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ABSTRACT

As populations and the demand for higher crop yields grow, so to does the need for

efficient agricultural wheeled mobile robots. To achieve precise navigation through a field

it is desirable that the control system is designed based on an accurate dynamic model. In

this paper a control affine model for a custom designed skid-steer differential drive wheeled

mobile robot is found. The Terramechanic wheel terrain interaction is adopted and modified

to consider wheels with a torus geometry. Varying slip ratios and slip angles are considered

in the terrain reaction forces, which is curve-fitted using a nonlinear least squares approach

such that the achieved model is control affine. The parameters in the proposed model is

identified through an extended Kalman filter so that the state variables in the model are

matched. Both simulation and experiments in a commercial farm validated the proposed

model and the identification approach.
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CHAPTER 1

INTRODUCTION

Emerging robotic automation techniques in agriculture has become the focus of much at-

tention. Robotics in agriculture could be used as a means to reduce labor costs, enhance

farming efficiency and increase profitability. A private research company, WinterGreen re-

search, published a study entitled Agricultural Robots Market Shares, Worldwide, 2014 to

2020 where they predict that the agricultural robot market will expand from $817 million

in 2013 to $16.3 billion by 2020. Furthermore, WinterGreen research predicts that while

many unmanned aerial vehicles have been put to use in research, autonomous wheeled mo-

bile robots will in the end be the more useful mode of robotics in this field [1].The growth

in agricultural mobile robotics are predicted because of the large scale of commercial agri-

cultural fields, which limits the amount of crop a human laborer can feasibly get to by

foot in a normal eight-hour work day and increases the likelihood of error due to fatigue.

Furthermore, the structured nature of the commercial agricultural fields makes them ideal

for robotic scouts that can efficiently work long hours over large distances. Autonomous

robotics could enhance farm productivity in every stage of a crops cultivation from harvest-

ing to planting and everything in between. In recent years many advances in robotics are

closing the technological gap required to make agricultural mobile robots a feasible goal.
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For instance, low cost ultrasonic range finders were utilized in the design of a row guidance

system for an autonomous robot for white asparagus harvesting at the Institute of Mobile

Systems in Germany[2]. Machine vision has opened the door for new capabilities of esti-

mation algorithms as shown by the development of a strawberry harvester at the Institute

of Agricultural Machinery in Japan[3],and a corn nitrogen deficiency detector at Univer-

sity of Tehran in Iran[4]. Another sub field of machine vision, spectroscopic imaging, has

emerged as a means of rapid disease detection in agriculture and is drawing attention as a

new potential for wheeled mobile robots in agriculture[5]. As of 2001 a study has shown

that plant pathogen account for a 33 billion-dollar loss in agricultural revenue in the US

alone[6].Despite these advances there are still problems that must be solved before fully

automated agriculture can be realized. One critical advancement in off-road robotics that

remains to be a fully matured area of research is dynamic modeling of mobile robots in loose

terrain. While there are many techniques for the design of wheeled vehicles in loose terrain

theyre are computationally expensive and not suitable for control.

In the past, control and localization schemes for wheeled mobile robots traveling on

hard surfaces have been accomplished using no-slip non-holonomic wheel constraints and

wheel odometry[7].Researchers have been able to successfully apply the traditional no slip

constraints to autonomous tasks in agriculture as in [2], where the robot was not required

to do any radical maneuvers and a high fidelity position measurement was available. If

sharp turns are to be made, a navigation estimation scheme is being designed or the slipping

and skidding are inherent to the robot design (as in a skid-steer robot) traditional models

2



fail. In general, in loose terrain terrain wheel slip ratio and slip angle play a critical role

in the dynamics of wheeled mobile robots of all configurations and must be accounted for.

In[8] and [9].the authors use a kinematic constraint for a four-wheel skid steer robot that

is borrowed from design of treaded ground vehicles. This constraint uses data collected

experimentally to relate the slip/skid ratio to the yaw rate of the vehicle. While these authors

have shown success using experimental kinematics, the constraints are purely empirical and

have no physical foundation making them unpredictable for new terrains. Furthermore, they

completely neglect slip angle.

The research conducted in this paper was carried out with the goal of a robotic

strawberry orchard scout in mind. The realization of a robotic scout for disease detec-

tion in strawberry orchards has several control system design criteria that have not been

addressed by previous research works. Commercial strawberry orchards are grown in orga-

nized plasticulture rows that can range in size and spacing. From the authors experience

in three commercial fields in Florida the beds generally range in size from 23-28 inches and

are spaced 18-22 inches apart. These dimensions will require a turn with a turning radius

of approximately 32 inches or 80 centimeters during cross-the-bed maneuvers. Addition-

ally, the three leading states for strawberry production, California, Florida and Oregon [10],

have different climates and topology. With this in mind this paper presents an approximate

wheel terrain interaction model (WTIM) suitable for control under tight turns when slip-

ping/skidding are at their highest and furthermore present a parameter estimation scheme to

adapt to new environments.In this paper a wheeled mobile robot modeling approach based
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purely in the physics and not kinematics was sought after. We begin with the Terramechanic

WTIM, first developed in the fifties by M.G. Bekker and later on by J.Y. Wong [11],[12].The

Terramechanic WTIM has become a popular means for off road vehicle design due to its

accuracy and reduction in computational cost when compared with finite element methods.

In terms of control however, Terramechanic WTIMs are not analytical and thus cannot be

implemented in control and guidance estimation algorithms. Here Terramechanic WTIMs

are utilized to gain a more fundamental understanding of the dominant forces that char-

acterize mobile robot dynamics in off road terrains. This knowledge is applied to find an

approximate WTIM that can be used for control and navigation. The analytic model is then

fit into an appropriate Kalman filter estimation scheme for online parameter estimation.

This paper is organized as followed. In section II the rigid body dynamics for an

agricultural field robot are derived. We begin in part A with a general formulation of the

rigid body dynamics of a rover traveling on a plane. In part B a Terramechanic method for

estimating the terrain reaction force on a torus shaped wheel is presented and integrated

in the dynamics from part A. Section III part A explores an analytical approximate wheel

terrain interaction model which renders the final rover model, presented in B, control affine.

In section IV the analytic wheel terrain interaction model from part III is fit into an extended

Kalman filter for on line parameter estimation. The parameter estimation scheme and thus

the analytic model is validated through experiments on a real commercial strawberry farm

in section V.
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CHAPTER 2

SKID-STEER KINEMATICS AND GENERAL 2-D DYNAMICS

2.1 Reference Frames

Kinematic and dynamics models are developed for a custom skid-steer field robot designed

for strawberry orchards. A diagram of the field robot is shown in Fig. 2.1. The robot is

assumed to travel on a fixed horizontal plane, thus the complete posture of the robot can

be defined in an inertial reference frame by two position coordinates (xi, yi) and the heading

angle (ψR),where the subscript i denotes the inertial reference frame located at an arbitrary

stationary position in space and the subscript R denotes an additional body fixed robot

reference frame placed at the center of mass of the robot. Accompanying the inertial and

body fixed frame are four local wheel reference frames,(xi, yi), i = 1, 2, 3, 4 . The local wheel

reference frames are fixed in, and have the same orientation as the body reference frame.

The distance from the origin of the body fixed reference frame to the ith wheel local reference

frame origin is denoted by the position vector ρ⃗i.The distance W is the distance from the

robot center of mass to the wheel center of mass along the body fixed y-axis, likewise L

refers to the distance from the robot center of mass to the wheel center of mass along the

body fixed x-axis.
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Figure 2.1: View of robot displaying the inertial and body fixed coordinates.

2.2 Skid-Steer Kinematics

Some useful notation that will be used later on in the paper are included here. The wheels

are divided into right and left wheel banks for example, the right wheel bank of the four

wheeled skid-steer robot shown in Fig. 2.1 will consist of wheels 1 and 3, whereas the left

wheel bank will consist of wheels 2 and 4. As opposed to separate descriptions for each wheel

some of the wheel kinematics can be described in terms of the wheel banks. For instance,

all wheels on a certain wheel bank have the same angular velocity (ω). The right and left

wheel bank angular velocities

ωr = ω1 = ω3 (2.1)

ωl = ω2 = ω4 (2.2)
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The longitudinal velocities of the right and left wheel bank can be written in their respective

local reference frames similar to the angular velocities

ẋr = ẋ1 = ẋ3 = ẋR +Wψ̇R (2.3)

ẋl = ẋ2 = ẋ4 = ẋR −Wψ̇R (2.4)

2.3 Equation Of Motion

Now we define the general equations of motion for a rigid body on a plane. We begin with

the kinematics, the direction cosine matrix from the inertial frame to the body frame is

R1 =

cos (ψR) − sin (ψR)

sin (ψR) cos (ψR)

 (2.5)

Let (ẋR, ẏR, ψ̇R) be the longitudinal, lateral and angular velocity of the robot in the

body fixed frame, and (ẋI , ẏI , ψ̇R) be the robot velocities in the inertial frame. Note that for

motion on a plane the yawing velocity is the same in both frames [dynamics ref.]. Then the

inertial velocity can be expressed by the robot velocities in the body frame as

ẋI
ẏI

 = R1

ẋR
ẏR

 (2.6)
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, and the acceleration can be expressed as

d

dt

ẋI
ẏI

 =
d

dt

R1

ẋR
ẏR


 (2.7)

which leads to

ẍI
ÿI

 = R1

ẍR − ψ̇RẏR

ÿR + ψ̇RẋR

 (2.8)

Now we can form the equations of motions using Newtons Second law of motion.

d
dt
{max} =

∑
Fext,x

d
dt
{may} =

∑
Fext,y

d
dt
{Iα} =

∑
Mext

(2.9)

Where ax,ay and α are the absolute acceleration of the robot in the body fixed frame i.e.

ax = ẍR−ψ̇RẏR,ay = ÿR+ψ̇RẋR and α = ψ̈R. Also the external forces acting on the robot are

Fext,x and Fext,y in the body fixed frame, whereas the external moments acting on the body

are denoted by Mext, again in the body fixed frame. The mass of the robot is denoted by m

and the moment of inertia along the principle z-axis is I, both of which are time invariant.

Thus general equations of motion formulated in the body frame are expressed as.

ẍR = ψ̇RẏR +
∑
Fext,x/m

ÿR = −ψ̇RẋR +
∑
Fext,x/m

ψ̈R =
∑
Mext/I

(2.10)
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For agricultural scouting, high speed maneuvering is not required thus constant wheel

loads are assumed and aerodynamic forces are neglected. The applied forces and moment∑
Fext,x,

∑
Fext,y and

∑
Mext are the summation of the forces and moment produced at

each wheel of the vehicle by the wheel terrain interaction.
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CHAPTER 3

INDIVIDUAL WHEEL TERRAIN INTERACTION MODELS

(WTIM)

3.1 Terramechanics Model for Wheel Terrain Interaction

Now the terrain reaction on an individual wheel, referred to as the Wheel Terrain Interaction

Model (WTIM), is developed, mainly using the terramechanic method [13]. In the past,

terramechanic models have been utilized in the design of terrestrial rovers which use wheels

with a cylindrical type of geometry [14]. For a typical agricultural field robot, the wheel has

a torus or donut geometry. In computation, the torus geometry has an advantage over the

cylindrical geometry in that bulldozing forces must be considered when using the cylindrical

terramechanic model [13],[14].The disadvantage of the torus geometry however is that the

surface requires two rotations which adds to the complexity of the integral that must be

computed for the terrain reaction. This section focuses on the WTIM for an individual

wheel thus, for clarity and brevity the subscript associated with wheels 1, 2, 3, and 4 are

omitted in this section.
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3.1.1 Torus Geometry and Sinkage Depth

A torus is a surface of revolution generated by revolving an ellipse around an axis coplanar

with the ellipse. Defining a wheel reference frame with its origin in the center of the torus (

i.e. the wheel hub), the torus surface can be expressed parametrically by the position vector

r⃗ from the center of mass of the wheel [15], as shown in Fig.3.1.

r(θ, ψ) =


(c+ a cos (ψ)) sin(θ)

b sin (ψ)

(c+ a cos (ψ)) cos(θ)


(3.1)

where c is the major radius, a is the minor radius, b is half of the torus width, and the angles

of revolution are θ and ψ as shown in Fig. 3.1. For convenience two unit vectors are defined.

The first unit vector,

{
î ĵ k̂

}T

, is fixed and is oriented with the wheel reference frame.

The second system,

{
t̂ l̂ n̂

}T

, describes the tangent, lateral and normal directions of the

wheel surface at any arbitrary surface point. The surface unit vector can be found using.

r = r/|r| =

{
t̂ l̂ n̂

}T

(3.2)

At this point the sinkage depth,Nz,can be defined as the distance the wheel penetrates the

terrain. The sinkage depth defines the contact patch or the region of the wheel surface that

makes contact with the terrain. As will be seen in the derivation of the terramechanic WTIM

model, it is convenient to describe the contact patch by four angles: the entry angle θf , exit

angle θr, right bound angle ψr and left bound angle ψl.
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Figure 3.1: View of robot displaying the inertial and body fixed coordinates.

3.1.2 Derivation

The general theory behind Terramechanic wheel terrain interaction models is that the force

acting on a steadily rotating wheel,

{
Fw,x Fw,y Fw,z

}T

, can be found by integrating the

radial, tangential, and lateral stress components along the wheel-terrain contact patch [11],

[12], [16].

F w =

∫∫
R

pdS (3.3)

where R is the contact patch region and the pressure vector field is denoted by p⃗.

The infinitesimal surface increment dS can be computed by [15]

dS = |∂r/∂ψ × ∂r/∂θ | dθdψ (3.4)
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In Eq. ((3.3)) the pressure vector,p, is oriented with the wheel reference frame along

the

{
î ĵ k̂

}T

unit vector as

p =

[
px py pz

]T
(3.5)

However, Terramechanic theory gives the stresses oriented along the wheel surface.

In other words, the pressure vector at each point along the wheel surface is found along the{
t̂ l̂ n̂

}T

unit vector (see Figure 3.1 )

ps =

[
τt τl σn

]T
(3.6)

where the terms τt, τl and σn are the tangent, lateral and radial stress components

to the wheel surface. As follows a rotation, a sequence must be established between the

unit vector for the central coordinate system placed at the wheel hub and the wheel surface

coordinate-system.

R2 =


1 0 0

0 cos (ψ) sin (ψ)

0 − sin (ψ) cos (ψ)




cos (θ) 0 − sin (θ)

0 1 0

sin (θ) 0 cos (θ)

 (3.7)

Using Eqs. 3.3, (3.4) and (3.7) the integral that must be solved for to acquire the soil reaction

force vector is written as

F w =

∫∫ {
RT

2 p⃗s
}
|∂r⃗/∂ψ × ∂r⃗/∂θ | dθdψ (3.8)
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Fw,x =

∫ ψr

ψl

∫ θf

θr

[(cos (θ) τt + sin (ψ) cos (θ) τl + cos (ψ) sin (θ) σn) d] dθdψ (3.9)

Fw,y =

∫ ψr

ψl

∫ θf

θr

[(cos (ψ) τl − sin (ψ)σn) d] dθdψ (3.10)

and

Fw,z =

∫ ψr

ψl

∫ θf

θr

[(− sin (θ) τt + sin (ψ) cos (θ) τl + cos (ψ) cos (θ) σn) d] dθdψ (3.11)

in which d , (c+ a cos (ψ))
√
a2sin2 (ψ) + b2cos2 (ψ)

The computation of τt,τl and σn are based on [13],[16]. For clarity, a brief derivation

of the stress components is listed in the appendix.

3.1.3 Terramechanics WTIM Simulation

As is customary in WTIM, the effects of while slip/skid λ and slip angle β on the longitudinal

and lateral terrain reaction forces were investigated for a wheel under constant loading. The

wheel slip/skid ratio is written as the ratio of the relative speed over the expected speed.

λ =


[− (c+ a)ω − ẋ] / (c+ a)ω , |ẋ| ≤ |(c+ a)ω|

[− (c+ a)ω − ẋ] /ẋ , |ẋ| > |(c+ a)ω|
(3.12)

14



where the numerator is the difference between the ideal wheel velocity under no

slipping or skidding and the actual wheel velocity. In the first term of the numerator the

parameters c and a are the major and minor radii respectively, whereas ω is the individual

wheel angular velocity and ẋ is the wheel longitudinal velocity written in the wheel hub

reference frame (Fig. 3.1). The author would like to clear up two potential confusions in

the ideal wheel velocity term of the numerator. First the orientation of the wheel reference

dictates that positive angular velocity of the wheel corresponds to negative linear velocity

along the x-axis (as shown in Fig. 3.1) and second, the distance c+a is simply the maximum

radii of the wheel. Thus on a hard surface under no slip conditions the expected longitudinal

velocity of a wheel is

ẋ = − (c+ a)ω (3.13)

The wheel slip angle denoted by β is the angle made between the longitudinal and

lateral velocity components of the wheel. Slip angle can be found using the geometric

relationship

β = arctan (ẏ/ẋ) (3.14)

The velocities (̇y) and (̇x) are the velocity of the individual wheel.

The soil parameters used to simulate the off-road environments were taken from [17]

and are and are tabulated in the appendix. The trends in the reaction force found in Fig.

15



3.2a and Fig. 3.2b are used in the next section to formulate an approximate WTIM that is

suitable to derive a control affine model.

(a) Longitudinal reaction force (b) Lateral reaction force

Figure 3.2: Terrain reaction predicted by Terramechanic WTIM

3.2 Approximate WTIM Simulation

While the terramechanic model allows for accurate simulations and quick analyses of the

dominant forces of a wheeled vehicle in soft terrains, it does not have a control affine format

and thus is not convenient for purposes of guidance, navigation, and control designs.

A large body of research has shown that the slip/skid ratio(λ) and the slip angle (β)are

the critical elements of motion in off-road wheel terrain interactions [8],[9], [13],[14],[16], [17],

[18], [19], [20]. In this study, the tangent force acting on a wheel is formulated as a function

of slip and the lateral reaction force is formulated as a function of slip angle.
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From 3.2a and the results found in [13], [14], [16] it is evident that although the

tangent terrain reaction force lessens in magnitude with increasing magnitude of slip angle,

it is primarily a function of slip and can be modeled with an exponentially decaying rate.

Fw,x ≈ sign (λ)
[
1− e−a2|λ|

]
(3.15)

Equation(3.15) has advantages over the models presented in [9], [12] in that it does not require

a separate formulation in the critical slip region. Additionally the model in [19] considers the

tangential traction and rolling resistance as two different forces creating a large cumbersome

formulation. The relationship in Eq.(3.15) is unified over the entire slip/skid ratio operating

conditions and is easily defined by only two parameters.

Similarly, as shown by the terramechanic model in Fig. 3.2b, the lateral reaction

force of the terrain on the wheel is primarily a function of the slip angle. Although it decays

in the direction of increasing slip we have found good results using the formulation

Fw,y ≈ −bβ (3.16)

Using a generated terramechanic data set with more than 2,500 points over the slip

ratio range λ ∈ [−1, 1] and the slip angle rangeβ ∈
[
−π

3
, π
3

]
in combination with MATLAB’s

lsqcurvefitalgorithm, the parameters are approximated and the results are shown below.

Remark 1:Based on the simulation results shown in Fig 3.3a and 3.3b , in the working

range of λ ∈ [−30%, 30%] and β ∈ [−π/7, π/7] , the error between the approximated force

model and the actual WTIM model is between [0%, 42%] in the longitudinal direction and

between [0%, 45%] in the lateral direction within the operating range of the robot wheels
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Figure 3.3: Terrain reaction predicted by approximate WTIM
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CHAPTER 4

APPROXIMATED CONTROL AFFINE MODEL

The equations of motion for a four-wheel skid-steer style ground robot can now be given in

the form of a nonlinear, state space, control affine model as

ẋ = f (x) + g (x)u (4.1)

the state vector is chosen as

x =

[
ẋR ẏR ψ̇R ωr ωl λr λl β1 β2 β3 β4

]T
(4.2)

As stated previously, the right and left wheel banks have equal angular and longitudinal

velocities. Likewise, since the slip ratio is dependent only on the wheel longitudinal and

angular velocities, then the slip for all four wheels of a skid-steer robot can be written

succinctly as two slip ratios. Using Eqs. (2.1), (2.2), (2.3), (2.4) and (3.12) the left and right

slip/skid ratio is expressed as

λj =


[(c+ a)ωj − ẋj]/(c+ a)ωj , |ẋj| ≤ |(c+ a)ωj|

[(c+ a)ωj − ẋj]/ẋj , |ẋj| > |(c+ a)ωj|
, j = r, l (4.3)

Now each element of the state vector ((4.2))can be described: the first three states with

subscript R are the longitudinal, lateral, and yaw velocities of the robot in the body fixed
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frame. The fourth and fifth element are the right and left wheel bank angular velocities.

The following two states are the right and left longitudinal slip ratios and the remaining four

states are the slip angles of each wheel.

The derivation of the state equations from the previously discussed equations, in-

cluding the approximate wheel terrain interaction model, can now be presented. The state

equations for the robot velocities are found from the equations of motion for a ground robot

on a plane ( (2.10) ). Where the forces are the summation of the approximate terrain reaction

forces (Eqs.(3.15)and (3.16))on each of the four wheels.

∑
Fext,x =

∑4

i=1
Fw,x,i (4.4)

∑
Fext,y =

∑4

i=1
Fw,y,i (4.5)

The subscript i denotes the wheel at which the force is being evaluated. Plugging Eq. (4.4)

and (4.5) in (2.10) results in.

ẍR = ψ̇RẏR +
2a1
m

[
sign (λl) + sign (λr)− e−a2|λr| − e−a2|λl|

]
(4.6)

ÿR = −ψ̇RẋR +
b

m

∑4

i=1
βi (4.7)

Treating the terrain reaction as a point force acting at the center of the wheel the yawing

moment is given by the summation of moments produced at each wheel

M =
∑4

i=1
ρi × Fw,i (4.8)

where the position vector ρi is the position of the wheels center of mass relative to the

rovers center of mass (Fig. 2.1 ). The force vector, Fw,i, is the force produced at the wheel
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expressed in terms of the rovers center of mass axis system. Plugging the relative distance

vector (ρi, i = 1, 2, 3, 4 - Fig. (2.1))and the approximate wheel terrain interaction forces

(Eqs. (3.15) - (3.16) ) into Eq. (4.8) leads to

∑
Mext = 2W (Fx,w,l − Fx,w,r) + L (Fy,w,1 + Fy,w,2 − Fy,w,3 − Fy,w,4) (4.9)

Thus the yawing state equation is

ψ̈R =
2Wa1
I

[
sign (λl)− sign (λr)− e−a2|λl| + e−a2|λr|

]
+
Lb

I
[β1 + β2 − β3 − β4] (4.10)

Note that in Eqs. (4.9) and (4.10) we have utilized the fact that the longitudinal forces are a

function of only the wheel slip/skid ratio and therefore the wheels on each bank will have the

same longitudinal force, namely that Fw,x,1 = Fw,x,3 = Fw,x,r and that Fw,x,2 = Fw,x,4 = Fw,x,l.

The angular velocities of each wheel bank are regulated by well-tuned PID controllers.

System identification exercises suggest that the wheel bank angular velocities are related to

the commanded velocity, ωc,j, by a first order differential equation as

ω̇j = kω (ωc,j − ωj) , j = r, l (4.11)

where kω is a motor time constant that was found experimentally to match the real system

performance.

The state equations for the right and left wheel slip/skid ratio are found by taking

the time derivatives of Eq.(4.3) which can be split into two parts: one which is related to

and the other which is not related to the control input u.

λ̇j = fλ,j + gλ,jωc,j, j = r, l (4.12)
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in which

fλ,j =


−[ẍj+vx,jkω ]

(c+a)ωj
ẋj ≤ (c+ a)ωj

−(c+a)ωj [ẋjkω−ẍj ]
(ẋj)

2 ẋj > (c+ a)ωj

j = r, l (4.13)

and

gλ,j =


ẋj(c+a)kω

((c+a)ωi)
2 ẋj ≤ (c+ a)ωj

ẋj(c+a)kω

(ẋj)
2 ẋj > (c+ a)ωj

j = r, l (4.14)

The state equation for the slip angle can be found by taking the time derivative of (3.14) as

β̇i = (ẋiÿi − ẏiẍi) /
(
ẏ2i + ẋ2i

)
(4.15)

In Eq. (4.15), the symbols ẋi are replaced by (2.3) for wheels 1 and 3 and Eq. (2.4) for

wheeels 2 and 4. The symbols ẏi, ẍi, ÿi are the lateral velocity and the longitudinal and

lateral accelerations of the ith wheel relative to the inertial frame. They can be found using

the kinematic relationships.

ẏ1 = ẏ2 = ẏR + Lψ̇R (4.16)

ẏ3 = ẏ4 = ẏR − Lψ̇R (4.17)

ẍr = ẍ1 = ẍ3 = ẍR +Wψ̈R (4.18)

ẍl = ẍ2 = ẍ4 = ẍR −Wψ̈R (4.19)

ÿ1 = ÿ2 = ÿR + Lψ̈R (4.20)

and

ÿ3 = ÿ4 = ÿR − Lψ̈R (4.21)

22



The control input, u, is then selected as the nominal commanded wheel velocity

u =

[
ωc,r ωc,l

]T
(4.22)

Equations (4.6), (4.7), (4.10), (4.11), (4.12) and (4.15) can be rearranged to produce the

detailed state function in Eq. (4.1) as

f (x) =



ψ̇RẏR + 2a1
m

[
sign (λl) + sign (λr)− e−a2|λr| − e−a2|λl|

]
−ψ̇RẋR + b

m

∑4
i=1 βi

2Wa1
I

[
sign (λl)− sign (λr)− e−a2|λl| + e−a2|λr|

]
+ Lb

I
[β1 + β2 − β3 − β4]

−kωωr

−kωωl

fλ,r

fλ,l

(ẋ1ÿ1 − ẏ1ẍ1) / (ẏ
2
1 + ẋ21)

(ẋ2ÿ2 − ẏ2ẍ2) / (ẏ
2
2 + ẋ22)

(ẋ3ÿ3 − ẏ3ẍ3) / (ẏ
2
3 + ẋ23)

(ẋ4ÿ4 − ẏ4ẍ4) / (ẏ
2
4 + ẋ24)



(4.23)
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and the following control input matrix

g (x) =



0 0

0 0

0 0

kω 0

0 kω

gλ,r 0

0 gλ,l

0 0

0 0

0 0

0 0



(4.24)

Thusly exhibiting the model Eqs. (4.24) - (4.24) is affine-in-the-control.

Remark 2: In this control-affine approximated model, the following parameters will

need to be identified through experiments: shown in section (6)
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CHAPTER 5

PARAMETER IDENTIFICATION

The parameters a1, a2 and b in the control affine model represent mechanical terrain charac-

teristics and will vary in different terrains such as loamy soil and sand soil. Additionally, the

parameters cannot be easily found by experimentation and/or calculation. For this reason,

these parameters will be estimated online along with the robot velocities using an extended

Kalman filter.

5.1 Process Model

The state variables to be estimated are

x =

[
ẋR ẏR ψ̇R ωr ωl a1 a2 b

]T
(5.1)

As compared with the state variable vector in Eq. (4.2), the slip/skid ratio and slip angle

states are not included because they can be computed from the robot velocity states directly.
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The process model is then

f (x,u,w) =



ψ̇RẏR + 2a1
m

[
sign (λl) + sign (λr)− e−a2|λr| − e−a2|λl|

]
−ψ̇RẋR + b

m

∑4
i=1 βi

2Wa1
I

[
sign (λl)− sign (λr)− e−a2|λl| + e−a2|λr|

]
+ Lb

I
[β1 + β2 − β3 − β4]

−kωωr

−kωωl

0

0

0



+



w1

w2

w3

w4

w5

w6

w7

w8


(5.2)

In this process model, wiis assumed to be zero mean white Gaussian noise, with a covariance

of Q.

w ∼ (0, Q) (5.3)

5.2 Measurement Model

Measurements are taken from an inertial measurement unit (IMU) and a quadrature wheel

encoder for the right and left wheel velocities as

z =

[
ẍR ÿR ψ̇R ωr ωl

]
(5.4)
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Here the acceleration measurement model is taken from the first two rows in Eq.

(5.2), and the yaw rate and the left and right wheel bank angular rates can be directly

ascertained from state estimate.

h (x,v) =



ψ̇RẏR + 2a1
m

[
sign (λl) + sign (λr)− e−a2|λr| − e−a2|λl|

]
−ψ̇RẋR + b

m

∑4
i=1 βi

ψ̇R

ωr

ωl


+



v1

v2

v3

v4

v5


(5.5)

The measurement noise, vI , is also assumed as zero mean white Gaussian noise with

a covariance of R.

v ∼ (0, R) (5.6)

5.3 Hybrid Extended Kalman Filter

In the hybrid extended Kalman filter (EKF) following [21], the prediction equation include

˙̂x− = f
(
x̂+, u, 0

)
(5.7)

In which x̂− and x̂+ are the state estimate (apriori- and a-posteri+), and f is eq.

(5.2) without process noise.The time update for the state covariance matrix P is predicted

using
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Ṗ− = AP+ + P+AT + LQLT (5.8)

in which matrices A and L are calculated using

A = ∂f
∂x

∣∣
x̂
L = ∂f

∂w

∣∣
x̂

(5.9)

These two update equations (Eq. (5.7) and Eq. (5.8)) are performed with a numerical

integration scheme, here a 4th order Runge-Kutta is used.

The Kalman gain at time step k is then computed using the time update error co-

variance prediction are

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +MkR

−
kM

T
k

]−1
(5.10)

And the Joseph stabilized error covariance measurement update equation is used to find the

error covariance matrix at time step k

P+
k = (I −KkHk)P

−
k (I −KkHk) +KkM kRkM

T
k
KT

k
(5.11)

The state estimate measurement update (posteri+) is

x̂+
k = x̂−

k +Kk

(
yk −Hkx̂

−
k

)
(5.12)

Here matrices H and M are the process model and measurement model jacobians defined

as
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H = ∂h
∂x

∣∣
x̂
M = ∂h

∂v

∣∣
x̂

(5.13)

29



CHAPTER 6

SIMULATIONS AND EXPERIMENTS

To validate the proposed approximate WTIM and EKF estimation scheme, simulations and

experiments of turning maneuvers were conducted. In both situations a data set of the robot

dynamics was acquired and the EKF was run ad-hoc. The terramechanic WTIM was used

for the simulated data set and a custom robot (DDAGR) designed for scouting of commercial

strawberry orchards was utilized for the actual data set.

6.1 Simulation

Before testing the model and estimation scheme on real components the terramechanic

WTIM was employed for the acquisition of a simulated accurate data set of the robot dy-

namics. Terramechanic parameters are generally found experimentally with a Bevameter,

however because Bevameter are costly and the focus of this research was not terramechanic

the parameters used for the simulation were taken from [17] and are tabulated in the ap-

pendix. These parameters are meant to simulate off road environments in sandy loam which
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has similar properties to strawberry orchards in temperate environments, such as those found

in Northern California and Oregon.

To conduct the simulation, the physical characteristics of DDAGR where used in the

skid-steer model and EKF.

Table 6.1: DDAGR physical properties

Parameter Value Unit Description

m 168 kg Robot Mass

I 100 kg ·m2 Moment Of Inertia

r 28 cm Wheel Radius

W 58 cm Half of Robot Width

L 33 cm Half of Robot Length

Additionally, a small amount of measurement noise and process noise was added to

the simulation data using MATLABs Gaussian pseudo random number generator randn. To

initialize the EKF the following initial error, process noise and measurement noise covariance

matrices were used.

P0 = diag

([
0 0 0 0 0 1 0.25 1

])
Q = diag

([
500 500 500 0 0 1 0.01 1

]
1e− 5

)
R = diag

([
5000 5000 5000 1 1

]
1e− 5

) (6.1)
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To acquire the data set for a cross-the-bed like turning maneuver the wheel speeds were

varied at three points in time the wheel bank speeds are tabulated below

Table 6.2: Wheel bank velocities used for simulation

t[s] ωr[
rad
s
] ωl[

rad
s
]

0.0-5.0 0.701 0.701

5.0-22.5 0.0 1.195

22.5-25.0 0.701 0.701

Below the robot trajectory, all eight estimated states, eq. (5.1), and the EKF covari-

ance trace value are shown. The trajectory is found by integrating the robot velocities and is

shown to clarify the maneuver being done. The simulated wheel bank velocities are identical

to the estimated wheel bank velocities because the model used for each bank is identical,

namely ω̇ = kω (ωc − ω) where kω = 4.5

The approximate WTIM parameters estimated by the EKF.
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Figure 6.1: Robot Trajectory for the Simulation
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Figure 6.2: Simulated Wheel Bank Angular Velocities (ωr and ωl)
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Figure 6.3: Longitudinal Velocity (ẋR) During Simulation
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Figure 6.4: Lateral Velocity (ẏR) During Simulation
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Figure 6.5: Yaw Rate (ψ̇R) During Simulation
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Figure 6.9: Trace of Error Covariance Matrix (tr [P ]) During Simulation

6.2 Experiment

A brief description of the robotic strawberry orchard platform, DDAGR,is given. For lo-

comotion DDAGR is equipped with two 24 Volt DC wheelchair motors. For navigation

DDAGR is equipped with an array of onboard sensors which include, but are not limited

to, anInvenSense MPU 6050 and two US Digital E3 optical quadrature encoders. The

control system which was developed at the University of Central Floridas Arc-Lab, has a

two level hierarchy. The first level consists of an Arduino Mega 2560 in conjunction with a

SuperDroid Encoder Buffer and a Dimension engineering Sabertooth 2x60 amp voltage reg-

ulator. The software uploaded onto the Arduino accomplishes three tasks: PID regulation

of the wheel shaft angular velocity, orientation estimation of the robot and data acquisition

for the second highest level control system. For satisfactory results the wheel shaft angular

velocity control laws and orientation estimation scheme have a 1 kHz update rate whereas

raw sensor samples are streamed from the data acquisition portion of the software at around
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125 Hz. The IMU is placed at the robot center of mass namely (xR, yR) = (0, 0) and the

optical encoders are placed on the rotor shaft of each of the two 24 Volt DC motors.

Figure 6.10: DDAGR In Front of a strawberry bed in Pappy’s Patch Strawberry orchard

For experimental validation DDAGR was brought to Pappys patch a local u-pick

strawberry patch near the UCF campus. The physical characteristics of DDAGR used in the

EKF are tabulated in table 6.1. To approximate the measurement noise of the IMU a static

data set was taken while the robot remained stationary. To approximate the measurement

noise of the optical encoders the DC motors underwent a step input while on raised blocks

so that no external disturbances might affect the steady state data. The process noise and

initial error covariance was found through trial and error.
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Table 6.3: Wheel bank velocities used for simulation

t[s] ωr[
rad
s
] ωl[

rad
s
]

2.0-18.0 0.716 0.716

18.0-38.0 0.36 1.074

the initial error, process noise and measurement noise covariance matrices used for

the experimental EKF are

P0 = diag

([
0 0 0 0 0 1 0.01 1

])
Q = diag

([
10 100 10 0 0 1 0.01 1

]
1e− 7

)
R = diag

([
0.5 0.5 0.007 10 10

]
1e− 2

) (6.2)

During the experimental validation the horizontal plane assumption is violated and

the gravitational inertial effects cannot be neglected. The following longitudinal and lateral

acceleration dynamics listed in eq. 10 must be altered to account for the gravitational

effects due to slight variations in the orientation of the robot. In the experiments conducted

FreeIMU, an open source, orientation estimator was used to keep track of the traditional

Z-Y-X Euler angle. Using a Z-Y-X rotation matrix the dynamics listed in equation (2.10)

become
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ẍR = ψ̇RẏR − gsin (θ) +
∑
Fext,x/m

ÿR = −ψ̇RẋR + gsin (ϕ) cos (θ) +
∑
Fext,x/m

ψ̈R =
∑
Mext/I

(6.3)

Where θ is the Euler angle about the y-axis, ϕ is the Euler angle about the x-axis

and g is the gravitational constant. Note equation (6.3) affects both the process model (5.2)

and the measurement model (5.5).

Below all eight estimated states (5.1) and the EKF covariance trace value are shown.

For safety during the experiment, the PID gain values of the motor wheel shaft velocity

controllers where tuned to give a slower response then used in the simulation. The motor

gain value was appropriately changed to match the slower response time, in other words

kω = 1.4
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Figure 6.11: Right Wheel Bank Angular Velocity (ωr) During Experiment
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Figure 6.12: Left Wheel Bank Angular Velocity (ωl) During Experiment
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Figure 6.13: Longitudinal Velocity (ẋR) During Experiment
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Figure 6.14: Lateral Velocity (ẏR) During Experiment
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Figure 6.15: Yaw Rate (ψ̇R) During Experiment
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Figure 6.17: a2 Parameter Estimate During Experiment
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Figure 6.19: Trace of Error Covariance Matrix (tr [P ]) Estimate During Experiment

6.3 Results

The terramechanic parameters used in the turn maneuver simulation are meant to simulate

off road environments in sandy loam which has similar properties to strawberry orchards

in temperate environments, such as those found in Northern California and Oregon. In

Florida strawberry orchards have drier looser sand and thus the results differ greatly from the

simulation and the experiment. The shrinking error covariance matrix trace and estimated

parameter convergence however are signs that the model and estimation scheme is valid.
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CHAPTER 7

CONCLUSION

In this paper we have proposed two wheel terrain interaction models. The first model is the

application of the Terramechanic technique to wheels of the torus geometry, which can be

used for high fidelity simulations of wheeled mobile robots in soft terrain. The second model

is an approximate wheel terrain interaction model which was shown to be useful for control

applications. The approximate model was used to construct an affine in the control model

for a skid steer wheeled mobile robot in loose sand. Furthermore, we have experimentally

validated the model and proposed an online parameter identification scheme for the unknown

model parameters. The estimation scheme requires only an IMU and optical encoders which

are readily and cheaply available.
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APPENDIX: A

TERRAMECHANICS
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A.1 Integral Bounds

For the clarity and completeness of the study, the brief derivation of the terramechanic

pressure equations from [13] and [12] are listed here.

First relationships relating the integral bounds θf and θr to the sinkage depth Nz are

established for a wheel rolling horizontally on a plane. The entry angle θf can be computed

using

θf = cos−1 (1− [Nz/ (c+ a)]) (A.1)

and the exit angle θr is

θr = θfλθ (A.2)

in which λθ is the terrain compressibility ratio.

The right and left bound angle ψr and ψl

ψl = cos−1 (1−Nz/a) (A.3)

ψr = −ψl (A.4)

The sinkage depth Nz in the above equations is solved for using the search algorithm shown

in Appendix B.
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A.2 Normal Stress

The normal stress equation used in the model is

σ(θ, ψ) =

(
kc
bψ

+ kϕ

)
rnψθ̄

n (A.5)

in which kc is the cohesion factor and kϕ is the angle of cohesion factor. The term

rψθ̄ represent the effective location along the wheel. The the radius of a vertical wheel slice,

rψ can be found using

rψ = c+ acos (ψ) (A.6)

The modified angle θ̄ is defined as

θ̄ =


cos(θ)− cos(θf ),

cos
[
θf −

(
θ−θr
θm−θr

)
(θf − θm)

]
− cos(θf ),

θm ≤ θ < θf

θr < θ ≤ θm

(A.7)

in which θm is the point of max radial stress and is specified by the terrain properties a0 and

a1 in the equation

θm = (a0 + a1λ) θf (A.8)

Where λ is the wheel slip ratio. In Eq. (A.5), bψ is the effective width of the tire at point

on the surface which can be found like so

bψ = 2bsin (ψ) (A.9)
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A.3 Shear Stress

The shear stress along the contact patch is primarily a function of the shear deformation j

the wheel has done on the terrain and the normal stress σ the wheel imparts on the terrain.

τ (σ, j) = τm
(
1− e−j/K

)
(A.10)

where j is the shear deformation of the terrain along the contact patch and is the

magnitude of the shear deformation vector, namely j = |j| =
√
j2l + j2t . Note that jt is the

tangent deformation, jl is the lateral deformation and the normal deformation jn is assumed

to be zero. The lateral and shear deformations will be derived later in this appendix. K is

the shear modulus, a constant terrain property parameter, and τm is the maximum shear

stress which is a function of the normal stress and can be computed by

τm = cm + σtan (ϕ) (A.11)

which is dictated by the terrain cohesion property cm and the terrain angle cohesion

property ϕ.

The shearing stress in Eq. (A.10) is broken into the lateral and tangential components

using the approach in [13], where the shearing velocity vector,

[
vjt vjl vjn

]T
, is utilized

to separate the tangential and lateral components as (the positive orientation of the shear

stress is the same as in figure 3.1)
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τt (σ, j) = τt (σ, j)
−vjt√
v2jt + v2jl+

(A.12)

and

τt (σ, j) = τt (σ, j)
−vjl√

v2jt + v2jl+
(A.13)

The positive directions for the shear velocity/ displacement are shown in the figure below.

Figure A.1: Positive Shear Deformation Orientation

The shear velocities of the wheel surface

[
vjt vjl vjn

]T
are the lateral and tangential

components of the absolute wheel velocity at any point along the wheel surface. The velocity

components in the hub axis world frame can be expressed as

48



V (θ, ψ) = V H + ωH × r (A.14)

where V H and ωH are the linear and angular velocities of the wheel axle hub and r

is the position vector discussed in Eq. (3.1). A suitable rotation matrix from the hub to the

shear velocity/displacement coordinate system (shown in the figure above) can be found by

pre multiplying Eq. (3.7) with a half revolution rotation in the normal-axis (z axis):

R∗ =


−1 0 0

0 −1 0

0 0 1

 (A.15)

Thus the shearing velocity is

V (θ, ψ) = R∗V (A.16)

Carrying out the arithmetic in Eqs. (A.14) and(A.16) leads to the following relations

for the tangential and lateral shearing rates as

vjt (θ, ψ) =− [vx − ωzy + ωyz] cos (θ)

− [vy + ωzx− ωxz] sin (ψ) cos (θ)

+ [vz − ωyx+ ωxy] cos (ψ) cos (θ)

(A.17)
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and

vjl (θ, ψ) =− [vy + ωzx− ωxz] cos (ψ)

− [vz − ωyx+ ωxy] sin (ψ)

(A.18)

where the variables x, y and z come from the position vector:
x

y

z


= r(θ, ψ) =


(c+ a cos (ψ)) sin(θ)

b sin (ψ)

(c+ a cos (ψ)) cos(θ)


(A.19)

The shear deformation of the terrain j that has occurred at a point along the wheel terrain

contact patch can be calculated by integrating the shear rate over time. In Terramechanic

WTIM models a quasi-steady state rolling on horizontal ground is assumed. Hence the

velocity V H and the angular rate ωH at the wheel hub are treated as constants. Then the

shear deformation of the terrain j in the lateral and tangential directions can be calculated

using [16]

jl =

∫ t

0

vjldt =

∫ θf

θ

vjl
dθ

ωy
(A.20)

jt =

∫ t

0

vjtdt =

∫ θf

θ

vjt
dθ

ωy
(A.21)
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Carrying out the integration leads to the following relationships.

jt (θ, ψ) =
1

ωy



Ajt [sin θf − sin θ]

+ Cjt
[
cos2θf − cos2θ

]
/2

+Bjt[θf + sin θf cos θf − θ − sin θ cos θ]/2

+Djt[θf − sin θf cos θf − θ + sin θ cos θ]/2

+Ejt
[
cos2θf − cos2θ

]
/2



(A.22)

jl (θ, ψ) =
1

ωy


Ajl (θf − θ)

+Bjl (cos θ − cos θf )− Cjl (sin θf − sin θ)

 (A.23)

Ajt = −vx + ωzb sinψ

Bjt = −ωy (c+ a cosψ)

Cjt = −vy sinψ + vz cosψ + ωxb sinψ cosψ

Djt = −ωz (c+ a cosψ) sinψ − ωy (c+ a cosψ) cosψ

Ejt = ωx (c+ a cosψ) sinψ

(A.24)

Ajl = −vy cosψ − vz sinψ − ωxbsin
2ψ

Bjl = −ωz (c+ a cosψ) cosψ + ωy (c+ a cosψ) sinψ

Cjl = ωx (c+ a cosψ) cosψ

(A.25)
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A.4 Wheel Sinkage Depth Search Algorithm

All the variables for the terramechanic WTIM integral have been expressed in terms of

the angles (θ, ψ). The wheel kinematics, terrain property coefficients, and wheel geometry

constants must be known prior to integrating the stress along the contact patch. These

variables can be measured, produced by a simulation or treated as design variables. The

sinkage depth however is unknown and is searched for by the Terramechanic WTIM algorithm

[16]. To search for the sinkage depth an initial guess is taken, usually we start assuming the

wheel has not sunk into the dirt at all. The algorithm then evaluates the force component

normal to the terrain surface and compares that with the wheel load. If the terramechanic

model indicates the terrain reaction force is equal but opposite to the wheel load then the

sinkage depth has been found, otherwise a numerical searching method is used to increment

the sinkage depth and try again, this process is repeated until the correct depth is found.

For this model the integral is solved numerically with a double Gaussian quadrature and the

VanWijngaarden-Dekker-Brent search method is used to find the sinkage depth [22]. The

Terramechanic WTIM was realized in C source code and and compiled as a mex (MATLAB

executable) program for use in the MATLAB and Simulink simulation environments.
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Figure A.2: Terramechanic WTIM Algorithm
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A.5 Table

Table A.1: Terramechanic WTIM parameter description and values

Parameter Value Unit Description

a 22.94 cm Major Radius

2b 20.32 cm Wheel Width

c 5.0 cm Minor Radius

cm 4140 Pa Cohesion Coefficient

ϕ 13 deg Internal Friction Angle

n 0.5 − Sinkage Exponent

kc 13,190 N/mn+1 Cohesive Modulus

kϕ 692,000 N/mn+1 Friction Modulus

K 0.006 m Shear Modulus

a0 0.5 − Coefficient for θm

a1 0.5 − Coefficient for θm

λθ 0.9 − Coefficient for θr
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APPENDIX: B

PARAMETER IDENTIFICATION JACOBIANS
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B.1 Slip/Skid Ratio Partial Derivatives

The partial derivatives of the state equation require the partial for the absolute value of the

slip/skid ratio we begin with equation (4.3)

λj =


[(c+ a)ωj − ẋj]/(c+ a)ωj , |ẋj| ≤ |(c+ a)ωj|

[(c+ a)ωj − ẋj]/ẋj , |ẋj| > |(c+ a)ωj|
, j = r, l (B.1)

We now take the partial derivative with respect to the parameter identification scheme states

(5.1).

∂ |λl|
∂ẋR

=


−(c+a)ωl+Wψ̇R+ẋR

[(c+a)ωl]
2|λl|

, slip

(c+a)ωl[−(c+a)ωl+Wψ̇R+ẋR]
[Wψ̇R+ẋR]

3
|λl|

, skid

(B.2)

∂ |λl|
∂ψ̇R

=


W [−(c+a)ωl+Wψ̇R+ẋR]

[(c+a)ωl]
2|λl|

, slip

(c+a)ωlW [−(c+a)ωl+Wψ̇R+ẋR]
[Wψ̇R+ẋR]

3
|λl|

, skid

(B.3)

∂ |λl|
∂ωl

=


(ẋR+Wψ̇R)[(c+a)ωl−Wψ̇R−ẋR]

(c+a)2ω3
l |λl|

, slip

(c+a)[(c+a)ωl−Wψ̇R−ẋR]
[Wψ̇R+ẋR]

2
|λl|

, skid

(B.4)

∂ |λr|
∂ẋR

=


−(c+a)ωr−Wψ̇R+ẋR

[(c+a)ωl]
2|λr|

, slip

(c+a)ωr[−(c+a)ωr−Wψ̇R+ẋR]
[Wψ̇R+ẋR]

3
|λr|

, skid

(B.5)

∂ |λr|
∂ψ̇R

=


W [(c+a)ωr+Wψ̇R−ẋR]

[(c+a)ωr]
2|λr|

, slip

(c+a)ωrW [(c+a)ωr+Wψ̇R−ẋR]
[−Wψ̇R+ẋR]

3
|λr|

, skid

(B.6)
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∂ |λr|
∂ωr

=


(ẋR−Wψ̇R)[(c+a)ωr+Wψ̇R−ẋR]

(c+a)2ω3
r |λr|

, slip

(c+a)[(c+a)ωr+Wψ̇R−ẋR]
[Wψ̇R+ẋR]

2
|λr|

, skid

(B.7)

B.2 Process Model Jacobian

A =
∂f

∂x

∣∣∣∣
x̂

=


∂f1

∂x1
· · · ∂f1

∂x8

...
. . .

...

∂f8

∂x1
. . . ∂f8

∂x8



∣∣∣∣∣∣∣∣∣∣∣∣
x̂

(B.8)

B.2.1 Partial Derivatives for First State

f 1 = ψ̇RẏR +
2a1
m

[sign (λl) + sign (λr)− exp (−a2 |λl|)− exp (−a2 |λr|)] (B.9)

∂f 1

∂x1

∣∣∣∣
x̂

=
∂f 1

∂ẋR

∣∣∣∣
x̂

=
2a1a2
m

[
∂ |λl|
∂ẋR

exp (−a2 |λl|) +
∂ |λr|
∂ẋR

exp (−a2 |λr|)
]

(B.10)

∂f 1

∂x2

∣∣∣∣
x̂

=
∂f 1

∂ẏR

∣∣∣∣
x̂

= ψ̇R (B.11)

∂f 1

∂x3

∣∣∣∣
x̂

=
∂f 1

∂ψ̇R

∣∣∣∣
x̂

= ẏR +
2a1a2
m

[
∂ |λl|
∂ψ̇R

exp (−a2 |λl|) +
∂ |λr|
∂ψ̇R

exp (−a2 |λr|)
]

(B.12)
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∂f 1

∂x4

∣∣∣∣
x̂

=
∂f 1

∂ωr

∣∣∣∣
x̂

=
2a1a2
m

∂ |λr|
∂ωr

exp (−a2 |λr|) (B.13)

∂f 1

∂x5

∣∣∣∣
x̂

=
∂f 1

∂ωl

∣∣∣∣
x̂

=
2a1a2
m6.

∂ |λl|
∂ωr

exp (−a2 |λl|) (B.14)

∂f 1

∂x6

∣∣∣∣
x̂

=
∂f 1

∂a1

∣∣∣∣
x̂

=
2

m
[sign (λl) + sign (λr)− exp (−a2 |λl|)− exp (−a2 |λr|)] (B.15)

∂f 1

∂x7

∣∣∣∣
x̂

=
∂f 1

∂a2

∣∣∣∣
x̂

=
2a1
m

[|λl| exp (−a2 |λl|) + |λr| exp (−a2 |λr|)] (B.16)

B.2.2 Partial Derivatives for Second State

f 2 = −ψ̇RẋR − b

m
(β1 + β2 − β3 − β4) (B.17)

∂f 2

∂x1

∣∣∣∣
x̂

=
∂f 2

∂ẋR

∣∣∣∣
x̂

= −ψ̇R − b

m

(
∂β1
∂ẋR

+
∂β2
∂ẋR

− ∂β3
∂ẋR

− ∂β4
∂ẋR

)
(B.18)

∂f 2

∂x2

∣∣∣∣
x̂

=
∂f 2

∂ẏR

∣∣∣∣
x̂

= − b

m

(
∂β1
∂ẏR

+
∂β2
∂ẏR

− ∂β3
∂ẏR

− ∂β4
∂ẏR

)
(B.19)

∂f 2

∂x3

∣∣∣∣
x̂

=
∂f 2

∂ψ̇R

∣∣∣∣
x̂

= −ẋR − b

m

(
∂β1

∂ψ̇R
+
∂β2

∂ψ̇R
− ∂β3

∂ψ̇R
− ∂β4

∂ψ̇R

)
(B.20)
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∂f 2

∂x8

∣∣∣∣
x̂

=
∂f 2

∂b

∣∣∣∣
x̂

= − b

m
(β1 + β2 − β3 − β4) (B.21)

B.2.3 Partial Derivatives for Third State

f 3 =
2a1W

I

 sign (λl)− sign (λr)

− exp (−a2 |λl|) + exp (−a2 |λr|)

− bL

I

 β1 + β2

− β3 − β4

 (B.22)

∂f 3

∂x1

∣∣∣∣
x̂

=
∂f 3

∂ẋR

∣∣∣∣
x̂

=
2a1a2W

I

[
∂ |λl|
∂ẋR

exp (−a2 |λl|)−
∂ |λr|
∂ẋR

exp (−a2 |λr|)
]

− bL

I

(
∂β1
∂ẋR

+
∂β2
∂ẋR

− ∂β3
∂ẋR

− ∂β4
∂ẋR

) (B.23)

∂f 3

∂x2

∣∣∣∣
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∂ẏR

)
(B.24)

∂f 3

∂x3

∣∣∣∣
x̂

=
∂f 3

∂ψ̇R

∣∣∣∣
x̂

=
2a1a2W

I

[
∂ |λl|
∂ψ̇R

exp (−a2 |λl|)−
∂ |λr|
∂ψ̇R

exp (−a2 |λr|)
]

− bL

I

(
∂β1

∂ψ̇R
+
∂β2

∂ψ̇R
− ∂β3

∂ψ̇R
− ∂β4

∂ψ̇R

) (B.25)

∂f 3

∂x4

∣∣∣∣
x̂

=
∂f 3

∂ωr

∣∣∣∣
x̂

= −2a1a2W

I

[
∂ |λr|
∂ωr

exp (−a2 |λr|)
]

(B.26)

∂f 3

∂x5

∣∣∣∣
x̂

=
∂f 3

∂ωl

∣∣∣∣
x̂

=
2a1a2W

I

[
∂ |λl|
∂ωl

exp (−a2 |λl|)
]

(B.27)

59



∂f 3

∂x6

∣∣∣∣
x̂

=
∂f 3

∂a1

∣∣∣∣
x̂

=
2W

I
[sign (λl)− sign (λr)− exp (−a2 |λl|) + exp (−a2 |λr|)] (B.28)

∂f 3

∂x7

∣∣∣∣
x̂

=
∂f 3

∂a2

∣∣∣∣
x̂

=
2a1W

I
[|λl| exp (−a2 |λl|)− |λr| exp (−a2 |λr|)] (B.29)

∂f 3

∂x8

∣∣∣∣
x̂

=
∂f 3

∂b

∣∣∣∣
x̂

= −L
I
(β1 + β2 − β3 − β4) (B.30)

B.2.4 Partial Derivatives of the Fourth State

f 4 = kω (ωc,r − ωr) (B.31)
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B.2.5 Partial Derivatives of the Fifth State

f 5 = kω (ωc,l − ωl) (B.33)
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