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ABSTRACT 

 One of the primary goals of biological anthropology is to develop an accurate 

understanding of human anatomy, health, disease, and injury in both modern and archaeological 

populations. Paleopathological analyses are a fruitful means of identifying disease and injury in 

skeletal assemblages, but the individual long-term biomechanical effects associated with 

pathological conditions have not yet been adequately explored in the literature. Leg fractures are 

a common pathological condition in both modern and archaeological populations, the effects of 

which may alter the biomechanics of gait. A growing body of clinical literature demonstrates that 

abnormal ambulatory function may have far-reaching effects in the rest of the body. 

 To assess the long-term consequences of pathological conditions of the lower extremities, 

the relationship between lower limb long bone fracture occurrence, incidence of leg length 

disparity (LLD), and temporomandibular dysfunction (TMD) was analyzed. A total of 56 adult 

individuals (29 fractured, 27 unfractured) from the Hamann-Todd Osteological Collection 

(HTOC) at the Cleveland Museum of Natural History (curated between 1912 and 1938) were 

examined in this study. In total, the sample consisted of 37 males and 19 females (ages 25-76) of 

either black or white ancestry. LLD was assessed by taking standardized measurements of the 

lower limb long bones. TMD was analyzed by scoring the presence and severity of osteoarthritis 

of the temporomandibular joint (TMJ OA), dental attrition, and antemortem tooth loss.  

 Kendall’s Tau correlation statistics were used to assess morphological integration 

between all unique pairwise combinations of lower limb and jaw measurements among 

unfractured and fractured groups. Results indicate that several measures of LLD and jaw 

dysfunction are correlated differently in the unfractured and fractured groups. Comparisons of 
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the All Unfractured and All Fractured groups most often showed higher absolute correlation 

values in unfractured individuals. Samples were also subdivided and compared based on known 

sex. Significant differences in patterns of morphological integration were observed between male 

and female sub-samples. Significant correlation values were almost always higher in the 

unfractured sample than in the fractured sample. Females, however, demonstrated both 

significant increases and significant decreases in absolute correlation values when comparing 

fractured and unfractured samples. Thus, patterns of significant differences in morphological 

integration between the lower limbs and jaw differ for males and females, with fairly consistent 

decreases in integration strength in the former and a mixed pattern of integration strength 

increases and decreases in the latter, when a leg fracture is involved. It is argued that these 

differences are explained by fundamental sexually dimorphic morphological and kinematic 

differences between males and females, such that fractures resulting in LLD affect the two sexes 

differently. Gendered lifetime social experiences and activity patterns may also explain the 

different male and female patterns identified in the analysis. These insights are applied to larger 

anthropological questions of social identity and the long-term injury experience. 
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CHAPTER 1: INTRODUCTION 

 The discipline of biological anthropology can be defined as the study of human biology 

as it relates to human behavior and culture. Biological anthropologists have long been concerned 

with understanding pathological conditions and the human injury experience. However, current 

paleopathological literature has tended to focus on the immediate medical effects of pathological 

conditions such that the long-term consequences of skeletal injury are understudied. An accurate 

understanding of the holistic effects of bodily injury contributes to improved paleopathological 

analyses of past human cultures, the identification and interpretation of victims in forensic 

contexts, and more sophisticated methods for addressing the medical treatment of skeletal injury 

in modern populations. 

 A holistic understanding of the entire injury experience in both the short and long term is 

an important goal of many biological anthropologists working at the intersection of 

anthropological and medical science. Since biological anthropologists are primarily interested in 

understanding how prehistoric and modern individuals have dealt with pathological conditions, it 

is important to consider the entire injury experience, from the moment a traumatic injury is 

sustained, throughout the healing process, and into the years following the injury. Depending on 

one’s access to necessary medical care, an individual who sustains a traumatic injury may be 

able to mitigate the pain and physiological consequences such that the injury heals fully and the 

individual returns to normal function. In other cases, an individual may not have access to the 

appropriate medical care, or the injury may be too severe to heal effectively, resulting in 

permanently altered physiology and function. Individuals who experience long-term 

consequences of injury – such as diminished range of motion or locomotive capability – may be 
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unable to return to normal function and may alter their movement and behavior to compensate 

for the permanent condition. In certain cases, this may preclude them from participating in 

certain aspects of society, which may affect their social identity and status. Such cases have not 

yet been thoroughly explored in the literature and warrant further investigation.  

 Fractures are a common traumatic skeletal injury whose long-term effects have not yet 

been adequately explored. After a fracture occurs, the healing process and compensatory 

locomotor changes may result in permanently altered bone morphology. Because the human 

body is morphologically integrated, such an alteration to the integrated skeletal system may 

cause secondary pathological conditions to occur in regions outside of the local injury site. If 

fractures do in fact result in ancillary pathological conditions, fractured individuals (in both 

present and past populations) may undergo a more complex injury experience than was 

previously considered. Alterations in morphologically integrated structures can be quantified and 

explored using a correlation analysis (Olson and Miller, 1958). 

Fractures of the lower extremity are a common pathological condition in both 

archaeological and modern populations, and their proximate physiological effects are well 

documented (Wedel and Galloway, 2014). Because the lower limb bones are instrumental in 

human ambulation, femoral, tibial, and fibular fractures represent a significant biomechanical 

disruption to the integrated skeletal system. The fracture healing process frequently results in a 

shortening of the affected bone, and in the case of leg fractures, such altered limb morphology 

may result in leg length disparity (LLD), which can cause abnormal gait (Hong and Bartlett, 

2008; Perry, 1992; Kaufman et al., 1996). Therefore, shifts in posture resulting from altered 

weight distribution along the axial skeleton may have serious biomechanical consequences 
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extending to correlated regions of the skeleton, and these disruptions may manifest as ancillary 

pathological conditions.  

The purpose of this thesis is to test a hypothesis and to determine the extent to which leg 

length disparity of the appendicular skeleton can cause secondary pathological conditions to 

occur in the mandibular region of the craniofacial complex. This analysis focuses on the 

relationship between leg length and the stomatognathic system by assessing the correlation 

between leg fractures and incidence of jaw dysfunction at the temporomandibular joint. This 

study addresses the following questions: 1) How are the leg bones and mandible morphologically 

integrated? 2) How are patterns of integration between these skeletal elements altered when 

lower limbs are fractured? I hypothesize that traumatic injuries disrupt patterns of morphological 

integration by altering limb length, resulting in cascading effects in other regions of the body 

such as the mandible, which are integrated with limb form. To assess these questions, a sample 

of modern adult fractured and unfractured individuals with known demographic information will 

be analyzed. Because the sample is comprised of individuals of known age and sex, it will be 

possible to control for these confounding factors. 

Prior to testing this hypothesis, a brief theoretical and methodological background is 

given. Chapter 2 of this thesis reviews the bioarchaeological and clinical literature on injury, 

impairment, and disability and provides a brief overview of skeletal biomechanics. First, normal 

human ambulatory function is considered, followed by a discussion of pathological function and 

the implications of leg length disparity for the human gait. The concept of morphological 

integration is then discussed, with a particular focus on the holistic effects of pathological gait 

for the rest of the body. Clinical literature describing a link between the leg and jaw is reviewed 

and discussed. Chapter 3 outlines the materials used to test the research questions as well as the 
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methods of measurement and analysis. Chapter 4 describes the results of the analysis, including 

the incidence of lower limb fractures, LLD, and temporomandibular dysfunction. Special 

attention is paid to the statistically significant correlation patterns in all analyzed groups and the 

implications for patterns of morphological integration across samples. Chapter 5 provides a 

discussion of the patterns identified in the analysis, with particular emphasis on the differences 

observed between males and females. Possible explanations for the observed sex differences are 

enumerated, and their implications for modern and archaeological analyses of the long-term 

injury experience are discussed. The limitations of the study are also described. Chapter 6 

provides a summary of the analysis and suggests directions for future analyses. 
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CHAPTER 2: LITERATURE REVIEW 

A primary goal of those who study biological anthropology is to develop a thorough 

understanding of the human skeletal system and the role of the body in human behaviors and 

experiences. A major disciplinary focus is paleopathological analysis, which seeks to identify 

and understand human health, nutrition, disease, and injury and how pathological conditions may 

affect an individual’s well-being and ways of life in both archaeological and modern populations. 

Questions pertaining to the long-term experience of injured individuals have recently come into 

focus within the bioarchaeological literature. In concert with the theoretical shift toward 

understanding past perceptions of social identity (Knudson and Stojanowski, 2008; Agarwal and 

Glencross, 2011), bioarchaeologists have begun to address the identification, interpretation, and 

treatment of injured individuals in prehistoric contexts. 

Injury, Impairment, and Disability 

Central to a discussion of the human injury experience are the concepts of physical 

impairment, disability, and care. These terms are often conflated in the literature and popular 

media, and it is important to define and distinguish between them for an accurate understanding 

of the long-term effects of skeletal trauma. The term “impairment” refers to a physical injury or 

other pathological condition (either temporary or long-term), which may preclude some aspect(s) 

of normal function. “Disability,” on the other hand, is a social category used to describe injured 

or physically impaired individuals who are perceived to be unable to participate fully in society; 

the concept of “disability” therefore varies drastically from culture to culture and is difficult to 

identify archaeologically (Scheer and Gross, 1988). “Care” refers to the physical assistance given 
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to an impaired individual, such as medical treatment, physical therapy, or hygiene maintenance 

(Tilley, 2015:3).  

Since the discipline’s inception, bioarchaeologists have debated whether or not disability 

status and care can be identified in the archaeological record. Early disability studies of the 

1970’s and 1980’s pointed to the long-term survival of seriously injured and impaired 

Neanderthals in the archaeological record as evidence of care and compassion in prehistoric 

societies. Rowlett and Schneider (1974:50), for example, analyzed the remains of the “Old Man” 

from La Chapelle-aux-Saintes and concluded that his physical ailments rendered him entirely 

incapable of taking care of himself, such that he would have been dependent on the help of 

others in his community until his death. Similarly, a number of studies have pointed to Shanidar 

I, an adult male Neanderthal from Iraq who survived several fractures and degenerative joint 

disease, as an example of a “crippled” individual who survived only because of the compassion 

and care of others (Solecki, 1971; Trinkaus, 1983). Similar arguments have been made about 

Romito 2, an individual with dwarfism from Calabria, Italy, and a young male individual with 

spina bifida from the early archaic site of Windover, Florida (Frayer et al., 1987; Dickel and 

Doran, 1989). 

While many studies have concluded that the survival of injured individuals in the 

archaeological record demonstrates compassion and care for disabled individuals, not all 

bioarchaeologists are convinced. Critics have pointed to the difficulties of distinguishing 

between physical impairment and disability, arguing that disability is a social construct that 

cannot be assessed through archaeological analysis. In response to Rowlett and Schneider’s 

interpretation of the “Old Man” from La Chapelle-aux-Saintes, Tappen (1985) argued that the 

level of care that this individual would have required was overstated. After re-examining the 
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osteological evidence, he determined that the individual would have been capable of performing 

a number of tasks for himself (such as chewing his own food) and would not have relied as 

heavily on others as Rowlett and Schneider (1974) suggested. Dettwyler (1991) is perhaps the 

strongest critic of the compassion argument. In her seminal 1991 article “Can Paleopathology 

Provide Evidence for ‘Compassion’?” Dettwyler strongly condemns the practice of interpreting 

compassion and care from skeletal remains. She argues that archaeologists can draw conclusions 

about physical impairment from skeletal remains but that it is impossible to infer disability status 

and the extent to which an impaired individual could or could not contribute to society 

(Dettwyler, 1991).  

 More recently, however, this question has come to light again, with renewed interest in 

the concepts of disability, compassion, and care. Tilley (2011, 2013, 2015) has published 

extensively on what she calls the “bioarchaeology of care,” arguing that archaeological evidence 

of the long-term survival of injured individuals demonstrates that prehistoric populations showed 

compassion and care toward impaired members. Tilley argues that these situations are often 

overlooked in the archaeological literature and when they are addressed, they are analyzed as 

isolated case studies without consistent methodological or interpretive frameworks. To address 

this issue, Tilley has proposed the “bioarchaeology of care approach,” which delineates four 

stages for assessing disability and caregiving in archaeological assemblages: 1) description of an 

individual’s remains, pathological conditions, environment, and mortuary treatment, 2) 

determination of the pathological condition’s clinical impact on function and quality of life, 3) 

assessment of what care may have been administered to the individual based on the individual’s 

needs and the availability of resources in the environment, and 4) interpretation of the 

implications of the administered care for social practices, relations, and identity (Tilley, 2015:5-
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6). Tilley and colleagues have also published this methodology in an online web application 

titled “The Index of Care” (www.indexofcare.org), which is designed to lead bioarchaeologists 

through the four stages for identifying and interpreting care in skeletal assemblages (Tilley and 

Cameron, 2014).  

Tilley (2015) has recently responded to Dettwyler’s claims in detail, arguing that 

Dettwyler’s view is misguided and ultimately harmful to bioarchaeological disability studies, as 

it has discouraged research exploring disability, care, and identity. In light of this debate, it is 

clear that questions pertaining to the treatment and long-term prognosis of physically impaired 

individuals in past societies have not been sufficiently explored. Furthermore, issues relating to 

the diagnosis, treatment, and long-term prognosis of skeletal injury remain relevant today. 

Further research is needed to build a more accurate understanding of the proximate and ancillary 

effects of skeletal injury in the body and the experience and outlook of impaired and disabled 

individuals. 

 A recent study by Lovell (2016) demonstrates how current bioarchaeological analyses 

approach the assessment of injury, impairment, and social identity. Lovell (2016) analyzed the 

remains of an elderly man from the ancient Roman site of Erculam in Campania, Italy (1st-2nd 

century CE). The individual exhibited a healed femoral neck fracture that caused a shortening of 

the right leg. Osteological analysis of the lower limbs showed associated osteoarthritic lipping 

and eburnation of the right patella, first metatarsal, and first proximal phalanx. According to the 

author, these osseous changes indicate that the individual walked with a pronounced limp to 

compensate for the different lengths of his two legs. Furthermore, after determining that the 

individual was buried in a communal cemetery alongside and in the same manner as non-

impaired individuals, Lovell determined that the individual was likely perceived to be mobility-

http://www.indexofcare.org/
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impaired during life, but was not considered “disabled” by his society (Lovell, 2016:94). 

Lovell’s analysis demonstrates that although it may be impossible to determine an individual’s 

disability status based on skeletal analysis alone, by assessing multiple lines of evidence (e.g., 

osteological, mortuary, and clinical), bioarchaeologists can effectively determine an individual’s 

degree of impairment and make informed inferences about the impact of such an impairment on 

their social identity. This study also highlights an area of burgeoning research in bioarchaeology: 

the pathological condition of leg length disparity and its biomechanical implications. 

Leg Length Disparity 

 Leg length disparity (LLD), or anisomelia, describes the condition in which the left and 

right lower limbs are of unequal length (Shapiro, 2001). According to the clinical literature, LLD 

is a relatively common condition, affecting as much as 90% of the population (Knutson, 2005). 

LLD can be categorized as two types: functional and anatomical. Functional LLD refers to a 

disparity between left and right leg length without osseous involvement, which may be caused by 

shortened soft tissues, muscular contracture or laxity, or axial misalignments (Brady et al., 

2003:222). Anatomical LLD describes a shortening of one side of the lower limbs due to 

physical length differences between paired long bones (Brady et al., 2003), which can be 

observed and measured osteologically. The clinical significance of LLD is widely disputed in the 

literature, and as yet, there is no universal standard for distinguishing between normal and 

pathological asymmetry. However, a difference of 2 cm (20 mm) or more is generally considered 

to be worthy of clinical intervention (Thompson, 2014). LLD has been linked to a variety of 

musculoskeletal conditions, including lower back and hip pain, balance issues, osteoarthritis, 

stress fractures, and complications with walking and running (Gurney, 2002). Clinical treatment 
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of LLD generally involves the use of prosthetic lifts worn in the shoe to artificially increase the 

length of the shorter leg. Studies show that LLD of less than 30 mm can be partially or fully 

corrected through the use of shoe lifts (Reid and Smith, 1984). More severe cases of LLD may 

require one of several surgical techniques, including bone lengthening or shortening or 

epiphysiodesis (surgical closure of the growth plate of the longer leg) (Gurney, 2002:198).   

 LLD can be caused by a variety of factors, including environmental and genetic factors 

that influence an individual’s ontogenesis (McCaw et al., 1991). A number of diseases, 

especially paralytic diseases such as tuberculosis, osteomyelitis, and polio, can also cause 

musculo-skeletal atrophy and result in LLD (Thompson, 2014). Anatomical LLD can also be 

caused by limb fractures. A fracture occurs when a bone is subjected to biomechanical stresses or 

forces beyond its elastic capacity, at which point the bone breaks (Wedel and Galloway, 2014). 

Fractures represent a disruption to the continuity of a bone; incomplete fractures do not extend 

fully through the diaphysis, while complete fractures break the diaphysis into at least two 

separate pieces (Lovell, 1997). Depending on the nature of the mechanical stresses leading to the 

injury, a fracture may take a variety of forms. Breaks resulting from direct trauma include 

transverse, penetrating, comminuted, and crush fractures, while indirect trauma causes oblique, 

spiral, greenstick, compression, impaction, and avulsion fractures (Lovell, 1997).  

Lower Limb Fractures 

Fractures of the lower limbs are common and most often involve the tibia and fibula. 

Tibia and fibula fractures occur most frequently at the ankle joint; clinically, the distal tibia and 

fibula are fractured more often than any other bone except the distal radius (Lovell, 1997). Distal 

tibia/fibula fractures may involve either the medial malleolus or lateral malleolus – rarely both – 
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and are generally caused by the adduction, abduction, and/or lateral rotation of the ankle joint 

(Adams and Hamblen, 1999; Lovell, 1997).  Diaphyseal fractures of the lower leg usually 

involve both the tibia and fibula and result from either angular or rotational force on the limb. If 

the injury results from an angular force, the tibia and fibula will sustain transverse or oblique 

fractures at roughly the same level; in the event of an injury resulting from rotational force, the 

two bones will sustain spiral fractures that occur at different levels (Lovell, 1997:163). Because 

of the bone’s close proximity to the skin surface, tibial fractures commonly result in open 

wounds which may lead to infection (e.g., osteomyelitis, periostitis) and complications to the 

bone union and healing process. In modern cases, these risks can be mitigated with rapid medical 

intervention and treatment with antibiotics; however, in pre-antibiotic populations, the risk of 

infection, malunion, and permanent alteration to the bone’s morphology was much higher (Bartle 

and Keating, 2013; Lovell, 1997). 

Femoral fractures are less common than tibia and fibula fractures and are bimodally 

distributed in frequency between young and elderly adults. The most common femoral fractures 

occur in elderly adults, especially females, and typically affect the femoral neck and trochanteric 

region (Lovell, 1997). The majority of fractures to this region are secondary to osteoporosis and 

result from minor, low-velocity trauma such as a stumble or fall (Lovell, 1997:162). Because of 

the bone’s large size and dense composition, diaphyseal femoral fractures are uncommon and 

generally result from high-velocity trauma such as falls from significant heights, automobile 

accidents, and high-impact sports injuries. The fracture type and its location on the femoral 

diaphysis are dictated by the mechanism of injury; rotational forces generally result in spiral 

fractures, axial and transverse forces cause oblique fractures, and higher energy impacts result in 

segmented or comminuted fractures (Bartle and Keating, 2013). Dislocation of the hip is also 
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common and frequently occurs in conjunction with femoral shaft fractures (Bartle and Keating, 

2013; Lovell, 1997). 

Fracture Healing 

After the initial injury, a fractured bone subsequently goes through four stages of healing: 

1) formation of a hematoma through increased blood flow to the area, 2) stimulation of the 

periosteum prompting the formation of a fibrous soft callus, 3) mineralization of the soft callus 

forming a primary bony callus, and 4) the conversion of the woven bone to lamellar bone and the 

reduction and resorption of the bony callus (Lovell, 1997:144-145). If the two ends of a fractured 

bone are reunited and returned to their natural orientation and the affected limb is largely 

immobilized during the healing process, the healed bone may bear little or no permanent 

evidence of the fracture, and the individual may return to normal function (White and Folkens, 

2005:48). However, if the two ends of a fractured bone are not properly reunited, the bone may 

heal with permanently altered morphology. Depending on the type and severity of the fracture, 

two broken portions of bone may heal together in an overlapped position, resulting in a 

shortening of the affected bone and limb (Lovell, 1997:147). In the case of leg fractures, this 

shortening results in a disparity between the lengths of the left and right legs (LLD) which may 

significantly affect ambulatory function (Hariga et al., 2011; Navascues, 2000).  

Biomechanics of Ambulation  

Normal Gait 

Bipedal locomotion is one of humanity’s defining evolutionary adaptations, and human 

anatomy is structured to accommodate the requirements of an upright gait. Human ambulation is 
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a delicate balance between maintaining a stable bipedal stance and propelling the body forward, 

and a normal gait is contingent upon the proper alignment and biomechanical movement of the 

lower extremities (Perry, 1992). A stride cycle can be subdivided into two categories: stance and 

swing, which work together to accomplish the tasks of weight acceptance, limb support, and 

limb advancement (Perry, 1992:9-10). In a non-pathological gait, the bones of the legs align 

evenly under the trunk of the body, with the pelvic girdle situated at a perpendicular axis to the 

rest of the body. The biomechanical forces of locomotion traverse normally from the point of 

impact of the advancing foot, through the knee and hip, and up the spine to the upper body. 

Weight is distributed evenly through the left and right sides of the body as the lower limbs 

alternately facilitate forward propulsion, stance stability, shock absorption, and energy 

conservation (Perry, 1992:22; Winter, 1989). 

Pathological Gait and LLD 

 LLD between the left and right legs represents a significant disruption to locomotive 

function. When LLD occurs, the structural alignment of the skeleton is altered, resulting in shifts 

in weight distribution and a disruption of the normal biomechanical forces of human ambulation 

(Lovell, 1997:147). Depending on the severity of the LLD, a shortening of one side of the lower 

limbs may result in a concomitant drop in the affected side of the pelvis, resulting in increased 

tilt and torsion of the pelvic girdle (Kwon et al., 2015; Schuit et al., 1989). Increased pelvic 

obliquity may also result in lateral flexion of the lumbar vertebrae. To compensate for the lateral 

bending of the lower spine, the thoracic and cervical vertebrae must then bend in the opposite 

direction to maintain upright posture (Blunstein and D’Amico, 1985). Under these 

circumstances, certain areas of the body, such as the knees, hips, spine, shoulders, and neck may 
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experience abnormal stress, and affected individuals may be at a higher risk of developing 

pathological conditions in these regions (Figure 1). Depending on the degree of inequality 

between the left and right legs, individuals with LLD may be at risk of developing stress 

fractures, lower back pain, and osteoarthritis of affected joint surfaces (McCaw et al., 1991; 

Murray et al., 2015). Because the brain is always trying to maintain stability and balance, 

individuals with LLD may deal with the discrepancy between the longer and shorter leg by 

implementing a variety of compensation strategies such as increased pelvic obliquity, knee 

flexion of the longer leg, and plantarflexion of the foot (Walsh et al., 2000; Perttunnen et al., 

2004). However, while these strategies may help to overcome the effects of LLD in mild cases, 

moderate and severe LLD cases are likely to result in significant pathological conditions despite 

the adoption of compensation strategies. Furthermore, these strategies may themselves contribute 

to altering the biomechanical forces of the skeleton, resulting in further complications (Lovell, 

1997:147). 



15 

 

Figure 1: Comparison of anatomical alignment of an individual with equal leg lengths (left) and 

pathological alignment of an individual with LLD (right). Used with permission of Dr. Lana 

Williams. 

Morphological Integration 

 Traditionally, gait analysis studies have subdivided the body into two discrete units 

during ambulation: the active locomotor unit, comprised of the feet, legs, and hips, and the 

inactive passenger unit, consisting of the trunk, arms, and head. Proponents of this school of 

thought have argued that during human locomotion, the upper body remains relatively 

motionless and contributes very little to ambulatory function (Perry, 1992:19-21). However, 

recent biomechanical studies have demonstrated that the pelvis and spine play a significantly 

more prominent role in ambulation than was previously realized (Needham et al., 2012). 

Gracovetsky (1985) highlights humanity’s evolutionary history, pointing out that like all land-

dwelling mammals, humans evolved from quadrupedal species for whom the spine played a 
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central role in locomotion. He argues that although humans have since shifted to bipedal 

locomotion, the spine continues to play an important role in human ambulation and should not be 

ignored in gait studies (Gracovetsky, 1985). 

 The increasing recognition of the role of the spine and upper body in human gait is part 

of a larger movement concerned with understanding how different anatomical structures develop 

and work together to produce a functional organism. The concept of morphological integration 

refers to the “tendency for structures to show correlated variation because they develop in 

response to shared developmental processes or function in concert with other structures” 

(Hallgrimsson et al., 2002:131). The concept was originally proposed by Olson and Miller 

(1958), who hypothesized that suites of traits with a developmental or functional relationship 

work together as complexes and evolve in concert with each other. This notion was largely 

overlooked until the 1990’s, when biological anthropologists began analyzing covariation 

patterns in the primate skull and limbs (Cheverud, 1995; Ackermann, 2005; Corner and 

Richtsmeier, 1991). In recent years, the number of publications concerned with morphological 

integration of hominin traits has increased; however, these studies have largely focused on 

covariation between traits of the cranium, mandible, and dentition (Richtsmeier et al., 1992; 

Bastir, 2008; Boughner and Hallgrimmson, 2008; Trainor and Richtsmeier, 2015), and 

assessments of integration between disparate regions of the body, such as the lower limbs and the 

jaw, have not yet been fully explored. 

 Documenting the cascading effects of traumatic skeletal injury is a chief concern of 

anatomists, medical practitioners, and physical therapists and has recently been explored in the 

medical literature. Clinical studies have demonstrated correlations between the occurrence of 

LLD, gait abnormalities, and corresponding pathological conditions elsewhere in the axial and 
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appendicular skeleton. For example, Greenwood and colleagues (1997) discovered that 

individuals who had at some point experienced tibial fractures were more likely to suffer long-

term knee and ankle joint pain than non-injured individuals. 

An emerging trend in the clinical literature suggests that there is a strong relationship 

between the stomatognathic system and posture (Blum, 2008). While the lower limbs and jaw 

may seem like distant and unrelated anatomical structures, recent studies have demonstrated an 

apparent causal link between orthopedic misalignment of the axial skeleton and 

temporomandibular disorders (TMD), resulting in jaw pain, difficulty chewing, and dental 

malocclusion (Blum, 2008). Cuccia (2011) identified a correlation between temporomandibular 

dysfunction (TMD) and pathological conditions of the plantar arch by analyzing the gait function 

of subject groups with and without jaw abnormalities. Several studies have induced temporary 

LLD in otherwise healthy individuals and demonstrated a statistical correlation between LLD, 

shifts in lateral weight distribution during ambulation, and altered dental occlusion (Maeda et al., 

2011; Ohlendorf et al., 2015; Park and Bae, 2014). Interestingly, the correlation between the leg 

and jaw appears to go both ways. Milani and colleagues (2000) artificially altered dental 

occlusion in a sample population by having participants wear mandibular orthopedic 

repositioning devices. The authors demonstrated that members of the test group experienced 

altered posture, which returned to normal after the removal of the splint (Milani et al., 2000). 

However, all of these clinical studies analyzed robust samples of living individuals, and it is not 

clear whether or not this trend is detectable in the absence of soft tissue data. 

Not all studies have found a conclusive link between gait abnormalities and jaw 

dysfunction. Farella and Michelotti et al. (1999, 2005) have argued that the functional 

relationship between the tissues of the leg and jaw has been overstated and that the scientific 
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evidence for such a relationship is lacking (Farella et al., 2005). The authors argue that the 

correlation between leg and jaw dysfunction is spurious and caution medical practitioners to be 

skeptical of this relationship, especially when it comes to prescribing treatment (Michelotti et al., 

1999; Farella et al., 2005). Hanke et al. (2007) are similarly unconvinced of the link between 

lower limb and dental maladies. After conducting an extensive review of the literature, the 

authors found that while studies pertaining to a potential association between orthopedic and 

dental abnormalities have progressively increased since the 1980’s, most have utilized poor 

methodology. As a result, they argue that the “factual base is small” for determining a correlation 

between leg and jaw disorders (Hanke et al., 2007). Nonetheless, the trend identified in the 

clinical literature is compelling and suggests that our understanding of the correlation between 

injury patterns across disparate regions of the body can be improved with additional research.  

By assessing the coincidence of TMD and LLD osteologically, the present analysis will 

provide additional insight into the relationship between the lower limbs and jaw, which has not 

yet been assessed in the bioarchaeological literature. Furthermore, a more accurate understanding 

of co-occurrence of lower limb fractures and jaw dysfunction will shed light on the long-term 

prognosis for individuals with fracture-induced LLD, which may help to improve our 

understanding of the long-term injury experience and how it relates to social identity.  
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CHAPTER 3: MATERIALS AND METHODS 

Materials 

 The sample used in this analysis was derived from individuals housed in the Hamann-

Todd Osteological Collection (HTOC) at the Cleveland Museum of Natural History in 

Cleveland, Ohio. The HTOC is one of  the largest and most well-documented skeletal collections 

in the world, consisting of over 3,000 human skeletons amassed from unclaimed cadaver remains 

between the years 1912 and 1938 (Kern, 2006:10-11). The birth years of the cohort range 

between 1825 and 1910; thus, the collection is representative of a modern, industrialized urban 

society (Mensforth and Latimer, 1989). Since this time period predates the advent of many 

modern medical treatments such as antibiotics, hormonal therapies, and dietary supplements, 

such treatments would not have been available to mitigate the healing process in fractured 

individuals. Therefore, this collection represents an ideal sample for studying the biomechanical 

effects of fractures and LLD on the rest of the body without the confounding factor of modern 

medical intervention. Because the remains are the result of medical autopsy, the majority of 

remains were complete and well preserved, allowing for most of the necessary measurements to 

be taken confidently. While the HTOC houses remains of both adults and juveniles, this analysis 

focused on adult individuals in order to control for the confounding factors involved in skeletal 

growth and development. One individual (HTH 0542) was subsequently removed from the 

analysis, as this individual was a developing adult with unfused epiphyses of all major long 

bones.  

 The sample used in this study consisted of two groups: a test group comprised of 

individuals exhibiting at least one fracture of the lower limbs and a control group of non-
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fractured individuals (see Appendix A). Individuals with lower limb fractures were identified 

and selected for the test group based on previous research that described fracture incidence and 

patterning in the HTOC (McNulty, 2009). Samples were randomly selected using a 

randomization function in Excel (=RANDBETWEEN) that generated random numbers between 

1 and 10,000 associated with each individual in the entire sample. Columns of identifiers were 

sorted using randomly generated numbers, and the top 28 individuals were selected for 

measurement from both the fractured sample and the control group. One individual from the 

control group was found to have lower limb fractures and was moved to the test group. In total, 

the sample consisted of 56 adult individuals, 27 in the control group (18 males, 9 females) and 

29 in the test group (19 males, 10 females). The number of males and females in each of the two 

groups was kept as consistent as possible to allow for robust statistical analysis of sex differences 

(Figure 2).  

 

 

Figure 2: Histogram demonstrating the total sample size and the number of males and females in 

each sample group. 
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Methods 

 Individuals were inspected visually for the presence, location, and severity of lower limb 

fractures without the aid of radiographs. Observed fractures were scored as “unhealed” (0), 

“healing” (1), or “well healed” (2) according to published healing stages (Lovell, 1997). The 

maximum lengths of each individual’s femora, tibiae, and fibulae were measured using an 

osteometric board according to discipline conventions (Buikstra and Ubelaker, 1994) (Table 1). 

Substantial differences between left and right long bone pairs were noted as possible instances of 

LLD.  

 

Table 1: Description and explanation of measurements used in the analysis. 

Measurement 

Abbreviation 

Explanation of Measurement Citation/Method 

Lfemur Maximum length of left femur Buikstra and Ubelaker, 1994 

Rfemur Maximum length of right femur Buiktra and Ubelaker, 1994 

LRFemurDiff Difference between maximum 

length of left and right femur 

Calculation in Microsoft Excel 

(Lfemur – Rfemur = 

LRfemurDiff) 

Ltibia Maximum length of left tibia Buikstra and Ubelaker, 1994 

Rtibia Maximum length of right tibia Buikstra and Ubelaker, 1994 

LRTibiaDiff Difference between maximum 

length of left and right tibia 

Calculation in Microsoft Excel 

(Ltibia - Rtibia = LRTibiaDiff) 

Lfibula Maximum length of left fibula Buikstra and Ubelaker, 1994 

Rfibula Maximum length of right fibula Buikstra and Ubelaker, 1994 

LRFibDiff Difference between maximum 

length of left and right fibula 

Calculation in Microsoft Excel 

(Lfibula – Rfibula = LRFibDiff) 

LMandFossa Osteoarthritis score on left 

mandibular fossa of the cranium 

(0-4 scale) 

Rando and Waldron, 2012 

RMandFossa Osteoarthritis score on right 

mandibular fossa of the cranium 

(0-4 scale) 

Rando and Waldron, 2012 

LMandCondyle Osteoarthritis score on left 

condyle of the mandible (0-4 

scale) 

Rando and Waldron, 2012 



22 

Measurement 

Abbreviation 

Explanation of Measurement Citation/Method 

RMandCondyle Osteoarthritis score on right 

condyle of the mandible (0-4 

scale) 

Rando and Waldron, 2012 

RToothWearAvg Average of tooth wear scores of 

all right teeth (#1-8, 25-32) 

Turner et al., 1991 

LToothWearAvg Average of tooth wear scores of 

all left teeth (#9-24) 

Turner et al., 1991 

Right AMTL # Total number of antemortem 

tooth loss of right teeth (#1-8, 

25-32) 

 

Left AMTL # Total number of antemortem 

tooth loss of left teeth (#9-24) 

 

Left/Right LLD Total length difference of all left 

and right leg bones 

Calculation in Microsoft Excel 

(LRFemurDiff + LRTibiaDiff + 

LRFibDiff = Left/Right LLD) 

LRToothWearAvgDiff Difference in average tooth wear 

scores for the left and ride sides 

of the mouth 

Calculation in Microsoft Excel 

(RToothWearAvg + 

LToothWearAvg = 

LRToothWearAvgDiff) 

LRAMTLDiff Difference in total number of 

teeth lost antemortem for the 

right and left sides of the mouth 

Calculation in Microsoft Excel 

(Left AMTL # - Right AMTL # = 

LRAMTLDiff) 

 

 Jaw dysfunction was assessed by scoring the incidence of osteoarthritis of the 

temporomandibular joint (TMJ OA), patterns of mandibular and maxillary tooth wear, and 

antemortem tooth loss. TMJ OA is a pathological condition of the jaw characterized by pain and 

difficulty chewing, which can be observed skeletally in degenerative changes to the articular 

surfaces of the temporomandibular joint. The cranial mandibular fossae and mandibular condyles 

were scored as “absent” (0), “slight” (1), “moderate” (2), and “severe” (3) based on the degree of 

surface pitting, erosion, and eburnation (see Figure 3). The degree of wear of all 32 teeth was 

scored on a scale of 0 (no wear) to 4 (severe wear) based on the extent of dentin and pulp 

exposure (Turner et al., 1991). Antemortem tooth loss was also noted and included in the data, as 

it may reflect advanced tooth wear or jaw malocclusion. All measurements were recorded on 



23 

paper data collection sheets, entered into Microsoft Excel data spreadsheets, and cross-checked 

for accuracy. 

 

 

Figure 3: Stages of expression of TMJ OA on the mandibular condyles and articular eminence of 

the mandibular fossa used to score TMJ OA in the sample (adapted from Rando and Waldron, 

2012).  

 

 

Photographs were taken of all fractures, all instances and stages of TMJ OA, and 

discernable patterns of asymmetrical tooth wear. Remains were photographed with a Nikon 

D3000 DSLR camera against a black velvet background on a laboratory camera stand. A ring 

light was used to highlight important skeletal features otherwise not illuminated by the ambient 

lighting in the laboratory. 
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Analysis 

LLD was assessed by calculating the total length differences between the left and right 

femora, tibiae, and fibulae of each individual. This was accomplished by subtracting the length 

of each right bone from the left, taking the absolute value of the result, and summing the values 

of all three limb bone differences. Total length differences of 20 mm or more were considered a 

clinically significant length disparity (Thompson, 2014). 

Tooth wear scores for the left and right sides of the mouth were averaged by adding up 

all of the wear scores for each side and dividing by 16 (half the total number of teeth). Average 

score differences of 1.0 or more between the left and right side were considered possible cases of 

asymmetrical tooth wear. The total number of teeth lost antemortem was added for the left (#9-

24) and right (#1-8, 25-32) sides. Substantial differences between left and right antemortem tooth 

loss counts were noted as possible cases of asymmetrical tooth loss. 

Statistical analyses of the data were performed using SPSS v.23. In order to assess 

intraobserver error, approximately 18% of the sample (10 individuals) was measured and scored 

twice with more than 24 hours in between measurement sessions to avoid memory bias. 

Intraobserver error was then calculated using a Pearson’s correlation test in SPSS v.23. 

Technical error of measurement (TEM) was calculated in Excel using the standard formula 

(Lewis, 1999). After initial data collection was complete, a post-hoc power analysis was 

conducted using G*Power v.3.1 to determine the achieved power of the study. To assess the 

influence of potentially confounding factors, such as age, sex, and ancestry on the measurements 

taken in this analysis, a MANOVA test with post-hoc ANOVAs was conducted.  

Patterns of morphological integration between skeletal components of interest were 

assessed by calculating Kendall’s Tau correlation values among pairs of traits measured from the 
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leg bones and mandible. Although Pearson’s or Spearman Rho correlations are often used to 

assess continuous or categorical data, respectively, Kendall’s Tau correlations are appropriate 

here because ties in ranks of categorical variables being compared were possible (Lomax and 

Hahs-Vaughn, 2012). However, Pearson’s correlation tests are still appropriate for assessing 

intraobserver error, which is described in chapter 4 (Lomax and Hahs-Vaughn, 2012). The 

resultant values were compared to determine if correlation sign and strength were significantly 

different between all fractured and unfractured individuals and subsamples consisting of only 

males or only females. The interpretation of absolute correlation strength values varies between 

analyses; therefore, the thresholds for correlation strength were defined for this analysis as 

follows: 0.00-0.09 = No correlation (i.e., so weak as to be irrelevant), 0.10-0.29 = Weak 

correlation, 0.30-0.49 = Moderate correlation, 0.50-1.00 = Strong correlation. Because 

correlation values are not normally distributed, correlation values were converted to z-scores 

using a Fisher’s Z transformation, and p-values were determined to assess the statistical 

significance of correlation differences among and between samples.   
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CHAPTER 4: RESULTS 

Intraobserver reliability testing yielded a Pearson’s correlation value of 1.0, indicating 

that data collection was consistent between measurement sessions and is therefore reliable. TEM 

calculations yielded a result of 0.23, which was less than 5% of the mean of all values measured 

in this study (5.66) and therefore is considered acceptably low. A post-hoc power analysis using 

G*Power software indicated that with the total sample size of 56 individuals, an effect size of 

0.32, and a one-tailed test, achieved power (1-β error probability) was 0.81. Thus, this analysis 

has the ability to detect moderate to large significant effects in the samples compared.   

Lower Limb Fractures 

Leg fractures were observed in 29 of the 56 analyzed individuals (Table 2). The most 

commonly observed fractures were of the tibia and fibula, which frequently occurred 

simultaneously (Figure 4). As expected, femoral fractures were less frequent, although six were 

observed in the sample. The majority of fractures were well healed; however, four individuals 

exhibited fractures that were in the process of healing, and six individuals had unhealed 

perimortem fractures that were sustained at or near the time of death. Since most of the fractures 

observed in the sample were well healed, it is likely that any lasting secondary biomechanical 

consequences would have had sufficient time to manifest in the skeleton. 
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Table 2: Fracture incidence in entire sample by bone, location, side, and state of healing. 

 

Individual 

Number 
Involved Bone(s) Location Side 

State of 

Healing 

HTH 0204 Fibula Distal Right Well-healed 

HTH 0339 Tibia/Fibula Medial Right Well-healed 

HTH 0444 Femur Proximal Left Healing 

HTH 0459 Femur/Fibula Medial/Distal Left/Right Well-healed 

HTH 0479 Femur/Tibia/Fibula Proximal Right Well-healed 

HTH 0500 Tibia/Fibula Distal/Proximal Right Well-healed 

HTH 0534 Tibia/Fibula Distal Right Well-healed 

HTH 0354 Tibia Medial Right Well-healed 

HTH 0631 Fibula Proximal Right Well-healed 

HTH 0718 Tibia Medial Right Well-healed 

HTH 1552 Femur Medial Right Well-healed 

HTH 1592 Tibia/Fibula Distal Right Healing 

HTH 1647 Tibia/Fibula Distal/Proximal Right Well-Healed 

HTH 0543 Femur Proximal Left Unhealed 

HTH 0587 Tibia/Fibula Medial Right Unhealed 

HTH 0602 Tibia Proximal/Distal Right Well-healed 

HTH 0666 Fibula Distal Left Well-healed 

HTH 0742 Tibia Medial Right Unhealed 

HTH 0751 Fibula Distal Left Well-healed 

HTH 0868 Fibula Proximal Left Well-healed 

HTH 0974 Fibula Distal Right Well-healed 

HTH 1124 Tibia/Fibula Distal Left Well-healed 

HTH 1387 Fibula Proximal Left Healing 

HTH 1470 Tibia/Fibula Medial/Proximal Right Unhealed 

HTH 3091 Tibia Distal Left Healing 

HTH 3045 Fibula Proximal Right Well-healed 

HTH 1534 Tibia/Fibula Proximal/Distal Left Unhealed 

HTH 1903 Femur Distal Left Unhealed 

HTH 2761 Tibia/Fibula Distal Right Well-healed 
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Figure 4: Simultaneous fractures of the left distal tibia and fibula of Individual HTH 1124 

(anterior view).  

Leg Length Disparity (LLD) 

As expected, the overall prevalence of LLD was more common in the fractured group 

than in the unfractured group (Table 3). Five of the 29 individuals in the fractured group 

(17.24%) had an LLD of 20 mm or more, while LLD was present in only one individual in the 

unfractured group (3.7%).  
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Table 3: Overall LLD occurrence in the sample. LLD refers to the sum total of length 

discrepancy between the left and right femur, tibia, and fibula of each individual. 

 

 

 

 

 

 

 

 

*Individual HTH 1552 falls just under, but approaches, the LLD threshold of 20 mm 

 

The majority of fractured individuals with LLD of 20 mm or more exhibited complete, 

displaced fractures, which directly contributed to LLD by physically shortening the maximum 

length of the affected long bones (see example in Figure 5). Since the individual in the control 

group with LLD did not have any fractures, the disparity between the left and right legs must 

have been caused by other factors. 

Individual Number Sample Group LLD (mm) 

HTH 0500 Fractured 27.89 

HTH 0602 Fractured 34.46 

HTH 1552 Fractured 19.44* 

HTH 1647 Fractured 28.78 

HTH 2828 Unfractured 23.99 

HTH 3045 Fractured 23.04 
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Figure 5: Simultaneous lower limb fracture and LLD occurrence in individual HTH 1552. (A) 

Healed complete, displaced fracture of right medial femur (lateral view; arrow indicates fracture 

location). (B) Comparison of maximum lengths of unfractured left (top) and fractured right 

(bottom) femur of individual HTH 1552 (anterior view). Note the considerable shortening of the 

fractured right femur compared to the unfractured left femur. 

Temporomandibular Dysfunction 

Instances of TMJ OA were roughly equivalent between the unfractured and fractured 

groups. In the fractured group, some degree of TMJ OA occurred in 57% (17/30) of the sample 

and was absent in the remaining 43% (13/30). The majority of cases of TMJ OA were slight and 

only involved one or two of the mandibular condyles or fossae. Two individuals exhibited 

moderate TMJ OA; there were no severe cases. Among the fractured individuals with LLD of 20 

mm or more, three had slight TMJ OA, while two had none. In the unfractured group, 61% of the 

sample (17/28) exhibited some degree of TMJ OA, while 39% (11/28) had none. Most cases 
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were slight, although one individual had moderate TMJ OA; there were no severe cases. The one 

individual with LLD over 20 mm displayed slight TMJ OA with mandibular fossa involvement.  

Dental attrition was approximately equivalent between the unfractured and fractured 

groups. In the fractured group, the minimum average wear score was 0 (no wear), and the 

maximum was 3.40 (severe wear). The average of all right tooth wear average scores was 1.01, 

and the left was 1.10. The average difference between left and right wear scores was 0.31. 

Among the individuals with LLD of 20 mm or more, the average of all left tooth wear score was 

1.55, while the average of all right tooth wear scores was 1.82. The average difference between 

left and right tooth wear scores was 0.43. In the unfractured group, the minimum wear score was 

0 (no wear), and the maximum was 2.50 (moderate wear). The average of all right tooth wear 

average scores was 1.05, and the average of all left tooth wear average scores was 0.87. The 

average difference between left and right wear scores was 0.45. The one unfractured individual 

with LLD was edentulous; thus, tooth wear scores could not be assessed. 

Antemortem tooth loss counts were similar between the unfractured and fractured groups. 

In the fractured group, the minimum loss count was 0 (no antemortem tooth loss), and the 

maximum number was 32 (edentulous). The average of all right antemortem tooth loss counts 

was 6.28, and the average of all left antemortem tooth loss counts was 6.00. The average 

difference between left and right tooth loss counts was 1.66. Among the individuals with LLD of 

20 mm or more, the average antemortem tooth loss count was 10.8 for the right side and 9 for the 

left, with an average left and right difference of 3. Individual #7 (HTH 0500) exhibited 

extremely asymmetrical antemortem tooth loss, with 12 teeth lost antemortem on the right and 1 

tooth lost on the left. In the unfractured group, the minimum antemortem tooth loss count was 0 
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(no tooth loss) and the maximum antemortem tooth loss count was 32 (edentulous). The average 

tooth loss count was 7.56 for the right side and 7.97 for the left, with an average difference of 

1.07. The one individual with LLD was edentulous; thus, antemortem tooth loss asymmetry 

could not be assessed as all teeth were lost antemortem.  

Patterns of Morphological Integration 

 Comparisons of all three samples (All Unfractured vs. Fractured, Male Unfractured vs. 

Fractured, and Female Unfractured vs. Fractured) demonstrated patterns of differences in 

morphological integration that were unique to each two-sample comparison. Comparisons of 

correlation directionality among all three sample groups demonstrated an overall trend of 

positive correlation values in unfractured groups and negative values in the fractured groups 

(Figure 6). The second most common occurrence was for values to be consistently positive 

between unfractured and fractured groups, followed by negative correlation values in the 

unfractured group and positive values in the fractured group. The least common pattern was for 

correlation values to be consistently negative between the unfractured and fractured groups of all 

analyzed samples. 
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Figure 6: Overall correlation directionality between the three sample groups demonstrating 

patterns of morphological integration.  

 

Differences in correlation strength between the unfractured and fractured samples varied 

considerably across the analyzed groups but demonstrated interesting and unique trends for each 

two-sample comparison. The most common occurrence was for correlation strength to be 

consistently weak between unfractured and fractured groups (Figure 7). The second most 

common occurrence was no correlation strength in the unfractured group and a weak correlation 

in the fractured group.  
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Figure 7: Overall correlation strength across all three sample groups demonstrating patterns of 

morphological integration.  

All Unfractured vs. Fractured 

Correlation direction was consistent (i.e., negative/negative, positive/positive) between 

unfractured and fractured groups in 50% of cases and was different (i.e., positive/negative, 

negative/positive) in 50% of cases (Figure 8). Approximately 40% of correlation values were 

positive for both unfractured and fractured individuals, while in 10% of cases, correlation values 

were negative for both unfractured and fractured individuals. In 35% of cases, correlation values 

were positive for unfractured individuals but negative for fractured individuals. In 15% of cases, 

correlation values were negative for unfractured individuals and positive for fractured 

individuals. 
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Figure 8: Correlation direction patterns between all unfractured and all fractured individuals.  

 

Correlation strength was different (i.e., weak/none, none/moderate, moderate/weak) 

between unfractured and fractured groups in 51% of cases and was consistent (i.e. weak/weak, 

none/none, moderate/moderate) in 49% of cases (Figure 9). Correlation strength was lower for 

fractured individuals in 20% of cases and higher in 31% of cases. Outside of the general trends 

observed for all of the analyzed groups, clear differences can be seen between males and 

females. The female group demonstrated the greatest variety in correlation strength values as 

well as the strongest correlation values (moderate, strong) observed in the sample. Because of 

this, the sample was sub-divided into male and female groups and the differences between them 

analyzed in greater detail and assessed for statistical significance. 
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Figure 9: Correlation strength patterns between all unfractured and fractured individuals. 

Male Unfractured vs. Fractured 

Analysis of differences in correlation direction between the unfractured and fractured 

male sample yielded a similarly interesting pattern. In the majority of cases (50%), unfractured 

males exhibited a positive correlation between relevant leg and jaw measurements, whereas the 

homologous pair of measurements had a negative correlation in the fractured group (Figure 10). 

Approximately 43% of correlation directions were the same (i.e., negative/negative; 

positive/positive), while 7% of cases saw negative leg-jaw correlations in the unfractured group 

and positive correlations in the fractured group, thereby exhibiting differences in correlation 

directionality. 
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Figure 10: Correlation direction patterns between all male unfractured and fractured individuals. 

 

 Correlation strength was consistent (i.e., weak/weak, none/none, moderate/moderate) 

between unfractured and fractured males in the majority (57%) of cases (Figure 11). Correlation 

strength was lower in the fractured group in 15% of cases (i.e., moderate/weak, weak/none) and 

higher in the fractured group in the remaining 28% (i.e., none/weak, weak/moderate, 

none/moderate). 
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Figure 11: Correlation strength patterns between all male unfractured and fractured individuals. 

 

Female Unfractured vs. Fractured 

Correlation direction was different between the female unfractured and fractured groups 

in 70% of cases (i.e., negative/positive, positive/negative) and was consistent in 30% (i.e., 

negative/negative, positive/positive; Figure 12). For 39% of homologous measurement 

comparisons in the female sample, the correlation was negative in the unfractured group and 

positive in the fractured group. However, for 31% of comparisons the opposite trend occurred, 

with the correlation being positive in the unfractured group and negative in the fractured group.  
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Figure 12: Correlation direction patterns between all female unfractured and fractured 

individuals. 

 

 Differences in correlation strength were highly variable in the female sample, with no 

clear pattern identified between the unfractured and fractured groups. It is worth emphasizing 

that the different combinations of correlation strength when comparing homologous 

measurements in the female samples spans 13 different types of combinations (see Figure 13), 

whereas only 8 and 6 combinations were present in the male and entire (all) sample comparisons, 

respectively. In 37% of female cases, correlation strength was consistent between the unfractured 

and fractured samples (i.e., weak/weak, moderate/moderate) while in the remaining 64% 

correlation strength was different (Figure 13). Within the altered correlations, 38% of cases saw 

higher correlation strength in the unfractured group, while in 26% of cases, correlation strength 

was higher in the fractured group. The female sample group also exhibited a greater frequency of 

moderate correlations and the only strong correlation values observed in the analysis. 

12%

39%31%

18%

Correlation Direction: 
Female Unfractured vs. Fractured

neg/neg neg/pos pos/neg pos/pos



40 

 

Figure 13: Correlation strength patterns between all female unfractured and fractured individuals. 

 

Long Bone Comparisons 

 Comparisons of correlations between long bone lengths and all jaw measurements 

highlighted differences between the combined and sub-divided sample groups. In all cases, 

patterns of correlation between the All Unfractured vs. Fractured group and the Male 

Unfractured vs. Fractured group were largely consistent. The Female Fractured vs. Unfractured 

group, on the other hand, deviated considerably from the overall sample and the male sub-sample 

(Figures 14-23). Due to the small size of the female sub-sample and several cases of 

unobservable measurements, several correlations were undefined; these missing correlation 

values are represented by gaps in the line graphs generated for the female sample group. 
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Figure 14: Comparison of all left femur correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Figure 15: Comparison of all right femur correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Figure 16: Comparison of all left/right femur difference correlation values in the All Unfractured 

vs. All Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured 

(C) sample groups. 
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Figure 17: Comparison of all left tibia correlation values in the All Unfractured vs. All Fractured 

(A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) sample 

groups. 
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Figure 18: Comparison of all right tibia correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Figure 19: Comparison of all left/right tibia difference correlation values in the All Unfractured 

vs. All Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured 

(C) sample groups. 
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Figure 20: Comparison of all left fibula correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Figure 21: Comparison of all right fibula correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Figure 22: Comparison of all left/right fibula difference correlation values in the All Unfractured 

vs. All Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured 

(C) sample groups. 
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Figure 23: Comparison of all leg length disparity correlation values in the All Unfractured vs. All 

Fractured (A), Male Unfractured vs. Fractured (B), and Female Unfractured vs. Fractured (C) 

sample groups. 
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Statistically Significant Correlation Patterns 

All Fractured vs. Fractured 

 Comparisons of correlation patterns between unfractured and fractured individuals in the 

entire sample demonstrated slight differences between the two groups. In 59% of cases, 

correlation values between lower limb and jaw measurements were higher for unfractured 

individuals, whereas in 41% of cases, correlation values between homologous variables were 

higher for fractured individuals. Due to the small sample size (which was then further sub-

divided for sex-based analyses), an alpha level of 0.10 was selected for statistical analyses and 

assessment of correlation patterns. Significant correlation differences were observed for 

measurements between the LRFemurDiff-RMandCondyle (p=0.02), Rtibia-LMandFossa 

(p=0.09), LRTibiaDiff-RMandCondyle (p=0.02), Left/Right LLD-LMandCondyle (p=0.04), 

Left/Right LLD-RMandCondyle (p=0.03), and Left/Right LLD-LRAMTL#Diff (p=0.09) (Figure 

24). However, since all individuals were statistically compared two times, a Bonferonni 

adjustment for multiple testing was carried out, thereby reducing the initial alpha value from 0.10 

to 0.05 for the results reported here and for correlation results reported for males and females 

below. As a result, several of the reported statistical differences can no longer be considered 

significant.  
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Figure 24: Correlation values that significantly differ between the All Fractured and All Unfractured samples. 
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Male Unfractured vs. Fractured 

 When the unfractured and fractured sample groups were separated by sex, analysis of the 

male sample yielded a more striking pattern than was observed in the combined sample. In 

74.4% of cases in the male sample, correlation values between lower limb and jaw measurements 

were higher for unfractured individuals than for fractured individuals (25.6%). Significant 

correlation differences were observed for measurements between the Rfemur-RMandCondyle 

(p=0.08), Rfemur-LToothWearAvg (p=0.08), Rfemur-RightAMTL (p=0.05), Rfemur-

LeftAMTL (p=0.03), LRFemurDiff-RMandCondyle (p=0.05), Ltibia-LeftAMTL (p=0.04), 

LRTibiaDiff-RMandCondyle (p=0.09), Lfibula-RightAMTL (p=0.06), Lfibula-LeftAMTL 

(p=0.06), Rfibula-LeftAMTL (p=0.07), Left/Right LLD-RMandCondyle (p=0.06), and 

Left/Right LLD-LRAMTL#Diff (p=0.06) (Figure 25). 
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Figure 25: Correlation values that significantly differ between male unfractured and fractured samples. 
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Female Unfractured vs. Fractured 

 Analysis of correlation differences between unfractured and fractured females 

demonstrated a distinct pattern from the male group. For the female group, Kendall’s Tau 

correlation values were only higher in the unfractured group 45% of the time, while in 55% of 

cases correlation values were higher for fractured individuals. Significant correlation differences 

were observed for measurements between the LRFemurDiff-LMandCondyle (p=0.09), 

RTibiaDiff-LMandCondyle (p=0.09), LRTibiaDiff-RightAMTL (p=0.07), LRTibiaDiff-

LeftAMTL (p=0.08), Rfibula-LMandFossa (p=0.07), LRFibulaDiff-RMandFossa (0.04), 

LRFibulaDiff-RToothWearAvg (p=0.04), LRFibulaDiff-LToothWearAvg (p=0.02), Left/Right 

LLD-LMandCondyle (p=0.05), Left/Right LLD-LToothWearAvg (p=0.06), Left/Right LLD-

RightAMTL# (p=0.02), and Left/Right LLD-LeftAMTL# (p=0.01) (Figure 26). 
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Figure 26: Correlation values that significantly differ between the female unfractured and fractured samples. 
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A MANOVA analysis (alpha = 0.10) determined that all four analyzed factors 

(Unfractured vs. Fractured, Sex, Age, and Ancestry) were significant (Table 4). However, post-

hoc ANOVA analyses of the four factors demonstrated that for the Unfractured vs. Fractured and 

Age factors, individual dependent variables were not significant (Tables 5 and 6). Post-hoc 

ANOVA results for Sex, on the other hand, showed significant values for the Lfemur and 

Rfemur measurements (p=0.01), LToothWearAvg (p=0.02), and Ltibia and Rtibia (p=0.09) 

(Table 7). Results for the Ancestry factor also yielded significant values for the Ltibia (p=0.05) 

and Rtibia (p=0.07). After a Bonferonni adjustment for multiple testing (one MANOVA and four 

post-hoc ANOVAs) the alpha value was reduced to 0.02, and several of these values can no 

longer be considered significant. 

 

Table 4: MANOVA results for the Wilks’ Lambda test. Statistically significant values are starred 

and highlighted in bold.  

Factor Partial Eta2 F Observed Power P-value 

Unfractured 

vs. Fractured 

1.00 498.10 0.85 0.04* 

Sex 1.00 30376.74 1.00 <0.01* 

Age 0.93 3.08 1.00 <0.01* 

Ancestry 1.00 23978.17 1.00 0.01* 

*   Significant at α = 0.05 

** Significant at α = 0.10 
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Table 5: Post-hoc ANOVA results for Unfractured vs. Fractured. Statistically significant values 

are starred and highlighted in bold. 

Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

Lfemur 0.00 0.00 0.05 0.97 

Rfemur 0.00 0.01 0.05 0.91 

LRFemurDiff 0.01 0.09 0.06 0.77 

Ltibia 0.00 0.01 0.05 0.93 

Rtibia 0.01 0.11 0.06 0.75 

LRTibiaDiff 0.17 2.45 0.30 0.14 

Lfibula 0.00 0.04 0.05 0.85 

Rfibula 0.00 0.02 0.05 0.89 

LRFibDiff 0.14 1.90 0.25 0.19 

Left/Right LLD 0.13 1.83 0.24 0.20 

LMandFossa 0.04 0.54 0.10 0.48 

RMandFossa 0.02 0.21 0.07 0.65 

LMandCondyle 0.02 0.28 0.08 0.61 

RMandCondyle 0.15 2.06 0.26 0.18 

RToothWearAvg 0.00 0.02 0.05 0.89 

LToothWearAvg 0.16 2.32 0.29 0.15 

LRToothWearAvgDiff 0.08 0.97 0.15 0.34 

Right AMTL # 0.01 0.15 0.07 0.71 

Left AMTL # 0.02 0.23 0.07 0.64 
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Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

LRAMTL#Diff 0.6 0.70 0.12 0.42 

*   Significant at α = 0.05 

** Significant at α = 0.10 

 

Table 6: Post-hoc ANOVA results for Age. Statistically significant values are starred and 

highlighted in bold. 

Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

Lfemur 0.61 0.85 0.29 0.65 

Rfemur 0.64 0.96 0.33 0.55 

LRFemurDiff 0.75 1.62 0.56 0.19 

Ltibia 0.48 0.51 0.18 0.92 

Rtibia 0.49 0.51 0.18 0.92 

LRTibiaDiff 0.75 1.66 0.58 0.18 

Lfibula 0.36 0.31 0.12 0.99 

Rfibula 0.37 0.32 0.12 0.99 

LRFibDiff 0.57 0.72 0.25 0.76 

Left/Right LLD 0.64 0.99 0.34 0.53 

LMandFossa 0.68 1.13 0.39 0.43 

RmandFossa 0.72 1.42 0.50 0.27 

LmandCondyle 0.40 0.36 0.13 0.98 

RmandCondyle 0.29 0.22 0.10 1.00 
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Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

RtoothWearAvg 0.76 1.69 0.59 0.17 

LtoothWearAvg 0.77 1.82 0.62 0.14 

LRToothWearAvgDiff 0.66 1.06 0.37 0.48 

Right AMTL # 0.52 0.59 0.20 0.86 

Left AMTL # 0.65 0.99 0.34 0.53 

LRAMTL#Diff 0.29 0.22 0.10 1.00 

*   Significant at α = 0.05 

** Significant at α = 0.10 

 

 

Table 7: Post-hoc ANOVA results for Sex. Statistically significant values are starred and 

highlighted in bold.  

Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

Lfemur 0.44 9.24 0.80   0.01* 

Rfemur 0.41 8.42 0.76   0.01* 

LRFemurDiff 0.01 0.06 0.06 0.82 

Ltibia 0.22 3.47 0.40     0.09** 

Rtibia 0.23 3.51 0.41     0.09** 

LRTibiaDiff 0.05 0.64 0.11 0.44 

Lfibula 0.19 2.74 0.33 0.12 

Rfibula 0.18 2.65 0.32 0.13 
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Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

LRFibDiff 0.00 0.02 0.05 0.88 

Left/Right LLD 0.00 0.05 0.05 0.84 

LMandFossa 0.16 2.35 0.29 0.15 

RMandFossa 0.02 0.26 0.08 0.62 

LMandCondyle 0.00 0.03 0.05 0.86 

RMandCondyle 0.00 0.04 0.05 0.84 

RToothWearAvg 0.14 1.95 0.25 0.19 

LToothWearAvg 0.37 6.96 0.68   0.02* 

LRToothWearAvgDiff 0.14 2.03 0.26 0.18 

Right AMTL # 0.03 0.33 0.08 0.58 

Left AMTL # 0.08 1.03 0.16 0.33 

LRAMTL#Diff 0.03 0.42 0.09 0.53 

*   Significant at α = 0.05 

** Significant at α = 0.10 

 

Table 8: Post-hoc ANOVA results for Ancestry. Statistically significant values are starred and 

highlighted in bold. 

Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

Lfemur 0.08 1.08 0.16 0.32 

Rfemur 0.08 1.03 0.16 0.33 

LRFemurDiff 0.02 0.28 0.08 0.61 
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Dependent Variable Partial Eta2 F 

Observed 

Power 

P-value 

Ltibia 0.28 4.70 0.51    0.05** 

Rtibia 0.25 3.99 0.45    0.07** 

LRTibiaDiff 0.03 0.31 0.08 0.59 

Lfibula 0.18 2.64 0.32 0.13 

Rfibula 0.21 3.23 0.38 0.10 

LRFibDiff 0.04 0.56 0.11 0.47 

Left/Right LLD 0.00 0.00 0.05 0.97 

LMandFossa 0.01 0.08 0.06 0.78 

RMandFossa 0.00 0.01 0.05 0.93 

LMandCondyle 0.01 0.15 0.07 0.71 

RMandCondyle 0.05 0.57 0.11 0.47 

RToothWearAvg 0.09 1.18 0.17 0.30 

LToothWearAvg 0.11 1.47 0.20 0.25 

LRToothWearAvgDiff 0.01 0.15 0.07 0.71 

Right AMTL # 0.00 0.03 0.05 0.86 

Left AMTL # 0.01 0.09 0.06 0.78 

LRAMTL#Diff 0.01 0.07 0.06 0.80 

*   Significant at α = 0.05 

** Significant at α = 0.10 
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CHAPTER 5: DISCUSSION  

Descriptive statistical analysis between the combined unfractured and fractured samples 

yielded several trends. On average, LLD was more common in the fractured group, 

demonstrating that the healing process of lower limb fractures can cause a discrepancy in length 

between the left and right legs. In terms of co-occurrence of LLD and TMD, there were no 

apparent significant differences between the unfractured and fractured groups; however, this may 

be due to a number of sampling issues, such as small sample size, male bias, and unmatched age 

categories. 

Significant Correlations 

Significant Kendall’s Tau correlation values in all of the analyzed groups demonstrated 

interesting patterns. When comparing the entire sample of unfractured and fractured individuals, 

significant correlation values relating to LLD were identified for the 1) difference between the 

left and right femur and the right mandibular condyle (LRFemurDiff-RMandCondyle), 2) 

difference between the left and right tibia and the right mandibular condyle (LRTibiaDiff-

RMandCondyle), 3) leg length disparity and the left mandibular condyle (Left/Right LLD-

LMandCondyle), 4) leg length disparity and the right mandibular condyle (Left/Right LLD-

RMandCondyle), and 5) leg length disparity and the difference between left and right 

antemortum tooth loss (Left/Right LLD-LRAMTL#Diff). These correlation values indicate that 

the co-occurrence of LLD with TMJ OA and LLD with asymmetrical antemortem tooth loss 

were significantly different between the unfractured and fractured groups.  Four out of five 

significant differences in correlation values demonstrated a difference in directionality that was 

positive in the unfractured group and negative in the fractured group. This suggests that 
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morphological integration of the lower limbs and jaw was more frequently disrupted in the 

fractured group than in the unfractured group. As a result, fractured individuals in the entire 

sample exhibited LLD associated with TMJ OA and asymmetrical antemortem tooth loss more 

often than members of the unfractured group. 

In the Male Unfractured vs. Fractured group, significant correlation values for LLD were 

observed for the 1) difference between the left and right femur and the right mandibular condyle 

(LRFemurDiff-RMandCondyle), 2) difference between the left and right tibia and the right 

mandibular condyle (LRTibiaDiff-RMandCondyle), 3) leg length disparity and the right 

mandibular condyle (Left/Right LLD-RMandCondyle), and 4) leg length disparity and 

antemortem tooth loss asymmetry (Left/Right LLD-LRAMTL#Diff), indicating that LLD 

occurrence was associated with TMJ OA and asymmetrical antemortem tooth loss at different 

rates between the unfractured and fractured male groups. Ten out of twelve correlation values 

were positive in the unfractured group and negative in the fractured group, suggesting that 

morphological integration of the lower limbs and jaw was disrupted more frequently in the 

fractured group. Fractured males were therefore more likely to exhibit fracture-induced LLD 

associated with TMJ OA and asymmetrical antemortem tooth loss than unfractured males.  

In the Female Unfractured vs. Fractured group, significant LLD correlation differences 

were observed for the 1) difference between the left and right femur and the left mandibular 

condyle (LRFemurDiff-LMandCondyle), 2) difference between the left and right tibia and the 

left mandibular condyle (LRTibiaDiff-LMandCondyle), 3) difference between the left and right 

tibia and right antemortem tooth loss (LRTibiaDiff-RightAMTL), 4) difference between the left 

and right tibia and left antemortem tooth loss (LRTibiaDiff-LeftAMTL), 5) difference between 

the left and right fibula and the right mandibular fossa (LRFibulaDiff-RMandFossa), 6) 
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difference between the left and right fibula and the right tooth wear average (LRFibulaDiff-

RToothWearAvg), 7) difference between the left and right fibula and the left tooth wear average 

(LRFibulaDiff-LToothWearAvg), 8) leg length disparity and the left mandibular condyle 

(Left/Right LLD-LMandCondyle), 9) leg length disparity and the left tooth wear average 

(Left/Right LLD-LToothWearAvg), 10) leg length disparity and right antemortem tooth loss 

(Left/Right LLD-RightAMTL#), and 11) leg length disparity and left antemortem tooth loss 

(Left/Right LLD-LeftAMTL#). This group showed the largest number of significant correlation 

differences across the entire sample and sub-sample comparisons, and the correlation values 

suggest that the co-occurrence of LLD with TMJ OA, antemortem tooth loss, and heavy dental 

attrition were significantly different between the female unfractured and fractured groups. 

However, no clear pattern between the unfractured and fractured female groups could be 

identified. In fact, the pattern represented by correlation data is that significant changes in 

correlation strength and direction are inconsistent and erratic in the female sub-sample relative to 

comparisons of the entire sample and the male sub-sample. It is likely that the variability 

observed in the female sample is the result of a number of confounding factors relating to female 

anatomy and biology that obfuscate the patterns of morphological integration between the lower 

limbs and jaw in the unfractured and fractured groups. 

Overall, the analysis of the significant correlation values suggests that patterns of 

morphological integration were more frequently disrupted in fractured individuals, which may 

have caused biomechanical forces to be altered, placing undue stress on affected areas of the 

body and increasing the likelihood of the development of ancillary pathologies. Taken as a 

whole, these values support the hypothesis that LLD resulting from fractures may cause ancillary 

pathological conditions of the jaw, such as TMJ OA, dental attrition, and antemortem tooth loss. 
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These findings are congruent with recent clinical literature that has identified a link between 

LLD and jaw dysfunction in living patients (Blum, 2008; Maeda et al., 2011; Park and Bae, 

2014). This study suggests that given sufficient time, the pathological conditions identified in 

soft tissue clinical studies (e.g., dental malocclusion and TMD) may manifest skeletally and be 

detectable in osteological analyses.  

The results of the MANOVA indicate that fracture status, sex, age, and ancestry all 

significantly influence correlation differences between samples; however, the post-hoc ANOVA 

analyses only demonstrated significance of individual dependent variables for ancestry and sex. 

In the ancestry analysis, there were two variables (Ltibia, Rtibia) with significant p-values and 

moderately strong observed power that drive the significant ancestry MANOVA effect. Based on 

the post-hoc ANOVA analysis by sex, a total of five variables (Ltibia, Rtibia, Lfemur, Rfemur, 

LToothWearAvg) were significant, with high observed power values, which drive the significant 

sex MANOVA effect. This suggests an interesting pattern for the sex-based analysis and 

indicates that sex may be an important factor driving the differences between the analyzed 

samples. The lack of significant post-hoc ANOVA variables for fracture status and age indicates 

that all measurements slightly contribute to the significant MANOVA effect, but none of the 

individual measurements alone are driving that significant effect.  

Sex Differences 

Musculoskeletal Anatomy and Endocrinology 

The observed disparity in correlation patterns between the male and female groups may 

be explained by the sexually dimorphic characteristics of male and female skeletal anatomy. The 

pelvis is the skeletal element tied most closely to the requirements of childbirth and displaying 
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the most sexually dimorphic characteristics (Byers, 2007). The morphology of the human pelvis 

was shaped by evolution to accommodate a bipedal stance, but in females, the pelvis must also 

accommodate the demands of childbirth (Tague, 1986). Because the female pelvis must be wide 

enough to allow a fetus to pass through the birth canal, it is thus wider and shorter than the male 

pelvis.  

 The differences in pelvic morphology between males and females extend to the lower 

limb anatomy. In females, because the pelvic girdle is generally wider than it is in males, the 

femur joins the pelvis at a more lateral angle than it does in males. This affects both the anatomy 

and function of the lower limbs in males and females. The Quadriceps Angle, or Q-Angle, 

describes the angle of alignment of the patella with the femur and pelvis. The Q-Angle is 

measured from the centermost point of the patella to the anterior superior iliac spine of the pelvis 

and the center of the tibial tubercle (Figure 27). In males, a normal Q-angle range is 10°-14°, 

while in females, it generally falls between 15°-17° (Malik and Malik, 2015:112).  
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Figure 27: Differences in Q-Angle between males and females. Note the more lateral positioning 

of the femur in the female leg as opposed to the more upright positioning of the male (illustrated 

by Olivier Lacan, after Malik and Malik, 2015). 

 

 Because of the differences between male and female lower limb anatomy, the 

biomechanical forces of ambulation are somewhat different for the two sexes. An extensive body 

of clinical research has documented differences in gait kinematic patterns between males and 

females (Kerrigan et al., 1998; Smith et al., 2002) and a higher prevalence of sports and activity-

related injuries in females than in males (Geraci and Brown, 2005). Studies have shown that 

females tend to exhibit greater pelvic obliquity, hip adduction, and internal rotation, as well as 

lower center of mass displacement than males in both walking and running gait (Smith et al., 

2002; Ferber et al., 2003). Several explanations for these differences have been posited. Malik 
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and Malik (2015:112) attribute these differential gait and injury patterns to differences in male 

and female Q-Angle morphology, noting that “the greater the Q-angle, the greater the lateral 

force on the patella, and a Q-angle of more than 20° is a risk factor for patella subluxation and 

patellofemoral joint pain.” As a result, females, especially female athletes, are nearly twice as 

likely as males to develop knee injuries and joint pain (Geraci and Brown, 2005).   

 Differential sex hormone levels between males and females may also account for 

differences in musculoskeletal factors influencing gait kinematics.  The male sex hormone 

testosterone serves a number of important functions in male development and is a primary 

driving force behind the differences between the male and female phenotypes. In addition to its 

role in male sexual maturation and reproduction, testosterone functions as an anabolic steroid, 

increasing the size and strength of skeletal and muscular tissues in both young and old men 

(Bhasin et al., 2003). Testosterone is also produced in females, but to a lesser degree than it is in 

males; on average, testosterone levels are 7-8 times higher in males than in females (Torjesen 

and Sandnes, 2004). As a result, males generally have greater total muscle mass than females. 

Lower limb musculature is considerably larger and stronger in individuals with higher 

testosterone levels; one study by Bhasin et al. (1996) demonstrated that individuals who did not 

exercise but were administered testosterone on a regular basis had significantly larger quadriceps 

regions after 10 weeks of treatment. Higher testosterone levels promote musculoskeletal stability 

of the legs and reduce the mechanical workload of joints during ambulation, resulting in distinct 

differences between male and female gait kinematics (Kerrigan et al., 1998). In particular, the 

difference in the size and strength of the quadriceps region drives differences between the male 

and female gait; in females, quadriceps activation during knee flexion is approximately 20% 

higher than in males, and fatigue occurs more rapidly (Wünschel et al., 2013). In conjunction 
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with the wider female Q-Angle, this results in lower joint stability and increased risk of injury 

relative to males. 

Recent orthopedic and sports science studies have examined the role of the female sex 

hormone estrogen in the occurrence of lower limb injuries in females. It has been argued that 

estrogen increases laxity of the lower limb musculature, reducing the muscular reinforcement of 

the leg bones and predisposing females to injury and altered gait (Slauterbeck et al., 1999). This 

is thought to be the result of cyclically elevated estrogen levels during the menstrual cycle that 

reduce collagen content in soft tissue and decrease tensile strength of ligaments that act as 

anchors for the skeletal system (Shultz et al., 2005). Gray and colleagues (2016) investigated the 

correlation between the use of hormonal oral contraceptives and anterior cruciate ligament 

(ACL) injury. The authors analyzed groups of female soccer players with and without ACL 

injuries and found that injury occurrence was less common in the female athletes who were on 

birth control, suggesting that a reduction in natural estrogen levels decreases the risk of knee 

injury occurrence (Gray et al., 2016). Since the females in the present analysis lived and died in 

the early 20th century (before the advent of hormonal contraceptives), they would not have been 

able to regulate their estrogen levels with birth control; thus, they would most likely have 

experienced muscular laxity of the lower extremities during the menstrual cycle and been more 

susceptible to injury and altered gait. 

 The musculoskeletal mechanics of pregnancy and childbirth may also play a role in the 

perceived differences between male and female correlation patterns. During pregnancy, females 

experience a variety of hormonal and physiological changes that affect the lower limbs and gait 

kinematics. Because of their altered physiology, pregnant females tend to adjust their gait 
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pattern, walking at a slower velocity, with shorter average step length and increased duration of 

stance and support phases (Blaszczyk et al., 2016). The pregnancy hormone relaxin may also 

play a role in altering the physiology and gait of pregnant females. Relaxin is a hormone whose 

primary function is to increase laxity of the sacroiliac joint in order to facilitate childbirth 

(MacLennan, 1991). During pregnancy, relaxin levels spike to 10 times their normal levels, 

causing soft tissues to weaken, thereby increasing joint flexibility (Calguneri et al., 1982). The 

result is heightened laxity of the ligaments and other anchoring soft tissues of the lower 

extremities, which can cause lower extremity dysfunction and pain (Ponnapula and Boberg, 

2010). Although there is no reliable method for determining maternity status osteologically, 

because the females in this sample were adult women during the early 20th century, it is likely 

that some or all of them experienced pregnancy and childbirth. Thus, they may have undergone 

considerable changes in gait kinematics, which may explain their deviation from the male 

correlation pattern. Because males do not produce large quantities of estrogen or undergo the 

hormonal changes involved in pregnancy and childbirth, they are less likely to experience lower 

limb instability or injury due to muscular laxity. 

 It is likely that the structural, hormonal, and biomechanical differences between male and 

female physiology account for the observed correlation differences between the male and female 

samples in this study. Since absolutely higher Kendall’s Tau correlation values were observed in 

the male sample, it is possible that the biomechanical forces between the lower limbs and jaw 

travel more directly through the male body, whereas in females, they are disrupted somewhat by 

the more widely-set pelvis and femora. Females are also subject to a much greater range of 

factors influencing gait kinematics, which may account for the observed variability. Thus, male 

and female LLD patients may experience differential biomechanical consequences of the 
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disparity between their left and right lower limbs, and these differences should be taken into 

account in diagnoses of modern medical cases and in paleopathological analyses of past 

populations. Males may be more likely to develop clearer patterns of temporomandibular 

changes in the event of fracture-induced LLD, while females may not. The differential response 

of males and females to a discrepancy between lower limb lengths may indicate that males are 

more susceptible to developing ancillary pathological conditions that may impact their social 

status. 

Social Experience 

 Another explanation for the observed differences in the male and female patterns may be 

different lifetime social experiences. The individuals housed in the HTOC represent a modern, 

industrialized population from late 19th and early 20th century Cleveland, Ohio. During the 

roughly 100-year period in which the individuals in this collection lived and died, Cleveland 

developed from a small trading province to a diverse, urban industrial center (Miller and 

Wheeler, 1997). The construction of an efficient railroad system in the mid-19th century spurred 

massive population growth through the immigration of both native and foreign-born citizens and 

led to the development of Cleveland’s most lucrative industries, iron and steel manufacturing 

(Miller and Wheeler, 1997:70-71). As members of a late 19th and early 20th century urban 

industrial community, the men and women analyzed in this study lived according to the 

prescribed gender roles of the era which included a largely sex-based division of labor. In late 

19th century Cleveland, the majority of employment opportunities consisted of hard manual labor 

in iron and steel production, construction, machining, oil refinement, shipping, and 

manufacturing. These industries employed the majority of the male workforce, although 
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wealthier males were often employed as doctors, lawyers, and business entrepreneurs (Miller and 

Wheeler, 1997). By the early 20th century, Cleveland’s economy had expanded to include 

automobile manufacturing, slaughtering and meat packing, clothing production, printing and 

publication, and the paint and varnish industry (Miller and Wheeler, 1997:101).  

During the early 19th century, women were largely absent from the paid workforce, 

occupying themselves instead with securing a marriage, bearing children, and maintaining a 

household (Rury, 1991). By 1880, however, nearly 18% of Cleveland workers were women, 

employed primarily as domestic servants, seamstresses, laundresses, teachers, and clerks; the 

garment production industry also employed primarily women in their factories (Miller and 

Wheeler, 1997:87). By 1930, female labor, especially in professional and clerical services, was 

increasingly common. However, even after women began entering the paid workforce, many 

returned to the domestic sphere after marriage (Rury, 1991:5). 

Because of their different employment opportunities and social roles, the men and 

women analyzed in this study would have experienced different levels of physical exertion and 

occupational risk of injury during life. Working class men were considerably more likely to 

engage in physically demanding and/or risky manual labor and were therefore more likely to 

experience the long-term biomechanical consequences of fractures and LLD. While the women 

in the sample may have been formally employed, they would have occupied roles involving 

relatively low physical hardship and would thus not have been subject to the same degree of 

activity-related biomechanical stress as their male counterparts. It is also possible that some or 

all of the women in this sample were not employed in formal occupations and instead carried out 

primarily domestic and less physically demanding duties as homemakers. This may explain why 

LLD and TMD were correlated more significantly and consistently in the male sample than they 
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were in the female sample; the male sample may reflect a higher degree of biomechanical stress 

after lower limb fractures than was experienced by the female population, resulting in the 

increased likelihood of comorbidity identified in the male sample.  

The differential male and female social experience of late 19th and early 20th century 

urban American society likely dictated different social consequences of lower limb fractures and 

LLD for the men and women of the era. During this time period, social perceptions of 

masculinity and femininity underpinned the gender-based division of labor between the public 

and private spheres; males were primarily employed outside the home and females within it – 

either in their own homes or in the homes of others (Laslett and Brenner, 1989). Men were the 

primary wage earners in the American family, and contemporary perceptions of masculinity 

emphasized a man’s physical prowess and ability to work in a gainful profession (Rotundo, 

1983). In Cleveland’s turn of the century economy, able-bodied working class men employed in 

the manufacturing, construction, and shipping industries fulfilled social expectations of 

masculinity, while men of underdeveloped physique or diminutive stature were deemed 

physically deficient and unable to participate in physically demanding employment by society 

(Baynton, 2013). Lower limb fractures would have represented a considerable physical 

impairment to working class males who relied on ambulatory mobility and strength to carry out 

their duties as manual laborers and breadwinners. In the absence of modern medical intervention, 

fractures were considerably less likely to be properly reunited and immobilized during healing, 

increasing the likelihood of long-term or permanent complications such as LLD. If these 

complications prevented the individual’s return to the workforce and fulfillment of the requisite 

breadwinning duties of manhood, he may have been considered disabled by turn of the century 

Cleveland society. Men incapacitated by injury and unable to work were often confined to the 
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home, where they were cared for by their wives (Abel, 2000). Men in such situations were 

generally looked down upon by society, as productivity and willingness to work were highly 

valued, and unproductive individuals were seen as “burdens” to their families and society (Abel, 

2000:161-162). 

Women who were affected by lower limb fractures were likely at lower risk of being 

considered disabled than males. While women also provided for their families during this time 

period, female working opportunities were available both outside and within the home, as 

domestic duties were of chief importance to the feminine ideal (Laslett and Brenner, 1989). 

Because female work was generally less physically demanding, lower limb injuries were 

unlikely to prevent women from providing for their families and fulfilling the social expectations 

of womanhood. Women with long-term impairments such as fracture-induced LLD were thus 

more likely to avoid disability status and to maintain their sense of identity within turn of the 

century society. 

Implications 

 This study has several important implications for the analysis and interpretation of social 

identity in both archaeological and modern populations. First, this analysis has demonstrated that 

several trends identified in the clinical literature are in fact detectable in osteological remains and 

should be considered in bioarchaeological analyses. As expected, fractured individuals were 

more likely to exhibit LLD, demonstrating that comorbidity can and does occur and should be 

considered a possibility in paleopathological analyses. In particular, fractures of the tibia and 

fibula were most commonly associated with LLD, although femoral fractures were also 

responsible for a lower proportion of the LLD observed in the sample. This suggests that while 
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any fracture of the lower limbs can result in LLD, tibial and fibular fractures are particularly 

likely to cause a disparity in leg length, as they are the most common clinically. In addition, clear 

differences between male and female physiology and gait were discussed in the literature, and 

different patterns of morphological integration were identified for males and females in this 

analysis. This suggests that increased sensitivity to differences in male and female lower limb 

biomechanics can improve our interpretations of past injury expression.  

 The correlation trend identified in the clinical literature between LLD and TMD is still 

pertinent today, as modern populations still currently experience these issues, and medical 

professionals need every tool at their disposal to effectively diagnose and mitigate the symptoms 

that a patient with LLD may experience. This is especially important to those populations most at 

risk of developing clinically significant LLD, such as young children with lower limb fractures, 

elder individuals with frail bones at risk of incurring fractures, and military personnel who may 

injure or lose appendages in combat. Medical professionals should be especially cognizant of the 

ancillary pathological conditions that may develop as a result of fracture-related LLD and be 

prepared to not only diagnose and treat the local injury site, but also to be vigilant of conditions 

possibly developing in correlated regions. Better treatment methods contribute to improved long-

term outlook and may prevent long-term disability status. 

 The interpretation of the social identity of the men and women analyzed in this study 

highlights the debate surrounding bioarchaeological disability studies and sheds light on the 

question of whether or not bioarchaeologists can and should interpret social identity and 

disability status from pathological conditions. Despite their polarized stances, the arguments of 

both proponents and critics of archaeological disability studies have their merits. Dettwyler 

(1991) is right to advise caution in archaeological interpretations of care and compassion; as she 
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points out in her critique of several paleoanthropological studies of the 1970’s, archaeologists 

can and often do overextend their interpretations to make claims about compassion and care that 

are not substantiated by the available evidence. As Tilley (2015) points out, however, 

Dettwyler’s criticism of disability studies goes too far, discouraging bioarchaeologists from 

interpreting impairment and disability where it may be possible to do so. By employing 

appropriate methodology such as the Index of Care (2014), it is possible to determine not only 

the degree of impairment an injured individual experienced, but also how he or she was 

perceived by society and whether or not caregiving from other members of the community would 

have been required. As Lovell (2016) demonstrates in her analysis of an ancient Roman man 

with LLD, taking all of the osteological, archaeological, and historical evidence into account 

allows bioarchaeologists to draw informed, accurate conclusions about an individual’s disability 

status in past society. The analysis presented here further supports the conclusion that holistic 

bioarchaeological analyses can provide insight into both past and present perceptions of the long-

term injury experience and disability. 

Limitations 

 There were several logistical constraints that limited the scope of this study. In the first 

place, the HTOC contains considerably more male remains than female, such that the sample 

used in this study was heavily biased toward males. This bias was reflected in the fractured 

sample, and the control group had to be similarly proportioned in order to allow for robust 

statistical analyses. Sample size was also an issue because time limitations prevented the 

measurement and analysis of a larger group of individuals. Furthermore, both the test group and 
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control group reflected a wide age range because time and logistical restrictions did not allow for 

the selection of consistent age ranges.   
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CHAPTER 6: CONCLUSION  

 In order for biological anthropologists to cultivate a holistic understanding of human life, 

health, and well-being, a more accurate understanding of the human injury experience is 

imperative. Morphological integration studies are a fruitful means of investigating correlations 

and covariance between related skeletal components and have the potential to provide crucial 

insight into the holistic effects of skeletal pathological conditions. 

This study offers the first bioarchaeological analysis of morphological integration 

between leg fractures, LLD, and TMD and has demonstrated that these conditions often covary, 

or coexist. Based on this analysis, it appears that morphological integration between the lower 

limbs and jaw is frequently disrupted in fractured individuals, causing fractured individuals to be 

at a higher risk of developing TMD. However, this pattern is not consistent between the sexes; it 

is apparent from this analysis that significant differences exist between male and female lower 

limb biomechanics and that males and females have differential responses to lower limb 

fractures and LLD. Specifically, males are more likely to exhibit disrupted morphological 

integration of the lower limbs and jaw as measured by a significant reduction in absolute 

correlation strength and therefore may be more likely to develop TMD as an ancillary 

pathological condition. Females, on the other hand, may exhibit absolutely lower or absolutely 

higher statistically significant correlation strength differences in homologous measurements from 

fractured and unfractured samples. A clear conclusion of this study is that differences between 

male and female skeletal anatomy and lower limb function should be considered in 

biomechanical analyses, as males and females may experience differential risk of developing 

secondary pathological conditions. As a result, bioarchaeologists and modern medical 
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professionals should consider an individual’s sex when determining an individual’s long-term 

injury experience and disability status. 

This study has also highlighted the importance of the debate surrounding the ability of 

bioarchaeologists to identity disability, caregiving, and social identity in the archaeological 

record. Although critics of disability studies are right to question the assumption that non-

impaired individuals necessarily show compassion toward impaired group members, studies such 

the one carried out by Lovell (2016) demonstrate that given sufficient information about a 

population’s way of life, bioarchaeologists can interpret an individual’s disability status based on 

how their injury would have been perceived by society. The present analysis further supports the 

argument that with appropriate caution and proper methodology, it is possible to infer an 

individual’s degree of impairment and disability status from archaeological evidence. Such 

studies are important for the bioarchaeological discipline, as they shed light on ancient ways of 

life and contribute to our understanding of the human injury experience in both the past and the 

present. 

Future Directions 

 Given this study’s small sample size, the next step to furthering this analysis would be to 

collect data on additional individuals and repeat the steps of the analysis to increase statistical 

robusticity and determine if the patterns identified in this study remain consistent with a larger 

sample size. With more time and resources, it would also be possible to ensure equal male and 

female representation in the sample as well as a more consistent age range of analyzed 

individuals. Furthermore, with a larger sample size, it would be possible to sub-divide the sample 

into smaller groups and further explore the potential effects of age, ancestry, and fracture 
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location, affected bone, and state of healing on the correlation between LLD and jaw 

dysfunction.  

 Another potentially informative aspect of future studies would be to conduct a full 

osteological analysis of the individuals in the sample with the most serious LLD to determine if 

the altered biomechanical forces of an impaired gait manifested elsewhere in the body. Since 

LLD affects the alignment of the feet, knees, hips, and shoulders, there may be evidence of other 

pathological conditions in these areas of LLD occurrence, which would further support the 

argument that LLD results in ancillary pathological conditions outside of the lower limbs.   
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APPENDIX A: RAW SAMPLE DATA TABLES
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Table 9: Raw data for entire control (unfractured) sample. 

Individual ID Sex 
Age 

(years) 
Ancestry 

Lfemur 
(mm) 

Rfemur 
(mm) 

LRFemurDiff 
(mm) 

Ltibia 
(mm) 

Rtibia 
(mm) 

LRTibiaDiff 
(mm) 

Lfibula 
(mm) 

Rfibula 
(mm) 

LRFibDiff 
(mm) 

Left/Right 
LLD (mm) 

LMandFossa 
(0-3) 

RMandFossa 
(0-3) 

LMandCondyle 
(0-3) 

RMandCondyle 
(0-3) 

RToothWearAvg 
(0-4) 

LToothWearAvg 
(0-4) 

LRToothWearAvgDiff 
(0-4) 

Right 
AMTL 

# 

Left 
AMTL 

# 
LRAMTL#Diff 

1 
HTH 
0026 

Male 40 White 449.71 447.24 2.47 368.96 372.3 3.34 375.79 370.88 4.91 10.72 1 1 0 0 0.75 0 0.75 3 3 0 

9 
HTH 
0311 

Female 56 White 445.52 447.52 2 348.26 346.77 1.49 340.24 342.87 2.63 6.12 0 0 0 0       16 16 0 

13 
HTH 
0788 

Male 57 White 476.07 475.3 0.77 396.34 397.8 1.46 395.84 397.07 1.23 3.46 0 0 0 0 1.18 1.19 0.01 1 1 0 

14 
HTH 
0895 

Male 60 White 479.62 483.71 4.09 379.74 370.53 9.21 383.4 383.98 0.58 13.88 0 1 0 0       14 14 0 

18 
HTH 
1666 

Male 57 Black 449.33 445.39 3.94 369.39 365.15 4.24 360.53 361.38 0.85 9.03 0 0 1 1 0.5 0 0.5 2 4 2 

19 
HTH 
1827 

Male 54 Black 478.64 478.81 0.17 387.11 387.37 0.26 377.31 376.9 0.41 0.84 0 0 1 0 0.83 1.67 0.84 9 8 1 

20 
HTH 
2269 

Female 58 Black 425.07 424.85 0.22 339.36 336.38 2.98         0 0 0 0       16 16 0 

21 
HTH 
2276 

Female 38 Black 426.09 422.3 3.79 334.63 338.71 4.08 328.44 332.91 4.47 12.34 0 0 0 0 0.13 0.15 0.02 0 0 0 

22 
HTH 
2325 

Male 75 White 459.95 457.65 2.3 364.99 361.95 3.04 362.45 357.7 4.75 10.09 1 1 0 0 2.5     3 5 2 

24 
HTH 
0584 

Male 25 White 442.43 442.12 0.31 349.47 349.13 0.34 343.81 342.15 1.66 2.31 0 0 0 0 0 0 0 0 0 0 

31 
HTH 
0741 

Male 63 White 440.39 436.34 4.05 362.72 365.26 2.54 357.38 360.41 3.03 9.62 1 1 0 0 3.25 2 1.25 2 6 4 

32 
HTH 
2395 

Female 52 Black 464.53 464.17 0.36 385.02 389.81 4.79 382 381.88 0.12 5.27 1 1 0 0 1.31 0.69 0.62 3 4 1 

33 
HTH 
2531 

Male 52 White 453.31 451.41 1.9 360.62 357.26 3.36 347.29 338.67 8.62 13.88 0 0 0 0 1.61 1.88 0.27 6 6 0 

34 
HTH 
2597 

Female 34 Black 440.4 441.44 1.04 358.03 357.07 0.96 350.79 352.76 1.97 3.97 0 0 0 0 0 0.17 0.17 9 6 3 

35 
HTH 
2646 

Female 43 Black 467.81 465.65 2.16 389.12 390.99 1.87 388.35       0 0 0 0       16 16 0 

36 
HTH 
2749 

Male 42 Black 476.47 476.47 0 407.85     386.25       2 2 0 0 1     15 16 1 

37 
HTH 
933 

Female 38 Black 444.27 449.5 5.23 375.19 379.6 4.41 364.02 365.6 1.58 11.22 0 0 1 1 
0.17 0.17 

0 7 5 2 

42 
HTH 
2778 

Male 40 White 437.96 434.38 3.58 349.34 355.17 5.83 336.18 339.43 3.25 12.66 0 0 1 1 2.18 1.5 0.68 4 5 1 

43 
HTH 
2828 

Male 65 Black 499.72 493.32 6.4 421.74 413.11 8.63 411.34 402.38 8.96 23.99 0 1 0 0       16 16 0 

46 
HTH 
3111 

Female 38 White 391.8 393.45 1.65 306.81 306.96 0.15 302.15 301.36 0.79 2.59 0 1 0 0       16 15 1 

49 
HTH 
3118 

Female 54 White 397.61 400.65 3.04 308.48 308.77 0.29 307 305.51 1.49 4.82 0 0 0 0 2 1 1 12 12 0 
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Individual ID Sex 
Age 

(years) 
Ancestry 

Lfemur 
(mm) 

Rfemur 
(mm) 

LRFemurDiff 
(mm) 

Ltibia 
(mm) 

Rtibia 
(mm) 

LRTibiaDiff 
(mm) 

Lfibula 
(mm) 

Rfibula 
(mm) 

LRFibDiff 
(mm) 

Left/Right 
LLD (mm) 

LMandFossa 
(0-3) 

RMandFossa 
(0-3) 

LMandCondyle 
(0-3) 

RMandCondyle 
(0-3) 

RToothWearAvg 
(0-4) 

LToothWearAvg 
(0-4) 

LRToothWearAvgDiff 
(0-4) 

Right 
AMTL 

# 

Left 
AMTL 

# 
LRAMTL#Diff 

50 
HTH 
3242 

Male 58 White 456.83 456.95 0.12 371.82 369.23 2.59 360.26 358 2.26 4.97 0 0 0 0 2.5 2.45 0.05 1 2 1 

51 
HTH 
0385 

Male 37 White 428.62 424.18 4.44 358.85 361.03 2.18 354.96 356.32 1.36 7.98 1 1 0 0 0.33 0.63 0.3 5 6 1 

52 
HTH 
0440 

Male 50 White 466.27 467.57 1.3 387.5 387.93 0.43 378.95 375.23 3.72 5.45 1 1 1 0 0.43 0.75 0.32 9 11 2 

53 
HTH 
2683 

Male 41 White 446.89 450 3.11 356.39 356.44 0.05 358.15 358.43 0.28 3.44 1 1 0 0 0.92 0.67 0.25 3 7 4 

54 
HTH 
0344 

Male 49 White 440.81 438.99 1.82 356.27 355.55 0.72 352.24 349.8 2.44 4.98 1 1 0 0 0.29 1.57 1.28 3 1 2 

56 
HTH 
2207 

Male 40 White 437.85 438.36 0.51 360.75 359.68 1.07 355.05 353.32 1.73 3.31 1 1 0 0 0.25 0 0.25 13 14 1 

 

 

Table 10: Raw data for entire test (fractured) sample. 

Individual ID Sex 
Age 

(years) 
Ancestry 

Lfemur 
(mm) 

Rfemur 
(mm) 

LRFemurDiff 
(mm) 

Ltibia 
(mm) 

Rtibia 
(mm) 

LRTibiaDiff 
(mm) 

Lfibula 
(mm) 

Rfibula 
(mm) 

LRFibulaDiff 
(mm) 

Left/Right 
LLD (mm) 

LMandFossa 
(0-3) 

RMandFossa 
(0-3) 

LMandCondyle 
(0-3) 

RMandCondyle 
(0-3) 

RToothWearAvg 
(0-4) 

LToothWearAvg 
(0-4) 

LRToothWearAvgDiff 
(0-4) 

Fracture 
Healing 

(0-2) 

Right 
AMTL 

# 

Left 
AMTL 

# 
LRAMTL#Diff 

2 
HTH 
0204 

Female 27 White 386.15 388.94 2.79 303.55 302.39 1.16 302.4 300.01 2.39 6.34 0 0 0 0 0.46 0 0.46 2 0 1 1 

3 
HTH 
0339 

Female 38 White 444.74 444.13 0.61 347.64 349.37 1.73 339.04 340.03 0.99 3.33 0 0 1 0 0.59 0.56 0.03 2 2 4 2 

4 
HTH 
0444 

Male 45 White 444.16 444.46 0.3 345.23 345.85 0.62 339.14 342.11 2.97 3.89 1 0 0 0 0.6 0.87 0.27 1 0 0 0 

5 
HTH 
0459 

Male 40 White 438.76 441.07 2.31 354.01 362.43 8.42 349.69 353.42 3.73 14.46 1 1 0 0 2.06 1.93 0.13 2 0 1 1 

6 
HTH 
0479 

Male 58 White 454.69 446.5 8.19 368.25 367.87 0.38 368.05 362.99 5.06 13.63 1 1 0 0 2.33 2 0.33 2 8 6 2 

7 
HTH 
0500 

Male 40 White 465.62 467.51 1.89 383.89 369.33 14.56 383.68 372.24 11.44 27.89 1 0 0 0 1.33 2.15 0.82 2 12 1 11 

8 
HTH 
0534 

Male 68 White 449.31 451.53 2.22 364.31 364.24 0.07  359.01   2 2 0 0 0.58 2.13 1.55 2 1 5 4 

10 
HTH 
0354 

Male 48 White 473.51 478 4.49 398.5 398.97 0.47 388.46 387.94 0.52 5.48 0 1 0 0 2 2 0 2 5 5 0 

11 
HTH 
0631 

Female 36 White 448.12 446.43 1.69 353.18 358.08 4.9 340.49 342.44 1.95 8.54 0 0 0 0 0 0 0 2 1 3 2 

12 
HTH 
0718 

Male 39 Black 447.7 450.39 2.69 383.9 386.73 2.83 376.63 377.06 0.43 5.95 0 0 0 0 0.86 1 0.14 2 2 2 0 

15 
HTH 
1552 

Male 76 White 434.05 420.08 13.97 350.85 349.2 1.65 347.19 343.37 3.82 19.44 1 1 0 0 2 2.5 0.5 2 11 14 3 
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Individual ID Sex 
Age 

(years) 
Ancestry 

Lfemur 
(mm) 

Rfemur 
(mm) 

LRFemurDiff 
(mm) 

Ltibia 
(mm) 

Rtibia 
(mm) 

LRTibiaDiff 
(mm) 

Lfibula 
(mm) 

Rfibula 
(mm) 

LRFibulaDiff 
(mm) 

Left/Right 
LLD (mm) 

LMandFossa 
(0-3) 

RMandFossa 
(0-3) 

LMandCondyle 
(0-3) 

RMandCondyle 
(0-3) 

RToothWearAvg 
(0-4) 

LToothWearAvg 
(0-4) 

LRToothWearAvgDiff 
(0-4) 

Fracture 
Healing 

(0-2) 

Right 
AMTL 

# 

Left 
AMTL 

# 
LRAMTL#Diff 

16 
HTH 
1592 

Male 68 White 457.46 457.74 0.28 358.84 357.99 0.85 351.91 354.35 2.44 3.57 0 0 1 1    1 15 14 1 

17 
HTH 
1647 

Female 63 White 387.95 388.48 0.53 322.62 310.28 12.34 316.02 300.11 15.91 28.78 0 0 0 0 1 1 0 2 14 14 0 

23 
HTH 
0543 

Male 38 Black 455.65 457.54 1.89 368.31 369.74 1.43 364.16 361.88 2.28 5.6 1 0 0 0 0.81 0.97 0.16 0 0 0 0 

25 
HTH 
0587 

Male 40 White 450.4 443.9 6.5 401.36   392.99    1 1 0 0 1.14 1.2 0.06 0 5 5 0 

26 
HTH 
0602 

Male 35 White 449.91 439.55 10.36 363.28 382.02 18.74 359.98 365.34 5.36 34.46 0 0 0 0 0 0.43 0.43 2 7 6 1 

27 
HTH 
0666 

Male 45 Black 490.32 488.06 2.26 425.49 427.72 2.23 415.28 418.88 3.6 8.09 0 0 0 0 1 0.63 0.37 2 8 7 1 

28 
HTH 
0742 

Female 50 White  437.79   373.13      0 0 0 1    0 7 10 3 

29 
HTH 
0751 

Female 65 Black 405.77 404.33 1.44 327.7 331.07 3.37 323.59 325.88 2.29 7.1 2 2 0 0 0.45 0.4 0.05 1.5 6 4 2 

30 
HTH 
0868 

Female 60 Black 467.49 464.22 3.27 376.44 371.56 4.88 372.74 368.08 4.66 12.81 0 1 0 0  0.33  2 15 12 3 

38 
HTH 
0974 

Male 45 Black 446.16 448.53 2.37 373.51 369.65 3.86 350.34 356.27 5.93 12.16 0 0 0 0 1.29 0.67 0.62 2 5 2 3 

39 
HTH 
1124 

Female 40 Black 413.49 414.78 1.29 361.94 355.74 6.2 350.85 351.94 1.09 8.58 0 0 0 0 0.15 0.13 0.02 2 3 4 1 

40 
HTH 
1387 

Male 65 White 396.38 394.11 2.27 335.61 332.97 2.64 318.91 321.5 2.59 7.5 1 1 0 0    1 16 16 0 

41 
HTH 
1470 

Male 65 White 431.14 428.05 3.09 362.79 364.24 1.45 356.59    0 0 1 0 0.55 1 0.45 0 3 5 2 

44 
HTH 
3091 

Male 54 White 420.68 420.2 0.48 342.66 337.34 5.32 338.92 338 0.92 6.72 0 0 0 0  2  1 14 13 1 

45 
HTH 
3045 

Male 66 White 432.9 426.48 6.42 379.71 377.28 2.43 369.45 355.26 14.19 23.04 1 0 0 0 3.4 3 0.4 2 10 10 0 

47 
HTH 
1534 

Female 45 Black 466.66 466.53 0.13 400.87 397.89 2.98  396.94   0 0 0 0 1.08 1.25 0.17 0 7 5 2 

48 
HTH 
1903 

Male 32 Black  536.54  440.38 439.44 0.94 428.36 425.31 3.05 3.99 0 0 0 0 0.14 0.32 0.18 0 0 1 1 

55 
HTH 
2761 

Female 46 Black 404.6 402.5 2.1 343.26 338.26 5 337.49 334.01 3.48 10.58 0 0 0 0 0.45 0.17 0.28 2 5 4 1 
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APPENDIX B: KENDALL’S TAU B CORRELATION TABLES 
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Table 11: Kendall’s Tau correlation values, z-scores, and p-values for the All Unfractured and 

Fractured sample. Statistically significant values are starred and highlighted in bold. 

 

Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Lfemur-LMandFossa 0.06 -0.05 0.40 0.34 

Lfemur-RMandFossa 0.15 0.06 0.32 0.37 

Lfemur-LMandCondyle 0.10 0.00 0.36 0.36 

Lfemur-RMandCondyle -0.10 0.17 -0.95 0.17 

Lfemur-RToothWearAvg 0.19 0.20 -0.04 0.48 

Lfemur-LToothWearAvg 0.20 0.15 0.21 0.42 

Lfemur-RightAMTL 0.04 0.06 -0.09 0.46 

Lfemur-LeftAMTL 0.06 0.02 0.12 0.45 

Rfemur-LMandFossa 0.05 -0.08 0.47 0.32 

Rfemur-RMandFossa 0.14 -0.03 0.59 0.28 

Rfemur-LMandCondyle 0.10 0.02 0.28 0.39 

Rfemur-RMandCondyle -0.11 0.06 -0.63 0.27 

Rfemur-RToothWearAvg 0.16 0.12 0.14 0.44 

Rfemur-LToothWearAvg 0.22 0.10 0.42 0.34 

Rfemur-RightAMTL 0.09 -0.11 0.69 0.24 

Rfemur-LeftAMTL 0.11 -0.20 1.10 0.14 

LRFemurDiff-LMandFossa -0.07 0.12 -0.68 0.25 

LRFemurDiff-RMandFossa 0.08 0.31 -0.84 0.20 

LRFemurDiff-LMandCondyle 0.11 -0.16 0.97 0.17 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRFemurDiff-RMandCondyle 0.327 -0.251 2.11    0.02* 

LRFemurDiff-RToothWearAvg 0.00 0.23 -0.82 0.21 

LRFemurDiff-LToothWearAvg -0.12 0.15 -0.96 0.17 

LRFemurDiff-RightAMTL -0.02 0.04 -0.20 0.42 

LRFemurDiff-LeftAMTL 0.00 0.13 -0.46 0.32 

Ltibia-LMandFossa 0.19 -0.08 0.95 0.17 

Ltibia-RMandFossa 0.19 -0.03 0.79 0.22 

Ltibia-LMandCondyle 0.19 -0.11 1.07 0.14 

Ltibia-RMandCondyle 0.02 -0.04 0.22 0.41 

Ltibia-RToothWearAvg 0.12 0.21 -0.32 0.37 

Ltibia-LToothWearAvg 0.13 0.15 -0.06 0.47 

Ltibia-RightAMTL 0.02 -0.03 0.17 0.43 

Ltibia-LeftAMTL 0.04 -0.07 0.37 0.35 

Rtibia-LMandFossa 0.154 -0.223 1.35     0.09** 

Rtibia-RMandFossa 0.15 -0.14 1.02 0.15 

Rtibia-LMandCondyle 0.20 -0.13 1.16 0.12 

Rtibia-RMandCondyle 0.03 0.06 -0.11 0.46 

Rtibia-RToothWearAvg 0.17 0.12 0.18 0.43 

Rtibia-LToothWearAvg 0.12 0.07 0.19 0.43 

Rtibia-RightAMTL -0.06 -0.05 -0.01 0.50 

Rtibia-LeftAMTL -0.04 -0.09 0.18 0.43 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRTibiaDiff-LMandFossa -0.09 -0.17 0.29 0.39 

LRTibiaDiff-RMandFossa -0.07 -0.19 0.41 0.34 

LRTibiaDiff-LMandCondyle 0.13 -0.19 1.13 0.13 

LRTibiaDiff-RMandCondyle 0.398 -0.189 2.16    0.02* 

LRTibiaDiff-RToothWearAvg 0.11 -0.04 0.50 0.31 

LRTibiaDiff-LToothWearAvg -0.02 -0.11 0.29 0.39 

LRTibiaDiff-RightAMTL -0.08 0.19 -0.97 0.17 

LRTibiaDiff-LeftAMTL -0.13 0.05 -0.62 0.27 

Lfibula-LMandFossa 0.19 -0.02 0.76 0.22 

Lfibula-RMandFossa 0.26 0.02 0.86 0.20 

Lfibula-LMandCondyle 0.08 -0.06 0.50 0.31 

Lfibula-RMandCondyle -0.06 0.02 -0.30 0.38 

Lfibula-RToothWearAvg 0.15 0.20 -0.16 0.44 

Lfibula-LToothWearAvg 0.06 0.19 -0.46 0.32 

Lfibula-RightAMTL 0.12 -0.01 0.49 0.31 

Lfibula-LeftAMTL 0.15 -0.06 0.72 0.24 

Rfibula-LMandFossa 0.16 -0.12 0.99 0.16 

Rfibula-RMandFossa 0.25 -0.04 1.03 0.15 

Rfibula-LMandCondyle 0.18 -0.12 1.06 0.14 

Rfibula-RMandCondyle 0.01 0.00 0.03 0.49 

Rfibula-RToothWearAvg 0.15 0.14 0.01 0.49 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Rfibula-LToothWearAvg 0.04 0.14 -0.35 0.36 

Rfibula-RightAMTL -0.01 -0.04 0.12 0.45 

Rfibula-LeftAMTL 0.02 -0.10 0.41 0.34 

LRFibulaDiff-LMandFossa 0.05 0.20 -0.54 0.30 

LRFibulaDiff-RMandFossa 0.00 0.02 -0.06 0.48 

LRFibulaDiff-LMandCondyle -0.08 -0.21 0.46 0.32 

LRFibulaDiff-RMandCondyle -0.05 -0.05 0.00 0.50 

LRFibulaDiff-RToothWearAvg 0.03 0.28 -0.89 0.19 

LRFibulaDiff-LToothWearAvg 0.02 0.20 -0.64 0.26 

LRFibulaDiff-RightAMTL -0.01 0.24 -0.91 0.18 

LRFibulaDiff-LeftAMTL -0.05 0.12 -0.59 0.28 

Fracture Healing-LMandFossa   -0.05 0.17 0.43 

Fracture Healing-RMandFossa   0.10 -0.35 0.36 

Fracture Healing-LMandCondyle   -0.18 0.66 0.26 

Fracture Healing-RMandCondyle   -0.36 1.34    0.09** 

Fracture Healing-RToothWearAvg   0.13 -0.47 0.32 

Fracture Healing-LToothWearAvg   -0.01 0.05 0.48 

Fracture Healing-RightAMTL   0.03 -0.12 0.45 

Fracture Healing-LeftAMTL   -0.01 0.02 0.49 

*   Significant at α = 0.05 

** Significant at α = 0.10 
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Table 12: Kendall’s Tau correlation values, z-scores, and p-values for the Male Unfractured and 

Fractured sample. Statistically significant values are starred and highlighted in bold. 

 

Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Lfemur-LMandFossa -0.23 -0.11 -0.34 0.37 

Lfemur-RMandFossa 0.03 -0.04 0.19 0.42 

Lfemur-LMandCondyle 0.04 -0.04 0.24 0.41 

Lfemur-RMandCondyle -0.23 0.22 -1.26 0.10 

Lfemur-RToothWearAvg 0.19 -0.02 0.59 0.28 

Lfemur-LToothWearAvg 0.22 -0.17 1.09 0.14 

Lfemur-RightAMTL 0.26 -0.04 0.84 0.20 

Lfemur-LeftAMTL 0.24 -0.14 1.06 0.14 

Rfemur-LMandFossa -0.20 -0.21 0.03 0.49 

Rfemur-RMandFossa 0.06 -0.16 0.62 0.27 

Rfemur-LMandCondyle 0.00 -0.01 0.04 0.49 

Rfemur-RMandCondyle -0.29 0.22 -1.43     0.08** 

Rfemur-RToothWearAvg 0.19 -0.14 0.94 0.17 

Rfemur-LToothWearAvg 0.22 -0.27 1.38     0.08** 

Rfemur-RightAMTL 0.30 -0.28 1.66     0.05** 

Rfemur-LeftAMTL 0.29 -0.38 1.95   0.03* 

LRFemurDiff-LMandFossa -0.06 0.01 -0.19 0.42 

LRFemurDiff-RmandFossa 0.18 0.28 -0.27 0.39 

LRFemurDiff-LmandCondyle -0.02 -0.16 0.37 0.35 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRFemurDiff-RmandCondyle 0.23 -0.33 1.61     0.05** 

LRFemurDiff-RToothWearAvg 0.11 0.19 -0.23 0.41 

LRFemurDiff-LToothWearAvg -0.10 0.12 -0.62 0.27 

LRFemurDiff-RightAMTL 0.08 0.08 0.00 0.50 

LRFemurDiff-LeftAMTL 0.15 0.24 -0.28 0.39 

Ltibia-LMandFossa -0.02 -0.21 0.53 0.30 

Ltibia-RMandFossa 0.13 -0.13 0.71 0.24 

Ltibia-LMandCondyle 0.07 -0.17 0.67 0.25 

Ltibia-RMandCondyle -0.19 -0.14 -0.15 0.44 

Ltibia-RToothWearAvg 0.16 0.03 0.38 0.35 

Ltibia-LToothWearAvg 0.10 -0.19 0.83 0.20 

Ltibia-RightAMTL 0.22 -0.18 1.12 0.13 

Ltibia-LeftAMTL 0.26 -0.23 1.38      0.08** 

Rtibia-LMandFossa -0.09 -0.34 0.74 0.23 

Rtibia-RmandFossa 0.08 -0.24 0.91 0.18 

Rtibia-LmandCondyle 0.11 -0.17 0.77 0.22 

Rtibia-RmandCondyle -0.21 -0.17 -0.10 0.46 

Rtibia-RtoothWearAvg 0.21 -0.11 0.89 0.19 

Rtibia-LtoothWearAvg 0.13 -0.30 1.20 0.11 

Rtibia-RightAMTL 0.11 -0.24 1.00 0.16 

Rtibia-LeftAMTL 0.20 -0.22 1.19 0.12 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRTibiaDiff-LmandFossa -0.27 -0.18 -0.28 0.39 

LRTibiaDiff-RmandFossa -0.10 -0.30 0.58 0.28 

LRTibiaDiff-LmandCondyle 0.03 -0.16 0.51 0.31 

LRTibiaDiff-RmandCondyle 0.41 -0.17 1.71   0.04* 

LRTibiaDiff-RToothWearAvg 0.27 0.08 0.55 0.29 

LRTibiaDiff-LToothWearAvg 0.08 -0.05 0.37 0.36 

LRTibiaDiff-RightAMTL 0.10 0.18 -0.24 0.40 

LRTibiaDiff-LeftAMTL 0.04 0.02 0.06 0.47 

Lfibula-LMandFossa 0.03 -0.17 0.55 0.29 

Lfibula-RMandFossa 0.27 -0.10 1.03 0.15 

Lfibula-LMandCondyle 0.00 -0.10 0.28 0.39 

Lfibula-RMandCondyle -0.23 -0.09 -0.41 0.34 

Lfibula-RToothWearAvg 0.14 -0.04 0.50 0.31 

Lfibula-LToothWearAvg 0.01 -0.14 0.41 0.34 

Lfibula-RightAMTL 0.30 -0.17 1.32     0.09** 

Lfibula-LeftAMTL 0.36 -0.18 1.57     0.06** 

Rfibula-LMandFossa -0.12 -0.33 0.60 0.27 

Rfibula-RmandFossa 0.16 -0.17 0.95 0.17 

Rfibula-LmandCondyle 0.10 -0.13 0.63 0.27 

Rfibula-RmandCondyle -0.16 -0.12 -0.11 0.46 

Rfibula-RtoothWearAvg 0.15 -0.18 0.93 0.18 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Rfibula-LtoothWearAvg -0.01 -0.29 0.80 0.21 

Rfibula-RightAMTL 0.15 -0.26 1.14 0.13 

Rfibula-LeftAMTL 0.26 -0.26 1.46     0.07** 

LRFibulaDiff-LMandFossa 0.12 0.30 -0.51 0.30 

LRFibulaDiff-RMandFossa 0.16 -0.04 0.56 0.29 

LRFibulaDiff-LMandCondyle -0.12 -0.17 0.13 0.45 

LRFibulaDiff-RMandCondyle -0.06 -0.16 0.26 0.40 

LRFibulaDiff-RToothWearAvg 0.15 0.27 -0.34 0.37 

LRFibulaDiff-LToothWearAvg 0.10 0.13 -0.09 0.46 

LRFibulaDiff-RightAMTL 0.15 0.10 0.12 0.45 

LRFibulaDiff-LeftAMTL 0.03 0.03 0.01 0.50 

Fracture Healing-LMandFossa  0.08 -0.22 0.41 

Fracture Healing-RMandFossa  0.21 -0.58 0.28 

Fracture Healing-LMandCondyle  -0.38 1.12 0.13 

Fracture Healing-RMandCondyle  -0.21 0.58 0.28 

Fracture Healing-RToothWearAvg  0.42 -1.24 0.11 

Fracture Healing-LToothWearAvg  0.29 -0.84 0.20 

Fracture Healing-RightAMTL  0.12 -0.32 0.37 

Fracture Healing-LeftAMTL  0.09 -0.26 0.40 

*   Significant at α = 0.05 

** Significant at α = 0.10 
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Table 13: Kendall’s Tau correlation values, z-scores, and p-values for the Female Unfractured 

and Fractured sample. Statistically significant values are starred and highlighted in bold. 

 

Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Lfemur-LMandFossa 0.35 -0.12 0.88 0.19 

Lfemur-RMandFossa -0.09 0.22 -0.55 0.29 

Lfemur-LMandCondyle 0.12 0.12 0.00 0.50 

Lfemur-RMandCondyle 0.12  0.21 0.42 

Lfemur-RToothWearAvg 0.00 -0.11 0.20 0.42 

Lfemur-LToothWearAvg 0.11 0.14 -0.07 0.47 

Lfemur-RightAMTL -0.12 0.17 -0.52 0.30 

Lfemur-LeftAMTL -0.03 0.24 -0.50 0.31 

Rfemur-LMandFossa 0.35 -0.15 0.93 0.17 

Rfemur-RMandFossa -0.09 0.11 -0.36 0.36 

Rfemur-LMandCondyle 0.24 0.15 0.16 0.44 

Rfemur-RMandCondyle 0.24 0.05 0.34 0.37 

Rfemur-RToothWearAvg 0.00 -0.18 0.33 0.37 

Rfemur-LToothWearAvg 0.11 0.14 -0.07 0.47 

Rfemur-RightAMTL -0.12 0.09 -0.38 0.35 

Rfemur-LeftAMTL -0.03 0.12 -0.27 0.39 

LRFemurDiff-LMandFossa -0.35 0.00 -0.67 0.25 

LRFemurDiff-RMandFossa -0.36 0.30 -1.23 0.11 

LRFemurDiff-LMandCondyle 0.47 -0.24 1.35    0.09** 



96 

Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRFemurDiff-RMandCondyle 0.47  0.92 0.18 

LRFemurDiff-RtoothWearAvg 0.00 -0.47 0.92 0.18 

LRFemurDiff-LtoothWearAvg -0.32 -0.59 0.64 0.26 

LRFemurDiff-RightAMTL -0.24 -0.17 -0.14 0.44 

LRFemurDiff-LeftAMTL -0.20 -0.37 0.32 0.38 

Ltibia-LmandFossa 0.35 -0.24 1.10 0.14 

Ltibia-RmandFossa -0.09 0.04 -0.24 0.41 

Ltibia-LmandCondyle 0.24 0.00 0.43 0.33 

Ltibia-RmandCondyle 0.24  0.43 0.33 

Ltibia-RtoothWearAvg 0.00 -0.11 0.20 0.42 

Ltibia-LtoothWearAvg 0.11 0.14 -0.07 0.47 

Ltibia-RightAMTL -0.18 0.17 -0.64 0.26 

Ltibia-LeftAMTL -0.09 0.24 -0.60 0.27 

Rtibia-LmandFossa 0.35 -0.24 1.10 0.14 

Rtibia-RmandFossa -0.09 -0.04 -0.08 0.47 

Rtibia-LmandCondyle 0.24 -0.12 0.65 0.26 

Rtibia-RmandCondyle 0.24 0.35 -0.23 0.41 

Rtibia-RtoothWearAvg 0.00 -0.14 0.26 0.40 

Rtibia-LtoothWearAvg 0.11 0.11 -0.01 0.50 

Rtibia-RightAMTL -0.24 0.25 -0.91 0.18 

Rtibia-LeftAMTL -0.15 0.20 -0.63 0.26 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

LRTibiaDiff-LmandFossa 0.47 -0.07 1.05 0.15 

LRTibiaDiff-RmandFossa 0.00 -0.05 0.09 0.46 

LRTibiaDiff-LmandCondyle 0.35 -0.36 1.34    0.09** 

LRTibiaDiff-RmandCondyle 0.35  0.67 0.25 

LRTibiaDiff-RtoothWearAvg 0.20 -0.14 0.62 0.27 

LRTibiaDiff-LtoothWearAvg -0.11 -0.04 -0.12 0.45 

LRTibiaDiff-RightAMTL -0.43 0.36 -1.49    0.07** 

LRTibiaDiff-LeftAMTL -0.32 0.42 -1.39    0.08** 

Lfibula-LmandFossa 0.36 -0.21 1.06 0.14 

Lfibula-RmandFossa -0.11 0.16 -0.48 0.32 

Lfibula-LmandCondyle 0.21 0.07 0.26 0.40 

Lfibula-RmandCondyle 0.21  0.39 0.35 

Lfibula-RtoothWearAvg 0.00 -0.49 0.96 0.17 

Lfibula-LtoothWearAvg 0.11 -0.11 0.39 0.35 

Lfibula-RightAMTL -0.19 0.07 -0.47 0.32 

Lfibula-LeftAMTL -0.11 0.16 -0.49 0.31 

Rfibula-LmandFossa 0.54 -0.24 1.51    0.07** 

Rfibula-RmandFossa 0.00 0.04 -0.08 0.47 

Rfibula-LmandCondyle 0.36 0.00 0.67 0.25 

Rfibula-RmandCondyle 0.36  0.67 0.25 

Rfibula-RtoothWearAvg 0.00 -0.11 0.20 0.42 
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Measurement 

Kendall's Tau Correlation 

Values Z-score P-value  

Unfractured Fractured 

Rfibula-LtoothWearAvg 0.11 0.14 -0.07 0.47 

Rfibula-RightAMTL -0.49 0.17 -1.26 0.10 

Rfibula-LeftAMTL -0.43 0.24 -1.27 0.10 

LRFibulaDiff-LmandFossa -0.54 -0.07 -0.95 0.17 

LRFibulaDiff-RmandFossa -0.69 0.16 -1.81   0.04* 

LRFibulaDiff-LmandCondyle 0.00 -0.50 0.99 0.16 

LRFibulaDiff-RmandCondyle 0.00  0.00 0.50 

LRFibulaDiff-RtoothWearAvg -0.60 0.29 -1.79   0.04* 

LRFibulaDiff-LtoothWearAvg -0.74 0.18 -2.03   0.02* 

LRFibulaDiff-RightAMTL -0.10 0.43 -1.00 0.16 

LRFibulaDiff-LeftAMTL -0.05 0.40 -0.85 0.20 

Fracture Healing-LMandFossa  -0.35 0.65 0.26 

Fracture Healing-RMandFossa  -0.15 0.28 0.39 

Fracture Healing-LMandCondyle  0.21 -0.38 0.35 

Fracture Healing-RMandCondyle  -0.56 1.13 0.13 

Fracture Healing-RToothWearAvg  -0.32 0.60 0.28 

Fracture Healing-LToothWearAvg  -0.48 0.94 0.17 

Fracture Healing-RightAMTL  -0.35 0.65 0.26 

Fracture Healing-LeftAMTL  -0.27 0.49 0.31 

*   Significant at α = 0.05 

** Significant at α = 0.10 
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