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ABSTRACT 

Ultrashort pulse lasers are well-established in the scientific community due to the wide range of 

applications facilitated by their extreme intensities and broad bandwidth capabilities.  This thesis 

will primarily present the design for the Mobile Ultrafast High Energy Laser Facility  

(MU-HELF) for use in outdoor atmospheric propagation experiments under development at the 

Laser Plasma Laboratory at UCF.  The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse 

Amplification (CPA) laser, operating at 10 Hz.  Some background on the generation of very high 

intensity optical pulses is also presented, alongside an overview of the physics of filamentation.   

As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large 

amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped 

Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor.  As 

part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design 

the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry 

technique.  The work demonstrates the feasibility of using a compact monolithic pulse stretcher in 

terawatt class CPA lasers.  
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INTRODUCTION AND MOTIVATION 

The Laser Plasma Laboratory at CREOL is developing an ultrashort pulse near-IR laser for use in 

field propagation studies, including the creation and study of very long filaments[1].  Applications 

for such lasers include but are not limited to remote supercontinuum sensing, plasma channel 

electric discharge guidance (laser induced lightning), and laser induced plasma x-ray sources[2, 

3].   There has been research into missile countermeasure applications, and promising results using 

the high intensity pulses to damage guiding optics[4].   

The Mobile Ultrafast High Energy Laser Facility (MU-HELF) will include a self-contained, sub 

ps, 500 mJ, 780 nm pulsed laser system specifically designed for stability and usability in a variety 

of climates and environments.  The container is a 40 ft shipping container, and provides a control 

room, gowning area, and clean room to house the laser itself, as well as the Laser Optics Turret 

and Instrumentation System (LOTIS) laser tracking mount.  The LOTIS is an active beam tracking 

and directing system with up to 190 nrad resolution in lab conditions and is the first dynamic 

tracking system to be used with targets over a very large field of view illuminated by an ultrashort 

pulse laser system over multi kilometer ranges. 
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Figure 1.  3-dimensional schematic of the MU-HELF 

 

Figure 2.  Floorplan of the MU-HELF. 
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The MU-HELF improves over previous mobile short-pulse lasers, such as the TeraMobile[5] in 

several ways.  We anticipate greater energy per pulse: 500 mJ vs 350 mJ, the MU-HELF can 

extend the filamentation process further, or produce more filaments.  It has greater stability thanks 

to a fiber oscillator rather than a solid state Ti-Sapphire oscillator and a stretcher that uses a solid 

state chirped Volume Bragg Grating (VBG) pulse stretcher, rather than a diffractive grating pair.  

This front end also allows for a smaller footprint which is crucial in a self-contained mobile laser 

system, where space is very limited. 

LPL has long experience in femtosecond NIR laser systems.  The Multi-Terawatt Filamentation 

Laser (MTFL) facility: a 300 mJ class 40 fs laser system and the High Energy, Repetition rate 

Adjustable, Carrier Locked to Envelope System (HERACLES): a few fs optical parametric chirped 

pulse amplification laser are both ultrashort pulse laser facilities in operation under the LPL.  The 

experience gained from experiments in MTFL and HERACLES has led to several important 

insights about the importance of measurements and stability in an ultra-short laser system.  The 

diagnostic techniques developed in MTFL have been applied in MU-HELF to maximize 

performance and stability while minimizing downtime for realignment and troubleshooting. 
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ULTRASHORT LASER SOURCES 

Ultrashort laser systems demand management of bandwidth and dispersion, avoiding optical 

damage associated with very high fluence and intensities, and precise measurement[6].  This 

section will offer some background in short pulse, high energy laser sources in general, as well as 

the specific methods employed in the MU-HELF system. 

Short Pulse Generation 

While discussing short pulse generation, it is important to discuss some terms.  “Bandwidth” refers 

to the constituent frequencies of a light pulse; the shorter a pulse, the larger the bandwidth required 

to produce it.  The transform limit is the shortest possible pulse duration for a given bandwidth 

and is achieved when all of the constituent frequencies are in phase with each other.  For Gaussian 

pulse shapes, 

𝜏𝑝 (𝑇𝐿) =
2∗𝜋

2𝜔𝑏
 [7]          ( 1 ) 

           

Where τp (TL) is the transform limited pulse duration and ωb is the frequency bandwidth.  This 

relation holds true for Gaussian pulse duration and spectral content, and is sufficiently accurate to 

describe the spectra exhibited by the MU-HELF system.   

There are several methods for generating very short pulses: Q switching, gain switching, and mode 

locking will all be discussed here, with an emphasis on mode locking. 



5 

 

Q switching 

Active Q switching is the process of quickly varying cavity losses (usually by way of an acousto-

optic modulator, electro-optic modulator, or piezo resistor) in order to output energy stored in the 

gain medium in a short pulse on the order of ns.  Effectively, the energy is stored in the “off” 

condition while the cavity Q is low. The inversion of the gain medium increases to much higher 

than in CW, when the cavity Q is increased a pulse rapidly builds up from noise and extracts the 

stored energy [8-10].   

Figure 3 demonstrates an active Q switched pulse on the order of 500 ns, and the corresponding 

function generator output to an intracavity AOM.  While the AOM is on, light is deflected, “turning 

off” the cavity.  Note, the AOM is turned off for a brief time, lowering the loss in the cavity, which 

allows for the stored energy to be output. 

 

Figure 3.  Example of a Q switched pulse. 
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Gain Switching 

Gain switching functions under a similar principle, but the gain is modulated (by modulating the 

pump power) rather than the loss in the cavity.  The pump power is kept at a level below the lasing 

threshold, then suddenly increased to above the lasing threshold.  In the CW case, the inversion 

oscillates and relaxes to the steady-state value;  in gain switching the pump can be modulated to 

release as little as a single relaxation oscillation with a high peak power [11, 12]. 

 

Figure 4.  Schematic of gain switched pulse [12]. 

Mode Locking 

Theorized and reported soon after the advent of the laser [13, 14], active mode locked lasers use 

some modulation technique like active Q switched lasers, but they modulate at a resonant 

frequency related to the free spectral range of the laser cavity: the difference between the 

frequencies of allowable longitudinal modes. 
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𝑣𝑓𝑠𝑟 =
𝑐

𝐿∗𝑛𝑔
 [7]          ( 2 ) 

In equation 2, vfsr is the free spectral range, c is the speed of light, L is the round trip path of the 

cavity, and ng is the refractive index in the optical path.  This modulation generates sidebands in 

the frequency space of the gain medium that match other supported longitudinal cavity modes.  As 

the supported cavity modes are all separated by the free spectral range, the effect repeats until the 

entire gain bandwidth is filled; all possible longitudinal modes are amplified, rather than only one 

near the gain peak.  This produces a very large bandwidth and a very short pulse.  It is important 

to note that without dispersion management, dispersion typically limits the mode locked bandwidth 

to smaller than the bandwidth of the gain medium. 

 

Figure 5.  Pulse development of a mode locked laser[6].  
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Passive mode locking produces short pulses using a very fast saturable absorber: a saturable 

absorber that can “reset” faster than a round trip of the cavity; and was explored several years after 

the active configuration[15, 16].  A short circulating pulse becomes the only allowable mode in 

the laser cavity, as the absorber will suppress lower power modes.  Similar to active mode locking, 

this induces a modulation with a period equal to the round trip time of the cavity; the opacity of 

the absorber is lowered while it is sees the circulating pulse each round trip.  This is the most 

common method for pulse generation for femtosecond lasers, and is the principle behind both the 

Ti-Sapphire oscillator in the laser plasma laboratory’s MTFL laser and the Erbium fiber oscillator 

in the MU-HELF system.  Once the pulse is generated by the oscillator, it is amplified to much 

higher energies through Chirped Pulse Amplification (CPA). 

 Chirped Pulse Amplification 

CPA is a method for amplifying short pulses to very high powers, first explored in the mid-

1980s[17, 18].  For example, it is not possible to directly amplify a 100 fs pulse beyond mJ energies 

without inducing undesirable nonlinear effects and/or optical damage.  CPA avoids this limitation, 

by engineering the dispersion of the system such that the nearly transform limited pulse (100 fs for 

MU-HEL) is stretched in time.  This stretch is accomplished by delaying some frequencies more 

than others, to broaden the pulse duration and significantly lower peak power while maintaining 

pulse energy.  This change in phase for different frequencies is known as dispersion or chirp. 



9 

 

The chirped pulse is amplified in one or more stages, reaching up to several hundred mJ pulse 

energy.  As the energy is increased, the beam size must be increased as well in order to avoid 

exceeding the damage threshold fluence[19]. 

 

Figure 6. Chirped Pulse Amplification 

The dispersion input by the stretcher and the relatively small dispersion of the amplification 

components must be compensated precisely by the compressor, though most tools have limitations 

on the shape of the curve of dispersion they can provide.  Normally, in order to be able to analyze 

the full system’s and the individual components’ dispersion meaningfully, we inspect the Taylor 

expansion of the phase delay about the center wavelength, and compensate each order individually.  

This is important, because there are usually some constraints on our control of dispersion; for 

example, the Treacy compressor we use in our configuration has a set ratio of 2nd order to 3rd order 

dispersion.  A custom chirped volume Bragg grating or fiber Bragg grating may offer more degrees 

of control, but sacrifice some precision.  The DAZZLER, a programmable dispersive device, offers 
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more degrees of control, capable of generating a loosely constrained chirp function over several 

orders[20, 21].  We use all of these components to manufacture and then compensate the chirp, 

before and after amplification; the specifics of each will be detailed in the following section.   

 

Figure 7.  Phase delay of BK7 

 

Figure 8.  Dispersion of BK7. 
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Figures 7 and 8 show the phase delay of BK7 and 2nd through 5th order dispersion, in fs^M/mm, 

as calculated using the Sellmeier equations[22, 23].  These values are calculated for all the 

constituent materials of the MU-HELF system, and used for the design specifications of the 

stretcher and compressor. 

One unique aspect of the MU-HELF system is the asymmetry of the chirp components; most CPA 

systems use a similar components for stretching and compressing the pulse.  We are using a custom 

chirped volume Bragg grating to stretch the pulse, to reduce size and potential for misalignment.  

Large aperture diffraction gratings are required in the compressor in order to handle the TW peak 

power output.  The compressor offers some degree of control to adjust/optimize the overall 

dispersion of the system, with the DAZZLER for fine tuning. 

 

 Filamentation 

Ultrashort light pulses with a duration on the order of femtoseconds (10-15 seconds) are critical in 

a wide range of scientific investigations.  The ultrashort pulse duration allows for extremely high 

power and intensity, which lends itself to studying nonlinear processes including multiphoton 

absorption, self-phase modulation, Kerr self-focusing, etc.  High energy ultrashort pulse lasers also 

have applications in ablation manufacturing, atmospheric sensing, and are being explored for use 

in nuclear fusion [24, 25].  The primary application of the MU-HELF laser system is the study of 
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kilometer range atmospheric propagation of high energy pulses undergoing filamentation, the 

physics of which are described briefly below. 

Filamentation is an example of a spatial soliton (a light beam whose spatial characteristics are 

unchanging during propagation) arises from a balance between the diverging effects (linear 

divergence, plasma refraction) and self-focusing [1].  Pulses with very high peak power, greater 

than the critical value given by equation 3 will self-focus enough to overcome diffraction. [26] 

𝑃𝑐𝑟𝑖𝑡 = 0.148 ∗
𝜆2

𝑛∗𝑛2
  ( 3 ) 

If the induced Kerr lens overcomes beam divergence, the beam will collapse [27].  It is important 

to note that the critical power does not depend on beam size, which may be unintuitive; though 

larger diameter beams are less affected by the nonlinear effects of the medium, they are more 

greatly affected by the effective difference in refractive index.  The beam is constrained over some 

distance determined by the geometrical focus of the system and the self-focusing n2 effects. 

The second critical component for filamentation is the formation of a plasma once the intensity of 

the beam surpasses the ionization threshold.  The formation of a plasma (photo-ionization) due to 

multi-photon absorption and tunnel ionization is strongly dependent on field intensity [28], and 

occurs suddenly near the beam collapse.   The plasma causes a local reduction in refractive index 

according to equation 4. 
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𝑛 ≅ 𝑛0 −
𝜌(𝑟,𝑡)

2𝜌𝑐
 ( 4 )  

Where 𝜌 is the density of free electrons and 𝜌𝑐  is the value of critical plasma density above which 

the plasma becomes opaque.  This will add to diffraction in order to expand the beam, balancing 

the effects of self-focusing [27]. 

 

Figure 9. Simple model for self-focusing and plasma defocusing. 

In the absence of other nonlinear effects, the high intensity of the laser beam creates a local increase 

in refractive index (a) that acts as a positive lens, and leads to eventual collapse.  When the intensity 

of the beam is sufficient to cause photo-ionization, the local decrease in refractive index from the 

plasma acts as a negative lens (b). 

The intensity eventually overcomes the ionization threshold, and the plasma divergence effects 

balance the focusing effects, locking the intensity near the ionization threshold [2].  Below is the 
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simulated intensity vs distance in vacuum (dashed) and air (solid).  Without the second order 

nonlinearities of air, intensity decreases gradually with distance.  With the Kerr self-focusing 

effects of air, the intensity is locked near the ionization intensity of air [2]. 

  

 

Figure 10. Intensity clamping due to filamentation. 

Because the self-focusing, the formation of plasma, and the plasma divergence are functionally 

dependent on the spatial intensity distribution of the beam, a relatively smooth and temporally 

stable pulse profile is desirable for single filament experiments, or for well controlled multiple 

filament arrays.  Intensity clamping forms an upper limit to the intensity of the beam; in cases of 

imperfect or modulated beam profiles, multiple filamentation will occur with sufficient peak 
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powers.  In the case of very smooth beam profiles, the volume of the plasma will increase, while 

the intensity will remain clamped near the ionization intensity[29]. 

For applications requiring filamentation at long range, experimentalists use a combination of very 

long geometric focus, variable initial beam diameter, and chirp[30].  Equation 5 gives 

filamentation onset distance zf as a function of initial peak power P, critical power Pcr, wave vector 

k, and initial e-1 beam radius a.  Equation 6 gives zf’, the filamentation onset with external focusing. 

𝑧𝑓 =
0.367𝑘𝑎2

(((
𝑃

𝑃𝑐𝑟
)

1
2−0.852)

2

−.0219)

1
2

 ( 5 ) 

𝑧𝑓
′ =

𝑧𝑓𝑓𝑒𝑓𝑓

𝑧𝑓+𝑓𝑒𝑓𝑓
 ( 6 ) 

 Where feff is the effective focal length of the optical system.  Even at a kilometer, the dispersion 

of air is small compared to the chirp of the laser pulse, but is used to lower the initial peak intensity 

to postpone plasma formation.[5, 27, 30, 31]. 
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ARCHITECTURE AND DESIGN 

The Mobile Ultrafast High Energy Laser Facility (MU-HELF) includes a chirped pulse 

amplification laser.  It consists of a femtosecond Erbium fiber oscillator emitting at 785 nm, a 

custom volume Bragg grating, a Ti-Sapphire regenerative amplifier, 2 multi-pass amplifiers, a 

Treacy compressor made up of two double passed diffraction gratings, and a DAZZLER for 

precise dispersion control.  This section will describe the functionality and physics behind each 

component in detail, as well as provide the design considerations that have led to this final 

configuration. 

 

Figure 11.  Optical Schematic of the MU-HELF Laser 
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Oscillator 

The oscillator that produces the seed for the system is a 50mW average power 100fs erbium fiber 

laser by Toptica (FemtoFErb 780).  A passively mode locked fiber laser[32] that uses a 

semiconductor saturable absorbing mirror (SESAM) to mode lock around 1550 nm.  The output is 

subsequently frequency doubled in periodically-poled lithium niobate (PPLN) to convert the 

wavelength to 785 nm, within the gain band of Ti-Sapphire.  It offers several advantages over 

solid-state Ti-Sapphire oscillators. 

Relative to conventional Ti-sapphire oscillators, the integrated fiber design makes it very stable 

and “turn-key”.  Furthermore; the FemtoFErb 780 is very compact, taking up only 69 x 122 x 202 

mm.  Its electrical power requirement is less than 20W, which becomes important in a mobile 

system, as power and cooling are both at a premium.  It generates 100 fs pulses at 100 MHz at 785 

nm with a Gaussian output beam with an R2 of 0.99994.  The measured spectrum yields a transform 

limit of very near 90 fs FWHM with approximately 12 nm FWHM bandwidth. 

Volume Bragg Grating pulse stretcher 

The second component in the system is a custom inscribed chirped VBG, to introduce the specific 

amount of second and third order dispersion required to compensate the rest of the system and the 

compressor.  The technology is based on aperiodic refractive index perturbations, and has been 

well established for use in dispersion compensation [33, 34].  The Bragg structure is engineered 

such that different wavelengths reflect at different positions along the volume enabling 
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customization of the spectral phase over a set spectral bandwidth.  The VBG is designed and 

fabricated by OptiGrate to provide second and third order dispersion of the system derived as part 

of this masters’ thesis [35].   

Though chirped VBGs have been available commercially since 2014, nonlinearly chirped volume 

Bragg Gratings (Gratings with nonzero third order dispersion) are novel and this work is the first 

time a CVBG has been used to compensate a Treacy compressor.  While it is relatively common 

to use a pair of linear CVBG’s in low energy systems, the very high energy output we are expecting 

from our system prohibits this approach.  As the VBG in our setup is only 5mm square aperture, 

the intensity of the compressed pulse would be many orders of magnitude above the damage 

threshold.  Record pulse compression in VBGs in the fs regime is on the order of 1 mJ [35]. 

  

Figure 12.  Chirped Volume Bragg Grating. 
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Titanium-Sapphire Amplifiers 

Titanium-Sapphire has been known as desirable gain medium for very short pulse lasers since the 

mid-1980s due to its extremely large output wavelength range.  The Ti3+ is a Vibronic ion, meaning 

the emission of photons is accompanied by phonons due to lattice vibrations to such an extent as 

to allow tunability over a very broad range; in the case of a mode-locked laser or a short pulse 

amplifier, it allows a very broad bandwidth emission and amplification[36]. 

 

Figure 13.  Vibronic energy level diagram of Ti: Al2O3. [36] 
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Figure 14.  Absorption, Gain, and Fluoresence spectra of Ti: Al2O3.[36] 

 

This has lead to lasers with outputs as low as 5 fs (with intracavity dispersion correcting elements) 

Ti-Sapphire is also the primary pumped used for high harmonic generation for Attosecond science.  

[37]. The MU-HELF will have 20 nm bandwidth (full width half maximum), centered about 785 

nm, to support 100 fs time-bandwidth limited pulses.  This system uses  3 amplifiers Ti-Sapphire: 

a regenerative 12-15 pass amplifier, a six pass pre-amplifier, and a 4 pass final amplifier. The 

regenerative amplifier and the pre-amplifier are pumped at 532 nm from a Quantel green laser, 
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and the final amplifier is pumped by a Quanta-Ray pro 350; both are 532nm frequency doubled 

Nd:YAG flashlamp pumped lasers.[27] 

 

Figure 15. Regenerative Amplifier and Preamplifier 
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Figure 16.  Final Amplifier 

DAZZLER 

The DAZZLER is an acousto-optic programmable dispersive filter (AOPDF) that enables 

customization of the spectral phase over a small range.  Acousto-optic modulators function using 

the stress dependent refractive index of certain crystals in order to form a periodic refractive index 

“grating” from the compression caused by a sound wave[38].  The DAZZLER by Fastlite 

modulates the sound wave passed into the crystal, which gives precise control over the phase and 

amplitude characteristics of the refracted beam[20, 21, 39].  Different frequencies can be refracted 

at different points along the crystal generating spectral chirp, and modulation depth can be varied 

to control the amplitude of the pulse. 
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Figure 17.  Functional description of the AOPDF [20]. 

Treacy Compressor 

Reflective gratings function by reflecting different wavelengths at different angles, introducing 

spatial chirp.  As first demonstrated by Treacy, 2 parallel gratings can be arranged such that the 

optical path length is a function of the wavelength.  The beam is then reflected off of a periscope, 

back onto the second grating and again onto the first, such that the difference in optical path length 

becomes the induced dispersion.  In a Treacy compressor, 2nd and 3rd orders of dispersion dominate 

[40].  
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Figure 18. Treacy Compressor [40]. 
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DISPERSION AND STABILITY 

The most important attribute of an ultra-short pulse laser for use in a mobile system is stability, as 

it will be subjected to stressful environments including a relatively wide variety of temperatures 

and humidity beyond the norm for a laboratory based laser.  The trailer and enclosure will 

compensate for large scale environmental variation, but from experience with static femtosecond 

laser systems it is known that temperature variation in the regenerative amplifier, as small as 0.2° 

C, can have detrimental effects on the pulse duration and amplitude by affecting the pointing vector.  

In this section, we define the methods used for dispersion compensation and explore how 

instability in temperature and humidity might affect peak power. 

 Nominal Dispersion 

Without an adjustable grating system for the pulse stretcher, it becomes extremely important to 

have a very accurate estimation of the system dispersion. 

While the custom dispersion optics are only tunable to the 3rd order, the rest of the system 

dispersion was approximated to at least the fourth order by way of measuring material thickness, 

and finding the unitary dispersion for each order and material.  To this end, we perform a 

differentiation of the phase φ(ω) using the Sellmeier equation to approximate the refractive index 

n (note, this assumes that R, an arbitrary vector through the optical system is collinear with k, the 

propagation vector).   



26 

 

 𝜑(𝜔) = 𝑘(𝜔) ∙ 𝑅 =
𝜔∗𝑛(𝜔)∗𝑅

𝑐
 ( 7 ) 

The first derivative, is tied to “group delay” τg which does not affect to pulse duration. 

  𝜏𝑔 = −𝜑′(𝜔).            ( 8 ) 

The second derivative of the total phase accumulated per angular frequency is the group delay 

dispersion, which is related to linear chirp and used to “stretch” or “compress” the pulse duration.  

Higher orders of chirp (higher derivatives of phase accumulation) also have an effect on pulse 

shape and duration, and may need to be compensated.  In our system, we will rely on the 

DAZZLER to compensate dispersion above the 3rd order, but it is important to have an accurate 

model of these higher orders to know how much and of which sign of dispersion to program into 

the DAZZLER.  The materials include BK7, fused silica, Ti:sapphire, KDP, air, the acousto-optical 

crystal that makes up the DAZZLER, the VBG stretcher, and the Treacy compressor.  

The nominal dispersion of the system can be optimized by mechanical optimization of the Treacy 

compressor to at least 88% of the transform limited peak power.  The DAZZLER allows for fine 

dispersion compensation up to very near the transform limit. 

The optimization of the compressor will be slightly different from design parameters due to the 

precision of the VBG.  To demonstrate the sensitivity of the Treacy compressor, we compare the 
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design of 32° incident angle into the first grating, and longitudinal separation of 28.66 cm with 

optimization was found at 31.86° and 28.16 cm.  

 

Figure 19.  Variation of pulse envelope between design parameters and numerical optimization. 

 Stability 

It is important to all ultra-short pulse lasers that the temperature, humidity, and mechanical stability 

be maintained.  To give approximate worst-case analysis of variation of temperature and humidity, 
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the dispersion variation due to refractive index changes over temperature, and over variation in 

angle and grating separation were simulated.  We find that refractive index of air does not alter our 

dispersion significantly (for temperature fluctuations of 20°C). 

 

Figure 20.  Peak power variation based on temperature dependent refractive index of air. 

Much more significant is the dispersion due to the expansion or compression of the mount material 

of the gratings.  Using the well-known value for the coefficient of thermal expansion of aluminum 

and estimating a mount size of 10 cm, the grating separation changes on the order of 44 µm.  This 
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corresponds to a change in peak power of still less than 1 percent, and is very easily compensated 

by the DAZZLER.  Obviously as these mechanisms are cumulative throughout the system, the 

cumulative effect of thermal perturbations on the entire system will be an order of magnitude 

greater than any individual one, but these simulations offer a scale to consider in design. 

 

Figure 21.  Variation in peak power based on thermal expansion in compressor 
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 Diagnostics and Feedback 

For consistent and robust function of a femtosecond laser, the design must include diagnostics 

which provide feedback for day-to-day operation and long-term stability.  For the front end, 

pointing stability into the VBG is important to analyze and maintain, as it will have a significant 

effect on dispersion and amplitude.  As this is something that may change relatively easily through 

slow instability in lens and mirror mounts, it should be monitored constantly; though as it has a 

very strong effect on spectrum it can be monitored either before or after the regenerative amplifier 

without much increase in ambiguity.  As in a standard Titanium-Sapphire oscillator, it becomes 

necessary to be able to measure the full pulse characteristics of the oscillator output by way of a 

frequency resolved optical gate (FROG)[41, 42], as a relatively small change in the oscillator can 

cause the mode locking mechanism to malfunction or beam pointing to change through the 

regenerator.  That being said, the FemtoFerb fiber oscillator has demonstrated no measureable 

variation from turn-key performance. 

It is critical to have energy measurements and beam profile measurements after each major stage 

of the laser, to be able to indicate misalignment, damage or associated anomalies (dust spots, color 

center formation, opto-mechanical variation, pump profile instability etc.).  After the compressor, 

it necessary to characterize the pulse shape and duration, in order to confirm dispersion 

optimization.  To this end, a flip mirror that redirects light into a path toward a characterization 

section will be implemented, for spectrometer measurements and FROG traces.   
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 Dispersion Characterization 

In order to confirm the function of the VBG, we need a characterization method capable of 

resolving phase differences generated by delay times on the order of 500 ps.  Spectral 

interferometry is the preferred method, as it is a relatively simple setup with accurate and 

reproducible results.  However, a single shot spectral interferogram with the reference pulse in the 

center of the chirped pulse, requires a spectrometer with a resolution approaching 1 pm.  There are 

2 solutions to this problem presented here:  First, by scanning the reference pulse over the entire 

range of the chirped pulse and recording the location of the interferometric against the path delay 

in time; second, by constructing a spectrometer that can resolve a large portion of the interferogram, 

and scanning the reference in a few steps over the chirped pulse. 

Spectral interferometry is a technique for measuring phase as a function of frequency φ(ω).  Two 

wavefronts are interfered in a Michelson configuration, having the form 

𝐸1(𝜔) ∗ 𝑒−𝑖(𝛺(𝑡1−𝑡0)+𝜑(𝛺)) ; 𝐸2(𝜔) ∗ 𝑒−𝑖𝛺(𝑡2−𝑡0)) ( 9 ) 

Where Ω is ω-ω0.  Constructive and destructive interference induces an oscillation governed by 

i* 𝛺 *t (where t =t2 – t1).  φ(Δω) is the phase added by the CVBG.  t is controlled by a translation 

stage, which will change the path length of the unchirped arm (t = 2*c*Δd).  A spectrometer is 

used to measure the spectral intensity of the combined beams, and from that data we construct the 

plot of φ(Ω). 
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Figure 22.  VBG Characterization Setup 

𝐼 = |𝐸1(𝜔) + 𝐸2(𝜔) ∗ 𝑒−𝑖𝛺∗𝑡−𝑖𝜑(𝛺)|
2

  ( 10 ) 

I is the form of the intensity after factoring out a constant phase coefficient, that does not manifest 

in the intensity measurement.  If we are using a 50/50 beam splitter, E1=E2.   

𝐼 = 2𝐸(𝜔)2 + 2𝐸(𝜔)2 ∗ cos (𝛺 ∗
𝑡

2
−

𝜑(𝛺)

2
) ( 11 ) 

The first method does not require a very high resolution spectrometer; it uses a LIBS 2500+ 

interferometer with 100 pm resolution by Ocean Optics.  The recording process is straightforward 
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and requires almost no post-processing.  The slope of peak wavelength vs delay (in time) gives 

our chirp in ps/nm; a polynomial fit yields the higher orders.  As very few cycles are resolved, 

there is one obvious peak where there is constructive interference.  This can be approximated by 

the convolution of a 100 pm Gaussian over the intensity function.  The oscillations that are very 

fast are averaged out by the relatively broad resolution of the spectrometer. 

Often, Taylor expansion of the phase about ω0 is used to separate orders of phase. 

𝜑(𝜔) =  𝐶1 ∗ (𝜔 − 𝜔0) +
𝐶2

2
∗ (𝜔 − 𝜔0)2 +

𝐶3

6
∗ (𝜔 − 𝜔0)3 ( 12 ) 

Where Cn is the nth order of dispersion.  This is 3rd order Taylor expansion of 𝜑(𝜔).  C1 is ignored.  

C2 is the primary variable we are concerned with, as it forms the largest part of the dispersion, 

followed by C3, which are the 2nd and 3rd derivatives of  𝜑(𝜔), respectively, usually expressed in 

psn.  

 This is not a very intuitive or immediately useful measurement, as bandwidth is commonly 

expressed in nm.  As such, the equation is transformed slightly to achieve units of ps/nm^(n-1). 

1

2

𝑑(
𝐶2
2

∗(𝛺)2+
𝐶3
6

∗(𝛺)3−𝑡∗𝛺)

𝑑𝛺
 ( 13 ) 

𝑡 =  𝐶2 ∗ (𝛺) +
𝐶3

2
∗ (𝛺)2  ( 14 ) 
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Using the relation  

𝛺 = 𝜔 − 𝜔0 =
2∗𝜋∗𝑐

𝜆
−

2∗𝜋∗𝑐

𝜆0
  ( 15 ) 

New constants in the wavelength domain can be generated that more intuitively express the linear 

and quadratic relationship in second and third order dispersion, respectively. 

𝐷2 = 𝐶2 ∗
2∗𝜋∗𝑐

𝜆0
2 ; 𝐷3 = 𝐶3 ∗ (

2∗𝜋∗𝑐

𝜆0
2 )

2

+ 𝐶2 ∗
2𝜆0

2∗𝜋∗𝑐
 ( 16 ) 

And our new dispersion equation becomes 

𝑡 =  𝐷2 ∗ (𝛥𝜆) + 𝐷3 ∗ (𝛥𝜆)2 ( 17 ) 

With D2 and D3 being expressed in ps/nm and ps/nm2 respectively. 

Then, Equation 12 becomes  

𝑡 =  𝐷2 ∗ (𝛥𝜆𝑝𝑒𝑎𝑘) + 𝐷3 ∗ (𝛥𝜆𝑝𝑒𝑎𝑘)
2
 ( 18 ) 

making it very easy to fit a 2nd degree polynomial to the plot of t vs. 𝛥𝜆𝑝𝑒𝑎𝑘 in order to determine 

the values for D.  Figure 23 shows the peak wavelength near 788 at 55 mm on the translation stage 

after correcting for the background.  This obvious peak is only evident at the wavelength at which 
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the unchirped pulse coincides with the chirped pulse.  70 or more of these plots are algorithmically 

processed to show the location of the peak vs time delay. 

 

Figure 23.  Sample plot of spectral interferometer. 
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Figure 24 shows one example of the polynomial fit to the custom VBG.  The nominal values are 

D3 = -0.1123 ps/nm2 and D2 = 27.6 ps/nm.  The method overall demonstrates roughly +/- 10% 

confidence on the 3rd order dispersion, which is sufficient for our purposes. Das λ-λ0 

 

Figure 24. Polynomial fit to custom VBG. 
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The caveat is that it relies on the position on the translation stage for the measurement of delay.  

This is subject to inaccuracies due to the angle of the translation stage and the interferometer beam, 

as well as any imperfections in the screw drive itself.  The time delay is extracted directly from 

the position of the translation, so any angle will appear as faster chirp. 

The second method requires the construction of an entire interferometer with several meters of 

propagation to generate sufficient resolution, but each point in the scan of the reference pulse over 

the chirped pulse will give information over several nanometers at least.  Looking back at Equation 

16, the area around the peak is explored within the resolution of the spectrometer.  The peak sets 

the center frequency for the analysis, and about that peak we see oscillations of increasing 

frequency.  Then the relative time delay is adjusted using the translation stage, to a new center, 

and take the data again; we correct the offset (t0) so that a previously resolved wavelength is at the 

same delay.  As many wavelengths will be resolved redundantly, the technique is self-referencing; 

the information about phase delay comes from the period of oscillation in the interferogram rather 

than from the position of the translation stage, eliminating that source of imprecision.  As the 

spectrometer that we constructed also requires rotation scanning of the grating, this method takes 

more time.  It also requires post-processing the data by fitting the oscillation to polynomial cosine 

function, which is not trivial.  In this work, the first characterization method was used. 

It is important to simulate the ramifications of small amounts of residual 2nd and 3rd order 

dispersion in the output pulse.  The VBG is the largest source of dispersion, so it is the largest 

possible source of uncompensated dispersion.  Figure 25 below demonstrate the effects of various 
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levels of uncompensated 2nd and 3rd order dispersion on the output pulse; it is important to note 

that optimization using the DAZZLER and compressor adjustment allow for compensation well 

beyond the uncertainty of the characterization process. 

 

Figure 25.  Simulated effects of small amounts of dispersion on TL pulse. 

Figure 25 shows the pulse shapes that would be generated if the pulse were chirped with 2nd or 3rd 

order dispersion equal to 1/1000 of the prescribed stretched value.  Depending on the sign of the 
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chirp, this could lead to slow compensation in air, delaying the onset of the transform limited pulse 

on the order of 2ps/km.  If the residual chirp is positive (the same sign as air) the pulse will continue 

to broaden as it propagates. 
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CONCLUSIONS 

In conclusion, the 100 fs 500 mJ MU-HELF laser system was presented.  The self-contained laser 

laboratory will be used in short pulse propagation experiments, with capabilities for beam tracking 

and dynamic guidance in varied environments, and is in late stage development through the Laser 

Plasma Laboratory at the University of Central Florida.  This system will be the highest energy 

mobile femtosecond laser system in existence, with several unique innovations that serve to 

improve long term stability and ease of alignment and diagnostics. 

In order provide some background on short pulsed lasers, Chapter 2 presents some methods for 

generating ultrashort high intensity pulses, including Q switching, Gain Switching, and Mode 

Locking, alongside a physical description of chirped-pulse amplification.  Filamentation, the 

nonlinear phenomenon that leads to spatial soliton formation in air and a key application for the 

MU-HELF system is reviewed in some detail as well.  In order to generate the short pulse and high 

energy prescribed, a mode locked oscillator is used to generate a short pulse which then undergoes 

Chirped-Pulse amplification. 

The design of the MU-HELF pairs a chirped VBG stretcher to a Treacy compressor to accomplish 

CPA.  This is believed to be the first implementation of a nonlinear chirped VBG in a high energy 

CPA system.  This requires full characterization of the dispersion of the system so that it can be 

sufficiently compensated by the VBG.  The VBG itself must also be characterized using spectral 
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interferometry to confirm its performance.  The method for measuring very large amounts of 

dispersion has been confirmed on several sample VBGs before final implementation. 

Through the capabilities of the MU-HELF system, the Laser Plasma Laboratory will be capable 

of unique very long range filament propagation experiments in atmosphere, including dynamic 

tracking and guidance of illuminated targets up to several kilometers. 
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APPENDIX: DISPERSION CHARACTERIZATION MODELING 
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Figure A1 shows a sample code for calculating dispersion. Φ is the dispersion accumulated over 

1mm, or the wave vector k in radians/mm.  ω is measured in GHz, and λ is in µm.  GDD, TOD, 

FOD, and FiOD are in fs2, fs3, fs4, and fs5, respectively, and represent accumulation over 1mm of 

propagation.  Calculations were done in Mathematica. 

 

Figure A1: Sample code for calculating the material dispersion for BK7. 



REFERENCES 

1. Brabec, T. and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of 
Modern Physics, 2000. 72(2): p. 545-591. 

2. Braun, A., et al., Self-channeling of high-peak-power femtosecond laser pulses in air. Optics Letters, 
1995. 20(1): p. 73-75. 

3. Rae, S.C. and K. Burnett, Possible production of cold plasmas through optical-field-induced 
ionization. Physical Review A, 1992. 46(4): p. 2077-2083. 

4. Franssen, G.C., et al. Femtosecond lasers for countermeasure applications. 2009. 

5. Wille, H., et al., Teramobile: A mobile femtosecond-terawatt laser and detection system. 

6. Kryukov, P.G., Ultrashort-pulse lasers. Quantum Electronics, 2001. 31(2): p. 95. 

7. Verdeyen, J.T., Laser electronics. 1989: Prentice-Hall International. 

8. THE INVESTIGATION OF PASSIVE LASER QSWITCHING. 1964, 1964-01-31. 

9. Peressini, E.R., Ruby laser giant-pulse generation by gain-switching. Applied Physics Letters, 1963. 
3(11): p. 203-205. 

10. McClung, F.J. and R.W. Hellwarth, Giant Optical Pulsations from Ruby. Applied Optics, 1962. 1(S1): 
p. 103-105. 

11. Ho, P.T., et al., Picosecond pulse generation with a cw GaAlAs laser diode. Applied Physics Letters, 
1978. 33(3): p. 241-242. 

12. Lau, K.Y., Gain switching of semiconductor injection lasers. Applied Physics Letters, 1988. 52(4): p. 
257-259. 

13. Lamb, W.E., Theory of an Optical Maser. Physical Review, 1964. 134(6A): p. A1429-A1450. 

14. Hargrove, L.E., R.L. Fork, and M.A. Pollack, LOCKING OF He–Ne LASER MODES INDUCED BY 
SYNCHRONOUS INTRACAVITY MODULATION. Applied Physics Letters, 1964. 5(1): p. 4-5. 

15. Garside, B.K. and T.K. Lim, Laser mode locking using saturable absorbers. Journal of Applied 
Physics, 1973. 44(5): p. 2335-2342. 

16. DeMaria, A.J., D.A. Stetser, and H. Heynau, SELF MODE‐LOCKING OF LASERS WITH SATURABLE 
ABSORBERS. Applied Physics Letters, 1966. 8(7): p. 174-176. 

17. Maine, P., et al., Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE 
Journal of Quantum Electronics, 1988. 24(2): p. 398-403. 



2 

 

18. Strickland, D. and G. Mourou, Compression of amplified chirped optical pulses. Optics 
Communications, 1985. 55(6): p. 447-449. 

19. Pessot, M., et al., Chirped-pulse amplification of 100-fsec pulses. Optics Letters, 1989. 14(15): p. 
797-799. 

20. Verluise, F., et al., Arbitrary dispersion control of ultrashort optical pulses with acoustic waves. 
Journal of the Optical Society of America B, 2000. 17(1): p. 138-145. 

21. Tournois, P., Acousto-optic programmable dispersive filter for adaptive compensation of group 
delay time dispersion in laser systems. Optics Communications, 1997. 140(4): p. 245-249. 

22. Sellmeier, W., Ann. Phys. Chem. , 1871. 219(6): p. 272. 

23. Ghosh, G., Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical 
glasses. Applied Optics, 1997. 36(7): p. 1540-1546. 

24. Preface to the First Edition A2 - Diels, Jean-Claude, in Ultrashort Laser Pulse Phenomena (Second 
Edition), W. Rudolph, Editor. 2006, Academic Press: Burlington. p. xvii-xxi. 

25. Stuart, B.C., et al., Optical ablation by high-power short-pulse lasers. Journal of the Optical Society 
of America B, 1996. 13(2): p. 459-468. 

26. Chiao, R.Y., E. Garmire, and C.H. Townes, Self-Trapping of Optical Beams. Physical Review Letters, 
1964. 13(15): p. 479-482. 

27. Couairon, A. and A. Mysyrowicz, Femtosecond filamentation in transparent media. Physics 
Reports, 2007. 441(2–4): p. 47-189. 

28. Deng, Z. and J.H. Eberly, Multiphoton absorption above ionization threshold by atoms in strong 
laser fields. Journal of the Optical Society of America B, 1985. 2(3): p. 486-493. 

29. Chin, S.L., Femtosecond Laser Filamentation. 2010: Springer New York. 

30. Durand, M., et al., Kilometer range filamentation. Optics Express, 2013. 21(22): p. 26836-26845. 

31. Sivan, Y., et al. Control of the Filamentation Distance and Pattern in Long Range Atmospheric 
Propagation. in Nonlinear Photonics. 2007. Quebec City: Optical Society of America. 

32. Lin, H. and K.Y. Lin, Passively mode-locked fiber lasers. 2000, Google Patents. 

33. Hill, K.O., Aperiodic Distributed-Parameter Waveguides for Integrated Optics. Applied Optics, 1974. 
13(8): p. 1853-1856. 

34. Hill, K.O. and G. Meltz, Fiber Bragg grating technology fundamentals and overview. Lightwave 
Technology, Journal of, 1997. 15(8): p. 1263-1276. 



3 

 

35. Glebov, L., et al., Volume-chirped Bragg gratings: monolithic components for stretching and 
compression of ultrashort laser pulses. Optical Engineering, 2014. 53(5): p. 051514-051514. 

36. Renk, K.F., Titanium–Sapphire Laser, in Basics of Laser Physics. 2012, Springer. p. 75-80. 

37. Zhao, K., et al., Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics 
Letters, 2012. 37(18): p. 3891-3893. 

38. Fox, A.J., Acousto-optic modulator. 1988, Google Patents. 

39. Kaplan, D. and P. Tournois, Theory and performance of the acousto optic programmable dispersive 
filter used for femtosecond laser pulse shaping. J. Phys. IV France, 2002. 12(5): p. 69-75. 

40. Treacy, E., Optical pulse compression with diffraction gratings. IEEE Journal of Quantum 
Electronics, 1969. 5(9): p. 454-458. 

41. Kane, D.J. and R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-
resolved optical gating. IEEE Journal of Quantum Electronics, 1993. 29(2): p. 571-579. 

42. DeLong, K.W., et al., Frequency-resolved optical gating with the use of second-harmonic 
generation. Journal of the Optical Society of America B, 1994. 11(11): p. 2206-2215. 

 


	Design and Verification of a Multi-Terawatt Ti-Sapphire Femtosecond Laser System
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION AND MOTIVATION
	ULTRASHORT LASER SOURCES
	Short Pulse Generation
	Q switching
	Gain Switching
	Mode Locking

	Chirped Pulse Amplification
	Filamentation

	ARCHITECTURE AND DESIGN
	Oscillator
	Volume Bragg Grating pulse stretcher
	Titanium-Sapphire Amplifiers
	DAZZLER
	Treacy Compressor

	DISPERSION AND STABILITY
	Nominal Dispersion
	Stability
	Diagnostics and Feedback
	Dispersion Characterization

	CONCLUSIONS
	APPENDIX: DISPERSION CHARACTERIZATION MODELING
	REFERENCES

