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ABSTRACT 

This dissertation deals with the radiometric calibration of a satellite microwave radiometer 

known as the TRMM Microwave Imager (TMI), which operated on NASA’s Tropical Rainfall 

Measuring Mission (TRMM). This multi-frequency, conical-scanning, passive microwave, remote 

sensor measures the earth’s blackbody emissions (brightness temperature, Tb) from a low earth 

orbit and covers the tropics (±35° latitude). The original scientific objective for TRMM’s 3-year 

mission was to measure the statistics of rainfall in the tropics. However, the mission was quite 

successful, and TRMM was extended for greater than 17 years to provide a long-term satellite rain 

measurements, which has contributed significantly to the study of global climate change. 

A significant part of the extended TRMM mission was the establishment of a constellation 

of satellite radiometer that provide frequent global rainfall measurements that enable severe storm 

warnings for operational hazard forecast by the international weather community. TRMM played 

a key role by serving as the radiometric calibration standard for the TRMM constellation 

microwave radiometers. 

The objective of this dissertation is to improve the radiometric calibration of TMI and to 

provide to NASA a new robust, physics-based algorithm for the legacy data processing of the 

TRMM brightness temperature data product, which will be called TMI 1B11 V8. Moreover, the 

results of this new procedure have been validated using the double difference techniques with the 

Global Precipitation Mission Microwave Imager (GMI), which is the replacement satellite mission 

to TRMM. 
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CHAPTER 1:  INTRODUCTION 

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 

27, 1997 as a joint effort between the National Aeronautics and Space Administration (NASA) 

and the Japan Aerospace Exploration Agency (JAXA). The main objective of the mission was to 

study the statistics of rainfall in the tropics, specifically; to determine the average rain 

accumulation over a 5° x 5° (latitude/longitude) region on a monthly basis during a prime mission 

of 3 years [1]. Later, during the extended satellite mission, the science objectives were expanded 

to include global measurements by the formation of a constellation of cooperative weather 

satellites with microwave radiometers to provide observational data for studying atmospheric 

circulation by measuring the tropical precipitation, water vapor, and clouds. The investigation of 

the interaction between these weather’s parameters is extremely important since it leads to 

understand our climate, through the study of the Earth’s hydrological cycle [2] 

To achieve the goal of this mission, TRMM carried four main instruments: TRMM 

Microwave Imager (TMI), the Precipitation Radar (PR), the Visible and Infrared Scanner (VIRS) 

and the Lightning Imaging Sensor (LIS). TRMM flew in a non-sun synchronous orbit with an 

inclination of 35 degrees at 350 Km altitude, with an orbit period of ~90 minutes. Since the orbit 

was non-sun synchronous, about 1/3 of this revolution time was in eclipse; and the orbit precession 

was ~ ½ hour in local time each day [3]. TRMM prime mission was planned to be 3 years; however, 

with the purpose of extending the science mission [4], the satellite orbit altitude was increased to 

405 Km in Aug, 2001. Moreover, multiple satellites carrying microwave radiometers were added 

to form a constellation for global rain measurements. After successfully performing for > 17 years, 
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TRMM was deactivated on April 8, 2015, when the fuel was depleted and the orbit could no longer 

be maintained, and it re-entered the Earth’s atmosphere on June 15, 2015. 

Since TRMM and its constellation of cooperative satellites have provided almost two 

decades of brightness temperature observations, these observations have the potential to be used 

for climate studies. However, this requires a very strict inter-satellite radiometric calibration 

between sensors to assure consistent environmental parameter retrievals. Thus, the inter-satellite 

radiometric calibration working group (XCAL) was formed and charged with the responsibility of 

developing robust techniques to preform and maintain the radiometric calibration of constellation 

radiometer instruments, relative to one another. Because the TRMM orbit was non-sun 

synchronous, it had frequent near-simultaneous collocations with the other radiometers in polar 

orbits, therefore it is the best choice to be the radiometric transfer standard for the constellation. 

Thus, by having a standard calibration for all these instruments, the global brightness temperature 

dataset was unified [5]. After that, the constellation brightness temperatures were used to retrieved 

precipitation and other important global environment parameters. For example, the TRMM 3B42 

7-day global rainfall product is shown in Figure 1.1. 

However, for TMI to serve as the radiometric transfer standard, it was necessary to 

carefully assess the calibration accuracy and stability of this instrument, and this is the goal of this 

dissertation. Previous to this research, there were several efforts to develop an algorithm to process 

TMI sensor data to yield the desired earth scene brightness temperature that resulted in several 

versions of the TMI brightness temperature products 1B11 [6-7], which are described in the 

chapters that follow. 
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Therefore, in this dissertation, the development of the final TMI 1B11 (V8) brightness 

temperature product will be described in detail. Moreover, with this final data processing 

algorithm, all known instrument radiometric calibration anomalies are corrected based upon 

rigorous electromagnetic principles and/or on-orbit radiometric measurements. 

 

Figure 1.1: TRMM 3B42 global rainfall 7-day image (Source: [8]). 

1.1 Dissertation Objectives 

 To derive a robust emissive reflector antenna correction for the TMI counts to brightness 

temperature algorithm 1B11 Version-8. 

o To analyze deep space calibration tests, to derive the main reflector emissivity 

coefficient for each TMI channel. 

o To use the TMI XCAL radiative transfer model single differences to derive the 

physical temperature of the main reflector for the entire 17 year TMI dataset. 
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o To provide an independent hot-load correction for errors introduced by solar 

intrusion. 

1.2 Dissertation Overview 

This dissertation is organized to cover the TMI 1B11 version 8 algorithm development in 

detail. Chapter 2, will describe the TRMM Microwave Imager (TMI) radiometric calibration 

procedure and observed on-orbit calibration issues. Subsequently, Chapter 3 will explain the hot 

load anomalies caused by the sun intrusion and present an effective mitigation solution. In Chapter 

4, the emissive antenna anomaly and its solution (correction algorithm) will be described. The 

results of on-orbit validation are given in Chapter 5. Finally, the conclusions will be presented in 

Chapter 6. 

1.3 References 

[1] J. Simpson, R. F. Adler, and G. R. North, "A proposed tropical rainfall measuring mission 

(TRMM) satellite," Bulletin of the American Meteorological Society, vol. 69, no. 3, pp. 

278-295, 1988. 

[2] Science Plan for NASA’s Science Mission Directorate 2007-2016, National Aeronautics 

and Space Administration (NASA), Chapter 4, 2007, available at: 

https://science.nasa.gov/about-us/science-strategy. 

[3] C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, "The tropical rainfall 

measuring mission (TRMM) sensor package," Journal of atmospheric and oceanic 

technology, vol. 15, no. 3, pp. 809-817, 1998. 



5 

 

[4] N. R. Council, Assessment of the Benefits of Extending the Tropical Rainfall Measuring 

Mission: A Perspective from the Research and Operations Communities, Interim Report. 

National Academies Press, 2006. 

[5] T. T. Wilheit, "Comparing calibrations of similar conically scanning window-channel 

microwave radiometers," IEEE Transactions on Geoscience and Remote Sensing, vol. 51, 

no. 3, pp. 1453-1464, 2013. 

[6] F. J. Wentz, P. Ashcroft, and C. Gentemann, "Post-launch calibration of the TRMM 

microwave imager," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 

2, pp. 415-422, 2001. 

[7] S. K. Biswas, K. Gopalan, W. L. Jones, and S. Bilanow, "Correction of time-varying 

radiometric errors in TRMM microwave imager calibrated brightness temperature 

products," IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 851-855, 2010. 

 [8] National Aeronautics and Space Administration (NASA), Goddard space flight center, 

TRMM (2017), available at: https://pmm.nasa.gov/TRMM/realtime-3hr-7day-rainfall 
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CHAPTER 2:  TRMM MICROWAVE IMAGER 

In this Chapter, the TRMM Microwave Imager (TMI) will be discussed, including TMI 

specifications and details of the radiometric calibration. TMI was built upon the heritage of the 

Special Sensor Microwave Imager (SSM/I), which was first launched on the U.S. Defense 

Meteorological Satellite Program (DMSP) in 1987. Both sensors have the same specification for 

6 channels, but TMI has an extra feed horn that carries two 10 GHz channels; also, the water vapor 

channel was adjusted in the TMI to be 21.3 GHz (instead of 22.235 GHz in the SSM/I) to improve 

the measurement sensitivity. Although both have a similar main reflector antenna, the TMI has 

higher resolution than the SSM/I due to the altitude differences (350-405 km compared with 800 

km) [1]. 

2.1 TMI specifications 

TMI was a total power radiometer with a conical scanning antenna mechanism that spun 

31.6 revolutions/minute (RPM), completing a full rotation in 1.9 seconds. The zero azimuth 

position looked in the +X direction of TRMM, as illustrated in Figure 2.1. It obtained brightness 

temperature measurements along a circular path on the surface for a 759 km swath while TRMM 

flew at 350 km altitude. TRMM was required to avoid the sun Line of Sight (LOS) on the +Y side, 

where the Visible and Infrared Radiometer (VIRS) cooler and the TMI’s cold sky reflector were 

placed to view cold space. To achieve this requirement, TRMM performed a yaw flip (yaw 0 and 

yaw 180 degree) every 2 to 4 weeks [1], when the sun LOS passed through the orbital plane. 
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Figure 2.1: Schematic view of the scan geometries for TMI, PR, and VIRS (Source: [1]). 

The main components and the operation of TMI are described in Figs. 2.2 and 2.3. TMI 

was comprised of nine channels with five different frequencies, namely; 10.65, 19.35, 21.30, and 

85.5 GHz. All frequencies were dual polarized, vertical (V) and horizontal (H) except for 21.3 

GHz that was V-pol only. Also, there were two feed horns: one for the 10.65 GHz (both 

polarizations) and another for the remaining channels, where the multi-frequency feed was a 

heritage design from SSMI. Further, each channel had a dedicated receiver that was placed in the 
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rotating canister of TMI. The detailed specification for each receiver with the Instant Field of View 

(IFOV) is described in Table 2.1 [1, 2]. 

Table 2.1: TMI Top-level Specifications. 

Center Frequency (GHz)  10.65 19.35 21.30 37.00 85.50 

Polarization  V / H V / H V V / H V / H 

Bandwidth (MHz)  100 500 200 2000 3000 

Tb sensitivity NEΔT (K) 0.63/0.54 0.50/0.47 0.71 0.36/0.31 0.52/0.93 

IFOV (km x km) @ 350 Km 63x37 30x18 23x18 16x9 7x5 

IFOV (km x km) @ 405 Km 73x43 35x21 26x21 18x10 8x6  

 

The two feed horns viewed the main reflector, which was a parabolic mirror with a diameter 

equal to 0.67 meters, that received the Earth brightness temperature at a cone angle of 49 degrees. 

Both feeds and reflector rotated to measure Tb, symmetrically about the satellite ground track, 

over an azimuth range of ± 65 degrees relative to the +X axis. Since the 10.65 GHz horn was 

located offset from the focal point of the main reflector (MR), the resulting secondary antenna 

beam was squinted in the along-scan direction, which resulted in different times that a surface 

pixel would be viewed by the two feeds. For that reason, the 10.65 GHz receiver azimuthal 

sampling from -107.97 degrees to 22.03 degrees corresponds to the same measurement swath as 

the multi-frequency horn. The remaining angles of the rotation were used to view two external 

calibration targets: the cold target that was Cosmic Microwave Background (CMB) radiation 

received through the Cold Sky Reflector (CSR) and the hot target that was provided by the 

blackbody warm load [2]. 



9 

 

 

Figure 2.2: Mechanical configuration of the TMI instrument. (source: [2]). 
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Figure 2.3: TMI's feed horns sampling based on the azimuth rotation angle. (source: [2]). 

2.2 Radiometric Calibration 

2.2.1 Two-points Calibration: 

TMI was a total power radiometer that used an external two-point calibration method, 

whereby the feed horn was spinning and passed beneath three brightness temperature (Tb) scenes, 

as illustrated schematically in Fig. 2.4. The cold radiometric calibration point was the Cold Sky 

Mirror (CSM), which measured the CMB brightness temperature (Tc) that ranges from 2.73 K to 
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3.2 K depending on frequency. The second warm radiometric calibration point was the blackbody 

hot load target, with a brightness temperature (Th) equal to its physical temperature measured by 

using Precision Resistive Temperature (PRT) sensors. After viewing these two calibration points, 

it is possible to calculate the radiometer transfer function (see Figure 2.5) using linear regression 

that passes through the hot and cold calibration points [3, 4]. 

 

Figure 2.4: Block diagram of the two-point calibration for a TMI. 

The slope corresponds to the radiometer system gain: 

 
𝑠𝑙𝑜𝑝𝑒 =

𝐶ℎ − 𝐶𝑐

𝑇ℎ − 𝑇𝑐
 (2.1) 

and the intercept corresponds to the receiver output (counts) for the input receiver noise 

temperature:  

 
𝑦𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝐶𝑐 − 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑇𝑐 (2.2) 

where Ch and Cc are the radiometer output counts, when the feed views the cold sky mirror and hot 

load respectively. 
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Figure 2.5: The radiometer transfer function from the two-point calibration. 

 

To calculate the unknown scene Ta, the inverse transfer function (counts to Ta) must be 

used. Therefore, the antenna temperature of earth can be expressed as: 

 𝑇𝑎 =
1

𝑠𝑙𝑜𝑝𝑒
∗ 𝐶𝑒 −

𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
 (2.3) 

where Ce are the radiometer output counts from earth. 

Converting Equation (2.3) to the standard linear equation yields: 

 𝑇𝑎 = 𝐺𝑎𝑖𝑛 ∗ 𝐶𝑒 + 𝑂𝑓𝑓𝑠𝑒𝑡 (2.4) 

 𝐺𝑎𝑖𝑛 =
1

𝑠𝑙𝑜𝑝𝑒
=

𝑇ℎ − 𝑇𝑐

𝐶ℎ − 𝐶𝑐
 (2.5) 
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𝑂𝑓𝑓𝑠𝑒𝑡 =

− 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
= 𝑇𝑐 −  𝐺𝑎𝑖𝑛 ∗ 𝐶𝑐 

(2.6) 

These are the equations that are used in the TMI data processing algorithm (1B11) to 

convert radiometer output counts to antenna (radiometric) temperature (see TMI Algorithm 

Theoretical Basis Document [4]). 

2.2.2 Along Scan Calibration Error: 

Each low-resolution TMI scan, which covers the frequencies from 10.65 GHz to 37 GHz, 

consisted of 104 scan positions (pixels), and the high-resolution scan had 208 scan positions, which 

were the 89 GHz channels. These measurements are desired to be independent of the scan position; 

however, based upon both deep space and ocean observations, Wentz [5] determined that along 

scan Tb biases existed for all channels that were constant with time but variable with scan position. 

Later an analysis was performed [6], and an example of the 10.65 GHz V-pol channel 

brightness temperature anomaly (average Tb per scan pixel minus the average Tb over all scan 

positions) is shown in Fig. 2.6 for both ocean and land observations. The major difference between 

theses curves occurs at the end of the scan positions, where the dependency on the observed 

temperature is seen. The TMI 1B11 version 7 used only the ocean observation for calculating the 

along scan correction, but in TMI 1B11 version 8, the scan bias correction will depend linearly on 

both the ocean and land observations as shown in Equation (2.7). 
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Figure 2.6: Example of Scan bias correction for channel (10.65 GHz, V. pol) for Ocean and land 

observations. 

 𝑠𝑐𝑎𝑛_𝑏𝑖𝑎𝑠𝑖,𝑗  = 𝑚𝑖,𝑗 ∗ 𝑇𝑎𝑖,𝑗
+ 𝑏𝑖,𝑗 (2.7) 

where m and b are the scan bias coefficients that are calculated for each channel i and scan position 

j (see Appendix A for more details). The along scan error will be corrected in the antenna 

temperature using the following equation: 

 𝑇𝑎𝑖,𝑗
̅̅ ̅̅ ̅  = 𝑇𝑎𝑖,𝑗

− 𝑠𝑐𝑎𝑛_𝑏𝑖𝑎𝑠𝑖,𝑗   (2.8) 

where 𝑇𝑎𝑖,𝑗
̅̅ ̅̅ ̅ is the antenna temperature after applying the scan bias correction. 
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2.2.3: Antenna Pattern Correction (APC): 

Because the measured Ta was the convolution of the main reflector antenna-pattern with 

the brightness temperature over a spherical surface, it was necessary to apply an antenna pattern 

correction (APC) to yield the desired earth scene brightness. The APC depends on the cross 

polarization (χ) and the spill-over (ηS) coefficients, and these coefficients were measured for each 

channel prior to launch (see Table 2.2) [7]. 

Table 2.2: The pre-launch cross polarization and spill-over coefficients. 

Channel Cross polarization (χ) Spill-over (ηS) 

10.65 GHz (V. polarization) 0.00367 0.0160 

10.65 GHz (H. polarization) 0.00459 0.0160 

19.35 GHz (V. polarization) 0.00431 0.0218 

19.35 GHz (H. polarization) 0.00452 0.0225 

21.30 GHz (V. polarization) 0.00577 0.0243 

37.00 GHz (V. polarization) 0.02385 0.0125 

37.00 GHz (H. polarization) 0.01856 0.0123 

85.50 GHz (V. polarization) 0.02003 0.0121 

85.50 GHz (H. polarization) 0.02934 0.0108 

 

The earth brightness temperature was received through the main reflector via the feed horn. 

Thus, the main reflector secondary antenna pattern was required to calculate the beam efficiency 

[3]. The main beam efficiency is calculated by: 
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 𝜂𝑀 =
∫ ∫ 𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙

𝜃𝑀𝐵

0

2𝜋

0

∫ ∫ 𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙
𝜋

0

2𝜋

0

 (2.9) 

where 𝜂𝑀 is the main beam efficiency, 𝜃𝑀𝐵 is the main beam angle (defined as 2.5*HPBW), and 

the 𝐹(𝜃, 𝜙) is the antenna pattern. By the conservation of energy, the spillover efficiency is 

calculated using Equation (2.10) and illustrated in Figure 2.7. Since the spill-over beam (𝜂𝑆) views 

space during the normal operation, the total observed temperature is given by Equation (2.11) [8]. 

 𝜂𝑆 = 1 − 𝜂𝑀𝐵 (2.10) 

 𝑇𝑎𝑖
̅̅ ̅̅  = (1 − 𝜂𝑆𝑖

) ∗ 𝑇𝑠𝑐𝑒𝑛𝑒𝑖
+ 𝜂𝑆𝑖

∗ 𝑇𝑐 (2.11) 

where 𝑇𝑎𝑖
̅̅ ̅̅  is the TMI observed antenna temperature after removing the along scan bias error for 

each channel i, Tscene is the Earth scene temperature. To calculate the scene temperature, Equation 

(2.11) can be derived as: 

 

𝑇𝑠𝑐𝑒𝑛𝑒𝑖
=

𝑇𝑎𝑖
̅̅ ̅̅  − 𝜂𝑆𝑖

∗ 𝑇𝑐

(1 − 𝜂𝑆𝑖
)

 (2.12) 
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Figure 2.7: Definition of spill-over beam pattern relative to the feed horn primary pattern and the 

interception of the main reflector. 

Although the spill-over component of brightness has been removed from the observed 

temperature, the scene temperature still has a cross-polarization component of brightness that must 

be removed. Thus, following the conservation of energy, resulting polarized brightness (for 

channels 10.65 GHz V & H) are given in Equations (2.13) and (2.14) respectively. 

 

 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉
= (1 − 𝜒10.65𝑉) ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝑉 + 𝜒10.65𝑉 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻 (2.13) 
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 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝐻
= (1 − 𝜒10.65𝐻) ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻 + 𝜒10.65𝐻 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝑉 (2.14) 

where  is the antenna pattern cross-polarization coefficient. 

Using the above equations to find the 𝑇𝑠𝑐𝑒𝑛𝑒,𝑉 and 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻 is applicable for all channels 

except channel 21.3 V, which doesn’t have the horizontal polarization measurement. However, it 

is possible to estimate the horizontal scene brightness from the measured vertical 𝑇𝑠𝑐𝑒𝑛𝑒,𝑉 through 

correlation. To determine the cross-correlation, the modeled temperature was calculated using the 

Radiative Transfer Model (RTM) over the full dynamic range of ocean/atmospheric environmental 

conditions, and the results are presented as a scatter diagram in Fig. 2.8. It is apparent that the 

horizontal brightness can be estimated from a simple linear relationship 

 

𝑇𝑠𝑐𝑒𝑛𝑒−21.3𝐻−𝑚𝑜𝑑𝑒𝑙𝑒𝑑 = 1.6634 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒−21.3𝑉−𝑚𝑜𝑑𝑒𝑙𝑒𝑑 − 195.36 (2.15) 

Thus, for all TMI channels, Equation (2.16) is used to convert the antenna temperature 

(after removing the along scan error) into main beam brightness temperature: 

 

𝑇𝑏,𝑖 = 𝐶𝑖𝑇𝑎,𝑖
̅̅ ̅̅ − 𝐷𝑖𝑇𝑎,𝑖

∗̅̅ ̅̅ − 𝐸𝑖  (2.16) 

where 𝑇𝑏 was the scene brightness temperature of the ith channel, Ta was the measured antenna 

brightness temperature, Ta
* was the corresponding measured cross polarized antenna temperature, 

and Ci, Di, and Ei were the corresponding channel dependent antenna pattern correction 

coefficients as listed in Table 2.3 (See Appendix B for the detailed derivation), which are 

coefficients derived are for the TMI 1B11 V8. It should be noted that previously 1B11 V7 used 

the SSM/I APC coefficients. 
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Figure 2.8: The ratio between the horizontal and vertical polarization of the modeled Tb for 

frequency 21.3 GHz. 

 

Table 2.3: TMI’s antenna pattern correction (APC) coefficients 

i Ci Di Ei 

10.65 V 1.02002 0.00376 0.04439 

10.65 H 1.02096 0.00470 0.04439 

19.35 V 1.02673 0.00445 0.06083 

19.35 H 1.02768 0.00466 0.06285 

21.30 V 1.02100 0 -1.05520 

37.00 V 1.03788 0.02522 0.03457 

37.00 H 1.03208 0.01963 0.03399 

85.50 V 1.03358 0.02130 0.03351 

85.50 H 1.04212 0.03124 0.02969 
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2.3 TMI 1B11 Tb Product 

The TMI counts to Tb algorithm (1B11) [9] converts the radiometer output counts to 

polarized antenna temperature by using the inverse transfer function and other corrections. After 

that, the antenna pattern correction is applied to produce brightness temperatures (Tb). When any 

of TRMM’s instruments data were modified, the various TRMM products are updated and 

reprocessing occurs for the entire dataset, and at this time the products are given version #’s.  

Although the TMI observations have been corrupted by the emissive main reflector from 

the initial on-orbit start-up, the first emissive correction was applied in 2001, which is called 1B11 

v6. The procedure of this version, which is illustrated in Figure 2.9, started by calculating the gain 

and offset, using the inverse transfer function of the cold and hot counts with the hot load measured 

temperature. After calculating the antenna temperature, using the linear inverse transfer function 

(calculated gain and offset) with earth counts, the APC was applied to calculate the brightness 

temperature. However, the APC coefficients were based on the design heritage instrument, which 

is SSMI. Finally, the emissive reflector was corrected, but with an ad-hoc correction, the reflector 

emissivity coefficients were derived based on the SSMI measurements, while the physical 

temperature of the main reflector was incorrectly assumed constant, based on the orbit average. 

Since the physical temperature of the main reflector was changing based on the sun 

coordinate, the 1B11 v6 did not provide the good radiometric calibration. Thus, in 2006, based 

upon work at CFRSL [10] another version was developed, which was called 1B11 v7. This version 

was an upgrade of version 6 as shown in Fig. 2.10. It removed the erroneous constant physical 

temperature assumption of version 6, and introduced a time-varying Tb bias correction look-up 

table that depends on the sun coordinates, which represented by solar beta angle and time since 
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eclipse. While the brightness temperatures of version 7 were a significant improvement from 

version 6; nevertheless, both version 6 and 7 were based on strictly empirical ad-hoc corrections. 

Therefore, in this dissertation, the new version, known as 1B11 v8, will be described (see 

Figure 2.11), which models Tb corrections using rigorous physical principles e.g., the emissive 

reflector Tb correction based upon radiative transfer theory. Instead of providing a statistical 

representation of the time varying Tb bias (from V7), the emissivity coefficients are measured 

using deep space calibrations (DSC) and the time varying main reflector physical temperature is 

estimated using the single difference between measured and theoretical Tb’s at only 10.6 GHz V-

pol. Other parts of the algorithm are similar to v7, except pre-launch and on-orbit measurements 

are used to estimate the model coefficients. Finally, this algorithm is based upon the careful 

analysis of the entire 17-year history of TMI measurements. During this process, several important 

discoveries were made (e.g., cold load RFI and hot load sun intrusion) and corrections were 

implemented to mitigate these random anomalies. Also, this algorithm uses APC based on TMI 

measurements. 
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Figure 2.9: Flow chart of the TMI 1B11 v6 procedure. 

 

Figure 2.10: Flow chart of the TMI 1B11 v7 procedure. 
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Figure 2.11: Flow chart of the TMI 1B11 v8 procedure. 

2.4 Conclusion 

Although all space-borne conical scanning microwave radiometers have undergone 

extensive ground test and calibration before launch, it is usual that there are unexpected calibration 

issues experienced once on-orbit. It is impossible to duplicate the on-orbit environment in ground 

testing, and further, calibration is performed at the feed level (without the main reflector). Thus, it 

is customary that a period of on-orbit calibration/validation (Cal/Val) be performed to characterize 

the radiometer transfer function. Fortunately, once properly calibrated, radiometers have been 

found to be extremely stable. 

This was the case for TMI, where a major calibration issue was discovered during on-orbit 

checkout. The issue was that the ocean scene brightness temperature was too warm by almost 10 
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K. After significant testing, including a deep space calibration, it was discovered that the main 

reflector was slightly emissive, although the root cause was not determined. The TMI 1B11 counts-

to-Tb processing software were modified to remove the yearly mean Tb bias, and for almost 10 

years this fix was used. 

However, in 2007, the orbital cycle Tb bias, which was caused by the slightly emissive 

main reflector, was removed. This empirical procedure used single differences between the 

observed and modeled Tb’s to produce an ad-hoc correction, which was a Tb bias look-up table 

correction generated based on the solar coordinates. This procedure resulted in the TMI 1B11 V7 

brightness temperature product, and although the results were considerably improved, they were 

strictly statistical and ad hoc. 

From a science prospective, it is important that the 17-year legacy TMI brightness 

temperature product have a rigorous, transparent, theoretical basis. Thus, the goal of this 

dissertation is to develop a new radiometer counts to Tb algorithm that is based upon fundamental 

electromagnetic theory. The Tb product that uses this improved algorithm is known as the TMI 

1B11 V8. The development of this algorithm will be discussed in detail in Chapter 4. 
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CHAPTER 3:  HOT LOAD CORRECTION 

F. Alquaied, R. Chen, W. Jones, “Hot load temperature correction for the Tropical Rainfall 

Measuring Mission Microwave Imager (TMI)”, Proc. IEEE International Geoscience and Remote 

Sensing (IGARSS), Fort Worth, USA, July 23-28, 2017, accepted for publication. 

 

During the derivation of the main reflector physical temperature (described in Chapter-4), 

it became apparent that another radiometric calibration anomaly (associated with the hot load) 

existed and needed to be corrected. Under certain solar geometry conditions, the radiometer hot 

counts did not follow the measured hot load physical temperature as expected. For example, 

consider a particular orbit presented in Fig. 3.1, where the TMI radiometer output hot counts, 

measured hot load temperature, radiometer output cold counts, calculated inverse-transfer function 

gain and inverse transfer function offset are plotted as a function of the orbital solar cycle (phase 

from orbit midnight) that is proportional to relative time. 

First, it is apparent that the cyclic pattern of these parameters is quasi-sinusoidal with a 

period equal to the orbit period. This suggests that the changes are driven by the physical 

temperature cycle of the respective TMI radiometer receiver, which is not measured. Since the hot 

load is external to the radiometer canister (see Fig. 2.2), its measured physical temperature should 

not match-up with the internal receiver physical temperature. However, the orbital pattern, for both 

physical temperatures, is driven by the sun thermal loading (during daylight) and the radiative 

cooling (during night, orbit eclipse). Thus, the true receiver physical temperature should be similar 

to the measured hot load, but the receiver temperature would lag somewhat (i.e., be shifted to the 

right slightly out-of-phase, typically by 10 - 20% of the orbit period). 
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Therefore, given this simplistic thermal model for physical temperature, what makes these 

observed patterns in Fig 3.1 be anomalous? To answer this question, let’s consider previous on-

orbit history of microwave radiometers. 

 

Figure 3.1: TMI parameters for 10.65 V channel during TRMM orbit # 87736: (a) Hot counts, (b) 

measured hot load physical temperature, (c) cold counts, (d) inverse-xfer gain and (e) inverse-xfer 

offset. 

(a) 

(b) 

(c) 

(d) 

(e) 
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3.1 Orbital Receiver Gain Cycle 

Previous on-orbit radiometric calibration experience has indicated that the receiver gain 

changes based on its physical temperature; thus, according to Ghazi [1], the receiver transfer 

function gain (𝐺𝑟𝑒𝑐) of each TMI channel can be modeled as following: 

 𝐺𝑟𝑒𝑐 = 𝐺0 ∗ 𝑔(𝑇𝑟𝑒𝑐−𝑝ℎ𝑦) (3.1) 

where 𝐺0 is the orbit-mean receiver gain and 𝑔(𝑇𝑟𝑒𝑐−𝑝ℎ𝑦) is the orbital gain changes due to the 

receiver physical temperature, which is approximately sinusoidal with a period of one-orbit and 

180° out-of-phase with the physical temperature. Thus, the increasing physical temperature 

decreases the receiver gain and vice versa. On the other hand, for the inverse transfer function, the 

receiver physical temperature and inverse-transfer function gain are in-phase. 

 For TMI, the CMB brightness is constant over the orbit, therefore the cold counts can be 

modeled as: 

  𝐶𝑐 =  𝐶𝑀𝐵
𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑋𝑓𝑔𝑎𝑖𝑛⁄ − 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑋𝑓𝑟𝑜𝑓𝑓𝑠𝑒𝑡  (3.2) 

where the inverseXfrgain is given in panel-d and the inverseXfroffset is given in panel-e. For a single 

orbit, note that the dynamic range for the cold counts (panel-c) is 20 and the corresponding 

dynamic range for the offset is 2; therefore, the change in cold counts is dominated by the change 

in the inverseXfrgain, which is proportional to the receiver physical temperature. Thus, the observed 

TMI cold counts (Cc) and the delayed hot load physical temperature (shifted to the right by ~ 50°), 

as a proxy for the unmeasured receiver temperature are in-phase as expected. 

On the other hand, consider the inverseXfrgain cycle (panel-d), where there is an unexpected 

“fluctuation” in the gain pattern at the x-axis values from -90° to -70° orbit phase. Even though 
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this perturbation is small, it is nevertheless anomalous. Next examine the hot load measured 

counts, and note that there is a significant perturbation that occurs at the same point; yet, there is 

no such perturbation in the hot load physical temperature. This suggests that there is another cause 

for these perturbations, which we believe to be the sun intrusion heating of the tips of the pyramidal 

loads that make-up the hot load blackbody target. 

3.2 Sun Intrusion to The Hot Load 

To confirm this hypothesis, evidence of possible sun intrusion into the hot load is required, 

which is presented in Figure 3.2 (left-hand photo during TMI ground testing). When the feeds were 

not located beneath the hot load, the pyramidal elements of the hot load were visibly exposed (see 

red circle). Although the instrument was rotating, the hot load was fixed and could experience sun 

intrusion over a limited range of solar coordinates. 

 
(a)Main reflector looking forward  (b) Main reflector looking backward 

Figure 3.2: Possible hot load exposure during the ground test of the TMI. (Source: [3]) 
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To understand solar intrusion heating of the hot load, consider Fig. 3.3. When the sun line-

of-sight passed beneath the cylindrical shield and intersected the hot load pyramids, the tips would 

be heated by solar energy absorption, which created a thermal gradient from the absorber tips to 

the pyramid base that contained the PRT physical temperature sensors. As a result, this elevated 

temperature of the tips resulted in increased blackbody emission brightness temperature captured 

by the feed horn and the resulting hot load counts (Fig. 3.2 a). Thus, when this occurred, there 

would be a transient condition, whereby hot counts at the radiometer output would instantaneously 

increase, but the measured the hot load physical temperature would be unchanged until the thermal 

energy propagated to the base. 

Since the contaminated Ch was used in the two-point radiometric calibration and because 

the measured hot load physical temperature did not match the hot load emission brightness 

temperature, an error was introduced in the inverse-xfer gain and offset. To correct this radiometric 

calibration issue, the two factors must be resolved; namely, the solar coordinates relative to TRMM 

of the sun intrusion and the -Y solar array orientation that occasionally blocked this sun intrusion. 

In this Chapter, the approach to correct the hot load measurements will be provided. 
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Figure 3.3: Sun intrusion heating the pyramidal tips of the hot load. 

 

Before proceeding, it should be noted that a similar issue of the TMI measured hot load 

temperature is discussed by Wentz [2], and the author mitigated this by adjusting the hot load 

temperature to match the observed earth scene brightness temperature with theoretical brightness 

temperatures generated using the Remote Sensing Systems’ Radiative Transfer Model temperature 

(RSS RTM). Thus, this is an empirical fix, which causes the hot load correction to match a specific 

radiative transfer model. However, in this dissertation, the hot load correction was based upon a 

rigorous analysis of the instrument transfer function, as it’s described below. 
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3.3 Solar Coordinates Relative to TRMM Orbit Plane 

In this dissertation, the solar coordinates were based on the orbit plane since TRMM was 

flying with stable orientation. In Figure 3.4, the solar coordinates relative to TRMM’s orbit are 

illustrated. The sun vector is called the sun line-of-sight which points directly to the origin of the 

TRMM coordinate system. 

The first coordinate angle of the sun is represented by the solar beta angle (β), which is the 

angle between the orbit plane and the solar line of sight; thus, this angle lies in the –Z and –Y 

TRMM plane. The zero beta angle occurs when the sun line-of-sight lies in the orbit pane, which 

corresponds to TRMM –Z vector. Moreover, over seasons, TRMM on-orbit beta angle range is ~ 

±60 degree. The solar pointing requirement was to avoid the sun line-of-sight on the +Y side of 

TRMM because of the cold sky reflector and the VIRS cooler. Therefore, TRMM alternately 

performed a yaw flip of 180 degrees, when the sun beta angle became negative and stayed at yaw 

0, when the sun beta angle was positive. 

Next, the phase from orbit midnight is the second coordinate of the sun relative to TRMM’s 

orbit. The angle of the solar line-of-sight was rotating clockwise in the X, Z plane with the zero 

angle aligned at –X direction. The phase from orbit midnight completed one rotation every orbit. 

Thus, the positive phase angles correspond to eclipse time, while the negative angles are daylight. 

The specific phase angles for eclipse and daylight are specified by the solar beta angle. 
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Figure 3.4: Solar coordinates relative to TRMM (TRMM model source: [4]). 

 

3.4 The Status of the -Y Solar Array  

The solar array rotation was controlled by the Solar Array Drive Actuators (SADA) to track 

the sun. At the beginning of launch, the array exceeded the energy requirement; so, for reliability 

purposes, it was decided to change the track angle from 130 degrees to  50 degrees. Later in the 

mission (2002), the SADA developed a problem, so after several months of testing, the team 

decided to feathered the solar array at zero degree, which is the X, Y plane [5]. Because the solar 



35 

 

array position affected the solar intrusion of the hot load, it is documented in Appendix C, and 

Table 3.1 summarized all SADA tracking angles and corresponding dates of operation. 

 

Table 3.1: The solar array action with the starting date. 

Period Action Start date Duration  

1 Solar array tracking ± 130° 12/08/1997 1 year 

2 Solar array tracking ± 50° 12/15/1998 2.7 years 

3 Orbit Boost & solar array is 

non-feathered 

08/15/2001 to 9/5/2002, with exceptions ~ 1 year 

4 Orbit Boost & feathered 

  a) test periods ± 1° 

  b) parked –Y array at 0° 

 a) Feathered tests with +/- 1-degree 

tracking in 2002 start dates 5/30, 6/5, 

6/11, 6/24-8/12, 9/5 

b) 10/11/2002 parked at 0 (about orbit 

27970)  

13 years 

 

 

Because the rotating –Y solar array occasionally blocked the solar line of sight, the hot 

load correction depends on the solar array status. Thus, the analysis will be independently applied 

in each yaw orientation and time period. The exact orbits number for each period and yaw 

orientation are specified in Table 3.2. 
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Table 3.2: Orbits range for each orientation and period. 

Period Orbit # range 

Orientation Yaw0 Yaw  180 

1   160 : 6026   160 : 6026 

2 6027 : 21400 6027 : 21400 

3 21401 : 27414 (exceptions 

below) 

21401 : 27414 (exceptions 

below) 

4 25884 : 25885 * 

25977 : 25978 * 

26273 : 26664 * 

27038 : 27393 *  

27415 : 27970 * 

27971 : 99100 ** 

26069 : 26072 * 

27415 : 27970 * 

27971 : 99100 ** 

*: testing for feathered array at 1-degree 

**: solar array is feathered at 0-degree  

3.5 Approach to Correct the Hot Load Brightness Temperature 

As noted in Section 3.1, Fig. 3.1(d), sometimes the time series of the receiver gain did not 

change smoothly during an orbit cycle as was expected. Thus, we performed a polynomial 

regression to remove the transient fluctuation in the gain during the orbit phase between -100° to 

-50°. This procedure was performed in three iterative steps, as illustrated in Figure 3.5. First, a 

regression fit was applied using the original data; next, the time series was edited to remove points 



37 

 

with high negative residual (between the original data and the fit); and finally, the polynomial fit 

was repeated on these edited data to produce the smoothed estimated gain (Gfit). 

 

 

Figure 3.5: Polynomial fit for the radiometer gain time series to produce the hot load correction. 

 

Finally, the correction of the hot load temperature (∆Th) was calculated as the difference 

between the corrected (smoothed) and the original hot load temperature as seen in Equation (3.4). 

 𝑇ℎ_𝑐𝑜𝑟 = 𝐺𝑓𝑖𝑡 ∗ (𝐶ℎ − 𝐶𝑐) + 𝑇𝑐 (3.3) 

 ∆𝑇ℎ = 𝑇ℎ_𝑐𝑜𝑟 − 𝑇ℎ (3.4) 

Since the geometry for the solar intrusion was repeatable for certain solar coordinates, this 

procedure was then applied to all orbits of each period (Table 3-2), and the resulting ∆Th were bin 
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averaged and filtered to form a hot load correction table for > 1 Kelvin, over solar beta angle and 

orbit phase. It is important to note that while these corrections are empirically derived, they are 

independent of any RTM or inter-comparisons with other satellite radiometers. 

3.5.1 Unstable Receiver Gain 

As a part of the quality control effort to define the hot load correction, a careful examination 

was performed of the receiver orbital gain patterns for all channels over a range of beta angles for 

both yaws. Fortunately, after the hot load correction, all channels exhibited stable quasi-sinusoidal 

orbital receiver gain cycles, except for channel 21.3 V and channel 85.5 V. These two channels 

have exhibited random patterns of significant “gain jumps”, as seen in Figure 3.6. The reason for 

these unpredictable patterns is postulated to be temperature instability of the front-end low noise 

amplifiers of the receiver. Fortunately, the two-point radiometric calibration mitigated this effect 

and there was no apparent impact on the calibration accuracy. 

During the low solar beta angles (< 10 degrees), the gain of channels 21.3 V and 85.5 V 

returned to normal values, as shown in Figure 3.7; however, at high solar beta angles, the system 

exhibited large transient gain jumps. 
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Figure 3.6: Receiver gain of channel 21.3 V and 85.5 V at solar beta angle = 51.3°. 

(b) gain of receiver 85.5 V 

(a) gain of receiver 21.3 V 
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Figure 3.7: Receiver gain of channel 21.3 V and 85.5 V at solar beta angle = 5.5°. 

3.6 Results 

The hot load issue was caused by the direct impingement of solar flux on the blackbody 

target. Thus, the hot load correction is correlated with the sun coordinate relative to TRMM. The 

sun coordinates were expressed as the solar beta angle and the phase from orbit midnight relative 

to the TRMM orbit. Also, TRMM performs two different orientations: yaw 0 and 180 degrees 

relative to the flight direction that led to different results for each. Moreover, the solar tracking 

configuration of the –Y solar array was changing, which cause different results for each period 

(Table 3.1). 

(b) gain of receiver 85.5 V 

(a) gain of receiver 21.3 V 

Phase from orbit midnight, deg 

G
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It is worth mentioning that the gain of channels 5 and 8 are not stable and exhibit large gain 

jumps; however, the orbital receiver gain patterns of the other channels show very consistent 

results. For that reason, the hot load correction tables for channels 5 and 8 are estimated using 

linear interpolation of the neighbor channels. 

In Fig. 3.8, the image of the hot load correction table is shown for the 10.65V channel, 

when TRMM is at yaw 0-degree orientation and the –Y solar array was in period-1. The resolution 

of the orbit phase and the solar beta angle are 1° and 0.25°, respectively. The majority of the hot 

load correction was between phase -100° and -75°, especially at high sun beta angles. This was 

expected since the solar line of sight was closer to the exposed hot load pyramids, as seen in Figs. 

3.2 and 3.4. Although the sun line-of-sight was still toward the hot load after the -75° orbit phase, 

the –Y solar array blocked the light because the solar array’s tracking angle of period-1 was ±130o. 

Finally, for convenience, the hot load correction table was used to correct a small cold load 

issue. A small error was introduced in the cold counts (see Fig. 3.9), when the rotating –Y solar 

array at high tracking angles intersected the cold sky mirror IFOV, as shown in Fig. 3.10 [6]. This 

effect raised the cold load counts; so the equivalent effect was produced by lowering the hot load 

brightness temperature by 0.1 K between the orbit phase from 65° to 75°. 
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Figure 3.8: Hot load correction table for channel 10.65 V, yaw0, and period-1. 

 

 
Figure 3.9: The effect of the intersection between the cold sky reflector beam and the -Y solar 

array in the cold counts measurements. 
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Figure 3.10: The intersection between the cold sky reflector beam and the -Y solar array at high 

tracking angles (Source: [6]). 

 

During period-2, the tracking angle of the –Y solar array was changed to be 50°. Thus, 

the sun light was passed to the hot load correction in the phase angle around -60°, as shown in Fig. 

3.11. Next, TRMM was boosted to a higher altitude during period-3, which caused the sun 

intrusion to the hot load to be over a wider range at phase -60°, as shown in Fig. 3.12. Finally, 

during period-4, the solar array was feathered at a horizontal level (zero-degree), which resulted 

in a wider range of phase angles for the sun intrusion, as shown in Figure 3.13. The results for all 

of the other channels, periods, and orientations show consistent results for each feed horn (see 

Appendix D). 

Interference of Solar Array 

In CSM IFOV 
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All of these results were used to correct the measured hot load temperature in Equations 

(2.1) and (2.2), and the corrected gain (Gcor) and corrected offset (Offsetcor) were calculated by 

using the hot load temperature correction given in the following equations: 

 𝐺𝑐𝑜𝑟 =
(𝑇ℎ + 𝑇ℎ) − 𝑇𝑐

𝐶ℎ − 𝐶𝑐
 (3.5) 

 𝑂𝑓𝑓𝑠𝑒𝑡𝑐𝑜𝑟 = 𝐺𝑐𝑜𝑟 ∗ 𝐶𝑐 − 𝑇𝑐 (3.6) 

Because the hot load correction is a multiplicative term, as seen in Equation (2.3), it will 

change the antenna temperature depending upon both antenna temperature and the corresponding 

hot load correction. For example, the maximum hot load correction in channel 1 (10.65 V) is 

around 0.9 K, and assuming different values of constant hot load correction in TMI’s orbit 87736, 

yields to the results presented in Fig. 3.14. The greatest change occurs at the highest antenna 

temperature which is close to the hot load temperature, while the minimum change occurs at the 

lowest antenna temperature at 165 K for channel 10.65 V (~ 55% of the hot load correction value). 

The weight of the hot load correction depends on the ratio of the hot load temperature to the 

antenna temperature, as: 

 𝛥𝑇𝑎 =
𝑇𝑎

𝑇ℎ
∗ 𝛥𝑇ℎ (3.7) 
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Figure 3.11: Hot load correction table for channel 10.65 V, yaw0, and period 2. 

 
Figure 3.12: Hot load correction table for channel 10.65 V, yaw0, and period 3. 
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Figure 3.13: Hot load correction table for channel 10.65 V, yaw0, and period 4. 

 

Figure 3.14: The hot load correction effect on the antenna temperature. 
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CHAPTER 4:  EMISSIVE ANTENNA CORRECTION 

F. Alquaied, W. Jones, “An emissive antenna correction for the Tropical Rainfall Measuring 

Mission Microwave Imager (TMI)”, Proc. IEEE International Geoscience and Remote Sensing 

(IGARSS), Fort Worth, USA, July 23-28, 2017, accepted for publication. 

 

This chapter presents a discussion of the development of the algorithm for making an 

emissive brightness correction for TMI, which will be included in the legacy version (V8) of the 

1B11 brightness temperature product. This chapter is the major focus of this dissertation. 

During TMI prelaunch radiometric calibration, a comprehensive thermal vacuum test was 

performed that simulated the on-orbit environment; but during this test, only the antenna feed was 

used (i.e., the parabolic reflector was not part of the calibration process). Therefore, the first time 

that the radiometer “viewed the reflector” was on-orbit. 

An ideal metal parabolic mirror (reflector) provides a perfect reflection of the earth scene 

brightness temperature into the receiver; however, an imperfect (slightly emissivity) reflector 

partially reflects the earth scene and emits an unwanted temperature bias that is added to the scene 

temperature as: 

 𝑇𝑏,𝑖
̅̅ ̅̅ = (1 − 𝜀𝑖)𝑇𝑏,𝑖 + (𝜀𝑖)𝑇𝑝ℎ𝑦 (4.1) 

where (1- ԑ) is the parabolic mirror reflectivity, ԑ is the reflector emissivity, Tphy is the reflector 

physical temperature, and the product (ԑ)Tphy is the reflector emission component of the brightness 

temperature. After applying the hot load correction, 𝑇𝑏,𝑖
̅̅ ̅̅  is calculated using Equation (2.12), and 

the desired scene brightness temperature 𝑇𝑏,𝑖 can be redefined as: 
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 𝑇𝑏,𝑖 =
𝑇𝑏,𝑖
̅̅ ̅̅ − (𝜀𝑖)𝑇𝑝ℎ𝑦

(1 − 𝜀𝑖)
 (4.2) 

The construction of the TMI main reflector was a graphite-epoxy shell that was coated by 

a thin layer of vapor deposited aluminum (VDA), which was expected to provide a highly 

reflective surface. However, during on-orbit check-out, Wentz et al. [1] discovered that TMI earth 

scene Tb’s were anomalously high. After an intensive investigation, they determined that the main 

reflector was slightly emissive; thus, channel emissivity values were derived during the post-

launch Cal/Val period by comparing TMI’s measurements with SSM/I measurements, and more 

recently the results were updated in [2]. 

As a part of this dissertation, the channel emissivity values were independently derived 

based on the analysis of a “Deep Space Maneuver” (DSM) that was performed in 2015. This more 

rigorous approach is based solely on radiometric measurements of the known cosmic microwave 

background (CMB), which avoids uncertainties associated with the use of an ocean RTM or inter-

satellite cross calibration to derive each TMI channel emissivity. 

4.1 Deep Space Maneuver (DSM) 

Space is an excellent radiometric calibration target because the cosmic microwave 

background (CMB) presents a known, stable, non-polarized, homogeneous and isotropic 

brightness temperature of 2.7 to 3.2 Kelvin over the TMI frequency range [3]. For the past two 

decades, space-borne microwave radiometers have relied upon DSMs, where satellites perform 

attitude maneuvers that cause the conical-scanning radiometer antenna main beam to view space 

for a significant portion (delta-Az) of the active scan. 
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At the beginning and the end of the TRMM mission, there were a total of twenty DSMs 

performed to provide “end-to-end” radiometric calibration for TMI, and the details are summarized 

in Table 4.1 that include the date, TRMM orbit number, yaw orientation and altitude. 

 

Table 4.1: Deep Space Maneuvers (DSMs) during TRMM mission. 

Maneuver # Date (mm/dd/yyyy) Orbit # Orientation Altitude (Km) 

1 01/07/1998 642 180 348.57 

2 01/07/1998 644 180 348.53 

3 01/07/1998 646 180 348.53 

4 01/08/1998 658 180 348.36 

5 01/08/1998 660 180 348.31 

6 01/08/1998 662 180 348.34 

7 09/02/1998 4394 0 349.54 

8 07/22/2014 95023 0 397.39 

9 07/22/2014 95025 0 397.40 

10 07/22/2014 95027 0 397.46 

11 02/26/2015 98452 180 353.75 

12 02/26/2015 98454 180 354.49 

13 02/26/2015 98456 180 354.69 

14 02/27/2015 98468 180 355.02 

15 02/27/2015 98470 180 355.04 

16 02/27/2015 98472 180 355.22 

17 03/25/2015 98879 90 336.67 
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Maneuver # Date (mm/dd/yyyy) Orbit # Orientation Altitude (Km) 

18 03/25/2015 98882 90 336.76 

19 03/26/2015 98894 90 336.41 

20 03/26/2015 98897 90 336.18 

 

For both TRMM yaw orientations (0° or 180°), the DSM were performed by entering into 

an “inertial hold mode” that caused the spacecraft to perform a 360° rotation in the pitch axis over 

the orbit period, as illustrated in Fig. 4.1. Thus, concerning the TMI antenna pointing, there were 

3 phases, designated as A, B and C, and associated with the antenna subsystem, there were three 

beams, namely: conical rotating main beam (MB – black arrow), the main reflector spill-over beam 

(SO – red arrow) and the fixed cold sky beam (CSB – green arrow). 

 

Figure 4.1: Example of a typical DSM showing TMI phases for the spacecraft yaw = 0 degrees. 

In phase-A (normal operation) the conical scanning main beam views earth, while the cold 

sky beam and the spill-over beam view space. After > 90° change in pitch attitude, TMI enters 

phase-B, where the MB views space, but the SO beam intersects with the earth. Thus, the total 

received brightness was the sum of cold space brightness (from the main beam) and warm 
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brightness from earth (through the SO beam). This effect can be observed in the time series of 

antenna brightness temperature (TA) for DSM#11 that is presented in Fig. 4.2. At this time, the SO 

beam views the earth near the nadir, and when the sub-track passes over the tip of Australia, the 

antenna brightness temperature increases by ~ 0.5 K. 

 

 
Figure 4.2: Measured antenna temperature (10.65V) shown as a colored trace along the satellite 

sub-track during the DSM#11. 

 

As the spacecraft continues the pitch rotation, TMI enters phase-C where the CSB 

intersects with the earth for the remaining time of the maneuver. At this time, the two-point 

radiometric calibration is corrupted because the CMB views the unknown earth brightness, which 

results in unrealistic gain and antenna temperatures. As noted, there is no time where all beams 

view space, which is required to characterize the main reflector emissivity. 
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In 2015, just before the end of the mission, TRMM performed four DSMs where the 

spacecraft was rotated in yaw by 90° before entering inertial mode. This resulted in TRMM being 

rotated 360° about the roll axis over one orbit period, which modified TMI beams pointing to 

space, as described below. 

During this “yaw-90 DSM”, TMI antenna beams went through four different phases, as seen 

in Fig. 4.3. The first, phase-A, illustrates the spacecraft yawed by 90°, which caused the scanning 

MB to view the earth while the SO and the CSB were pointed to space. Next, the spacecraft rotation 

was started, and after the spacecraft is rolled by ~ 75°, TMI enters phase-B, where the MB and SB 

pointed to space, but the CSB intersected the earth. After the spacecraft rolled by ~ 200°, TMI 

entered phase-C, which caused both MB and CSB to point to space, but now the SO beam 

intersected the earth. Finally, phase-D occurred when the spacecraft rotation was ~ 290°, and at 

that moment all beams were simultaneously pointed to space, which was used to derive the 

reflector emissivity at the various channel frequencies. 

 
Figure 4.3: TRMM phases during the DSM at yaw 90 degrees. 

The time series of antenna brightness temperature (TA), averaged over azimuth beam 

positions (70 – 80), is shown in Fig. 4.4 for the four phases of the DSM. In phase-A, TMI is in the 
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normal operation mode where the TA of channel 1 (10.65 V) ranges between land (280 K) and 

ocean (180 K). In the second phase-B, where the CSB pointed to the hot earth, the calibration 

procedure was corrupted resulting in negative TA. In the third phase-C, the CSB departed the earth 

and pointed to space, so the calibration returned to normal, but now the SO beam intercepted the 

warm earth. As the spacecraft rotation continued, the SO beam eventually scanned off the earth; 

and at this point, the TA decreased with time until all three beams were pointed to space, when TA 

reached a minimum value, as shown in Figure 4.4(b). After several minutes (~2900 scans), the MB 

returned to view the earth at the end of the DSM (not shown). 

Since the SO beam intersected the earth during phase-C, the antenna temperature was 

increased over the CMB by the addition of hot land Tb coupled through the SO beam, as seen in 

Fig. 4.5. However, during the fourth phase-D, the measured TA was not affected by the earth scene. 
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Figure 4.4: Antenna brightness temperature (10.65 V) during 4 phases of the DSM#18, performed 

at a spacecraft yaw of 90°. 

Figure 4.4(a): All 4 phases of yaw-90 DSM 

Figure 4.4(b): Last two phases of yaw-90 DSM 
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Figure 4.5: Measured antenna temperature (10.65V) during the DSM#18 plotted as a colored trace 

on the TRMM ground track. 

4.2 Emissivity Coefficients 

TMI antenna brightness temperature during the fourth phase-D represents the CMB 

temperature, plus the emissive reflector contribution of brightness. Since the CMB temperature is 

known, the channel emissivity coefficient can be expressed as: 

 𝜀𝑖 =
< 𝑇𝑠𝑐𝑒𝑛𝑒,𝑖 > −𝑇𝑐,𝑖

(1 − 𝜂𝑖)(𝑇𝑝ℎ𝑦 − 𝑇𝑐,𝑖)
 (4.3) 
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where <Tscene,i> is the mean antenna temperature of channel i during phase-D (after removing the 

spill-over beam component of brightness that also viewed the CMB) using Equation (2.12), Tc,i is 

the CMB temperature of channel i, Tphy is the physical temperature of the main reflector (MR) and, 

ηi is the pre-launch determined antenna spill-over coefficient. The CMB temperature for all low 

frequency channels (10.65 GHz to 37 GHz) is 2.7 K while it is 3.2 K for the 85.5 GHz channels. 

It is important to note that the spill-over component of the antenna brightness temperature was 

directly captured by the feed horn pattern without reflection from the emissive main reflector. 

Thus, removing the spill-over temperature was required before calculating the emissivity 

coefficient of each channel. 

Because TMI did not have a temperature sensor on the MR, it was necessary to use an 

external source to estimate the Tphy required in Equation (4.3). For this purpose, another conical 

scanning satellite radiometer, the Global Precipitation Mission Microwave Imager (GMI), was 

used [4]. Both GMI and TMI used VDA coated graphite-epoxy parabolic reflectors of similar 

construction. Because both TRMM and GPM satellites flew in low inclination (non-sun 

synchronous) orbits, it was possible to match the sun beta angle and the time since eclipse to 

estimate the Tphy. While, there is no evidence for the exact matching of TMI and GMI reflector 

temperatures, because of the similar reflector construction and the similar day/night orbits, it is 

reasonable to expect similar orbital Tphy cycles. Moreover, the derived emissivity coefficients are 

insensitive to the mean Tphy value. For example, if the Tphy estimate has a +5% (~ 15 K) bias, then 

the derived emissivity value would decrease by 4.8%. However, since the emissive reflector TA 

correction involves the product of emissivity and Tphy, this results in a negligible brightness 

temperature error (- 0.022 K for this case). Moreover, in the final analysis, TMI calibration will be 
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referenced to GMI; therefore, any bias in TMI’s radiometric calibration, will be removed by cross-

calibrating with GMI. 

Table 4.2 presents the specific scans number, scan positions, and the estimated Tphy for 

each yaw-90 DSM. And, the corresponding emissivity coefficient for each channel and each DSM 

are shown in Fig. 4.6. The quadratic fit for each polarization shows that the emissivity coefficients 

increase with frequency for each polarization, as experimentally described by [5]. The final 

emissivity coefficients are the mean of all yaw-90 DSMs, and these values are presented in Table 

4.3, and these results are compared with the “Wentz emissivity coefficients” [1] used in the 

previous version 1B11 V7. 

Table 4.2: Scan number, scan positions, and estimated Tphy for each yaw-90 DSM. 

Maneuver # Scans # 

Azimuth Scan Position # 

Estimated Tphy 

10.65-37 GHz 85.50 GHz 

17 2800-2810 70-80 139-159 274.8K 

18 2812-2821 70-80 139-159 280.4K 

19 2861-2870 70-80 139-159 279.15K 

20 2872-2881 70-80 139-159 276.78K 
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Figure 4.6: Derived main reflector emissivity coefficients for four yaw-90 DSM’s. 

 

Table 4.3: Main reflector emissivity coefficients for 1B11 V8 and 1B11 V7 

i 1B11 V8 1B11 V7 

10.65 V 0.03163 0.038 

10.65 H 0.02654 0.034 

19.35 V 0.03586 0.042 

19.35 H 0.03390 0.042 

21.30 V 0.03832 0.046 

37.00 V 0.03940 0.045 

37.00 H 0.03580 0.042 

85.50 V 0.04253 0.047 

85.50 H 0.04045 0.044 
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4.3 Physical Temperature During Normal Operation 

After determining the emissivity values, Tphy for each orbit was estimated using the 10.65 

V channel ocean brightness temperatures. This channel was selected because the ocean brightness 

was best known for this channel using the XCAL Radiative Transfer Model (RTM) [12]. This is 

the result of the lowest and most stable value of atmospheric emission and the smallest change in 

surface emissivity from wind speed. Thus, the reflector physical temperature was empirically 

derived to minimize the single differences between the measured and modeled brightness 

temperatures using the procedure given in Figure 4.7 and using Equation (4.4). 

 𝑇𝑝ℎ𝑦 =
𝑇𝑏,10.65𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜀10.65𝑉
− 𝑇𝑠𝑖𝑚

(1 − 𝜀10.65𝑉)

𝜀10.65𝑉
 (4.4) 

where 𝑇𝑏,10.65𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is obtained using Equation (2.12), applying the hot load correction. 

In Figure 4.7, the simulated brightness temperature Tsim is obtained using the XCAL RTM, 

which is based on the ocean surface emissivity (Remote Sensing System’s ocean surface emissivity 

model [8]) and the atmospheric absorption coefficients (Rosenkranz and Liebe atmospheric 

absorption models [7-11]). 

The RTM requires environmental input parameters; therefore, the NOAA Global Data 

Assimilation System (GDAS) data were used. Since the environmental data were gridded in 1o 

Lat/Lng boxes, the TMI data for each channel were also gridded in the same way. Moreover, the 

output Tphy was filtered based on temperature range estimated by GMI; specifically, the filter 

removed Tphy values that were outside the range 230-320 K. 

Since the TMI reflector physical temperature depended on the solar coordinates, the 

calculated Tphy was saved based on the solar beta angle and the phase from orbit midnight. 
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Moreover, the configuration of TRMM (i.e., altitude and yaw direction) is critical on determining 

the physical temperature; thus, the results were determined separated for each configuration. 

Finally, TRMM had different articulations of the solar array during the entire mission time: the 

orbit altitude boost, feathered solar array, and the descending altitude during the end of the mission. 

Each of these different TRMM situations caused different environments that modulated the MR 

physical temperature. 

 

Figure 4.7: Flow chart of the procedure used to estimate TMI MR physical temperature during 

normal operation. 

4.3.1 Main Reflector Physical Temperature (Pre-boost Altitude = 350 km) 

After obtaining the physical temperature based on the solar beta angle and the phase from 

orbit midnight, the data were averaged for each orientation (yaw 0 and 180) to create a 2D Tphy 

matrix with the following resolution: 1o ±0.5o degree in the phase from orbit midnight (x-axis) and 
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0.25o ±0.375o in the solar beta angle (y-axis). Since the environmental profile (GDAS) started in 

2000, the 2D MR physical temperature of the pre-boost period was calculated from Jan 2000 to 

July 2001, as shown in Figure 4.8 (see Appendix E for the results of yaw 180). The 2D matrix was 

vertically smoothed by triangular filtering, with a window size equal to 17. This matrix was then 

used for the TMI counts-to-Tb algorithm, as described in Chapter 2. 

 
Figure 4.8: 2D matrix of MR physical temperature (yaw 0 and pre-boost altitude = 350 km). 

 

An example of the Tphy orbital cycle for a solar beta angle = 43.5° is displayed versus the 

time since entering eclipse (x-axis) in Figure 4.9. At time equal to zero, the satellite enters into the 
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night-time of the orbit; thus, the solar heating is removed and the reflector cools rapidly. After ~ 

30 minutes, the temperature reaches a minimum value, and as the satellite enters daylight, the 

temperature exponentially rises. This is a typical example of one orbit thermal cycle, which is 

modulated by seasonal solar heating (beta angle) that raises and lowers the maximum, minimum 

and average temperatures. Further, there are frequent, periodic, short-term thermal features, caused 

by shadows from the spacecraft structure and solar array, that block the solar heating for 5 – 10 

minute periods during the daylight portion of the orbit. It should be noted that the Tphy orbital cycle 

is very repeatable (within a few Kelvin) given the beta angle and the phase of the orbit midnight 

(related to the orbit time since eclipse). Finally, it was determined that the small scale oscillations 

in Tphy were primarily sampling variability due to the limited (18 month) data available in the pre-

boost period. 

 

Figure 4.9: Tphy relative to time since eclipse for yaw 0 and pre-boost at solar beta angle = 43o. 



64 

 

4.3.2 Main Reflector Physical Temperature (Post-boost Altitude = 405 km) 

The same procedure that was applied in the pre-boost was used in the post-boost, where 

the post-boost period was from Aug, 2001 to Aug, 2014. However, the data used in the analysis 

ranged from Jan, 2003 to Dec, 2013 to avoid the non-feathered solar array or the altitude 

descending time. The 2D matrix for the post-boost period is shown in Fig. 4.10, using the same 

color scale as previous. 

When comparing the 1D Tphy time series between the pre-boost and post-boost period for 

the same beta angle, it was determined that the mean physical temperature was ~ 5% less in the 

pre-boost than the post-boost, as seen in Figure 4.11. This is due to the fact that the “–Y solar 

array” was feathered in the post-boost, which caused the TMI MR to be in daylight longer than in 

the pre-boost. Although the eclipse time in the pre-boost was slightly shorter than in the post-boost, 

the solar array shadow was the difference that caused more shadow in the pre-boost period. 

Further, the small scale fluctuations disappeared in the post-boost because of the much larger 

quantity of data used to produce the table. 

Also, when comparing the 1D Tphy time series between the TMI post-boost and the 

measured physical temperature of the GMI for the same beta angle, both have similar patterns with 

slightly different mean values, as shown in Figure 4.12. Although TRMM and GPM orbits have 

the same altitude, the mechanical structures of the satellites are different. Because of this, the 

spacecraft shadows the microwave imager differently, which results in differences between the 

two curves. However, these differences are small and do not influence the emissivity coefficients 

derivation. 
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Figure 4.10: 2D matrix of MR physical temperature (yaw 0 and post-boost altitude = 405 km). 
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Figure 4.11: Comparing 1D Tphy between pre-boost & post-boost at solar beta angle = 43. 

 

 
Figure 4.12: Comparison of the post-boost 1D Tphy for TMI and of the measured GMI Tphy at 

solar beta angle = 43. 
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4.3.3 Main Reflector Physical Temperature (end of mission) 

When the on-board fuel used for orbit maintenance was depleted, the altitude of TRMM 

decreased exponentially due to the atmospheric drag, as shown in Fig. 4.13. Since the MR physical 

temperature depended on the solar coordinates, it was expected that the reduction in altitude would 

also result in a reduction of the reflector mean temperature. However, during this period, it was 

observed that the single differences between the measured and the modeled brightness 

temperatures increased by 0.1 K after Aug, 2014. One possible reason for the apparent increase in 

the MR physical temperature was the reduction of the shadow from the feathered solar array. 

Nevertheless, because there were insufficient Tb samples to estimate the MR physical temperature, 

the post-boost table was used with an adjustment of the mean by ~+3 K to remove this altitude 

effect. 
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Figure 4.13:TRMM altitude during the last year of mission. 
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CHAPTER 5:  1B11 V8 VALIDATION 

After applying the 1B11 V8 “count to brightness temperature” algorithm described in the 

previous chapters, the brightness temperatures have been validated by several methods. First, the 

simulated (modeled) brightness temperatures were used to calculate the single differences (SD) 

between the observed and the modeled, which is a good indication of the stability of the Tb 

measurements. For example, SD’s that do not change in time are sufficient to assure a stable 

radiometric calibration. However, the contrary may not necessarily indicate calibration instability 

because this SD method is sensitive to uncertainty in the input environmental parameters for 

atmosphere and surface, as well as issues with the physics of the RTM used to produce the modeled 

Tb’s. Another method, which is more robust, was to use inter-satellite radiometric calibration to 

calculate the double differences between TMI and other well calibrated instrument. This DD 

method significantly reduces the issues associated with the SD technique; however, it uses less 

numbers of points, because it depends on the collocation between two instruments. 

5.1 Stability 

Since TMI operated for more than 17 years, the observed temperature stability is an 

important metric to be calculated. As discussed above, this was done by analyzing the single 

differences; where the simulated temperature was obtained using the XCAL ocean RTM. In this 

dissertation, the RSS surface emissivity model [1, 2], the Rosenkranz atmospheric water vapor 

absorption model [3, 4] and the Liebe atmospheric oxygen absorption model were combined to 
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form the RTM [1-5]. The radiometer parameter inputs were: the channel frequency, the Earth 

Incidence Angle (EIA), and the polarization (V- and H-pol). 

The procedure used to calculate the single differences between TMI observed and 

simulated brightness temperatures is shown in Fig. 5.1. The spatial resolution of the collocation 

process for TMI Tb’s and the environment parameters of GDAS was 1o for both longitude and 

latitude. Within each 1° box, the Tb’s were combined and the means and standard deviations were 

calculated. Afterwards the observed mean Tb’s were compared with the simulated Tb for that box. 

The environmental parameters for the RTM were provided by NOAA’s global numerical weather 

product GDAS, which began in 2000. Since the GDAS model output is available every 6 hours, 

there existed a ± 2 hour window for collocations that occurred 4 times per day. 

Since the SD procedure seeks to estimate long-term Tb biases between radiometers, it is 

important that the collocations be carefully edited to provide only high quality data for 

comparisons. The ideal conditions are homogeneous clear-sky ocean conditions, where there is the 

greatest confidence in the simulated Tb’s. As a result, the match-up dataset were subjected to 

conservative filters, which typically reduce SD comparisons used to < 50% of the possible 

collocations. An effective filter used was the standard deviation test, which removes non-

homogeneous environmental conditions that include heavy clouds, rain, and mixed ocean/land 

scenes [6]. Also, there was a second filter that was based upon a threshold of the maximum 

observed ocean Tb by channel. 

Then, the single differences for each channel were obtained by: 

 𝑆𝐷𝑇𝑀𝐼 = 𝑇𝑏−𝑜𝑏𝑠 − 𝑇𝑏−𝑠𝑖𝑚 (5.1) 
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The SD for channel 10.65 V are plotted in Figure 5.2, where the values are binned averaged 

by quarter year that are separated by yaw orientation (yaw 0 and 180 degrees). This channel is the 

most important because the main reflector Tphy values were derived from these data. During the 

15-year time series, from 2000 to the end of the mission, these results show amazing stability 

where the mean is less than 0.01 K and the standard deviation is less than 0.07 K for both 

orientations. As mentioned above, this result is sufficient to verify that this channel is stable 

because it is highly unlikely that both the observed Tb and the modeled Tb can vary in synchronism 

to cancel. 
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Figure 5.1: The procedure to calculate the Single differences between observed and modeled 

brightness temperature. 
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Figure 5.2: The single differences quarterly results for both orientations (yaw 0 and 180 degrees) 

for 15 years (channel 10.65 V). 

5.2 Double Difference 

Because the GDAS data is only an estimate of the true environmental conditions and the ± 

2-hour collocation time window is relatively large for environmental parameter stability, it is 

desirable to use another well calibrated instrument for validation and calibration. Because of 

differences in frequency and EIA between two radiometers, the direct comparison between their 

observed brightness temperatures does not reflect the true instrument Tb bias of one to the other. 
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However, the difference of the SD’s for each instrument, which is called the Double Differences 

(DD), is a robust technique for establishing the calibration bias [6]: 

 𝐷𝐷 = 𝑆𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑆𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (5.2) 

where the well calibrated instrument is the 𝑆𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 while the target instrument to be calibrated 

is the 𝑆𝐷𝑡𝑎𝑟𝑔𝑒𝑡. 

Perhaps the best calibrated microwave radiometers is the Global Precipitation Mission 

Microwave Imager (GMI), which was launched in Feb 2014 by NASA and JAXA. GMI is a 

conical-scanning microwave imager that flies in a non-sun synchronous orbit at 405 km altitude 

[7]. GMI is the continuation of TMI, with an overlap period of 13 months between them, and 

although there is some similarity in the center frequency of their microwave channels, as shown 

in Table 5.1, their EIA’s are slightly different. 

Table 5.1: Center frequency and bandwidth of TMI and GMI channels. 

TMI GMI 

Frequency (GHz) Bandwidth (MHz) Frequency (GHz) Bandwidth (MHz) 

10.65 V/H 100 10.65 V/H 100 

19.35 V/H 500 18.70 V/H 200 

21.30 V 200 23.80 V 400 

37.00 V/H 2000 36.50 V/H 1000 

85.50 V/H 3000 89.00 V/H 6000 
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After calculating the SD for each instrument, the DD are calculated using Equation (5.2). 

Since the resolution of the SD is 1o degree box in latitude and longitude, then the DD resolution 

will be the same. To improve the quality of the inter-calibrations, any match-ups with time 

difference more than 1 hour were removed. 

The standard deviation of the DD values is indicative of the radiometric stability, and the 

mean DD will be used to calibrate TMI to match GMI. Ideally, the DD biases should be a constant; 

however, results show some correlation with the yaw orientation, orbital latitude, and the solar 

coordinates, which will be discussed next. 

5.2.1 TMI/GMI DD results 

The TMI/GMI DD distributions for channel 10.65 V for versions 6, 7, and 8 are shown in 

Fig. 5.3 (results of all channels are shown in Appendix F). Consider first the version 6 histogram, 

shown in red, where the major change was to remove the mean emissive antenna bias. This bias 

adjustment was based on an ad-hoc procedure involving several months of inter-satellite 

comparisons, but the MR physical temperature was incorrectly assumed to be constant. Thus, the 

orbital cycle of MR physical temperature produced in a time-varying radiometric calibration error 

in the earth scene brightness temperature that resulted in the large histogram variance. 

Next, consider the version 7 histogram, shown in blue. This version was an addition to 

version 6 that removed the effects of the orbital cycle of the MR physical temperature. Thus, the 

histogram mean was similar to V6 but the variance was significantly reduced. Also, the basis of 

the emissive reflector correction were empirical comparisons with theoretical brightness 

temperatures provided by a RTM. 
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Finally, version 8, developed during this dissertation research, is based upon rigorous 

physical measurements and electromagnet theory, as described in the preceding chapters. This is 

a very important improvement over version 7, because the long-time series of Tb observations 

have significant application in earth science for the study of global climate change. The credibility 

of the brightness temperature calibration is an important factor in the utility of the experimental 

data, and version 8 is superior to all previous versions. Concerning the DD histograms, except for 

the difference in the mean value, versions 7 and 8 are essentially identical. This means that version 

7 provided an excellent Tb product, but it lacked the creditability because it was based upon ad 

hoc methods. Further, there is no significance to the version 8 bias being less than version 7; rather 

it is only necessary that its mean value be accurately known. The mean and standard deviation of 

each TMI channel for both versions 7 and 8 are listed in Table 5.2, and mean biases will be 

subtracted from each channel in the XCAL inter-calibration process. 
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Figure 5.3: DD distribution of channel 10.65 V for versions 6, 7, and 8. 

Table 5.2:DD values for each channel for both version 7 and 8. 

Channel Version 8 (mean/std) Version 7 (mean/std) 

10.65 V 0.71/0.29 -1.21/0.29 

10.65 H 0.58/0.31 -1.70/0.30 

19.35 V 0.45/0.46 0.66/0.54 

19.35 H 1.23/0.60 0.15/0.71 

21.30 V 1.07/0.52 -0.08/0.57 

37.00 V -0.76/0.45 -2.16/0.46 

37.00 H 1.07/0.68 -0.83/0.66 

85.00 V 0.25/0.41 -1.25/0.40 

85.00 H -0.60/0.69 -1.32/0.67 

V8 

V6 

V7 
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5.2.2 DD and the yaw orientation 

One metric for the DD biases, is the stability of the mean value when data are sorted in 

various ways, and previously [8], version 7 results were compared for the two yaw orientations. 

These comparisons are presented (with present results for version 8) in Fig. 5.4. The observed 

difference in the radiometric bias between yaw orientations is small (typically a few tenths of 

Kelvin) in version 7; and results for version 8 are even less dependent. One interesting observation 

is that the DD biases are “mirror images” (opposite polarity) with yaw orientation. 

 

Figure 5.4: Mean of DD of each channel and each yaw orientation for both version 7 and 8. 
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5.2.3 DD and latitude 

Continuing the analysis of DD, it was noticed that there was a slight dependence on the 

latitude of the Tb observations, especially for channel 19.35 H. While the reason for this is not 

understood, it is suspected that it may be related to the global distribution of water vapor. Figure 

5.5 shows the DD variation, for both version 7 and 8, is within the acceptable range of ±0.1 K, 

with the notable exception of the 19 GHz channels. The DD latitude dependence shows some 

improvement in version 8, and significant improvements for the 19 GHz channels. 

5.2.4 DD and solar coordinates 

Since the correction of the emissive antenna and the sun intrusion to the hot load were 

based on the solar coordinates, it will be interesting to see the DD differences between version 7 

and 8. To calculate the DD anomaly, the bias should be removed from each version as follows: 

 2𝐷𝐷𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝛽, 𝑝ℎ𝑎𝑠𝑒) = (𝐷𝐷8−< 𝐷𝐷8 >) − (𝐷𝐷7−< 𝐷𝐷7 >) (5.3) 

where DD7 and DD8 are the DD for version 7 and 8 respectively. The resulting (2DDanomaly) was 

stored based on the solar coordinates, which are the sun beta angle and the phase from orbit 

midnight. 

The result for channel 19.35 V and yaw 0 orientation is shown in Fig. 5.6, which includes 

relatively large differences (> ± 0.4 K), especially in the region of the solar intrusion into the hot 

load. Also, a scatter plot between the GMI earth scene brightness temperatures and the values of 

DD > 0.4 K is shown in Fig. 5.8. From this figure, version 8 DD appear to be independent of the 

scene brightness, while version 7 has a significant positive linear dependence. However, not all 
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channels show the same improvement. For example, channel 37.00 V is slightly worse in version 

8 (see all results in Appendix F). 
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Figure 5.5: DD depends on earth’s latitude for versions 7 (blue) and 8 (red). 
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Figure 5.6: DD anomaly between version 7 and 8 based on the solar coordinates of channel 19.35 

V. 

 
Figure 5.7: Correlation of 19.35 V DD bias with the GMI earth scene brightness temperature for 

versions 7 (red) and 8 (blue). 
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CHAPTER 6:  CONCLUSION AND FUTURE WORK 

Under this dissertation, we have found conclusive evidence of the existence of a slightly 

emissive coating on the TRMM Microwave Imager main reflector antenna. Prior to this research, 

the existence of such an emissive antenna was only a plausible hypothesis, and proving this 

hypothesis has opened the way for the development of a rigorous electromagnetic solution to solve 

for the desired earth scene brightness temperature (Tb). 

The previous version 7 of the TMI 1B11 brightness temperature product, used empirical 

estimates of the time varying Tb error caused by a postulated emissive reflector antenna. The 

estimates were derived for the 10.65V channel by computing the single difference between the 

observed and modeled antenna temperatures (TA) as a function of the solar beta angle and the time 

since entering eclipse [1]. Tb error corrections for other TMI channels were scaled versions of the 

10.65V errors using assumed emissivity values based on the inter-satellite calibrations between 

SSMI (reference sensor) and TMI. After collecting 8 years of data, delta-Tb lookup tables were 

constructed to correct the observed TA for the time varying emissive antenna bias [2]. 

Under this dissertation, the first direct measurements of the main reflector emissivity 

coefficients for the TMI channels were obtained during four deep space calibration maneuvers 

conducted at the end of TRMM mission. Also, using the derived emissivity for the 10.65V channel, 

the main reflector physical temperature time series was estimated for the entire 17-year period of 

TMI measurements by comparing observed and theoretical modeled Tb’s. While this procedure 

had some uncertainty in the mean physical temperature, the dynamic temperature change was 

determined with sufficient precision to achieve a satisfactory brightness temperature correction 

uncertainty (< ±0.1 K). Fortunately, the reflector physical temperature has been parameterized as 
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a function of solar coordinates (solar beta angle and orbit phase) relative to the TRMM spacecraft 

to provide a look-up table. Also, there are minor perturbations in the direct solar heating of the 

reflector caused by shadows from the solar array and other parts of the spacecraft structure. 

Fortunately, the reflector orbital temperature cycle is quite repeatable, given the solar coordinates; 

and as a result, a number of reflector physical temperature lookup tables have been constructed for 

fixed spacecraft configurations (spacecraft yaw of 0° & 180°, orbit altitude (350 km & 405 km), 

and solar array articulation limits) that cover the full 17-year life time of the TMI. Therefore, given 

main reflector emissivity for TMI channels and the reflector physical temperature, a radiative 

transfer model has been developed to correct for the emissive component of brightness 

temperature. 

Moreover, under this dissertation, one other anomalous radiometric calibration issue has 

been discovered, and an effective mitigation solutions has been developed. This concerns periodic 

sun intrusion in the hot load (at certain solar coordinates), which results in transient radiometer 

gain errors. This issue has been solved developing a new hot load correction lookup table, which 

will be applied on the upcoming TMI version 8. 

Therefore, the procedure of TMI 1B11 version 7 will be replaced a new “radiometer counts 

to Tb” processing algorithm that incorporates the above innovations to produce the legacy TMI 

1B11 version 8. More importantly, this version 8 Tb product will have an improved pedigree that 

replaces ad hoc radiometric calibrations (version 7) by a rigorous derivation of radiometric 

uncertainty, based upon on-orbit measurements and electromagnetic theory (version 8). This 

increases our confidence in the results and allows earth scientist to apply statistical estimation 
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techniques to determine the uncertainty in their earth geophysical models based upon quantitative 

estimates of Tb errors provided. 

 

6.1 Future Work 

Since the TMI 1B11 version 8 is the last legacy version, there will not be future updates of 

this important Tb dataset. However, the rigorous radiometric calibration approach developed under 

this dissertation can be used for radiometric calibration of future satellite radiometers. In particular, 

it is recommended that the lessons learned concerning the need to consider the effects of solar 

coordinates on the instrument calibration be incorporated during the design phase. 

Further, the design of deep space calibration maneuvers need to consider the optimum 

spacecraft attitude adjustment procedures to obtain the desired simultaneous pointing of all 

radiometer antenna beams into space. As noticed in TMI, the first 16 DSMs, using the conventional 

pitch rotation maneuver, were limited due to the contamination of earth through the spill-over 

beam. However, the last four maneuvers were modified by changing the yaw to 90 degrees and 

apply rolling maneuver instead of pitching maneuver. This caused the TMI antenna beams (main 

beam, spill-over beam, and the cold sky reflector beam) to look at space simultaneously without 

any contamination of earth. Thus, applying different maneuver’s attitude to other instruments may 

provide more useful results than only used the typical maneuver which is based on pitch angle. 
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APPENDIX A: SCAN BIAS CORRECTION 
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In this Appendix, the scan bias correction for all TMI channels are presented. While these 

results are not part of this dissertation, they were used in the derivation of the reflector emissivity 

and the main reflector physical temperature. Since the scan bias correction is determined by 

channel number and the antenna “brightness” temperature, the figures will be for each channel 

with two different scene temperature ranges, which is cover the ocean and land observations.  

 
Figure 6.1: Scan bias correction for channel 10.65 V for Ta=170 K and Ta=280 K. 
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Figure 6.2: Scan bias correction for channel 10.65 H for Ta=90 K and Ta=280 K. 

 
Figure 6.3: Scan bias correction for channel 19.35 V for Ta=200 K and Ta=280 K. 
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Figure 6.4: Scan bias correction for channel 19.35 H  for Ta=140 K and Ta=280 K. 

 
Figure 6.5: Scan bias correction for channel 21.3 V  for Ta=220 K and Ta=280 K. 



95 

 

 
Figure 6.6: Scan bias correction for channel 37.00 V  for Ta=215 K and Ta=280 K. 

 
Figure 6.7: Scan bias correction for channel 37.00 H  for Ta=160 K and Ta=280 K. 
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Figure 6.8: Scan bias correction for channel 85.50 V  for Ta=260 K and Ta=280 K. 

 
Figure 6.9: Scan bias correction for channel 85.50 H  for Ta=230 K and Ta=280 K. 
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APPENDIX B: DERVATION OF ANTENNA PATTERN CORRECTION 

COEFFICIENTS 
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B.1 Introduction 

In this appendix, the APC of the TMI 1B11 V8 will be derived in details. Also, it will be 

compared to the APC of the previous versions.  

B.2 Derivation 

The derivation of the APC coefficients for the Equation (2.12) is based on the Equations 

(2.8), (2.9) and (2.10), which are for removing the spill-over and cross-polarized temperatures. 

Equation (2.9) can redefine as  

 𝑇𝑠𝑐𝑒𝑛𝑒,𝑉 =
𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉

− 𝜒10.65𝑉 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻

(1 − 𝜒10.65𝑉)
 (A.1) 

Using Equation (A.1) in Equation (2.10) as 

 

𝑇𝑠𝑐𝑒𝑛𝑒10.65𝐻
= (1 − 𝜒10.65𝐻) ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻 + 𝜒10.65𝐻

∗ (
𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉

− 𝜒10.65𝑉 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻

(1 − 𝜒10.65𝑉)
) 

(A.2) 

 

The Equation (A.2) can be rewritten as 

 

𝑇𝑠𝑐𝑒𝑛𝑒10.65𝐻
= (1 − 𝜒10.65𝐻) ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻

+ (
𝜒10.65𝐻 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉

(1 − 𝜒10.65𝑉)

−
𝜒10.65𝐻 ∗ 𝜒10.65𝑉 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻

(1 − 𝜒10.65𝑉)
) 

(A.2) 

 

After using algebra in Equation (A.2) to be as following 
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((1 − 𝜒10.65𝐻) −
𝜒10.65𝐻 ∗ 𝜒10.65𝑉

(1 − 𝜒10.65𝑉)
) 𝑇𝑠𝑐𝑒𝑛𝑒,𝐻

= 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝐻
− (

𝜒10.65𝐻 ∗ 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉

(1 − 𝜒10.65𝑉)
) 

(A.3) 

For simplicity, Equation (A.3) can be rewritten as (A.5) 

 𝜓10.65𝐻 = ((1 − 𝜒10.65𝐻) −
𝜒10.65𝐻 ∗ 𝜒10.65𝑉

(1 − 𝜒10.65𝑉)
) (A.4) 

 

𝑇𝑠𝑐𝑒𝑛𝑒,𝐻 =
1

𝜓10.65𝐻
𝑇𝑠𝑐𝑒𝑛𝑒10.65𝐻

− (
𝜒10.65𝐻

(1 − 𝜒10.65𝑉) ∗ 𝜓10.65𝐻
) 𝑇𝑠𝑐𝑒𝑛𝑒10.65𝑉

 

(A.5) 

 

Finally, the APC coefficients in Equation (2.12) can be derived by using Equations (2.8) and 

(A.5)  

 
𝐶10.65𝐻 =

1

𝜓10.65𝐻(1 − 𝜂10.65𝐻)
 

(A.6) 

 
𝐷10.65𝐻 =

𝜒10.65𝐻

(1 − 𝜒10.65𝑉)𝜓10.65𝐻(1 − 𝜂10.65𝑉)
 

(A.7) 

 

𝐸10.65𝐻 =
𝜂10.65𝐻 ∗ 𝑇𝑐

𝜓10.65𝐻(1 − 𝜂10.65𝐻)

−
𝜒10.65𝐻𝜂10.65𝑉 ∗ 𝑇𝑐

(1 − 𝜒10.65𝑉)𝜓10.65𝐻(1 − 𝜂10.65𝑉)
 

(A.8) 

 

Where 𝑇𝑐 and 𝜂 are the cold space temperature and the spill-over coefficient. These equations are 

applied for all channels except for channel 21.3 V, which doesn’t have horizontal channel. For that 

reason, Equation (2.11) is used to derive the APC coefficients of channel 21.3 V to be as following  

 
𝐶21.3𝑉 =

1

(1 − 𝜂21.3𝑉) ∗ ((1 − 𝜒21.3𝑉) + 𝜒21.3𝑉 ∗ 1.6634)
  

(A.9) 
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𝐷21.3𝑉 = 0 

(A.10) 

 𝐸21.3𝑉 =

𝜂21.3𝑉 ∗ 𝑇𝑐

(1 − 𝜂21.3𝑉)
− 𝜒21.3𝑉 ∗ 195.36

((1 − 𝜒21.3𝑉) + 𝜒21.3𝑉 ∗ 1.6634)
 (A.11) 

B.3 Results 

There are three versions of APC coefficients during the TMI mission. The APC coefficient 

for version 5 and earlier are written in Table A.1. The APC coefficients of version 6 and 7 are 

similar, which is used the SSM/I APC coefficients as seen in Table A.2. Finally, the new APC 

coefficients for the new TMI version, which is the TMI 1B11 V8, is derived in this appendix (see 

Table A.3). 

Table 6.1: TMI’s APC coefficients for version 1B11 V5 and earlier 

i Ci Di Ei 

10.65 V 1.0200 0.0037 0.0163 

10.65 H 1.0209 0.0047 0.0163 

19.35 V 1.0267 0.0044 0.0223 

19.35 H 1.0277 0.0046 0.0230 

21.30 V 1.0205 0 0.0248 

37.00 V 1.0372 0.0246 0.0127 

37.00 H 1.0317 0.0192 0.0124 

85.50 V 1.0331 0.0208 0.0123 

85.50 H 1.0412 0.0304 0.0109 
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Table 6.2: TMI’s APC coefficients for version 1B11 V6&7 

i Ci Di Ei 

10.65 V 1.02001 0.00375 0.0163 

10.65 H 1.02094 0.00468 0.04439 

19.35 V 1.03698 0.00394 0.06083 

19.35 H 1.0277 0.00544 0.06285 

21.30 V 1.02151 0 -1.05520 

37.00 V 1.03681 0.02226 0.03457 

37.00 H 1.04217 0.02762 0.03399 

85.50 V 1.02632 0.01432 0.03351 

85.50 H 1.03219 0.02019 0.02969 

Table 6.3: TMI’s APC coefficients for version 1B11 V8 

i Ci Di Ei 

10.65 V 1.02002 0.00376 0.04439 

10.65 H 1.02096 0.00470 0.04439 

19.35 V 1.02673 0.00445 0.06083 

19.35 H 1.02768 0.00466 0.06285 

21.30 V 1.02100 0 -1.05520 

37.00 V 1.03788 0.02522 0.03457 

37.00 H 1.03208 0.01963 0.03399 

85.50 V 1.03358 0.02130 0.03351 

85.50 H 1.04212 0.03124 0.02969 
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APPENDIX C: THE STATUS OF -Y SOLAR ARRAY  
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The purpose of this appendix is to document the articulation of the “-Y solar array” over 

the 17-year lifetime of the TMI. This information was provided by Mr. Steve Bilano of the 

NASA Goddard Space Flight Center. 

C.1 TRMM Weakly Reports 

DOY 147 - 153 

02-150 (Thursday, May 30th) 

A Solar Array feathering test was performed for two orbits between, 15:04:51z and 

18:22:50z (CR #615, and #616).  The Solar Array tracking was changed to +/- 1 degree from +/- 

50 degrees.  The Power subsystem was configured for Constant Current Mode 3 (24 Amps per 

battery) from Constant Current Mode 2 (12 Amps per battery) during the test.  The test was 

successful, and another test is scheduled for 02-156 (Thursday, June 6th). 

 

June 3, 2002 - June 9, 2002 

DOY 154 - 160 

02-156 (Wednesday, June 5th) 

A Solar Array feathering test was performed for two orbits between, 15:04:51z and 

18:22:50z (CR #620, and #621).  The Solar Array tracking was changed to +/- 1 degree from +/- 

50 degrees.  The Power subsystem was configured for Constant Current Mode 3 (24 Amps per 

battery) and VT6 from Constant Current Mode 2 (12 Amps per battery) and VT5 during the test.  

The test was successful, and another test is scheduled for 02-162 (Tuesday, June 10th). 
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June 10, 2002 - June 16, 2002 

DOY 161 - 167 

The Beta angle range for 02-168 to 02-174 is -9.1° to 11.8°. 

 

02-162 (Tuesday, June 11th) 

A Solar Array feathering test was performed between, 12:16:26z and 18:37:13z (CR 

#624 and #625).  The Solar Array tracking was changed to +/- 1 degree from +/- 50 degrees.  

The Power subsystem was configured for Constant Current Mode 3 (24 Amps per battery) and 

VT6 from Constant Current Mode 2 (12 Amps per battery) and VT5 during the test.  The test 

was successful, and additional testing is planned in the near future. 

 

June 17, 2002 - June 23, 2002 

DOY 168 - 174 

The Beta angle range for 02-175 to 02-181 is 11.8° to 37.3°. Another Solar Array 

Feathering test is scheduled from 02-175 to 02-179 (June 24th to June 29th). 

 

June 24, 2002 - June 30, 2002 

DOY 175 - 181 

The Beta angle range for 02-182 to 02-188 is 37.3° to 57.4°. Another Solar Array 

Feathering test began on 02-175 (June 24th), and will continue to approx. July 20th. 

 

July 1, 2002 - July 7, 2002 
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DOY 182 - 188 

Beta angle range for 02-189 to 02-195 is 57.4° to 40.5°. Solar Array Feathering test 

continues.  It was started on 02-175 (June 24th), and will continue to approx. July 20th. 

And next week noted: 

Solar Array Feathering test continues.  It was started on 02-175 (June 24th), and will 

continue to July 19th (before the Yaw Maneuver). 

  

02-200 (Friday, July 19th) 

The Solar Arrays were returned to tracking mode with ±50° stops, VT mode 5, and 12 

amps per battery following Delta-V #403, and all subsystems performed nominally.  The next 

feathering test will occur in August due to solar beta angle. 

2nd extended feathering test reports noted in weekly: 

 

August 5, 2002 - August 11, 2002 

DOY 217 - 223 

The Beta angle range for 02-224 to 02-230 is 12.13° to 38.76° The Solar Array 

Feathering test (Solar Array stops limited to +/- 1°) will continue on 02-224 (August 12th) when 

the Beta Angle reaches +15°.   

 

 

August 12, 2002 - August 18, 2002 

DOY 224 - 230 
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The Beta angle range for 02-231 to 02-237 is 38.78° to 43.96°. The Solar Array 

Feathering test resumed on 02-224 (August 12th) when the Beta Angle reached +15°, and will 

continue to approximately September 2nd 

September 2, 2002 - September 8, 2002 

DOY 245 - 251 

Beta angle range for 02-252 to 02-258 is -12.3° to -31.9°. 

The Solar Array Feathering test ended on 02-247 (Wednesday, September 4th). 

A sample of how the exact orbits for feathering can be checked from ATT plots. 

Looking at 2nd special test, noted as follows 

A Solar Array feathering test was performed for two orbits between, 15:04:51z and 

18:22:50z (CR #620, and #621).  The Solar Array tracking was changed to +/- 1 degree from +/- 

50 degrees. 

C.2 Attitude Analysis 

This is the attitude analysis that provided by Stephen Bilanow to detect the specific orbit 

for these solar array changes. Looking at the next four figures which are for orbits 25976 to 25979, 

we see the small spacecraft motions in roll and yaw from the motion of the solar arrays to the 

feathered position during orbit night. These occur after shadow entry and before sunrise in orbits 

25976, and 25979, but not in 25977 and 25978. At the end of 25978 plot we see a disturbance but 

that belongs to the next orbit.  PR data is shown in these plots only within orbit span and there is 

otherwise a 4-minute overlap in the gyro-propagated attitudes which are plotted.   
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With +X forward (Yaw 0) the Sun Sensor 1 data shown in red near 0 occurs just after 

sunrise, and Sun Sensor 2 which is biased -.2 degrees (and not used currently) is picked up just 

before Sunset.  The interferences in the hot load, and the array shadowing, occur just before sunset. 
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Figure 6.10: Attitude analysis shows the non-feathered solar array of orbit 25976  
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Figure 6.11: Attitude analysis shows the feathered solar array of orbit 25977.  
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Figure 6.12: Attitude analysis shows the feathered solar array of orbit 25978. 
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Figure 6.13: Attitude analysis shows the non-feathered solar array of orbit 25979  
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C.3 Email 

This was an email from Stephen Bilanow regarding the status of the –Y solar array.  

From: Stephen Bilanow 

To: XCAL group 

Date: Fri, Feb 17, 2017 at 1:38 AM 

 

“Xcalers, 

  

The following notes are relevant to tomorrows discussion of period two noted in UCF slide 

number 2.  It turns out the division of solar array operating periods is a bit more complex than 

we'd thought. 

 With some assistance from Crag Jamieson and the helpdesk records we were able to find some 

dates for feathering tests that were done to the array tracking before the -Y (sun side) array was 

frozen at 0 degrees for feathering.   

We found 3 short tests for few orbits in 2002 on May 30, June 5, and then June 11.  

And then there were some extended tests (both at yaw=0): 

   June 24 to July 19 

and 

   August 12 to September 4 

These last two explain the data in Faisal's slide 16 on the right. Note, these were implemented 

with a slight difference from the final frozen 0 degree feathered configuration for -Y. The array 

stops were set at +/- 1 degree.  For most of the pre-boost period the arrays were stopped at +/-50 
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degrees.  Also both arrays were feathered for this test.  It was only after the anomaly 

investigation, starting September 5th 2002, that they worked out having the +Y array track on its 

own.  For some period after September 5th the array stop limits were also set to +/- 1 

degree.   The final configuration with -Y parked at 0 and +Y nominal tracking was implemented 

on October 11, 2002.  For our purposes the array stops at +/- 1 just means a 1 degree extra 

rotation to the array during the shadowing. This is a relatively small change for shadowing of the 

TMI hot load.  However there was an early period of more extended tracking.  

So, let me just quote some key information from the MOC final report: 

"In 1998, the FOT observed that when the Beta Angle was near maximum, the –Y array actuator 

temperature peaked around 41.5 °C. This occurred because the angle of the array allowed 

sunlight to warm the SADA. This was a concern because the Penzane lubricant could degrade 

and/or evaporate at higher than normal bearing temperatures. ... In order to reduce the duty cycle 

of the array, the FOT uplinked an updated ACS Table #76 that limited the array to track ±50° 

(instead of the designed ±130°.) This also required a patch ... and   Additional updates to 

FDCs  ... 

After some more digging and document review late, I found a reference to dates for the +/- 130 

to +/- 50 tracking changes in the notes for 

CCR 025 submitted 05/08/1998  

Problem Description:  Due to high temperatures on the -Y Solar Array actuator, the deployables 

engineer wishes to decrease the motion on the Solar Array as much as possible. Also, keeping 

the arrays closer to "feathered" decreases drag and increases mission life.  
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Proposed Solution:  Change the S/A Software Stops from +/- 130 degrees to +/- 50 degress via 

an ACS table change. Since the table change alone did not solve the problem (commands were 

still being sent to the solar arrays after the software stops were reached), a patch to the ACS 

FSW is needed 

Closed - Completed 12/15/1998  

So it is apparent there is yet another period with a different operating mode for the arrays at the 

very beginning of the mission, and probably some different interference patterns for sunshine on 

the hot load. More array shadowing may have reduced the interference in the hot load in the very 

early mission.  

For most of the pre-boost period I think we are seeing the shadow of the array parked at the 50 

degree position, which lasts from sunrise until the sun is 50 degrees from orbit noon.  From that 

point in the orbit to around 50 degrees past local noon, the array tracks the sun for maximum 

power.  The array is stopped at the 50 degrees offset (plus or minus), and held there through 

the sunset span.  At night the arrays were feathered to reduce drag.  At Yaw zero, it is the sunset 

span where the array shadows the sunshine into the hot load.  At Yaw 180, it is around sunrise 

that the array shadowing pattern is seen.     

Just to make things a little more complicated, I just found a whole bunch of notes about other 

special feathering tests in a list of command requests, such as 7/1/2002 Change SA T Thresholds 

to 20 degrees for SA Feathering.  So, will have to investigate if other tests are worthy of 

concern.  
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I know this is challenging to visualize, let alone keep track of the different changes, but we can 

discuss this information at the telecon.  I had not been aware of these details of the array tracking 

changes previously. 

regards, 

Steve” 
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APPENDIX D: HOT LOAD CORRECTION RESULTS FOR ALL 

CHANNELS AND ALL PERIODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 

 

 

Figure 6.14: Hot load correction for all channels (yaw0, period 1) 
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Figure 6.15: Hot load correction for all channels (yaw0, period 2) 
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Figure 6.16: Hot load correction for all channels (yaw0, period 3) 
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Figure 6.17: Hot load correction for all channels (yaw0, period 4) 
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Figure 6.18: Hot load correction for all channels (yaw180, period 1) 
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Figure 6.19: Hot load correction for all channels (yaw180, period 2) 
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Figure 6.20: Hot load correction for all channels (yaw180, period 3) 
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Figure 6.21: Hot load correction for all channels (yaw180, period 4) 
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APPENDIX E: PHYSICAL TEMPERATURE OF THE MAIN 

REFLECTOR AT YAW 180 
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Figure 6.22: 2D matrix of MR physical temperature (yaw 180 and pre-boost). 
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Figure 6.23: 2D matrix of MR physical temperature (yaw 180 and post-boost). 

 

  



128 

 

APPENDIX F: DOUBLE DIFFERENCE (DD) RESULTS FOR 

VERSIONS 7 AND 8 
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F.1 DD Distribution  

 

Figure 6.24: Double Difference (DD) distribution for V7 and V8 (all channels, yaw 0). 

Blue=V7 

Green=V8 
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Figure 6.25: Double Difference (DD) distribution for V7 and V8 (all channels, yaw 180). 

Blue=V7 

Green=V8 
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F.2 DD Based on Solar Coordinates  

 

 

Figure 6.26: 2D Double Difference (DD) differences between V7 and V8 based on solar coordinates (all channels, yaw0). 

Difference, K 
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Figure 6.27: 2D Double Difference (DD) differences between V7 and V8 based on solar coordinates (all channels, yaw180). 

 

Difference, K 
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Figure 6.28: Scatter plot with linear regression for the high DD anomaly for V7 and V8 (all channels, yaw0) 

 

 

Blue&Back = V7 

Green&Red=V8 
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Figure 6.29: Scatter plot with linear regression for the high DD anomaly for V7 and V8 (all channels, yaw180) 

Blue&Back = V7 

Green&Red=V8 
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