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ABSTRACT  

Several metrics are commonly used to evaluate the performance of display devices. In this 

dissertation, we analyze three key parameters: fast response time, wide color gamut, and high 

contrast ratio, which affect the final perceived image quality. Firstly, we investigate how response 

time affects the motion blur, and then discover the 2-ms rule. With advanced low-viscosity 

materials, new operation modes, and backlight modulation technique, liquid crystal displays 

(LCDs) with an unnoticeable image blur can be realized. Its performance is comparable to an 

impulse-type display, like cathode ray tube (CRT). Next, we propose two novel backlight 

configurations to improve an LCD’s color gamut. One is to use a functional reflective polarizer 

(FRP), acting as a notch filter to block the unwanted light, and the other is to combine FRP with a 

patterned half-wave plate to suppress the crosstalk between blue and green/red lights. In 

experiment, we achieved 97.3% Rec. 2020 in CIE 1976 color space, which is approaching the 

color gamut of a laser projector. Finally, to enhance an LCD’s contrast ratio, we proposed a novel 

device configuration by adding an in-cell polarizer between LC layer and color filter array. The 

CR for a vertically-aligned LCD is improved from 5000:1 to 20,000:1, and the CR for a fringe 

field switching LCD is improved from 2000:1 to over 3000:1. To further enlarge CR to fulfill the 

high dynamic range requirement, a dual-panel LCD system is proposed and the measured contrast 

ratio exceeds 1,000,000:1. Overall speaking, such an innovated LCD exhibits supreme image 

qualities with motion picture response time comparable to CRT, vivid color to laser projector, and 

contrast ratio to OLED. Along with other outstanding features, like high peak brightness, high 

resolution density, long lifetime, and low cost, LCD would continue to maintain its dominance in 

consumer electronics in the foreseeable future.  
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 CHAPTER ONE: INTRODUCTION 

1.1 LCD configuration and working principle 

Thin-film transistor liquid crystal displays (TFT-LCDs) are ubiquitous in our daily life; 

their applications span from smartphones, pads, computer screens, to TVs [1-3]. Unlike other 

display technologies, e.g. cathode ray tube (CRT), plasma display panel (PDP) or organic light-

emitting diode (OLED), LCD is a non-emissive display, thus, a backlight unit (BLU) is mostly 

needed (except for reflective displays) to illuminate the display panel [4].  

In general, there are two types of BLU configurations: direct-lit and edge-lit. Just as the 

name indicates, direct-lit backlight means the light source (i.e. an array of LED chips) is placed 

right behind the display panel. However, this configuration is bulky and the hot-spot issue due to 

separated LED illumination may arise, which degrades the backlight uniformity. In contrast, the 

edge-lit backlight consists of several light sources placed along the edge of display, as depicted in 

Figure 1.1. The incident light from LED chips passes through the light-guide plate (LGP) and is 

steered upward toward the LCD panel. Thanks to the thin profile of LGP, the total thickness of 

whole display device is reduced dramatically. Also, with a strong diffuser right above LGP (not 

shown here), the light uniformity is greatly enhanced. 

To confine the backlight profile and boost the brightness at normal direction, a brightness 

enhancement film (BEF) is commonly used [5]. But the tradeoff is decreased brightness at large 

oblique angles. Thus, for large-sized TV applications, only single BEF is used to enable wide view 

at horizontal direction. Whereas for small-sized displays, like smartphones or tablets, two crossed 

BEFs are typically employed to maximize the normal view.  
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So far, the light after BEFs is mostly unpolarized. When traversing through an absorptive 

linear polarizer, about 50% of the light is absorbed and lost. Thus, to make full use of these lights, 

a reflective polarizer (or known as dual brightness enhancement film: DBEF) is commonly used 

to recycle the unused polarization [6]. It means light with desired polarization (say s-wave) could 

pass through, while another polarization (p-wave) is reflected back. With the help of DBEF, ~60% 

optical enhancement could be realized. 

 

Figure 1.1. Schematic diagram of a LCD. (LGP: light guide plate; BEF: brightness enhancement 

film; DBEF: dual brightness enhancement film; BLU: backlight unit; TFT: thin-film transistor; 

LC: liquid crystal; CF: color filter) 

After passing through a stack of optical sheets, the backlight then enters the LCD panel. In 

the panel, the liquid crystal layer is sandwiched between two crossed polarizers. By controlling 

the applied voltage to LC layer, transmittance could be modulated precisely. At the same time, the 

color filter array transmits the designated red, green and blue (RGB) primary colors, to form a 

color image.  
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Generally, LCD could be categorized into four types, depending on the molecular 

alignments and electrode configurations [7-10]: 1) twisted nematic (TN) mode, 2) multi-domain 

vertical alignment (MVA) mode, 3) in-plane switching (IPS) mode and 4) fringe-field switching 

(FFS) mode. All of them have their own pros and cons. For example, TN mode has simple 

structure, high transmittance and low cost, but its viewing angle is somewhat limited [11-14]. Thus 

it is mostly used in wristwatches, signage, and laptop computers, in which wide view is not 

absolutely necessary. For MVA mode, it shows high on-axis contrast ratio, wide viewing angle 

and fast response time, it is a good candidate for TVs with good image quality [15-19]. Recently, 

curved MVA LCD TVs are popular, as VA mode enables a smaller bending curvature as compared 

to other LCDs [20, 21]. While for IPS and FFS modes, they share quite similar working 

mechanisms [22-29]. That is, LC directors are mainly reoriented in horizontal plane, as a result, it 

exhibits high transmittance, wide viewing angle, weak color shift and robust to touch pressure.  

IPS/FFS mode finds good match for mobile displays, where low power consumption for long 

battery life and pressure-resistance for touch screens are critical. 

1.2 Display metrics 

To evaluate the performance of display devices, multiple metrics have been proposed and 

practiced [1], such as response time, contrast ratio, color gamut, panel flexibility, viewing angle, 

resolution density, peak brightness, lifetime, etc. Here, we will mainly focus on three of them: fast 

response time, wide color gamut, and high contrast ratio. As will be discussed later, these three 

metrics are the key parameters governing the final perceived image quality. 

The first one is response time, which is mostly defined as the time interval between 10% 

and 90% transmittance difference. For a typical LCD device, its response time is around 5-10 ms, 
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depending on different LCD modes. However, this performance is not satisfactory, especially 

compared to other competing display technologies. For example, organic light-emitting diode 

(OLED) shows average gray-to-gray response time as fast as 0.1 ms [30]. It is almost 100x faster 

than LCD.  

 

Figure 1.2. Comparison of image qualities with different (a) response time; (b) color gamut; and 

(c) contrast ratio. 

Slow response results in a severe issue called image motion blur, as depicted in Figure 

1.2(a). When displaying fast-moving objects (i.e. a running football player), the conventional LCD 
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is too slow to show the crisp images, or namely, the image is blurred. This will deteriorate the 

viewing clarity significantly. On the other hand, a fast-response display could generate sharp 

images, enriching the image quality with great details. As a result, improving the response time 

becomes an urgent need. In CHAPTER TWO, we will discuss three possible solutions using: 1) 

ultra-low viscosity LC mixtures; 2) single-rubbing vertical alignment fringe in-plane switching 

mode; and 3) high performance polymer-stabilized blue phase liquid crystal. 

Color is another key metric affecting the image quality. As shown in Figure 1.2(b), displays 

with wider color gamut could enable more realistic viewing experience. However, for conventional 

LCDs employing white light-emitting diode (WLED) as backlight [31, 32], its color gamut is 

limited to ~70% NTSC or ~50% Rec. 2020. The reason is that WLED uses blue LED to pump 

YAG:Ce3+ yellow phosphor, whose emission spectrum is relatively broad. As a result, it cannot 

get highly saturated RGB primary colors. 

To improve that, more advanced backlight units have been developed, including two 

phosphor-converted WLED (2pc-WLED) and quantum dot (QD) [33-35]. Due to the reduced 

bandwidth, these two light sources could provide well-separated green and red lights, leading to a 

much wider color gamut. More details will be presented in CHAPTER THREE. There, we will 

propose two novel backlight configurations to further enhance the color performance. 

The last but not the least, contrast ratio (CR) is an important parameter determining the 

image quality. It is defined as the luminance ratio between white and black states. As shown in 

Figure 1.2(c), low contrast image is unable to produce the true dark state; instead, the whole 

background is more bluish, resulting from the annoying light leakage. Moreover, its peak 

brightness is limited, thus a lot of details are disguised within the white regions. Whereas for high 

contrast image, it exhibits noticeable improvement. In general, its black state is much darker and 
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white state is much brighter. As a result, abundant gray scales could be realized between these two 

extremes, and more details in the satellite and planet could be clearly observed. 

However, for a non-emissive LCD, its CR is inherently limited. For examples, the typical 

CR for commercial MVA LCD TVs is only ~5000:1, and it drops to ~2000:1 and ~1000:1 for the 

FFS-based and TN-based LCDs, respectively [4].  To improve CR, in CHAPTER FOUR, we 

propose a new device structure by adding a thin in-cell polarizer between LC layer and CF array. 

The corresponding depolarization effect could be suppressed, leading to a much improved CR. To 

further enhance CR, a dual-panel LCD system is studied and demonstrated. In experiment, 

exceedingly high contrast ratio (> 1,000,000:1) and high bit-depth (> 14 bits) were realized at 

merely 5 volts. 
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 CHAPTER TWO: FAST RESPONSE TIME 

2.1 Motion picture response time 

As mentioned earlier, image motion blur issue will arise as the display response is not fast 

enough. To characterize image blurs, motion picture response time (MPRT) has been proposed 

and commonly practiced [36-39], which is jointly determined by the LC (or OLED) response time, 

TFT frame rate, and backlight duty ratio.  

Previously, calculating the MPRT of an active matrix display was rather difficult, because 

several effects are involved, like sample-and-hold effect, image motion, and human vision effect. 

But this task becomes incredibly simple, as Peng et al. derived an analytical equation to describe 

the MPRT [40, 41]: 

,)8.0( 22

fTMPRT                                                          (2.1)                                 

where Tf is the frame time (e.g. Tf  = 16.67 ms for 60 fps). Using this equation, we can easily obtain 

MPRT as long as LC response time and TFT frame rate are known.  

 

Figure 2.1. Calculated MPRT as a function of LC (or OLED) response time at different frame rates. 
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Figure 2.1 is a plot of simulated MPRT at different TFT frame rates. From Figure 2.1, we 

can get three important trends: 1) At a given frame rate, say 120 fps, as the LC response time 

decreases, MPRT decreases almost linearly and then gradually saturates. Note that the MPRT for 

 = 2 ms is only 4% longer than that of  = 0. Therefore, if an LCD’s response time is 2 ms or less, 

then its MPRT is comparable to that of an OLED display, even if the OLED’s response time is 

assumed to be 0. (2) As the TFT frame rate increases, the limiting MPRT (assuming  = 0) 

decreases linearly, because the limiting MPRT = 0.8Tf. (3) If the LC response time is not fast 

enough, say  = 5 ms, then increasing the frame rate from 60 fps to 120 fps makes a big 

improvement in MPRT, but further increasing the frame rate to 240 fps and 480 fps the 

improvement is less obvious.   

The first finding is extremely important, as it guides the development for future LCDs. 

That is, we don’t need to keep pushing LC response time to 0; rather, 2 ms is good enough from 

the theoretical predications as shown in Figure 2.1. To achieve this goal (  2 ms), in the following 

sections, we will introduce three options by using 1) ultra-low viscosity LC mixtures; 2) single-

rubbing vertical alignment fringe in-plane switching; and 3) high performance polymer-stabilized 

blue phase liquid crystal. 

2.2 Fast-response VA with ultra-low viscosity LC mixtures 

2.2.1 Material characterizations 

In experiment, we prepared an ultra-low viscosity LC mixture with negative dielectric 

anisotropy ( < 0), called MX-40593 [41]. Firstly, we characterized its physical properties 

including birefringence (n), visco-elastic coefficient (1/K33), and dielectric anisotropy.  
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Table 2.1. Measured physical properties of MX-40593. T = 22°C and λ = 633 nm. 

Δn ε// ε Δε K33 (pN) 
1/K33 

(ms/μm2) 
1 (mPas) Tc (°C) 

0.098 3.41 5.88 -2.47 11.9 5.0 59.5 79.3 

(a) Birefringence  

Birefringence of an LC is mainly governed by the conjugation length and order parameter. 

To measure Δn, we filled the LC mixture into a VA test cell with cell gap d = 9.0 µm. A 1 kHz 

square-wave AC voltage signal was applied to the LC cell, and a He-Ne laser ( = 633 nm) was 

used as the probe beam. The cell was then sandwiched between two crossed linear polarizers. By 

measuring the voltage dependent transmittance through LabVIEW system, we can obtain Δn 

easily. Detailed method has been described in [42]. From Table 2.1, the measured birefringence at 

room temperature is Δn = 0.098. 

Next, we measured the temperature dependent birefringence. We placed the LC cell on a 

Linkam heating stage controlled by the temperature program (Linkam TMS94). Results are shown 

in Figure 2.2(a), where dots stand for measured data and solid lines for the fittings using Haller’s 

semi-empirical equation [43]: 

,)/1(00



cTTnSnn                                 (2.2) 

where Δn0 is the extrapolated birefringence at T = 0K, S is the order parameter, Tc is the clearing 

point, and β is a material parameter. Through fitting, we obtained Δn0 = 0.168, and β = 0.262.  
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Figure 2.2. (a) Temperature dependent birefringence and (b) dispersion curve at T = 22°C of MX-

40593. 

Also, we measured the birefringence at different wavelengths. Results are plotted in Figure 

2.2(b). Similarly, we fitted the measured Δn using a single-band dispersion equation [44]: 

,
2*2

2*2








 Gn                                                                (2.3) 

where G is a proportionality constant and λ* is the mean resonance wavelength. Good agreement 

is realized.  

(b) Visco-elastic coefficient 

In an LCD, the response time is proportional to the visco-elastic coefficient (γ1/Kii), where 

Kii is the corresponding elastic constant depending on the LC alignment. For example, here, in a 

VA cell, Kii = K33 is the bend elastic constant. To measure this visco-elastic coefficient, we recorded 

the free relaxation (decay) process for a controlled phase change, and then 1/K33 could be extracted 

using the following equation [45, 46]: 

,
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)/exp(
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where A is the proportionality constant, Ea is the activation energy of molecular rotation, and KB 

is the Boltzmann constant. Figure 2.3 depicts the measured data (dots) and fitted curves (solid 

lines), from which we can tell the measured data fit quite well with Eq. (2.4).  

 

Figure 2.3. Temperature dependent visco-elastic coefficient of MX-40593. 

(c) Dielectric anisotropy 

Next, we measured the dielectric constants of MX-40593 using the capacitance method. 

Detailed procedures have been reported in Ref. [47], and the measured results are listed in Table 

2.1. From Table 2.1, the ε// and ⊥ are 3.41 and 5.88, respectively, i.e., Δ = -2.47. Compared to 

the conventional negative materials used in VA mode, this Δ is relatively small, leading to a fairly 

large operation voltage. This may increase the electrical power consumption slightly.  

2.2.2 Device performance 

After characterizations of MX-40593, we injected this LC mixture into a commercial VA 

cell with cell gap d = 3.3 m. The measured threshold voltage is 2.1 Vrms and peak transmittance 

voltage is 6.7 Vrms at  = 550 nm. To study GTG response time, we divided the voltage-
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transmittance curve into eight gray levels equally, and measured the response time between 

different gray levels. As usual, the response time is defined as the time interval between 10% and 

90% transmittance. During the measurement, we applied overdrive and undershoot voltages to 

accelerate the transition process [48].  

Table 2.2. Measured GTG response time of our VA cell with overdrive and undershoot.  d = 3.3 

m,  = 633 nm and T = 22oC. 

 1 2 3 4 5 6 7 8 

1  0.58 0.70 0.72 0.93 0.96 1.02 1.37 

2 2.73  0.12 0.23 0.34 0.51 0.70 1.14 

3 2.81 1.14  0.12 0.27 0.41 0.62 1.05 

4 3.56 1.44 0.55  0.13 0.28 0.49 1.01 

5 3.73 2.07 1.09 0.54  0.13 0.34 0.98 

6 4.07 2.49 1.54 0.92 0.40  0.22 0.87 

7 4.23 2.94 2.01 1.41 0.82 0.33  0.69 

8 4.61 3.24 2.40 1.84 1.28 0.82 0.39  

Table 2.2 lists the obtained results. According to Table 2.2, the average GTG response time 

is 1.29 ms, which is 4.4X faster than the commercial product (5.69 ms) reported in Ref. [30]. Such 

a fast response time mainly originates from the ultra-low viscosity of our LC mixture. What’s 

more, low viscosity implies to a low activation energy, which leads to a mild increase in response 

time even at low temperature, say 20oC [26].  

As aforementioned discussions, the MPRT of an LCD is comparable to that of an OLED, 

as long as LC response is 2 ms or less. Now we have demonstrated a fast response VA LCD with 
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average GTG response time ~ 1.29 ms [41]. To validate the above finding, we measured the GTG 

MPRT using our MX-40593 at f = 120 Hz, and the results are listed in Table 2.3. The obtained 

average GTG MPRT is 6.88 ms at 120 Hz, while it is 6.66 ms for OLED. In other words, LCD and 

OLED indeed show comparable motion image blur, except some slower gray level transitions, e.g. 

8 to 1. 

Table 2.3. Measured GTG MPRT of our VA LCD at f = 120 Hz. d = 3.3 m,  = 633 nm and T = 

22oC. 

 1 2 3 4 5 6 7 8 

1  6.70 6.70 6.72 6.72 6.72 6.78 6.78 

2 7.16  6.68 6.70 6.70 6.72 6.74 6.78 

3 7.22 6.72  6.68 6.70 6.72 6.72 6.76 

4 7.72 6.76 6.68  6.68 6.70 6.72 6.76 

5 7.76 6.80 6.74 6.70  6.68 6.70 6.72 

6 7.84 6.86 6.82 6.72 6.70  6.68 6.72 

7 7.90 7.04 6.82 6.78 6.76 6.70  6.70 

8 7.96 7.28 7.00 6.82 6.96 6.92 6.86  

 To reduce the MPRT, as shown in Figure 2.1, increasing the TFT frame rate is an effective 

approach. Presently, large-sized TVs are driven at mostly 120 fps. If we increase the TFT frame 

rate to 240 fps, both LCD and OLED show ~ 2X faster but still similar MPRT (3.71 ms vs. 3.34 

ms), as shown in Table 2.4. LCD is a voltage-driven device, whereas OLED is current driven. Thus, 

LCD only needs one TFT per pixel, but OLED requires multiple TFTs per pixel [49]. For example, 

in some commercial OLED products, 5 TFTs are employed in one pixel to stabilize the dark current 
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variations. As a result, increasing the frame rate is more difficult for OLED TFT driving, but 

obviously it is less a burden for single-TFT driven LCD.  

Table 2.4. Measured GTG MPRT of our VA LCD at f = 240 Hz. d = 3.3 m,  = 633 nm and T = 

22oC. 

 1 2 3 4 5 6 7 8 

1  3.38 3.40 3.40 3.40 3.42 3.44 3.50 

2 4.52  3.34 3.36 3.38 3.40 3.42 3.46 

3 4.58 3.44  3.34 3.36 3.38 3.40 3.44 

4 5.34 3.52 3.38  3.34 3.36 3.40 3.44 

5 5.36 3.76 3.40 3.38  3.34 3.38 3.42 

6 5.52 4.02 3.54 3.42 3.36  3.36 3.40 

7 5.64 4.32 3.76 3.50 3.34 3.36  3.40 

8 5.70 4.68 4.20 3.82 3.48 3.44 3.36  

2.2.3 Discussion 

So far, our goal is 2 ms response time for an LCD device, to enable comparable MPRT as 

an OLED. This is a big milestone. However, there should be one more step further. As depicted in 

Figure 2.1, even if LC (or OLED) response time is 0, its MPRT is still 6.66 ms at 120 fps. This is 

determined by TFT sample-and-hold effect. For a cathode ray tube (CRT), it is impulse-type 

display, so that its MPRT could be as short as 1.5 ms. This is why image blur is not an issue for 

CRT. But for LCD and OLED, they are both holding-type displays, meaning brightness will 

maintain in the whole frame. Therefore, their MPRT will be limited by the TFT frame time [40]. 
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To suppress image blur to unnoticeable level (MPRT < 2 ms), as discussed above, 

increasing frame rate is an option, but the electrical power would increase substantially. In fact, 

for most fast-response gaming monitors, its driving frequency is around 144 fps. Then to mitigate 

image blur, another approach called backlight modulation (sometimes it is called scanning 

backlight or blinking backlight) is mostly adopted [50-52].  

 

Figure 2.4. Duty ratio effects on MPRT at 120 Hz frame rate. 

As plotted in Figure 2.4, the effective MPRT decreases almost linearly when the LCD 

backlight duty ratio decreases. For example, when the duty ratio is 50%, the effective MPRT is 

reduced to 3.34 ms. Then it is further reduced to < 2 ms when 25% duty ratio is employed. In fact, 

such an LCD with scanning backlight or blinking backlight is more like a CRT, working as an 

impulse-type display [53]. 

Also, as shown in Figure 2.4, the MRPT is less sensitive to the LC response time when 

duty ratio decreases. That is, MPRT is saturated within a much longer time range. For example, 

when there is no backlight modulation (i.e. 100% duty ratio), the saturation of MPRT occurs at LC 

response time < 2 ms. But this time is lengthened to ~ 5 ms at 50% duty ratio. Under such a 
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condition, the requirement on LC response time is much relaxed. However, the major tradeoff for 

the lower duty ratio is reduced brightness. One way to compensate for the lost brightness is to 

boost the current of the LED backlight. 

Another thing worth mentioning here is for the proposed fast-response VA, we only focus 

on the average GTG response time. In fact, for some grayscale transitions, like 8 to 1, it is still 

more than twice slower than the requirement (4.61 ms vs. 2 ms). This may introduce image motion 

blur for fast-moving objects. Thus, advanced materials and device structures with faster response 

for all the grayscale transitions are urgently needed. 

2.3 Fast-response vertical alignment fringe in-plane switching mode 

Recently, vertical alignment fringe in-plane switching (VA-FIS) mode was proposed and 

fast response was obtained even at -30C [54]. Its driving scheme is simple and there is no TFT 

charging issue. But the trade-offs are twofold: increased operation voltage and decreased 

transmittance. Here, we modify this VA-FIS mode by removing the bottom alignment layer. Such 

a structure helps to increase the transmittance and reduce the operation voltage significantly. 

Meanwhile, sub-millisecond response time is realized. To achieve good dark state, we can apply a 

small biased voltage to the common electrode at bottom substrate. 

2.3.1 Structure design 

Figure 2.5 depicts the schematic diagram of proposed single-rubbing VA-FIS mode. As 

the name indicates, there is only one alignment layer on the top glass substrate, which induces 

vertical alignment at voltage-off state. Meanwhile, on the top substrate, there is a planar electrode 

with a fixed voltage (or biased voltage Vbias). Combined with the bottom common electrode (Vcom 

= 0), a strong vertical electric field is produced in the whole panel. This has two effects: 1) LC 
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directors are vertically aligned along the electric field, leading to a high contrast ratio; 2) the LC 

directors are pulled back by the longitudinal field to their initial state when the horizontal electric 

field is removed, leading to a fast decay time. 

 

Figure 2.5. Schematic diagram of the proposed single-rubbing VA-FIS mode. 

For the interdigitated pixel electrodes on the bottom substrate, the applied voltages are in 

different polarities, thus, the strength of horizontal electric field is doubled. This structure is called 

fringe in-plane switching (FIS) mode [55], since fringe electric field and in-plane electric field 

coexist. However, it requires 2 TFTs so that the aperture ratio would be reduced slightly.  

2.3.2 Simulation results 

The electro-optic properties of the single-rubbing VA-FIS are calculated by a commercial 

LCD simulator DIMOS.2D and the extended Jones matrix [56]. The cell parameters are: electrode 

width w = 2 µm, electrode gap g = 5 µm, and cell gap d = 4 µm. A 100-nm-thick Si3N4 (dielectric 

constant  =6.5) is employed as the passivation layer. The LC material used here is a positive  

LC material, which has following physical properties: K11 = 12.7 pN, K22=6.4 pN, K33= 14.0 pN, 

Δn = 0.125, Δε = 6.7, and γ1 = 53 mPas. Also, as discussed above, a biased voltage (Vbias = 4 V) is 

applied to the top electrode to generate vertical electric field. 
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(a) Voltage-transmittance (VT) and time-transmittance (VT) curves 

Firstly, conventional VA-FIS with double rubbing is investigated and its voltage-

dependent (VT) and time-dependent (TT) curves are plotted in Figure 2.6 (black lines). The 

response time is pretty fast [rise time: 1.07 ms, decay time: 0.61 ms], but from Figure 2.6(a), the 

on-state voltage is higher than 20 V, and transmittance at 15 V is only 58.0%, which is too low for 

practical applications. 

 

Figure 2.6. Simulated (a) VT and (b) TT curves for VA-FIS with and without bottom alignment 

layer. (=550 nm. Here, polyimide alignment layer is used with 70 nm thick) 

Table 2.5. Simulated VA-FIS device performance with different rubbing conditions. 

 V T @ 15 V Rise time Decay time 

Double rubbing > 20 V 58.0% 1.07 ms 0.61 ms 

Top rubbing 15 V 69.3% 0.91 ms 0.93 ms 

Bottom rubbing > 20 V 58.7% 1.14 ms 0.62 ms 

No rubbing 15.4 V 66.5% 1.05 ms 0.95 ms 
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On the other hand, the newly proposed single-rubbing VA-FIS shows significant 

improvement. For example, its VT curve increases much earlier and faster. The corresponding on-

state voltage is only 17 V, and transmittance at 15 V is as high as 69.3%. As listed in Table 2.5, 

the rise time of top-rubbing VA-FIS cell is on = 0.91 ms and decay time off = 0.93 ms.  

To better understand the underlying physical mechanism, the LC director distributions for 

both cases are plotted in Figure 2.7. Clearly, for conventional case [Figure 2.7(a)], the LC directors 

near bottom substrate stay still due to the strong anchoring energy. But for the single-rubbing case 

[Figure 2.7(b)], these LC directors reorient freely and easily along the electric field. As a result, 

the phase retardation is larger and the required voltage is lower.  

 

Figure 2.7. Simulated LC director distribution for (a) VA-FIS with double-side rubbing, and (b) 

VA-FIS with single-side rubbing. 

 (b) Rubbing condition 

Next, we investigate two more rubbing conditions, i.e. single alignment layer on bottom 

substrate and no alignment layer on both substrates. Results are shown in Figure 2.8, and data are 

summarized in Table 2.5. Interestingly, the bottom-rubbing case shows almost the same 

performance as that of double-rubbing, although the top alignment layer is removed. This is 

because the LC molecular reorientations mainly happen near the bottom substrate (i.e. lower side 

of LC region), which are governed by the bottom alignment layer. Then as expected, once we 
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remove this bottom alignment layer, the device performance would be improved noticeably, as the 

top-rubbing case (red line) and no-rubbing case (pink line) shown in Figure 2.8. 

 

Figure 2.8. Simulated (a) VT and (b) TT curves for different rubbing conditions. (Double rubbing: 

two alignment layers; top rubbing: one alignment layer on top substrate; bottom rubbing: one 

alignment layer on bottom substrate; no rubbing: no alignment layers) 

(c) Biased voltage effect 

So far, the biased voltage applied to the top electrode is kept at 4 V. Here, we tune this 

voltage to investigate how it affects the E-O properties. Results are shown in Figure 2.9. When the 

biased voltage increases from 3 V to 5 V, the response time becomes much faster as the vertical 

electric field gets stronger. But the trade-offs are increased on-state voltage (from 14 V to 20 V) 

and slightly decreased transmittance (from 70.4% to 65.8% at 15 V). To balance all the desired 

properties, Vbias = 4 V would be a good choice, depending on the  of the LC employed. 
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Figure 2.9. Simulated (a) VT and (b) TT curves for different biased voltages. 

(d) Cell gap effect 

Figure 2.10 shows the cell gap effect of single-rubbing VA-FIS mode. As usual, thin cell 

gap is more favorable for fast response time, as  ~ d2 [4].  But voltage and transmittance would 

be sacrificed simultaneously. From Figure 2.10, cell gap d = 4.5 µm shows the lowest operation 

voltage (Von = 11.7 V), but its response time is also the slowest [rise time: 1.27 ms, decay time: 

0.99 ms]. For practical applications, we have to choose the cell gap carefully. Here, we keep d = 4 

µm for further optimizations. 

 

Figure 2.10. Simulated (a) VT and (b) TT curves for different cell gaps. 
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 (e) Electrode gap effect 

Larger electrode gap leads to a higher peak transmittance, but also higher on-state voltage. 

As shown in Figure 2.11, when we increase the electrode gap from 4 µm to 6 µm, peak 

transmittance is increased from 64.2% to over 70%, but the on-state voltage is also increased from 

12.8 V to over 20 V. Here, we set 15 V as the maximum driving voltage and found that electrode 

gap g = 5 µm is the optimum. 

 

Figure 2.11. Simulated (a) VT and (b) TT curves for different electrode gaps. 

 (f) Passivation layer effect 

For conventional fringe field switching (FFS) mode, passivation layer should be as thin as 

possible to mitigate the voltage shielding effect, so that operation voltage could be reduced. But in 

VA-FIS, it is totally different. As depicted in Figure 2.12, when the passivation layer gets thicker, 

the operation voltage becomes lower, e.g. Von = 9.6 V for tpass = 0.5 µm. This is because of the 

unique VA-FIS structure, where two forces (vertical and horizontal electric fields) are competing 

each other. For a thick passivation layer, the corresponding vertical electric field becomes weaker. 
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As a result, horizontal electric field would dominate and the LC directors would be reoriented 

more easily, leading to a much lower operation voltage.  

 

Figure 2.12. Simulated (a) VT and (b) TT curves for different passivation layer thicknesses. 

As discussed above, increasing the passivation layer thickness seems to be a good approach 

to reduce the operation voltage. But unexpectedly, the dark state and threshold voltage are 

sacrificed, as shown in Figure 2.13. In conventional VA-FIS with double-rubbing, no biased 

voltage is applied (black line), it shows the best dark state and the highest threshold voltage. This 

is more favorable after taking TFT fluctuations into consideration. But when a biased voltage is 

applied (red line), threshold voltage is greatly reduced. This is because the threshold state of LC 

directors is already broken by the vertical electric field. Then a very small horizontal electric field 

would cause these molecules to reorient. Similarly, for the single-rubbing case, threshold voltage 

is further reduced.  
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Figure 2.13. Simulated dark state and threshold voltage for different thicknesses of passivation 

layer. (DR: double rubbing; SR: single rubbing) 

This effect could be visualized more clearly in Figure 2.14. For double-rubbing case 

without biased voltage [Figure 2.14(a)], no electric field exists and LCs are vertically aligned, 

showing the best dark state. When a biased voltage is applied [Figure 2.14(b)], in theory, there 

should be vertical electric field. Nevertheless, this field is not perfectly vertical due to the shielding 

effect of passivation layer. As shown in Figure 2.14(b), the electric field is slightly slanted. In this 

case, some LC molecules have already been reoriented, meaning threshold state is broken. If we 

further remove the bottom alignment and increase the thickness of passivation layer [Figures 

2.14(c) – 2.14(d)], this effect is magnified. The non-uniformity of vertical electric field would 

induce more LC molecules to reorient, and finally, dark state and threshold voltage would be 

compromised.  
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Figure 2.14. Simulated LC director and equipotential line distribution for (a) double rubbing 

without biased voltage; (b) double rubbing with biased voltage; (c) single rubbing with 100 nm 

thick passivation layer; (d) single rubbing with 300 nm thick passivation layer; and (e) single 

rubbing with 500 nm thick passivation layer. (All single rubbing cases have a biased voltage) 

To overcome this light leakage issue, we propose to apply a small biased voltage to the 

bottom common electrode to compensate the voltage shielding effect of passivation layer. For 

example, the common electrode has a small biased voltage, e.g. Vcom = -0.8 V, then at voltage-off 

state, the resultant electric field is quite uniform, as plotted in Figure 2.15(b). Therefore, both dark 

state and threshold voltage are improved significantly, as shown in Figure 2.15(c). Here, it is 

illustrated using the worst case: single rubbing with thick passivation layer (tpass = 0.5 µm). 

Undoubtedly, this approach works as well for other conditions, like thin passivation layer and 
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double-rubbing case. A side effect of this approach is increased operation voltage, as the threshold 

voltage increases slightly.  

 

Figure 2.15. Simulated LC director and equipotential line distribution for (a) single rubbing with 

Vcom = 0 V; (b) single rubbing with Vcom = -0.8 V; and (c) Simulated dark state and threshold 

voltage for these two conditions. (SR: single rubbing; Vbias = 4 V)  

(g) Anchoring energy effect 

For the above discussions, we focus on the single-rubbing condition, where bottom 

alignment layer is totally removed, i.e. the bottom anchoring energy is zero. But for some cases, 

bottom alignment layer is still preferred to get better vertical alignment and then higher contrast 

ratio. With that, we carry out more investigations on the anchoring energy effect. Results are 

summarized in Figure 2.16. It is seen that with weak anchoring energy (W = 10-6 ~ 10-5 N/m), it 

performs almost the same as that of zero anchoring energy, which means we can still keep the 

bottom alignment layer, as long as its anchoring energy is weak. Also, as expected, high voltage 

and low transmittance is obtained with strong anchoring energy (W = 10-3 ~ 10-2 N/m). 
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Figure 2.16. Simulated VT curves for different anchoring energies of bottom substrate. (Top 

substrate is fixed with strong anchoring energy) 

2.3.3 Discussion 

In general, single-rubbing VA-FIS mode exhibits several advantages: high transmittance 

(~70%), low operation voltage (15 V), and fast response time (< 1 ms). This is much faster than 

the required 2 ms. In fact, if overdrive and undershoot driving method is adopted [48, 57, 58], the 

average GTG response time of VA-FIS is only ~0.4 ms. Moreover, all gray scale transitions are 

below 1 ms, which is highly desirable for suppressing motion blurs.  

Another thing worth mentioning here is VA-FIS is also a perfect candidate for field 

sequential color (FSC) LCDs. It is known that FSC LCD exhibits two major advantages: 3x higher 

resolution density and 3x higher optical efficiency, as the absorptive spatial color filters are 

removed [59]. However, to suppress the color breakup of FSC LCD, the required response time is 

quite challenging [60]; typically it should be less than 1 ms. Hopefully, VA-FIS has sub-

millisecond response time, and is a strong contender for next-generation FSC LCDs. 
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However, before practical applications, several hurdles of VA-FIS should be addressed 

satisfactorily. For example, gamma shift at large oblique angles should be well compensated by 

multi-domain electrode configurations [61]. Also, its contrast ratio and threshold voltage should 

be treated carefully. The requirements of 15 V and 2-TFT driving are still manageable, but if the 

on-state voltage could be further reduced to 7.5 V with single TFT, then such a single-rubbing 

VA-FIS would be more competitive and has widespread applications in the near future. 

2.4 Fast-response polymer-stabilized blue phase liquid crystal 

Blue phase liquid crystal (BPLC) was first discovered in 1888, but it didn’t gain many 

popularities until early 2000s, when polymer-stabilized BPLC was proposed [62]. Briefly speaking, 

PS-BPLC exhibits several outstanding features, such as sub-millisecond response time, no need 

for surface alignment, optically isotropic dark state, and cell gap insensitivity [63]. Fast response 

time enables FSC displays with negligible color breakup, just like aforementioned VA-FIS. In fact, 

after about 15 years of extensive efforts, most of the problems impeding the commercialization of 

BPLC have been gradually overcome, such as long term stability, protrusion fabrication, slow TFT 

charging time, etc. [64, 65] However, the on-state voltage (Von) is still too high to be addressed by 

a single TFT per pixel.  

To lower operation voltage, enlarging the Kerr constant (K) of BPLC mixture seems to be 

a straightforward approach because Von ~ 1/√𝐾 [66]. Indeed, this is where material efforts have 

been devoted in the past few years [67, 68]. Some high birefringence BPLC hosts with dielectric 

anisotropy Δε >100 have been developed [66-69]. However, the major trade-offs for such a huge-

Δε BPLC material are: 1) increased response time (>1 ms) due to its high viscosity, 2) prolonged 

TFT charging time due to its large capacitance, and 3) compromised long term stability and voltage 
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holding ratio (VHR). For a high resolution and high frame rate (120 Hz) display, the maximum 

Δε of the BPLC should not exceed 100. With that, slow charging issue can still be managed by the 

bootstrapping driving scheme [64, 65], while its VHR could reach as high as 99%, depending on 

the charging time (governed by the frame rate and resolution density) and working temperature 

[68]. Moreover, its long-term stability has been verified experimentally, as reported in Ref. [67]. 

Actually, such a BPLC mixture (Δε < 100) has already been experimentally proven by AUO in a 

10” prototype [70]. Indeed, its overall performance is quite impressive except that Von is still as 

high as 32 Vrms. As a result, two TFTs per pixel is required. The power consumption of a display 

driver IC (excluding backlight) is proportional to (Von)2. Therefore, it is essential to lower the Von 

to  15 V to enable single TFT driving with this practical BPLC material (Δε  100). Such a burden 

falls on the new device structure. 

In this part, we propose a new protruded diamond-shape in-plane-switching (DIPS) 

electrode configuration to lower the operation voltage. By optimizing the device parameters, we 

can boost the peak transmittance to over 75% at 15 V. It enables single-TFT driving and lower the 

power consumption, and more importantly, this is achieved using a practical BPLC material with 

mild Δε.  

2.4.1 Structure design 

The induced birefringence Δni of an optically isotropic BPLC can be described by the 

extended Kerr model [71]: 

             ,])/(exp[1)( 2

ssi EEnEn                                                  (2.5) 

where Δns stands for the saturated induced birefringence, E is the applied electric field, and ES 

represents the saturation field. However, above the electrode the generated electric field is along 
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vertical direction so that little phase retardation is produced, leading to low transmittance (known 

as dead zones). In order to boost transmittance, a large electrode gap is often employed, which in 

turn increases the operation voltage.  

 

Figure 2.17. (a) Schematic 3D diagram of the proposed DIPS structure; (b) top view and (c) cross-

section view. 

Figure 2.17(a) depicts the DIPS electrode structure. The conventional strip protrusion is 

modified to diamond shape [Figure 2.17(b)], so that the effective dead zone area can be greatly 

reduced. From the cross-section view [Figure 2.17(c)], it is almost the same as traditional protruded 

IPS [70, 72]. Here, the electrode width and protrusion height is fixed as w1 = 3 µm and h = 3.5 µm, 

respectively, to be compatible with current fabrication technology [70]. As Figure 2.17 shows, 
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there is a spatial shift between adjacent pixel and common electrodes. This helps boost the total 

transmittance, as will be discussed later. 

From fabrication viewpoint, our DIPS structure shares the same procedures as conventional 

protruded IPS, as reported in Ref. [70]. Although we have not actually fabricated the DIPS device, 

its procedures are outlined as follows: The first step is to form diamond-shape protrusions (e.g. 

SiO2, Si4N3, organic materials, etc.) on the bottom substrate by photolithography. The width of top 

side (Figure 2.17) is controlled to be w2 = 2.5 µm and the protrusion height is h = 3.5 m. The 

second step is to over-coat the protrusion surface with a thin indium tin oxide (ITO) layer. A strong 

and deep penetrating horizontal electric field between the neighboring electrodes is thus generated. 

No surface alignment layer is needed.   

2.4.2 Simulation results 

Next, we investigate the electro-optic performance of the proposed DIPS structure using a 

commercial software TechWiz LCD 3D (Sanayi, Korea). As discussed above, the protruded 

electrodes are designed with w1 = 3 µm, w2 = 2.5 µm, and h = 3.5 µm, which is compatible with 

current fabrication facility [70]. The electrode gap is set as g = 3 µm, and the cell gap is d = 9 µm. 

Another important factor is diamond length (l), which is assumed to be 20 µm.  

To obtain the BPLC parameters, we first fit the voltage-dependent transmittance (VT) 

curve reported by AUO, as Figure 2.18 shows, using Eq. (2.5). Good agreement between 

experiment and simulation is obtained. The small difference is attributed to different light sources 

employed: for experiment it is white light, while in our fitting we use λ = 550 nm. Through fitting, 

we obtained Δns = 0.16 and Es = 5.7 V/µm, which corresponds to K = 9.28 nm/V2 at λ = 550 nm. 

From here on, we will use these BPLC material parameters in our device optimization.  
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Figure 2.18. Numerical fitting for the VT curve reported in Ref. [70] using extended Kerr model.  

(λ = 550 nm) 

 

Figure 2.19. (a) Simulated VT curves for conventional protruded IPS and DIPS; Brightness profile 

at on-state voltage for (b) conventional IPS and (c) DIPS. (w1 = 3 µm, w2 = 2.5 µm, g = 3 µm, h = 

3.5 µm, and d = 9 µm for both IPS and DIPS. l = 20 µm for DIPS only) 

Figure 2.19(a) shows the simulated VT curves for conventional IPS and newly proposed 

DIPS. As expected, the peak transmittance of DIPS is much higher than that of IPS (72.6% vs. 

57.8%), due to the reduced dead zone area. This effect could be virtualized more clearly from 
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Figures 2.19(b) and 2.19(c). For conventional IPS, a large strip dead zone exists above the 

electrode, while for DIPS, the protrusion size is reduced, along with the reduced dark region. As a 

result, the transmittance is improved significantly. But the trade-off is slightly increased voltage 

(15.2 V vs. 12.4 V), since the effective electrode gap is larger. 

 

Figure 2.20. Simulated VT curves for different electrode gaps. (w1 = 3 µm, w2 = 2.5 µm, h = 3.5 

µm, d = 9 µm, and l = 20 µm) 

Next, we tune the electrode gap from 2.5 µm to 5 µm, and their corresponding VT curves 

are depicted in Figure 2.20. Both operation voltage and peak transmittance keep increasing as the 

electrode gap gets larger. If we set Von =15 V, the highest transmittance (72.5%) is obtained when 

the electrode gap g = 3 µm. For further optimizations, we will keep g = 3 µm.   
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Figure 2.21. Schematic diagram for (a) short diamond electrode and (b) long diamond electrode; 

(c) simulated VT curves for different diamond lengths. (w1 = 3 µm, w2 = 2.5 µm, g = 3 µm, h = 

3.5 µm, and d = 9 µm) 

Due to the specially designed diamond shape, the generated electric field is not parallel to 

the x-axis, instead, there is a small slanted angle (), as Figure 2.21(a) shows. Therefore, the phase 

retardation is not fully utilized if the linear polarizer is oriented at 45 with respect to x-axis. To 

reduce this slant angle, an efficient approach is to increase the diamond length (l). As it gets longer 

[Figure 2.21(b)], this angle gets smaller (i.e. a > b), leading to larger phase retardation. Figure 

2.21(c) depicts the simulated VT curves as a function of diamond length. As expected, peak 

transmittance increases with l, but gradually saturates when l  40 µm. A similar trend is found for 

operation voltage: it increases first and then gradually saturates. Please note that when l = 50 µm, 

the transmittance at 15 V is as high as 75.5%, which is good enough for practical applications. 
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Figure 2.22. Schematic diagram for (a) unshifted electrode with short diamond, (b) unshifted 

electrode with long diamond and (c) shifted electrode with long diamond; (d) Simulated VT curves 

for the structures in (a) to (c). (w1 = 3 µm, w2 = 2.5 µm, g = 3 µm, h = 3.5 µm, and d = 9 µm) 

As Figure 2.22(c) shows, there is a spatial shift between adjacent pixel and common 

electrodes. In this case, the electric field is uniformly distributed. While for the unshifted structures 

[Figures 2.22(a) and 2.22(b)], the generated electric filed is distorted: stronger in the bulging region 

but weaker in the hollow region, resulting in a decreased transmittance. Figure 2.22(d) plots the 

simulated VT curves for these three cases, where the shifted configuration [Figure 2.22(c)] shows 

the highest transmittance. Its transmittance is 14.2% higher than that of unshifted one with smaller 

diamond length, i.e. square shape in Figure 2.22(a) [73].  
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2.4.3 Discussion 

We investigate the electro-optic performance of DIPS structure and the influencing factors. 

With some optimizations, we have achieved 75.5% transmittance at 15 V. For conventional 

protruded IPS, it exhibits much larger dead zone [Figure 2.19(b)]. As a result, to improve 

transmittance a wider electrode gap (g = 7.5 µm) is needed, which in turn increases the operation 

voltage [Figure 2.23].  Compared to conventional protruded IPS, the on-state voltage of our DIPS 

is lowered by 41.4% (15.3 V vs. 26.1 V) while keeping the same transmittance. Our design enables 

BPLCDs to be driven by a single TFT.  

 

Figure 2.23. Simulated VT curves for conventional IPS and DIPS. (w1 = 3 µm, w2 = 2.5 µm, g = 

7.5 µm, h = 3.5 µm, and d = 9 µm for IPS; w1 = 3 µm, w2 = 2.5 µm, g = 3 µm, h = 3.5 µm, d = 9 

µm, and l = 20 µm for DIPS) 

To obtain wide view and suppress gamma shifts, two-domain configuration is commonly 

employed [74]. Here, we simulate the performance of zigzag DIPS structure. Results are plotted 

in Figure 2.24. From Figure 2.24(a), the isocontrast ratio remains over 100:1 in the entire viewing 

zone. Also, the calculated gamma shift (D) is only 0.1634, which is smaller than 0.2, i.e. it is 
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unnoticeable to the human eye [61]. Moreover, since we are using IPS structure, the electro-optic 

properties are insensitive to the cell gap. Thus, BPLCD should work well for touch panels. 

 

Figure 2.24. (a) Simulated isocontrast contour and (b) viewing angle dependence of gamma curves 

for biaxial film-compensated 2-domian DIPS. 

 

2.5 Summary 

In this chapter, we firstly introduce an important concept called motion picture response 

time to quantify the image motion blur. According to the analysis, we found that if LC response 

time is less than 2 ms, its MPRT is comparable to that of OLED, although OLED’s response is 

100x faster. Then we developed an ultra-low viscosity LC mixture with negative dielectric 

anisotropy, and demonstrated a fast-response VA LCD with average GTG response time less than 

2 ms. The corresponding MPRT is indeed comparable to OLED at the same frame rate. The 

validity of this 2-ms rule is confirmed.  

Also, we propose a novel single-rubbing VA-FIS mode to achieve sub-millisecond 

response time while keeping high transmittance and low operation voltage. A potential concern is 



38 

 

the degraded dark state and much reduced threshold voltage due to non-uniform vertical electric 

field. To improve that, we propose to add a small biased voltage to the bottom common electrode, 

to compensate the voltage shielding effect of passivation layer. Good performance is obtained.  

Finally, in the last part, we investigate fast response PS-BPLC. Our new diamond-shape 

protruded IPS structure helps to lower the operation voltage of a BPLCD to 15V by using an 

industrially proven blue phase material, while keeping a relatively high transmittance (75.5%). 

This is an important step toward enabling single-TFT driving using a practical BPLC material with 

a mild Δε without compromising other desirable features, including sub-millisecond response time, 

long-term stability, no TFT charging issue, high voltage holding ratio, etc. As for the fabrications, 

DIPS shares the same fabrication process as conventional protruded IPS. Our DIPS structure 

would help to accelerate the emergence of the long-awaited blue phase LCDs for widespread 

applications. 
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 CHAPTER THREE: WIDE COLOR GAMUT  

Vivid color is a critical requirement of all display devices. In the past two decades, LCD 

backlight technology has evolved from cold cathode fluorescence lamp (CCFL) to phosphor-

converted white light emitting diode (WLED) [31, 32]. The latter employs a blue LED to pump 

YAG:Ce3+ yellow phosphor to generate white color. The major advantages of WLED are high 

efficiency, long lifetime, low cost and simple optical configuration. However, its broad yellow 

spectrum leads to a relatively narrow color gamut (~70% NTSC or ~ 50% Rec. 2020).  

To widen color gamut, quantum dot (QD)-enhanced backlight and two phosphor-converted 

WLED (2pc-WLED) have been developed [33-35]. Each technology has its pros and cons. For 

examples, the cadmium-based QDs offer a narrow emission bandwidth (full width at half 

maximum FWHM ~20-30 nm) and large freedom for selecting peak wavelengths to match the 

transmittance of color filters [75-78]. The resultant color gamut can reach 108% NTSC in CIE 

1931 color space, or ~90% Rec. 2020 color standard. However, cadmium is a toxic heavy metal 

and its maximum allowable level is limited to 100 ppm according to the European Union’s 

Restriction of Hazardous Substances (RoHS). Some heavy-metal-free QDs have been developed, 

such as InP/ZnS, but their efficiency and bandwidth are compromised [79, 80]. Moreover, these 

QDs are often present as a film, known as quantum dot enhancement film (QDEF) [81]. For a large 

screen LCD TV, the QDEF should match the TV size, thus the cost issue needs to be taken into 

consideration as well.  

On the other hand, 2pc-WLED can be easily integrated into on-chip configuration and it 

offers advantages in low cost, high brightness, excellent stability, and long lifetime. But the 

bottleneck is its relatively wide emission bandwidth, e.g. the state-of-the-art green phosphor (β-



40 

 

sialon:Eu2+) still exhibits FWHM ~55 nm [35, 82, 83]. While for red phosphor (K2SiF6:Mn4+) with 

five emission peaks, its individual FWHM is quite narrow but the effective peak wavelength 

centers at 625 nm [35, 84-86], which is slightly short from an ideal red color of 638 nm [77]. 

Therefore, red (R), green (G) and blue (B) lights still show a large crosstalk after passing through 

the color filters, which in turn degrades the color purity. 

3.1 Enlarging an LCD’s color gamut with a functional reflective polarizer 

To enlarge color gamut, here we propose to add a functional reflective polarizer (FRP) in 

the backlight unit to suppress the color crosstalk [87]. Such a FRP works as a notch filter to reflect 

the unwanted spectrum, while transmitting the remaining wavelengths with high efficiency. By 

optimizing the FRP bandwidth, we can boost the color gamut from 96.7% to 108.6% NTSC in CIE 

1931, or from 112.9% to 133.9% NTSC in CIE 1976, which is comparable to the Cd-based QDs. 

The incurred 16% optical loss results from the blocking of unwanted colors. Our design is 

completely compatible to the current backlight configuration; it simply replaces the conventional 

reflective polarizer with our new FRP. No extra modification or cost is required.  

3.1.1 Structure design 

Figure 3.1(a) shows the transmission spectrum of commonly employed color filters 

(dashed lines) and the emission spectrum of a 2pc-WLED (solid line). The RGB color filters 

exhibit severe crosstalks in the blue-green and yellow spectral regions. Figures 3.1(b) to 3.1(d) 

show the transmitted spectra after RGB color filters. Here, the fringe field switching (FFS) LCD 

with a negative dielectric anisotropy (Δε < 0) LC mixture is employed in our simulation and the 

wavelength dependent refractive indices are considered. Clearly, there is some light leakage for 
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each channel, especially for blue, where a fairly large bump leaks through the green color filters, 

deteriorating the final color purity.  

 

Figure 3.1. (a) Transmission spectrum for commercial color filters and 2pc-WLED with green (β-

sialon:Eu2+) and red (K2SiF6:Mn4+) phosphors; (b)-(d) Output spectrum for the blue, green and red 

sub-pixels, respectively. 

To suppress the color crosstalk, we propose to replace the conventional reflective polarizer 

[88, 89] with a functional reflective polarizer [90] in the backlight unit. Figure 3.2 shows the panel 

configuration with an edge-lit 2pc-WLED as an example. Different from QDEF or QD rail-based 

backlight, the 2pc-WLED can be packed into a chip without thermal stability issue. Therefore, the 
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whole system is compact. The light guide plate (LGP) together with an inverted prism film forms 

a directional backlight [91], and a front diffuser spreads the incident light to achieve wide viewing 

angle [92]. Such a system possesses advantages in wide view and negligible color shift and gamma 

shift [93]. Our FRP is laminated on top of LGP. The design principles and working mechanisms 

of FRP are discussed as follows. 

 

Figure 3.2. Schematic diagram of the system design with a functional reflective polarizer. (LC: 

liquid crystal, CF: color filter, FRP: functional reflective polarizer, and LGP: light guide plate) 

Figure 3.3(a) shows the schematic diagram of a conventional reflective polarizer [89], 

where in x-axis the refractive index alternates between n1 and n2. This multi-layered structure 

exhibits broadband reflection due to the constructive/destructive interferences. While in y-axis, 

there is no change in refractive index, enabling 100% transmittance for the y-polarized backlight 

[Figure 3.3(b)]. Such a reflective polarizer has been widely used in LCD backlight system to 

enhance the optical efficiency by recycling the disallowed polarization. Here, we modify this 

structure slightly. As Figure 3.3(c) depicts, it is a multi-layered structure in both axes. In x-axis, it 
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works as a broadband reflector, but in y-axis it is designed to function as a notch filter. The 

transmission spectrum is shown in Figure 3.3(d), where the reflection bands could be tuned to 

block the unwanted spectrum. The detailed design principle of FRP has been reported in Ref. [90]. 

Generally speaking, transfer matrix is employed to calculate the transmission and reflection spectra 

based on multi-layer constructive/destructive theory.  

 

Figure 3.3. Schematic diagram of (a) conventional reflective polarizer and (b) functional reflective 

polarizer; Transmission spectrum of (b) conventional reflective polarizer and (d) functional 

reflective polarizer. 

Regarding device fabrication, for conventional reflective polarizers two polymeric 

materials are commonly used: one is an isotropic film with refractive index n1 (e.g. NOA81; n1 
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=1.57) and another is a uniaxial film with Δn = n2 – n1 (e.g. BL038 LC polymer; n2 = 1.82 and n1 

= 1.57) [89, 90]. For the proposed FRP, we need one more isotropic material with refractive index 

n2. In our calculations, we choose polyferrocenes with n = 1.82 [90, 94].  

3.1.2 Simulation results 

Next, we integrate our FRP with 2pc-WLED backlight, and the output spectrum is plotted 

in Figure 3.4(a). The reflection band of FRP is specifically designed to block the crosstalk regions 

originated from 2pc-WLED and RGB color filters. For simplicity, here we assume the bandwidth 

of two reflection bands is equal, i.e. Δ1 = Δ2 = 30 nm. Of course, they can be different for 

practical applications, depending on the 2pc-WLED spectrum employed. After passing through 

FRP, the red, green and blue lights are well separated [Figure 3.4(a)]. Then we calculate the output 

spectrum considering the LC layer dispersion and color filter absorption, the obtained results are 

plotted in Figures 3.4(b) to 3.4(d) [33, 76, 77]. As expected, the crosstalk for each color is greatly 

reduced; especially for green and red, the light leakage is almost completely eliminated. Even for 

blue light, the crosstalk bump in the green region is partially blocked. It could be further improved 

by tuning the reflection band or enlarging the reflection bandwidth. As will be discussed later, the 

trade-off is lower transmittance. 
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Figure 3.4. (a) Output spectrum after FRP; (b)-(d) Output spectrum for blue, green and red sub-

pixels, respectively. 

Figures 3.5(a) and 3.5(b) show the simulated color gamut at CIE 1931 and CIE 1976 color 

space, respectively. From these two figures, we can see clearly that color gamut is widened because 

of purer three primary colors. As usual, NTSC is adopted as the evaluation matric, and the 

calculated color gamut increases from 96.7% to 105.0% in CIE 1931 color space, and from 112.9% 

to 125.4% in CIE 1976 color space. This is a record high color gamut for the 2pc-WLED based 

backlight. However, the optical efficiency is decreased by 8.1% because our FRP blocks some 

unwanted spectrum.  
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Figure 3.5. Simulated color gamut for 2pc-WLED with and without FRP in (a) CIE 1931 and (b) 

CIE 1976 color space. 

For practical applications, both color gamut and optical efficiency need to be optimized. 

The optical efficiency is mainly governed by the output spectra power density (SPD). The SPD 

directly determines the luminous efficacy of radiation (LER) of the system [33, 76]: 
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where Sout (λ) is the SPD of the output light, V(λ) is the standard luminosity function, and Km = 683 

lm/W is the LER of the ideal monochromatic 555-nm source. As the LER is only determined by 

the light spectra, it sets the theoretical limit for the total efficiency of a display. 

For a non-emissive display such as LCD, the SPD of the backlight (Sin(λ)) and the actual 

output light (Sout(λ)) can be modulated dramatically, depending on the transmission characteristics 

of the system. To quantify the transmission characteristics of the system, we introduce the transfer 

efficiency (TE) of the system as: 
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Then the total light efficiency (TLE) of the system is: 
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In our analysis, TLE is used as the main evaluation metric to quantify the optical efficiency. 

To make it more representative, all the efficiencies are normalized to the original 2pc-WLED 

backlight without FRP. It is worth mentioning that the decreased optical efficiency is mainly from 

blocking the unwanted light. The main red, green and blue spectra remain unchanged.  

Table 3.1. Simulated color gamut and optical efficiency for the 2pc-WLED based LCDs with 

different FRPs. 

Δ1 = Δ2 

       Color Gamut (NTSC) 

Efficiency 

CIE 1931 CIE 1976 

Original 2pc-WLED 96.7% 112.9% 1 

10 nm 98.8% 117.0% 0.973 

20 nm 101.9% 121.0% 0.952 

30 nm 105.0% 125.4% 0.919 

40 nm 108.6% 133.9% 0.839 

50 nm 109.8% 141.3% 0.738 

QD 108.0% 124.6% NA 
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Figure 3.6. Measured spectrum of a quantum dot enhancement film (QDEF) from EFUN 

Technology (Taiwan). 

Next, we investigate how the reflection bandwidth of FRP affects color gamut and optical 

efficiency. Table 3.1 lists the simulated results. In our calculations, we assume the same reflection 

bandwidth, i.e. Δ1 = Δ2. As the bandwidth increases, the RGB colors are separated farther, 

leading to less crosstalk and wider color gamut. As a comparison, here, a quantum-dot enhanced 

backlight is also considered. Its spectrum is plotted in Figure 3.6, and calculated color gamut using 

the same color filter is summarized in Table 3.1.   

For 2pc-WLED with Δ1 = Δ2 = 40 nm, a color gamut of 108.6% NTSC in CIE 1931 is 

realized, which is comparable to that of Cd-based QD. If CIE 1976 is considered, the obtained 

color gamut is boosted to 133.9%, which even outperforms the QD-enhanced backlight. However, 

the incurred optical loss is about 16%. This is because the FRP blocks some unwanted spectrum 

from the 2pc-WLED. From Table 3.1, Δ1 = Δ2 = 30 nm seems to be a good compromise. 



49 

 

3.1.3 Discussion 

For all the multi-layered films using constructive/destructive interferences, angular 

dependence is a big issue. Our FRP shares the same concern [89, 90]. As the incident light deviates 

from normal, the transmission spectrum of FRP would shift toward the shorter wavelength region, 

as Figure 3.7 shows. Thus, it is preferred to use a directional backlight in our design. Such a 

backlight (with FWHM~20o, i.e. ±10o) has been developed and commercialized successfully. The 

backlight power is confined within ±20o. From Figure 3.7, the reflection band shifts ~2 nm when 

the incident angle is 10º, and it increases to 7 nm as the incident angle increases to 20º. Such a 

small band shift is still tolerable for a directional backlight.  

 

Figure 3.7. Transmission spectrum of FRP for different incident angles. 

Figure 3.8(a) depicts the color gamut as a function of incident angle. In the CIE 1931 color 

space, color gamut increases by 1.7% (from 105.0% to 106.7% NTSC) as the incident angle 

increases from 0º to 20º. While in CIE 1976, it is slightly decreased from 125.4% to 122.4% 

NTSC. As for the efficiency, it decreases slightly from 91.9% to 91.0% [Figure 3.8(b)]. Therefore, 
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our FRP works quite well for a directional backlight. If a front diffuser is employed, wide viewing 

angle, and unnoticeable color shift and gamma shift can be achieved [93].  

 

Figure 3.8. (a) Color gamut and (b) optical efficiency as a function of incident angle. 

3.2 Going beyond the limit of an LCD’s color gamut  

As discussed above, reducing the bandwidth of light source is an effective approach to 

widen the color gamut. This is indeed what LCD industry adopts in the past two decades, from 

1pc-WLED (FWHM ~ 120 nm) to 2pc-WLED (FWHM ~ 50 nm), and then to QDs (FWHM ~ 25-

30 nm) [33]. Recently, organic-inorganic perovskite (OIP) is found to have a narrower FWHM (~ 

18-20 nm) than QDs [95, 96]. As a result, it holds potential to further enhance the color gamut of 

an LCD. But an interesting question to ask is: Is there a theoretical limit in LCD’s color gamut 

even if the light-emitter’s FWHM is approaching zero, or < 1 nm like lasers?  

Besides backlight, narrow-band color filter (CF) is another option to enlarge color gamut, 

except that the optical efficiency is compromised [77]. The state-of-the-art QD-enhanced backlight, 

along with specially designed narrow-band CFs, could achieve 92% Rec.2020 [97], but the 

tradeoff is ~25% reduced efficiency. For a battery-powered display, this 25% light efficiency loss 
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is hardly acceptable. Therefore, new approach to achieve wide color gamut while keeping high 

optical efficiency is urgently needed. 

In this part, we first investigate how the FWHM of a light source affects LCD’s color gamut, 

and find a theoretical limit even if FWHM approaches 1 nm [98]. Next, we propose a new backlight 

system incorporating a functional reflective polarizer and a patterned half-wave plate to suppress 

the crosstalk originated from color filters, which in turn significantly widens the color gamut [98]. 

In experiment, we prepared a white-light source using a blue LED to pump green OIP-polymer 

composite film and red QD, and demonstrated an exceedingly wide color gamut: 95.8% Rec. 2020 

in CIE 1931 color space, and 97.3% Rec. 2020 in CIE 1976 color space, with commercial high-

efficiency color filters. Our result is comparable to that of laser projection displays, but with direct-

view LCD panels. Besides quantum dots and perovskites, our design also works well for other 

light sources, like 2pc-WLED. 

3.2.1 Gaussian fitting effect 

Figure 3.9 shows the measured spectra of blue LED, green OIP and red QD. All of them 

exhibit Gaussian-like profiles. Thus, Gaussian fitting is commonly conducted to extract the peak 

emission wavelength and FWHM [76, 77]. These fitted curves are then employed to calculate the 

color gamut by neglecting the fitting discrepancy. Through fittings, we obtained the [peak 

wavelength, FWHM] of three primary colors as follows: [λB = 450.4 nm, ΔλB = 20.3 nm], [λG = 

531.6 nm, ΔλG = 19.7 nm] and [λR = 630.8 nm, ΔλR = 24.4 nm]. From Figure 3.9, a noticeable 

discrepancy is observed, especially for the blue LED. As for red QD and green OIP, they present 

longer emission tails than the fitted Gaussian functions. As will be shown later, it is these tails 

aggravate the color crosstalk, which in turn shrinks the color gamut. 



52 

 

 

Figure 3.9. Emission spectra for blue LED, green perovskite and red QD. Solid lines are measured 

data, and dashed lines are from Gaussian fittings. 

In an LCD, the backlight passes through the LC layer and color filters before reaching the 

viewer. Therefore, we have to incorporate the backlight spectra [Figure 3.9] into the LCD panel in 

order to calculate the output spectral power distribution (SPD). In our simulation, we chose a fringe 

field switching (FFS) LCD with negative dielectric anisotropy (Δε < 0) LC and a commercial color 

filter array as an example [Figure 3.10(a)]. Such an LCD has been widely used in smartphones and 

pads [4, 29]. The wavelength dependent refractive indices of the employed LC are also considered 

in the simulation. Figures 3.10(b) to 3.10 (d) depict the obtained SPD for the RGB primary colors 

with or without Gaussian fitting. In both cases, light leakage for all three channels are observed 

clearly; especially for the blue channel, where a fairly large bump leaks through the green color 

filter. For the real spectrum without Gaussian fitting, the light leakage is even worse, owing to the 

long emission tails, which would further deteriorate the color purity.  
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Figure 3.10. (a) Transmission spectra for a commercial color filter array; Output SPDs for (b) blue, 

(c) green and (d) red primary colors with and without Gaussian fitting. 

Figure 3.11 illustrates the color gamut shrinkage more clearly. In both color spaces, green 

and blue color coordinates with Gaussian fitting expand outwards, representing high purity 

primary colors. The obtained color gamut results are summarized in Table 3.2.  
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Figure 3.11. Color gamut in (a) CIE 1931 color space and (b) CIE 1976 color space. 

In CIE 1931 color space, the color gamut with Gaussian fittings is 6.6% wider than that 

using the real spectra, while in CIE 1976 this difference is 6%. For different color filters and light 

sources, this discrepancy varies. But it is for sure that Gaussian fitted curves lead to a wider color 

gamut than using the real emission spectra. Therefore, to establish the theoretical limit of an LCD’s 

color gamut, we choose to use the Gaussian-fitted spectra. 

Table 3.2. Simulated color gamut for the light source with and without Gaussian fitting. 

 
Rec. 2020 

CIE 1931 CIE 1976 

w/ Gaussian Fitting 
89.4% 89.9% 

w/o Gaussian Fitting 
82.8% 83.9% 
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3.2.2 Pareto front for the color gamut and light efficiency 

From Table 3.2, the color gamut without Gaussian-fitted spectra is ~ 83% Rec. 2020. To 

improve that, we need to fine-tune the emission spectrum of QD and OIP to match the transmission 

bands of color filters, as Figure 3.12 shows. However, tuning the peak emission wavelength would 

influence the light efficiency, because human eye has different sensitivities to different colors. 

This is governed by the human eye sensitivity function V(), which peaks at 555 nm. Therefore, 

we choose total light efficiency (TLE), described by Eq. (3.3), to characterize how much input 

light transmits through the LCD panel and finally gets converted to the brightness perceived by 

the human eye [33, 76].  

 

Figure 3.12. Transmission spectra of commercial color filters and different white light sources. 

Both color gamut and TLE are important parameters for a display device. For such a multi-

objective problem, different objectives may be mutually exclusive. That means, any further 

improvement of one objective (e.g. color gamut) is likely to be compromised by the degradation 

of another objective (e.g. TLE). Therefore, a Pareto front is commonly employed, and all the 
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solutions will fall either on or below this Pareto front [99]. Figure 3.13 is a plot of the calculated 

Pareto fronts of the LCD using backlight with different FWHM values.  

 

Figure 3.13. Pareto front defined in (a) CIE 1931 and (b) CIE 1976 with different FWHM light 

sources. 

From Figure 3.13, several interesting phenomena are found. Firstly, there exists an inherent 

tradeoff between light efficiency and color gamut. Thus, a delicate balance should be chosen in 

practical applications. Secondly, for backlight with the same FWHM, there is indeed a theoretical 

limit for the color gamut regardless of the RGB central wavelengths. For example, when the 

FWHM of QD or OIP emission spectrum is 30 nm, the largest achievable color gamut is 90.1% 

Rec. 2020 in CIE 1931 [Figure 3.13(a)], or 91.5% Rec. 2020 in CIE 1976 [Figure 3.13(b)]. Next, 

we find that as the light source becomes more saturated (i.e. narrower FWHM), the maximum 

color gamut increases and then gradually saturates. Currently, the commercial Cd-based QD-

enhanced backlight exhibits a 30-nm FWHM, and it could reach 25 nm in the next few years. Let 

us assume that 20 nm can obtained someday. According to Figure 3.13, the color gamut 

improvement is only 2%. Even if the FWHM of the light emitters were laser-like ( 1 nm), the 
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maximum color gamut is ~93.5% Rec. 2020. This limits the color gamut that an LCD can possibly 

achieve. Please note that this limit is obtained with Gaussian fitted spectra; it would be lower if 

real spectra are used.  

 

Figure 3.14. Transmission spectra of two commercial color filters and a white light source. 

Next, we examine the color filter effect, as shown in Figure 3.14. The results shown in 

Figure 3.13 are based on CF-1; it has high transmittance, but a relatively large overlap in the 

blue/green and green/red regions. On the other hand, CF-2 possesses a smaller crosstalk, but its 

transmittance is about 25% lower in the blue and green regions. Again, we carry out the 

optimizations using CF-2 and plot the Pareto front results in Figure 3.15. The trend is similar to 

that in Figure 3.13, but with a wider color gamut. Due to the suppressed light leakage, its color 

gamut reaches 93.1% Rec. 2020 when a 30-nm FWHM backlight is employed. If we reduce the 

FWHM to 20 nm, this limit is increased to 94.9% Rec. 2020. However, when the real spectrum is 

employed, the color gamut should be narrower due to the abovementioned Gaussian fitting effect. 

In comparison with CF-1 [Figure 3.13], CF-2 suffers 25% in optical efficiency but only gains 2.7% 
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in color gamut. Such a tradeoff may not be worth taking, especially for the battery-powered mobile 

display devices.  

 

Figure 3.15. Pareto front defined in (a) CIE 1931 and (b) CIE 1976 using CF-2. 

So far, we have found the theoretical limit of an LCD’s color gamut, as shown in Figure 

3.13 and Figure 3.15. It is jointly determined by the light source (central wavelength and FWHM) 

and the color filters (crosstalk). Even if we reduce the backlight’s FWHM to 1 nm, the color gamut 

is still limited by the crosstalk of the blue/green and green/red color filters [Figure 3.10]. 

Narrowing the transmission bands (CF-2) could mitigate this issue, but not completely. Meanwhile, 

the optical efficiency is compromised substantially. This tradeoff may not be worth taking. 

Therefore, as long as the color filter technology makes no disruptive progress, the color gamut of 

an LCD will be limited, even if the backlight source exhibits laser-like narrow emission spectra. 

3.2.3 Structure design 

From above discussions, keep narrowing the emission spectrum of QD or OIP would 

eventually reach the theoretical limit, based on the predictions in Figure 3.13 and Figure 3.15. To 

overcome the barrier resulted from color filters, we propose a new backlight configuration, as 
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depicted in Figure 3.16. The key components are a functional reflective polarizer (FRP) and a 

patterned half-wave plate. They work together to suppress the unwanted light leakage caused by 

color filters [98].   

From Figure 3.16, a high power blue LED is used to excite the quantum rail, consisting of 

red QD and green OIP-polymer composite film. Then, the advanced LCD system incorporating a 

directional backlight and a front diffuser is used again, just as the discussion in previous section 

[93]. Our FRP and patterned half-wave plate can be laminated on the top surface of the inverted 

prism film.  

 

Figure 3.16. Schematic diagram and working principle of the proposed backlight with a functional 

reflective polarizer (FRP) and a patterned half-wave plate. (TN: twisted nematic alignment; HG: 

homogeneous alignment) 

As discussed above, FRP is a multi-layer structure with alternative refractive indices (n1 

and n2), as shown in Figure 3.3(c) [90]. Due to the constructive/destructive interferences, it 
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functions as a band-pass filter for both polarization directions (i.e. x-polarized and y-polarized). 

Here, in this design, its functions are designed as follows: For x-polarized incident light [Figure 

3.17(a)], only short wavelength light (blue) could pass, whereas the rest is reflected. For y-

polarized incident light [Figure 3.17(b)], it is reversed: only green and red lights could pass through 

FRP, while blue light is reflected. As a result, after FRP the polarization state of blue light is 

orthogonal to that of green/red lights [Figure 3.16]. Also, we study the angular dependent 

transmission of FRP. Results are shown in Figures 3.17(a) and 3.17(b). Within 30 incidence, 

FRP could still separate the blue and green/red regions effectively. For a commercial directional 

backlight (with FWHM ~ 20, i.e. 10), its optical power is mostly confined within 20. 

Therefore, our FRP works quite well regardless of the small band shift. 

 

Figure 3.17. Angular dependent transmission spectra of (a) x-polarized incident light, and (b) y-

polarized incident light. 

Above FRP is a patterned phase retardation film, which is divided into half-wave region 

and free region. For the light traversing through the /2 region, its polarization is rotated by 90, 

e.g. x-polarization turns to y-polarization or vice versa. If the light passes through the free region, 
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then its polarization remains unchanged.  To achieve this goal, we employed a patterned LC phase 

retardation film. In the /2 region, the LC has 90 twist, while in the free region it has 

homogeneous (HG) alignment. The detailed structure and working principle are illustrated in 

Figures 3.18(a) and 3.18(b). With the help of photo-alignment technology [100, 101], we have 

successfully fabricated a patterned half-wave plate. The captured polarized optical microscope 

(POM) images under crossed and parallel polarizers are shown in Figures 3.18(c) and 3.18(d), 

respectively. As expected, it performs quite well.  

 

Figure 3.18. Working principle of a patterned half-wave plate for (a) x-polarized incident light and 

(b) y-polarized incident light; Captured POM images under (c) parallel polarizers and (d) crossed 

polarizers. (Scale bar: 50 µm; P: polarizer; A: analyzer) 

For the system configuration shown in Figure 3.16, this patterned half-wave plate should 

register with the R/G/B sub-pixels. Here, the half-wave region is right below the green/red sub-

pixels, and free region corresponds to the blue sub-pixel. After FRP, the blue light is polarized 
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along x-axis, while the green and red lights are along y-axis. After passing through the patterned 

half-wave plate, no change happens to the light in free region (corresponding to blue sub-pixel), 

which means blue light is still polarized along x-axis. On the other hand, in the half-wave region 

(corresponding to green and red sub-pixels), the polarization of outgoing lights changes 90, 

turning to y-polarized blue light and x-polarized green/red lights. Therefore, R/G/B lights could 

traverse through the front linear polarizer (with transmission axis along x-axis) and enter the 

corresponding R/G/B sub-pixels. Please note that only blue light can enter the blue sub-pixels, 

because green/red lights are absorbed by the linear polarizer due to mismatched polarization. 

Similar situation occurs to the green and red sub-pixels. Therefore, no crosstalk exists between the 

blue and green/red regions, leading to a much wider color gamut. 
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Figure 3.19. Output SPD of blue primary color for (a) conventional backlight, and (b) newly 

proposed backlight. 

Figure 3.19 illustrate this effect. Let us assume the LCD backlight spectrum is shown in 

Figure 3.9. When the input white light (black line in Figure 3.19(a)) passes through blue color 

filter (blue line), there is noticeable light leakage in the green region (500 nm ~ 550 nm), which in 

turn deteriorates the color purity. But for our new structure with a patterned half-wave plate, blue 

light and green/red lights are decoupled in terms of polarization direction [98]. As discussed above, 

only blue light can enter blue color filter; the crosstalk in the green region is eliminated almost 

completely [Figure 3.19(b)]. Similarly, more saturated green and red primary colors are realized. 

Thus, the color gamut is enhanced from 82.8% to 89.0% Rec. 2020.  

3.2.4 Experiment results 

With the white light source shown in Figure 3.9, we can obtain 89% Rec. 2020. To further 

improve it, we need to choose the RGB central wavelengths carefully. In experiment, we tried 

multiple combinations of blue LED, green OIP and red QD to generate a desired white light. If we 

use Gaussian-fitted spectra, then it is fairly easy to simulate the color gamut before searching for 

suitable light source. However, the actual emission spectrum often contains a long tail and it is 

challenging to predict the final color gamut accurately. After dozens of experiments, we found an 

optimal combination, as plotted in Figure 3.20(a). The RGB color coordinates overlap quite well 

with Rec. 2020 standard, as Figures 3.20(b) and 3.20(c) show. The corresponding color gamut is 

95.8% Rec. 2020 in CIE 1931, and 97.3% Rec. 2020 in CIE 1976. Here, high efficient color filter 

(CF-1 in Figure 3.14) is employed. Compared to the theoretical limit (93.5% Rec. 2020 for 1-nm 

FWHM) shown in Figure 3.13, we have successfully overcome this limitation for LCDs. At the 
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best of our knowledge, this is the record-high color gamut of an LCD. What’s more, this is realized 

using commercial high-efficiency color filters, intended for TV applications.  

 

Figure 3.20. (a) Measured spectra for optimized white light source, and corresponding color gamut 

in (b) CIE 1931 color space and (c) CIE 1976 color space. 

3.2.5 Discussion 

So far, our design is aimed at breaking the color gamut limit of an LCD using QD/OIP-

enhanced backlight. Next, we want to extend this approach to other backlight technologies, like 

2pc-WLED. By packaging QD/OIP into an LED chip, both lifetime and quantum yield would be 
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sacrificed because of the high junction temperature [33]. Therefore, 2pc-WLED still holds the 

advantages in stability, long lifetime, low cost and simple optical configuration. The major 

drawback is its relatively broad green and red spectra, leading to 70%-80% Rec. 2020, depending 

on the employed color filter. When incorporating 2pc-WLED (β-sialon:Eu2+ as green phosphor 

and K2SiF6:Mn4+ as red phosphor) into our design, the color gamut can be enhanced from 80% to 

89% using high efficiency CF-1 color filters, as Figure 3.21 depicts. If CF-2 is employed, the color 

gamut is boosted to 91.5% Rec. 2020, except that the light efficiency is decreased by about 25%. 

This enables 2pc-WLED to compete directly with the state-of-the-art Cd-based QD technology in 

terms of color performance.  

 

Figure 3.21. Color gamut defined in (a) CIE 1931 and (b) CIE 1976 using 2pc-WLED backlight. 

(CF-1 is used as color filter) 
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3.3 Summary 

In this chapter, we analyze in detail how the backlight’s peak wavelength, FWHM and 

color filters affect the color gamut of an LCD device. To get better color performance, we propose 

two novel backlight configurations. One is a simple yet efficient approach using a so-called 

functional reflective polarizer (FPR). It acts as a notch filter to block the light which would leak 

through the color filters, while transmitting the rest wavelength at high efficiency. When integrated 

with a commercial 2pc-WLED, the color gamut of the LCD can be improved from 96.7% to 108.6% 

NTSC in CIE 1931, or from 112.9% to 133.9% NTSC in CIE 1976, which is comparable to the 

cadmium-based quantum dot backlight. Our design offers an alternative approach to quantum dots, 

while keeping low cost, long lifetime, and high brightness.  

Another approach is using a FRP and a patterned half-wave plate. The design decouples 

the polarization of blue light and green/red lights, which effectively suppresses the crosstalk 

between these color bands, thus, boosting the color gamut. In experiment, we prepared a white-

light source using blue LED to pump green perovskite and red quantum dot, and demonstrated an 

exceedingly high color gamut (95.8% Rec. 2020 in CIE 1931 color space, and 97.3% Rec. 2020 

in CIE 1976 color space) with commercial high-efficiency color filters. The results are beyond the 

color gamut limit that a conventional LCD can achieve.  
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 CHAPTER FOUR: HIGH CONTRAST RATIO 

4.1 Depolarization effect in an LCD panel 

High contrast ratio (CR) is another equally important parameter to achieve supreme image 

quality. However, for a non-emissive LCD, its CR is inherently limited, due to the unwanted light 

leakage at voltage-off state. Currently, a commercial VA LCD TV shows CR ~ 5000:1, for FFS-

based LCD smartphones and tablets, their CR is only ~2000:1.  While for TN-based notebook and 

desktop computers, it is even lower (CR ~ 1000:1) [4]. 

To improve CR, increasing the polarizer thickness is a straightforward approach. However, 

more evidences reveal that polarizer is no longer the limiting factor [102-104]. In fact, it is fairly 

easy to get CR > 100,000:1 with two high-quality crossed polarizers, but the final CR of an LCD 

is still limited to 5,000:1, which is mainly governed by the depolarization effect inside the LCD 

panel. The origins for this depolarization are rather complicated [105-110], including diffraction 

effect, scattering effect, misalignment effect, etc. After extensive studies, the underlying physical 

mechanisms have been gradually understood, and their contributions to the total depolarization 

can be evaluated quantitatively [111, 112], as will be discussed later.  

Although the depolarization effect has been verified experimentally and investigated 

systematically, how to incorporate this effect into the simulation model remains to be a big 

challenge [113]. Actually, for the commercial software DIMOS or TechWiz, this depolarization 

effect is completely neglected, and the calculated CR is solely determined by the polarizers without 

considering the depolarization or scattering effect. Therefore, it is quite common to obtain CR > 

10,000:1 in simulations, but in reality it is much lower. If the CR is not accurate, let alone the 

viewing angle. Therefore, there is urgent need to build a more rigorous model taking the 
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depolarization effect into consideration, which helps not only understand the underlying physical 

mechanisms but also guide the device and material optimizations. 

In this part, we build a physical model by introducing a depolarization coefficient (A). With 

that, we could accurately simulate the contrast ratio and viewing angle [114]. Then, based on this 

model, we propose a new device structure to mitigate the depolarization effect, leading to a much 

improved CR. Other possible approaches to enlarge CR will also be discussed. 

4.1.1 New simulation model 

(a) Polarizer effect 

Before introducing the new simulation model, firstly we have to know how the 

conventional model works. Here, we choose a commercial software TechWiz (Sanayi, Korea) as 

an example. In our simulation, the parameters for polarizer and analyzer are: no = 1.5, ko = 

0.000306, ne = 1.5, and ke = 0.019027. As usual, no (ko) and ne (ke) represent the real (imaginary) 

part of ordinary and extraordinary refractive index, respectively. Then, polarizer (analyzer) 

thickness is varied from 15 m to 30 m, and the obtained results are shown in Figure 4.1. As 

expected, when the thickness of polarizer (or analyzer) increases, the transmittance of both bright 

state and dark state decreases, but at different rates [Figure 4.1(a)]. As a result, the corresponding 

CR increases exponentially [Figure 4.1(b)], and CR > 100,000:1 can be realized by simply 

increasing the polarizer thickness to over 29 m. However, this is only for the ideal case. In reality, 

due to the depolarization effect of LCD components, the CR is limited to ~5000:1 for VA mode 

and ~2000:1 for FFS mode. 
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Figure 4.1. (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a 

function of polarizer thickness. No depolarization effect is considered. 

 

(b) Origins of depolarization  

The origins for depolarization are rather complicated; they may come from the diffraction 

effect of patterned thin-film transistors (TFTs) and electrode, scattering effect from LC layer and 

color filter (CF) array, misalignment of crossed polarizers, and rubbing scratches, etc. [106-112] 

Figure 4.2 schematically depicts some of them. Moreover, these physical origins make different 

contributions for different LC modes. For example, in FFS and in-plane switching (IPS) modes, 

scattering effect from LC director’s thermal fluctuation contributes 50%-60% to the total 

depolarization effect (also known as degree of imperfection), while CF pigment scattering makes 

30%-40% [111, 112]. But in VA mode, LC scattering is greatly reduced, thus CF scattering turns 

out to be the dominant factor [115]. 
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Figure 4.2. Schematic diagram for accounting the depolarization effect in an LCD panel. CF: color 

filter; LC: liquid crystal; TFT: thin-film transistor. 

 

(c) Depolarization coefficient (A) 

Next, to quantify the depolarization effect we introduce a depolarization coefficient (A), 

which is described by: 

,)1(' AIAII yxx                                                              (4.1) 

),1(' AIAII yxy                                                              (4.2) 

where Ix (Iy) and 𝐼𝑥
′  (𝐼𝑦

′ ) represent the intensity of original light and scattered light along two 

orthogonal polarization directions, respectively. In theory, each depolarization mechanism should 

have one coefficient, like A1 for electrode diffraction, A2 for LC scattering, A3 for CF scattering, 

etc. But for simplicity we can define an effective depolarization coefficient (Aeff), which is the sum 

of each individual coefficient: 
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.321  AAAAeff                                                         (4.3) 

This could be illustrated as follows. Let us start from the simplest case: A1 and A2. They 

are governed by these equations: 
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With simple algebra, we obtain: 
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In practice, A1 and A2 are relatively small and we can neglect the higher order term 2A1A2. 

Under such condition, Eq. (4.5) is simplified to: 
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In Eq. (4.6), Aeff  = A1 + A2. Similarly, although multiple depolarization factors could coexist 

in an LCD panel, we could treat them as a single coefficient A in the simulation.  

4.1.2 Simulated contrast ratio 

With the introduction of depolarization coefficient A, now we can perform the calculations. 

Figure 4.3 depicts the flow chart of our new simulation model [114]. Compared to the conventional 

one, the only difference is the introduction of a scattering module. Next, to illustrate the 

effectiveness of our new model, we choose MVA and FFS as two examples.  
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Figure 4.3. Flow chart of the proposed simulation model. 

 

(a) MVA mode 

Due to the fast response time and high contrast ratio, MVA has been widely used in large-

sized TVs [4]. Here, we choose it as an example to elucidate the simulation procedures. The 

employed LC mixture and electrode structure are the same as those reported in [116]: MLC-6608 

(Merck), electrode width w = 6 m, electrode gap g = 42 m, and cell gap d = 4 m. Compensation 

films are implemented to suppress the color shift and gamma shift at large oblique angles. Polarizer 

and analyzer are 24-µm thick with no = 1.5, ko = 0.000306, ne = 1.5, and ke = 0.019027. Unless 

otherwise stated, all the contrast ratios presented here are evaluated at λ = 550 nm. 
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Figure 4.4. (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a 

function of depolarization coefficient for MVA mode. Depolarization effect is considered. 

 

With all other parameters being known, the depolarization coefficient A can be extracted 

easily from the measured contrast ratio. Figure 4.4(a) shows the transmittance of bright state and 

dark state as a function of A, where bright state is not affected but dark state is degraded 

significantly as A increases. Figure 4.4(b) shows the corresponding CR. When A = 0 (ideal case 

without depolarization effect), CR is ~12,000:1. As A increases (real case with strong 

depolarization effect), CR decreases almost exponentially. According to the measured result, 

MVA shows CR  5000:1. Thus, from Figure 4.4(b) we find A ~ 0.00009 for the MVA mode. 
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Figure 4.5. Simulated contrast ratio and normalized transmittance for MVA mode with 

depolarization coefficient A = 0.00009. Note: 24-µm thick polarizer is the reference with CR  

5000:1 and efficiency = 1. 

 

With the obtained coefficient A, we can evaluate the real CR for the MVA mode by varying 

the polarizer thickness. Results are depicted in Figure 4.5. Interestingly, as the polarizer gets 

thicker, CR increases first but then saturates gradually. This trend is quite different from the result 

using conventional model [Figure 4.1(b)]. It indicates that keeps on increasing the polarizer 

thickness would eventually reach a theoretical limit (CRlim), which is governed by the 

depolarization coefficient (A) and peak transmittance (Tp):  

./lim ATCR p                                                               (4.7) 

Based on our new model, we could also perform the optimization for polarizer. For 

example, in Figure 4.5, let us set 24-m thick polarizer as the reference with CR  5000:1 and 

efficiency = 1. As the polarizer thickness increases, CR increases and then saturates but 

transmittance keeps decreasing. A good balance occurs at 29 m, where CR is increased by 60% 
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( 8000:1) while the transmittance is reduced by 6.8% (93.2%). For comparison, it is unlikely to 

do the similar optimization with conventional models because the true CR information is obscured.  

(b) FFS mode 

FFS mode exhibits several outstanding features, such as high transmittance, wide viewing 

angle, weak color shift, and robust to touch pressure [4, 10]. Both positive (p-FFS) and negative 

(n-FFS) dielectric anisotropy (Δε) LC materials can be used in FFS [28, 29]. Here, we focus on n-

FFS with zigzag electrode configuration. The employed LC mixture is ZOC-7003 (JNC, Japan), 

cell gap is 3.11 m, electrode width is 2.5 m, and electrode gap is 3.5 m. The simulated results 

are plotted in Figure 4.6. Due to stronger scattering effect of the LC layer, FFS exhibits a slightly 

lower CR ( 2000:1). The corresponding A for FFS is 0.00039, which is about 4x larger than that 

of MVA (A 0.00009). 

 

Figure 4.6. (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a 

function of depolarization coefficient for FFS mode, where depolarization effect is considered. 

 

Figure 4.7 shows how the polarizer thickness affects the CR and optical efficiency of FFS 

mode. A similar trend, where CR saturates at 2400:1, is observed. However as the polarizer 
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thickness increases from 24 m to 29 m, the CR only improves by 15% (from 2000:1 to 2300:1), 

which is much less significant than that of MVA mode (15% vs. 60%).   

 

Figure 4.7. Simulated contrast ratio and normalized transmittance for FFS mode with 

depolarization coefficient A = 0.00039. Note: 24-µm thick polarizer is the reference for CR  

2000:1 and efficiency = 1. 

 

(c) CR improvement 

As discussed above, FFS shows less CR improvement when increasing the polarizer 

thickness. This can be further investigated by varying the depolarization coefficient, and results 

are plotted in Figure 4.8. As A increases, the CR improvement (𝐶𝑅𝑇=29𝜇𝑚/𝐶𝑅𝑇=24𝜇𝑚) gradually 

saturates. This trend is quite reasonable because CR is jointly determined by the polarizer and the 

depolarization effect. If depolarization is weaker (smaller A), then the polarizer would make a 

larger impact, just like MVA mode. On the other hand, if depolarization is strong (large A), then 

the CR would not be affected too much by the polarizer. Thus, to improve CR of an FFS LCD, the 

most effective approach is to reduce A rather than increasing the polarizer’s thickness. To do so, 
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several methods can be considered, such as optimizing LC alignment [109], choosing a proper LC 

mixture [103], and reducing the CF pigment size [102]. 

 

Figure 4.8. (a) Simulated contrast ratio and (b) contrast ratio improvement as a function of 

depolarization coefficient. 

 

4.1.3 Simulated viewing angle 

So far, we only concentrate on the CR at normal angle. Next, we examine the CR at 

different viewing angles. Please note that, here for simplicity, we assume the depolarization 

coefficient is constant for the entire viewing zone. In practice, we have to extract these coefficients 

at each viewing angle, using the method illustrated in Figure 4.4(b) and Figure 4.6(b). However, 

as will be discussed later, at large oblique angles, CR is much lower. In that case, depolarization 

coefficient will not make too much impact. 

(a) MVA mode 

Figure 4.9 shows the simulated isocontrast contours for the MVA mode. Without 

considering the scattering or depolarization effect [Figure 4.9(a)], the maximum CR obtained by 
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TechWiz is 11,437:1. But when A ( 0.00009) is introduced using our new model [Figure 4.9(b)], 

this value is reduced to CRmax = 5011:1. Clearly, our result is more realistic and representative for 

practical products. Also, by comparing these two figures we can find a very interesting 

phenomenon: the high CR region (> 4000:1) shrinks noticeably, while the low CR region (< 500:1) 

remains almost the same. This finding is consistent with our previous result shown in Figure 4.8, 

which indicates higher CR is more sensitive to the depolarization effect.  

 

Figure 4.9. Simulated isocontrast contour for (a) ideal MVA mode using TechWiz, where CRmax 

= 11,437:1, CRmin = 132:1, and CRave = 4350:1. (b) Real MVA with A 0.00009, where CRmax = 

5011:1, CRmin = 130:1, and CRave = 2392:1. For both cases, the polarizer thickness is 24 µm. 

 

Now the maximum CR is about 5000:1. To enlarge this value, we could increase the 

polarizer thickness from 24 m to 29 m, as described above. The obtained CRmax is 8000:1, and 

meanwhile the viewing angle is widened, especially in the central part [Figure 4.10(a)]. If we can 

further reduce the depolarization coefficient by 20% (from 0.00009 to 0.000071 using the methods 

mentioned above), then the maximum CR would increase to 10,066:1 [Figure 4.10(b)].  
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Figure 4.10. Simulated isocontrast contour for (a) a realistic MVA with polarizer thickness = 29 

µm and A = 0.00009, where CRmax = 8129:1, CRmin = 147:1, and CRave = 3501:1. (b) Same MVA 

but with polarizer thickness = 29 µm and A = 0.000071, where CRmax = 10,066:1, CRmin = 148:1, 

and CRave = 4077:1. 

 

(b) FFS mode 

Next, we examine the viewing angle property of FFS mode, and results are shown in Figure 

4.11. A big difference is observed between conventional model (ideal case) and our new model 

with depolarization coefficient A = 0.00039. For example, in Figure 4.11(a), the maximum CR is 

as high as 13,150:1, and CR > 5000:1 covers a large region. But using our new model [Figure 

4.11(b)], CRmax is only 2024:1, and the contrast ratio in the central viewing zone is reduced to 

1500:1, which is more consistent to the measured results. 

 



80 

 

 

Figure 4.11. Simulated isocontrast contour for (a) an ideal FFS mode using TechWiz, where CRmax 

= 13,150:1, CRmin = 105:1, and CRave = 4467:1. (b) A realistic FFS with depolarization coefficient 

A = 0.00039, where CRmax = 2024:1, CRmin = 100:1, and CRave = 1184:1. For both cases, the 

polarizer thickness is 24 µm. 

4.2 High CR LCD with an in-cell polarizer 

4.2.1 Structure design 

As aforementioned, depolarization (scattering) coefficient A plays a key role for improving 

the contrast ratio and viewing angle. To reduce A, here we propose a new device structure, as 

Figure 4.12 depicts, by adding an in-cell polarizer between the LC layer and the color filters [117]. 

The remaining structure remains the same as conventional LCD panel. Please note that the 

transmission axis of in-cell polarizer is parallel to that of analyzer. Because of the introduction of 

in-cell polarizer, the depolarization coefficients for each layer are decoupled. That is to say, below 

the in-cell polarizer, depolarization is mainly from TFT substrate and LC layer, which is marked 

as A1; while above the in-cell polarizer, depolarization is mainly governed by the scattering effect 
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of color filter pigment, marked as A2. Then A1 and A2 should be treated separately, as will be 

discussed later. 

 

 

Figure 4.12. Schematic diagram of the proposed device structure with an in-cell polarizer. 

 

4.2.2 Operation principles 

 

Figure 4.13 shows the detailed working mechanism. For conventional one [Figure 4.13(a)], 

when backlight goes through the front polarizer, it becomes linearly polarized, say along x-axis. 

Then after passing through the TFT substrate and LC layer, there is some light leakage along y-

axis due to scattering effect. Here, it is governed by A1. After the light passing through color filters, 

the depolarization becomes more severe, represented by A1+A2. When entering the analyzer, the 

x-polarized (dominant polarization direction) light is blocked as expected, while only the 

depolarized light (jointly determined by A1+A2) could traverse through the analyzer. This 

undesirable light leakage degrades the contrast ratio [111, 112].   

For our proposed device structure [Figure 4.13(b)], the depolarization effect remains the 

same for the TFT substrate and LC layer, which is A1. But above the LC layer, there is an in-cell 

polarizer to absorb the x-polarized light; only the scatted light could leak through and enter the 
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color filter array (although it has strong scattering effect). In this case, the depolarized light is still 

governed by A1, and it becomes the final light leakage. Therefore, the effective CR would be 

enhanced greatly. 

Another important point should be mentioned here is that the extinction ratio of in-cell 

polarizer is not too critical. As long as most of the x-polarized light (dominant polarization 

direction) is absorbed by the in-cell polarizer, the whole system should work equally well. In that 

way, high transmittance would be realized. In fact, in our simulation as will be shown later, a 1-

m-thick lyotropic LC-based in-cell polarizer is employed. Its extinction ratio is only ~2000:1. 

Even if this in-cell polarizer has an extinction ratio as low as 100:1, according to our analysis, the 

final CR performance would not degrade too much, because only 1% of the leaked light would be 

scattered by the CF pigments. As a result, the final light leakage remains negligible for the MVA 

and FFS mode.  
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Figure 4.13. Working mechanism of (a) conventional LCD panel with depolarization effects, and 

(b) the proposed LCD panel with decoupled depolarization effects. 

4.2.3 Simulation results 

In our simulation, we assume the in-cell polarizer is 1-µm thick with no = 1.5, ko = 0.0003, 

ne = 1.5, and ke = 0.364. Since the depolarization coefficients are decoupled intentionally, the 

calculation flow chart would be slightly different from previous one, as shown in Figure 4.14.  
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Figure 4.14. Flow chart of the proposed simulation model for new structure configuration. 

 

(a) MVA mode 

According to the analyses from both experiment [107] and simulation [115], LC scattering 

in MVA mode is more forgiven than that in FFS mode due to their different alignment directions 

(homeotropic vs. homogeneous). Therefore, in MVA calculations, we set A1 = 0.00003 and A2 = 

0.00006 (A1 < A2); while in FFS mode it is reversed, i.e. A1 > A2, as will be discussed later. Figure 

4.15 shows the simulated viewing angle of new MVA mode. For conventional 24 m thick 

polarizer [Figure 4.15(a)], the maximum CR is improved to 12,277:1, which is about 2.4x higher 

than that of conventional one shown in Figure 4.9(b). Also, the high CR region is greatly widened, 

and the average CR for entire viewing zone is > 4,500:1. If we slightly increase the polarizer 

thickness to 29 m [Figure 4.15(b)], the maximum CR is improved to 23,163:1. This is a record-
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high CR for LCD. Please note that all these results are realized using our new model which includes 

the depolarization effect. 

 

Figure 4.15. Simulated isocontrast contour for the proposed device configuration in MVA mode. 

(a) Polarizer thickness is 24 µm, and (b) Polarizer thickness is 29 µm. For the 24-µm thick polarizer: 

CRmax = 12,277:1, CRmin = 132:1, and CRave = 4685:1. For the 29-µm thick polarizer: CRmax = 

23,163:1, CRmin = 149:1, and CRave = 7223:1. 

(b) FFS mode 

Figure 4.16 depicts the isocontrast contour of the new FFS mode with an in-cell polarizer. 

Here, we set A1 = 0.00026 and A2 = 0.00013, since the light leakage mainly originates from LC 

scattering [111, 112]. From Figure 4.16(a), the maximum CR is improved to 3000:1, which is 

higher than the theoretical limit of 2400:1 shown in Figure 4.7. Similarly, increasing the polarizer 

thickness to 29 m [Figure 4.16(b)] would further boost the CRmax to 3349:1. And CR > 3000:1 is 

extended to ± 60º in the horizontal viewing direction. 
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Figure 4.16. Simulated isocontrast contour for the new FFS with an in-cell polarizer. (a) Polarizer 

thickness is 24 µm, and (b) polarizer thickness is 29 µm. For the 24-µm thick polarizer: CRmax = 

3002:1, CRmin = 115:1, and CRave = 1576:1. For the 29-µm thick polarizer: CRmax = 3349:1, CRmin 

= 115:1, and CRave = 1819:1. 

4.2.4 Discussion 

 

So far, high CR (> 10,000:1) has been realized by adding an in-cell polarizer between LC 

layer and color filter array to decouple the depolarization effect. Actually, based on the same 

concept, various device configurations can be considered.  

(a) Dual in-cell polarizers 

For practical applications, the in-cell polarizer can be placed in other places to decouple 

the depolarization coefficient of desired layers. Of course, we could also add more than one in-cell 

polarizer to the LCD panel to decouple each layer. For example, in Figure 4.17 we add two in-cell 

polarizers on both sides of the LC cell. Under such condition, the depolarization coefficient of TFT 

and LC layer is decoupled so that the CR can be further enhanced. Besides, if the in-cell polarizer 
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exhibits a high polarization ratio, then the crossed polarizer and analyzer can be removed. The 

device thickness would be much reduced. It could become a strong contender for flexible displays 

while keeping a high contrast ratio. 

 

Figure 4.17. Schematic diagram of the proposed structure with dual in-cell polarizers. In this case, 

the polarizer and the analyzer could be removed. 

 

(b) Reflective polarizer 

Figure 4.18 shows another modification, where in-cell polarizer is replaced by a reflective 

polarizer, or wire-grid polarizer [118, 119]. In this configuration, the light after LC layer is 

reflected and recycled, thus higher optical efficiency could be achieved while keeping a high CR. 

Also, since the transmission axis of this reflective polarizer is parallel to that of analyzer, it will 

only reflect light from LC side (i.e. backlight side). For ambient light, there is no side effects. 

 



88 

 

 

Figure 4.18. Schematic diagram of the proposed structure with a reflective polarizer or wire-grid 

polarizer. 

 

(c) Field-sequential color display 

In a field-sequential color (FSC) display, the color filter array is removed [59, 60, 120]. 

With a fast-switching LC, both red, green and blue (RGB) sub-frames are obtained in sequential 

time, as illustrated in Figure 4.19, so that both optical efficiency and resolution density are tripled. 

What’s more, based on our analysis, the device contrast ratio could be improved significantly 

(compared to conventional LCD), because the depolarization effect of color filters is eliminated 

completely.  

 

Figure 4.19. Schematic diagram of the field-sequential color display. 
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4.3 Dual-panel LCD system 

4.3.1 High dynamic range 

HDR is an emerging technology that can significantly improve the picture quality. So far, 

multiple HDR formats have been proposed, like HDR10, Dolby Vision, etc. [121-123]. In general, 

HDR requires a higher contrast ratio (CR  100,000:1), deeper dark state, higher peak brightness, 

richer gray scale ( 10 bits), and more vivid color.  

Both LCD and OLED are HDR-compatible. Currently, the best HDR LCDs can produce 

brighter highlights than OLED, but OLED has a better overall contrast ratio thanks to its superior 

black level. To enhance an LCD’s CR, local dimming backlight is commonly used [124-127]. By 

tailoring the brightness of segmented backlight, the dynamic CR could be boosted to 1,000,000:1. 

But as the name indicates, local dimming can only be modulated locally, and its dimming accuracy 

is limited by the number of LED segmentations.  

To improve that, recently, a dual-panel LCD system has been proposed and explored [128, 

129]. Its dimming accuracy could reach pixel-level, just like an OLED. Next, we will briefly 

discuss its advantages and the potential concerns. 

4.3.2 Advantages and disadvantages 

Just as the name indicates, a dual-panel LCD system consists of two LCD panels stacking 

together. Let us assume the contrast ratio of the two LCD panels is CR1 and CR2, respectively. 

Thus, for the cascaded display system, the effective contrast ratio should be CR1*CR2 [128, 129]. 

So the first advantage of such an LCD system is high contrast. In experiment, CR > 1,000,000:1 

has been demonstrated.  
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Another advantage is higher bit depth. By combining two 8-bit LCD panels, 14-bit signal 

depth modulation could be realized. While for conventional LCD, 14-bit driving is a great challenge 

for current TFT capability. Here, we simply use two LCD panels with Von ~ 5 V to get 14-bit signal 

depth. The power consumption and design complexity are dramatically reduced.  Also, the viewing 

angle of this dual-panel LCD system is widened, due to the much improved contrast ratio.  

However, the tradeoff is also obvious. For example, the optical efficiency would be 

sacrificed significantly due to multiple reflections and aperture ratio reduction [129]. To improve 

that, the second LCD panel (close to backlight) could have lower pixel density than the master 

LCD panel. It has two advantages: 1) higher efficiency due to increased aperture ratio; and 2) 

easier for dual panel alignment. 

Another potential issue is increased thickness and weight. However, this is not so critical, 

especially for TVs and desktop computers. They are mostly positioned in one place, and no need 

to be portable. As a result, the device thickness or weight is much more forgiven.  

For dual panel system, cost would inevitably increase. The good news is with extensive 

material research and development, device innovation, and heavy investment on advanced 

manufacturing technologies, TFT LCD has gradually matured in all aspects. The panel cost is 

pretty low, especially compared to other display technologies, like OLED. 

The other issue is Moiré effect, which is induced by patterned TFT backplanes. To improve 

that, a strong diffuser is needed. Recently, a polarization dependent scattering film (PDSF) was 

proposed and demonstrated. It could mitigate Moiré effect while maintaining high CR [129].  
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4.4 Summary 

In this chapter, we have analyzed the depolarization effect in an LCD panel. It limits the 

final contrast ratio of LCD. Then we build a new model with the consideration of this 

depolarization effect. It could accurately simulate CR and viewing angle of an LCD. Based on that, 

we propose a novel LCD configuration by adding an in-cell polarizer between LC layer and CF 

array. The depolarization is decoupled, leading to much suppressed light leakage. Thus CR for a 

VA LCD is improved to > 20,000:1, and CR for an FFS LCD is improved to > 3000:1. 

To further enlarge CR to fulfill the HDR requirement (CR  100,000:1), we propose and 

investigate a dual-panel LCD system. In experiment, exceedingly high contrast ratio (> 

1,000,000:1) and high bit-depth (> 14 bits) were realized at merely 5 volts. Also, the potential 

concerns including efficiency, cost, thickness, and Moiré effect are discussed. 
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 CHAPTER FIVE: CONCLUSION  

Displays have multiple metrics to evaluate the performance. In this dissertation, we mainly 

focus on three of them: fast response time, wide color gamut, and high contrast ratio. These three 

are the key parameters affecting the final perceived image quality. 

For response time, the annoying image motion blur issue would arise if LCD is not fast 

enough. To quantify this effect, motion picture response time (MPRT) was proposed and mostly 

practiced. By analysis, a “2 ms-rule” is found, that is, 1) if LC response time is 2 ms or less, its 

MPRT is comparable to that of an OLED, although OLED’s response is 100x faster; 2) if MPRT 

is 2 ms or less, the image motion blur is unnoticeable.  

To get 2 ms response, firstly, we developed an ultra-low viscosity LC mixture with 

negative dielectric anisotropy. The average GTG response time in a VA test cell is only 1.29 ms, 

and the corresponding MPRT is 6.88 ms at 120 fps. In comparison, OLED’s MPRT is 6.66 ms. 

Their performance is indeed comparable. Next, with the help of duty ratio modulation, LCD’s 

MPRT is reduced to 2 ms. The image blur is suppressed to unnoticeable level.  

New LC mixture is the most straightforward approach, but in some grayscale transitions, 

the response time is still > 2x slower than the requirement. To further improve that, we propose a 

novel single-rubbing VA-FIS mode. It can achieve sub-millisecond response time in all gray scale 

transitions, with commonly used overdrive and undershoot driving. This is highly desirable to 

reduce the image motion blur and even work for field sequential color (FSC) displays. However, 

the degraded dark state and much reduced threshold voltage may be two potential concerns. To 

solve that, we propose to add a small biased voltage to the bottom common electrode. Good 

performance is obtained.  
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PS-BPLC is another option to get fast response time. But high operation voltage is the main 

hurdle for practical applications. Here, a new diamond-shape protruded IPS structure is proposed, 

the operation voltage could be reduced to 15V with ~75% transmittance. Moreover, all these are 

achieved with an industrially proven blue phase material, which shows high voltage holding ratio 

and good long-term stability. However, multiple (3-4) TFTs and 2 capacitors per pixel are still 

required in order to overcome the slow charging issue due to the large capacitance of employed 

BPLC.  

As for color gamut, in the past two decades, its evaluation metric has gradually advanced 

from sRGB to NTSC, DCI-P3, and now to Rec. 2020 standard, whose coverage area in color space 

is nearly twice wider than that of sRGB. At the same time, multiple light sources have been 

developed to fulfill these ever-growing demands for vivid colors. Now the FWHM has been 

pushed to 20 nm. It becomes more and more difficult to make the bandwidth further narrower. 

To relieve this burden, we propose two novel backlight configurations. One is a simple yet 

efficient approach using a so-called functional reflective polarizer (FRP). It acts as a notch filter 

to block the unwanted light, thus increasing the color purity. In simulation, a commercial 2pc-

WLED is employed, and the color gamut is improved from 96.7% to 108.6% NTSC in CIE 1931, 

or from 112.9% to 133.9% NTSC in CIE 1976, which is comparable to the cadmium-based 

quantum dot backlight. Our design offers an alternative approach to quantum dots, while keeping 

low cost, long lifetime, and high brightness.  

Another approach is to use a FRP and a patterned half-wave plate. This design decouples 

the polarization of blue light and green/red lights, which effectively suppresses the color crosstalk, 

thus, boosting the color gamut. In experiment, we prepared a white-light source using blue LED 

to pump green perovskite and red quantum dot, and demonstrated an exceedingly high color gamut 



94 

 

(95.8% Rec. 2020 in CIE 1931 color space, and 97.3% Rec. 2020 in CIE 1976 color space) with 

commercial high-efficiency color filters. These results are beyond the color gamut limit that a 

conventional LCD can achieve.  

For contrast ratio, a non-emissive type LCD has its inherent constrains, i.e., the CR of a 

commercial VA LCD TV is only ~ 5000:1, let along other LCD modes. According to analysis, the 

limiting factor is the so-called depolarization effect inside each LCD panel. However, due to the 

complexity, most LCD simulation software neglects this effect, thus, the obtained CR or viewing 

angle property is incorrect. 

Here, we built a more rigorous model by considering the depolarization effect of some key 

components in an LCD system. It is found that there is an inherent theoretical limit of CR, due to 

the depolarization effect in TFT substrate, LC layer, CF array, etc. Also, we propose a new device 

structure, where an additional in-cell polarizer is placed between LC layer and CF array to 

decouple the depolarization effect. The maximum CR of a MVA LCD could reach over 20,000:1, 

while the n-FFS mode could reach > 3000:1.  

To further enlarge CR to fulfill the HDR requirement (CR  100,000:1), we propose and 

investigate a dual-panel LCD system. The device performance is quite promising, including high 

contrast ratio (> 1,000,000:1), high bit depth (> 14 bits), and pixel-level local dimming.  

In summary, we have investigated three key display metrics: fast response time, wide color 

gamut, and high contrast ratio. They jointly determine the final perceived image quality. 

Fortunately, with great efforts in theoretical analysis and structure design, LCD has gained 

substantial improvement in all three aspects: unnoticeable image motion blur as CRT, vivid color 

as laser projector, and high contrast as OLED. It is seen that LCDs with supreme image qualities 

can be realized. Along with other outstanding features, like high peak brightness, high resolution 
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density, long lifetime, low cost, etc., LCD would continue to maintain its dominance in consumer 

electronics market for a long time.  
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