal rates. We compute the net reproduction number (R0) for the colony

and consider its influence. In the absence of abandonment, if R0 > 1, the population always

persists at a positive equilibrium and if R0 ≤ 1, the population always tends toward local

extinction. This work will be referred to as the core model.

The model is then expanded to include a set of colonies (patches) such as those in

the core model (this time neglecting the effect of abandonment). Adult females and kittens

remain in their native patch while adult males spend a fixed proportion of their time in each

patch. Adult females experience competition from both the adult females living in the same

patch as well as the visiting adult males. The proportion of adult males in patch j suffer

competition from both adult females resident to that patch as well the proportion of adult
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males also in the patch. We formulate a net reproduction number for each patch (a patch

reproduction number) Rj. If Rj > 1 for at least one patch, then the collective population

always persists at some nontrivial (but possibly semitrivial) steady state. We consider the

number of possible steady states and their properties. This work will be referred to as the

patch model.

Finally, the core model is expanded to include the introduction of the feline leukemia

virus. Since this disease has many modes of transmission, each of which depends on the

host’s gender and life-stage, we regard this as a model disease. A basic reproduction number

R0 for the disease is defined and analyzed. Vaccination terms are included and their role in

disease propagation is analyzed. Necessary and sufficient conditions are given under which

the disease-free equilibrium is stable.
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CHAPTER 1

THE CORE MODEL

1.1 Introduction

Unowned, free-roaming cats (or feral cats as in [1]) have a well-known presence in cities

around the world [2–4]. There is strong evidence in many instances of free-roaming cats

causing great ecological damage [5–8]. A meta-analysis of the impacts of invasive mammalian

predators considered a total of 738 threatened or extinct species and linked free-roaming cats

to the endangered status of 430 different animals and the extinction of 63 [9]. For example,

since their introduction in 1810 to the Australian territory of Macquarie Island, cats have

been blamed for the extinction of a native species of parakeet (though rabbits and other

animals may have also played a role) [10]. Similary, since their introduction in 1888, free-

roaming cats (along with black rats and yellow crazy ants) are believed to have driven into

extinction four or five species of mammal on the Australian territory of Christmas Island [11].

Free-roaming cat predation on rodents may also place indirect pressure on other predators

(e.g. raptors) [12]. In 2002, their presence was estimated to cost $17 billion per year in the

US alone [13].
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In addition to the ecological impacts that feral cats may have, they also pose an

epidemiological threat to local wildlife [14, 15], pet animals [1], and humans [1, 3, 16–19].

This issue is only exacerbated if these animals are permitted to live in dense colonies [20].

However, the removal of these animals is logistically difficult, work intensive and requires

substantial investments of money. The general consensus among the public that cats are

pet-animals complicates matters further, as the techniques which are quickest and cheapest

are generally lethal (e.g., hunting, trapping [21], and poisoning [22]) and often regarded by

the public as inhumane. Conversely, the techniques which are regarded as humane (e.g.,

trap-neuter-release or trap-adopt) are slower, more expensive and debate continues on their

efficacy [13, 21, 23–26]. Even successful programs for their removal can have unintended

side-effects, which further stresses the need to more deeply consider the complexities of this

population [27]. A full understanding of the dynamics at work is critical to ensuring that

the removal can be minimally invasive while still being effective.

When food and shelter are at extremely high abundance, the behavior of feral cats

shifts from the solitary lifestyle of their wild counterparts to a colony-style one with commu-

nal liters and social grooming [28]. These colonies are typically matrilineal, being composed

primarily of related adult females and their immature offspring [29]. The behavior of adults

varies significantly by gender [28]. Adult females provide the entirety of the parental care.

Interactions between females can be so mild that they will eat from the same source “nose-

to-nose” and social grooming is not uncommon [28–30]. Liters birthed in close proximity

may even become “communal,” with kittens nursing on any lactating female [29]. In these
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types of colonies, adult females display very little in the way of territoriality with regard

to other adult females (in particular related adult females), whereas their behavior towards

adult males is more varied and even potentially hostile. Adult males provide no parental aid

and their interactions with unreceptive females and kittens is minimal. On the other hand,

their behavior towards each other typically ranges between neutral and hostile [28,29,31,32].

A complicating factor is free-roaming cats with owners (or house cats). This is a

population of cats permitted outside, but which has access to shelter, food and veterinary

care. This population may provide competition with the feral population and can potentially

provide mates for receptive females if no others are present. These animals may also be

abandoned by their caretakers and thereby enter the feral population [1, 28, 33].

Previous modeling efforts for feral cats are generally secondary to the modeling of the

diseases affecting them [34–38] . In most of these works, the underlying ecology model is

logistic in nature, with the exception of [36] in which exponential growth is considered. In

general, there is no distinction between gender or life-stage, although in [39], cats are divided

as social or asocial. A notable exception to this lack of population structure is the incredibly

detailed model by McCarthy, who presents a 28 variable stochastic dynamical system to

address the effectiveness of two methods of prophylaxis. The model presented there places

cats into categories divided by gender and life-stage [40].

In this work, we consider a gender-based model to analyze real populations that are

clumped and with high resource abundance [28], such as those described in [32, 41–44]. In

Section 1.2 we state the assumptions of the model and the differential equations they imply
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as well as state our main results, with particular focus on the existence, uniqueness and

stability of equilibria. Section 1.3 interprets selected composite parameters and theorem

biologically. Section 1.4 details several intermediate results. Section 1.5 describes the proofs

of selected theorems and finally Section 1.6 summaries weaknesses of the model and potential

directions for future work.

1.2 Mathematical model

1.2.1 Description

Consider a population of feral cats consisting of kittens (i = 1), adult females (i = 2), and

adult males (i = 3). Let xi(t) be the density of feral cats of type i = 1,2,3 (or i-cats) at time

t ≥ 0. Assume the following:

(A1) Feral adult females produce feral kittens at rate b > 0.

(A2) The intrinsic death rate for feral i-cats is di > 0.

(A3) Feral kittens mature into feral adults of each sex at per-capita rate m > 0.

(A4) Feral i-cats are removed from the population at per-capita rate si ≥ 0.

(A5) The competitive effect of feral adult j-cats on feral adult i-cats is cij ≥ 0 (i, j = 2,3).

(A6) The interaction coefficient cij > 0 when i = j (i, j = 2,3).
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Assumption (A4) represents a combination of practical animal control measures such as

impounding, adoption, and euthanasia. Assumptions (A5) and (A6) together imply that

all adults interact negatively with members of their own sex (e.g., by competing for limited

resources) and possibly with those of the opposite sex. The feral population also interacts

with a constant population of house cats (i.e., cats that live with people and also spend some

time outdoors). Assume

(A7) The density of house cats of type i = 1,2,3 (or house i-cats) is ni > 0.

(A8) House i-cats are abandoned (and become instantly feral) at rate αi ≥ 0.

(A9) The competitive effect of adult house j-cats on feral adult i-cats is eij ≥ 0 (i, j = 2,3).

In the Discussion section, we address some aspects concerning the biological realism of the

assumptions above. Assumptions (A1) to (A9) produce an initial value problem

ẋ1 = bx2 + α1n1 − x1(d1 + s1 + 2m), x1(0) ≥ 0

ẋ2 =mx1 + α2n2 − x2(d2 + s2 + c22x2 + c23x3 + e22n2 + e23n3), x2(0) ≥ 0

ẋ3 =mx1 + α3n3 − x3(d3 + s3 + c32x2 + c33x3 + e32n2 + e33n3), x3(0) ≥ 0

(A)

It is convenient to introduce notation representing the corporate abandonment rate and

effective death rate for each category

ai = αini, δ1 = d1 + s1, δ2 = d2 + s2 + e22n2 + e23n3, and δ3 = d3 + s3 + e32n2 + e33n3 (B)
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Core model box-diagram
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x
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x
3
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1 δ1

δ3
a
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22

c
33

c
32

c
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m m

b

Figure 1.1: A box-diagram visualization of system (1.2.1).

(observe that ai ≥ 0 and δi > 0 for i = 1,2,3). We then obtain a more concise initial value

problem

ẋ1 = bx2 + a1 − x1(δ1 + 2m), x1(0) ≥ 0

ẋ2 =mx1 + a2 − x2(δ2 + c22x2 + c23x3), x2(0) ≥ 0

ẋ3 =mx1 + a3 − x3(δ3 + c32x2 + c33x3), x3(0) ≥ 0

(1.2.1)

See Table 1.1 for a description of all variables and parameters (and see Figure 1.1). Numerical

simulations suggest that if house cats of type 1 and 2 cannot be abandoned (a1 = 0 and a2 = 0),

then their feral counterparts can both become eradicated. See Figure 1.2 (a). As we will see,

the outcome in this case is partly determined by the corporate rate at which house cats of

type 3 are abandoned (a3). However, if house cats of type 1 or 2 can be abandoned (a1 > 0

or a2 > 0), then both of their feral counterparts will always persist. See Figure 1.2 (b).
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Table 1.1: Quantities associated with models (A) and (1.2.1)

Quantity Description (type) Units Equation

t time time (A)

xi density of feral cats (i) cat (A)

ni density of house cats (i) cat (A)

b kitten birth rate kitten ⋅ adult−1 ⋅ time−1 (A)

m kitten maturation rate adult ⋅ kitten−1 ⋅ time−1 (A)

di intrinsic death rate (i) time−1 (A)

si control rate (i) time−1 (A)

αi abandonment rate (i) time−1 (A)

cij competitive effect of ferals (j) on ferals (i) adult−1 ⋅ time−1 (A)

eij competitive effect of house cats (j) on ferals (i) adult−1 ⋅ time−1 (A)

ai corporate abandonment rate (i) cat ⋅ time−1 (B)

δi effective death rate (i) time−1 (B)

xi equilibrium density (i) cat (1.2.2)

z3 equilibrium density of adult males cat (1.2.3)

R0 net reproduction number for adult females none (1.2.4)

k∗ threshold equilibrium density of adult males cat (1.2.5)

c∗32 threshold competition coefficient adult−1 ⋅ time−1 (1.2.5)

a∗3 threshold corporate male abandonment rate cat ⋅ time−1 (1.2.5)

ξ∗ threshold equilibrium density of adult males cat (1.2.6)

a∗∗3 threshold corporate male abandonment rate cat ⋅ time−1 (1.2.6)
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Numerical simulations of system (1.2.1)

Figure 1.2: If house cats of type 1 and 2 cannot be abandoned (a1 = 0 and a2 = 0), then their feral

counterparts can both become eradicated (left). However, if house cats of type 1 or 2 can be aban-

doned (a1 > 0 or a2 > 0), then both of their feral counterparts will always persist (right). The param-

eter values used here are: m = 1, δ1 = 10, δ2 = 1, δ3 = 1, c22 = 0.25, c23 = 0.5, c32 = 0.9, c33 = 1.2, a3 = 6.8

1.2.2 Statement of main results

In this section we state the main properties of system (1.2.1). Biological interpretations of

selected results can be found in Section 1.3 and the proofs of selected theorems can be found

in Section 1.5. Let R3 = {(u1, u2, u3) ∶ u1, u2, u3 are real numbers}, R3
+ = {(u1, u2, u3) ∶ u1 ≥ 0,

u2 ≥ 0, and u3 ≥ 0} (the non-negative cone), Int(R3
+) = {(u1, u2, u3) ∶ u1 > 0, u2 > 0, and

u3 > 0} (the positive cone), and ∂R3
+ = R3

+ − Int(R3
+) (the boundary). Let 0 = (0,0,0). If a

vector u is in R3
+ then u is non-negative and we write u ≥ 0. If a vector u is in Int(R3

+) then

u is positive and we write u ≫ 0. Also, for u,v ∈ R3 define u ≤ v when v − u ∈ R3
+, u < v

when v − u ∈ R3
+ − {0}, and u ≪ v when v − u ∈ Int(R3

+). Let x(t) = (x1(t), x2(t), x3(t))
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denote a solution of (1.2.1). The system is strongly persistent if every solution x(t) satisfies

lim inf{xi(t) ∶ t ≥ 0} > 0 for i = 1,2,3. The first result concerns the situation in which a1 = 0

and a2 = 0.

Theorem 1.2.1. Let a1 = 0 and a2 = 0.

(a) A solution x(t) exists for all time. Moreover, it is unique, non-negative, and bounded.

(b) The non-negative x3-axis is a forward invariant set.

(c) If x(0) is on the boundary but not the x3-axis then x(t) immediately enters the positive

cone.

(d) If x(0) is positive then x(t) is positive for all time.

The next result is analogous but concerns the situation in which a1 > 0 or a2 > 0.

Theorem 1.2.2. Let a1 > 0 or a2 > 0.

(a) A solution x(t) exists for all time. Moreover, it is unique, non-negative, and bounded.

(b) If x(0) is on the boundary, then x(t) immediately enters the positive cone.

(c) If x(0) is positive, then x(t) is positive for all time.

(d) The system is strongly persistent.
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An equilibrium is a constant vector x = (x1, x2, x3) in R3
+ that is a solution of (1.2.1).

It satisfies

bx2 + a1 = x1(δ1 + 2m)

mx1 + a2 = x2(δ2 + c22x2 + c23x3)

mx1 + a3 = x3(δ3 + c32x2 + c33x3)

(1.2.2)

Let z = (0,0, z3) where z3 is the unique non-negative number such that

a3 = z3(δ3 + c33z3) (1.2.3)

Notice that if a3 = 0, then z = 0 and if a3 > 0, then z > 0. Also, define

R0 =
bm

(δ1 + 2m)δ2

(1.2.4)

Theorem 1.2.3. Let a1 = 0 and a2 = 0.

(a) z is the unique boundary equilibrium.

(b) If R0 ≤ 1, then z is the only equilibrium.

(c) If R0 > 1 and c23 = 0, then there is one positive equilibrium x.

The next two results are extensions of Theorem 1.2.3 to the situation in which R0 > 1

and c23 > 0 (see Figure 1.3). The first such result involves the composite parameters

k∗ =
(R0 − 1)δ2

c23

, c∗32 =
2c22c33

c23

+
c22δ3 + c23R0δ2

(R0 − 1)δ2

, and a∗3 = k
∗(δ3 + c33k

∗) (1.2.5)

all of which are positive when R0 > 1 and c23 > 0.

Theorem 1.2.4. Let a1 = 0, a2 = 0, R0 > 1, c23 > 0, and c32 ≤ c∗32.
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System (1.2) bifurcation diagram: c32 − a3

0
0

c
32

a
3

z̄

z̄ , x̄

c
32

*

a
3
**

a
3
*

z̄ , x̄ , ȳ

Figure 1.3: The equilibrium points that exist in the c32 a3-plane when a1 = a2 = 0, R0 > 1, and

c23 > 0.

(a) If a3 < a∗3, then there is one positive equilibrium x = (x1, x2, x3) and x3 < k∗.

(b) If a3 ≥ a∗3, then there is no positive equilibrium.

The next result complements the previous two and involves two additional composite

parameters

ξ∗ =
c22δ3 + c23R0δ2 + c32(R0 − 1)δ2

2(c23c32 − c22c33)

a∗∗3 =
[c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]

2

4c22(c23c32 − c22c33)
−

R0δ2(R0 − 1)δ2

c22

(1.2.6)

Theorem 1.2.5. Let a1 = 0, a2 = 0, R0 > 1, c23 > 0, and c32 > c∗32. Then 0 < ξ∗ < k∗ and

a∗∗3 > a∗3. Also:

(a) If a3 ≤ a∗3, then there is one positive equilibrium x = (x1, x2, x3) and x3 < ξ∗.

(b) If a∗3 < a3 < a∗∗3 , then there are two positive equilibrium points x and y and they satisfy
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(i) x = (x1, x2, x3) and y = (y1, y2, y3)

(ii) x3 < ξ∗ < y3 < k
∗

(iii) 1
2(x3 + y3) = ξ

∗.

(c) If a3 = a∗∗3 , then there is one positive equilibrium x = (x1, x2, x3) and x3 = ξ∗.

(d) If a3 > a∗∗3 , then there is no positive equilibrium.

The previous three theorems together imply that if a1 = 0 and a2 = 0, then there can

be at most two positive equilibrium points. See Figure 1.4 (a). Next, we show that if a1 > 0

or a2 > 0, then there can be more than two positive equilibrium points. See Figure 1.4 (b).

Core model bifurcation diagram

Figure 1.4: If a1 = 0 and a2 = 0, then there can be two positive equilibrium points (left). If a1 > 0 or

a2 > 0, then there can be more than two positive equilibrium points (right). The parameter values

used on the left are: b = 20, m = 2, δ1 = 10, δ2 = 1, δ3 = 1, c22 = 1, c23 = 2, c32 = 10, c33 = 1, a1 = 0,

and a2 = 0. The same parameter values are used on the right but with a1 = 0.05 and a2 = 0.002.

Theorem 1.2.6. Let a1 > 0 or a2 > 0.
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(a) There are no boundary equilibrium points.

(b) A positive equilibrium x exists.

(c) If c23 = 0, then there is one positive equilibrium x.

(d) If c23 > 0, then there can be at most four positive equilibrium points.

An equilibrium is locally asymptotically stable (LAS) if every solution that starts near

it remains near it and also is attracted to it. When a1 = 0 and a2 = 0, then the boundary

equilibrium is stable when there are an even number of positive equilibrium points and it is

unstable otherwise.

Theorem 1.2.7. Let a1 = 0 and a2 = 0.

(a) If R0 < 1, then z is LAS.

(b) If R0 > 1 and c23 = 0, then z is unstable.

(c) If R0 > 1, c23 > 0, and a3 < a∗3, then z is unstable.

(d) If R0 > 1, c23 > 0, and a3 > a∗3, then z is LAS.

When a1 = 0 and a2 = 0, then a positive equilibrium is stable when it is unique. In

cases where there are two positive equilibrium points, then only the one with a smaller x3 is

stable.

Theorem 1.2.8. Let a1 = 0 and a2 = 0.

(a) If R0 > 1 and c23 = 0, then x is LAS.
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(b) If R0 > 1, c23 > 0, c32 ≤ c∗32, and a3 < a∗3, then x is LAS.

(c) If R0 > 1, c23 > 0, c32 > c∗32, and a3 ≤ a∗3, then x is LAS.

(d) If R0 > 1, c23 > 0, c32 > c∗32, and a∗3 < a3 < a∗∗3 , then x is LAS and y is unstable.

The next result is a partial analogue to Theorems 1.2.7 and 1.2.8 but concerns the

situation in which a1 > 0 or a2 > 0. It involves the composite parameter

c∗∗32 =
2c22c33

c23

(1.2.7)

Theorem 1.2.9. Let a1 > 0 or a2 > 0.

(a) If c23 = 0, then x is LAS.

(b) If c23 > 0 and c32 ≤ c∗∗32 , then x is LAS.

(c) If c23 > 0, c32 > c∗∗32 , and a3 = 0 (or a3 is sufficiently small), then x is LAS.

System (1.2.1) is point dissipative if there exists a bounded set in R3
+ which every solu-

tion must eventually enter and remain inside thereafter. An equilibrium is globally attracting

(GA) if it attracts all solutions. If a global attractor is LAS then it is globally asymptotically

stable (GAS). Define the composite parameter

a○3 = (R0 − 1)δ2[
1

c23

{δ3 +
c33(R0 − 1)δ2

c23

} −
R0δ2

c22

] (1.2.8)

Notice that when R0 > 1, then a○3 can be of any sign.

Theorem 1.2.10. Let a1 = 0 and a2 = 0.
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(a) The system is point dissipative.

(b) The basin of attraction for z includes the non-negative x3-axis.

(c) If R0 ≤ 1, then z is GA (if R0 < 1, then z is GAS).

(d) If R0 > 1 and c23 = 0, then x is GAS relative to R3
+ minus the non-negative x3-axis.

(e) If R0 > 1, c23 > 0, c32 ≤ 1
2c

∗∗
32 , and a3 < a○3, then x is GAS relative to R3

+ minus the

x3-axis.

Theorem 1.2.10 does not address all parameter combinations in which R0 > 1, c23 > 0,

and c32 ≥ 0. The final result concerns the situation in which a1 > 0 and a2 > 0.

Theorem 1.2.11. Let a1 > 0 or a2 > 0.

(a) The system is point dissipative.

(b) If c23 = 0, then x is GAS.

Let m = (0,1,1) and consider the Jacobian matrix

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b 0

m −δ2 − 2c22x2 − c23x3 −c23x2

m −c32x3 −δ3 − c32x2 − 2c33x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we multiply the entries (i, j) of J(x) by (−1)mi+mj , then we obtain a non-positive matrix.

It follows then that system (1.2.1) is competitive with respect to the cone K = {(u1, u2, u3) ∶

u1 ≥ 0, u2 ≤ 0, u3 ≤ 0} [45]. For u,v ∈ R3 define u ≤K v when v − u ∈ K and u ≪K v when

v − u ∈ Int(K). Next, let A = diag(1,−1,−1). Then A is an order isomorphism: u ≤K v if
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and only if Au ≤ Av. Furthermore, if we write system (1.2.1) as ẋ = f(x) and let y = Ax,

then ẏ = Aẋ = Af(x) = Af(Ay) = g(y). The result above implies that the system ẏ = g(y)

is competitive with respect to the positive cone. Some additional consequence include (i) a

(compact) limit set cannot contain two points ordered by ≪K and (ii) a (compact) limit set

that does not contain x is a periodic orbit (see Theorems 3.2 and Theorem 4.1 in Chapter 3

of [45]).

1.3 Biological interpretation of results

Here we interpret the results of the previous section biologically.

1.3.1 Net reproduction number

A feral population that includes some abandonment always persists. In view of the previous

results, we say that a feral population is sustained by abandonment if it cannot persist

without some abandonment (R0 ≤ 1). On the other hand, if the population can persist

even without abandonment (R0 > 1), then the feral population is self-sustaining. Let us

now approximate the net reproduction number (or replacement rate) for feral adult females

in a closed population (i.e., one in which feral cats interact with house cats but there is no

actual abandonment). Define R′
0 to be the maximum number of first generation adult female

offspring that an adult female can have in her lifetime. Consider now a population consisting
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of only a small number of adult females whose population density at time t is U(t). We will

assume that, since the number of feral cats is small, competitive effects between feral cats

are negligible. The initial population of females will produce kittens whose density at time

t is V (t). These kittens mature into adult females, whose cumulative density at time t is

W (t). We will show that W (t)→W as t→∞ with W > 0. Then, the replacement rate will

be R′
0 =W ÷U(0) [46, 47].

The initial value problem that interests us is

U̇ = −δ2U, U(0) = ε

V̇ = bU − (δ1 + 2m)V, V (0) = 0

Ẇ =mV, W (0) = 0

The system of differential equations is linear and triangular, and so it can be solved in a

forward manner:

U(t) = εe−δ2t Ô⇒ V (t) =
bε

δ1 + 2m − δ2

[e−δ2t − e−(δ1+2m)t]

Ô⇒ W (t) =
bmε

δ1 + 2m − δ2

[
e−(δ1+2m)t

δ1 + 2m
−
e−δ2t

δ2

−
1

δ1 + 2m
+

1

δ2

]

Hence

lim
t→∞

W (t) =
bmε

δ1 + 2m − δ2

[−
1

δ1 + 2m
+

1

δ2

] =
bmε

δ1 + 2m − δ2

[
δ1 + 2m − δ2

(δ1 + 2m)δ2

] =
bmε

(δ1 + 2m)δ2

=W

We obtain, then, that

R′
0 =

W

ε
=

bm

(δ1 + 2m)δ2

= R0

Written in terms of the primary parameters of the model, we have

R′
0 = R0 =

bm

(d1 + s1 + 2m)(d2 + s2 + e22n2 + e23n3)
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The manner in which each model parameter influences the ability of a feral population to

sustain itself is now clear. An increase in the kitten birth rate (b) or maturation rate (m) can

transform a feral population that is sustained by abandonment to one that is self-sustaining

itself. However, an increase in the kitten death rate (d2), the kitten control rate (s1), the

adult female death rate (d2), the adult female control rate (s2), the density of adult house

cats (n2 and n3), or the competitive effect of adult house cats on adult females (e22 and e23)

can transform a feral population from one that can sustain itself to one that can be sustained

only by abandonment.

1.3.2 The expressions z3 and z

The composite parameter z3 in (1.2.3) represents the density of feral adult males at the

equilibrium (z) where there are neither adult females nor kittens present. This density is

zero when there is no abandonment (a1 = a2 = a3 = 0) and positive when only adult males

can be being abandoned (a1 = a2 = 0, a3 > 0).

1.3.3 The expressions x, y and ξ∗

When an equilibrium exists such that all sub-populations are present, the equilibrium is

denoted x. If two such equilibria exists simultaneously, they are denoted as x and y. In
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the case where two such equilibria exist, the average of the third component of each (which

represents the density of adult males present) is ξ∗.

1.3.4 The composite parameter k∗

The composite parameter k∗ represents a threshold value of the density of adult males. If the

density of adult males is at or above this threshold, the competitive effect on adult females

imposed by adult males is sufficient to prevent both adult females and kittens from coexisting.

This can generally only be achieved if the abandonment adult males experience (a3) is large

and only in the absence of abandonment of adult females and kittens (a1 = a2 = 0).

1.3.5 Theorems 1.2.1 and 1.2.2

Theorems 1.2.1 and 1.2.2 confirm that no model population can become negative, or can

experience an unending population explosion. Also, if the initial population is composed

of only adult males, then the population will remain this way provided that there is no

abandonment for adult females or kittens (a1 = a2 = 0). Finally, if there is abandonment of

either adult females or kittens (a1 > 0 or a2 > 0), the population will always persist. This

holds regardless of control efforts and so if a population is to be controlled, it is essential

that house cats not be abandoned.
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1.3.6 Theorem 1.2.3

Theorem 1.2.3 discusses types of possible equilibria when neither adult females nor kittens

are being abandoned (a1 = a2 = 0). First, there is always a single boundary equilibrium

(z), for which the densities of adult females and kittens are zero. This equilibrium, which

is independent of the net reproduction number R0, has adult males when they experience

abandonment (a3 > 0) and no adult males otherwise (a3 = 0). If the net reproduction number

is small (R0 ≤ 1), then this is the only equilibrium. If the net reproduction number is large

(R0 > 1) and adult females do not experience competition from adult males (c23 = 0) then

there is also a single positive equilibrium (x).

1.3.7 Theorems 1.2.4 and 1.2.5 and the composite parameters c∗32, a
∗
3, and a∗∗3

Theorems 1.2.4 and 1.2.5 detail the influence of the composite parameters c∗32, a∗3, and

a∗∗3 on the number and type of possible positive equilibria, that is, equilibria for which

subpopulations are present. These theorems specifically address the case where neither

adult females nor kittens are being abandoned (a1 = a2 = 0), the net reproduction number is

large (R0 > 1), and when adult females experience competition from adult males (c23 > 0).

When the competition adult males experience from adult females is small (c32 ≤ c∗23),

then a positive equilibrium (x) exists when the competition adult males experience from adult

females is small (a3 > a∗3) and none exist otherwise (a3 ≤ a∗3). If instead the competition adult
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males experience from adult females is large (c32 > c∗23), then a positive equilibrium (x) exists

if the abandonment adult males experience is small a3 ≤ a∗3, none exists if it is too large and

two equilibria (x and y) exist if it takes on an intermediate value (a∗3 < a3 < a∗∗3 ).

1.3.8 Theorem 1.2.6

Theorem 1.2.6 states that when adult females or kittens are being are abandoned (a1 > 0 or

a2 > 0) the full feral cat population always persists. If females suffer no competition from

males (c23 = 0) then there is always a single positive equilibrium (x). Otherwise there may

be up to four possible positive equilibria.

1.3.9 Theorems 1.2.7 and the composite parameter a∗∗

Theorem 1.2.7 details stability of boundary equilibrium (z), which is the equilibria for which

there are neither adult females nor kittens in the case where neither adult females and

kittens can be abandoned (a1 = a2 = 0). The boundary equilibrium is always stable if the

net reproduction number is too small (R0 ≤ 1). It is also stable if adult females experience

competition from males (c23 > 0) and the abandonment of males is too large (a3 > a∗3). If

the net reproduction number is large enough (R0 > 1), then the boundary equilibrium will

be unstable if either adult females experience no competition from adult males (c23 = 0) or
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they do experience such competition (c23 > 0) but the abandonment of adult males is not

too severe (a3 < a∗3).

1.3.10 Theorems 1.2.8

Theorem 1.2.8 details the stability of equilibria for which all population densities are positive

in the case where neither adult females nor kittens are being abandoned (a1 = a2 = 0). The

description of in Section 1.3.7 details the number and type of equilibria exist. This theorem

states that a positive equilibrium (x) will always be stable so long as it is the only positive

equilibrium. In the case that there are multiple positive equilibria (x and y), the equilibrium

with fewer males will be stable while the other will be unstable.

1.3.11 Theorem 1.2.9 and the composite parameter c∗∗32

Theorem 1.2.9 discusses the stability of the equilibria (x) for which all sub-populations are

present in the cases where either adult females or kittens are being abandoned (a1 > 0 or

a2 > 0). When adult females do not experience competition from adult males (c23 = 0), the

equilibrium (x) is always stable. If adult females do experience competition from adult males

(c23 > 0) then this equilibrium will still be stable if the competition adult males experience

from adult females is not too large (c32 ≤ c∗∗32 ) or it is large (c32 > c∗∗32 ) but the abandonment

of adult males (a3) is sufficiently small (see the proof of Theorem 1.2.9 for details).
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1.3.12 Theorem 1.2.10 and the composite parameter a○

Theorem 1.2.10 details the asymptotic behavior of populations, that is how populations

behave as time is allowed to grow very large. These results hold when neither adult females

nor kittens are not being abandoned (a1 = a2 = 0). The theorem states that there is a

number such that, eventually, all population densities will be less than this number. This

theorem also states that if a population has no adult females and no kittens (who might

mature into adult females), then the population will remain this way for all time. Moreover,

this population will tend toward the equilibrium (z) described in Section 1.3.6. Theorem

1.2.10 also states that any population (no matter the initial population) will tend toward this

equilibrium (z) if the net reproduction number is not large enough (R0 ≤ 1). When initial

populations contain either adult females or kittens, the following can be said. If the net

reproduction number is large enough (R0 > 1) and adult females experience no competition

from adult males (c23 = 0), then the population will tend toward the equilibrium (x) described

in Section 1.3.6. If instead adult females do experience competition from adult males but

the competition adult males experience from adult females is not too great (c32 < c∗∗32 ) and

the rate of abandonment of adult males is not too large (a3 < a○3), then populations will still

tend toward this equilibrium (x). An immediate biological result of this theorem is that if

control rates for adult females (s2) and kittens (s1) can be raised so that the net reproduction

number is small enough (R0 ≤ 1) then the population will tend toward extinction, so long as

abandonment can be prevented.
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1.3.13 Theorem 1.2.11

Theorem 1.2.11 details the asymptotic behavior of populations, that is how populations

behave as time is allowed to grow very large. These results hold when neither adult females

either kittens are being abandoned (a1 > 0 or a2 > 0). This theorem states that there exists

a number such that, eventually, all populations densities will be less than this number.

Moreover, it states that whenever adult females do not experience competition from adult

males (c23 = 0) that the population will always tend toward the equilibrium (x) described in

Section 1.3.8.

1.4 Intermediate results

The theorems are proved using results that we will state in the form of lemmas. Let R+ =

{U ∶ U ≥ 0}.

Lemma 1.4.1. Let A ≥ 0, B > 0, and C > 0. Let

U̇ = A − F (U), U(T ) ≥ 0

with F (U) = BU or F (U) = U(B +CU). Let U∗ be the non-negative solution of A = F (U).

(a) The solution U(t) is unique, non-negative, bounded, and exists for t ≥ T .

(b) If U(T ) > 0, then U(t) > 0 for t ≥ T .

(c) If A = 0, then U∗ = 0 and if A > 0, then U∗ > 0.
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(d) U∗ is LAS and its basin of attraction includes R+.

(e) If −F (V ) ≤ V̇ ≤ A − F (V ) with V (T ) ≥ 0 and V̇ is a continuous function of V and t,

then

(i) V (t) exists for t ≥ T

(ii) 0 ≤ lim inf
t→∞

V (t) ≤ lim sup
t→∞

V (t) ≤ U∗.

(f) If V̇ ≤ −F (V ) with V (T ) ≥ 0 and V (t) exists for t ≥ T , then lim sup
t→∞

V (t) ≤ 0.

(g) If V̇ ≥ A − F (V ) with V (T ) ≥ 0 and V (t) exists for t ≥ T , then lim inf
t→∞

V (t) ≥ U∗.

Proof. Parts (a) to (d) follow immediately from the graph of G(U) = A−F (U) as a function

of U . Observe that G(U) describes either a line with negative slope or a concave downward

parabola. In either case, if A = 0, then F (0) = 0 and F (U) < 0 for U > 0 and if A > 0,

then there exists U∗ > 0 such that F (U) > 0 for 0 ≤ U < U∗, F (U∗) = 0, and F (U) < 0 for

U > U∗. We now prove part (e). Let −F (V ) ≤ V̇ ≤ A−F (V ) with V (T ) ≥ 0 and consider the

comparison equations U̇ = −F (U) with U(T ) = V (T ) and Ẇ = A−F (W ) with W (T ) = V (T ).

Then U(t) ≤ V (t) ≤ W (t) so long as all three functions exist. The assumption that V̇ is

a continuous function of V and t implies that V (t) exists as long as it remains bounded.

Recall from parts (c) and (d) that U(t)→ 0 as t→∞ and W (t)→ U∗ as t→∞ where U∗ ≥ 0.

Therefore, U(t) and W (t) are bounded. It follows that V (t) is also bounded, it exists for

t ≥ T , and that 0 ≤ lim inf
t→∞

V (t) ≤ lim sup
t→∞

V (t) ≤ U∗. Parts (f) and (g) are proved in a similar

manner.
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Let R2 = {(U,V ) ∶ U,V are real numbers}, R2
+ = {(U,V ) ∶ U ≥ 0 and V ≥ 0}, Int(R2

+) =

{(U,V ) ∶ U > 0 and V > 0}, and ∂R2
+ = R2

+ − Int(R2
+). Let 0 = (0,0). If a vector u is in R2

+,

then u is non-negative and we write u ≥ 0. If a vector u is in Int(R2
+), then u is positive and

we write u ≫ 0. Also, for u,v ∈ R2 define u ≤ v when v−u ∈ R2
+, u < v when v−u ∈ R2

+−{0},

and u ≪ v when v − u ∈ Int(R2
+).

Lemma 1.4.2. Let

U̇ = −U(δ1 + 2m), U(0) ≥ 0

V̇ = −V (δ2 + c22V ), V (0) ≥ 0

(a) The solution (U(t), V (t)) is unique, non-negative, bounded, and exists for all time.

(b) The origin is an equilibrium.

(c) The positive U-axis and positive V -axis are forward invariant sets.

(d) If (U(0), V (0)) is positive, then (U(t), V (t)) is positive for all time.

(e) The origin is LAS and its basin of attraction includes R2
+.

Proof. The fact that the origin is an equilibrium is obvious. The equation for U is one that

is described by Lemma 1.4.1, and so U(t) is unique, non-negative, bounded, and exists for

all time. Also, if U(0) = 0, then U(t) = 0 for t ≥ 0, and if U(0) > 0 then U(t) > 0 for t > 0

with U(t)→ 0 as t→∞. The same comments hold for V (t). Parts (c), (d), and (e) all follow

immediately from these remarks.
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Lemma 1.4.3. Let

U̇ = bV −U(δ1 + 2m), U(0) ≥ 0

V̇ =mU − V (δ2 + c22V ), V (0) ≥ 0

(1.4.1)

(a) The solution (U(t), V (t)) is unique, non-negative, bounded, and exists for all time.

(b) The origin is an equilibrium.

(c) If (U(0), V (0)) is on ∂R2
+ − {0}, then (U(t), V (t)) immediately enters Int(R2

+).

(d) If (U(0), V (0)) is positive, then (U(t), V (t)) is positive for all time.

(e) If R0 < 1, then the origin is LAS and its basin of attraction includes R2
+.

(f) If R0 > 1, then

(i) There is a second equilibrium P(U∗, V ∗) and it is positive

(ii) U∗ and V ∗ satisfy R0δ2V ∗ =mU∗ and R0δ2 = δ2 + c22V ∗

(iii) P(U∗, V ∗) is LAS and its basin of attraction includes R2
+ − {0}.

Proof. The right side of system (1.4.1) is a continuously differentiable function of U and V .

Therefore, a local solution exists starting from anywhere in R2
+ and is unique so long as it

exists. Also, it is clear that the origin is an equilibrium. We now show that every solution

that starts on ∂R2
+−{0} immediately enters Int(R2

+). It is clear from (1.4.1) that if U(0) = 0

and V (0) > 0, then U̇(0) = bV (0) > 0. Thus, U(t) > 0 for small t > 0. Next, if U(0) > 0

and V (0) = 0, then V̇ (0) = mU(0) > 0. Hence, V (t) > 0 for small t > 0. It follows that

if (U(0), V (0)) is on ∂R2
+ − {0}, then (U(t), V (t)) immediately enters Int(R2

+). Also, we
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obtain that if (U(0), V (0)) is non-negative then (U(t), V (t)) remains non-negative so long

as it exists.

System (1.4.1) forms a planar strictly cooperative system (ÇU̇/ÇV > 0 and ÇV̇ /ÇU > 0)

whose orbits either converge to an equilibrium or become unbounded [45]. It is useful to

introduce the nullcline curves for U and V (in the UV -plane),

γ1 = {(U,V ) ∶ bV = U(δ1 + 2m)} (along which U̇ = 0)

γ2 = {(U,V ) ∶mU = V (δ2 + c22V )} (along which V̇ = 0)

The line γ1 and the parabolic curve γ2 both pass through the origin and are increasing

functions of U . Suppose first that R0 ≤ 1. Equation (1.2.4) implies that the slope of γ1

( δ1+2m
b ) is no less than the slope of γ2 at the origin (mδ2 ). Therefore, the origin is the only

point of intersection for γ1 and γ2. In general, U̇ > 0 to the left of γ1, U̇ = 0 along γ1, and

U̇ < 0 to the right of γ1. Also, V̇ < 0 to the left of γ2, V̇ = 0 along γ2, and V̇ > 0 to the right

of γ2. The corresponding vector field configuration appears in Figure 1.5 (a). The figure

suggests that any trajectory (U(t), V (t)) that starts in R2
+ is bounded and, based on the

remarks above, approaches the origin. Toward this end, consider the candidate Lyapunov

function

E(U,V ) = 1
2mU

2 + 1
2bV

2

It is clear that E ≥ 0 on R2
+ and that E = 0 if and only if (U,V ) = (0,0) (E is positive definite).

Also, notice that E(U,V )→∞ whenever U →∞ or V →∞ (E is radially unbounded). Next,
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we calculate

Ė =mU ⋅ U̇ + bV ⋅ V̇

=mU[bV −U(δ1 + 2m)] + bV [mU − V (δ2 + c22V )]

= −m(δ1 + 2m)U2 + 2bmUV − bδ2V
2 − bc22V

3

= −[
√
m(δ1 + 2m)U −

√
bδ2V ]

2
− 2

√
bm[

√
(δ1 + 2m)δ2 −

√
bm]UV − bc22V

3

≤ −bc22V
3

The final inequality follows from the assumption R0 ≤ 1 and (1.2.4) which together imply

that bm ≤ (δ1 + 2m)δ2. If V > 0, then V 3 > 0 which implies that Ė < 0. If V = 0 and

U > 0, then Ė = −m(δ1 + 2m)U2 < 0. Hence, Ė < 0 on R2
+ − {0} (Ė is negative definite). As

E is a strict Lyapunov function, the origin is LAS and its basin of attraction includes R2
+.

As a consequence, every trajectory (U(t), V (t)) exists for all time. Now we show that if

(U(0), V (0)) is positive, then (U(t), V (t)) remains positive for all time. Let (U∗(t), V∗(t))

be the system described in Lemma 1.4.2 with U∗(t) = U(0) > 0 and V∗(t) = V (0) > 0.

According to Theorem B.1 in [48], we have that U(t) ≥ U∗(t) and V (t) ≥ V∗(t) for all time.

As U∗(t) and V∗(t) are positive for all time, it follows that U(t) and V (t) are also positive

for all time.

Suppose now that R0 > 1. In this case, the slope of γ1 ( δ1+2m
b ) is less than the

slope of γ2 at the origin (mδ2 ). Therefore, γ1 and γ2 intersect at the origin and at a second

point P(U∗, V ∗) in Int(R2
+). Again, U̇ > 0 to the left of γ1, U̇ = 0 along γ1, and U̇ < 0

to the right of γ1. Also, V̇ < 0 to the left of γ2, V̇ = 0 along γ2, and V̇ > 0 to the right
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γ1

γ2

(a)

U

V

0
0

γ2

γ1

(b)

P

U

V

Figure 1.5: Vector field for U and V in the proof of Lemma 1.4.3 when (a) R0 ≤ 1 and (b) R0 > 1.

of γ2. The corresponding vector field configuration appears in Figure 1.5 (b). The figure

suggests that any trajectory (U(t), V (t)) that starts in R2
+ −{0} is bounded and approaches

P. The coordinates of P satisfy bV ∗ = U∗(δ1 + 2m) and mU∗ = V ∗(δ2 + c22V ∗). Equation

(1.2.4) implies that R0δ2V ∗ =mU∗ and R0δ2 = δ2 + c22V ∗. Consider the candidate Lyapunov

function

E(U,V ) = 1
2bm(V ∗U −U∗V )2 + 1

6bc22U
∗V ∗(2V + V ∗)(V − V ∗)2

on the set Ω = R2
+ − {0}. It is clear that E ≥ 0 on Ω and that E = 0 if and only if

(U,V ) = (U∗, V ∗). Also, E(U,V )→∞ whenever U →∞ or V →∞. Next, we calculate

ÇE

ÇU
= bm(V ∗U −U∗V )V ∗

=m(bV ∗U − bU∗V )V ∗

=m[(δ1 + 2m)U∗U − bU∗V )V ∗

=mU∗V ∗[(δ1 + 2m)U − bV ]
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=mU∗V ∗(−U̇)

ÇE

ÇV
= bm(V ∗U −U∗V )(−U∗) + 1

3bc22U
∗V ∗(V − V ∗)2 + 1

3bc22U
∗V ∗(2V + V ∗)(V − V ∗)

= bU∗[m(U∗V − V ∗U) + 1
3c22V

∗(V − V ∗)2 + 1
3c22V

∗(2V + V ∗)(V − V ∗)]

= bU∗[m(U∗V − V ∗U) + c22V
∗V (V − V ∗)]

= bU∗[mU∗V −mV ∗U + c22V
∗V 2 − c22(V

∗)2V ]

= bU∗[V ∗(δ2 + c22V
∗)V −mV ∗U + c22V

∗V 2 − c22(V
∗)2V ]

= bU∗V ∗[V (δ2 + c22V ) −mU]

= bU∗V ∗(−V̇ )

It follows that

Ė =
ÇE

ÇU
U̇ +

ÇE

ÇV
V̇ =mU∗V ∗(−U̇2) + bU∗V ∗(−V̇ 2) = −U∗V ∗(mU̇2 + bV̇ 2)

Thus, Ė < 0 on Ω − {(U∗, V ∗)}. As E is a strict Lyapunov function on Ω, we conclude

that P(U∗, V ∗) is LAS and that its basin of attraction includes Ω. This result also implies

that every trajectory (U(t), V (t)) exists for all time. The argument that if (U(0), V (0)) is

positive, then (U(t), V (t)) remains positive for all time is the same as when R0 ≤ 1.

Lemma 1.4.4. Let

U̇ = bV + a1 −U(δ1 + 2m), U(0) ≥ 0

V̇ =mU + a2 − V (δ2 + c22V ), V (0) ≥ 0

(1.4.2)

with a1 > 0 or a2 > 0.

(a) The solution (U(t), V (t)) is unique, non-negative, bounded, and exists for all time.
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(b) If (U(0), V (0)) is on ∂R2
+, then (U(t), V (t)) immediately enters Int(R2

+).

(c) If (U(0), V (0)) is positive, then (U(t), V (t)) is positive for all time.

(d) There is a unique equilibrium P(U∗, V ∗) and it is positive.

(e) U∗ and V ∗ satisfy bV ∗ + a1 = U∗(δ1 + 2m) and mU∗ + a2 = V ∗(δ2 + c22V ∗).

(f) P(U∗, V ∗) is LAS and its basin of attraction includes R2
+.

Proof. The right side of system (1.4.2) is a continuously differentiable function of U and V .

Therefore, a local solution exists starting from anywhere in R2
+ and is unique so long as it

exists. We now show that every solution that starts on ∂R2
+ immediately enters Int(R2

+).

Suppose first that a1 > 0. It is clear from (1.4.2) that if U(0) = 0, then U̇(0) = bV (0)+a1 > 0.

Thus, U(t) > 0 for small t > 0. Next, if V (0) = 0, then V̇ (0) = mU(0) + a2. If U(0) > 0 or

a2 > 0, then V̇ (0) > 0 which implies that V (t) > 0 for small t > 0. However, if U(0) = 0 and

a2 = 0, then V̇ (0) = 0. In this case, V̈ (0) = mU̇(0) > 0. Here, we have used the fact that

V (0) = 0 and V̇ (0) = 0. Again, we obtain that V (t) > 0 for small t > 0. Suppose now that

a1 = 0. Then a2 > 0. If V (0) = 0, then V̇ (0) =mU(0) + a2 > 0 and so V (t) > 0 for small t > 0.

If U(0) = 0, then U̇(0) = bV (0). If V (0) > 0, then U̇(0) > 0 and so U(t) > 0 for small t > 0.

If V (0) = 0, then U̇(0) = 0 and Ü(0) = bV̇ (0) > 0. Again, U(t) > 0 for small t > 0. Hence, in

all cases, if (U(0), V (0)) is on ∂R2
+, then (U(t), V (t)) immediately enters Int(R2

+). Also, it

follows from these remarks that if (U(0), V (0)) is non-negative, then (U(t), V (t)) remains

non-negative so long as it exists.

32



As was the case for system (1.4.1) in the proof of Lemma 1.4.3, system (1.4.2) forms a

planar strictly cooperative system (ÇU̇/ÇV > 0 and ÇV̇ /ÇU > 0) whose orbits either converge

to an equilibrium or become unbounded. Consider the nullcline curves for U and V (in the

UV -plane),

γ1 = {(U,V ) ∶ bV + a1 = U(δ1 + 2m)} (along which U̇ = 0)

γ2 = {(U,V ) ∶mU + a2 = V (δ2 + c22V )} (along which V̇ = 0)

The line γ1 is an increasing function of U and has a non-negative U -intercept. The parabolic

curve γ2 is an increasing function of U and has one non-negative V -intercept. The assumption

a1 > 0 or a2 > 0 implies that γ1 and γ2 cannot both pass through the origin. Therefore, γ1

and γ2 meet at a single point P(U∗, V ∗) in Int(R2
+). In general, U̇ > 0 to the left of γ1, U̇ = 0

along γ1, and U̇ < 0 to the right of γ1. Also, V̇ < 0 to the left of γ2, V̇ = 0 along γ2, and V̇ > 0

to the right of γ2. The corresponding vector field configuration appears in Figure 1.6.

U − V vector field

0
0

U

V

γ2

γ1

P

Figure 1.6: The vector field for U and V in the proof of Lemma 1.4.4.
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The figure suggests that any trajectory (U(t), V (t)) that starts in R2
+ is bounded

and, therefore, approaches the equilibrium point P. The coordinates of P satisfy bV ∗ + a1 =

U∗(δ1 + 2m) and mU∗ + a2 = V ∗(δ2 + c22V ∗). Consider the candidate Lyapunov function

E(U,V ) = 1
2bm(V

∗U−U∗V )2+ 1
6bc22U

∗V ∗(2V +V ∗)(V −V ∗)2+ 1
2ma1V

∗(U−U∗)2+ 1
2ba2U

∗(V −V ∗)2

Observe that E ≥ 0 on R2
+ and that E = 0 if and only if (U,V ) = (U∗, V ∗). Also, notice that

E(U,V )→∞ whenever U →∞ or V →∞. Next, we calculate

ÇE

ÇU
= bm(V ∗U −U∗V )V ∗ +ma1V

∗(U −U∗)

=mV ∗[bV ∗U − bU∗V + a1U − a1U
∗]

=mV ∗[(bV ∗ + a1)U − bU∗V − a1U
∗]

=mV ∗[U∗(δ1 + 2m)U − bU∗V − a1U
∗]

=mU∗V ∗[(δ1 + 2m)U − bV − a1]

=mU∗V ∗(−U̇)

ÇE

ÇV
= bm(V ∗U −U∗V )(−U∗) + 1

3bc22U
∗V ∗(V − V ∗)2

+ 1
3bc22U

∗V ∗(2V + V ∗)(V − V ∗) + ba2U
∗(V − V ∗)

= bU∗[mU∗V −mV ∗U + 1
3c22V

∗(V − V ∗)2 + 1
3c22V

∗(2V + V ∗)(V − V ∗) + a2V − a2V
∗]

= bU∗[(mU∗ + a2)V − (mU + a2)V
∗ + 1

3c22V
∗{(V − V ∗)2 + (2V + V ∗)(V − V ∗)}]

= bU∗[V ∗(δ2 + c22V
∗)V − (mU + a2)V

∗ + c22V
∗V (V − V ∗)]

= bU∗V ∗[(δ2 + c22V
∗)V −mU − a2 + c22V

2 − c22V
∗V ]

= bU∗V ∗[(δ2 + c22V )V −mU − a2]
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= bU∗V ∗(−V̇ )

It follows that

Ė =
ÇE

ÇU
U̇ +

ÇE

ÇV
V̇ =mU∗V ∗(−U̇2) + bU∗V ∗(−V̇ 2) = −U∗V ∗(mU̇2 + bV̇ 2)

Thus, Ė < 0 on R2
+ − {(U∗, V ∗)}. As E is a strict Lyapunov function on R2

+, we

conclude that P(U∗, V ∗) is LAS and that its basin of attraction includes R2
+. Moreover,

every trajectory (U(t), V (t)) exists for all time. It remains to show that if (U(0), V (0)) is

positive, then (U(t), V (t)) remains positive for all time. Let (U∗(t), V∗(t)) be the system

described in Lemma 1.4.2 with U∗(t) = U(0) > 0 and V∗(t) = V (0) > 0. According to Theorem

B.1 in [48], we have that U(t) ≥ U∗(t) and V (t) ≥ V∗(t) for all time. As U∗(t) and V∗(t) are

positive for all time, it follows that U(t) and V (t) are also positive for all time.

Lemma 1.4.5. Let X(t) and Y (t) be functions with Ẋ = bY −X(δ1 + 2m), X(T ) ≥ 0, and

Y (T ) ≥ 0. Let U(t) and V (t) be as in (1.4.1) in Lemma 1.4.3 with U(T ) = X(T ) and

V (T ) = Y (T ).

(a) If Ẏ ≤ mX − Y (δ2 + c22Y ) and Y (t) exists for t ≥ T , then (X(t), Y (t)) ≤ (U(t), V (t))

for t ≥ T .

(b) If Ẏ ≥ mX − Y (δ2 + c22Y ) and Y (t) exists for t ≥ T , then (X(t), Y (t)) ≥ (U(t), V (t))

for t ≥ T .

Proof. These results follow from Theorem B.1 in [48] together with the fact that system

(1.4.1) is a cooperative system (ÇU̇/ÇV ≥ 0 and ÇV̇ /ÇU ≥ 0).
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1.5 Proofs of all theorems

1.5.1 Proof of Theorem 1.2.1

Let a1 = 0 and a2 = 0. The right side of system (1.2.1) is a continuously differentiable function

of the state variables x1, x2, and x3. Therefore, a local solution exists starting from anywhere

in R3
+ and is unique so long as it exists. Now, we show that the non-negative x3-axis is a

forward invariant set. Let x(t) be the unique solution of (1.2.1) that starts at (0,0, x3(0))

with x3(0) ≥ 0 and consider the initial value problem ż = a3 − z(δ3 + c33z) with z(0) = x3(0).

Lemma 1.4.1 implies that z(t) is non-negative and exists for all time. A direct substitution

shows that (0,0, z(t)) is a solution of (1.2.1). Therefore, x(t) = (0,0, z(t)) for t ≥ 0 and the

non-negative x3-axis is a forward invariant set.

Next, we show that if x(0) is on the boundary but not on the non-negative x3-axis,

then x(t) immediately enters the positive cone. Suppose first that x1(0) = 0. Then x2(0) > 0

and ẋ1(0) = bx2(0) > 0. Thus, x1(t) > 0 for small t > 0. Similarly, if x2(0) = 0, then x1(0) > 0

and ẋ2(0) = mx1(0) > 0. In this case, x2(t) > 0 for small t > 0. Finally, if x3(0) = 0, then

ẋ3(0) = mx1(0) + a3. If x1(0) > 0 or a3 > 0, then ẋ3(0) > 0 which implies that x3(t) > 0

for small t > 0. However, if x1(0) = 0 and a3 = 0, then ẋ3(0) = 0 and ẍ3(0) = mẋ1(0) > 0.

Here, we have used the fact that x3(0) = 0, ẋ3(0) = 0, and ẋ1(0) > 0. We conclude that

x3(t) > 0 for small t > 0. In all cases, x(t) immediately enters the positive cone. The forward
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invariance of the non-negative x3-axis implies that if x(0) is non-negative, then x(t) remains

non-negative so long as it exists.

Next, we show that every solution x(t) is bounded and hence exists for all time.

Consider the comparison system from above

v̇1 = bv2 − v1(δ1 + 2m), v1(0) = x1(0)

v̇2 =mv1 − v2(δ2 + c22v2), v2(0) = x2(0)

v̇3 =mv1 + a3 − v3(δ3 + c33v3), v3(0) = x3(0)

(1.5.1)

and note that it is cooperative (Çv̇i/Çvj ≥ 0 when i ≠ j). Let v(t) = (v1(t), v2(t), v3(t)).

According to Theorem B.1 in [48], we have that x(t) ≤ v(t) so long as both functions exist.

We now bound v(t). Observe that the equations for v1 and v2 in (1.5.1) are described by

Lemma 1.4.3. Thus, v1(t) and v2(t) exist for all time and given any (x1(0), x2(0)) in R2
+,

there exists some M > 0 (depending on the initial condition) such that 0 ≤ v1(t) ≤ M and

0 ≤ v2(t) ≤ M for t ≥ 0. Next, observe that −v3(δ3 + c33v3) ≤ v̇3 ≤ mM + a3 − v3(δ3 + c33v3).

Also, v̇3 is a continuous function of v1 (which is itself a continuous function of t) and v3.

According to Lemma 1.4.1, v3(t) exists for all time and is bounded. Based on the remarks

above, v(t) is bounded and exists for all time. Recall that 0 ≤ x(t) ≤ v(t) so long as x(t)

exists. A non-negative and bounded solution to a system of differential equations whose

domain includes the non-negative cone must exist for all time. Thus, x(t) exists for all time,

and it is bounded. Note that the upper bounds for v1(t), v2(t), and v3(t) all depend on M

(which in turn depends on the initial condition).
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It remains only to show that if x(0) is positive, then x(t) remains positive for all

time. The argument above implies that there exists some N > 0 (depending on the initial

condition) such that 0 ≤ xi(t) ≤ N for i = 1,2,3 and t ≥ 0. Consider the comparison system

from below

u̇1 = −u1(δ1 + 2m), u1(0) = x1(0)

u̇2 = −u2(δ2 + c22u2 + c23N), u2(0) = x2(0)

u̇3 = −u3(δ3 + c32N + c33u3), u3(0) = x3(0)

whose equations completely decouple. Let u(t) = (u1(t), u2(t), u3(t)). According to Theorem

B.1 in [48], we have that x(t) ≥ u(t) so long as u(t) exists. Lemma 1.4.1 implies that each

ui(t) > 0 for t > 0 with ui(t) → 0 as t → ∞. As u(t) is positive for all time, it follows that

x(t) is also positive for all time.

1.5.2 Proof of Theorem 1.2.2

Let a1 > 0 or a2 > 0. Again, the right side of system (1.2.1) is a continuously differentiable

function of the state variables x1, x2, and x3. Therefore, a local solution exists starting

from anywhere in R3
+ and is unique so long as it exists. We now show that every solution

that starts on the boundary (of the non-negative cone) immediately enters the positive cone.

Suppose first that a1 > 0. It is clear from (1.2.1) that if x1(0) = 0, then ẋ1(0) = bx2(0)+a1 > 0.

Thus, x1(t) > 0 for small t > 0. Next, if x2(0) = 0, then ẋ2(0) = mx1(0) + a2. If x1(0) > 0

or a2 > 0, then ẋ2(0) > 0 which implies that x2(t) > 0 for small t > 0. However, if x1(0) = 0
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and a2 = 0, then ẋ2(0) = 0. In this case, ẍ2(0) = mẋ1(0) > 0. Here, we have used the fact

that ẋ1(0) > 0 when x1(0) = 0. Again, we obtain that x2(t) > 0 for small t > 0. Finally, if

x3(0) = 0, then ẋ3(0) = mx1(0) + a3. A similar argument to the one just used shows that

x3(t) > 0 for small t > 0.

Suppose now that a1 = 0. Then a2 > 0. If x2(0) = 0, then ẋ2(0) =mx1(0) + a2 > 0 and

so x2(t) > 0 for small t > 0. If x1(0) = 0, then ẋ1(0) = bx2(0). If x2(0) > 0, then ẋ1(0) > 0

and so x1(t) > 0 for small t > 0. If x2(0) = 0, then ẋ1(0) = 0 and ẍ1(0) = bẋ2(0) > 0. Here, we

have used the fact that ẋ2(0) > 0 when x2(0) = 0. Again, x1(t) > 0 for small t > 0. Finally, if

x3(0) = 0, then ẋ3(0) =mx1(0)+ a3. If x1(0) > 0 or a3 > 0, then ẋ3(0) > 0 which implies that

x3(t) > 0 for small t > 0. However, if x1(0) = 0 and a3 = 0, then ẋ3(0) = 0 and ẍ3(0) =mẋ1(0).

As argued above, ẋ1(0) ≥ 0. If ẋ1(0) > 0, then ẍ3(0) > 0 and so x3(t) > 0 for small t > 0.

However, if ẋ1(0) = 0, then ẍ3(0) = 0. In this case,
...
x 3(0) =mẍ1(0) > 0. Here, we have used

the fact that ẍ1(0) > 0 when x1(0) = 0 and ẋ1(0) = 0. We conclude that x3(t) > 0 for small

t > 0. In all cases, if x(0) is on the boundary, then x(t) immediately enters the positive

cone. Also, it follows from these remarks that if x(0) is non-negative, then x(t) remains

non-negative so long as it exists.

The argument establishing that every solution x(t) is bounded and exists for all time

is the same as the one presented in the proof of Theorem 1.2.1 but with two minor differences.
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The first difference is that it involves a slightly different comparison system from above:

v̇1 = bv2 + a1 − v1(δ1 + 2m), v1(0) = x1(0)

v̇2 =mv1 + a2 − v2(δ2 + c22v2), v2(0) = x2(0)

v̇3 =mv1 + a3 − v3(δ3 + c33v3), v3(0) = x3(0)

(1.5.2)

The second difference is that the equations for v1 and v2 in (1.5.2) are now described by

Lemma 1.4.4 (previously there were described by Lemma 1.4.3). The argument showing

that if x(0) is positive, then x(t) remains positive for all time remains unchanged.

We conclude by showing that system (1.2.1) is strongly persistent. There exists some

N > 0 (depending on the initial condition) such that 0 ≤ xi(t) ≤ N for i = 1,2,3 and t ≥ 0.

Suppose first that a1 > 0. Observe that ẋ1 ≥ a1 − x1(δ1 + 2m) for t ≥ 0. According to Lemma

1.4.1, 0 < w1 ≤ lim inf
t→∞

x1(t), where w1 is the unique positive solution of a1 = w1(δ1 + 2m).

Moreover, given 0 < w∗
1 < w1 there exists some T > 0 such that x1(t) ≥ w∗

1 for t ≥ T . Next,

observe that ẋ2 ≥ mw∗
1 + a2 − x2(δ2 + c22x2 + c23N) for t ≥ T . Lemma 1.4.1 implies that

lim inf
t→∞

x2(t) ≥ w2 > 0 where w2 is the unique positive solution of mw∗
1 + a2 = w2(δ2 + c22w2 +

c23N). A similar argument shows that lim inf
t→∞

x3(t) ≥ w3 > 0 where w3 is the unique positive

solution of mw∗
1 + a3 = w3(δ3 + c32N + c33w3). That is, lim inf

t→∞
xi(t) ≥ wi > 0 for i = 1,2,3. As

wi depends on N for i = 2,3 and N depends on the initial condition, it follows that system

(1.2.1) is strongly persistent.

Suppose now that a1 = 0 and a2 > 0. Here, we observe that ẋ2 ≥ a2−x2(δ2+c22x2+c23N)

for t ≥ 0. Lemma 1.4.1 implies that lim inf
t→∞

x2(t) ≥ y2 > 0 where y2 is the unique positive

solution of a2 = y2(δ2 + c22y2 + c23N). Moreover, given 0 < y∗2 < y2 there exists some T >

40



0 such that x2(t) ≥ y∗2 for t ≥ T . Next, observe that ẋ1 ≥ by∗2 − x1(δ1 + 2m) for t ≥ T .

According to Lemma 1.4.1, lim inf
t→∞

x1(t) ≥ y1 > 0 where y1 is the unique positive solution

of by∗2 = y1(δ1 + 2m). Moreover, given 0 < y∗1 < y1 there exists some U > T such that

x1(t) ≥ y∗1 for t ≥ U . Finally, observe that ẋ3 ≥ my∗1 + a3 − x3(δ3 + c32N + c33x3) for t ≥ U .

Lemma 1.4.1 implies that lim inf
t→∞

x3(t) ≥ y3 > 0 where y3 is the unique positive solution of

my∗1 + a3 = y3(δ3 + c32N + c33y3). Again, lim inf
t→∞

xi(t) ≥ yi > 0 for i = 1,2,3 and system (1.2.1)

is strongly persistent.

1.5.3 Proof of Theorems 1.2.3, 1.2.4, and 1.2.5

Let a1 = 0 and a2 = 0. Recall that a constant vector x = (x1, x2, x3) in R3
+ is an equilibrium

provided that it satisfies (1.2.2). In the case studied here, those equations become

bx2 = x1(δ1 + 2m), mx1 = x2(δ2 + c22x2 + c23x3), and mx1 + a3 = x3(δ3 + c32x2 + c33x3)

(1.5.3)

First, we establish that z = (0,0, z3) is the only boundary equilibrium, where z3 is the unique

non-negative solution of (1.5.3). A direct substitution of z into (1.2.2) demonstrates that

z is an equilibrium, and the uniqueness of z3 implies that z is the only equilibrium on the

x3-axis. For sake of contradiction, let x be a second boundary equilibrium (different from

z). Since x cannot be on the x3-axis, it must be that x1 > 0 or x2 > 0. If x1 = 0, then (1.5.3)

implies that x2 = 0, a contradiction. Similarly, if x2 = 0 then (1.5.3) implies that x1 = 0,

again a contradiction. We conclude that z is the only boundary equilibrium.
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We now consider the existence (and possible uniqueness) of a positive equilibrium

x = (x1, x2, x3). Equations (1.2.4) and (1.5.3) together imply that

R0δ2x2 =mx1, R0δ2 = δ2 + c22x2 + c23x3, and R0δ2x2 + a3 = x3(δ3 + c32x2 + c33x3) (1.5.4)

The first two equations imply that x1 and x2 are uniquely determined by the expression

c23x3. Moreover, necessary and sufficient conditions for a positive equilibrium to exist are

that

x3 > 0 and R0δ2 > δ2 + c23x3 (1.5.5)

If R0 ≤ 1, then the second condition in (1.5.5) cannot be met. In this case, x does not exist.

Suppose now (and for the remainder of the argument) that R0 > 1. If c23 > 0 then (1.2.5)

implies that the necessary and sufficient conditions in (1.5.5) for a positive equilibrium to

exist are equivalent to

0 < x3 < k
∗ (1.5.6)

If c23 = 0, then the second condition in (1.5.5) is always met. If we make the convention

that k∗ =∞ in this case, then (1.5.6) again forms the necessary and sufficient conditions for

a positive equilibrium to exist. We seek now to discover exactly when (1.5.6) occurs. The

second and third equations of (1.5.4) together imply that x3 must satisfy

R0δ2
1
c22

(R0δ2 − δ2 − c23x3) + a3 = x3[δ3 +
c32
c22

(R0δ2 − δ2 − c23x3) + c33x3]

Rearrangement produces a quadratic equation in x3

(c22c33 − c23c32)x
2
3 + [c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]x3 −R0δ2(R0 − 1)δ2 = c22a3
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Notice that the right side is a non-negative constant. Our aim is to find all solutions of

Φ(x3) = c22a3 with 0 < x3 < k
∗ (1.5.7)

where

Φ(ξ) = (c22c33 − c23c32)ξ
2 + [c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]ξ −R0δ2(R0 − 1)δ2 (1.5.8)

Observe from (1.2.4) and (1.5.8) that Φ does not depend on a3, and that the expressions

c22δ3+c23R0δ2+c32(R0−1)δ2 and R0δ2(R0−1)δ2 are both positive. Thus, Φ(0) < 0 and Φ′(0) >

0. If c23 = 0, then Φ is concave upward, which implies that (1.5.7) has a unique solution x3

(recall that in this case k∗ =∞). It follows, then, that a unique positive equilibrium x exists.

Suppose now (and for the remainder of the argument) that c23 > 0. Equations (1.2.5) and

(1.5.8) imply that

Φ(k∗) = (c22c33 − c23c32)(k
∗)2 + [c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]k

∗ −R0δ2(R0 − 1)δ2

= (c22c33 − c23c32)(k
∗)2 + (c22δ3 + c23R0δ2 + c23c32k

∗)k∗ − c23R0δ2k
∗

= c22(δ3 + c33k
∗)k∗

= c22a
∗
3

If c22c33 ≥ c23c32 (i.e., c32 ≤
c22c33
c23

), then Φ is concave upward (or possibly linear) and therefore

increasing on [0, k∗]. Thus, if a3 < a∗3, then (1.5.7) has a unique solution and if a3 ≥ a∗3, then it

has no solution. The first inequality allows for a single positive equilibrium x, and the second

one does not. Suppose now (and for the remainder of the argument) that c22c33 < c23c32 (i.e.,

43



c32 >
c22c33
c23

). Then Φ is concave downward and attains its maximum at the positive number

ξ∗ =
c22δ3 + c23R0δ2 + c32(R0 − 1)δ2

2(c23c32 − c22c33)

Observe from (1.2.5) that c∗32 >
c22c33
c23

. If c32 ≤ c∗32, then

c32 ≤
2c22c33

c23

+
c22δ3 + c23R0δ2

(R0 − 1)δ2

Ô⇒ c23c32(R0 − 1)δ2 ≤ 2c22c33(R0 − 1)δ2 + c23(c22δ3 + c23R0δ2)

Ô⇒ 2(c23c32 − c22c33)(R0 − 1)δ2 ≤ c23[c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]

Ô⇒
(R0 − 1)δ2

c23

≤
c22δ3 + c23R0δ2 + c32(R0 − 1)δ2

2(c23c32 − c22c33)

Ô⇒ k∗ ≤ ξ∗

Again, Φ is increasing on [0, k∗]. As before, if a3 < a∗3, then (1.5.7) has a unique solution

and if a3 > a∗3, then it has no solution. Again, the first inequality allows for a single positive

equilibrium x, and the second one does not. The final case to consider is c32 > c∗32. Reversing

the inequalities in the argument above shows that 0 < ξ∗ < k∗. Recalling that Φ is a quadratic

polynomial, its maximum value can be computed to be (using the vertex formula)

Φ(ξ∗) =
[c22δ3 + c23R0δ2 + c32(R0 − 1)δ2]

2

4(c23c32 − c22c33)
−R0δ2(R0 − 1)δ2 = c22a

∗∗
3

In the last step, we used (1.2.6). Recalling that Φ(k∗) = c22a∗3, it must be that a∗∗3 > a∗3.

Based on the remarks above, if a3 ≤ a∗3, then (1.5.7) has a unique solution, if a∗3 < a3 < a∗∗3 ,

then it has two solutions (whose midpoint is ξ∗), if a3 = a∗∗3 , then it has a unique solution,

and if a3 > a∗∗3 , then it has no solution. The first and third cases allow for a single positive

equilibrium x, the second case produces two positive equilibrium points x = (x1, x2, x3) and
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y = (y1, y2, y3) with 0 < x3 < ξ∗ < y3 < k
∗, and the final case results in no positive equilibrium

points.

1.5.4 Proof of Theorem 1.2.6

Let a1 > 0 or a2 > 0. Recall that a constant vector x = (x1, x2, x3) in R3
+ is an equilibrium

provided that it satisfies (1.2.2). First we establish that an equilibrium cannot reside on the

boundary. Let x = (x1, x2, x3) be any equilibrium, and suppose first that a1 > 0. If x1 = 0,

then bx2 + a1 = 0, which is a contradiction. Therefore, x1 > 0. If x2 = 0, then mx1 + a2 = 0 (a

contradiction) and if x3 = 0, then mx1 + a3 = 0 (also a contradiction). It follows that x must

be positive. Suppose now that a1 = 0 and a2 > 0. If x2 = 0, then mx1+a2 = 0, a contradiction.

Thus, x2 > 0. Next, if x1 = 0 Then bx2 = 0, another contradiction. So x1 > 0. Finally, if

x3 = 0, then mx1 + a3 = 0 (a contradiction). Again, we conclude that x must be positive.

That is, there cannot be a boundary equilibrium.

We now establish the existence of at least one positive equilibrium x. The nullcline

surfaces for system (1.2.1) are

Γ1 = {x ∈ R3
+ ∶ bx2 + a1 = x1(δ1 + 2m)} (along which ẋ1 = 0)

Γ2 = {x ∈ R3
+ ∶mx1 + a2 = x2(δ2 + c22x2 + c23x3)} (along which ẋ2 = 0)

Γ3 = {x ∈ R3
+ ∶mx1 + a3 = x3(δ3 + c32x2 + c33x3)} (along which ẋ3 = 0)

Notice that Γ1 describes a plane. It is useful to let γ1 and γ2(k) be the intersections,

respectively, of Γ1 and Γ2 with the plane x3 = k for k ≥ 0. The line γ1 (which is independent
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γ1 − γ2 plots

Figure 1.7: (a) The line γ1 and the curve γ2(k) in the plane x3 = k. (b) The curve γ3(`) in the

plane x2 = `.

of k) is an increasing function of x1 and has a non-negative x1-intercept. The curve γ2(k),

which satisfies

mx1 + a2 = x2(δ2 + c22x2 + c23k) (1.5.9)

is described by a parabola that opens in the positive x1-direction and has a non-negative

x2-intercept. The assumption a1 > 0 or a2 > 0 implies that γ1 and γ2(k) cannot both pass

through the origin. It follows that γ1 and γ2(k) meet at a single point Q(k) in Int(R2
+)

for each k ≥ 0. See Figure 1.7 (a). Observe from (1.5.9) that, for a fixed value of x1 > 0,

an increase in k has no effect on x2 when c23 = 0 and it results in a decrease in x2 when

c23 > 0. It follows that Q(k) either remains fixed as k increases (when c23 = 0) or it moves

“southwest” along γ1 as k increases (when c23 > 0). Let Ω be the smallest rectangle in the

x1x2-plane whose diagonal includes {Q(k) ∶ k ≥ 0}. The related set {(Q(k), k) ∶ k ≥ 0} defines
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a continuous parametric curve q(k) residing on a subset of Γ1. Its tangent vector at every k

has the form (u1, u2,1) with u1 ≤ 0 and u2 ≤ 0. We claim that the surface Γ3 intersects q(k)

at some k > 0. Let γ3(`) be the intersection of Γ3 with the plane x2 = ` for ` ≥ 0. The curve

γ3(`), which satisfies

mx1 + a3 = x3(δ3 + c32` + c33x3)

is described by a parabola that opens in the positive x1-direction and has a non-negative

x3-intercept. See Figure 1.7 (b). For a fixed value of x1 > 0, an increase in ` has no effect

on x3 when c32 = 0 and it results in a decrease in x3 when c32 > 0. The union of these

parabolic curves γ3(`) forms the surface Γ3. The portion of the surface Γ3 that overlies the

compact set Ω attains its maximum in the x3-direction. However, the parametric curve q(k)

is unbounded in the x3-direction. It follows from these geometric considerations that there

exists at least one point of intersection between Γ3 and q(k). This point occurs when k > 0

and corresponds to a positive equilibrium point x. Notice that if c23 = 0, then q(k) describes

a vertical line emanating from the x1x2-plane. In this case, the surface Γ3 intersects q(k)

exactly once. That is, there is a unique positive equilibrium point x.

Next, we establish an upper limit on the number of positive equilibrium points. Based

on the remarks above, we may restrict attention to the case c23 > 0. The first equation in

(1.2.2) implies that

x1 =
bx2 + a1

δ1 + 2m
(1.5.10)
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Thus, x1 is uniquely determined by x2. Equation (1.5.10) and the second equation in (1.2.2)

together imply that

m ⋅
bx2 + a1

δ1 + 2m
+ a2 = x2(δ2 + c22x2 + c23x3)

It is useful to rearrange this equation to get

{c22x2 + c23x3 −
bm

δ1 + 2m
+ δ2}x2 =

a1m

δ1 + 2m
+ a2 (1.5.11)

Treating x3 as a fixed constant, the left side of (1.5.11) is a quadratic polynomial in x2 whose

graph is concave upward and passes through the origin. Since the right side of (1.5.11) is a

positive constant, there is one positive solution x2. Based on these remarks, a necessary and

sufficient condition for a positive equilibrium x to exist is that x3 > 0. We seek now a single

equation for x3. Equation (1.5.10) and the third equation in (1.2.2) together imply that

m ⋅
bx2 + a1

δ1 + 2m
+a3 = x3(δ3+c32x2+c33x3) Ô⇒ {

bm

δ1 + 2m
−c32x3}x2 = x3(δ3+c33x3)−

a1m

δ1 + 2m
−a3

Equation (1.5.11) implies that

c22{x3(δ3 + c33x3) −
a1m

δ1 + 2m
− a3}

2

+ {c23x3 −
bm

δ1 + 2m
+ δ2}{

bm

δ1 + 2m
− c32x3}{x3(δ3 + c33x3) −

a1m

δ1 + 2m
− a3}

= {
a1m

δ1 + 2m
+ a2}{

bm

δ1 + 2m
− c32x3}

2

This fourth degree polynomial equation in x3 has at most four positive solutions and each

such solution corresponds to a positive equilibrium x.
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1.5.5 Proof of Theorem 1.2.7

Let a1 = 0 and a2 = 0. In general, the Jacobian matrix for system (1.2.1) at an equilibrium

x has the form

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b 0

m −δ2 − 2c22x2 − c23x3 −c23x2

m −c32x3 −δ3 − c32x2 − 2c33x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

At z = (0,0, z3) this becomes

J(z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b 0

m −δ2 − c23z3 0

m −c32z3 −δ3 − 2c33z3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Because of its block triangular form, the eigenvalues of J(z) are those of the blocks

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b

m −δ2 − c23z3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and B = [−δ3 − 2c33z3
] (1.5.12)

Notice that the matrix B is always a stable matrix (its spectral bound is negative). Therefore,

J(z) is a stable matrix if and only if A is a stable matrix. It is well known that this occurs if

and only if tr (A) < 0 and det(A) > 0 [49]. Next, observe that tr (A) = −δ1−2m−δ2−c23z3 < 0

and det(A) = (δ1 + 2m)(δ2 + c23z3) − bm. We consider various cases:

1. If R0 < 1, then det(A) ≥ (δ1 + 2m)δ2 − bm > 0 by (1.2.4). In this case, z is LAS.

2. If R0 > 1 and c23 = 0, then det(A) = (δ1 + 2m)δ2 − bm < 0 by (1.2.4). In this case, z is

unstable.
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3. Let R0 > 1, c23 > 0, and a3 < a∗3. It follows from (1.2.3), (1.2.4), and (1.2.5), that

det(A) < (δ1 + 2m)(δ2 + c23k
∗) − bm

= (δ1 + 2m)[δ2 + (R0 − 1)δ2] − bm

= (δ1 + 2m)R0δ2 − bm

= bm − bm

= 0

In this case, z is unstable.

4. Let R0 > 1, c23 > 0, and a3 > a∗3. Then an argument similar to the previous one shows

that det(A) > 0. In this case, z is LAS.

Linear stability analysis is inconclusive in the two remaining borderline cases: (i) R0 = 1 and

(ii) R0 > 1, c23 > 0, and a3 = a∗3.

1.5.6 Proof of Theorem 1.2.8

Let a1 = 0 and a2 = 0. Let x = (x1, x2, x3) be any positive equilibrium point. In view of

Theorem 1.2.3, we may assume that R0 > 1. The Jacobian matrix for system (1.2.1) at x is

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b 0

m −δ2 − 2c22x2 − c23x3 −c23x2

m −c32x3 −δ3 − c32x2 − 2c33x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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For the sake of clarity, we have dropped the overline notation for the coordinates of x. Also,

we recall the relations (1.5.4) that were obtained in an earlier proof:

R0δ2x2 =mx1, R0δ2 = δ2+c22x2+c23x3, and R0δ2x2+a3 = x3(δ3+c32x2+c33x3) (1.5.13)

Apart from sign, the characteristic polynomial for J(x) has the form pJ(x) = λ3+Aλ2+Bλ+C.

The positive equilibrium x is stable provided that the Routh-Hurwitz conditions are satisfied:

A,B,C > 0 and AB > C. We calculate

A = −(J11 + J22 + J33)

= (δ1 + 2m) + (δ2 + 2c22x2 + c23x3) + (δ3 + c32x2 + 2c33x3)

> 0

B = (J11J22 − J12J21) + (J11J33 − J13J31) + (J22J33 − J23J32)

= {(δ1 + 2m)(δ2 + 2c22x2 + c23x3) − bm} + {(δ1 + 2m)(δ3 + c32x2 + 2c33x3) − 0}

+ {(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23x2 ⋅ c32x3}

= (δ1 + 2m)(R0δ2 + c22x2) − (δ1 + 2m)R0δ2 + (δ1 + 2m)(δ3 + c32x2 + 2c33x3)

+ (δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23c32x2x3 (by (1.2.4) and (1.5.13))

= (δ1 + 2m)(δ3 + c22x2 + c32x2 + 2c33x3)

+ (δ2 + 2c22x2)(δ3 + 2c33x3) + c23x3(δ3 + 2c33x3) + c32x2(δ2 + 2c22x2)

> 0
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C = −J11(J22J33 − J23J32) + J12(J21J33 − J31J23) − J13(J21J32 − J31J22)

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23x2 ⋅ c32x3}

+ bm{ − δ3 − c32x2 − 2c33x3 + c23x2}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23c32x2x3

+ bm
δ1+2m(−δ3 − c32x2 − 2c33x3 + c23x2)}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3 −
bm

δ1+2m)(δ3 + c32x2 + 2c33x3) − c23c32x2x3 +
bm

δ1+2mc23x2}

= (δ1 + 2m){(R0δ2 + c22x2 −R0δ2)(δ3 + c32x2 + 2c33x3) − c23c32x2x3 +R0δ2c23x2}

(by (1.2.4), (1.5.13))

= (δ1 + 2m){c22x2(δ3 + c32x2 + 2c33x3) − c23c32x2x3 +R0δ2c23x2}

= (δ1 + 2m)x2{c22(δ3 + c32x2 + 2c33x3) − c23c32x3 +R0δ2c23}

= (δ1 + 2m)x2{c22(δ3 + 2c33x3) + c23R0δ2 + c32c22x2 − c23c32x3}

= (δ1 + 2m)x2{c22(δ3 + 2c33x3) + c23R0δ2 + c32(R0δ2 − δ2 − c23x3) − c23c32x3} (by (1.5.13))

= (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32(R0 − 1)δ2 + 2(c22c33 − c23c32)x3}

The sign of C will be found below. Omitting terms (some positive and some non-negative),

we have

AB = {(δ1 + 2m) +⋯}{⋯+ (δ2 + 2c22x2)(δ3 + 2c33x3) + c23x3(δ3 + 2c33x3) + c32x2(δ2 + 2c22x2)}

> (δ1 + 2m){(δ2 + 2c22x2)(δ3 + 2c33x3) + c23x3(δ3 + 2c33x3) + c32x2(δ2 + 2c22x2)}

> (δ1 + 2m){c22δ3x2 + c23x3(δ3 + c33x3) + c32x2(δ2 + c22x2) + 2c22c33x2x3}

= (δ1 + 2m){c22δ3x2 + c23x3(δ3 + c32x2 + c33x3) + c32x2(δ2 + c22x2 + c23x3)
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+ 2(c22c33 − c23c32)x2x3}

≥ (δ1 + 2m){c22δ3x2 + c23R0δ2x2 + c32x2R0δ2 + 2(c22c33 − c23c32)x2x3} (by (1.5.13))

= (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32R0δ2 + 2(c22c33 − c23c32)x3}

> (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32(R0 − 1)δ2 + 2(c22c33 − c23c32)x3}

= C

The Routh-Hurwitz conditions are satisfied whenever C > 0. Recall from Theorems 1.2.3,

1.2.4, and 1.2.5 that x exists in these cases: (i) c23 = 0, (ii) c23 > 0, c32 ≤ c∗32, and a3 < a∗3, and

(iii) c23 > 0, c32 > c∗32, and a3 ≤ a∗∗3 . We examine each case separately.

1. If c23 = 0, then there is one positive equilibrium x (see Theorem 1.2.3). Also,

C = (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32(R0 − 1)δ2 + 2c22c33x3} > 0

In this case, x is LAS.

2. If c23 > 0, c32 ≤ c∗32, and a3 < a∗3, then there is one positive equilibrium x (see Theorem

1.2.4). Observe from (1.2.5) that 0 < c22c33
c23

< c∗32. If c32 ≤
c22c33
c23

, then

C ≥ (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32(R0 − 1)δ2} > 0

In this case, x is LAS. Suppose now that c32 >
c22c33
c23

. Recall from the proof of Theorem

1.2.4 that x3 < k∗ ≤ ξ∗. Equation (1.2.6) implies that

C = (δ1 + 2m)x2{c22δ3 + c23R0δ2 + c32(R0 − 1)δ2 + 2(c22c33 − c23c32)x3}
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= (δ1 + 2m)x2{2(c23c32 − c22c33)ξ
∗ − 2(c23c32 − c22c33)x3}

= 2(δ1 + 2m)x2(c23c32 − c22c33)(ξ
∗ − x3)

> 0

Again, x is LAS.

3. Finally, let c23 > 0, c32 > c∗32 and a3 < a∗∗3 (linear stability analysis is inconclusive in

the borderline case a3 = a∗∗3 ). Then c32 > c22c33
c23

. If a3 ≤ a∗3 then there is one positive

equilibrium x = (x1, x2, x3) and x3 < ξ∗ (see Theorem 1.2.5). The second argument

in the previous case applies to this situation and so x is LAS. Suppose now that

a∗3 < a3 < a∗∗3 . Then there are two positive equilibrium points x = (x1, x2, x3) and

y = (y1, y2, y3) and they satisfy x3 < ξ∗ < y3 (see Theorem 1.2.5). The equilibrium x

is stable (the argument is the same as when a3 ≤ a∗3). The equilibrium y is not stable

(C < 0 in this case).

1.5.7 Proof of Theorem 1.2.9

Let a1 > 0 or a2 > 0. Let x = (x1, x2, x3) be any positive equilibrium point. The Jacobian

matrix for system (1.2.1) at x is

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−δ1 − 2m b 0

m −δ2 − 2c22x2 − c23x3 −c23x2

m −c32x3 −δ3 − c32x2 − 2c33x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Again, we drop the overline notation for the coordinates of x. As in the proof of Theorem

1.2.8, the characteristic polynomial for J(x) has the form pJ(x) = λ3 +Aλ2 +Bλ +C and x

is stable if and only if A,B,C > 0 and AB > C. We calculate

A = −(J11 + J22 + J33)

= (δ1 + 2m) + (δ2 + 2c22x2 + c23x3) + (δ3 + c32x2 + 2c33x3)

> 0

B = (J11J22 − J12J21) + (J11J33 − J13J31) + (J22J33 − J23J32)

= {(δ1 + 2m)(δ2 + 2c22x2 + c23x3) − bm} + {(δ1 + 2m)(δ3 + c32x2 + 2c33x3) − 0}

+ {(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23x2 ⋅ c32x3}

= bx2+a1
x1

(mx1+a2x2
+ c22x2) − bm + (δ1 + 2m)(δ3 + c32x2 + 2c33x3)

+ (δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23c32x2x3 (by (1.2.2))

= bx2
x1

(a2x2 + c22x2) +
a1
x1

(mx1+a2x2
+ c22x2) + (δ1 + 2m)(δ3 + c32x2 + 2c33x3)

+ (δ2 + 2c22x2)(δ3 + 2c33x3) + c23x3(δ3 + 2c33x3) + c32x2(δ2 + 2c22x2)

> 0

C = −J11(J22J33 − J23J32) + J12(J21J33 − J31J23) − J13(J21J32 − J31J22)

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23x2 ⋅ c32x3}

+ bm(−δ3 − c32x2 − 2c33x3 + c23x2)
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= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) − c23c32x2x3

− bm
δ1+2m(δ3 + c32x2 + 2c33x3 − c23x2)}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3 −
bm

δ1+2m)(δ3 + c32x2 + 2c33x3) +
bm

δ1+2mc23x2 − c23c32x2x3}

The sign of C will be found below. Omitting terms (some positive and some non-negative)

yields

AB = {(δ1 + 2m) + (δ2 + 2c22x2 + c23x3) +⋯}{⋯+ (δ1 + 2m)(δ3 + c32x2 + 2c33x3)

+ c23x3(δ3 + 2c33x3) +⋯}

> (δ2 + 2c22x2 + c23x3)(δ1 + 2m)(δ3 + c32x2 + 2c33x3) + (δ1 + 2m)c23x3(δ3 + 2c33x3)

≥ (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) + c23x3(δ3 + c33x3)}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) + c23x3(δ3 + c32x2 + c33x3)

− c23c32x2x3}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) + c23(mx1 + a3) − c23c32x2x3}

(by (1.2.2))

≥ (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) + c23mx1 − c23c32x2x3}

≥ (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) +
bx2

bx2+a1 c23mx1 − c23c32x2x3}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) +
bmx1
bx2+a1 c23x2 − c23c32x2x3}

= (δ1 + 2m){(δ2 + 2c22x2 + c23x3)(δ3 + c32x2 + 2c33x3) +
bm

δ1+2mc23x2 − c23c32x2x3}

> (δ1 + 2m){(δ2 + 2c22x2 + c23x3 −
bm

δ1+2m)(δ3 + c32x2 + 2c33x3) +
bm

δ1+2mc23x2 − c23c32x2x3}

= C
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The Routh-Hurwitz conditions are satisfied whenever C > 0. Recall from Theorem 1.2.6 that

x always exists. Observe that

C = (δ1 + 2m){(δ2 + 2c22x2 + c23x3 −
bm

δ1+2m)(δ3 + c32x2 + 2c33x3) +
bm

δ1+2mc23x2 − c23c32x2x3}

= (δ1 + 2m){(mx1+a2x2
+ c22x2 −

bmx1
bx2+a1 )(δ3 + c32x2 + 2c33x3) − c23c32x2x3 +

bm
δ1+2mc23x2}

(by (1.2.2))

= (δ1 + 2m){(mx1+a2x2
− bmx1
bx2+a1 )(δ3 + c32x2 + 2c33x3) + c22x2(δ3 + c32x2 + c33x3)

+ bm
δ1+2mc23x2 + (c22c33 − c23c32)x2x3}

= (δ1 + 2m){( bmx1bx2
− bmx1
bx2+a1 +

a2
x2

)(δ3 + c32x2 + 2c33x3) + c22x2(δ3 + c32x2)

+ bm
δ1+2mc23x2 + (2c22c33 − c23c32)x2x3}

= (δ1 + 2m){( a1mx1
x2(bx2+a1) +

a2
x2

)(δ3 + c32x2 + 2c33x3) + c22x2(δ3 + c32x2)

+ bm
δ1+2mc23x2 + (2c22c33 − c23c32)x2x3}

If (i) c23 = 0 or (ii) c23 > 0 and c32 ≤
2c22c33
c23

, then C > 0. In these cases x is LAS. Suppose now

that c32 >
2c22c33
c23

. Then

C = (δ1 + 2m){( a1mx1
x2(bx2+a1) +

a2
x2

)(δ3 + c32x2 + 2c33x3) + c22x2(δ3 + c32x2) +
bm

δ1+2mc23x2

+ (2c22c33 − c23c32)x2x3}

= (δ1 + 2m){
a2(bx2+a1)+a1mx1

x2(bx2+a1) (δ3 + c32x2 + 2c33x3) + c22x2(δ3 + c32x2) +
bmx1
bx2+a1 c23x2

+ (2c22c33 − c23c32)x2x3}

= (δ1 + 2m){
ba2x2+a1(mx1+a2)

x2(bx2+a1) (mx1+a3x3
+ c33x3) + c22x2 ⋅

mx1+a3
x3

+ bmx1
bx2+a1 ⋅ c23x2

+ (c22c33 − c23c32)x2x3}
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= (δ1 + 2m){
ba2x2+a1(mx1+a2)

x2(bx2+a1) (mx1+a3x3
+ c33x3) +

mx1+a3
x3

(c22x2 +
x3

mx1+a3 ⋅
bmx1
bx2+a1 ⋅ c23x2)

+ (c22c33 − c23c32)x2x3}

> (δ1 + 2m){ a1
bx2+a1 ⋅

mx1+a2
x2

⋅ c32x2 + c32x2 ⋅ (
x3

mx1+a3 ⋅
bmx1
bx2+a1 ⋅ c23x2) + (c22c33 − c23c32)x2x3}

> (δ1 + 2m){ a1
bx2+a1 ⋅ c23x3 ⋅ c32x2 + c32x2 ⋅ (

x2
mx1+a3 ⋅

bmx1
bx2+a1 ⋅ c23x3) + (c22c33 − c23c32)x2x3}

= (δ1 + 2m){( a1
bx2+a1 +

x2
mx1+a3 ⋅

bmx1
bx2+a1 − 1)c23c32x2x3 + c22c33x2x3}

= (δ1 + 2m){( a1
bx2+a1 +

bx2
bx2+a1 ⋅

mx1
mx1+a3 −

bx2+a1
bx2+a1 )c23c32 + c22c33}x2x3

= (δ1 + 2m){( bx2
bx2+a1 ⋅

mx1
mx1+a3 −

bx2
bx2+a1 )c23c32 + c22c33}x2x3

= (δ1 + 2m){ bx2
bx2+a1 (

mx1
mx1+a3 − 1)c23c32 + c22c33}x2x3

= (δ1 + 2m){ bx2
bx2+a1 ( −

a3
mx1+a3 )c23c32 + c22c33}x2x3

If a3 = 0 or a3 > 0 and is sufficiently small, then C > 0.

1.5.8 Proof of Theorem 1.2.10

Let a1 = 0 and a2 = 0. We first show that the basin of attraction for z = (0,0, z3) includes

the non-negative x3-axis. Let x(t) = (x1(t), x2(t), x3(t)) be a solution of (1.2.1) that starts

on the x3-axis. Theorem 1.2.1 implies that x(t) remains on the x3-axis for t ≥ 0. Hence,

ẋ3 = a3 − x3(δ3 + c33x3) for t ≥ 0. Lemma 1.4.1 and equation (1.2.3) together imply that

x3(t)→ z3 as t→∞. Thus, x(t)→ z as t→∞. That is, the basin of attraction for z includes

the non-negative x3-axis.
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Next, we show that system (1.2.1) is point dissipative, that is, there exists a compact

subset L of R3
+ with the property that if x(t) = (x1(t), x2(t), x3(t)) is a solution of (1.2.1)

with x(0) ≥ 0, then x(t) ∈ L for t sufficiently large. The argument above shows that if x(0)

starts on the non-negative x3-axis, then x(t)→ z as t→∞. Also, Theorem 1.2.1 states that

if x(0) is on the boundary but not on the x3-axis then x(t) immediately enters the positive

cone. Thus, we may restrict attention to solutions x(t) that start inside the positive cone.

Recall from the proof of Theorem 1.2.1 that x(t) is dominated from above by the solution

v(t) = (v1(t), v2(t), v3(t)) of the comparison system

v̇1 = bv2 − v1(δ1 + 2m), v1(0) = x1(0)

v̇2 =mv1 − v2(δ2 + c22v2), v2(0) = x2(0)

v̇3 =mv1 + a3 − v3(δ3 + c33v3), v3(0) = x3(0)

(1.5.14)

That is, 0 ≤ x(t) ≤ v(t) for t ≥ 0 (it was also established that v(t) exists for all time). It

suffices to show that the comparison system (1.5.14) has an equilibrium v in R3
+ that attracts

all solutions that start in the positive cone. The result that (1.2.1) is point dissipative will

then follow by taking L to be the box having one corner at the origin and another corner

at (M,M,M) with M > ∥z∥∞ and M > ∥v∥∞. Suppose first that R0 ≤ 1. Lemma 1.4.3

implies that every trajectory (v1(t), v2(t)) approaches (0,0) as t → ∞. We now consider

v3(t). Given a small ε > 0 there exists T > 0 such that 0 ≤ v1(t) ≤ ε and 0 ≤ v2(t) ≤ ε for

t ≥ T . Therefore, a3 − v3(δ3 + c33v3) ≤ v̇3 ≤ mε + a3 − v3(δ3 + c33v3) for t ≥ T . Also, v̇3 is a

continuous function of v1 (which is itself a continuous function of t) and v3. Lemma 1.4.1

implies that u ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ w where u and w are the unique nonnegative
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numbers such that a3 = u(δ3+c33u) and mε+a3 = w(δ3+c33w). Since ε is arbitrary, it must be

that u ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ u. That is, v3(t) → u as t →∞. Letting v = (v1, v2, u),

it follows from the remarks above that v(t)→ v as t→∞ whenever x(0) is in Int(R3
+).

Suppose now that R0 > 1. Lemma 1.4.3 implies that every trajectory (v1(t), v2(t))

approaches P(v1, v2) as t → ∞ where v1 > 0 and v2 > 0 satisfy R0δ2v2 = mv1 and R0δ2 =

δ2 + c22v2. It remains to determine the behavior of v3(t). Given a small ε > 0 there exists

T > 0 such that v1 − ε ≤ v1(t) ≤ v1 + ε and v2 − ε ≤ v2(t) ≤ v2 + ε for t ≥ T . Therefore,

m(v1 − ε) + a3 − v3(δ3 + c33v3) ≤ v̇3 ≤ m(v1 + ε) + a3 − v3(δ3 + c33v3) for t ≥ T . Also, v̇3 is a

continuous function of v1 (which is itself a continuous function of t) and v3. Lemma 1.4.1

implies that u ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ w where u and w are the unique positive

numbers such that m(v1 − ε) + a3 = u(δ3 + c33u) and m(v1 + ε) + a3 = w(δ3 + c33w). Since

ε is arbitrary, it must be that v3 ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ v3 where v3 is the unique

positive number such that mv1 + a3 = v3(δ3 + c33v3). That is, v3(t) → v3 as t → ∞. Letting

v = (v1, v2, v3), it follows from the remarks above that v(t) → v as t →∞ whenever x(0) is

in Int(R3
+). This completes the argument that system (1.2.1) is point dissipative.

In some cases, we can ascertain the basin of attraction for an equilibrium. We treat

those cases separately.

Case 1. Let R0 ≤ 1. We will show that z = (0,0, z3) is a global attractor (its basin of

attraction is R3
+). Recall from the argument above that the basin of attraction for z includes

the x3-axis, and that if x(0) is somewhere else on the boundary, then x(t) immediately
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enters the positive cone. Thus, we may restrict attention to solutions x(t) that start inside

the positive cone. Recall from the argument above that x(t) is dominated from above by the

solution v(t) = (v1(t), v2(t), v3(t)) of the comparison system (1.5.14). That is, 0 ≤ x(t) ≤ v(t)

for t ≥ 0. Again, Lemma 1.4.3 implies that v1(t) → 0 and v2(t) → 0 as t →∞, and therefore

x1(t) → 0 and x2(t) → 0 as t → ∞. We now show that x3(t) → z3 as t → ∞. Given

ε > 0 there exists T > 0 such that 0 < x1(t) ≤ ε and 0 < x2(t) ≤ ε for t ≥ T . Therefore,

a3 − x3(δ3 + c32ε + c33x3) ≤ ẋ3 ≤ mε + a3 − x3(δ3 + c33x3) for t ≥ T . Also, ẋ3 is a continuous

function of x1 and x2 (which are both itself a continuous function of t) and x3. According

to Lemma 1.4.1, u ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ w where u is the unique non-negative

number such that a3 = u(δ3+ c32ε+ c33u) and w is the unique non-negative number such that

mε+a3 = w(δ3+c33w). However, ε is arbitrary, so in fact z3 ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ z3.

Here, we use the fact that the limiting equations for u and w as ε → 0 coincide with the

equation for z3 in (1.2.3). Thus, x3(t) → z3 as t → ∞. It follows from these considerations

that x(t)→ z as t→∞ for all non-negative initial conditions. That is, z is a global attractor.

This result and Theorem 1.2.7 together imply that z is GAS when R0 < 1.

Case 2. Let R0 > 1 and c23 = 0. Recall from Theorem 1.2.3 that there is a unique positive

equilibrium x = (x1, x2, x3) whose coordinates satisfy (1.2.2). We will show that the basin of

attraction for x is R3
+ minus the x3-axis. As before, if x(0) is on the boundary but not on

the x3-axis, then x(t) immediately enters the positive cone. Thus, we may restrict attention

to solutions x(t) that start in Int(R3
+). As c23 = 0, the first two equations in system (1.2.1)
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decouple from the third, and so we may consider them in isolation

ẋ1 = bx2 − x1(δ1 + 2m), x1(0) ≥ 0

ẋ2 =mx1 − x2(δ2 + c22x2), x2(0) ≥ 0

Lemma 1.4.3 implies that every trajectory (x1(t), x2(t)) approaches P(x1, x2) as t→∞. That

is, x1(t)→ x1 and x2(t)→ x2 as t→∞. We now show that x3(t)→ x3 as t→∞. Given ε > 0

there exists T > 0 such that x1−ε ≤ x1(t) ≤ x1+ε and x2−ε ≤ x2(t) ≤ x2+ε for t ≥ T . Therefore,

m(x1 − ε) + a3 − x3{δ3 + c32(x2 + ε) + c33x3} ≤ ẋ3 ≤m(x1 + ε) + a3 − x3{δ3 + c32(x2 − ε) + c33x3}

for t ≥ T . Lemma 1.4.1 implies that u ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ w where u and w

are the unique positive numbers such that m(x1 − ε) + a3 = u{δ3 + c32(x2 + ε) + c33u} and

m(x1 + ε) + a3 = w{δ3 + c32(x2 − ε) + c33w}. However, ε is arbitrary, so it must be that

x3 ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ x3. Here, we use the fact that the limiting equations for

u and w as ε → 0 coincide with the equation for x3 in (1.2.2). Thus, x3(t) → x3 as t → ∞.

It follows from these considerations that x(t)→ x as t→∞, That is, the basin of attraction

for x is R3
+ minus the x3-axis. This result and Theorem 1.2.8 together imply that x is GAS

relative to R3
+ minus the x3-axis.

Case 3. Let R0 > 1, c23 > 0, and a3 < a○3 where a○3 satisfies (1.2.8). Here, we assume that

a○3 > 0 (this will always be the case when c22 is sufficiently large or c23 is sufficiently small).

Equations (1.2.5) and (1.2.8) together imply that

a○3 =
(R0 − 1)δ2

c23

{δ3 +
c33(R0 − 1)δ2

c23

} −
R0δ2(R0 − 1)δ2

c22

= k∗(δ3 + c33k
∗) −

R0δ2(R0 − 1)δ2

c22
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= a∗3 −
R0δ2(R0 − 1)δ2

c22

Therefore, a3 < a○3 < a∗3. Theorem 1.2.4 implies that there is a unique positive equilibrium

x = (x1, x2, x3). We will show that the basin of attraction for x is R3
+ minus the x3-axis. As

before, if x(0) is on the boundary but not on the x3-axis, then x(t) immediately enters the

positive cone. Thus, we may restrict attention to solutions x(t) that start in Int(R3
+). Fix

such a solution x(t). As mentioned earlier, x(t) is dominated from above by the solution

v(t) = (v1(t), v2(t), v3(t)) of the comparison system (1.5.14). That is, 0 ≤ x(t) ≤ v(t) for

t ≥ 0. In addition, it was shown that v(t) approaches a positive vector v. Let x∗ be the vector

in R3
+ whose ith coordinate is lim inf

t→∞
xi(t) for i = 1,2,3 and let x∗ be the vector in R3

+ whose

ith coordinate is lim sup
t→∞

xi(t) for i = 1,2,3. The remarks above imply that 0 ≤ x∗ ≤ x∗ ≤ v.

Our goal is to construct sequences {uj}∞j=1 and {wj}∞j=1 in R3
+ such that

1. 0 ≪ u1 ≪ u2 ≪ u3 ≪ ⋯≪ x ≪ ⋯≪ w3 ≪ w2 ≪ w1 ≪ v

2. uj ≤ x∗ ≤ x∗ ≤ wj for j ≥ 1

3. uj → x and wj → x as j →∞

It will, then, follow that x∗ = x∗ = x. That is, x(t)→ x as t→∞. Recall that the coordinates

of v = (v1, v2, v3) satisfy

R0δ2v2 =mv1, R0δ2 = δ2 + c22v2, and R0δ2v2 + a3 = v3(δ3 + c33v3) (1.5.15)

Also, it follows from (1.2.2) and (1.2.4) that

R0δ2x2 =mx1, R0δ2 = δ2+c22x2+c23x3, and R0δ2x2+a3 = x3(δ3+c32x2+c33x3) (1.5.16)
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In view of (1.5.15) and the fact that x is positive, it must be that

0 < x1 < v1, 0 < x2 < v2, and 0 < x3 < v3 (1.5.17)

Hence, 0 ≪ x ≪ v. Recall also that

R0δ2(R0 − 1)δ2

c22

+ a○3 = a
∗
3 Ô⇒

R0δ2(R0 − 1)δ2

c22

+ a3 < a
∗
3

It follows from this result and the second equation in (1.5.15) that R0δ2v2 + a3 < a∗3. We

obtain from the third equations each in (1.2.5) and (1.5.15) that v3 < k∗. This fact, together

with the relation R0δ2 = δ2 + c23k∗ (obtained from the first equation in (1.2.5)), implies that

R0δ2 > δ2 + c23v3. We proceed in four steps.

1. Select ε1 > 0 such that R0δ2 > δ2 + c23(v3 + ε1) and T1 > 0 such that x3(t) ≤ v3 + ε1 for

t ≥ T1. Then ẋ1 = bx2−x1(δ1+2m) and ẋ2 ≥mx1−x2{δ2+c22x2+c23(v3+ε1)} for t ≥ T1.

Lemmas 1.4.3 and 1.4.5 together imply that lim inf
t→∞

x1(t) ≥ u1 and lim inf
t→∞

x2(t) ≥ u2

where u1 and u2 are the unique positive numbers such that R0δ2u2 = mu1 and R0δ2 =

δ2 + c22u2 + c23(v3 + ε1). Equations (1.5.16) and (1.5.17) imply that 0 < u1 < x1 < v1 and

0 < u2 < x2 < v2.

2. Select ε2 in (0, ε1) such that u1 > ε2 and T2 > T1 such that x1(t) ≥ u1 − ε2 and x2(t) ≤

v2 + ε2 for t ≥ T2. Then ẋ3 ≥ m(u1 − ε2) + a3 − x3{δ3 + c32(v2 + ε2) + c33x3} for t ≥ T2.

Lemma 1.4.1 implies that lim inf
t→∞

x3(t) ≥ u3 where u3 is the unique positive number

such that m(u1 − ε2) + a3 = u3{δ3 + c32(v2 + ε2) + c33u3}. In view of the fact that

0 < m(u1 − ε2) = R0δ2u2 − mε2 < R0δ2x2, it follows from (1.5.16) and (1.5.17) that

0 < u3 < x3 < v3. Also, the relation u3 < v3 < k∗ implies that R0δ2 > δ2 + c23u3.
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3. Select ε3 in (0, ε2) such that u3 > ε3, and T3 > T2 such that x3(t) ≥ u3 − ε3 for t ≥ T3.

Then ẋ1 = bx2 − x1(δ1 + 2m) and ẋ2 ≤ mx1 − x2{δ2 + c22x2 + c23(u3 − ε3)} for t ≥ T3.

Lemmas 1.4.3 and 1.4.5 together imply that lim sup
t→∞

x1(t) ≤ w1 and lim sup
t→∞

x2(t) ≤ w2

where w1 and w2 are the unique positive numbers such that R0δ2w2 =mw1 and R0δ2 =

δ2 + c22w2 + c23(u3 − ε3). Equations (1.5.15) and (1.5.16) and the relation u3 < x3 imply

that 0 < u1 < x1 < w1 < v1 and 0 < u2 < x2 < w2 < v2.

4. Select ε4 in (0, ε3) such that u2 > ε4 and R0δ2w2 +mε4 < R0δ2v2 and T4 > T3 such that

x1(t) ≤ w1 + ε4 and x2(t) ≥ u2 − ε4 for t ≥ T4. Then ẋ3 ≤m(w1 + ε4)+a3 −x3{δ3 + c32(u2 −

ε4) + c33x3} for t ≥ T4. Lemma 1.4.1 implies that lim sup
t→∞

x3(t) ≤ w3 where w3 is the

unique positive number such that m(w1+ε4)+a3 = w3{δ3+c32(u2−ε4)+c33w3}. In view

of the fact that m(w1 + ε4) = R0δ2w2 +mε4 ∈ (R0δ2x2,R0δ2v2), it follows from (1.5.15)

and (1.5.16) and the relation ε4 < u2 < x2 that 0 < u3 < x3 < w3 < v3. Also, the relation

w3 < v3 < k∗ implies that R0δ2 > δ2 + c23w3.

Let u1 = (u1, u2, u3) and w1 = (w1,w2,w3). Then 0 ≪ u1 ≪ x ≪ w1 ≪ v and u1 ≤ x∗ ≤ x∗ ≤

w1. Letting ε1k = εk for k = 1,2,3,4, we can repeat steps 1 to 4 indefinitely (but with εj+1
1

in (0, 1
2ε
j
4) and uj and wj in place of 0 and v) to obtain sequences of vectors {uj}∞j=1 and

{wj}∞j=1 in R3
+ such that

1. 0 ≪ u1 ≪ u2 ≪ u3 ≪ ⋯≪ x ≪ ⋯≪ w3 ≪ w2 ≪ w1 ≪ v

2. uj ≤ x∗ ≤ x∗ ≤ wj for j ≥ 1
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Explicitly, with u0 = 0 and w0 = v, we have

R0δ2u
j
2 =mu

j
1, R0δ2 = δ2 + c22uj2 + c23(w

j−1
3 + εj1), m(uj1 − ε

j
2) + a3 = u

j
3(δ3 + c32(w

j−1
2 + εj2) + c33u

j
3)

R0δ2w
j
2 =mw

j
1, R0δ2 = δ2 + c22wj

2 + c23(u
j
3 − ε

j
3), m(wj

1 + ε
j
4) + a3 = w

j
3{δ3 + c32(u

j
2 − ε

j
4) + c33w

j
3}

with 0 < εj4 < εj3 < εj2 < εj1 and 0 < εj+1
1 < 1

2ε
j
4 for j ≥ 1. It remains to show that uj → x

and wj → x as j → ∞. The sequences {uj}∞j=1 and {wj}∞j=1 are both bounded and strictly

monotone. Therefore, they both converge. That is, there exist u∞ and w∞ in R3
+ such that

uj → u∞ and wj →w∞ as j →∞. Moreover,

1. 0 ≪ u∞ ≤ x ≤ w∞ ≪ v

2. u∞ ≤ x∗ ≤ x∗ ≤ w∞

It suffices to show that u∞ = w∞ (for then x∗ = x∗ = x). Since max{∥εjk∥ ∶ k = 1,2,3,4} → 0

as j →∞, we have in the limit

R0δ2u
∞
2 =mu∞1 , R0δ2 = δ2 + c22u

∞
2 + c23w

∞
3 , mu∞1 + a3 = u∞3 (δ3 + c32w

∞
2 + c33u

∞
3 )

R0δ2w
∞
2 =mw∞

1 , R0δ2 = δ2 + c22w
∞
2 + c23u

∞
3 , mw∞

1 + a3 = w∞
3 (δ3 + c32u

∞
2 + c33w

∞
3 )

(1.5.18)

Eliminating u∞1 , w∞
1 , u∞2 , and w∞

2 , we obtain

R0δ2

c22

[(R0 − 1)δ2 − c23w
∞
3 ] + a3 = u

∞
3 {δ3 +

c32

c22

[(R0 − 1)δ2 − c23u
∞
3 ] + c33u

∞
3 }

R0δ2

c22

[(R0 − 1)δ2 − c23u
∞
3 ] + a3 = w

∞
3 {δ3 +

c32

c22

[(R0 − 1)δ2 − c23w
∞
3 ] + c33w

∞
3 }

That is, Ψ(u∞3 ,w
∞
3 ) = c22a3 and Ψ(w∞

3 , u
∞
3 ) = c22a3 where

Ψ(U,W ) = (c22c33 − c23c32)U
2 + [c22δ3 + c32(R0 −1)δ2]U + c23R0δ2W −R0δ2(R0 −1)δ2 (1.5.19)
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We claim that if (U+,W +) in Int(R2
+) is a solution of the system of quadratic equations

Ψ(U,W ) = c22a3 and Ψ(W,U) = c22a3 (1.5.20)

Then U+ = W +. Let Φ(ξ) be as in (1.5.8) in the proof of Theorems 1.2.4 and 1.2.5 (and

recall it properties). Then Ψ(x3, x3) = Φ(x3) = c22a3. Hence (U,W ) = (x3, x3) is a solution

of (1.5.20).

Let γ1 be the graph of the first equation in (1.5.20) in the UW -plane and suppose

first that c22c33 > c23c32. Then γ1 is a parabola that opens downward with its vertex in the

left half-plane. Let A be the W -intercept of γ1. Letting U = 0, we obtain

Ψ(0,A) = c22a3 Ô⇒ c23R0δ2A = R0δ2(R0 − 1)δ2 + c22a3 (1.5.21)

Equation (1.2.5) and the relation a3 ≥ 0 imply that A ≥ k∗. The positivity of A implies that

the vertex of γ1 lies in the second quadrant and that γ1 has a unique positive U -intercept,

say at B. The curve γ1 meets the line W = U at two points: (x3, x3) and (C,C) with C < 0.

The second equation in (1.5.20) defines a second parabolic curve γ2. By symmetry, its graph

is the reflection of γ1 about the line W = U , and so it opens to the left, its vertex lies in

the fourth quadrant, its U -intercept is at A, its positive W -intercept is at B, and it meets

the line W = U at (x3, x3) and (C,C). Since γ1 and γ2 are distinct parabolas, they can

meet at most four times (in general, W = αU2 + βU + γ and U = αW 2 + βW + γ determine a

fourth degree polynomial equation). There are three sub-cases to consider. If A > B, then

γ1 and γ2 meet inside the interior of each quadrant. Since there can be at most four points

of intersection, it must be that (x3, x3) is the unique intersection in Int(R2
+). If A < B, then
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γ1 and γ2 meet twice: once at (x3, x3) and once at (C,C). Again, (x3, x3) is the unique

intersection in Int(R2
+). Finally, if A = B, then γ1 and γ2 meet at (x3, x3), (A,0), (0,A), and

(C,C). Since there can be at most four points of intersection, (x3, x3) is again the unique

intersection in Int(R2
+).

Suppose next that c22c33 = c23c32. Then γ1 is a line with negative slope and its W -

intercept is again the number A in (1.5.21) satisfying A ≥ k∗. Let B be the unique positive

U -intercept of γ1. The second equation in (1.5.20) defines another line γ2. By symmetry, its

graph is the reflection of γ1 about the line W = U , and so it has negative slope, its U -intercept

is at A and its positive W -intercept is at B. The relation Ψ(B,0) = c22a3 implies that

[c22δ3 + c32(R0 − 1)δ2]B = R0δ2(R0 − 1)δ2 + c22a3 = c22(a
∗
3 − a

○
3 + a3) < c22a

∗
3

Here, we used the fact that a3 < a○3. On the other hand, the relation c22c33 = c23c32 and

(1.2.5) imply that

[c22δ3 + c32(R0 − 1)δ2]B = c22[δ3 + c33
(R0 − 1)δ2

c23

]B = (δ3 + c33k
∗)B

Thus, B(δ3 + c33k∗) < a∗3. In view of (1.2.5), it must be that B < k∗. That is, B < A. Hence,

the lines γ1 and γ2 meet exactly once in Int(R2
+). By the previous remarks, it must be that

they meet at (x3, x3).

It follows from these considerations that u∞3 = w∞
3 . Equation (1.5.18) implies that

u∞1 = w∞
1 and u∞2 = w∞

2 . That is, u∞ = w∞. As mentioned earlier, it follows that x∗ = x∗ = x

and hence x(t)→ x as t→∞. That is, the basin of attraction for x is R3
+ minus the x3-axis.

This result and Theorem 1.2.8 together imply that x is GAS relative to R3
+ minus the x3-axis.
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1.5.9 Proof of Theorem 1.2.11

Let a1 > 0 or a2 > 0. We first show that system (1.2.1) is point dissipative, i.e., there exists a

compact subset L of R3
+ with the property that if x(t) = (x1(t), x2(t), x3(t)) is a solution of

(1.2.1) with x(0) ≥ 0, then x(t) ∈ L for t sufficiently large. Theorem 1.2.2 states that if x(0)

is on the boundary, then x(t) immediately enters the positive cone. Thus, we may restrict

attention to solutions x(t) that start inside the positive cone. Recall from the proof of

Theorem 1.2.2 that x(t) is dominated from above by the solution v(t) = (v1(t), v2(t), v3(t))

of the comparison system

v̇1 = bv2 + a1 − v1(δ1 + 2m), v1(0) = x1(0)

v̇2 =mv1 + a2 − v2(δ2 + c22v2), v2(0) = x2(0)

v̇3 =mv1 + a3 − v3(δ3 + c33v3), v3(0) = x3(0)

(1.5.22)

That is, 0 ≤ x(t) ≤ v(t) for t ≥ 0 (it was also established that v(t) exists for all time). It

suffices to show that the comparison system (1.5.22) has a positive equilibrium v in R3
+ that

attracts all solutions that start in the positive cone. The result that (1.2.1) is point dissipative

will then follow by taking L to be the box having one corner at the origin and another

corner at v + (ε, ε, ε) with ε > 0. Lemma 1.4.4 implies that every trajectory (v1(t), v2(t))

approaches P(v1, v2) as t → ∞ where v1 > 0 and v2 > 0 satisfy bv2 + a1 = v1(δ1 + 2m) and

mv1 + a2 = v2(δ2 + c22v2). It remains to determine the behavior of v3(t). Given a small ε > 0

there exists T > 0 such that v1 − ε ≤ v1(t) ≤ v1 + ε and v2 − ε ≤ v2(t) ≤ v2 + ε for t ≥ T .

Therefore, m(v1 − ε) + a3 − v3(δ3 + c33v3) ≤ v̇3 ≤m(v1 + ε) + a3 − v3(δ3 + c33v3) for t ≥ T . Also,
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v̇3 is a continuous function of v1 (which is itself a continuous function of t) and v3. Lemma

1.4.1 implies that u ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ w where u and w are the unique positive

numbers such that m(v1 − ε) + a3 = u(δ3 + c33u) and m(v1 + ε) + a3 = w(δ3 + c33w). Since

ε is arbitrary, it must be that v3 ≤ lim inf
t→∞

v3(t) ≤ lim sup
t→∞

v3(t) ≤ v3 where v3 is the unique

positive number such that mv1 + a3 = v3(δ3 + c33v3). That is, v3(t) → v3 as t → ∞. Letting

v = (v1, v2, v3), it follows from the remarks above that v(t) → v as t →∞ whenever x(0) is

in Int(R3
+). This completes the argument that system (1.2.1) is point dissipative.

We now restrict attention to the situation in which c23 = 0. In this case, recall from

Theorem 1.2.6 that there is a unique positive equilibrium x = (x1, x2, x3) whose coordinates

satisfy (1.2.2). We will show that the basin of attraction for x is R3
+. As before, if x(0)

is on the boundary, then x(t) immediately enters the positive cone. Thus, we may restrict

attention to solutions x(t) that start in Int(R3
+). As c23 = 0, the first two equations in system

(1.2.1) decouple from the third, and so we may consider them in isolation

ẋ1 = bx2 + a1 − x1(δ1 + 2m), x1(0) ≥ 0

ẋ2 =mx1 + a2 − x2(δ2 + c22x2), x2(0) ≥ 0

Lemma 1.4.4 implies that every trajectory (x1(t), x2(t)) approaches P(x1, x2) as t→∞. That

is, x1(t)→ x1 and x2(t)→ x2 as t→∞. We now show that x3(t)→ x3 as t→∞. Given ε > 0

there exists T > 0 such that x1−ε ≤ x1(t) ≤ x1+ε and x2−ε ≤ x2(t) ≤ x2+ε for t ≥ T . Therefore,

m(x1 − ε) + a3 − x3{δ3 + c32(x2 + ε) + c33x3} ≤ ẋ3 ≤m(x1 + ε) + a3 − x3{δ3 + c32(x2 − ε) + c33x3}

for t ≥ T . Lemma 1.4.1 implies that u ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ w where u and w

are the unique positive numbers such that m(x1 − ε) + a3 = u{δ3 + c32(x2 + ε) + c33u} and
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m(x1 + ε) + a3 = w{δ3 + c32(x2 − ε) + c33w}. However, ε is arbitrary, so it must be that

x3 ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ x3. Here, we use the fact that the limiting equations for

u and w as ε → 0 coincide with the equation for x3 in (1.2.2). Thus, x3(t) → x3 as t → ∞.

It follows from these considerations that x(t)→ x as t→∞, That is, the basin of attraction

for x is R3
+. This result and Theorem 1.2.9 together imply that x is GAS.

1.6 Discussion

We have assumed that all parameters are time-independent. While this is common among the

cited models, most feral populations do experience seasonally varying environments [28,42].

During winter, birth and death rates my change, decreasing and increasing respectively.

During non-breeding seasons territoriality decreases [28]. Since many of the colonies we

hope to model are urban in nature, many of the parameters could potentially be functions

of human intervention. Pet cats may be kept inside more (and so decrease their influence).

Control efforts might slow down during seasons where that work is more difficult. Humans

may be more likely to abandon their pets during specific times of year (perhaps at the end

of an academic year) and so influence abandonment rates. The schedules of trash pick-up

would influence the availability of food and so influence competition (cij). Increases in road

traffic during tourist seasons may increase death rates (di). Future work may incorporate

time-dependent parameters to attempt to account for these complexities.
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Literature suggests that while an equal numbers of males and females are born [28],

male and female kittens do not reach reproductive maturity at the same age [28]. In this

work, assumptions (A1) and (A3), imply that kittens are born effectively genderless and

leave the kitten class at equal rates. This replicates the former detail but not the latter.

Future work may have two classes of kitten, one for each gender, each of which with its own

maturation rate.

We have assumed that adult females will always find mates. This justifies assumptions

(A1), that is, that the birth rate is proportional to the adult female density and independent

of the density of adult males. Assumption (A7) implies that adult male house cats are con-

stantly present, which enforces assumption (A1), even in the case where the initial conditions

include no adult males. In very small populations or in populations with no native house

cats (a case not covered in our model), this assumption may fail. Thus our results are not

expected to be observed in populations within cases [30,50]. Future work may utilize a more

complex birth rate, such as a rate which is an increasing but saturating function of x3 such

that the birth rate is zero if x3 = 0. An example of such a birth rate is b = b̃
x3

x3 + v
for b̃, v > 0.

Assumption (A8) states that abandoned house-cats immediately become feral. In

reality, these members may never fully integrate with the population of ferals. They may

live longer or be less aggressive then their feral counterparts and their friendlier nature may

even make them more susceptible to control methods. Future work may include additional

compartments for these semi-feral cats.
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Assumption (A3) implies that death rates of adults include the density-dependent

Lotka-Volterra type interaction terms, which is common in the cited models. Our model

has four such terms. As with all Lotka-Volterra based models, it is difficult to measure the

introduced coefficients from biological data. Moreover, it is unclear if this form is sufficiently

accurate or whether these interactions can be modeled simultaneously using the same types

of terms. In addition, we have assumed that competition rates for kittens is negligible. This

may not be the case, and a more general model may include this term. To complicate matters

further, familiar females have been known to act collaboratively, such as group defense of

resources or communal liters. Hence, it is possible that death rates of kittens may be a

decreasing function of the number of adult females and the per-capita death and competition

rates of adult females may be a more complicated function of the state variables [31].

The only form of control this model addresses is that of removal, wherein an animal

is removed from the population, which manifests as an increase in the effective death rates

of the sub-population being targeted. Two issues arise here. First, assumption (A4) states

that the per-capita removal rates (si) are independent of the feral populations they affect.

However, the ability of humans to handle large populations in this way may not be realistic.

In addition, when populations are very small, enacting control on the remaining residents

might become implausible. Future work could incorporate a more complex per-captia which

addresses these concerns. We suggest that the per-capita removal rate be an increasing but

saturating function of the targeted population. An example might be si =
s̃ixi
xi+v for some

positive v. The second issue is that other forms of control are common, such as prophylaxis,
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which functionally exchanges a reproductive member for a non-reproductive one. A possible

approach might be to include additional compartments for non-reproductive members. The

most common form of prophylaxis, spay and neuter, has been noted to change the behavior

of the animals markedly, and so these members might have lower competitions coefficients

than their unaltered counterparts. We conjecture that the impact of these changes would

be to increase the net population, in accordance with other models and observations of real

populations [40, 51,52].

The colonies addressed in this work often do not exist in isolation and the model does

not account for the mobile nature of males, who may interact with two or more groups of

females who themselves never interact [28, 31, 41]. Chapter 2 will address this by including

a patch-structure in which males are permitted interact with multiple patches while females

and their young remain in their native patch. Questions regarding the persistence of a patch

in the presence of other patches will be addressed.

A main objective of this study is to support a larger study of disease ecology in the

population. Chapter 3 will begin this discussion by introducing an SIR-type model with three

state variables to track the infection status for each state variable presented in this work.

There has been extensive work on the modeling of disease in this population [34–38] , but

the majority of these works described the population with a single state variable, with the

few exceptions [39]. Since life-stage and gender are strong indicators of behavior which may

be relevant to disease modeling, using the model presented here as the underlying ecology
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model may allow for vaccination strategies which one gender is favored over another in what

we are referring to as a “gender-informed” strategy.

If both the epidemiological and spatial aspect are addressed, future work might be

to construct a hybrid model of both extensions. Questions regarding the interplay between

spatial and social behavior with the spread of disease could be addressed. Moreover, it could

be seen if the strategies developed in the single-patch disease model would still apply in

the presence of other patches or if a network would promote the disease, as is common in

such disease models. The effectiveness of single-population vaccination strategies could be

explored when applied to a set of populations. Ultimately, a strategy for a larger set of

patches, such as a large city, could be explored.
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CHAPTER 2

THE PATCH MODEL

2.1 Introduction

As was discussed in Chapter 1, populations of feral cats around the world have had tremen-

dous impacts on local ecologies (in particular on islands) [2,13]. These animals are thought

to pose threats as predators on local wildlife as well as competitors with local predators for

shared prey. Feral cats have played a part in numerous population extinctions and near ex-

tinctions. A recent meta-analysis of the impacts of invasive mammalian predators established

a link between free-roaming cats to the extinction of 63 different animals and the endan-

gered status of 430 more [9]. For example, since their introduction in 1810, free-roaming cats

(along with rabbits) are blamed for eliminating a native parakeet on the Australian territory

of Macquarie Island (though other animals may have also played a role) [10]. Since their

introduction in 1888, free-roaming cats (along with black rats and yellow crazy ants) have

been blamed for the extinction four or five species of mammal on the Australian territory

of Christmas Island [11]. Numerous other examples also exist [5–8,12,13]. Estimates to the

economical impact of the presence of free-roaming cats to the US has been estimated to be as

high as $17 billion per year [13]. In addition to all this, free-roaming these animals also pose
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an indirect threat as vectors of diseases, which affect local wildlife [14, 15], pet animals [1],

and humans [1, 3, 16–19].

Concerns over the impact of free-roaming cats have lead many communities to enact

plans to remove them entirely. The removal techniques which tend to be fastest are typically

lethal (e.g., hunting, trapping [21], and poisoning [22]), though they are difficult to justify

to the public who view them as pet animals. Conversely the techniques which are regarded

as more humane (e.g., trap-neuter-release or trap-adopt) take much longer and are more

expensive. In addition, debate continues on efficacy of these methods. [4,13,21,23–26]. The

key to appropriately managing these populations is understanding their dynamics.

Consider the Swedish population described in [44]. In this population, females were

described to live in alone or in matrilineal colonies. These adult females remained in their

colonies and rarely interacted with the members of other colonies. These colonies were

described as small, localized around some human settlement or some “clumped” resource such

as food or shelter. Adult males, however, were seen to have much larger home-ranges which

included one or more groups of females, presumably to maximize reproductive success [28,53].

Similarly, a population on the Japanese territory of of Ainoshima Island which has over 200

members in two large colonies, centralized around fish dumps. As above, adult males were

the only individuals who were found to move between patches. In this work, we shall consider

similar similar populations.

These cases illustrate common trends in feral cat behavior. Adult females, along with

their immature offspring, tend to form groups around a shared resource such as shelter or
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sources of food (e.g., trash containing food waste or food-providing well-wishers). These cats

have a large degree of overlap with each other, but very little with members of other groups.

Adult males are more nomadic, and tend to have home ranges which include one or more

such groups of females [31,41,54–57].

Here, we build upon the work in Chapter 1 and propose a spatial model for feral

cat population dynamics in the absence of abandonment of house-cats. In Section 2.2 we

describe the assumptions of the model and the system of differential equations they imply

as well as the the main results of our analysis with a focus on the existence, uniqueness

and stability of steady states. In Section 2.3 we interpret selected composite parameters

and theorems biologically. In Section 2.4 we provide proofs for the selected theorems. In

Section 2.5 we detail the weaknesses of the model as well possible directions for future work

to address those weaknesses.

2.2 Mathematical model

2.2.1 Description

As in Chapter 1, there are kittens (i = 1), adult females (i = 2), and adult males (i = 3). Let

xij(t) be the density of feral cats of type i = 1,2 in patch j = 1,2, . . . , p (or ij-cats) at time

t ≥ 0 and let x3(t) be the density of feral adult males at time t ≥ 0. We assume there are

p ≥ 2 patches and we denote the set of patches as Ω = {1,2, . . . , p}. Assume the following:
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(B1) Only feral adult males move between patches.

(B2) A fixed proportion gj ∈ (0,1) of feral adult males are in patch j at all times.

(B3) A fixed proportion g0 ∈ [0,1) of feral adult males are in transit between patches at all

times.

(B4) The constants gj satisfy: g0 + g1 + g2 + ⋅ ⋅ ⋅ + gp = 1.

Assumptions (B1) through (B4) detail the special way in which adult males move between

patches. Specifically, when there are a total of x3 males in the system, a fixed proportion gj

of these feral adult males will always be present in patch j, experiencing the competition,

the removal and death rates of that patch. For convenience, we refer to adult males in patch

j as 3j-cats.

(B5) Feral adult females in patch j produce feral kittens at rate bj > 0.

(B6) The intrinsic death rate for feral ij-cats is dij > 0 for i = 1,2,3.

(B7) Feral kittens mature into feral adults of each sex at per-capita rate m > 0.

(B8) Feral ij-cats are removed from the population at per-capita rate sij ≥ 0 for i = 1,2,3.

(B9) The competitive effect of feral adult ij-cats on feral adult kj-cats is cikj ≥ 0 for i, k = 2,3.

(B10) The competition coefficient ciij > 0 for i = 2,3.

(B11) The density of house ij-cats is nij > 0.
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(B12) The competitive effect of adult house kj-cats on feral adult ij-cats is eikj ≥ 0 for

i, k = 2,3.

The comments in Chapter 1 with regard to the analogous assumptions are still generally

applicable. Assumptions (B1) to (B12) produce an initial value problem

ẋ1j = bjx2j − x1j(d1j + s1j + 2m), x1j(0) ≥ 0

ẋ2j =mx1j − x2j (d2j + s2j + c22jx2j + c23jgjx3 + e22jn2j + e23jn3j) , x2j(0) ≥ 0

ẋ3 =

p

∑
j=1

{mx1j − gjx3 (d3j + s3j + c32jx2j + c33jgjx3 + e32jn2j + e33jn3j)} , x3(0) ≥ 0

(C)

There are total of 2p+1 equations (the first 2 hold for j ∈ Ω). See Table 2.1 for a description

of all variables and parameters.

Patch model box diagram

Figure 2.1: A box-diagram visualization of system (2.2.1) with p = 4.

In keeping with Chapter 1, we introduce a notation for the effective death rate for

each category

δ1j = d1j + s1j, δ2j = d2j + s2j + e22jn2j + e23jn3j, and δ3 = d3j + s3j + e32jn2j + e33jn3j (D)
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The initial value problem can thus be stated as

ẋ1j = bjx2j − x1j(δ1j + 2m), x1j(0) ≥ 0 (2.2.1a)

ẋ2j =mx1j − x2j(δ2j + c22jx2j + c23jgjx3), x2j(0) ≥ 0 (2.2.1b)

ẋ3 =

p

∑
j=1

{mx1j − gjx3(δ3j + c32jx2j + c33jgjx3)} , x3(0) ≥ 0 (2.2.1c)

Again, this represents a total of 2p + 1 equations. Table 2.1 describes the variables and

parameters (and see Figure 2.1).

Numerical simulations of system (2.2.1)

Figure 2.2: Small changes in initial conditions can alter the the asymp-

totic behavior of System (2.2.1). The parameter values used here are:

m = 10, δ11 = 16, δ12 = 5, δ21 = 59.3, δ21 = 19.3, δ31 = .4, δ32 = .02, c221 = 0.00482736, c222 = 0.02,

c231 = 0.075, c232 = 0.2, c321 = 9, c322 = 0.9, c331 = 0.117188, c332 = 5, g1 = .8, g2 = .2
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Table 2.1: Quantities associated with models (C) and (2.2.1)

Quantity Description (type) Units Equation

t time time (C)

p number of patches none (C)

Ω set of patches: {1,2, . . . , p} none (C)

xij density of feral ij-cats (i = 1,2) cat (C)

x3 density of feral adult males cat (C)

ni density of house ij-cats cat (C)

g0 proportion of feral adult males in transit none (C)

gj proportion of feral adult males in patch j none (C)

bj kitten birth rate in patch j kitten ⋅ adult−1 ⋅ time−1 (C)

m kitten maturation rate adult ⋅ kitten−1 ⋅ time−1 (C)

dij intrinsic death rate of feral adult ij-cats time−1 (C)

sij control rate of feral ij-cats time−1 (C)

cikj effect of feral adult kj-cats on feral adult ij-cats adult−1 ⋅ time−1 (C)

eikj effect of house adult kj-cats on feral adult ij-cats adult−1 ⋅ time−1 (C)

δij effective death rate of feral ij-cats time−1 (D)
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Table 2.2: Quantities associated with models (C) and (2.2.1).

Quantity Description (type) Units Equation

xij equilibrium density of ij-cats cat (2.4.1)

x3 equilibrium density of adult males cat (2.4.1c)

Rj patch reproduction number none (2.2.2a)

Q a subset of Ω none

Q set of steady states with support Q none (2.2.2c)

Q set of LAS steady states with support Q none (2.2.2c)

k∗j , k∗−Q , k∗+Q threshold equilibrium density of adult males cat (2.2.2a) and (2.2.2b)

φj(Q) indicator function for subset Q none (2.2.2c)

A(Q),B(Q),C(Q) composite parameters ( cat ⋅ time )−1 (2.2.3a)

2.2.2 Statement of main results

This section is dedicated to the main properties of system (2.2.1). Their biological interpre-

tations appear in Section 2.3 and their proofs are found in Section 2.4. First we introduce

notation for some necessary sets. Define

Rn = {(u1, u2, . . . , un) ∶ u1, u2, . . . , un ∈ R},

Rn
+ = {(u1, u2, . . . , un) ∶ u1 ≥ 0, u2 ≥ 0, . . . , un ≥ 0},

Int (Rn
+) = {(u1, u2, . . . , un) ∶ u1 > 0, u2 > 0, . . . , un > 0}.

We refer to the set Rn
+ as the non-negative cone and to its elements as non-negative.

We refer to Int (Rn
+) as the positive cone and to its elements as positive. We refer to the set
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∂Rn
+ as the boundary. For u,v ∈ Rn, we say that u ≥ v if u−v ∈ Rn

+, u > v if u−v ∈ Rn
+ − {0}

and u ≫ v if u − v ∈ Int (Rn
+). Since our attention will be focused mostly on n = 2p + 1, we

enumerate the elements of a vector u ∈ R2p+1 in the following (non-standard) way:

u = (u11, u21, u12, u22, . . . , u1p, u2p, u3) .

Notice that such a vector has the form (kittens, adult females, kittens, adult females, ...

kittens, adult females, adult males). That is, the first subscript refers to the type of cat the

state variable represents (i = 1,2,3) and the second subscript, if any, refers to the patch (j).

Define the set Tij = {u ∈ R2p+1
+ ∶ uij = 0} for i = 1,2 and j ∈ Ω. Note that Tij is the set in

which ij-cats are absent. Let x(t) = (x11, x21, x12, x22, . . . , x1p, x2p, x3) (t) denote a solution

to (2.2.1).

Theorem 2.2.1. For system (2.2.1), the following results hold:

(a) A solution x(t) exists for all time. Moreover, it is unique, non-negative, and bounded.

(b) The non-negative x3-axis is a forward invariant set.

(c) If x(0) ∈ T1j ∩ T2j, then the solution x(t) remains there for all time.

(d) If x(0) ∈ (T1j ∪ T2j) ∖ (T1j ∩ T2j), then the solution x(t) immediately leaves T1j ∪ T2j.

(e) If x(0) is positive, then the solution x(t) remains positive for all time.

The proof of this theorem is essentially the same as that of the proof of Theorem

1.2.1, found in Chapter 1. The next several theorems describe the number of steady states
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and their properties. A steady state is a constant vector x = (x11, x21, x12, x22, . . . , x1p, x2p, x3)

in R2p+1
+ that is a solution of (2.2.1). We refer to a steady state x as trivial if x = 0 and we

refer to x as nontrivial otherwise. As in Chapter 1, we continue continue to refer to locally

asymptotically stable steady states as LAS. For a steady state x, we define the support of x

as supp (x) = {j ∶ x ∉ T1j ⋂T2j}. Define the composite parameters:

Rj =
bjm

(δ1j + 2m)δ2j

and k∗j =
(Rj − 1)δ2j

c23jgj
for j ∈ Ω (2.2.2a)

If c23j = 0, then we make the convention that if Rj < 1, then k∗j = −∞; if Rj = 1, then k∗j = 0;

and if Rj > 1, then k∗j =∞.

For a subset Q ⊂ Ω, define

k∗−Q = min{k∗j ∶ j ∈ Q} , k∗+Q = max{k∗j ∶ j ∉ Q} . (2.2.2b)

If Q = ∅, we define k∗−Q =∞ and if Q = Ω, we define k∗+Q = −∞.

Given a subset Q ⊂ Ω, define

Q = {x ∈ R2p+1
+ ∶ supp (x) = Q} and Q = {x ∈ Q ∶ x is LAS} (2.2.2c)

and

A(Q) =

p

∑
j=1

(
c22jc33j−φj(Q)c23jc32j

c22j
) g2

j , (2.2.3a)

B(Q) =

p

∑
j=1

(δ3j + φj(Q)
c32j(Rj−1)δ2j+c23jRjδ2j

c22j
) gj, (2.2.3b)

C(Q) =

p

∑
j=1

φj(Q)
Rjδ2j(Rj−1)δ2j

c22j
. (2.2.3c)

where φj(Q) is the indicator function for Q: φj(Q) = 1 for j ∈ Q and φj(Q) = 0 for j ∉ Q.
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Theorem 2.2.2. For system (2.2.1), the following results hold:

(a) The system always admits a trivial steady state x = 0.

(b) If x is a steady state and x3 = 0, then x = 0.

(c) If x is a steady state and supp (x) = ∅, then x = 0.

(d) If x is a steady state, then Rj > 1 for all j ∈ supp (x).

(e) If Rj ≤ 1 for all j ∈ Ω, then x = 0 is the unique steady state.

(f) If Q ⊆ Ω and x ∈ Q, then 0 ≤ x3 < k∗−Q .

(g) If Q ⊆ Ω and c23j = 0 for all j ∈ Q, then ∣Q∣ = 1.

(h) If ∅ ≠ Q ⊂ Ω, A(Q) ≥ 0 and A(Q)(k∗+Q )2 +B(Q)k∗+Q > C(Q), then ∣Q∣ = 1.

(i) If ∅ ≠ Q ⊂ Ω, A(Q) ≥ 0 and A(Q)(k∗+Q )2 +B(Q)k∗+Q ≤ C(Q), then ∣Q∣ = 0.

(j) If ∅ ≠ Q ⊂ Ω, A(Q) < 0 and A(Q)(k∗+Q )2 +B(Q)k∗+Q > C(Q), then ∣Q∣ = 1.

(k) If ∅ ≠ Q ⊂ Ω, A(Q) < 0 and A(Q)(k∗+Q )2 +B(Q)k∗+Q < C(Q), then ∣Q∣ ≤ 2.

(l) If ∅ ≠ Q ⊂ Ω, A(Q) < 0 and A(Q)(k∗+Q )2 +B(Q)k∗+Q = C(Q), then ∣Q∣ ≤ 1.

Theorem 2.2.3. The following stability results hold for system (2.2.1):

(a) If Rj < 1 for all j ∈ Ω, then x = 0 is LAS.

(b) If Rj > 1 for some j ∈ Ω, then x = 0 is unstable.
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(c) If Q ⊆ Ω and x ∈ Q, then k∗+Q < x3 < k∗−Q .

(d) There are at most p + 1 subsets Q ⊆ Ω such that ∣Q∣ ≥ 1 and ∑
Q∈Ω

∣Q∣ ≤ 2(p + 1)

(e) If Q ⊆ Ω, x ∈ Q, and

(i) bj < δj1 + 2m for all j ∈ Q,

(ii) m + c23jgjx2j < δ2j + 2c22jx2j + c23jgjx3 for all j ∈ Q,

(iii) pm +

p

∑
j=1

c32jgjx3 <

p

∑
j=1

{δ3j + c32gjx2j + 2c33jg
2
jx3}x3

then x ∈ Q.

We appeal to the same definitions presented in Chapter 1 for classifying steady states

as globally attracting (GA) and as globally asymptotically stable (GAS).

Theorem 2.2.4. The following results hold:

(a) If Rj ≤ 1 for all j ∈ Ω, then x = 0 is GA.

(b) If Rj < 1 for all j ∈ Ω, then x = 0 is GAS.

The proof of this theorem is essentially the same as that of Theorem 1.2.3 in the

case of a3 = 0 (i.e., z = 0). For the final theorem, we consider a system of identical patches.

We will also assume adult males spend an equal proportion of their time in every patch.

By identical we mean that all parameters are equal amongst the patches. For these reason,

this theorem, and it’s proof, shall omit subscripts, with the exception of Rj, which will be
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denoted R0. Since we assume that adult males will spend an equal proportion of their time

in each patch, gj =
1 − g0

p
for all j.

Theorem 2.2.5. Let Q ⊆ Ω in a system of identical patches. Then the following results hold:

(a) If Q = ∅ and R0 ≤ 1, then Q = {0}.

(b) If Q = ∅ and R0 > 1, then Q = ∅.

(c) If Q ≠ ∅ and Q ≠ Ω, then Q = ∅.

2.3 Biological interpretation of results

Here we interpret the results of the previous section biologically.

2.3.1 The sets Q, Q and Q

For a given steady state, let Q be the set of patches which have a positive population of adult

females or kittens. This set of patches is called the support of that steady state. Multiple

steady states may share a support, and so we denote the set of steady states with support

Q as Q. We denote the set of stable steady states with support Q as Q.
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2.3.2 The sets Tij, T1j ⋃T2j and , (T1j ⋃T2j) ∖ (T1j ⋂T2j)

The set Tij is the set of states for which the density of ij-cats is zero, that is, the density of

i-cats in patch j is zero. The set T1j ⋃T2j is the set of states for which the density of either

adult females or kittens in patch j is zero. The set (T1j ⋃T2j)∖(T1j ⋂T2j) is the set of states

for which the density of either adult females or kittens (but not both) in patch j is zero.

2.3.3 The patch reproduction number Rj

The role of the patch reproductive number Rj here is analogous to the net reproduction

number R0 in Section 1.3.1. This can be viewed as the maximum number of adult females a

single adult female in patch j is capable of producing in the course of her life. This number

has similar implications as in Chapter 1. For instance, in Chapter 1, if R0 ≤ 1, there was

no steady state which had a positive population of adult females or kittens. If, for some j,

Rj ≤ 1 then there is no steady state for which patch j has a positive population of adult

females or kittens.

2.3.4 The composite parameters k∗j , k
∗+
Q , and k∗−Q

Similar to k∗ in Chapter 1, the parameter k∗j is the number of adult males at equilibrium

which prohibits patch j from supporting adult females or kittens. For a given steady state,
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k∗−Q is the smallest value of k∗j of all the patches in the support. Similarly, the largest value

of k∗j of the patches not in the support is denoted k∗+Q .

2.3.5 Theorem 2.2.1

Theorems 2.2.1 confirms that no model population can become negative, or can experience

an unending population explosion. If the initial population is composed entirely of adult

males (i.e., no patch has a positive population density of adult females or kittens), then

these population densities will remain zero. Moreover, if the initial population in any patch

has neither adult females nor kittens, that patch’s populations will remain this way. How-

ever, if an initial population in a patch has only adult females, the density of kittens will

immediately become positive. The same holds for an initial population in a patch which has

only kittens. Finally, if the initial population is such that all subpopulations are positive, all

subpopulations will remain positive.

2.3.6 Theorem 2.2.2 and the composite parameters Rj, A(Q), B(Q), and C(Q)

Theorem 2.2.2 places restrictions on the number and types of steady states which can exist.

This theorem focuses attention on the trivial and on nontrivial steady states. The trivial

steady state (x = 0) is the steady state for which all population densities are zero. These

steady states have an empty support. Nontrivial steady states have a nonempty support.
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Theorem 2.2.2 states that the model always permits the trivial steady state. More-

over, it is the only steady state for which the density of adult males is zero. A steady state

has a zero population density of males must be the trivial steady state. This has several

biological interpretations. First, it implies that adult males will be present so long as any

other population density is positive.

Theorem 2.2.2 also states that the only patches which can have positive densities at

some steady state are those for which the patch reproduction number is large (Rj > 1). A

direct result of this is that if all patch reproduction numbers are small (Rj ≤ 1 for all j) then

there is no steady state besides the trivial steady state. For any steady state (x) the density

of adult males (x3) cannot exceed k∗−Q .

The remaining result of the theorem places upper limits on the number of steady

states which can exist with support Q. First, if adult females suffer no competition for every

patch in the support (j ∈ Q), then there is exactly one positive steady state with support

Q. The remaining cases are governed by the relative magnitudes of A(Q)(k∗−Q )2 + B(k∗−Q )

and C(Q). Specifically, if A(Q)(k∗−Q )2+B(k∗−Q ) > C(Q), then a single nontrivial steady state

exists with support Q. If A(Q)(k∗−Q )2 +B(k∗−Q ) = C(Q), then a nontrivial steady state exists

only if A(Q) < 0. If A(Q)(k∗−Q )2 +B(k∗−Q ) < C(Q), then no nontrivial steady states exist if

A(Q) ≥ 0 and up to two exist if A(Q) < 0.
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2.3.7 Theorem 2.4.3 and 2.2.4

Theorems 2.4.3 and 2.2.4 state that if the patch reproduction number is too small (Rj <

1) for every patch, then all population densities will tend toward the trivial steady state,

e.g. extinction. However, if this condition fails, the trivial steady state will be unstable.

Biologically, this implies that a control effort as described in the assumptions which is large

enough to bring the patch reproduction number below that threshold for every patch, then

the population will tend toward extinction. Theorem 2.4.3 also states that, for any stable

steady state, the density of males must be between the composite parameters k∗+Q and k∗−Q

and states that there are at most p+1 supports Q which correspond to a stable steady state.

Finally, Theorem 2.4.3 provides sufficient conditions for a steady state to be stable.

2.3.8 Theorem 2.2.5

Theorem 2.2.5 discusses some features of a set of identical patches. It states that the only

types of steady states which can be stable are the trivial steady state and the steady state

where all patches have positive population densities.
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2.4 Proofs of selected theorems

2.4.1 Proof of Theorem 2.2.2

Recall that a steady state is a constant vector x = (x11, x21, x12, x22, . . . , x1p, x2p, x3) solution

to system (2.2.1). Such a steady state x must satisfy the following 2p + 1 equations:

bjx2j = x1j(δ1j + 2m), ∀j ∈ Ω (2.4.1a)

mx1j = x2j(δ2j + c22jx2j + c23jgjx3), ∀j ∈ Ω (2.4.1b)

p

∑
j=1

mx1j =

p

∑
j=1

gjx3(δ3j + c32jx2j + c33jgjx3) (2.4.1c)

The proof of part (a) is clear by means of a direct substitution of x = 0 into the above

equations. Let, let x be a steady state with x3 = 0. Equation (2.4.1c) implies that
p

∑
j=1

mx1j = 0.

Since m > 0 and x1j ≥ 0 for all j ∈ Ω, the only solution is x1j = 0 for all j ∈ Ω. Equation

(2.4.1a) implies that x2j = 0 for all j ∈ Ω. Thus x = 0. This proves part (b).

Let x be a steady state with supp (x) = ∅. Then x1j = x2j = 0. Equation (2.4.1c)

implies that x3 = 0 as well. Thus x = 0. This proves part (c) of the theorem.

Let Q ⊆ Ω, let x ∈ Q and suppose that Ri < 1 for some i ∈ Q. Then, equations (2.2.2a),

(2.4.1a) and (2.4.1b) jointly imply that

Riδ2ix2i =mx1i and (Ri − 1)δ2ix2i = x2i(c22ix2i + c23igix3).
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Since i ∈ Q, we have that either x1i > 0 or x2i > 0. The first equation above implies these are

equivalent, and so x2i > 0. However, the second equation above implies that x2i = 0, since

Ri < 1. This is a contradiction and it proves part (d).

Let x be a steady state such that Rj ≤ 1 for all j ∈ Ω. Equation (2.4.2) implies that

x1j = x2j = 0 for all j ∈ Ω. Then supp (x) = ∅. By part (c), this implies that x = 0. This

proves part 2.4.3.

We prove the remaining parts of this theorem together. Since the number of steady

states is already determined if Q = ∅ by part (c), we shall assume Q is nonempty for the

remainder of the proof.

Let Q ⊆ Ω and let x ∈ Q. Then (2.2.2a), (2.4.1a), and (2.4.1b) jointly imply that x

must satisfy

Rjδ2jx2j =mx1j and (Rj − 1)δ2jx2j = x2j(c22jx2j + c23jgjx3), for j ∈ Q. (2.4.2)

In view of earlier remarks, this gives

x1j = 0 and x2j = 0 for j ∉ Q, (2.4.3a)

x1j > 0 and x2j > 0 for j ∈ Q, (2.4.3b)

x1j =
Rjδ2j
m x2j and x2j =

(Rj−1)δ2j−c23jgjx3
c22j

for j ∈ Q. (2.4.3c)

Let j ∈ Q. If c23j > 0, then (2.2.2a) and (2.4.3c) implies that x2j =
c23jgj
c22j

(k∗j − x3) > 0. Since

Q is nonempty, x3 > 0. Then, the positivity of x2j implies that x3 < k∗j . Thus, 0 < x3 < k∗j for

j ∈ Q. If c23j = 0, then k∗j =∞, and so the inequality 0 < x3 < k∗j still holds. This proves part
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(f) of the theorem. Equations (2.4.1c) and (2.4.3) implies that x must satisfy

p

∑
j=1

{gjx3(δ3j + c32jx2j + c33jgjx3) −mx1j} = 0

Ô⇒

p

∑
j=1

{δ3jgjx3 + c33jg
2
jx

2
3 + (c32jgjx3 −Rjδ2j)x2j} = 0

Ô⇒

p

∑
j=1

{δ3jgjx3 + c33jg
2
jx

2
3 + φj(Q)(c32jgjx3 −Rjδ2j)

(Rj−1)δ2j−c23jgjx3
c22j

} = 0

Ô⇒ A(Q)x2
3 +B(Q)x3 −C(Q) = 0

where

A(Q) =

p

∑
j=1

{
c22jc33j−φj(Q)c23jc32j

c22j
} g2

j ,

B(Q) =

p

∑
j=1

{δ3j + φj(Q)
c32j(Rj−1)δ2j+c23jRjδ2j

c22j
} gj,

C(Q) =

p

∑
j=1

φj(Q)
Rjδ2j(Rj−1)δ2j

c22j
.

Observe that B(Q) is positive and C(Q) is positive. Let Λ(z,Q) = A(Q)z2+B(Q)z−

C(Q). Equations (2.4.3) imply that solutions z to Λ(z,Q) = 0 correspond to x ∈ Q for which

x3 = z if and only if x3 < k∗j for all j ∈ Q, that is, if x3 < k∗−Q , where k∗−Q is as in (2.2.2b). If

such an x3 exists, the remaining components of x are uniquely determined by (2.4.3).

Assume c23j = 0 for all j ∈ Q. Then A(Q) =

p

∑
j=1

{
c22jc33j
c22j

} g2
j , which implies that Λ(z,Q)

is an concave up parabola for which Λ(0,Q) has a single solution. The values of x1j and x2j

are given by (2.4.3c) (and are independent of the value of x3. Thus ∣Q∣ = 1. This proves part

(g) of the theorem. For the remainder of the proof, we shall assume that there exists j ∈ Q

such that c23j > 0, which implies k∗−Q is finite.
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First assume A(Q) ≥ 0. Then Λ(z,Q) is a quadratic in z which is concave up or

a line with positive slope. Note that, since Q is nonempty, Λ(0,Q) < 0. If Λ(k∗−Q ,Q) =

A(Q)(k∗−Q )2 +B(Q)k∗−Q −C(Q) ≤ 0 then there are no values of x3 such that x3 ∈ (0, k∗−Q ) and

Λ(x3,Q) = 0. Thus ∣Q∣ = 0. This proves part (h) of the theorem

If instead Λ(k∗+Q ,Q) = A(Q)(k∗−Q )2 +B(Q)k∗−Q −C(Q) > 0 then there exists a unique

x3 ∈ (0, k∗−Q ) such that Λ(x3,Q) = 0. Thus ∣Q∣ = 1. This proves part (i) of the theorem.

Next assume A(Q) > 0. If Λ(k∗−Q ,Q) = A(Q)(k∗−Q )2 +B(Q)k∗−Q − C(Q) ≤ 0 then the

parabola Λ(z,Q) may have 0, 1 or 2 solutions to the equation Λ(z,Q) = 0. Thus ∣Q∣ ≤ 2.

This proves part (j) of the theorem.

If instead Λ(k∗−Q ,Q) = A(Q)(k∗−Q )2 +B(Q)k∗−Q −C(Q) > 0 then there exists a unique

x3 ∈ (0, k∗+Q ) such that Λ(x3,Q) = 0. Thus ∣Q∣ = 1. This proves part (k) of the theorem.

If instead Λ(k∗−Q ,Q) = A(Q)(k∗−Q )2+B(Q)k∗−Q −C(Q) = 0 then there may exist at most

one unique x3 ∈ (0, k∗+Q ) such that Λ(x3,Q) = 0. Thus ∣Q∣ = 1. This proves part (l) of the

theorem.

2.4.2 Proof of Theorem 2.4.3

We assume the patches are ordered in the following way. Fix a steady state x and let

Q = supp (x). Recall that x1j = x2j = 0 for j ∈ Qc and x1j, x2j > 0 for j ∈ Q. Without

loss of generality, we may assume x1j = x2j = 0 for j = 1,2, . . . , q where q = ∣Qc∣, and that
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x1j, x2j > 0 for j = q + 1, q + 2, . . . , p. In addition, we may assume k∗1 ≤ k∗2 ≤ ⋅ ⋅ ⋅ ≤ k∗q and

k∗q+1 ≤ k
∗
q+2 ≤ ⋅ ⋅ ⋅ ≤ k

∗
p . Define the composite parameters

h1j = δ1j + 2m,

h2j = δ2j + c22jx2j + c23jgjx3,

h3j = δ3jgj + c32jgjx2j + c33jg
2
jx3

and note that each is strictly positive. The Jacobian matrix for system (2.2.1) at x is

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 u1

B2 u2

⋱ ⋮

Bp up

∗ ∗ ⋯ ∗ B∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

Bj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−h1j bj

m −h2j − c22jx2j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B∗ =
⎡⎢⎢⎢⎣
−

p

∑
j=1

{h3j + c33jg2jx3}
⎤⎥⎥⎥⎦
, and uj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

−c23jgjx2j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.4.4)
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Since x2j = 0 for j = 1,2, . . . , q, uj = 0 for j = 1,2, . . . , q. Thus

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 0

B2 0

⋱ ⋮

Bq 0

Bq+1 uq+1

⋱ ⋮

Bp up

∗ ∗ . . . ∗ ∗ . . . ∗ B∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Observe that if q > 0, then J(x) is a block lower-triangular matrix and that first diagonal

block is a block diagonal matrix (whose blocks are Bj).

Let x = 0. Then Q = supp (x) = ∅ and q = p. Moreover, the eigenvalues of J(0) are

the eigenvalues of its blocks B1,B2, . . . ,Bp, and B∗. If Rj < 1 for all j ∈ Ω then each block

Bj has a negative trace and (2.2.2a) implies that

det(Bj) = h1jh2j − bjm = (δ1j + 2m)h2j − bjm > (δ1j + 2m)δ2j(1 −Rj) > 0.

Hence, each Bj contributes two eigenvalues with negative real part. The final diagonal block,

B∗, is a 1 × 1 matrix with the single element, −∑ δ3jgj, which is clearly negative. Thus, all

2p + 1 eigenvalues of J(0) have negative real part and so x is LAS. This proves part (a) of

the theorem.
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If Ri > 1 for some i ∈ Ω, then (2.2.2a) implies that det(Bi) = (δ1j + 2m)δ2j(1−Rj) < 0.

Thus Bi contributes a positive eigenvalue and so x = 0 is unstable. This proves part (b) of

the theorem.

If Q = ∅, then part 2.4.3 of the theorem follows directly from the (2.2.2a) and part(f)

of Theorem 2.2.2. Next, let Q ⊆ Ω be nonempty such that Q is also nonempty and let x ∈ Q.

Recall the definitions of k∗−Q and k∗+Q in (2.2.2a). For the sake of contradiction, suppose

x3 < k∗i for some i ∈ Qc. If q = ∣Qc∣, then i ≤ q. Then

det(Bi) = h1i {h2i −
bim

h1i

} = h1i {δ2i + c23igix3 −
bim

h1i

} = h1ic23igi(x3 − k
∗
i ).

By assumption, x3 < k∗i , and so x3 − k∗i < 0. Then det(Bi) < 0, and thus Bi contributes a

positive eigenvalue which implies that x ∉ Q. This is a contradiction and so x3 ≥ k∗+Q . In the

proof of Theorem 2.2.2, it was shown that x3 < k∗j for all j ∈ Q, which implies that x3 < k∗−Q .

This proves part 2.4.3 of the theorem.

To prove part (d) of this theorem, we will will, without loss of generality, assume

that the patches are ordered in the following way: k∗1 ≤ k∗2 ≤ ⋯ ≤ k∗p . Not that this is a

different ordering than was used previously in this theorem. Let Q ⊆ Ω and x ∈ Q. Then

either x3 < k∗1 , x3 > k∗p or there exists j ∈ Ω such that

k∗1 ≤ ⋯ ≤ k∗j−1 = k
∗+
Q < x3 < k

∗−
Q = k∗j ≤ ⋯ ≤ k∗p .

Since, ∣Ω∣ = p, there are only p + 1 subsets Q ⊆ Ω which can satisfy part 2.4.3. For reference,

they are Q = ∅,{p},{p − 1, p},{p − 2, p − 1, p}, . . . ,{1,2, . . . , p}. Theorem 2.2.2 implies that

for all Q ⊂ Ω, ∣Q∣ ≤ 2. Then there are at most 2p+ 2 LAS steady states (i.e., ∑
Q∈Ω

∣Q∣ ≤ 2p+ 2).
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This proves part (d) of the theorem. Let Q ⊆ Ω and x ∈ Q. Conditions (i), (ii), and (iii)

are the necessary conditions for the Jacobian J(x) to be diagonally dominant. Since each

diagonal element is negative, we may apply Gershgorin’s circle theorem to conclude that all

eigenvalues have negative real part. This proves part (e) of the theorem.

2.4.3 Proof of Theorem 2.2.5

Part (a) of this proof is a direct result of part (a) of Theorem 2.4.3. Part (b) of this theorem

is a direct result of part (b) of Theorem 2.4.3. For part (c), first assume R0 ≤ 1 and let Q ⊂ Ω

such that Q ≠ Ω and Q ≠ ∅. Then there exists j ∈ Ω such that Rj = R0 ≤ 1. Then part of

2.2.2 implies that Q = ∅. Since Q ⊆ Q, then Q = ∅.

Next assume that R0 > 1 and let Q ⊂ Ω such that Q ≠ Ω and Q ≠ ∅. Assume that

c23 = 0. Then k∗+Q = k∗−Q =∞. However, part of Theorem implies this is a contradiction.

2.5 Discussion

The issue of the stability of all steady states was not addressed completely. We conjecture

that any steady state which satisfies the converse of part (c) of Theorem 2.4.3 will be stable.

Moreover, we suspect and that the proof may involve viewing the appropriate Jacobian as a

block matrix and establishing a form of block diagonally dominance.
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Many of the same comments from Chapter 1 are still relevant, in particular with

regard to time-independent parameters. We will focus on comments specific to the features

unique to Chapter 2, specifically, the spatial nature of the model. We have chosen a patch-

based model to describe the clumped distribution of resources noted in the literature. We

have included a single category for adult males which interact with all patches to simulate

the manner in which males will often move between these patches. Several issues arise.

Though this work is built upon the model in Chapter 1, it did not include the effects

of abandonment. In Chapter 1, the inclusion of abandonment dramatically influenced the

form and number of equilibria. Future work may include abandonment terms for one or

more patch.

We have assumed that only adult males leave the patch of their birth. This is not

entirely accurate as the movement of adult females cannot be ruled out. Future work may

include a manner in which (a small number of) adult females can also move. We conjecture

that this change would strongly impact the stability of the semitrivial steady states.

We have assumed that, at maturity, all males become semi-nomadic and spend a

proportion of their time in every patch and that all adult males adopt the same constant

strategy. This would seem to imply that adult males maintain a spatial distribution without

regard for the relative densities of adult females. This does not agree with the literature on

two fronts. First, some adult males may become residents to a patch (in the same way that

adult females are residents to a patch). This behavior was noted in [41] . Second, classical

mating system theory suggests that males will distribute themselves first by the relative
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populations of potential mates [53]. Future work may include a distribution of adult males

which reflects this. An example of this may be gj =
x2j

c+∑x2j and g0 = c
c+∑x2j for c > 0. We

conjecture that this change would strongly impact the number and stability of semitrivial

steady states. This distribution of adult males may also be influenced by seasons, and so

future work may include time-dependent gj.

A possible future direction, which is capable of addressing all of the previously raised

issues is that of a network structure for the patches. If each patch had both resident adult

males, adult females and kittens, a set of transition matrices could be constructed such that

the elements are functions of time as well as the relative patch population densities. These

transitions could also account for the varying dangers of specific routes. This would allow for

animals to distribute themselves more realistically and allow for the consideration of resident

adult males versus nomadic adult males. This would also allow adult females to populate

patches with no residents. We conjecture that this would reduce or remove the possibility

for semi-trivial steady states. Many of these ideas may also be implemented by means of

partial differential equations, similar to [37].

We conjecture that many of these suggestions would destabilize or eliminate many

semitrivial steady states, that is, it would promote the persistence of some patches. As such,

we expect the inclusion of these changes may reduce the effectiveness of control strategies

derived from this work. Our model would suggest that if the control parameter for a given

patch (sj) is sufficiently high (such that Rj < 1) then the population in that patch cannot

persist. However, if adult females are permitted to relocate, it is possible that this result
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will fail, and so a much broader strategy will be needed. These changes may also allow

control strategies which the current model is not equipped to handle. For example, if the

transition matrix is adopted, focusing control efforts on animals in transit between patches

may decouple that patch from the system and so change the dynamics there. If there are

patches through which many individuals pass, control implemented in this patch may have

a strong influence on the populations of other patches.
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CHAPTER 3

THE DISEASE MODEL

3.1 Introduction

The threat of zoonosis is a constant concern in the modern world. In a study of major

diseases affecting humans, it was shown that an alarming percentage of those diseases were

the result of zoonotic mutations and a major risk factor for zoonosis is the presence of large

animal populations in cities [16]. For example, cows are known to have carried the rinderpest

virus, which is believed to have evolved into measles in the 12th century [58]. In more recent

history, rodents are believed to have spread various Hantaviruses which cause Hantavirus

pulmonary syndrome in more than 1200 humans in Brazil between 1993 and 2003 [59].

In addition, there are numerous variants of the ‘highly pathogenic avian influenza

virus’ (HPAIV), currently afflicting the world (e.g., bird flu and swine flu) [60,61].

Today, there are many examples of unowned, free-roaming cats (or feral cats as

in [1]) living in large colonies in human population centers. In [28], a catalog of many

such populations are cited. For example, in Jerusalem, a population with density over 18

cats per hectare is described in [43]. A population on the Japanese territory of Ainoshima

Island is decribed to have a population density of over 23 cats per hectare is described
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in [41]. Numerous other examples exist [32, 41–44], and so the feral cats pose a zoontic

threat [3, 16–18]. In addition to the threat of zoonosis these animals are generally regarded

as an epidemiological threat to both local wildlife [14,15], and pet animals [1], in particular

by transmitting rabies, toxoplasmosis and the feline leukemia virus [62,63].

The feline leukemia virus (or FeLV) is an immunosuppressive, oncogenic retrovirus. It

is known to persist at endemic levels throughout the world [64]. This virus has been found to

spread between feral cats and wild felids [14,15] and can reproduce in human bone marrow in

a lab setting [18]. Two great resources on this virus are [65] and [66] and the following short

description is derived from those works. As many as two-thirds of cats exposed will clear the

virus from their system and develop life-long immunity. Failing this, such animals develop

life-long infections characterized by periods of viremia and a latent infection. Either of these

periods may last years. Latently infected animals do not shed the virus and may have no

outward symptoms. Viremic animals experience immunosuppression, lethargy, malaise, and

increased death rates. The pregnancies of females in this state very often end in abortion [67].

During these periods, the virus is primarily found in the saliva, but can also be found in the

blood and, if the infected is lactating, milk. Adult females can spread the virus vertically

to their offspring or by grooming or nursing them. In dense settings, lactating females may

groom and nurse kittens besides their own. The virus is more commonly spread by means

of communal grooming among familiar adults and bites during territorial interactions with

adversaries or during copulation. In addition to these modes of transmission, it has been
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suggested that the virus can might be able to spread by means of sharing food and water

sources or that fleas may be able to transmit the virus.

FeLV has been the study of numerous mathematical models [34–38] . In [34] an SIR

model for FeLV is described which assumes no vertical transmission and logistic growth of

sub-populations. That model was later expanded into four models in [36]. These models con-

sidered two different growth types (exponential and logistic) as well as two disease incidence

terms (dependent and frequency dependent). Analysis and simulations on each of these

models are also included. In [39], an SIRS model which distinguishes between social and

asocial cats is described. The authors suggest that asocial cats engage in markedly different

behavior, in particular with regard to the social habits that are thought to be the virus’s

primary methods of transmission (e.g., social grooming, sharing food sources). Spatial as-

pects of the population are explored in [37], which utilizes partial differential equations and

in [38], which uses a network structure to describe different types of habitat (i.e.,“farms” and

“villages”). Though efforts have been made to classify these feral cats by the behaviors which

are more likely to cause contact with the disease [36,39], it may be that gender and life-stage

are strong indicators for such behaviors. Indeed, since some disease-spreading behaviors are

restricted to certain gender/life-stage combinations (e.g., nursing kittens), modeling efforts

may benefit from this sort of grouping.

Here we propose a model with compartments for adult males, adult females and

kittens, each of which may be susceptible, infected or recovered, for a total of 9 categories.

Section 3.2 details the assumptions of the model, the system of differential equations they
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imply, and the main results of our analysis. The main focus of these results focuses on

the properties the disease-free equilibrium. In Section 3.3 we interpret selected composite

parameters and theorems biologically. Section 3.4 describes proofs for selected theorems.

Finally, Section 3.5 outlines weaknesses of the model and potential directions for future

work to address these weaknesses.

3.2 Mathematical model

3.2.1 Description

Consider a population similar to that in Chapter 1 under the influence of feline leukemia.

Unlike those in Chapter 1, this population will not interact with house-cats. The population

includes kittens (i = 1), adult females (i = 2) and adult males (i = 3), We define the status

of i-cats to be susceptible, infected or immune. For simplicity, we define healthy cats to be

those that are uninfected. Let xi(t), yi(t) and zi(t) be the density of susceptible, infected

and immune i-cats at time t ≥ 0. Also define πi(t) = xi(t)+yi(t)+zi(t). Assume the following:

(C1) Healthy adult females produce susceptible kittens at per-capita rate b > 0.

(C2) Infected adult females produce susceptible kittens and infected kittens at per-capita

rates φεb and (1 − φ)εb, respectively, where ε ∈ [0,1] and φ ∈ [0,1].

(C3) The intrinsic death rate for uninfected i-cats is di > 0.
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(C4) The intrinsic death rate for infected i-cats is θidi where θi ≥ 1.

(C5) Kittens mature into adults of each sex (of the same infection status) at per-capita rate

m > 0.

(C6) Feral i-cats are removed from the population at per-capita rate si ≥ 0.

(C7) The competitive effect of adult j-cats on adult i-cats is cij ≥ 0.

(C8) The interaction coefficient cii > 0 for i = 2,3.

(C9) Susceptible i-cats become exposed to the disease at rate Bi =
3

∑
j=1

βijyj
πj

with βij ≥ 0.

(C10) The parameters β11 = β13 = β31 = 0.

(C11) A fixed proportion αi of exposed i-cats immediately become immune i-cats.

(C12) A fixed proportion 1 − αi of exposed i-cats immediately become infected i-cats.

(C13) Unexposed susceptible i-cats become immune i-cats at rate νi ≥ 0.

Many of these assumptions are similar in form and effect as those in Chapter 1 and comments

there apply here as well. Assumption (C10) implies that kittens do not engage in the

behaviors necessary to infect other kittens. Moreover, it reflects that observation that adult

males do not interact with kittens, and so no transmission can occur between these two

classes. Assumptions (C11) and (C12) represent the observation that some cats can mount

a sufficient immune response to clear the virus before the infection becomes permanent (i.e.,

when target tissue is infected). These cats are never symptomatic nor infectious. Note

108



that outside of this initial event, there is no recovery from the disease. Assumption (C13)

represents vaccination efforts. Assumptions (C1) to (C13) produce the initial value problem

ẋ1 = b(x2 + z2) + φεby2 − x1(d1 + s1 + 2m) − ν1x1 −B1x1, x1(0) ≥ 0

ẋ2 =mx1 − x2(d2 + s2 + c22π2 + c23π3) − ν2x2 −B2x2, x2(0) ≥ 0

ẋ3 =mx1 − x3(d3 + s3 + c32π2 + c33π3) − ν3x3 −B3x3, x3(0) ≥ 0

ẏ1 = (1 − φ)εby2 − y1(θ1d1 + s1 + 2m) + (1 − α1)B1x1, y1(0) ≥ 0

ẏ2 =my1 − y2(θ2d2 + s2 + c22π2 + c23π3) + (1 − α2)B2x2, y2(0) ≥ 0

ẏ3 =my1 − y3(θ3d3 + s3 + c32π2 + c33π3) + (1 − α3)B3x3, y3(0) ≥ 0

ż1 = −z1(d1 + s1 + 2m) + ν1x1 + α1B1x1, z1(0) ≥ 0

ż2 =mz1 − z2(d2 + s2 + c22π2 + c23π3) + ν2x2 + α2B2x2, z2(0) ≥ 0

ż3 =mz1 − z3(d3 + s3 + c32π2 + c33π3) + ν3x3 + α3B3x3, z3(0) ≥ 0

(E)

As in Chapter 1 we shall introduce notation for effective death rates.

δ1 = d1 + s1, δ2 = d2 + s2, δ3 = d3 + s3,

δy1 = θd1 + s1, δy2 = θd2 + s2, δy3 = θd3 + s3.

(F)

The simplified initial value problem is

ẋ1 = b(x2 + z2) + φεby2 − x1(δ1 + 2m) − ν1x1 −B1x1, x1(0) ≥ 0 (3.2.1a)

ẋ2 =mx1 − x2(δ2 + c22π2 + c23π3) − ν2x2 −B2x2, x2(0) ≥ 0 (3.2.1b)

ẋ3 =mx1 − x3(δ3 + c32π2 + c33π3) − ν3x3 −B3x3, x3(0) ≥ 0 (3.2.1c)

ẏ1 = (1 − φ)εby2 − y1(δy1 + 2m) + (1 − α1)B1x1, y1(0) ≥ 0 (3.2.1d)
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Figure 3.1: A box-diagram visualization of system (E).

ẏ2 =my1 − y2(δy2 + c22π2 + c23π3) + (1 − α2)B2x2, y2(0) ≥ 0 (3.2.1e)

ẏ3 =my1 − y3(δy3 + c32π2 + c33π3) + (1 − α3)B3x3, y3(0) ≥ 0 (3.2.1f)

ż1 = −z1(δ1 + 2m) + ν1x1 + α1B1x1, z1(0) ≥ 0 (3.2.1g)

ż2 =mz1 − z2(δ2 + c22π2 + c23π3) + ν2x2 + α2B2x2, z2(0) ≥ 0 (3.2.1h)

ż3 =mz1 − z3(δ3 + c32π2 + c33π3) + ν3x3 + α3B3x3, z3(0) ≥ 0 (3.2.1i)

See Table 3.1 for a description of all variables and parameters.

3.2.2 Statement of main results

This section is dedicated to the main properties of system (2.2.1), which are in the vein

of [46,47] wherein the basic reproduction number for the disease (R0) is defined in terms of

the spectral radius of the next generation matrix.
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Table 3.1: Quantities associated with model (E) and (3.2.1)

Quantity Description Units Equation

t time time (E)

xi density of susceptible i-cats cat (E)

yi density of infected i-cats cat (E)

zi density of immune i-cats cat (E)

πi sum density of all i-cats cat (E)

b kitten birth rate for uninfected cats kitten ⋅ adult−1 ⋅ time−1 (E)

ε infected birth rate reduction factor kitten ⋅ adult−1 ⋅ time−1 (E)

m kitten maturation rate adult ⋅ kitten−1 ⋅ time−1 (E)

di intrinsic death rate of uninfected i-cats time−1 (E)

θi infected death rate increase factor for i-cats time−1 (E)

si control rate on i-cats time−1 (E)

cij effect of adult j-cats on adult i-cats adult−1 ⋅ time−1 (E)

αi probability exposure leads to immunity in i-cats none (E)

Bi exposure rate of i-cats time−1 (E)

βij infective effect of j-cats on i-cats time−1 (E)

νi vaccination rate of i-cats time−1 (E)

δi effective death rate for uninfected i-cats time−1 (F)

δyi effective death rate for infected i-cats time−1 (F)

H0 net reproduction number for adult females none (3.2.2a)
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Table 3.2: Quantities associated with model (E) and (3.2.1)

Quantity Description Units Equation

R0 basic reproduction number for FeLV none

u disease-free equilibrium (DFE) cat9 (3.2.1)

hi effective removal rate of uninfected i-cats at DFE time−1 (3.2.3c)

xi density of susceptible i-cats at DFE cat (3.2.1)

zi density of immune i-cats at DFE cat (3.2.1)

Ui density of healthy i-cats at DFE cat (3.4.3a)

Fi recruitment rate via infection of i-cats cat ⋅ time−1 (3.4.4)

V +

i ,V
−

i recruitment rate via noninfection of i-cats cat ⋅ time−1 (3.4.4)

F linearization of F at the DFE (3.4.4)

V +, V − linearization of V +,V − at the DFE (3.4.4)

A disease-free equilibrium (DFE) of system (3.2.1) is defined to be a nontrivial equi-

librium u ∈ R9
+ of the form

u = (x1, x2, x3,0,0,0, z1, z2, z3).

We continue to use the notion of local asymptotic stability (LAS) established in Chapter 1

and used in Chapter 2. However, we now include the notion of stability absence of disease,

that is, stable with regard to perturbations only in the healthy categories. Further details

regarding this notion can be found in [47]. The statement of the first theorem requires the

net reproduction number H0, given by

H0 =
bm

(δ1 + 2m)δ2

(3.2.2a)
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Theorem 3.2.1. The following results hold for system (3.2.1)

(a) If H0 ≤ 1, then no DFE exists.

(b) If H0 > 1, then a unique DFE exists.

(c) When a DFE exists, its components satisfy

x1 =
h1

h1 + ν1

⋅U1, x2 =
h1

h1 + ν1

⋅
h2

h2 + ν2

⋅U2, x3 =
h1

h1 + ν1

⋅
h3

h3 + ν3

⋅U3 (3.2.3a)

z1 =
ν1

h1 + ν1

⋅U1, z2 =
h2ν1 + h1ν2 + ν1ν2

(h1 + ν1)(h2 + ν2)
⋅U2, z3 =

h3ν1 + h1ν3 + ν1ν3

(h1 + ν1)(h3 + ν3)
U3 (3.2.3b)

h1 = δ1 + 2m, h2 = δ2 + c22U2 + c23U3, and h3 = δ3 + c32U2 + c33U3 (3.2.3c)

where (U1,U2,U3) is the unique solution to the system of equations equations

bU2 = U1(δ1 + 2m) (3.2.4a)

mU1 = U2(δ2 + c22U2 + c23U3) (3.2.4b)

mU1 = U3(δ3 + c32U2 + c33U3) (3.2.4c)

(d) When a DFE exists it is LAS in the absence of disease.

Define the spectral radius of a square matrix A as

ρ(A) = max{∣λ∣ ∶ λ is an eigenvalue of A} .
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Theorem 3.2.2. If a DFE exists, then it is LAS if and only ρ(J) < 1, where

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0(C7 +C1x1) C7 +C1x1 0

(C2 +C0(C3 +C4))x2 C3x2 C4x2

C0(C5 +C6)x3 C5x3 C6x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2.5)

where Cj’s are defined as in Table 3.3.

In holding with other works, when the DFE exists, we define R0 = ρ(J), where J is

the matrix in (3.2.5) and the values of Cj are given in Table 3.3.

Corollary 3.2.3. Assume a DFE exists, and let the characteristic polynomial of the matrix

in (3.2.5) be given by p(λ) = λ3 + σ1λ2 + σ2λ + σ3. Then the DFE is LAS if and only if the

following four conditions hold:

1 + σ1 + σ2 + σ3 > 0 (3.2.6a)

1 − σ1 + σ2 − σ3 > 0 (3.2.6b)

1 − σ2
3 + σ2 − σ1σ3 > 0 (3.2.6c)

1 − σ2
3 − σ2 + σ1σ3 > 0 (3.2.6d)

The next theorem requires the composite parameters

r1 = C6x3 (3.2.7a)

r2 = (C7 +C2x2) (C0 +C1x1) +C3x2 +
C0C4(C7 +C2x2) +C4C5x2x3

1 −C6x3

(3.2.7b)

Theorem 3.2.4. The DFE is LAS if and only if max{r1, r2} < 1.
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Table 3.3: Quantities associated with the matrix from (3.2.5)

and Theorem 3.2.4.

Quantity Definition

C0 mh−1y1

C1 β12(1 − α1)(U1hy1)−1

C2 β21(1 − α2)(U1hy1)−1

C3 β22(1 − α2)(U2hy2)−1

C4 β23(1 − α2)(U3hy3)−1

C5 β32(1 − α3)(U2hy2)−1

C6 β33(1 − α3)(U3hy3)−1

C7 (1 − φ)εbh−1y2

hy1 δy1 + 2m

hy2 δy2 + c22U2 + c23U3

hy3 δy3 + c32U2 + c33U3

r1 C6x3

r2 (C7 +C2x2) (C0 +C1x1) +C3x2 + {C0C4(C7 +C2x2) +C4C5x2x3}/{1 −C6x3}

115



Theorem 3.2.5. If a DFE exists, then R0 is a nonincreasing function of ν1, ν2 and ν3.

The proofs of the remaining corollaries are direct results of the previous theorems. As such,

their proofs have been omitted.

Corollary 3.2.6. If C0C7 > 1 then R0 > 1.

Corollary 3.2.7. R0 < 1 if and only if the following conditions hold

(a) x1 <
1/C0 −C7

C1

(b) x3 <
1

C6

(c) x2 <
(1 −C6x3)(1 −C7(C1x1 +C0)) −C0C4C7

C5C4x3 + (C2(C1x1 +C0) +C3)(1 −C6x3) +C0C2C4

3.3 Biological interpretation of results

Here we interpret the results of the previous section biologically.

3.3.1 The net reproduction number H0 and Theorem 3.2.1

The composite parameter H0 is equivalent to the parameter R0 in Chapter 1 and described

in 1.3.1 (though this is not the same as the R0 detailed in this chapter). This number is

a theoretical maximum on the number of immediate adult female offspring a single adult

female will have in her lifetime. Similar to the result in Chapter 1, if this number is small
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(H0 ≤ 1), then there is no DFE and if it is large (H0 > 1) then a single DFE exists. Moreover,

it is stable whenever it exists.

3.3.2 The composite parameters Cj

Each of these parameters can be viewed as a measure of how effectively infection passes

between two classes. With the exception of C0 and C7, each parameter contains a single

factor of βij, which is a measure of how effectively disease is transmitted from infected j-cats

to susceptible i-cats (see Table 3.3 for details). The composite parameters Cj can be viewed

as a measure of the magnitude of new infections in i-cats that are caused by infected j-cats

during their lifetimes by means of direct infection. For example, C4 (which has a factor of

β23) can be viewed as a measure of new infections of adult females caused by infected adult

males during their lifetimes. The composite parameter C0 can be interpreted as a measure

of infected adults (of both genders) which matured from infected kittens. The composite

parameter C7 can be viewed as a measure of infected newborn kittens an infected adult

females will give birth to in their lifetimes.

3.3.3 The expressions basic reproduction number R0

The basic reproduction number (R0) is common to modern disease models. For a detailed

description of its formulation and interpretation see [46,47]. In short, the basic reproduction
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number for a disease R0 can be viewed as a measure of virulence of the disease. In simple

models, it may be the number of new infections a single infected individual can infect given

a completely susceptible population. For further interpretations of R0 for more complicated

models (such as the one we have studied here) see the cited works. If this value is small

(R0 < 1), small introductions of the disease are not expected to produce an outbreak. If this

number is large (R0 > 1), then a small introduction of the disease is expected to produce an

outbreak.

3.3.4 Theorems 3.2.4 and Corollaries 3.2.6 and 3.2.7

Theorem 3.2.4 provides precise conditions under which a DFE is locally stable. Given the

values of the primary parameters, these conditions are easily calculable. Biologically, these

could potentially be used to determine whether a certain level of vaccination would be

effective and whether or not one type of cat should be more heavily vaccinated. In addition,

this theorem, and subsequent corollaries, detail that there may be conditions for each type

of cat which must be met in order to maintain the stability of the DFE. For example, if

C0C7 > 1, then these conditions can never be met. Referring back to Section 3.3.2, we may

interpret this as a measure of infected offspring who mature into infected adult females. It

is intuitive that if this number is greater than 1 that the disease must persist, regardless of

vaccination efforts.
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3.3.5 Theorem 3.2.5

This theorem confirms the intuition that if the level of vaccination is increased, the virulence

of the disease (R0) cannot increase.

3.4 Proofs of selected theorems

3.4.1 Proof of Theorem 3.2.1

In the absence of disaese, System (3.2.1) reduces to a system of 6 differential equations, given

by

ẋ1 = b(x2 + z2) − x1(δ1 + 2m) − ν1x1 (3.4.1a)

ẋ2 =mx1 − x2(δ2 + c22U2 + c23U3) − ν2x2 (3.4.1b)

ẋ3 =mx1 − x3(δ3 + c32U2 + c33U3) − ν3x3 (3.4.1c)

ż1 = −z1(δ1 + 2m) + ν1x1 (3.4.1d)

ż2 =mz1 − z2(δ2 + c22U2 + c23U3) + ν2x2 (3.4.1e)

ż3 =mz1 − z3(δ3 + c32U2 + c33U3) + ν3x3 (3.4.1f)

where Uk = xk + zk. Similarly, an equilibrium must satisfy

bU2 = x1(δ1 + 2m) + ν1x1 (3.4.2a)

mx1 = x2(δ2 + c22U2 + c23U3) + ν2x2 (3.4.2b)
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mx1 = x3(δ3 + c32U2 + c33U3) + ν3x3 (3.4.2c)

ν1x1 = (δ1 + 2m)z1 (3.4.2d)

mz1 + ν2x2 = z2(δ2 + c22U2 + c23U3) (3.4.2e)

mz1 + ν3x3 = z3(δ3 + c32U2 + c33U3) (3.4.2f)

where Uk = xk + zk. Equations (3.4.2) imply that U1,U2, and U3 must satisfy

bU2 = U1(δ1 + 2m) (3.4.3a)

mU1 = U2(δ2 + c22U2 + c23U3) (3.4.3b)

mU1 = U3(δ3 + c32U2 + c33U3) (3.4.3c)

Theorem 1.2.4 in Chapter 1 with a1 = a2 = a3 = 0, if H0 ≤ 1 that no positive solution

(U1,U2,U3) and if H0 > 1 then there i exactly one positive solution (U1,U2,U3). This proves

parts (a) and (b) of the theorem.

Equations (3.4.2d) and (3.4.2a) together imply that b(x2 + z2) − (δ1 + 2m)(x1 − z1) −

2ν1x1 = 0. Substituting z1 = U1 − x1, and solving for x1 we find that x1 =
bU2 +U1(δ1 + 2m)

2(δ1 + 2m + ν1)
.

Finally, along with (3.4.2a), this implies that x1 =
δ1 + 2m

δ1 + 2m + ν1

⋅ U1 =
h1

h1 + ν1

⋅ U1. Since

z1+x1 = U1, this also provides an explicit formula for z1. The equilibrium values for x2, x3, z2

and z3 can be similarly calculated to find the remaining values given in the theorem. For

reference, they are

x1 =
h1

h1 + ν1

⋅U1, x2 =
h1

h1 + ν1

⋅
h2

h2 + ν2

⋅U2, x3 =
h1

h1 + ν1

⋅
h3

h3 + ν3

⋅U3

z1 =
ν1

h1 + ν1

⋅U1, z2 =
h2ν1 + h1ν2 + ν1ν2

(h1 + ν1)(h2 + ν2)
⋅U2, z3 =

h3ν1 + h1ν3 + ν1ν3

(h1 + ν1)(h3 + ν3)
U3
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This proves (c) of the theorem.

For the remainder of the theorem, assume H0 > 1. In part (b) it was shown that a

unique DFE exists. The Jacobian of (3.4.1), expanded at the DFE is

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−h1 − ν1 b 0 0 b 0

m −h2 − c22x2 − ν2 −c23x2 0 −c22x2 −c23x2

m −c32x3 −h3 − c33x3 − ν3 0 −c32x3 −c33x3

ν1 0 0 −h1 0 0

0 ν2 − c22z2 −c23z2 m −h2 − c22z2 −c23z2

0 −c32z3 ν3 − c33z3 m −c32z3 −h3 − c33z3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Define the matrices

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and U−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Similarity transformations preserve eigenvalues, and so the matrix U−1JU has the same

eigenvalues as J . The effect of right-multiplying the matrix J by U is to subtract column i

from column i+3 for i = 1,2,3. and the effect of left-multiplying that product by the matrix
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U−1 is to add row j + 3 to row j for j = 1,2,3. Then, the product is given by

U−1JU =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−h1 b 0 0 0 0

m −h2 − c22U2 −c23U2 0 0 0

m −c32U3 −h3 − c33U3 0 0 0

ν1 0 0 −h1 − ν1 0 0

0 ν2 − c22z2 −c23z2 m −h2 − ν2 0

0 −c32z3 ν3 − c33z3 m 0 −h3 − ν3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This matrix is block lower-triangular, and so its eigenvalues are those of the diagonal blocks.

The first diagonal block is the same matrix obtained in Chapter 1 in the proof of Theorem

1.2.7 when analyzing the local stability of the positive equilibrium in the case where a1 = a2 =

a3 = 0. In the proof it was shown that all of the eigenvalues have negative real part whenever

H0 > 1 which, by part (b) of Theorem 3.2.1, is equivalent to assuming a DFE exists. The

second diagonal block is a lower-triangular matrix with negative diagonal elements and so

the eigenvalues of this block are strictly negative. Thus, if a DFE exists it is LAS in the

absence of disease.

3.4.2 Proof of Theorem 3.2.2

We apply the next generation matrix method to show that the DFE is LAS as detailed

in [46,47]. The infected classes are governed by the differential equations

ẏ1 = (1 − φ)εby2 − y1(δy1 + 2m) + (1 − α1)B1x1
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ẏ2 =my1 − y2(δy2 + c22π2 + c23π3) + (1 − α2)B2x2

ẏ3 =my1 − y3(δy3 + c32π2 + c33π3) + (1 − α3)B3x3

The right-hand side of these equations are which are written in the form of Fi − (V −
i −V +

i ),

where the terms of each equation are grouped into one of Fi,V −
i , or V +

i where

F1 = B1(1 − α1)x1 + (1 − φ)εby2 V −
1 = y1(δy1 + 2m) V +

1 = 0

F2 = B2(1 − α2)x2 V −
2 = y2(δy2 + c22π2 + c23π3) V +

2 =my1

F3 = B3(1 − α3)x3 V −
3 = y3(δy3 + c32π2 + c33π3) V +

3 =my1

Fi is the group of terms representing new infections in compartment i and V +
i and V −

i are

all other transitions into and out of compartment i, respectively. Define F to be the vector

whose ith term is Fi and V to be the vector whose ith term is (V −
i − V +

i ). We define the

matrices F and V as the linearizations of F and V , with respect to the variables y1, y2 and

y3. For system (3.2.1),
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F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 (C7 +C1x1)hy2 0

C2x2hy1 C3x2hy2 C4x2hy3

0 C5x3hy2 C6x3hy3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4.4a)

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hy1 0 0

−m hy2 0

−m 0 hy3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V −1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
hy1

0 0

m
hy1hy2

1
hy2

0

m
hy1hy3

0 1
hy3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.4.4b)

Where the values of Ci and hyi are given in Table 3.3. Then the product of F and V −1 is

given by

J = FV −1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0(C7 +C1x1) C7 +C1x1 0

(C2 +C0(C3 +C4))x2 C3x2 C4x2

C0(C5 +C6)x3 C5x3 C6x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 2 of [47] states that the DFE is LAS if the eigenvalues of the next generation matrix

J−1 are inside the open unit disk.

3.4.3 Proof of Corollary 3.2.3

This theorem is a special case of the Jury Conditions (also known as the Schur-Cohn criteria),

which can be found in [49]. For a characteristic polynomial of a 3 × 3 matrix of the form

p(λ) = λ3 + σ1λ2 + σ2λ + σ3, the solutions of the equation p(λ) = 0 all satisfy ∣λ∣ < 1 if and

only if the following conditions holds
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● p(1) = 1 + σ1 + σ2 + σ3 > 0

● −p(−1) = 1 − σ1 + σ2 − σ3 > 0

● 1 − σ2
3 > ∣σ2 − σ1σ3∣

These first two criteria are what we have cited in the statement of the corollary. The final

condition is equivalent to the compound inequality 1−σ2
3 > σ2−σ1σ3 > −1+σ2

3, which is itself

equivalent to the inequalities 1 − σ2
3 − σ2 + σ1σ3 > 0 and 1 − σ2

3 + σ2 − σ1σ3 > 0. These are the

four conditions stated in the theorem.

3.4.4 Proof of Theorem 3.2.4

Before addressing the theorem, we introduce the partial ordering on the set of 3 matrices,

≤3. Define ≤3 such that 0 ≤ A ≤3 B if Aij ≤ Bij, for i, j = 1,2,3. Recall that ρ(A) denotes

the spectral radius of A. Let A and B be non-negative 3 × 3 matrices. If A ≤3 B, then

ρ(A) ≤ ρ(B) [68]. We will show the desired result by showing that the solutions to the

equation p(λ) = 0 are inside the open unit disk if and only if both r1 < 1 and r2 < 1. First

we show that r1 < 1 is a necessary condition. Next, we show that if r1 < 1, then r2 < 1 is

also necessary. We conclude by showing that the conditions r1 < 1 and r2 < 1 are together
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sufficient. Define the matrix

J̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 r1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that r1 = C6x3 implies that J̃ ≤3 J. Then r1 = ρ(J̃) ≤ ρ(J) = R0. Thus, if R0 < 1, then

r1 < 1. This establishes that r1 < 1 is a necessary condition. Moreover,

r2 = C3x2 + (C7 +C2x2)(C0 +C1x1) +
C0C4(C7 +C2x2) +C4C5x2x3

1 −C6x3

⇐⇒ 1 − r2 = 1 −C3x2 − (C7 +C2x2)(C0 +C1x1) −
C0C4(C7 +C2x2) +C4C5x2x3

1 −C6x3

⇐⇒ (1 − r1)(1 − r2) = {1 −C3x2 − (C7 +C2x2)(C0 +C1x1)}(1 −C6x3)

−C0C4(C7 +C2x2) −C4C5x2x3

Positivity of the right-hand side of this final equation is condition (3.2.6a). This proves the

sufficiency part of the theorem. Next assume that r1 < 1 and r2 < 1. The expression in

condition (3.2.6b) can be written as

(1 +C6x3){1 +C3x2 + (C1x1 +C7)(C0 −C2x2)} −C4x2(C0C1x1 +C5x3 +C0C7)

= (1 +C6x3){1 +C3x2 − (C1x1 +C7)(C2x2 −C0)} −C4x2(C0C1x1 +C5x3 +C0C7)

= (1 +C6x3){1 +C3x2 − (C1x1 +C7)(C2x2 +C0 − 2C0)} −C4x2(C0C1x1 +C5x3 +C0C7)

= (1 +C6x3){1 +C3x2 − (C1x1 +C7)(C2x2 +C0)} −C0C4(C7 +C2x2) −C4C5x2x3

+ (1 +C6x3){1 +C3x2 + 2C0(C1x1 +C7)}

> (1 −C6x3){1 −C3x2 − (C7 +C2x2)(C0 +C1x1)} −C0C4(C7 +C2x2) −C4C5x2x3
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+ (1 +C6x3){1 +C3x2 + 2C0(C1x1 +C7)}

= (1 − r1)(1 − r2) + (1 +C6x3){1 +C3x2 + 2C0(C1x1 +C7)} > 0

Thus the condition (3.2.6b) is always satisfied. Since the two remaining conditions ((3.2.6c)

and (3.2.6d)) contain the common expression σ1σ3 − σ2. We simplify this expression here

before preceding.

σ1σ3 − σ2 =C0C2C6C
2
7x2x3 +C2C

2
6C7x2x

2
3 −C2C7x2 −C0C4C7x2 +C2C3C6C7x

2
2x3 +C0C6C7x3

+ 2C0C1C2C6C7x1x2x3 +C1C2C
2
6x1x2x

2
3 −C1C2x1x2 −C0C1C4x1x2

+C1C2C3C6x1x
2
2x3 +C0C1C6x1x3 +C0C

2
1C2C6x

2
1x2x3 −C4C5x2x3 +C3C6x2x3

=C0C2C6C
2
7x2x3 +C2C

2
6C7x2x

2
3 −C2C7x2 −C0C4C7x2 +C2C3C6C7x

2
2x3 +C0C6C7x3

+ 2C0C1C2C6C7x1x2x3 +C1C2C
2
6x1x2x

2
3 −C1C2x1x2 −C0C1C4x1x2

+C1C2C3C6x1x
2
2x3 +C0C1C6x1x3 +C0C

2
1C2C6x

2
1x2x3 −C4C5x2x3 +C3C6x2x3

+ (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

− (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

=1 −C2C7x2 −C0C4C7x2 +C0C6C7x3 +C2C6C7x2x3 −C0C1x1 −C3x2 −C1C2x1x2

−C0C1C4x1x2 −C6x3 +C0C1C6x1x3 −C4C5x2x3 +C3C6x2x3 +C1C2C6x1x2x3

−C0C7 − (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

=1 −C0(C1x1 +C7) −C2x2(C1x1 +C7) −C3x2 −C4C5x2x3 −C0C4x2(C1x1 +C7)

−C6x3(1 −C0(C1x1 +C7) −C2x2(C1x1 +C7) −C3x2)

− (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))
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=(1 −C6x3)(1 − (C0 +C2x2)(C1x1 +C7) −C3x2) −C4x2(C5x3 +C0(C1x1 +C7))

− (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

=(1 −C6x3)(1 − (C0 +C2x2)(C1x1 +C7) −C3x2) −C4x2(C5x3 +C0(C1x1 +C7))

− (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

Using this simplification, we simplify condition (3.2.6c)

1 − σ2
3 + σ2 − σ1σ3 =(1 −C2C6x2x3(C1x1 +C7))(1 +C2C6x2x3(C1x1 +C7))

− (1 −C0(C1x1 +C7) −C3x2 −C6x3)(1 +C2C6x2x3(C1x1 +C7))

+ (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)

−C4x2(C0(C1x1 +C7) +C5x3)

={C6x3 −C2C6x2x3(C1x1 +C7) +C0(C1x1 +C7) +C3x2)}⋅

{1 +C2C6x2x3(C1x1 +C7)}

+ {1 −C3x2 − (C1ox1 +C7)(C2x2 +C0)}(1 −C6x3)

−C4x2(C0(C1x1 +C7) +C5x3)

={C6x3(1 −C2x2(C1x1 +C7)) +C0(C1x1 +C7) +C3x2)}⋅

(1 +C2C6x2x3(C1x1 +C7))

+ {1 −C3x2 − (C1x1 +C7)(C2x2 +C0)}(1 −C6x3)

−C4x2(C0(C1x1 +C7) +C5x3)

={C6x3(1 −C2x2(C1x1 +C7)) +C0(C1x1 +C7) +C3x2}

⋅ (1 +C2C6x2x3(C1x1 +C7))
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+ (1 − r1)(1 − r2) > 0.

This final expression is always positive, since the product (1 − r1)(1 − r2) > 0 and since

r2 < 1 Ô⇒ C2x2(C1x1 +C7) < 1. For condition (3.2.6d), we again use the simplification of

σ1σ3 − σ2. We have,

1 − σ2
3 + σ1σ3 − σ2 =(1 +C2C6x2x3(C1x1 +C7))(1 −C2C6x2x3(C1x1 +C7))

+ (1 +C2C6x2x3(C1x1 +C7))(1 −C0(C1x1 +C7) −C3x2 −C6x3)

+C4x2{C0(C1x1 +C7) +C5x3}

− (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)

=(1 +C2C6x2x3(C1x1 +C7))(1 − (C0 +C2C6x2x3)(C1x1 +C7) + 1 −C6x3)

+C4x2(C0(C1x1 +C7) +C5x3)

− (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)

=(1 +C2C6x2x3(C1x1 +C7))(1 − (C0 +C2C6x2x3)(C1x1 +C7))

− (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)

+ (1 −C6x3)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3)

≥(1 +C2C6x2x3(C1x1 +C7))(1 − (C0 +C2x2)(C1x1 +C7))

− (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)

+ (1 −C6x3)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3)

≥(1 +C2C6x2x3(C1x1 +C7))(1 −C3x2 − (C0 +C2x2)(C1x1 +C7))

− (1 −C3x2 − (C1x1 +C7)(C2x2 +C0))(1 −C6x3)
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+ (1 −C6x3)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3)

=(C2C6x2x3(C1x1 +C7) +C6x3)(1 −C3x2 − (C0 +C2x2)(C1x1 +C7))

+ (1 −C6x3)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3)

= (C2C6x2x3(C1x1 +C7) +C6x3)(1 −C3x2 − (C0 +C2x2)(C1x1 +C7))

+ (1 −C6x3)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3)

= (C2C6x2x3(C1x1 +C7) +C6x3)(1 − r1)(1 − r2)

+ (1 − r1)(1 +C2C6x2x3(C1x1 +C7)) +C4x2(C0(C1x1 +C7) +C5x3) > 0

Thus, by the Corollary 3.2.3, all roots of the characteristic polynomial of p(λ), and so the

eigenvalues of J, lie exclusively within the unit disk. Then R0 < 1 and by Theorem 3.2.2, the

DFE is LAS.

3.4.5 Proof of Theorem 3.2.5

Recall that R0 is given by the spectral radius of the matrix

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0(C7 +C1x1) C7 +C1x1 0

(C2 +C0(C3 +C4))x2 C3x2 C4x2

C0(C5 +C6)x3 C5x3 C6x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix J is non-negative and so the spectral radius is a nondecreasing function of its

entries so long as they remain non-negative [68]. Each Cj is constant with respect to νk, as

each is a product of parameters which are also constant with respect to νk. Note that this
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applies to Uk. However, the formulae in Theorem 3.2.1 imply that each xj is a nonincreasing

function of νk. Thus, the elements of J are nonincreasing functions of νk and so R0 is a

nonincreasing function of νk.

3.5 Discussion

Many of the comments of Chapter 1 still apply. We focus here on features unique to disease

modeling.

As disease control measures are often enacted after the disease has invaded, a full

treatment of this model should include analysis of the so-called endemic equilibria, specif-

ically with regard to existence, uniqueness and stability. We conjecture that exactly one

endemic equilibrium exists and is locally stable whenever the disease-free equilibrium is

unstable.

Gender and age are strong indicators of behavior, but the model’s treatment of age

could be done on a finer level, with the addition of multiple age classes for both genders or

the use of partial differential equations to track age-density. Gender and age are not the

only indicators of behavior, however, and future work on the model may also include state

variables for asocial cats (who live in a population without engaging in many of the behaviors

which are thought to cause transmission) as in [39]. These animals would have lower values

for some (or all) of the transmission terms.
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As was stated in Sections 1.6 and 3.5, the assumption that parameters are independent

of time is a weakness of the model. If the behavior of the animals is correlated to season,

this may indirectly influence the incidence coefficients (βij).

Though it is was common among the cited works, this model neglects many of the

more complicated features of the retrovirus [34–38] . For instance, in this model, cats who

become infected remain. However, even after the virus infects the target tissue, the animal

may eliminate the virus from their system, placing the animal in what is known as a latent

infection. The animal may remain in this (undetectable) state for years. The host’s cells

may be provoked in the future to being production of the cells, making the animal viremic

again. Future work may include state variables for these animals. In addition, it has been

suggested that the immunity granted by the vaccine is not as effective as that granted by

exposure to the virus [65]. Future work may include two categories to accommodate for

this. In addition, the immunity granted by exposure is not externally obvious, and vaccines

may be wasted on immune cats. Future work may modify the vaccination terms from νk to

something incorporating the wasted vaccines, such as νk
xk

xk+zk .

Finally, the permanency of the immunity granted by vaccination is considered not

as effective as that granted by exposure to the disease [65]. Future work may include a

terms to describe cats who lose their immunity and perhaps additional state variables for

the immunity which cannot be lost.

Comments regarding spaying/neutering in Chapter 1 still apply and may have more

significance in the context of disease. The resulting change in behavior from prophylaxis
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could potentially influence the behavior of the animal and so indirectly influence the trans-

mission terms [40]. Future work may include new state variables to track these animals to

investigate the effect of prophylaxis on the disease’s ability to invade.

Finally, Corollary 3.2.7 provides clear conditions on when the disease-free equilibrium

is locally stable. Future work may use these conditions to construct a gender-informed vacci-

nation strategy which ensures the disease-free equilibrium is locally stable while minimizing

vaccination effort. In addition, the influence of removal rates (si) on the ability of the disease

to invade could be analyzed as well as the interaction between these two approaches. Using

Theorem 3.2.4 and subsequent corollaries, one might compare the effect of removing a cat

rather than vaccinating it. If the issue of prophylaxis is also addressed, the interaction of

the three different approaches could be analyzed.
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