
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations 

2017 

Data Representation in Machine Learning Methods with its Data Representation in Machine Learning Methods with its 

Application to Compilation Optimization and Epitope Prediction Application to Compilation Optimization and Epitope Prediction 

Yevgeniy Sher 
University of Central Florida 

 Part of the Computer Sciences Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Sher, Yevgeniy, "Data Representation in Machine Learning Methods with its Application to Compilation 
Optimization and Epitope Prediction" (2017). Electronic Theses and Dissertations. 5608. 
https://stars.library.ucf.edu/etd/5608 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5608?utm_source=stars.library.ucf.edu%2Fetd%2F5608&utm_medium=PDF&utm_campaign=PDFCoverPages


DATA REPRESENTATION IN MACHINE LEARNING METHODS WITH ITS
APPLICATION TO COMPILATION OPTIMIZATION AND EPITOPE PREDICTION

by

GENE SHER
M.S. University of Central Florida, 2014

B.S. University of California Santa Cruz, 2007

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2017

Major Professor: Shaojie Zhang



c© 2017 Gene Sher

ii



ABSTRACT

In this dissertation we explore the application of machine learning algorithms to compilation phase

order optimization, and epitope prediction. The common thread running through these two dis-

parate domains is the type of data being dealt with. In both problem domains we are dealing with

categorical data, with its representation playing a significant role in the performance of classifica-

tion algorithms.

We first present a neuroevolutionary approach which orders optimization phases to generate com-

piled programs with performance superior to those compiled using LLVM’s -O3 optimization level.

Performance improvements calculated as the speed of the compiled program’s execution ranged

from 27% for the ccbench program, to 40.8% for bzip2.

This dissertation then explores the problem of data representation of 3D biological data, such as

amino acids. A new approach for distributed representation of 3D biological data through the

process of embedding is proposed and explored. Analogously to word embedding, we devel-

oped a system that uses atomic and residue coordinates to generate distributed representation for

residues, which we call 3D Residue BioVectors. Preliminary results are presented which demon-

strate that even the low dimensional 3D Residue BioVectors can be used to predict conformational

epitopes and protein-protein interactions, with promising proficiency. The generation of such 3D

BioVectors, and the proposed methodology, opens the door for substantial future improvements,

and application domains.

The dissertation then explores the problem domain of linear B-Cell epitope prediction. This prob-

lem domain deals with predicting epitopes based strictly on the protein sequence. We present

the DRREP system, which demonstrates how an ensemble of shallow neural networks can be

combined with string kernels and analytical learning algorithm to produce state of the art epitope
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prediction results. DRREP was tested on the SARS subsequence, the HIV, Pellequer, AntiJen

datasets, and the standard SEQ194 test dataset. AUC improvements achieved over the state of the

art ranged from 3% to 8%.

Finally, we present the SEEP epitope classifier, which is a multi-resolution SMV ensemble based

classifier which uses conjoint triad feature representation, and produces state of the art classifi-

cation results. SEEP leverages the domain specific knowledge based protein sequence encoding

developed within the protein-protein interaction research domain. Using an ensemble of multi-

resolution SVMs, and a sliding window based pre and post processing pipeline, SEEP achieves an

AUC of 91.2 on the standard SEQ194 test dataset, a 24% improvement over the state of the art.
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CHAPTER 1: INTRODUCTION

The field of machine learning concentrates on developing algorithms that give ”computers the abil-

ity to learn without being explicitly programmed” [65, 89]. Today, people say ”machine learning”

when they refer to any algorithm which has the ability to learn from data and then generalize to

make predictions on new previously unseen data. Such algorithms come in vast number of types

of functionality, and there are different approaches to their construction. There are machine learn-

ing algorithms that are based on and are inspired by biological systems and environments, these

methods include the likes of neural networks, evolutionary algorithms, artificial immune systems,

and ant colonies. Other approaches are based on statistics, such as the naive bayes classifier. There

are strengths and weaknesses associated with each; a balance of speed, computational complexity,

ability to generalize, differs for different approaches, and too does their performance on specific

problem domains.

Some of the most commonly used approaches are artificial neural networks (ANN), shallow and

deep variations, support vector machines (SVM) which some consider to be a variation of shallow

neural networks but using a distinctly different learning method, and evolutionary computation.

There are of course variations, combinations, and ensembles of these approaches, combined to-

gether to produce even better performance than any of the approaches on their own.

There are also different types of learning. The three learning types are: supervised learning, un-

supervised learning, and reinforcement learning. Supervised learning requires examples of what

the system should learn, an expected output for every input. Unsupervised approach includes al-

gorithms that primarily perform some type of clustering, or dimensionality reduction. Finally,

reinforcement learning methods only require the knowledge of whether one solution is better than

another, which is enough to provide the system with the needed positive or negative reinforcement
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signal to modify its parameters.

The problem domains this dissertation covers, requires reinforcement learning for the compilation

phase optimization, and supervised learning for the classification problem of epitope prediction.

All the methods and problem domains presented in this dissertation share a common thread, they

all have to deal with categorical data, either on the input, the output, or both ends of the machine

learning algorithm. Discrete optimization phases have to be represented to the neuroevolutionary

system we use to order them, while in bioinformatics we have to deal with amino acids, which

too require a manner in which to encode them and represent to the machine learning methods.

Both problems require us to represent categorical data in such a way that the machine learning

algorithms can perform efficient calculations on it. Furthermore, throughout the entire dissertation,

one of the main issues being dealt with, is the representation of data, and how to embed within it

useful domain specific knowledge. The following sections provide a brief background on the two

problem domains, and an overview of the chapters that follow.

1.1 Compilation Optimization Background

The LLVM project [52] is an open source framework for building compilers with support for a

wide variety of operating systems and hardware architectures. LLVM utilizes a highly portable

and descriptive Intermediate Representation (IR) which front-end compiler developers can target

to leverage the numerous platforms supported by the IR compiler back-end. Such an approach

is used by the clang C/C++ front-end included with LLVM. Uniquely, LLVM’s IR includes type

information to enable optimizations to be applied directly to IR code and is structured to allow

modules, functions, and blocks to be represented. LLVM includes numerous module and function

level optimizations, such as inter-procedural optimization, dead code elimination, constant propa-

gation, loop unrolling, etc. Optimizations are applied using a flexible pass management API which
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can resolve dependencies between analysis and transformation passes automatically. Though de-

signed for module level optimizations (the same passes are applied to all functions) it is extensible

enough to support function level optimizations.

There has previously been only one known attempt to evolve neural networks to select optimization

phases based on program features [50]. This technique utilized the NEAT [93] neuroevolutionary

system to evolve networks for selecting optimizations to apply during dynamic compilation in the

Jikes RVM Java JIT compiler. Compared to the Genetic Algorithm based techniques used previ-

ously [19, 47], neuroevolution demonstrated significant speedups over standard compiler optimiza-

tions. Additionally, using evolved neural networks avoids the high cost of evolving optimization

phase-orderings directly during compilation and allows for reuse and possible specialization of the

evolved networks. These results motivated the present study in the context of static compilation of

LLVM IR code.

Another interesting paper covering this problem domain is [48], which deals with exhaustive ex-

ploration of the optimization phase sequences. This is of course only possible by limiting the total

number of optimization types explored, and the length of the sequences. This paper explores and

provides hints at some features of the solution space within this problem domain. Many other

machine learning algorithms have been previously applied to the phase-ordering problem. The

methods explored have ranged from hill climbers and evolutionary computation algorithms, to the

more complex approaches utilizing predictive modelling [1, 3, 38, 49, 44]. Statistical methods

to find optimization flags have been tested as well, with positive results [41, 33, 9], but heuristic

algorithms have also been shown to produce comparable performance gains [19, 3].
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1.2 Epitope Prediction Background

Epitopes are 3D structures on a surface of an antigen which can be recognized by an antibody.

There are two types of epitopes, linear, and conformational. Linear epitopes are self contained

on a single continuous amino-acid subsequence, while conformational epitopes are composed of

multiple subsequences which form a single continuous 3D surface structure, due to the folding of

the protein to bring those subsequences spatially together.

There are many reasons why one might want a computational approach to epitope prediction. The

most direct applications deal with vaccine search and design. A less direct reason for a com-

putational approach deals with the complexity and time required to search for epitopes through

experimental methods. It is much faster to search computationally through the large quantities

of data currently available, and only then to follow up with the much slower experimental search

within the regions marked by the computational method. By having a tool which, even if it is not

100% accurate, can guide us to the locations where an epitope might be located, greatly decreases

the amount of time spent on in-vivo search, and accelerates our ability to develop vaccines. Thus,

it is of great use to have an epitope prediction tool which can either predict or guide us to epitope

locations.

The first linear epitope prediction methods were developed in the 1980s, and were based on propen-

sity scales [57, 37]. These were built up experimentally, and based on the statistical correlation

of a physicochemical property of a residue and it belonging to an epitope. Later systems used

multiple propensity scales together, these systems include the likes of PEOPLE [2], PREDITOP

[70], BEPITOPE [67], and BcePred [78]. A decade later, these propensity scales were coupled

with various predictive algorithms, after it was shown that predictions based purely on propensity

scales produce results only slightly better than random [12].
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Starting in 2006, machine learning algorithms coupled with new types of amino acid sequence en-

coding methods and propensity scales, began to emerge. The first of such systems was ABCPred

[79], based on a recurrent neural network with an input vector of 16 residues using a sparse binary

encoding. During the same year, BepiPred [51] was released, and was based on Hidden Markov

Models [10] rather than neural networks. The input to BepiPred was based on numerous physic-

ochemical properties and protein secondary structure. In 2007 AAP [17] was released, and was

the first predictor using a support vector machine based model, and proposed the use of a new

type of antigenicity propensity scale. AAP’s improved performance ushered a new era of epitope

predictors based on SVM algorithms.

In 2008, BCPred [25], and later in 2010, FBCPred [113] were published, both using SVM. BCPred

and FBCPred demonstrated that predictive improvement can be achieved by using methods devel-

oped within the text mining community. These two systems used string kernels [55, 56] and SVM

to make their predictions. BCPred operates on a fixed length input sequence window, whereas

FBCPred can be applied to variable length input sequences. LEP-LP [16] is an SVM predictor

released in 2008, and was based on multiple numerically profiled propensity scales as input.

Due to SVM’s excellent classification performance, the SVM based predictor trend continues to

this day. CBTOPE [6] converts residues in the sliding window into a ”Composition profile of pat-

terns”, which is a vector of amino acid ratios within the window. BEST [28] epitope predictor uses

a 20-mer sliding window and an SVM classifier. COBEpro [94] is another epitope predictor which

uses SVM to predict short epitope sub-sequences. All three, CBTOPE, BEST, and COBEpro, can

also predict conformational epitopes using a secondary clustering algorithm.

Around the same time, in 2009, EPITOPIA [77] was released. EPITOPIA is based on a naive bayes

classifier and is capable of predicting conformational epitopes. It uses structure and sequence based

inputs, with the sequence input being based on a sliding window and multiple (14) propensity
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scales. BaysB [105] is an epitope predictor based on the naive bayes method and an SVM model.

BRORacle [102] uses an SVM predictor whose input data is based on sequence features, secondary

structure, and physicochemical properties such as solvent accessibility and disorder. LEPS [101]

was released in 2011 and is an extension of LEP-LP. LEPS’ SVM based model is used to discard

LEP-LP’s less likely candidates, resulting in a more accurate classification. SVMTriP [108] is an

SVM based predictor, but for input it uses ”Tri-peptide similarity and Propensity scores.”

One of the most recently published epitope predictors is LBtope [90]. LBtope is also based on

an SVM model, which is coupled with a nearest neighbour algorithm. In the paper presenting

LBtope, Singh et al. notes that until now, most predictors (ABCPred, BCPred, FBCPred, BEST)

have been trained on negative datasets composed of random peptides. Furthermore, the training

datasets have been small, with a size of roughly 1500 total samples. To solve this problem, Singh

et al. composed a new dataset of epitopes and non-epitopes, an order of magnitude larger and using

the available data from IEDB [73, 100]. In this LBtope-dataset, the non-epitope sequences were

based on confirmed data.

Finally, in 2015 deep learning models began entering the bioinformatics domain. Deep learning,

and in particular convolutional deep networks, are currently state of the art in classification. The

deep maxout network based model called DMN-LBE [109], was the first deep learning approach

which was applied to linear epitope prediction. This predictor used the new LBTope dataset for

training and testing, and used 5-fold cross validation. The system’s classification performance was

reported to be slightly higher than that of LBTope. Unfortunately, just like LBtope, it was not

applied to actual long protein sequences in the published paper.

Taking all of this information into account, in this work we develop a first of its kind, deep analyt-

ically learning network using string kernels. Our system, DRREP, due to using string kernels, can

be applied to the sequence directly and without any type of pre-processing. Furthermore, DRREP
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outputs a vector of residue-by-residue scores, rather than scores for a single fixed k-mer window.

Thus, DRREP can be used to predict the presence of epitopes in variable length sequences, and

applied to entire protein chains. It is a convolutional deep network, with the first layer being a

convolutional string kernel, the second an average pooling layer, the third a linear neuron layer, the

fourth an average pooling layer, and finally fifth being a single threshold neuron.

1.3 Chapter Overview

Chapter 2 discusses a neuroevolutionary solution to the optimization phase ordering problem. Neu-

roevolutionary system DXNN and NEAT are used to evolve optimization phase order for the com-

piler, with the systems tested on the benchmark programs ccbench and bzip2. When compiling the

programs using a standard -O0 through -O3 flags, the optimizations and their orders are statically

pre-set, and are independent of the source code they are applied to. The study explores the utility

of ordering the optimization phases based on the features of the source code. The performance is

based on how fast the compiled programs perform, and their relative speed compared to the same

source codes compiled using LLVM’s -O3 compilation flag.

Chapter 3 formulates and explores a new concept of 3D BioVectors. The chapter demonstrates a

new method which performs embedding of 3D biological data. Applying machine learning directly

to biological 3D information is an extremely difficult task, due to the issue of representation, and

high dimensionality. This new approach aims to provide a solution, through a distributed represen-

tation of residues and residue clusters, which we call 3D BioVectors. The method is a derivative of

the approach known as word embedding, utilized within the natural language processing commu-

nity. The chapter concludes by presenting preliminary results of applying 3D Residue BioVectors

to conformational epitope, and protein-protein interaction classification problems.
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Chapter 4 presents a linear B-Cell epitope predictor called DRREP, Deep Ridge Regressed Epitope

Predictor. DRREP is an analytically trained and string kernel using deep neural network, which is

tailored for continuous epitope prediction. DRREP was tested on long protein sequences from the

following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to nu-

merous state of the art epitope predictors, including the most recently published predictors called

LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance im-

provement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%),

and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the

LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702.

Chapter 5 demonstrates a B-Cell epitope predictor based on an ensemble of multi-resolution Sup-

port Vector Machines (SVMs) which leverage conjoint triad feature (CTF) protein encoding. The

CTF encoding of primary protein sequences has been utilized within the protein-protein interaction

(PPI) for a decade. But this methodology, which is based on grouping amino acids into 7 groups

based on their biochemical properties, has not been utilized within the epitope prediction com-

munity. The encoding uses triads, which further captures spatially local information, and residue

ordering. We call our system SEEP, SVM Ensemble Epitope Predictor. SEEP is a variable length

epitope classifier, capable of achieving an AUC of 91.2 on the SEQ194 standard test dataset, an

improvement of 24% over the current state of the art.

Chapter 6 concludes the dissertation by summarizing the works presented within the dissertation,

and discussing potential future extensions and works.
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CHAPTER 2: NEUROEVOLUTIONARY OPTIMIZATION OF PHASE

ORDER GENERATION FOR STATIC COMPILATION

There exists a plethora of optimizations that can be applied to code to make it more efficient.

Just a minute fraction of which are for example the following: global value numbering, code

factoring, instruction scheduling, reordering computations, deforestation, dead code elimination,

code-block reordering etc. or replacing certain methods/functions with expert tailored versions.

The order in which any of the optimizations are applied affects the form of the code available for

the optimization phases that follow. Any optimization, once it has passed through the code and

has affected it, thus affects what type of code is available to other optimizations, and whether they

will be able to or not, to further optimize it. Thus there exists a complex interaction between the

optimization phases applied to a program, a problem known as the ”optimization phase ordering

problem”. This same complex web of optimization phase interactions makes it difficult to find an

optimal sequence of optimization phases.

For this reason, the optimization phases for numerous compilers, are ordered either in no particular

order, or in some pre-set order that seems to produce relatively good results. But optimal ordering

is based on a particular program, which cannot be predicted ahead of time by any engineer setting

up a static ordering of the optimization phases. Furthermore, the optimal order is based on the

hardware as well, not to mention what the goals of a particular optimization sequence are (such as

for example: low memory usage, execution speed etc.).

To solve this, we want the optimization sequence to be based on the features of the software

being optimized, and the hardware on which it is set out to run. One of the most powerful and

flexible feature mapping approaches in machine learning is the approach through neural networks

[75, 22]. A neural network is a graph composed of signal processing nodes, a universal function
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approximator. But given that we do not know ahead of time neither what the optimal sequence

is, nor where in the solution space this optima is located, we need a method for searching for the

optimal neural network topology and its parameters that is based simply on whether the resulting

optimization phase order is better or not than the one it is being compared to with regards to

producing a more optimal program. This type of optimization algorithm belongs within the realm

of reinforcement learning, and in our particular case: evolutionary computation.

In this research we explore the use of evolved neural networks for the purpose of ordering optimiza-

tion phases when compiling a program. For the compiler, the LLVM [52] compiler infrastructure

was used. We connect a neural network to LLVM, and then use the compiler to generate the pro-

gram features under consideration, which are then fed into the neural network which makes the

decision on what optimization to use (based on a provided list of optimizations available). Of

course to generate better and better neural networks capable of making such decisions, we need a

process, and that is where evolutionary computation enters.

2.1 A Neuroevolutionary Approach To LLVM Phase Optimization

A neural network can be evolved to map from features of a program to a particular optimization

phase that should be applied to it. The evolutionary approach can optimize the neural network so

that it chooses an optimal sequence of such optimizations, and stops when it is done as per the

fitness function used to evolve these mapping neural networks. The fitness function can be based

on either performance of the program (how fast it runs), how much memory it takes (when we’re

optimizing for it to run on limited hardware for example), or all of the above, in a multi-objective

approach, and thus creating a Pareto front of optimal neural networks.

In this application domain, two different approaches are evaluated for the purpose of evolving
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neural networks which select optimizations during static compilation. In the first approach, an

evolved neural network selects optimizations to apply to an entire LLVM module based on the ag-

gregate features of all the functions defined in the module. Contrast this with the second approach,

where each function in a module is independently optimized based solely on its features. In both

approaches optimizations are iteratively selected based on the features of the module or function

extracted after the previous optimization is applied. Iteratively optimizing a module or function

in this fashion allows the most appropriate optimization to be applied at each step. The function

level approach is closest in form to that used in by Kulkarni et al., [50], where each Java method

is individually compiled and optimized during JIT compilation, but in this case is applied during

static compilation using LLVM.

Both the module and function level approaches share a number of implementation details. We

first have to extract a list of features used as inputs to the NN, based on which it will be making

its selections. The list of features is long and will not be listed here in full (module level uses

48 features while function level uses 44 features). Module level features include the number of

functions, size of functions as a percentage of total instructions, the instruction histogram over

the entire module, etc. Function level features include the number of blocks within the function,

the instruction histogram for the function, etc. As noted previously, LLVM provides numerous

optimizations which can be applied at the module and function levels, of which only a subset are

utilized here (53 at module level, 34 at function level). Each neural network output is associated

with a particular optimization to be applied. There is also a single output which indicates that

iteration should be ceased and no further optimizations are to be applied. The highest valued

output for a particular set of module or function feature inputs indicates the next optimization to

be applied. After each optimization is applied, a new set of features are extracted for the next

iteration. This process continues until the the neural network chooses to cease iteration or the

maximum number of optimizations has been applied.
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The general architectural pipeline of our system is shown in Fig-2.1. An LLVM fronted such as

Clang is used to generate IR bytecode from a program’s source code. This bytecode is then passed

to a module or function level optimizer along with a neural network used to select optimizations.

In each iteration of the optimizer, features are extracted and set as the inputs to the neural network.

The resulting outputs determine the optimization to apply in the next iteration or whether iteration

should terminate and the optimized bytecode passed to the backend to finish compiling. During

evolution, benchmark programs are optimized using an evolved neural network and then executed

to measure the resulting performance of the program on which the fitness of each evolved neural

network is based. The speedup provided by a particular neural network is measured relative to

the standard -O3 optimization flag provided by Clang. For both the module and function level

optimizers the ccbench [github.com/ucb-bar/ccbench] and bzip [bzip.org] benchmarks are used to

provide feedback.

To evolve neural networks for module level optimization, DXNN is used, which has been shown to

perform superbly in complex problem domains such as Artificial Life and Currency Trading, all of

which are multi-dimensional problem domains, and deal with complex fitness landscapes. DXNN

supports recurrent neural networks, which are used to provide memory of previously observed

features and applied optimizations, potentially improving the selected optimizations. To evaluate

the fitness of each evolved neural network, a custom LLVM module feature extractor and the

LLVM opt tool are iteratively used to generate the neural network inputs and apply the selected

optimizations to a module. The custom LLVM module feature extractor calculates and aggregates

features of all functions in a module to determine neural network inputs for each iteration. The

LLVM opt tool is used to apply each optimization selected by the neural network to a particular

module. This applies the same optimization to every function contained in the module.

The function level approach uses NEAT to evolve neural networks in a manner similar to [50].

The overall architecture is similar to that of the module level approach, with the exception of
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NEAT replacing DXNN, and the requirement of generating multiple optimization sequences for

each function instead of a single sequence applied to the entire module. The MultiNEAT imple-

mentation of NEAT is used to evolve the neural networks and, as was done by Kulkarni et al., only

feedforward (non-recurrent) neural networks are evolved. This approach is complicated by the fact

that LLVM does not provide tools to independently optimize particular functions. For this reason,

a custom optimizer, implemented using the LLVM framework, is used to extract function features

and directly activate a neural network evolved using NEAT to iteratively select optimizations to

apply to the function.

Figure 2.1: The general architectural pipeline
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2.2 Comparison of Evolved Optimization Phase Ordering to LLVM Built-in Ordering

For the module level approach, DXNN was ran in different types of modes and applied to both,

bzip2 and ccbench. In all DXNN based experiments, a population of 10 was used, and memetic

algorithm employed. For bzip2 benchmark, DXNN ran for 5000 evaluations averaged over 10

evolutionary runs, using only program speed as the fitness function and using only tanh as the

activation function. The experiment was then performed again for 5000 evaluations and averaged

over 10 evolutionary runs, but where the system had access not only to a sigmoid activation func-

tion, but instead the following list of functions: [tanh, sin, abs, gaussian], referred to in the graph as

”all”. A multi-objective experiment was performed, with the fitness now being a vector: [Program-

Speed, TotalOptimizationsApplied], in an attempt to see whether we could minimize the number

of optimizations applied while improving speed, at the same time. The results were poor, and begs

the question of why, and thus is currently being explored. Finally, another benchmark was ran

for 50000 evaluations, to see whether further improvement can be achieved if more computational

time is provided. The graphed validation results are shown in Fig-2.2.

Then the system was applied to the ccbench for 15000 evaluations, only with tanh as the activation

function. A graph of which is shown in Fig-2.3.

For the function level approach, NEAT was ran for 1000 generations over a population of 30

(30000 fitness evaluations using ccbench) and averaged over 4 runs. The maximum, minimum,

and mean of the best fitness in each generation is shown in Fig-3.19. Note that the negative of the

running time is used so that higher fitness corresponds to lower running time. For comparison, the

results of 100 runs of ccbench compiled with clang optimization flags −O0 and −O3 are shown

in Table-2.1. A graph of the evolved function level optimization neural network based orderers is

shown in Fig-2.4.
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Figure 2.2: Module level based Bzip2 results

Table 2.1: Results of 100 runs of ccbench compiled with clang optimization flags ’-O0’ and ’-O3’.

Mean Min Max OptimizationFlag
2.849 2.558 3.284 -O0
2.819 2.612 3.016 -O3

2.2.1 Discussion

In Fig-2.2 we can see the DXNN’s slow and steady fitness increase on the BZip2 benchmark. The

5000 evaluation experiment ended with a final most fit NN capable of ordering the optimization

phases that results in the BZip2 benchmark executing in 1.1s, compared to the 1.77s optimized

by -O3. Running the evolutionary run for a longer period of time, did not result in significantly

better results, but did show an improvement, with the final optimized program running in 0.953s,

an improvement of 40.8%. Also, for at this time unknown reasons, the multi-objective approach

did not produce positive results.
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Figure 2.3: Module level based ccbench results

Fig-2.3 presents DXNN’s evolutionary run that evolved the ccbench phase ordering NNs. Here too

an improvement is seen, with the best validated NN capable of ordering phases such that the final

result runs in 0.752s, compared to the 1.035, a 27% improvement. The results demonstrate that

this approach produces significant improvements over the -O3 optimization level.

We can see clearly in Fig-2.4 that NEAT is having difficulty with this highly complex optimiza-

tion space (44 inputs and 34 outputs). This is likely due to a combination of several factors: a

small population makes it difficult for optimal traits to persist over many generations, evolutionary

parameters were not optimized, and the optimization space is highly non-linear. While little can

be done to reduce the complexity of the optimization space, increasing the population size while

reducing the total number of generations and informed selection of evolutionary parameters may

provide some improvement. Of particular interest is the fact that even the lowest best fitness in

a generation (roughly 2.68s around generation 860) is approximately 5% faster than the average

16



running time using ’-O3’, while the best fitness found (1.860s in generation 442) is approximately

34% faster. Though these results are not directly comparable to [50], they demonstrate that func-

tion level optimization phase-ordering is also beneficial in static compilation.

Figure 2.4: Function level based ccbench results

One significant issue is the challenge of accurately measuring the running time of the benchmarks.

For these results, the output of the bash shell’s built-in time command was used, summing the

user and system running times to determine the overall running time. The wall-clock running

time was found to vary significantly depending on system load. While the user and system times

are measured at the kernel-level, they too appear to vary with load, but much less than the wall-
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clock time. No readily available alternative to the time command is known. However, kernel-level

performance tracing tools may provide results that are more accurate and will be tested in future

work.

2.3 What We Learned

In this chapter we have developed two neuroevolutionary based pipelines for the purpose of op-

timization phase ordering, used with the LLVM and Clang compiler. One was module level op-

timization based on DXNN neuroevolutionary system, and one was function level and based on

NEAT. In both cases we have demonstrated improvements, as per bzip2 and ccbench benchmarks,

performance improvements ranging from 5% to 50%. Furthermore, we have explored different

types of activation function sets, feedforward and recurrent neural networks, and even a multi-

objective evolutionary run, though which has not yielded positive results.

One significant issue which must be considered in future work is that a number of optimizations

are applied regardless of the optimizations specified when invoking opt. A customized optimizer

which eliminates these optimizations will likely need to be used to better evaluate the performance

of our results. It is also likely that these optimizations may provide a better starting point for both

module and function level phase-ordering. It may be useful to also investigate whether selecting

specific sequences of optimizations, such as those used by standard optimization sequences, may

be more effective that selecting individual optimizations alone. We also still need to explore the

role of plasticity and multi-objective optimization within this problem domain, for which signifi-

cantly more time is required. Finally, Superoptimization [5,6] is the search for optimal loop free

instruction sequences implementing a particular function template. Though seemingly unrelated,

superoptimization could potentially be leveraged as another optimization phase that can be selected

by the neural network during phase ordering.
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CHAPTER 3: EXPLORATION OF BIOLOGICAL DATA

REPRESENTATION, AND THE CONCEPT OF 3D BIOVECTORS

When it comes to biological data, the main issue that we are dealing with and are trying to over-

come, is data representation. How do we encode amino acids in a useful way, in a manner that

embeds within the encoding some useful biochemical and spatial information? Is there a way to

directly extract useful biochemical and spatial information from the 3D structure of proteins, and

embed that information into some distributed representation that can be used by machine learning

algorithms? This was the premise for the study.

We explored other research domains which faced similar data representation problems. This even-

tually lead us to Natural Language Processing (NLP), and the issues faced by the community with

regards to representing words, and text data in general. Similarly to the discrete biological data,

like amino acids, NLP researchers also face the difficulty of representing words in a way that

embeds their properties, and contextual information. Their solution to this, is word embedding.

Majority of machine learning algorithms are not capable of being applied to strings or text data

directly and in its raw form. Word embedding is simply a method of representing text in numer-

ical form. More generally, distributed representation is a method of representing categorical data

through continuous numerical vectors. In this chapter we explore a concept of representing 3D

biological data using a method based on an analogy of word embedding.

The methodology of word embedding is a process by which high dimensional semi-discrete or

categorical data is embedded into a continuous lower dimensional vectors (distributed represen-

tation). This type of representation was shown to produce extremely positive results within the

NLP field when Word2Vec was released and popularized [61]. Word2Vec was developed for text
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based data, and then extended to 1D BioVectors, produced by applying the methodology to protein

and genetic sequences [7]. But these approaches only concentrate on the primary sequence infor-

mation and text data, rather than 3D and spatial biological information. Nevertheless, Asgari et

al. demonstrated that even these 1D BioVectors can be successfully applied to the protein-protein

interaction classification problem.

In this work we have formulated a new method and developed a system which performs embed-

ding on biological 3D data. We call these distribute representations: 3D BioVectors. In this chapter

we explore and introduce the concept of 3D BioVectors, a method for generating them, and show

preliminary results of low dimensionality residue based 3D BioVectors applied to Conformational

Epitope Classification and Protein-Protein Interaction (PPI). We demonstrate that using only the

basic information provided within the protein database (PDB) files, coordinates of residues and

atoms composing the 3D structure, 3D BioVectors can be generated which embed within them-

selves useful domain specific information, and thus might have utility in practical applications.

We believe that 3D BioVectors can encode within themselves useful biochemical and spatial in-

formation, data that is not available when building 1D BioVectors, and thus be applicable in more

application domains, and produce superior results.

3.1 Distributed Representation

Word embedding is a method of creating a distributed representations of words. Traditionally NLP

represented words as independent Ids, unrelated to each other semantically. This means that not

only can you not get any useful information about the word’s context by simply looking at its repre-

sentation (some unique Id), but also that it would be difficult to process it using a machine learning

algorithm. Research shows that this is not how the brain stores words, instead it uses distributed

representations [64]. In distributed representations, semantically similar words occupy nearby lo-
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cations within the multi-dimensional word vector space. It is this type of representation which also

allows us to link together similar ideas, and perform transfer learning from one field to another, if

they share similar concepts. These properties were some of the advantages that researchers within

NLP field wanted to take advantage of when developing the distributed representation of words

through word embedding.

Though the concept of word embedding, and the term itself was coined back in 2003 by Bengio et.

al. [11], it was not until Word2Vec [62] was developed that the methodology took of. Word2Vec is

currently the state of the art system which performs word embedding using text data. The method is

based on the standard approach of using shallow neural networks and skip-grams [32], but modified

(by incorporating optimizations such as negative sampling and sub-sampling) to work efficiently

with extremely high dimensional input and output vectors (based on the size of the vocabulary),

and very large training datasets. We extend the concept of embedding from 1D text, to 3D spatial

biological data.

3.2 From Word Embedding to 3D Information Embedding

Word embedding can be done using numerous approaches. Some of the common methods include

probabilistic approaches [29], dimensionality reduction approaches [53], co-occurrence matrices

[58, 59], and most commonly, neural networks [61]. All methods are based in one way or another

on the concept popularized by Firth [27] through his comment that ”a word is characterized by

the company it keeps”. A basic version of the skip-gram method which generates distributed

representations of words is set up as shown in Fig-3.1.

In this setup, a large body of text is broken down into tuples composed of target word at location

N in the sentence, and the context words near the target word. The context words (”the company
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that the word keeps”) are defined by context radius; in the Fig-3.1 example the radius is 1. The

context words for the target word at location N are the words at locations N − 1 and N + 1. The

input and output dimension of the neural network is defined by the vocabulary size on which the

system is trained. Finally, the words are represented using one-hot encoding.

Figure 3.1: Basic Word Embedding Framework. Demonstrates a simple feedforward neural
network approach for generating distributed representations of words with a context radius of 1.

Using these (TargetWord, ContextWord) tuples, we attempt to teach the NN to predict a proba-

bility distribution of context words, given some particular target word. Because there are thousands

of words, the input and output dimensions are very high. We train the neural network with a hidden

layer that is dimensionally lower than the input and output layers. The output layer uses softmax

activation function, while the neurons in the hidden layer do not use activation functions. What

does such a neural network learn? If the entire body of text is broken down in this manner, than the
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neural network predicts the statistical distribution of any word appearing next to the target word.

For example, on average there will be many more training samples where the word ”green” is next

to the word ”light” rather than some other word like ”orange”. After training the NN, if the word

”green” is used as input to the NN, it will produce a vector of probabilities of the words in the

vocabulary appearing next to the input word. But learning these associations this is just a ”throw

away” problem, learning this type of probability distribution is not the end goal.

To learn such probability distributions, the NN is forced to encode useful information within the

hidden layer, it is forced to embed information that is useful to make contextual associations. It is

this hidden layer that represents the distributed representation, and thus provides us with a word

to distributed representation mapping. It is this hidden layer encoding that is the end goal of the

training.

After the NN is trained, we throw away the output layer, and then feed to the NN each word within

the vocabulary to acquire its distributed representation. These distributed representations can then

be used with other machine learning methods for various applications. These representations have

been shown to be extremely useful, and to have numerous useful properties. For example, words

with similar semantics clustered together within the multidimensional word vector space [97].

Examples of these trained distributed representations and their clustering of contextually similar

words, have been presented in a number of recent works [62, 18, 92].

Thinking analogously, we extend the idea of word embedding into three dimensional space, con-

centrating primarily on biological structures. Firth [27] said that ”You shall know the word by the

company it keeps”, our intuition about amino acids runs along similar lines. We think that ”You

shall know the amino acid by the company it keeps”. There are numerous types of amino acid

interactions within the protein and on its surface. The 3D structure of the protein is based on how

the entire protein sequence folds, and the different types of residue-residue interactions. Thus, em-
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bedding can be performed on buried amino acids, on all amino acids (buried and surface), or just

surface amino acids. Each of these residue-residue interaction types would have their own specific

environmental, biochemical, and spatial properties. The distances, and the type of residue-residue

interaction that occurs between buried residues is different than that which occurs between sur-

face amino acids. Because protein-protein interaction occurs particularly through the surfaces of

the two interacting proteins, in this exploration we chose to primarily concentrate on the surface

residues.

The 1D BioVectors generated from the primary protein sequences [7] were based on training tuples

where the target is a residue trimer within the sequence, and the context are the residue trimers on

the left and the right of the target trimer. In this work we explore a low dimensional distributed

representation based on residues rather than trimers, we call these residue distributed representation

vectors: 3D Residue BioVectors. For the case of 3D embedding, as it applies to proteins, we define

the target and context as the target residue and context residue. The 3D Residue BioVectors are

produced by a neural network which is trained on the tuples composed of these target and context

residues.

Analogously to word embedding and skip-gram approach, context radius is a distance around

the target residue, and any residue within that distance belongs to the target residue’s context

or environment. Figure-3.2 shows an example of how training tuples are formed. First we find

all surface amino acids on the protein. Then, we go through each surface amino acid, des-

ignating it as the target residue, and defining context residues as those amino acids which are

within its context radius. The context radius in this example is defined to be a distance of 6A,

as per the average distance between two residues in direct contact, as is specified by Ofran et

al. [68]. The tuples are composed by producing (TargetResidue, ContextResidue) pairs. Be-

cause we will primarily deal with the 20 most common amino-acids, the input target residues

will be defined as 20 dimensional one-hot vectors. Similarly, the context amino-acids are also
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defined as 20 dimensional one-hot vectors. Thus, the resulting training pairs have the following

format: ([TR1, TR2, ...TR20], [CR1, CR2, ...CR20]), where TRi specifies the target residue, and

CRi specifies the context residue.

An approach which will be able to incorporate more information within the distributed represen-

tation is one that is trained on higher dimensional input and output vectors, such as trimer residue

clusters for example. Amino acid cluster target and context pairs is something we plan to explore

in the future, once we have analysed and understood this much lower dimensional embedding, and

have explored its performance.

Because we take our target residues from the surface of a protein, we must first define the pool

of surface residues. As was noted by Miller et al. [63], surface residues have an average relative

surface accessible area of 5−50%, or an average of 2.5A2 and above of absolute solvent accessible

surface (SAS) area. Thus, we start by defining our surface residues which have at least 2.5A2 SAS,

but leave it as a tunable parameter as we explore the performance of the derived 3D Residue

BioVectors.

Though there are many factors that make up the context/environment of a target surface amino

acid, we start our exploration using the most easily accessible and available information, which is

present within all PDB files: the nearby amino acids. In the example we define the context radius

to be 6A. This value is roughly equivalent to context radius of 1 within word embedding, because

it defines those residues which are directly in contact with the target residue. In general, any amino

acid pairs whose Ca or Cb atoms are within 4A to 12A of one another [68], are considered to be in

direct contact. Similar to the surface accessible area, the environmental radius is also a parameter,

which we can vary to explore its affect on the generated 3D Residue BioVectors.
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Figure 3.2: An example of solvent accessible residues. Solvent accessible residues are those
residues which are located on the surface of a protein, defined by having on average of at least
2.5A2 of solvent accessible surface. The figure presents a protein (Id d14gsb2), and though there
is internal structure, the residues we concentrate on are those on the surface. The figure shows 5
surface residues, with target residues coloured blue, and their nearby context residues coloured in
red and green. The context residue is defined in this example as a residue that is no more than 6A
away from the target residue.
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3.3 Unsupervised 3D Residue BioVector Generator

The training dataset tuple formation and 3D BioVector generation pipeline shown in Fig-3.3, works

as follows: We use the SCOPe: Structural Classification of Proteins - extended database, because

it it is composed of non redundant set of PDB files. The next step is to calculate solvent accessible

surface (SAS) area for every atom in the PDB. Following the calculation of SAS, a training-tuple

extractor goes through each PDB file, and marks all residues with SAS > A, where A is the

minimal area threshold. Then for every marked residue, we calculate its context residues by finding

all residues that are within distanceD of the target amino acid. After the context residues are found,

we form tuples: (TargetResidue, ContextResiduek), for all k context residues.

The next step is to train a feed forward neural network (FFNN) with N hidden neurons on the

training dataset. We set aside 10% of the dataset to be used for validation, and train the neural

network until its performance on the validation dataset begins to decrease. The FFNN is validated

every 1000 evaluations.

Once the neural network is trained, each residue is ran through the NN. During this step, we store

the output of the hidden layer, which results in a list of 20 tuples of the form: (Target Residue, Hid-

den Layer Output), one tuple for each residue. The tuples represent the amino acid to distributed

representation mapping, andN is the dimensionality of the resulting distributed representation, the

3D Residue BioVector.
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Figure 3.3: Training Dataset Generation. The pipeline for generating the training dataset using
the SCOPe database PDB files.

3.4 Compositional Residue Encoding

The easiest way to compare protein sequences of different sizes using a machine learning algo-

rithm, such as SVM or Neural Network, is if both of the sequences are represented through a

vector of an invariant length. This way, the two vectors are appended, and their appended length is

also invariant (independent of the protein sequence’s length). The dimensionality of the appended
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vectors is the input dimensionality we then initiate NN or SVM with, and then train it to classify

the two proteins. One of such representations is the conjoint triad feature [83], which encodes a

protein sequence into a 343 dimensional vector, regardless of how long the protein sequence is.

We create an invariant length continuous vector representation using the 3D Residue BioVectors

using vector composition.

Vector composition representation of a protein sequence is accomplished by composing the vectors

for each residue. Rather than replacing each residue with its distributed representation, we add up

the continuous vectors, and then normalize the result. This encoding approach is demonstrated in

Fig-3.4, which also presents a learned example of a 5 dimensional distributed representation for all

20 residues.

Figure 3.4: Compositional representation. A compositional representation of a protein sequence,
through addition of 3D Residue BioVectors. The example demonstrates the compositional repre-
sentation of a sequence of length 12, encoded using 3D Residue BioVectors of length 5, resulting
in a final vector representation of length 5.

29



3.5 Results

To test if any useful information was embedded within the generated 3D Residue BioVectors, we

applied this new encoding to two different problem domains: 1. Conformational B-Cell Epitope

Prediction, and 2. Protein-Protein Interaction. We used the conformational epitope dataset pro-

vided by Kringelum et al. [45], which is composed of 76 sequences, containing a total of 25200

residues. To test the encoding’s performance on PPI classification, we used Pans PPI dataset [69]

for training, and tested the trained SVM classifier on the external test datasets based on Drosophila,

Yeast, and Caenorhabditis elegans, provided by Guo et al. [31].

We generated 3D Residue BioVector of length 5, 10, and 15. We specifically chose the dimen-

sions lower than 20, based on the hypothesis that the NN will have to more densely encode useful

information by having to compress the already very limited amount of information provided by

the single residues. Our aim was also to explore whether the low dimensional hidden layer could

embed any useful information at all. Multiple versions were generated by varying the solvent

accessible surface area SAS, and by varying the context radius threshold D. Based on research

literature, our expectation is that by using SAS of 2.5A2, which has been experimentally demon-

strated to be the average threshold value for surface residues, and by using a threshold distance of

6A as context radius, we will be able to produce high performing low dimensionality 3D Residue

BioVectors.

During the process of training an SVM classifier on the generated 3D Residue BioVectors, we

tried Linear, Polynomial, and RBF kernels, for each sliding window size. In Table-3.1 only the

top 2 best performing parameter combinations for each window size are shown when applying

the trained classifier to the conformational epitope test dataset, which was also the test dataset for

DiscoTope 2.0 [42].
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Table 3.1: Conformational Epitope Prediction Preliminary Results AUC results based on the
application of compositional 3D Residue BioVector encoding to conformational epitope prediction.

RSV Length Window Size Kernel SAS Area Dist. Threshold AUC
5 12 Linear 5A2 10A 63.2
10 12 Poly 5A2 10A 65.6
10 20 Poly 5A2 10A 63.1
15 20 Poly 5A2 10A 63.4
5 30 Linear 5A2 10A 61.3
10 30 Poly 5A2 10A 61.3
5 12 Poly 2.5A2 6A 65.5
10 12 Linear 2.5A2 6A 66.4
10 20 Linear 2.5A2 6A 66.3
15 20 Linear 2.5A2 6A 64.6
5 30 Linear 2.5A2 6A 67.6
10 30 Linear 2.5A2 6A 65.5
5 12 Poly 2.5A2 10A 68.7
10 12 Linear 2.5A2 10A 68.5
15 12 Poly 2.5A2 10A 68.4
10 20 Linear 2.5A2 10A 62.0
15 20 Linear 2.5A2 10A 61.5
5 30 Poly 2.5A2 10A 64.3
10 30 Poly 2.5A2 10A 64.7
15 30 Poly 2.5A2 10A 65.7
5 12 Linear 2.5A2 20A 60.2
10 12 Linear 2.5A2 20A 61.1
15 12 Linear 2.5A2 20A 63.3
5 20 Poly 2.5A2 20A 60.1
15 20 Linear 2.5A2 20A 61.3
5 30 Poly 2.5A2 20A 61.7
15 30 Linear 2.5A2 20A 63.1

This is a very compact encoding, and undoubtedly does not encode all the needed information

to make accurate predictions. We further note that using a residue vector of length 5, the SVM

classifier was still able to reach an AUC of 67.6. This performance was reached when using

sliding windows of size 30, and with the surface vectors generated using solvent accessible area of

2.5A2, and a context radius of 6A. These SAS and distance threshold values are the ones that are
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associated with the average SAS to determine a surface residue [63], and the distance threshold

which is noted to be the average distance between residues directly in contact [68].

A more inclusive threshold distance of 10A produced slightly better results, reaching an AUC of

68.7. This makes sense in retrospect, because as noted by Ofran et al., the residue contact distances

range from 4A to 12A, dependent on the size of the residue. Thus, a more inclusive distance would

cover larger number of residue types, and potentially allow the distributed representation to encode

a more accurate correlation. A SAS threshold of 5A2 produced 3D Residue BioVectors which

performed worst of all, which fits with the intuition that such a high SAS excludes a lot of residues

which are indeed on the surface of the protein, thus miss-representing contextual associations. On

the other extreme end, setting the threshold distance to 20A, also produces a set of results lower

than those achieved by using a threshold distance of 6A or 10A.

We believe that these preliminary results demonstrate that the distributed representations produce

different performance results, based on the parameters used to generate them, and the information

that is embedded within. In Table-3.2 we compare the best AUC achieved in Table-3.1 to the AUCs

achieved by DiscoTope-2.0, DiscoTope [34], ElliPro [74], and PEPPITO [95], on the same dataset.

Results for these classifiers are taken from Table-4 of the paper published by Kringelum et al. [45].

Though the 3D Residue BioVector produced classification results which are not state of the art, it

is encouraging that the extremely low dimensional 3D Residue BioVector performed on the same

level as the more complex ElliPro classifier.

32



Table 3.2: Conformational Epitope Prediction Comparison Comparing results of 3D Residue
BioVector of dimensionality 5, to other modern methods.

Method AUC
3D R. BioVector 68.7
DiscoTope-2.0 73.1
DiscoTope 70.5
ElliPro 68.6
PEPITO 73.2

Table-3.3 presents preliminary results for PPI classification. The best results for Drosophila was

an AUC of 68.0. The SVM achieved an AUC of 69.0 when applied to the protein pairs from the

C.elegans dataset. Interestingly, on the Yeast dataset the SVM only achieved an AUC of 53.2

when using the 3D Residue BioVector, which will require further analysis to better understand the

reason. Again, though the results are not state of the art, this exploration of the data representation

shows utility in 3D BioVectors, and the method proposed and explored here. Finally, though the

compositional distributed representation encoding dimensionality ranged only from 5 to 15, Pan et

al., dataset contains proteins which range in size from 51aa to 18074aa. Thus further makes the

classification results interesting and encouraging.

Table 3.3: PPI Classification Preliminary Results Application of residue surface vector encoding
to Protein-Protein interaction.

Dataset RSV Length Kernel SAS Area Dist. Threshold AUC%
Drosophila 5 Linear 2.5A2 6A 67.8
Drosophila 10 Linear 2.5A2 6A 67.4
Drosophila 15 Linear 2.5A2 6A 68.0
Yeast 5 RBF 2.5A2 6A 51.5
Yeast 10 RBF 2.5A2 6A 53.2
Yeast 15 RBF 2.5A2 6A 53.0
C.elegans 5 RBF 2.5A2 6A 68.2
C.elegans 10 Linear 2.5A2 6A 69.0
C.elegans 15 Linear 2.5A2 6A 68.4
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3.6 The Future of Residue Surface Vectors

The work presented here is exploratory, with the aim being the exploration of 3D biological data

representation, and generation of distributed representations from the 3D protein data itself. When

using strictly residues as target elements, the input vector is only of length 20, and thus we can

not expect for too much information to be embedded. This is unlike word embedding, with an

extremely large vocabulary dataset which allows for input/output dimensions ranging in the thou-

sands. This allows for a lot more learning to occur, due to a lot more input/output correlations that

exist in the much larger dimension of the input and output vectors, and the larger hidden layer.

Asgari et. al. used word embedding on the primary protein sequence, but the target and context

elements forming the training dataset were based on trimers. This allowed for 8000 (20*20*20)

dimensional input/output vector lengths. From this representation, 100 dimensional 1D BioVectors

were generated. The resulting embedded representation produced state of the art predictive results

when applied to PPI classification. In our 3D distributed representation, the next step is to use

residue trimer clusters, extending the dimensionality of the input and output to 6840 (20*19*18)

dimensional vectors (residue order is not applicable in 3D amino acid clusters). This will further

extend the complexity of the information that the system will attempt to learn, and allow us to use

larger hidden layers and produce 3D BioVectors which will embed more information. Furthermore,

at this time only the residues from the same protein have been used to form the training tuples. It

is possible to explore the tuples based on the known PPI contact maps, which better represent the

correlations of residue interaction between two independent proteins. Finally, tuning the distance

and SAS threshold values that define the target and the context around it, will further allow the

system to embed more accurate spatial and biochemical features, as is suggested by our preliminary

benchmark results in conformational epitope prediction.
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CHAPTER 4: DEEP RIDGE REGRESSED EPITOPE PREDICTOR

In this work we present a sequence based continuous epitope predictor called DRREP (Deep Ridge

Regressed Epitope Predictor). Our linear B-Cell epitope predictor is based on a deep neural net-

work (DNN) [54], which utilizes a string mismatch function based first hidden layer, a second

normalization pooling layer, an analytically computed third hidden layer, followed by another

non-linear pooling layer, and a final fifth layer composed of a single threshold neuron. Our intu-

ition is that because there is structure within protein sequences, and because we are dealing with

sequences composed of characters, these structures and patterns are based on the k-mers within

the sequences. Thus, a way to find and extract them, is through the use of string based activation

functions, similar to methods applied in text mining. Because we do not know ahead of time the

actual structures, lengths, and patterns of these k-mers, one way to solve the problem of exposing

them is to generate a large number of our own random k-mer patterns, tiling the sequence with

them, and counting how many, and which of our generated k-mers match the k-mers within the

sequence being analysed. This k-mer tiling method extrapolates the protein sequence into a large

feature space, which we can then cluster, separate, and classify through regression. In DRREP, we

perform this regression step using the Moore-Penrose generalized inverse [72].

DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV,

AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors,

including the most recently published predictors called LBtope and DMNLBE. Using area un-

der ROC curve (AUC), DRREP achieved a performance improvement over the best performing

predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its perfor-

mance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP

and LBtope achieved an AUC of 0.702.
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DRREP is an analytically trained deep neural network, thus capable of learning in a single step

through regression. By combining the features of deep learning, string kernels, and convolutional

networks, the system is able to perform residue-by-residue prediction of continues epitopes with

higher accuracy than the current state of the art predictors.

4.1 A Text Mining Approach Through Random KMer Generation

Majority of the published epitope classifiers are based on Support Vector Machines [106], Neural

Networks trained through backpropogation [14, 66], Naive Bayes Classifiers [25], and Propensity

Scales [30]. A very limited number of the more obscure methods have also been explored, such

as Ant Colony Optimization [23], for example. In the last decade a number of new and innovative

classification and regression algorithms have been demonstrated and published, the most promising

of which falls into the category of Deep Learning [35]. These types of systems are only now

starting to be explored in the bioinformatics, and more concretely, the epitope prediction domain.

In this paper we develop a new epitope classification pipeline called Deep Ridge Regressed Epitope

Predictor (DRREP). DRREP is a deep neural network which uses a string mismatch activation

function, and is trained using an analytical method based on ridge regression. Because DRREP

learns using an analytical method in a single step (going through the data only once), the system

learns faster than SVM and other traditional iterative learning methods (exp. those based on error

back-propagation).

4.1.1 Benchmark Datasets And Their Importance

There is a need to standardize epitope prediction benchmarking. Different papers discussing their

predictors tend to use different test datasets. For example, BCPRED/FBCPRED used a short 193
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residue SARS-COV sequence, BepiPred used an HIV dataset composed of 2706 residues, and

BEST predictor used a large SEQ194 dataset, composed of 128180 residues. But the Accuracy and

AUC achieved by a system on one dataset, can not be compared to the accuracy and AUC achieved

by another system on a different dataset. This makes the task of comparing the different epitope

predictors a bit difficult, requiring the re-application of the published predictors on some common

datasets. Thus, we found the most current test datasets used by other state of the art predictors,

and applied our system to those datasets, and when possible (when an epitope prediction server

was available), applied the competing predictor to the test datasets it has not been applied to in its

original paper. This allowed us to compare the AUC of different predictors on multiple datasets,

each with very different epitope densities.

We have chosen to use the following 5 datasets: 1. SARS [24], which is a relatively short (193

residues) sequence, with a high epitope density. 2. HIV [46] dataset on which a number of other

predictors have been tested and reported their AUC on, composed of 2706 residues. 3. SEQ194,

which is a large dataset derived from BciPep, composed of 194 protein sequences, with a total of

128180 residues, and used as a test dataset by numerous predictors [28]. 4. AntiJen [96] used by

BepiPred as a validation dataset. and 5. Pellequer [71], which was used as BepiPred’s training

dataset [51].

The SEQ194, HIV, Pellequer, and AntiJen sequences were all calculated by measuring the cross-

reactivity between the intact protein and the peptide fragments. AntiJen and SEQ194 have ex-

tremely low epitope densities (1.4% and 6.6%, respectively); HIV and Pellequer have an order of

magnitude higher epitope densities (37.1% and 37.6%, respectively); and SARS has the highest

epitope density of the five datasets (63.7%). Thus, together these 5 datasets represent a realistic

test of the classifier that is to be used to search for new epitopes within new protein sequences,

covering a wide spectrum of possible epitope densities.
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We also wanted a relatively common training dataset that has been used by other predictors, and

which did not share any of its epitopes with the test datasets we have selected. We have searched

through the literature and found that the BciPep [80] dataset has been utilized as a training dataset

by a variety of predictors. The BCPred/FBCPred further pointed out some of the weaknesses

within that dataset, producing a variation of it without protein sequence duplicities. A training

dataset based on it was also used by the BEST predictor. Thus, given its common use, it represents

a good training and validation dataset, and was chosen by us to train and validate DRREP on.

4.1.2 Training and Validation Dataset

DRREP was trained on the BCPred’s 80% homology reduced dataset [8], which is itself a refined,

homology reduced BciPep dataset [80]. The BCPred group based their dataset on the BciPep’s

shared 1230 unique linear B-Cell epitope dataset, by only keeping the 80% homology reduced

subset. Afterwards, any epitope present in the subset that had a length less than 20 amino-acids,

was extended/buffered on both sides by random anti-gen sequences from SwissProt [8]. This

resulted in a new dataset composed of 1230 linear B-Cell epitopes, each of length 20 or greater.

This dataset was further filtered to remove sequences that due to the buffering became too similar.

The final dataset was composed of 701, 80% homology reduced sequences, each composed of 20

residues. For this 701 epitope sequence based dataset, non-epitope peptides were then generated

by randomly extracting non-eptipe sequences from the SwissProt database, with the final dataset

composed of 701 epitopes and 701 non-epitopes.

Finally, from this base dataset, the BCPred/FBCPred group generated 10 final datasets, composed

of sequence sizes: 12, 14, 16, 18, 20, 22, 24, 26, 28, 30. To create the 22, 24, 26, 28, and 30

residue sized epitopes, the 20 residue sized epitopes and non-epitopes were extended on both ends.

To create the 12, 14, 16, and 18 residue sized datasets, the 20 residue sized epitopes were truncated
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on both ends. By creating these 10 different sized sequence length based dataset variations, the

BCPred/FBCPred group was hoping to see how classification accuracy of a system changes when

one changes the sliding window length. BCPred/FBCPred group made the original non homology

reduced dataset, and the 10 derived datasets, available online at [110]. Because our system is also

based on a sliding window method, and thus requires finding an optimal sliding window, we chose

to train it using these 10 datasets.

4.1.3 Benchmark Measures

Our system can be applied to residue chains of any length by utilizing a sliding window approach

that moves forward one residue at a time along the chain. Once it reaches the end of the entire

protein sequence, it provides a score for each residue. Thus, benchmark measurements, accuracy,

and AUC, are more fine grained and are based on the correctly predicted epitope residues, rather

than correctly predicted epitopes. Those predicted residues which all fall into a single continu-

ous sequence, are considered by DRREP to form a single continuous epitope. This classification

approach allows DRREP to provide smoother decision boundaries and classify variable length ep-

tiope and non-epitope sub-sequences within some large sequence to which it is applied, as opposed

to providing scores for fixed length blocks of residues. Accuracy, Sensitivity, and Specificity, are

calculated as follows:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP )

Accuracy = (TP + TN)/(TP + FP + TN + FN)

where TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative), are

residue based. The Receiver Operating Characteristic (ROC) plot is True Positive Rate (Sensi-
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tivity) vs. False Positive Rate (1-Specificity), with AUC calculated as the area under the ROC

curve. AUC has been demonstrated to be highly correlated with the general performance of a clas-

sifier, with a higher AUC being correlated with a classifier capable of high sensitivity, specificity,

and accuracy.

4.2 Deep Ridge Regressed Epitope Predictor

The Deep Ridge Regressed Epitope Predictor (DRREP) is a deep neural network composed of 5

hidden layers, but only a single learning layer. The first layer is a randomly generated array of k-

mers, used to perform feature extraction using basic string mismatch functions, with the mismatch

number set to 0. Because the activation function just counts and outputs how many times a partic-

ular k-mer occurs in the input string, it can also be considered to be using a bagging method intro-

duced by Leo Breiman [13]. But because each k-mer is slid across the entire input sequence, with

the second neural layer performing a pooling computation, the first layer can also be considered

as performing a convolutionary computation. The second layer is composed neurons which form

a normalization pooling layer. The third is a layer of linear neurons, whose weights are set analyt-

ically using a simplified ridge regression algorithm [36]. The hidden weights of the linear neural

layer are analytically computed using a matrix inverse, in our case, the Moore-Penrose generalized

inverse, a method also used in a number of other machine learning algorithms [40, 81, 112, 4].

This is followed by a fourth scaled average pooling layer, and then a final fifth thresholding layer.

This final fifth layer is composed of a single threshold neuron whose synaptic weights are deduced

by DRREP using the validation scores of the sub-networks it is composed of, acquired during

the training process. These validation scores are used to weigh the sub-network contributions to

the final classification score. In essence, making the DRREP function as a type of ensemble of

sub-networks.
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In the following subsections we discuss the Moore-Penrose generalized inverse calculated synaptic

weights, followed by a pseudo-code and a detailed discussion of the entire DRREP pipeline.

4.2.1 Calculating Synaptic Weights Analytically

DRREP can be applied to a continues sequence of any length, producing a score for each residue.

The way DRREP does this internally is by using its sliding window to cut the long sequence into

sub-sequences, score each subsequence, and then recompose the sub-sequences, averaging out

the prediction for each subsequence such that the resulting longer sequence has a score for each

residue. Thus, DRREP has a long sequence as input, and then it internally cuts it down to create

a dataset of Y columns and X rows, where Y is the length of the sliding window used (chosen by

the researcher during the training phase), X = Tot Residues−SlidingWindowLength+1, and

Tot Residues is the total number of residues in the original long input sequence.

Each of these sliding window sized sub-sequences is passed through the first string function based

layer and the second norm-pooling layer. The second layer outputs a matrix: H, which then acts as

an input matrix to the third linear neural layer containing the synaptic weight matrix: β. During the

training phase, the input data is labelled, and is usually composed of a dataset of sliding window

sized sub-sequences, each of which is either an epitope or a non-epitope. Thus, we expect for the

hidden linear neural layer to produce the expected training output (labels/classes) matrix: E, based

on the available labelled input and β. We can calculate β by solving:

Hβ = E

where matrix E is composed of target labels, or in our case, epitope and non-epitope classes, and

matrix H is composed of the output vectors of the 2nd pooling neural layer which is based on
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the output of the first string function neural layer that processed the labelled input vectors. The

optimal weight matrix of the linear hidden neural layer, β, is then computed through the use of

Moore-Penrose generalized inverse, all in a single step, as follows:

β = H†E

where H† is the Moore-Penrose generalized inverse of matrix H.

Because the string function based first hidden neural layer which performs the extrapolation of the

input data into the feature space, is randomly generated, and because regression is performed using

the Moore-Penrose generalized inverse, the algorithm is fast, and is used here akin to the way it

is used in [39]. Because there is no pre-training, or long phases of iterative training as is done in

the more standard approaches based on gradient descent, it opens doors to potentially training the

system on big data.

4.3 Training, Validation, and DRREP Construction

DRREP is a 5 layer deep neural network based on a parallel stack of independently trained 3

layer based sub-networks, each with a single learning layer, a randomly generated string (k-mer)

based activation function first hidden layer, and a pooling transformational layer, as shown in Fig-

4.1. Training is done in multiple phases. First, N number of 3 layer neural networks, called

Sub DRREPs, are generated and trained independently (each such Sub DRREP network is com-

posed of the DRREP’s first 3 layers). The N networks are then stacked in parallel, with each

network’s output aggregated, and then normalized by the norm-pooling 4th layer. The normalized

signals are then passed on to the threshold neuron in the 5th layer.
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Figure 4.1: DRREP Architecture DRREP is composed of N Sub DRREPs. Each Sub DRREP’s
first layer, L1, is composed of S neurons, each of which is made out of a randomly generated k-
mer based mismatch function. The second layer, L2, is composed of S nodes, with the entire layer
performing normalization of the L1’s signals. Layer L3, is the learning linear neural layer, whose
synaptic weights are calculated using the Moore-Penrose generalized inverse. All N Sub DRREPs
are stacked in parallel. The L4 is a norm-pooling layer, composed of N nodes, which normalizes
the signals from each Sub DRREP. The next layer, L5, is composed of a single thresholding neu-
ron, which weighs each contribution from the Sub DRREPs based on that Sub DRREP’s relative
validation score, and passes this value through the threshold to output the final score for the input
sliding window.

The way this is performed, is by putting these sub-networks in parallel, to form a single, wider,

deep network. Then the fourth layer is added, which normalizes and pools the outputs from these

sub-networks. The fifth layer is composed of a single thresholding neuron. The scaling factor for
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each sub-network is based on its relative validation AUC score, which act as weights for the single

thresholding neuron in the final 5th layer, which decides whether the input vector belongs to an

epitope. The DRREP pipeline is shown in Fig-4.2.

Figure 4.2: DRREP Training Pipeline DRREP composition and training pipeline.

The Sub DRREP networks can be trained on input sliding windows of different sizes Y . We have

explored sliding window sizes: 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30. Though DRREP can be

composed of Sub DRREPs of different sized sliding windows, in this paper we have explored

composing DRREP where all Sub DRREP networks use the same sized sliding windows. We

have explored different values for Y , and different values for the parameter N (total number of
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Sub-DRREPs), and settled on Y = 24 and N = 20, which resulted in the best validation score,

and a DRREP that was fast to train.

DRREP makes its predictions purely based on the amino acid sequence. The first hidden layer in

each Sub DRREP is composed of a random number S of basic mismatch activation functions, each

of which uses a randomly generated k-mer whose size ranges between 1 and the size of the sliding

window Y . Based on our experiments, a string mismatch activation function which allows for

0 mismatches, produces the best results. Thus, each neuron using the basic mismatch activation

function in the first layer counts the number of times its k-mer occurred in the sequence of the

sliding window.

This allows the second normalization layer to calculate the proportions of various types of k-

mers occurring within the window. Our intuition is that there are numerous small k-mers which

are particularly antigenic, but we do not know which ones, or in which order and ratios they

should be to trigger an immune response. Our system generates a large number of random k-mers,

and through regression the system finds the correlation between the ratio and combination of the

presence of these k-mers, and antigenicity.

Through meta-parameter optimization, DRREP was found to perform best (highest Validation

dataset AUC) when for each Sub DRREP, S was randomly chosen between 2 and 4000 (done in 2

bouts with a randomly generated value between 1 and 2000 for each). DRREP’s sliding window

moves through the long input sequence, and for each sliding window, DRREP’s basic mismatch

functions in the first hidden layer output the number of times their k-mer appeared in the window.

The second pooling hidden layer in DRREP normalizes these scalar values, producing a k-mer

ratio vector, and then passes this vector onwards to the 3rd layer. The third layer is the learning

layer, whose synaptic weights are computed in a single step after all the training input vectors

(windows) have been processed by the first 2 layers to produce the matrix H. The synaptic weights
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are computed using the Moore-Penrose generalized inverse, using the provided labels for the train-

ing dataset. This is done for each Sub DRREP independently. Their (Sub DRREPs) outputs are

then passed onwards to layer 4, where they are pooled and normalized (this time, between the

Sub DRREPs, rather than the neurons within each single Sub DRREP as was done in the 2nd hid-

den layer). Finally, the 5th layer is composed of a single threshold neuron with N weights, one for

each Sub DRREP. After the training and validation phases for the entire DRREP are completed,

the synaptic weights for this neuron are set to the validation AUC scores of each Sub DRREP,

so that the voting contribution of each Sub DRREP is based on its performance on the validation

dataset. The neuron calculates its output in the standard linear neuron fashion, through the appli-

cation of the dot product, resulting in the final output score. This output score can then further be

passed through a threshold, so that the output is a classification rather than a score. By default, the

threshold of the neuron is set to the mean score of the entire score sequence that DRREP produces

(made possible by DRREP first calculating all the scores, and then calculating the threshold based

on the mean).

4.3.1 The Pipeline

First a training dataset is 90/10 split into subsets, with 90% of the total dataset used for training,

and 10% set aside to be used for validation. The training dataset is designated by the input dataset

and its expected labels/classes as: (Trn I, Trn Exp) and validation dataset with its labels/classes

as: (V al I, V al Exp). I and Exp postfixes designate Input and Expected (label) matrices of the

dataset. The 3rd hidden layer in each Sub DRREP is composed and trained using the method

shown in Fig-4.3.
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Figure 4.3: Training DRREP The figure presents the algorithm used to train DRREP.

Once DRREP is trained and validated using the provided dataset, it can then be used for epitope

discovery and classification by applying it to protein sequence datasets, as shown in Fig-4.4.

DRREP can be updated with new Sub DRREP networks over time, as new training data becomes

available. This is done by simply stacking the new sub-networks in parallel with the existing sub-

networks within the DRREP pipeline. In a similar fashion, sub-networks can also be removed if

needed (exp. a Sub DRREP is found to contribute negatively to the final prediction).
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Figure 4.4: Loading and Applying DRREP The figure presents the algorithm used to load and
apply DRREP.

DRREP was first optimized with regards to its meta-parameters. We explored multiple sliding

window sizes, and multiple first hidden layer sizes, and optimal number of Sub DRREPs to form

the DRREP. We found that sliding window of size 24, with 20 total Sub DRREPs, each composed

of around 4000 randomly generated string mismatch functions in its first layer, produced the high-

est validation AUC. Once the meta-parameters were optimized based on the best validation AUC

score, the system was then tested by being applied to long continuous protein sequences. DR-

REP was implemented using JuliaLang, a high performance technical computing programming

language. But because DRREP is composed of nearly 80000 first hidden layer neurons, and stored

in human readable XML format, there is roughly a 40 second overhead in loading the system into

memory, which is only done once.
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4.4 Experiment Results

The DRREP pipeline was applied to 5 datasets (SARS, HIV, Pellequer, AntiJen, and SEQ194)

composed of long continuous protein sequences, with the AUC and accuracy at 75% specificity

shown in Table 4.1. In the same table, we also list the AUC scores reported by other epitope

predictors, such as the self reported AUC values of BCPred on the SARS dataset, BepiPred

on the HIV dataset, and multiple systems on the SEQ194 dataset. Where possible, we ran the

server-available predictors on the SARS and HIV datasets, these included the CBTOPE, Epitopia,

ABCPred, LBtope, and DMN-LBE predictors.

CBTOPE and Epitopia servers produced score based outputs, whereas ABCPred produced a list of

index start locations of the predicted 16-sized window based epitopes. This required a conversion

to a single residue score based format, and was performed by using the highest epitope score for

each residue’s location. We have also used the CBTOPE and ABCPred servers to calculate scores

for the HIV dataset. We had difficulty running Epitopia on the longer HIV dataset, as the server

produced run-errors. Also, unfortunately, DMN-LBE server predicts one sequence at a time. Thus,

due to the large number of sequences AntiJen and SEQ194 datasets are composed of, we were only

able to run the smaller SARS, HIV, and Pellequer datasets on the server (doing so manually, one

sequence at a time). For the missing predictors, or where the AUC scores are not listed in the table,

we did not get a response from the authors as to the proper conversion from the output format

produced by their predictor, to the score based format we needed to calculate AUC and accuracies,

or the server for that predictor was not available. Nevertheless, we applied DRREP to every dataset

(without retraining), so that it could be compared to every system which was originally tested on

it.

49



Table 4.1: Accuracy and AUC results of applying DRREP to long protein sequence datasets, and
the AUC results of other epitope predictors.

DataSet Tot Residues Epitope% System 75spec AUC
SARS 193 63.3 DRREP 86.0 0.862

BCPred 80.3
ABCPred 67.9 0.648
Epitopia 67.2 0.644
CBTOPE 75.6 0.602
LBtope 65.8 0.758

DMN-LBE 59.1 0.561
HIV 2706 37.1 DRREP 61.4 0.683

BepiPred 0.60
ABCPred 61.2 0.55
CBTOPE 60.4 0.506
LBtope 61.2 0.627

DMN-LBE 63.6 0.63
Pellequer 2541 37.6 DRREP 62.7 0.629

LBtope 60.9 0.62
DMN-LBE 62.8 0.61

AntiJen 66319 1.4 DRREP 73.0 0.702
LBtope 74.2 0.702

DMN-LBE
SEQ194 128180 6.6 DRREP 75.9 0.732

Epitopia 0.59
BEST10 0.57
BEST16 0.57
ABCPred 0.55
CBTOPE 0.52
COBEpro 0.55

LBtope 73 0.57
DMN-LBE

Fig-4.5 demonstrates the type of output DRREP provides when using the classification thresh-

old, rather than simply outputting a list of residue scores. The figure shows the SARS sequence,

with the line (True) showing the actual epitope locations, line (DRREP) shows DRREP’s epitope

predictions when using a 75% specificity threshold, line (BCPred) designates BCPred’s predicted
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epitopes, line (ABCPred) designates ABCPred’s predicted epitopes, and similarly for EPitopia,

CBTOPE, and finally LBtope. The true epitope locations are coloured green, and for each predic-

tor, the incorrect predictions are coloured in red, and the correct are coloured blue.

4.4.1 Discussion

When applied to the SARS sequence, DRREP achieved an AUC of 0.862, and an accuracy of

86.0% at specificity set to 0.75. BCPred reported an accuracy of 80.3% at the same specificity. We

also used the ABCPred, Epitopia, CBTOPE, LBtope, and DMN-LBE servers to generate predic-

tions for the SARS sequence. Their resulting AUCs were 0.648, 0.644, 0.602, 0.758, and 0.561

respectively. Their accuracies calculated at a specificity set to 0.75 are also listed in the table.

DRREP achieved a higher accuracy and AUC than all competing predictors on this sequence. This

is an improvement in accuracy of 5.7% over BCPred, and an AUC improvement over the best per-

forming predictor on that dataset (LBtope here, because BCPred did not report it’s AUC for this

sequence) of over 13.7%.

Furthermore, from Fig-4.4 we can see that DRREP predicted correctly a larger number of residues

than other predictors. But, DRREP classified the four sub-sequences as all belonging to a single

epitope. This could potentially be alleviated by adding a post-processing filter which calculates

not just a score, but changes in a score as well. We base this hypothesis on the fact that we ob-

served a number of cases where the score transitioned significantly between continuous sequences

of epitope and non-epitope sequences, yet still held above the epitope threshold for both cases.

Based on this observation, perhaps the system could be further improved by taking into account

radical score transitions. This methodology is planned to be explored in our future research. From

all the test datasets on which LBtope was tested, it performed the worst on SARS. For the tests

performed, the version of LBtope used was based on the one trained on a fixed 20 residue win-
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dow based dataset, which was used in the original LBtope publication. When using this version,

the server does not predict the last residue, hence it was designated with an asterisk. An LBtope

trained on flexible window based original dataset was also tested on SARS, because that version

does predict the last residue, but it performed much worse than the version shown, and thus was

not included. The Epitopia server also did not provide the classification for the 193rd residue in

the SARS sequence. Another interesting anomaly in residue prediction results was produced by

ABCPred. ABCPred server gives a score for 16 residue slices, with a default epitope score thresh-

old set to 0.5. Based on this, ABCPred classified numerous such 16 residue slices as epitopes, and

when combined together, this included all but the first two residues in the SARS sequence.

When applied to the HIV dataset, DRREP produced an AUC of 0.683. We can compare it to

LBtope and DMN-LBE, which were also tested on the HIV dataset, their AUCs were 0.627 and

0.63 respectively. We ran ABCPred, BepiPred, and CBTOPE servers on the same dataset, and their

resulting AUCs were 0.60, 0.55 and 0.506, respectively. Thus, DRREP achieves an AUC higher

by 0.053 than the best predictor in the list (DMN-LBE), an improvement of 8.4%. Interestingly, at

75% specificity DMN-LBE had a higher accuracy.

BepiPred was trained on the Pellequer dataset, and was thus disqualified from being compared on

it. We had a difficult time running this dataset on multiple predictor servers, and neither could we

find their performance on this particular dataset within published literature. The only server we

were able to run on the dataset was LBtope, which achieved an AUC of 0.62, which is 3.2% lower

than DRREP’s AUC of 0.629. On Pellequer DMN-LBe, though having a lower AUC score, at 75%

specificy achieved an accuracy of 62.8%, which was .1% higher than DRREP.

AntiJen is a dataset much larger than HIV and Pellequer, and thus we could not get it to run on

some of the listed predictor servers, nor find their published performance on this dataset. The only

server that allowed us to run such a large dataset was LBtope. DRREP and LBtope tied on this
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dataset with an AUC of 0.702. LBtope did achieve a 1.2% higher accuracy at 75% specificity.

DRREP achieved an AUC of 0.732 on the SEQ194 dataset, which we compared to Epitopia,

ABCPred, CBTOPE, and COBEpro, whose AUCs on this dataset were acquired from [77], and

BEST10/16 system whose AUC is listed in [28]. This dataset was also ran on the LBtope server,

which achieved an AUC of 0.71 when calculating per window, and 0.57 when calculating per

residue by averaging the window scores. DRREP achieved an AUC performance improvement of

5.6% over the best performing predictor (LBtope). It should be noted that the dataset SEQ194

is the most recently published of all datasets, with the largest number of long, FASTA encoded

sequences. Furthermore, LBtope was ran using the LBtope Fixed non redundant (non redundant

dataset) version, which was the one reported in their most recent paper, and we considered to be

the best performer of the versions available.

Thus, DRREP achieved a higher AUC performance on 4 of 5 datasets than all other predictors, and

particularly the state of the art LBtope and DMN-LBE predictors. DRREP tied with the LBtope

on the remaining fifth dataset, the AntiJen dataset. And though DMN-LBE achieved a higher

accuracy at 75% specificity on the HIV dataset, and parity on Pellequer, it will not be possible to

know the 75% specificity threshold when the systems are applied to new and unknown sequences,

thus AUC is still the best indicator of system’s general performance. These results demonstrate

DRREP’s markedly higher general performance.

4.5 Conclusion

In this chapter we have presented a novel deep network based classifier using a string activation

function based first layer, multiple non-linear transformational pooling layers, and a single learn-

ing layer. The learning layer synaptic weights are calculated analytically using the Moore-Penrose
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generalized inverse, making the training phase faster than that of SVM, and standard gradient de-

scent based models. When DRREP was applied to the SARS sequence, the achieved classification

accuracy at 75% specificity was 86.0%, which is 5.7% higher than the BCPred/FBCPred, it’s AUC

was higher by over 13.7% than that of LBtope on the same sequence. When applied to the HIV,

Pellequer, and SEQ194 datasets, DRREP achieved an AUC performance improvement of 8.4%,

3.2%, and 5.6% respectively, over the best performing predictors in the list, which were the most

recently published DMN-LBE and LBtope predictors. The only dataset on which DRREP did not

achieve a performance improvement was the AntiJen dataset, on which both DRREP and LBtope

achieved the same AUC score. We believe that these results represent a substantial and highly

regular and stable improvement over the current state of the art.

DRREP is a promising new method. Its generalization capabilities are stable across all tested

datasets, with different levels of epitope densities. We plan to further improve DRREP’s perfor-

mance by incorporating new advancements within the deep learning domain, by further exploring

convolutional layering, local receptive field layering, and other types of topologies and pooling

paradigms. We also plan to further explore the effect of training dataset refinement on the system’s

performance. The DRREP system [84] and its datasets [85], are freely available on the GitHub

server, and can be downloaded from the referenced URLs.
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Figure 4.5: Predicting Epitopes in SARS SARS sequence (SEQ), true epitope locations (True),
DRREP’s predicted epitopes (DRREP), BCPred’s predicted epitopes (BCPred), ABCPred’s pre-
dicted epitopes (ABCPred), EPitopia’s predicted epitiopes (Epitopia), CBTOPE’s predicted epi-
topes (CBTOPE), and LBtope’s predicted epitopes (LBTope). The incorrect predictions are col-
ored in red, the correct are colored in blue, and the true epitope locations are colored green.
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CHAPTER 5: SEEP: CONJOINT TRIAD FEATURE BASED EPITOPE

PREDICTOR

Epitopes are part of an antigen relevant for recognition by immune molecules. The domain of epi-

tope prediction is intertwined with that of protein-protein interaction (PPI). Most of the tools built

for epitope prediction are not taking advantage of the vast amounts of domain specific knowledge

discovered within the PPI sector. In this paper we present a system which leverages the domain

specific knowledge acquired within the PPI research domain, and apply it to the prediction of B-

Cell linear epitopes. We demonstrate how the Conjoint Triad Feature introduced in 2007 within the

PPI sector, is just as useful within the epitope prediction domain. We developed an SVM Ensemble

Epitope Predictor (SEEP), based on the Conjoint Triad Feature (CTF) encoding, and demonstrate

its substantial performance improvement over the current state of the art. SEEP accepts a protein

sequence, recodes it into CTF ratio vectors, and then produces a score for each residue in the se-

quence through a consensus of SVM predictors. SEEP achieved an AUC of 0.912 on the standard

SEQ194 test dataset, an improvement of 24% over the current state of the art. Furthermore, we

applied the system to the Zika virus, showing that the system is capable of recognizing the cur-

rently known linear B-Cell epitopes, and pointing us towards new epitope locations which should

be further investigated experimentally.

5.1 Improved Data Represetation Through Domain Knowledge

Though 90% of all epitopes are conformational [98], the tools which perform conformational epi-

tope prediction are usually two-stage systems, which first predict linear epitope sequences, and

then using a second clustering stage deduce which of the amino acid subsequences belong together

to form a single conformational epitope. Thus, linear epitope prediction is at the core of both, lin-
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ear and conformational epitope prediction tools. For this reason, we developed SEEP to be a linear

epitope predictor, with potential extensions of using it in future conformational epitope prediction

pipelines.

It is well accepted that Sequence specifies structure [5], thus it should theoretically be possible to

predict protein interaction, and by extension epitope prediction, from the protein sequence alone.

And though having more information about the 3D structure might provide some advantages, as of

this writing, there is still substantially more accurate sequence based data than there is 3D. Thus,

because we expect that most of the structure is indeed specified by the sequence, and because there

is so much more of curated protein sequence information than 3D, an accurate and fast sequence

based epitope predictor is of great use.

5.1.1 Domain Specific Knowledge In Data Representation

As of this writing, majority of the existing epitope predictors use only the protein sequence as

input. Numerous machine learning approaches and protein sequence representations have been

explored over the past decade. Some of the first such systems were primarily reliant on propensity

scales [57, 37], but the predictive results were only slightly better than random [12]. Starting

in 2006, papers which leveraged machine learning began to surface, starting with ABCpred [79]

which utilized a backpropagation feed-forward neural network (FFNN). Other approaches were

being explored shortly thereafter, ranging from Hidden Markov Models (HMM) [10] and Naive-

Bayes methods [105], to Support Vector Machines (SVM) [17, 105, 25, 113, 16], and now even

deep learning [109].

Currently, most of the methods within the epitope prediction domain are based on support vector

machines. Some methods apply SVMs to protein sequences represented by propensity scale based

vectors, such as the LEP-LP [16] predictor for example. Other methods have also began to utilize
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research ideas from the text mining community [55, 56]. In 2010 BCPred [25] was published,

which uses string kernels. A year later FBCPred [113] was released, which predicts variable

length epitopes. The reason such a large number of modern epitope prediction systems use SVMs

is not a coincidence. Rather, it is because of this method’s excellent ability to generalize well when

learning on datasets smaller (keeping all other things equal) than those needed by neural network

or genetic algorithm based approaches. At the same time, SVMs have shown to also generalize

well when dealing with high dimensional input, through an easily tunable regularization parameter.

All of these issues are being faced within the epitope prediction problem, due to the type of data

being analysed. One of the main issues we are facing, as was noted by Singh et al. [90], is that the

amount of curated and highly accurate data is small (even though there is a lot of published data),

while the methods we use to encode protein sequences, in many cases result in a high dimensional

representation.

During the same time frame, researchers working on Protein-Protein Interaction (PPI) mapping,

have also been concentrating on finding useful ways to represent protein sequences. Similarly

to the epitope prediction community, the PPI research community also came to the conclusion

that there is substantially more sequence rather than 3D based data, and an amino acid based PPI

predictor would be of great utility [83, 15, 107]. Thus, both research communities have been

battling very similar problems, and working on very similar data types, data representation, and

prediction problems.

Though the binding of paratopes to epitopes does partially fall under the category of Protein-

Protein Interaction (PPI), until now none of the noted epitope prediction systems have taken ad-

vantage of the vast amounts of knowledge that has been acquired within the PPI research with

regards to sequence representation. Majority of the PPI predictors are mainly based on protein

sequences. Almost all current PPI predictors [83, 15, 107, 31, 103, 111] make use of the Conjoint-

Triad Feature (CTF) at some point in their prediction pipeline. CTF was developed and published
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back in 2007 by Shen et al, and has been used by almost all PPI predictors ever since.

CTF groups the amino acids based on their biochemical properties. CTF forms seven amino acid

clusters based on the dipoles and side chain volumes of the residues. The encoding further has

the property of suiting synonymous mutation, and abstracting the features of protein pairs. The 7

groups made for the 20 amino acids are shown in Table 5.1.

Table 5.1: Conjoint Triad Feature grouping. Each group contains amino acids which share
similar dipoles and side chain volume properties.

Group Amino Acid Group
1 Ala, Gly, Val
2 Ile, Leu, Phe, Pro
3 Tyr, Met, Thr, Ser
4 His, Asn, Gln, Trp
5 Arg, Lys
5 Asp, Glu
7 Cys

There are a total of 343 (7x7x7) trimer combinations when using these 7 groups. The way SEEP

encodes the protein sequence, discussed in greater detail within the methods section, is by con-

verting it into a ratio vector of these trimers. This means that each sequence presented to the

machine learning system has a dimensionality of 343. Furthermore, by using triads, the encoding

also incorporates some local information, and amino acid ordering.

In our previous work [88], the DRREP pipeline utilized a string kernel, which virtually reduced

each neuron in the first layer of the neural network to a single input rectifier. This worked well

with the learning algorithm used, but unfortunately, the same learning algorithm tends to require

a large dataset to train on, as the dimensionality of the input vector increases, otherwise it over-

trains. Comparatively, SVM approaches have demonstrated higher generalization capabilities [20,

104, 60] when the amount of data is sparse yet dimensionality of the input is relatively high. Thus,
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due to the type of data and encoding we utilize, we chose to use SVM as part of our prediction

pipeline.

We leverage the domain knowledge acquired within the PPI field, the now well tested and highly

utilized CTF encoding, and the data Pre and Post processing method we developed in our previous

work [88], further modified by our min-pooling consensus algorithm here, to create an SVM En-

semble based Epitope Predictor (SEEP). This new sequence based epitope predictor has achieved

an AUC of 0.912 on the large SEQ194 test dataset [28], on which all other most recently published

state of the art epitope predictors, such as LBTOPE [90], BEST [28], and our previously published

system called DRREP, achieve a maximum AUC of 0.732.

Furthermore, we have applied SEEP to the Zika virus, and have demonstrated that our system does

see the overlapping epitope sequences published on IEDB, and show where else on the polyprotein

sequence our system predicts a high probability of containing epitopes. Finally, we have made

SEEP freely available [86], which accepts FASTA encoded files, providing both: a per residue

score, and a list of continuous linear epitopes.

5.2 The Committee Based Multi-Resolution CTF Encoding Approach

SEEP leverages the domain specific knowledge derived CTF encoding, a pre and post processing

method we introduced in our previous works to calculate per-residue prediction, a consensus algo-

rithm to improve the system’s committee performance, a curated and tested training dataset, and

a committee of multi-resolution predictor systems based on SVM, which was chosen due to its

generalization ability when used with a small training dataset relative to the dimensionality of the

input.
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5.2.1 Datasets

SEEP was trained on the BCPred training dataset, which itself was based on the Bcipep [80]

database. It contains 1230 unique linear B-Cell epitopes, from which an 80% homology reduced

set of 701 positive and 701 negative peptides were extracted. Furthermore, the epitopes longer

than X residues were truncated equally from both sides, and those shorter than X residues were

extended based on their corresponding full antigen sequences retrieved from SwissProt [8]. X was

set to 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, to produce a total of 10 datasets. This was done

to explore which slice size produces the best results. In our case, to create an ensemble of multi-

resolution trained predictors, a predictor was trained on each slice size based dataset, and then a

committee was formed using the top 60% of the predictors (the percentage was derived during the

optimization phase). Ensemble systems [21] have been demonstrated to produce superior perfor-

mance as compared to singular predictors in numerous applications. We too have found that for

this application, an ensemble performs better than any individual member forming it.

We used the HIV [46] dataset for validation. This dataset is composed of a total of 2706 residues,

with an epitope density of 37.1%. The sequence was generated by measuring the cross-reactivity

between the intact protein and the peptide fragments.

SEEP was tested on the SEQ194 dataset. SEQ194 is a low epitope density dataset, containing only

6.6% of epitopes. Given the low epitope density in standard protein sequences, this test dataset is

a good indicator of how the system will perform in general. SEQ194 contains a total of 128245

residues, and has been used as the test dataset for all recently published state of the art B-Cell

epitope predictors (BEST, LBTope, MN-LBE, and DRREP). The SEEP system was compared to

these and other predictors on this dataset to demonstrate its relative performance.

Finally, we also ran SEEP on the ZIKA virus polyprotein, Acc. ALU33341.1. IEDB lists 7 contin-
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uous B-Cell epitopes, each with a single reference and based on 2 or more assays. All 7 epitopes

were overlapping, together spanning the sequence: IAPAYSIRCIGVSNRDFV.

5.2.2 Benchmark Measurements

The benchmark measurements, AUC, Accuracy, Sensitivity and Specificity, are all per-residue

based. SEEP calculates an epitope score for each residue rather than for a window of some size

N. This is done by the post-processing method that is part of the SEEP pipeline, and allows for

the system to mark variable length epitopes rather than provide guesses whether there is or not an

epitope within some fixed sized window. The measurements are calculated as follows:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP )

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Where, TP is True Positive, FP is False Positive, TN is True Negative, FN is False Negative,

and are calculated per residue. The Receiver Operating Characteristic (ROC) curve is calculated by

plotting True Positive Rate (Sensitivity) vs. False Positive Rate (1-Specificity). AUC is calculated

as the area under ROC curve. We use AUC as the main benchmark of the system’s performance

because it has been shown to be highly correlated with the performance of a classification system,

and is the standard benchmark measurement used by all other predictors.

5.2.3 SEEP Pipeline

SEEP accepts as input a protein sequence, and outputs a sequence of scores, a vector with a score

for each residue within the input sequence. The scores are between 1 (most likely belongs to an

epitope) and -1 (least likely to belong to an epitope). Internally each member of the committee

within SEEP slices the sequence into subsequences of length N, where N is specific to each par-
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ticular SVM member, and depends on the resolution it was trained on. Afterwards, each residue

within the slice is re-encoded into the 7 groups presented in Table 5.1. Finally, based on these 7-

group based vectors, the system calculates the CTF ratio for each slice, and these CTF ratio vectors

are then used as input to the committee members. The process is separated into the following 7

steps, and summarized in Figure 5.1:

Figure 5.1: SEEP Member The architecture of the SEEP committee member, with its pre and post
processing.

Step-1 Cut the amino acid sequence of length N into an array of N −K + 1 slices, each of length

K, by scanning the sliding window along the protein sequence.

Step-2 For each slice, map the residues into their respective classes. As per the CTF descriptor,

the 20 amino acid types are clustered into the groups: G1 = {A,G, V }, G2 = {I, L, F, P}, G3 =

{Y,M, T, S}, G4 = {H,N,Q,W}, G5 = {R,K}, G6 = {D,E}, and G7 = {C}. Every residue

Pi is mapped to its respective group G.

Step-3 The conjoint triad is composed of 3 continuous groups. There are a total of 343 (7x7x7)

trimer permutations. We count the occurrence number of each trimer within the slice, and then
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divide each occurrence value by the length of the slice to produce a trimer ratio vector with a di-

mension of 343.

Step-4 Each trimer ratio vector is then sent to SVM for classification.

Step-5 The SVM predicts a score for each trimer ratio vector.

Step-6 Because each score vector spans a slice, spanning score vectors are re-arranged under their

respective sequence positions.

Step-7 Each residue is given a score which is the average of the scores whose spans cover it.

Each member of the SVM committee calculates a score for each window, which are then re-

assembled into a single sequence, averaging the scores between the slices, as shown in Figure

5.2, to produce a single continuous score sequence. The system then calculates a consensus for

each residue between the produced score sequences of the committee members. This is done by

Min-Pooling the votes between all committee member predictions. This final consensus sequence

of scores is then output by the system. To produce a strictly binary output, further threshold can

be used to mark each residue as belonging to an epitope or not. This threshold can be based on the

specificity one wishes the system to operate with.

Max, Mean, and Min pooling have been standard operators within deep learning. A pooling can

be considered as a type of consensus calculation. In deep learning, over time, mean-pooling has

been replaced by max-pooling [82] and min-pooling [26] which have been shown to work better in

practice, for certain problem domains. We have tested different consensus algorithms, and found

that min-pooling outperforms mean-pooling and max-pooling in this application. We argue that

similarly to findings made by Eldar H. et al., in our application too, this particular pooling results

in establishing a ”minimum reliable scale” for the detection of sparsely present signals (epitopes).
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Figure 5.2: SEEP Data-Flow Architecture The data-flow architecture of the entire SEEP system.

5.2.4 Training and Validation

We use 10 different versions of the training dataset, composed of the slice sizes: 12, 14, 16, 18, 20,

22, 24, 26, 28, and 30. The sequences in each version of the dataset are converted into CTF ratio

vectors, and then a different SVM is trained on each dataset separately. We used the SVMLight [43]

package for the SVM predictors composing the members within the SEEP committee machine.

HIV was used as the validation dataset, with the metaparameters for each SVM tuned using grid

search, which found that the best kernel for this particular encoding was Polynomial, with all

parameters set to default, and C set to 32.

We leverage the 10 different ”resolution” versions of the dataset for training, such that the final

committee is based on members trained on different sliding window sizes. Our intuition is based

on these different resolutions will pick up and better suited for different length epitopes. Using a

pooling method, we can then optimize the final classification, based on the cumulative prediction
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of the individual multi-resolution members.

Once all the SVM systems were trained, we further chose only the top 60% of the members, from

which a committee was formed. This was done due to a large drop in validation performance

for predictors which used slice sizes of length lower than 20. This resulted in a final committee

composed of 6 SVMs, with window sizes 20, 22, 24, 26, 28 and 30. The training pipeline is shown

in Figure 5.3.

Figure 5.3: SEEP training pipeline. Demonstrates the training procedure of the SVM Ensemble
Epitope Predictor system which uses the BciPep training dataset, and the HIV validation dataset.
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5.3 Greatly Improved Prediction Results

SEEP was tested on the SEQ194 dataset, which has been used as the test dataset by all latest

epitope predictors such as BEST, LBTope, and DRREP. The AUC results are shown in Table 5.2,

the table also shows accuracy calculated for best specificity and sensitivity pairs. The ROC curves

for the top 3 performing systems in the table: LBTope, DRREP, and SEEP, are shown in Figure

5.4.

Table 5.2: Accuracy and AUC Results of applying SEEP to the SEQ194 test dataset, and the AUC
results of other epitope predictors. SEQ194 contains a total of 194 sequences, 128245 residues,
and has an epitope density of 6.6.

Method Max(Spec*Sens) Accuracy @ Max AUC
DRREP (70.8, 64.5) 70.4 0.73
Epitopia 0.59
BEST10 0.57
BEST16 0.57
ABCPred 0.55
CBTOPE 0.52
COBEpro 0.55
LBTope (50.3, 59.0) 58.6 0.57
SEEP (82.6,89.3) 82.9 0.912

The maxmum specificity*sensitivity pairs, and accuracy of the method at this specificity and
sensitivity pair, are only shown for the top 3 systems. The structure based predictor Epitopia
results were obtained from [77]. DMN-LBE results are not presented due to the server no longer
being available. BEST10 and BEST16 were reported in [28]. LBtope results were acquired by
running the SEQ194 dataset on the LBTope server [91] specified as ”trained on the original
dataset”.
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Figure 5.4: SEQ194 ROC curve results. SEQ194 ROC curves for SEEP and two competing
top predictors (LBtope and DRREP). For SEEP, the maximum(Sensitivity*Specificity) occurs at
threshold set to 0.083, with sensitivity of 89.3%, specificity of 82.6%, and resulting in an accuracy
of 82.9%.

To demonstrate the higher performance of the consensus prediction compared to any single mem-

ber, we plot the AUC of each individual member, and that of the committee. The ROC curves of

each individual and the committee as a whole are shown in Figure 5.5. The graph shows a clear

difference in performance between the committee members, and the committee as a whole.
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Figure 5.5: Performance improvement through min-pooling consensus. ROC curves for each
member of the consensus committee composing SEEP, and the improved ROC curve for the SEEP
as a whole, produced by using a consensus of the committee members to make its prediction.

Finally, we applied SEEP to the Zika Virus polyprotein, Acc. ALU33341.1. As of this writing, there

are a total of 7 linear epitopes specified in IEDB, all of which overlap to produce a single sequence:

IAPAYSIRCIGVSNRDFV. We applied SEEP to the entire Zika Virus polyprotein sequence, and it

predicted numerous epitopes (scores greater than the mean-score threshold), amongst which was a

sequence that covered most of the overlapping sub-sequences, as follows:

IAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVTVMAQ Sequence

.......EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SEEP

EEEEEEEEEEEEEEEEEE........................ IEDB

Results of SEEP applied to Zika virus polyprotein Acc. ALU33341.1 are available from our github

repository [87]. The score vector, and the position of the various tracks corresponding to the

protein sequence, is presented in Figure 5.6.
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Figure 5.6: Zika Virus polyprotein and SEEP’s predicted epitopes. Predicted epitopes for Zika
Virus Polyprotein Acc. ALU33341.1. Presented in the graph are positive scores, the NCBI listed
tracks, and the horizontal line representing our suggested optimal threshold of 0.083. Only positive
scores are shown.

5.3.1 Discussion

Table 5.2 demonstrates that SEEP drastically outperforms other systems on the SEQ194 dataset. At

the same time, due to it’s reliance on the highly optimized SVMLight package, the system is fast,

and it linearly scales with the size of the input sequence. SEEP achieves an AUC of 0.912 on the

test dataset, which is .34 higher than LBTope server produced results and .14 higher than DRREP.

This is a 24% improvement over the current state of the art. SEEP achieves an accuracy of 82.9% at

82.6% specificity and 89.3% sensitivity, which is the system’s optimal specificity/sensitivity pair,
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achieved at a cutoff prediction threshold of 0.083.

In Figure 5.4 we show the ROC curves for LBTope, DRREP, and SEEP. We want to note that the

presented LBTope ROC curve was created based on the per residue classification, using the score

results from the LBTope server [91], when feeding it the SEQ194 FASTA file and averaging out

the window scores to produce per residue rather than per window scores. When averaging the

20 residue sized window scores from the LBTope prediction server, the achieved AUC was 0.57.

SEEP greatly outperforms both, DRREP and LBTope on the SEQ194 dataset.

Figure 5.5 demonstrates the advantage of the multi-dimensional ensemble architecture of the SEEP

system. Here we present the ROC curves for separate members of the ensemble, and then the

performance of the consensus based ensemble system as a whole. We can see that as a committee,

the individual predictors compensate each other’s errors, resulting in a higher performance when

working together. At the same time, it should be noted that the SVM member AUCs range from

0.86 to 0.88, which demonstrates that it is the CTF trimer ratio based encoding that is the main

factor in improving the predictive performance of SEEP over other systems.

The scoring patterns plotted in Figure 5.6 shows 2 sequences which contain a single epitope each,

and 2 sequences which contain two epitopes each. The epitope locations predicted by SEEP, clearly

align with the expected location of the epitopes. It is also interesting to note that in graph d), we

can see the local minima located at the place where the separation between the two epitopes is

present. Thus, when choosing high specificity/threshold, the system has the ability to differentiate

even between two epitopes which are highly proximal.

Finally, we applied SEEP to a Zika Virus polyprotein. There are only a few confirmed lin-

ear B-Cell epitopes that have been discovered and entered into the IEDB database [99]. As of

this writing, there are 7 in total, with Epitope Ids: 569587, 572137, 591614, 591675, 591676,

591677, 591800. All 7 epitopes overlap each other, spanning the sequence: IAPAYSIRCIGVS-
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NRDFV. SEEP predicts an epitope within the same area, but spanning the sequence: RCIGVS-

NRDFVEGMSGGTWVDVVLEHGGCVTVMAQ, using the residue score mean as threshold. The over-

lapping section is shown in boldface. It is difficult to deduce whether the system overestimates the

span of the overlapping epitopes, or whether other epitopes have simply not yet been discovered. In

either case, we see that the system is very useful in marking regions of interest. Figure 5.7 shows a

score graph produced by SEEP for the entire Zika polyprotein. Presented are positive scores, with

the amplitude being proportional to the certainty of the prediction. The horizontal threshold line is

our suggested optimal threshold of 0.083.

Due to the high accuracy of the system, we think that SEEP represents an extremely useful tool.

We have demonstrated on the SEQ194 test dataset the excellent performance of the system. This

is achieved by taking advantage of the domain specific knowledge offered by the CTF based rep-

resentation, a pre and post-processor that converts sliding window prediction into a per-residue

prediction allowing us to make variable length epitope predictions, and a min-pooling consensus

algorithm which allows us to use predictors of different dimensions, and combine their results to

yield an even more accurate classification.

5.4 Concluding Remarks & Potential Future SEEP Extensions Based on PPI Domain

Knowledge

In this chapter we have presented the SVM Ensemble Epitope Predictor called SEEP, which lever-

ages the Conjoint-Triad Feature encoding developed within the PPI domain. We have demonstrated

that when trained on a well curated dataset and validated on the HIV dataset, its performance on

the SEQ194 test dataset achieves an AUC of 0.912, which is 24% higher than the current best

state of the art predictors. The next two best and most recently published sequence based predic-

tors, achieve an AUC of 0.73 (DRREP) and 0.57 (LBTope). We then applied it to the Zika virus
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polyprotein, and demonstrated that the regions the system marks as having a high probability of

containing an epitope, match well with the linear B-Cell epitope locations that have been published

to IEDB. The system further predicts other areas, which have not yet been experimentally verified,

and which we believe to be of great interest, and should be looked into.

We plan to further expand the system, through larger and improved training datasets, and by further

incorporating domain specific knowledge. We believe that by utilizing a more varied ensemble

with regards to dimensionality and training datasets used, by adding local descriptors [111], and

incorporating auto-covariance [31] information, the system can be improved even further. Finally,

we plan on extending the system to the conformational epitope prediction problem, by training a

secondary clustering phase, that will be able to predict which of the subsequences belong together

to form a single conformational epitope.
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CHAPTER 6: CONCLUSION & FUTURE WORK

This dissertation has presented 3 systems which dealt with categorical data, and an approach which

allows us to generate distributed representations of amino acids. Chapter 2 presented a neuroevo-

lutionary system which was applied to the problem of compilation phase ordering. Unlike the stan-

dard pre-set, order-fixed, source code independent optimizations which are applied by the compiler

to the program when using the −O3 flag, we created a method that evolves neural networks ca-

pable of selecting optimizations based on the source code’s features. The evolved NNs were able

to order the optimization phases to produce substantially higher performance. The performance

was based on the speed of the compiled benchmark programs, as compared to the same programs

compiled by LLVM’s −O3 option. Performance gains ranged from 20% to 40%.

Chapter 3 explored the problem of representing biological data like amino acids, in such a way

that the representation encodes useful biochemical and spatial information. The chapter proposed

a system which functions analogously to word embedding and skip-gram, but uses 3D biological

data. We presented some preliminary results, and demonstrated that this approach to distributed

representation has future potential. Furthermore, distributed representations, though being low

dimensional, still had utility. This hints that such 3D BioVectors could also potentially be infor-

mationally high density.

Chapter 4 presented an epitope predictor called DRREP, which is a committee of ridge regressed

classifiers, which with an addition of preprocessing and postprocessing neural layers, formed an

analytically trained deep network. DRREP generates input neurons composed of randomly gener-

ated kmers, and optimizes the total number of input neurons and thus kmers, based on the training

dataset it is applied to. This approach is analogous to using a bag of words, but with the bag

of words being generated randomly, and optimized for particular data and problem domain. The
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system had performance results on the test datasets that were slightly higher than the state of the

art.

Chapter 5 presented a different approach to the problem of encoding and representing protein

sequences, and epitope prediction. In this chapter SEEP was presented. SEEP is an ensemble of

multi-resolution SVMs, a set of pre and post processing methods which allow it to predict variable

length epitopes, and protein encoding which leverages domain specific information. Using a ratio

of trimers based on the Conjoint Triad Features, SEEP produced state of the art performance on

the standard SEQ194 test dataset, 24% higher than the state of the art.

SEEP leveraged the encoding method originally introduced within the PPI research domain. It

demonstrated that when a concise encoding method is used, particularly when it incorporates do-

main specific knowledge and useful biochemical properties, spatial and order based information

provided by using the conjoint traids, high performance can be achieved. This demonstrates the

importance of nominal multi-dimensional representation which incorporates within it, useful do-

main specific information.

For this reason, future work is expected to concentrate on further exploration of the concept of our

3D BioVectors. The preliminary results of 3D Residue BioVectors have demonstrated some poten-

tial, but the performance was limited. This is because the compositional representation and the use

of residues rather than clusters, resulted in very low dimensional distributed representations. Thus,

embedding of information was very limited. We plan to continue exploring this approach, con-

centrating on trimers, which have shown great performance when generated based on the primary

sequence, leading us to expect that 3D BioVectors will be even more useful, and embed higher

quality biochemical and spatial information. We plan on exploring which physical properties, and

which type of target and environment pairs generate better performing distributed representations.

Furthermore, we believe that the same approach that produces 3D BioVectors can be applied to
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produce clusters and grouping of residues, akin to the CTF grouping, but which will be formed

based on the particular dataset and problem domain. We expect that this might produce groupings

specific to problem domains, and thus lead to superior performance. 3D BioVectors open for us an

exciting and interesting new research path.
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