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ABSTRACT 

Ubiquitous uses of social media platforms in smartphones have created an opportunity to gather 

digital traces of individual activities at a large scale. Traditional travel surveys fall short in 

collecting longitudinal travel behavior data for a large number of people in a cost effective way, 

especially for the transient population such as tourists. This study presents an innovating 

methodological framework, using machine learning and econometric approaches, to gather and 

analyze location-based social media (LBSM) data to understand individual destination choices. 

First, using Twitter‟s search interface, we have collected Twitter posts of nearly 156,000 users 

for the state of Florida. We have adopted several filtering techniques to create a reliable sample 

from noisy Twitter data. An ensemble classification technique is proposed to classify tourists and 

residents from user coordinates. The performance of the proposed classifier has been validated 

using manually labeled data and compared against the state-of-the-art classification methods. 

Second, using different clustering methods, we have analyzed the spatial distributions of 

destination choices of tourists and residents. The clusters from tourist destinations revealed most 

popular tourist spots including emerging tourist attractions in Florida. Third, to predict a tourist‟s 

next destination type, we have estimated a Conditional Random Field (CRF) model with 

reasonable accuracy. Fourth, to analyze resident destination choice behavior, this study proposes 

an extensive data merging operation among the collected Twitter data and different geographic 

database from state level data libraries. We have estimated a Panel Latent Segmentation 

Multinomial Logit (PLSMNL) model to find the characteristics affecting individual destination 

choices. The proposed PLSMNL model is found to better explain the effects of variables on 

destination choices compared to trip-specific Multinomial Logit Models. The findings of this 

study show the potential of LBSM data in future transportation and planning studies where 

collecting individual activity data is expensive.   
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

Travel demand models are crucial to transport planners and policy makers to develop, assess, and 

select suitable long term plans (Rashidi et al., 2017). Surveys complemented by additional 

sources of information such as travelers‟ feedbacks (by phone, mail or online) have been used as 

established sources of information for inputs to such models. However, implementing these 

surveys are costly and time consuming (Flyvbjerg et al., 2005). Moreover, tour-based schemes 

such as activity-based modeling approaches need individual level travel information (Abbasi et 

al., 2015). The shift towards activity based modeling has made individuals and households more 

significant contributors as decision making units (Rasouli and Timmermans, 2014). The evolution 

of travel demand modeling techniques brought about the need for high resolution databases in 

which individual socio-economic attributes are used to model their daily travel behavior. A 

complete household survey with all the required travel information costs about $200 per 

household (Zhang and Mohammadian, 2008). Therefore, although access to such individual level 

travel information is crucial for developing advanced travel behavior models, it is infeasible in 

terms of cost and time. Nowadays, technologies are being used to collect this information in a 

cost effective way. For example, web-based surveys (trip planning apps), social networking sites 

or applications, smart phones (accelerometers), and personal health sensors have been explored to 

collect individual travel information. However, researchers are yet to explore the full potential as 

well as limitations of these emerging technology-based methods (Abbasi et al., 2015).   

Collecting individual travel behavior data becomes more difficult for cities with a large 

number of tourists who are the most dynamic population group whose size and travel choices 
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change rapidly compared to residents. Tourism activities in a city can be unevenly distributed as 

they are superimpose on a spatial system and infrastructure network that may not have been 

designed specifically to cater for it (Gladstone and Fainstein, 2001). Locating tourists points of 

interests within a city and how they travel from one point of interest to the next is not something 

discovered through subjective observation (Edwards et al., 2008). For major tourism dependent 

cities, it is essential to understand tourist travel behavior since tourism related traffic cause huge 

pressure on their  transportation systems (Cho et al., 2011; Gursoy et al., 2002). Although census 

statistics reveal total inflow and outflow of tourists, it only presents as a macro level data 

considering over large regions. However, it is difficult to collect individual level travel 

information which includes trip purpose, activity type, activity location, departure time, traffic 

condition, mode of transport etc. from tourists. 

To collect travel data, researchers are looking for complementary data sources. With the 

transformation of Web into a true collaborative and social platform (Chi, 2008), we can access a 

large volume of user generated contents shared in various social media platforms (Kuflik et al., 

2017). Social media can be defined as a collection of internet-based applications which allows 

users to generate and exchange their contents (Kaplan and Haenlein, 2010). Social media 

platforms such as Twitter is now considered as a useful source of travel behavior information in 

various studies (Cao et al., 2014; Chang et al., 2012; Gal-Tzur et al., 2014; Maghrebi et al., 2015). 

Cost of acquiring such data is minimal compared to other traditional travel survey methods. The 

easy availability and wide range of applications have made the data valuable for researchers in 

multiple fields including social science, marketing, public health, computer science, and 

transportation science. Social media data have been used in activity recognition (Lian and Xie, 

2011), finding mobility and activity choices (Chen et al., 2017; Hasan and Ukkusuri, 2014), 
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classification of activity choice patterns (Cheng et al., 2011), role of friendship on mobility 

(Hasan et al., 2016; Sadri et al., 2017), and modeling activity sequence (Hasan and Ukkusuri, 

2017). In transportation planning, researchers have used this data to estimate urban travel demand 

(Lee et al., 2017; Liu et al., 2014) and traffic flow (Liu et al., 2014; Wu et al., 2014). Thus, social 

media data has a significant potential for travel demand models, traffic operations and 

management and long term transportation planning purposes (Rashidi et al., 2017). 

The main challenge in using such data sources is the significant noises that have to be filtered 

before any meaningful information can be accessed. To extract information such as trip purpose, 

travel mode etc. advanced text mining, linguistic techniques and data mining techniques are 

required (Cramer et al., 2011; Maghrebi et al., 2015). In this regard, it is relatively easier to work 

with check-in and geo-tagged data as they are already associated with a location. This study 

presents a data mining framework for understanding tourist and resident travel behavior of Florida 

from geo-tagged posts of a popular social media platform, Twitter. 

 

1.2 Background 

Florida has a number of famous tourist spots attracting millions of tourists from home and abroad 

every year. In 2016, Florida hosted more than 113 million visitors from outside of USA, which 

supported 1.4 million jobs and making a spending of 109 billion USD (Eye et al., 2017). Central 

Florida region had 68 million visitors in 2016 with Orlando being one of the top destinations 

among the global tourist cities and second in annual tourist spending among the domestic cities 

(Eye et al., 2017). A study conducted by Florida Department of Transportation (FDOT) also found 

that in 2010, nearly 8% of Florida‟s vehicle miles travelled were comprised of tourism related 

travel (Florida Transportation Trends and Condition 2012, 2012). Individual movement, route 
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choice, origin and destination of this large number of seasonal population have a significant 

impact on transportation infrastructure. Such information can provide vital insights for 

transportation and city planners.  

With millions of active users, social media platforms such as Facebook, Twitter, Instagram, 

Flickr etc. have become potential big data sources of individual behavior. Nearly 80 percent of 

Americans use social media while two third of the global internet population visits social 

networks (Perrin, 2005). Thus, ubiquitous uses of social media platforms have created a 

tremendous opportunity to gather digital traces. Analyzing millions of user footprints, it is 

possible to extract travel behavior at a scale unimaginable before (Hendrik and Perdana, 2014). 

However, not all social network data are available and have rich information. Twitter is a potential 

data source as it is available through simple web scraping and has a wide range of information 

within each post (tweet). Twitter has become a popular communication platform with 317 million 

monthly active users (67 million users from the USA) sending 500 million tweets per day 

(“Twitter by the Numbers: Stats, Demographics & Fun Facts,” 2017). Despite being unstructured, 

tweets provide important clues about latent user attributes and activities- absent in GPS logs and 

mobile phone records (Cao et al., 2014). From Twitter we can extract spatial (geo-tagged) and 

temporal (time-stamped) information for a longer period and large number of users without 

invading user privacy (Frias-Martinez et al., 2012; Hasan and Ukkusuri, 2015). 

Traditional travel surveys are limited in terms of sample size, area of coverage and updating 

frequencies. For instance after the National Household Travel Survey (NHTS) household survey 

of 2009, the database is recently being updated based on the most recent data collected in April 

2017. The data set contains travel information of slightly over 129,000 households. Few 

organizations are trying to collect updated travel information through some innovative ways. 
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North Florida Transportation Planning Organization has initiated an online travel survey through a 

third party named Resource Systems Group, Inc. 2017 (“North Florida Travel Survey,” 2017) for 

six-county of North Florida region (Baker, Clay, Duval, Nassau, Putnam, and St. Johns counties). 

The surveys were open from July 2017 to January 2018 and the responses are yet to be explored. 

On the other hand, with big data sources it is possible to record the movements of millions of 

individuals at unprecedented spatial and temporal accuracy (Beyer and Laney, 2012). However, it 

is vital to note that, this types of high resolution spatial data comes with its own trade-offs as 

often the social demographic attributes are not available, making it extremely difficult to correctly 

weigh the sample (Beyer and Laney, 2012) and use this in contrast of transportation planning 

purposes. This publicly available data are limited or highly aggregated and the collection and 

sampling methodologies are normally not available for validation (Morstatter et al., 2013). With 

the advantages and limitations of traditional survey and location based social media data, this 

study focuses on harnessing the goods from both the sources by developing a framework to 

combine their attributes.  

 

1.3 Objectives and Scopes of the Study 

In this study, we develop a framework to collect most recent travel information in a cost effective 

way to be used in various transportation and planning studies. We present a data mining 

framework for understanding tourists‟ and residents‟ travel behavior using social media data. We 

have gathered data using Twitter‟s search interface and followed several filtering steps to create a 

reliable sample. With the sampled database we propose stepwise procedures to achieve some 

specific objectives. 
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 Data gathering 

We have utilized different streaming and search interface to gather real time and historical 

Twitter data. However, the collected data cannot be readily used for transportation related studies. 

Therefore, we present several filtering steps to create a reliable sample from noisy data.   

 User classification 

We propose a classification method to identify the users who are non-native to a particular 

area. The proposed method is validated with manually labeled data and compared with state of the 

art classification techniques. With reliable features extracted from the data set, we further propose 

an advanced ensemble classifier to improve prediction results. 

 Location clustering 

After identification and validation of the tourist accounts, we find the spatial patterns of 

tourists and residents visited destinations. With application of state of art clustering techniques, 

we find the most visited locations of tourists and compare them with the most recent tourist 

database.  

 Tourist travel sequence and next destination type prediction 

With a larger volume of sample dataset, we analyze the tourist‟s destination patterns using 

Markov chain and Conditional Random Field (CRF) approaches. We have analyzed travel 

sequence of tourists and find out their most probable destination using their transition 

probabilities between different types of destinations. We explored effects of different features of 

particular visits to predict the next destination types through the application of CRF models. 

 Resident destination choice modeling  

We propose a framework to develop resident destination choice models using residents‟ geo-

tagged Twitter posts. This step includes extensive data merging techniques among social media 
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data and different geographic database preserved in state level data libraries. The data preparation 

sub-section in chapter six describes the challenges faced and overcame in identifying resident 

profiles and extracting their home locations and destination locations. We frame the problem into 

a Panel Latent Segmentation Multinomial Logit (PLSMNL) model and explain the outcome 

qualitatively as well as quantitatively.  

 

1.4 Thesis Contribution 

This study has several contributions in the field of data analytics in transportation. It shows the 

potential of social media data for understanding travel behavior of different groups of users. It 

presents several filtering steps to create a reliable sample from noisy social media data. Using a 

classification method, this study separates residents and visitors within a study area. Using 

available spatial clustering methods, this study determines the most common attraction tourism 

spots in the study area. To understand tourists travel patterns this study utilizes undirected 

graphical models which predicts the next possible location to be visited by a tourist. We have 

developed a destination choice model by integrating the census tract database with the extracted 

location information which incorporates individual level characteristics of the resident users. 

From the outcome of this study, we will have a better understanding about the tourist‟s as well as 

the residents‟ choice of destinations inside the study area. Thus, this study shows the potential of 

collecting travel behavior data from social media in a cost-effective way to be used in future 

transportation studies. 
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1.5 Thesis Organization 

This thesis is divided into several chapters. Chapter one introduces the topic with background and 

main objectives of the study. The information provided in chapter one justifies the selection of 

this topic as an important and timely research matter.  

Chapter two presents the data collection efforts in detail. Important discussions on data 

filtration are included in this chapter. 

Chapter three to chapter six present the methods developed in this study. Chapter three 

presents the classification of users into two different groups: residents and tourists. The results of 

the classification techniques are reinforced with time series analysis of tourists and residents 

Twitter activities. Chapter four shows various clustering methods applied to find recent tourists 

attractions as well as the residents‟ point of interests from their visited locations. Chapter five 

analyses tourists‟ destination patterns using advance modeling framework including Markov chain 

and CRF. And lastly, chapter six presents the destination choice model of resident users.  

In the final chapter the findings and the limitations of the study are summarized. Based on the 

conclusions some recommendations are stated in this chapter with some future research scopes.   
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CHAPTER TWO: DATA COLLECTION AND FILTERING 

2.1 Data Sources 

In this study, we used Twitter as our major data source. The major advantages of using Twitter 

data include easy and free availability, and large sample size. These also come with the intrinsic 

disadvantages of large volume of unnecessary information making the data collection and 

cleaning a crucial step. Twitter provides free APIs to collect real time Twitter streams and 

historical tweets. We have collected Twitter data using its Streaming API and REST API in 

several steps. In the first step we collected data for about 4 weeks and applied various filtrations. 

This segment of the data is used for user classification and clustering. In the second step we 

utilized a large and more extensive data source for advanced modeling of purposes. We have also 

utilized census tract based demographic, infrastructure and economic data base for resident 

destination choice model. Apart from Twitter, the data sets used for the various segments of this 

study includes: 

1. 2016 census tract of Florida (in ArcGIS shape file) 

2. 2015 landuse data base of Florida (in ArcGIS shape file) 

3. 2015 economic database of Florida 

4. Florida point of interests (POI) database from Florida‟s geographic data library (“Florida 

Geographic File Database,” 2008) 

 This chapter mainly focuses on the data collection and filtration parts of the study. Specific steps 

undertaken for data preparation are discussed in chapter four and chapter six. In this way we have 

ensured the flow of this report and also, tried to make sure to put the right context in right place. 
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2.2 Data Collection 

Real time Twitter contents are downloaded using its Streaming API from March 29, 2017 to April 

24, 2017 within a geographic boundary. The primary search focused on Central Florida region, 

defined by the coordinates -82.059860, 27.034087 (lower left corner of De-soto County) and -

81.153310, 29.266654 (a corner of Volusia County). However, not all the geo-tagged tweets 

extracted from the search process are within this boundary. Collected data also included tweets 

from the users who did not have any tweets tagged with a latitude and longitude values but their 

profile information stated that they were from Florida; this is not unusual as explained in Twitter 

Developer Documentation (“Twitter Developer Documentation: Streaming API,” 2006). 

Locations of the geo-tagged tweets are plotted in Figure 1. We find that geo-tagged tweets are 

spread across the whole state of Florida instead remaining within the defined boundary of Central 

Florida region only. This motivated us to run our analyses for the whole state of Florida. 

 

 

FIGURE 2.1: Geo-tagged Tweets Collected from March 29, 2017 to April 24, 2017. 
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2.3 Data Filtration 

Since we are interested to analyze geographically active users, as a first step of the filtering 

process, users with at least two unique geo-tagged tweets are selected for further analysis. This 

yielded 8,707 users out of 66,919 users. In the second step, we filtered out organizational or any 

promotional/advertising accounts. For that purpose, we collected the BOT score which can be 

interpreted as the probability that the user is a bot (“Botometer,” 2014). A social BOT can be 

defined as a sophisticated software program designed to interact like any human user on a social 

media platform (Woolley, 2016). Botometer provides the bot-likelihood score of a user by 

retrieving the recent activities of the user and analyzing various features such as content, 

sentiments, friends, networks etc. (Davis et al., 2016). Figure 2.2 (a) shows the cumulative density 

function (CDF) of user BOT scores and Figure 2.2(b) presents the number of users under different 

range of BOT scores and number of geo-tagged tweets. 

 

  
(a) (b) 

FIGURE 2.2: (a) Cumulative Distribution Function of user BOT scores and (b) Heat-map of the 

number users in a specific range of BOT score and number of geo-tagged tweets. 

A higher BOT score indicates that a user is more likely to be a social bot. However, there is no 
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defined threshold of this value to classify a user as a bot or not a bot. In this study, we manually 

reviewed a randomly selected sample of user profiles and determined whether they are 

bot/organizational accounts or humans. Based on our observations, we decided to select a cut off 

value of 0.4 and thereby keep the users with BOT scores equal to or less than 0.4 in a different set 

and omit the users with BOT score greater than 0.4 from further analyses. This reduced the 

sample to 6615 user accounts. To collect the tweets of these 6615 users, we used Twitter REST 

API (“Twitter Developer Documentation: REST API,” 2006) which gives the most recent 3200 

tweets of a user. We were able to collect the tweets from 6519 users as rests of the user profiles 

are not public. Finally, the data set contained 676,864 tweets from 6519 users‟ one month time 

line (data collection period) of which 108,560 are geo-tagged tweets with 36,157 unique 

coordinates (see Table 2.1).  

TABLE 2.1: Dataset Description (Phase-1). 

Dataset: Phase 1 

Data Collection Period March 29, 2017 to April 24, 2017 

Total Users 66,919 

Total Tweets 635,787 

Total Geo-tagged Tweets 94,333 

 

Sample for User Classification (Users with at least 2 geo-tagged tweets and BOT score ≤ 0.4) 

Total Users 6615 

Total Tweets (Most Recent Tweets of 6519 users) 676,864 

Total Geo-tagged Tweets 108,560 

 

Sample for Location Clustering (Users identified and validated with ground truth) 

Total Users 3,088 

Tourists 1,600 

Residents 1,488 
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Sample for Location Clustering (Users identified and validated with ground truth) 

Coordinates inside Florida, from March 29 to April 24, 2017 

Tourists 12,470 

Residents 24,116 

Dataset: Phase 2 

Sample for CRF and PLSMNL  

(Users with BOT score ≤ 0.4 and at least 2 geo-tagged tweets within March 29, 2017 to October 10, 2018) 

Total Users  11,122 

Users with posted place in their Twitter profiles 7039 

Number of Tourists 2438 

Number of Residents 4601 

Total coordinates inside Florida (within March 29, 2017 to October 10, 2018) 

Tourists 35,680 

Residents 77,751 

 

As research progressed, we continued to collect Tweets using the Streaming API within the 

specified boundary. We separated a second data set starting from March 29, 2017 upto October 

10, 2017. This provided about 1.6 million Tweets from nearly 156,000 users. We ran the same 

filtration procedure on the second data set and found 11,122 users with BOT score less than or 

equal to 0.4 and with at least two geo-tagged posts from March 29, 2017 till October 10, 2017. 

From user posted places we labeled nearly 7039 users as resident and tourists. We found 2438 

tourists and 4601 residents in the phase-2 data set. Using REST API we then collected the latest 

3200 Tweets of these 7039 users. Within March 29, 2017 till October 10, 2017 these users have 

posted 732,590 tweets among which 113,431 are geo-tagged. Table 2.1 summarizes the data 

collected for the phase-2 analyses. In the subsequent two chapters we have utilized the first data 

(phase-1) set for user classification and location clustering. The second data (phase-2) set is used 

for tourists‟ next destination type prediction model (chapter five) and in residents‟ destination 

choice model (chapter six).  
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CHAPTER THREE: USER CLASSIFICATION 

3.1 Introduction 

To extract behavioral information from different demographic groups of social media users, it is 

necessary to classify users based on some specific criteria.  Previously, user profiles have been 

classified depending on the type of application. McNeill et al. (McNeill et al., 2016) used a simple 

heuristic approach counting certain locations in a user‟s geo-tagged tweets to identify home and 

work locations. Abbasi et al. (Abbasi et al., 2015) used geo-tagged tweets to identify the most 

active tourists inside Sydney who visited the place within the data collection period (four weeks 

data in four phases). The users present in only one (or two) phases of the data collection period 

with at least 9 unique geo-tagged tweets were considered as active tourists(Abbasi et al., 2015). 

To classify the locals and tourists in Barcelona, Manca et al.(Manca et al., 2017) proposed a 

heuristic algorithm which considered the values in „user location‟ of the tweets and the duration of 

users inside the studied region. Manca et al. (Manca et al., 2017) limited the duration to 20 days, 

while as per the state of the art practices the users who publishes all his/her objects online 

(photos, personal views, check-ins etc.) within 30 days are considered as tourists(Girardin et al., 

2007; Theobald, 2005). In another study(Andrienko et al., 2013), users who were at least 10 days 

inside and at most 8 days outside the greater Seattle area within 2 months of data collection period 

were considered as local residents. 

As found from the literature, the time and location stamps of tweets have been widely used, 

although majority of these studies used only a single feature to separate tourists and resident 

users. In this study, we propose a comprehensive classification analysis starting from a simple 

heuristic approach with a single feature to an ensemble classification method with multiple 
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geographical features extracted from user profiles. Starting from a simple heuristic classifier, we 

propose several classification techniques to improve prediction results. To validate our results, we 

have used the self-reported place in a user‟s Twitter account profile as a ground truth. Out of the 

6519 users, about 5123 users have their „Place‟ field filled and for the rest of the users that field is 

empty. One important aspect of our approach is that, it does not have to use the content of the 

tweets. However, we are able to extract at least state level locations (for places inside USA) or 

country level location (for places outside USA) for 4696 users. Out of 4696 users, 2331 users are 

residents as they have stated Florida in their place field and the rest 2365 are labelled as tourists. 

 

3.2 Heuristic Classifier 

We have used user‟s location information extracted from the coordinates to classify whether 

he/she is from Florida or not. A simple heuristic approach is proposed based on the assumption 

that during the night users are more likely to tweet from their homes. In this method, we denote 

the users with most of their geo-tagged tweets during certain hours of the day inside the Florida‟s 

geographical bounding box as „Residents‟ and the rest as „Tourists‟. We propose that during night 

the user normally post more Tweets from their home location. Therefore, we have selected a 

window of six hours from 12 am to 6 am in the morning and calculated the number of tweets 

posted during these hours and during the other hours (from 6 am morning till 12 am at night). The 

heuristic is presented in Algorithm 1 (Figure 3.1). The results from this algorithm are validated 

using the ground truth data extracted from users‟ posted paces in their Twitter profiles. 

 

 

 



16 

 

Algorithm 1: Tourist Identification from Tweet Coordinates  

Input: Set of users ( )U  with coordinates of their geo-tagged tweets ( )C posted at any time of the day ( )T  

Output: User Sets identified as Tourists ( )TU and Residents ( )RU . 

for user i  in user set U : 

extract the set of all coordinates throughout the day: i iC T  

extract the set of coordinates associated with time frame between 12 am and 6 am: 
(12 6)i iC T   

 

for the coordinates in set 
(12 6)i iC T 

: 

extract the coordinates in set  
(12 6)( )i iC T 

which were within Florida boundary: 

( ) (12 6)i FL iC T   

extract the coordinates in set 
(12 6)( )i iC T   which are outside Florida boundary: 

( ) (12 6)i Others iC T 
 

if the Number of element in 1
st
 set 

( ) (12 6)[ ]i FL iN C T 
 is greater than Number of elements in 

2
nd

 set 
( ) (12 6)[ ]i Others iN C T 

 : 

append user i  in the Resident user list RU  

else: 

append user i
 
in the Tourist user list TU  

 

FIGURE 3.1: Heuristic Algorithm for Tourist Identification (Continued) 

The accuracy of the proposed heuristic classifier has been found as 79.09%, i.e. out of 100 

instances it was able to label 79 of them correctly either as resident or tourist.   

 

3.3 Supervised Machine Learning Techniques 

To test the performance of the proposed heuristic classifier, we have applied three supervised 

classification techniques: Decision Tree (Safavian and Landgrebe, 1990), K-Nearest Neighbors 

(KNN) (Manning et al., 2008), and Support Vector Machine (SVM) (Cristianini and Shawe-

Taylor, 2000). For each user, five features are extracted: 

 Feature 1: The ratio between the number of geo-tagged tweets inside Florida and the 

number of geo-tagged tweets outside of Florida during nighttime (for entire time period). 

 Feature 2: Mean distance of the successive coordinates of users‟ geo-tagged tweets. 
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 Feature 3: Standard deviation of distance between successive coordinates of users‟ geo-

tagged tweets.  

 Feature 4: Radius of gyration 

 Feature 5: 100 mile distance between successive coordinate  

Here radius of gyration is used as an indicator of how far and how often a user moves and is 

defined as (Bolivar, 2014): 

2

1

1
( )

n

g i cm

i

r r r
n 

                                                                                                       (3.1) 

Where, n is the number of geo tagged posts of the user, and ( )i cmr r is the distance between 

the geo-tagged location of post i and the center of all the locations of that user rcm. Feature 5 is a 

binary feature, i.e. 1 if there exists a 100 mile jump among the distance of successive coordinates 

and 0 otherwise. 

Based on these features, we have applied a k-fold cross validation approach for training and 

prediction using the three classifiers. In a k-fold cross validation, the sample is divided into k 

groups and prediction function is trained using the data from (k-1) groups. The remaining group is 

used for testing the predictions made by classifier. In this method, the training and validations are 

iterated k times where in each iteration a different set of data (fold) is left out for test 

(Refaeilzadeh et al., 2009). We have used 10-fold cross validation as it has been successfully used 

in previous studies (Kim, 2009; McLachlan et al., 2005). 

To evaluate model performance, we have computed accuracy, precision, recall and f-score for 

each classifier. Accuracy is defined as the proportion of users identified as tourists among the 

users who are actually tourists. Precision is the proportion of users correctly identified as tourists 
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among all the users who are identified as tourists and recall is the proportion of users who are 

correctly identified as tourists among the users who are actually tourists. F1-score combines 

precision and recall by calculating their harmonic mean. Figure 3.2 shows the results of the 

supervised classifiers along with the heuristic. The heuristic performed better among all the 

methods along accuracy, precision, recall and f1-score of 0.7909, 0.7911, 0.7910 and 0.7908, 

respectively. 

 

3.4 Ensemble Classifiers 

Since the classifiers adopted in the previous section failed to produce results better than the 

proposed heuristic, we explored several ensemble techniques. Ensemble is a technique where 

multiple classifiers are combined (Dietterich, 2010; Rokach, 2010) and which are found to work 

better than a single classifier. The ensemble methods applied in this study includes bagging, 

adaptive boosting, random forest and majority voting. Voting or majority voting accounts the 

output of individual classifier and reports the label that is predicted by majority of the classifiers 

(Rokach, 2010). Bagging uses re-sampling the training dataset in order to learn individual 

classifiers and then uses majority vote to report the combined classifier label (Breiman, 1996). 

Random Forest uses decision tree as its base classifier which also uses bagging technique to 

create new training sets (Chan and Paelinckx, 2008). Adaptive boosting or AdaBoost is a more 

complex method where in each step the models selects the training data set based on the 

performance of the previous step (Freund and Schapire, 1996). 

We have applied these four ensemble classifiers whose results are reported in Figure 3.2. The 

sample was split in 70% training set and 30% test set. For AdaBoost, random forest and bagging 

ensembles, we used decision tree classifier as the base classifier. Random forest and bagging both 
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are trained using bootstrap aggregation. In adapting boosting, we used the real boosting 

algorithm, i.e. considering the output of decision trees as a class probability. In voting classifier, 

we used the input from the three supervised classifiers discussed in section 3.2 as it provided 

better result than using any two of the classifiers from section 3.2. 

 

FIGURE 3.2 Comparison of Performances of the Classifiers with proposed heuristic method. 

Figure 3.2 presents all the performance indices of all the classification techniques adopted in 

this study. Random forest, AdaBoost and bagging approach performed better than the proposed 

heuristic. Among the ensemble methods AdaBoost performed best with accuracy, precision, recall 

and f1-score of 0.8277, 0.8276, 0.8267 and 0.8267 respectively. We have also measured the 

performances of the ensemble classifiers using the heuristic as the base classifier and found that 

AdaBoost has the best performance with accuracy, precision, recall and f1-score of 0.7740, 

0.7773, 0.7766 and 0.7740 respectively. 

 

3.5 Time Series Analysis 

From the classified and validated dataset, we separately plotted the activity time-series for both 

tourists and residents. Figure 3.3 shows the activities (in terms of number of tweet posts) for both 

resident and tourist.  
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(a) Total Activity Plots 

 
(b) Geo-tagged Activity Plots (inside Florida) 

 
(c) Horizontal Shift in Hourly Activity 

 

FIGURE 3.3: Daily Activity Plots of Tourists and Residents. 
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For the entire data collection period we plotted the activity considering all the tweet posts and 

also, considering only the geo-tagged posts (inside Florida State boundary). There is a repeating 

trend for both user groups in daily activities which reaches to maximum at the end of the day. 

From Figure 3.3(a) we find that the number of total posts for both resident and tourist are close to 

each other and in Figure 3.3 (b) we see that the number of resident geo tagged posts is greater 

than the number of tourist geotagged posts. In Figure 3.3 (c) we have focused a portion of Figure 

3.3 (b) to better explain the activities.  

 

 
(a) Hourly Activity of Tourists 

 

 
(b) Hourly Activity of Residents 

 

FIGURE 3.4: Hourly Activity Plots. (a) Tourists, (b) Residents. 
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Figure 3.4 shows the fractions of geo-tagged tweets posted in different hours of the day. 

Figure 3.4(a) and Figure 3.4(b) shows the hourly plots for tourists and residents, respectively. 

Figure 3.4(a) shows that tourists remain less active from 6 am to 11 am and after that there is 

gradual increase in activity from 12 pm. For residents, the less active hours are from 7 am to 10 

am and activities start increasing a little early in morning, from 11 am. This shift is clearly viewed 

in Figure 3.3(c) in the continuous geo-tagged activity posts. The highest activity for residents is 

around 10 pm and for tourists is around midnight.  

The weekly activity of the resident and tourists are shown in Fig.9. 

 

  
(a) Tourists Weekly Activity (b) Resident Weekly Activity 

FIGURE 3.5: Weekday and Weekend Geo-located Activities. (a) Tourists‟ Weekly Activity Plot 

and, (b) Residents‟ Weekly Activity Plot. 

From Figure 3.5(a) and Figure 3.5 (b) we see that on average Tourists posted 1781 number of 

geo-tagged tweets and residents posted 3445 geo-tagged tweets. Interestingly, for tourists the 

daily posted tweets are greater than the average on some weekdays (Thursday and Friday), 

whereas for residents the average number is exceeded only on weekends (Saturday and Sunday). 

This behavior is normal as tourists do come to visit places on days other than the weekends. 

These time series analyses further validate the classification techniques of this study. The two 
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groups of users have distinguishable temporal patterns. Combining the spatial clusters on 

temporal basis, i.e. clustering for the locations posted during a range of periods of day or on 

different days of a week it is possible to find the spatio-temporal densities of tourists around 

different parts of study area.  

 

3.6 Summary 

This chapter described the classification of users into resident and tourist. Starting from a simple 

heuristic classifier, we propose several single and ensemble classification techniques to improve 

prediction results. The self-reported place in a user‟s Twitter account profile has been used as a 

ground truth to validate the results. One important aspect of the approach is that, it did not use the 

tweet contents (i.e. texts, hash-tags, mentions etc.), rather the features extracted from the geo-

locations to achieve nearly 80% efficiency in supervised ensemble classification method. Using 

the resident and tourist (identified and validated in heuristic method) Twitter posts we have 

demonstrated the activity patterns in time series plots. The results showed distinguished behavior 

for resident and tourist which further validate hour assumptions on the ground truth. 
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CHAPTER FOUR: TRAVEL PATTERN FROM LOACTION CLUSTERING 

4.1 Introduction 

We propose different clustering techniques to find out the most visited places by tourists and 

residents. In this study we have applied three clustering methods: K-Means (Kanungo et al., 

2002), DBSCAN (Ester et al., 1995), and Mean-Shift (Comaniciu and Meer, 2002) in order to 

find the spatial patterns of destination choices made by tourists and residents. The methods have 

been chosen based on their efficient applications in similar types of researches found in the 

literatures. For the clustering purpose we used the geo-tagged posts collected in phase-1 of data 

collection period (Table 2.1). The landmarks close to the cluster centers represent the popular 

destinations visited by tourist and most commonly visited locations of the resident. We put on 

detail discussion about parameter selection of the clustering methods and finally measure their 

performances based on some internal validation measures.  

 

4.2 Spatial Clustering 

Despite its wide adoption, few studies have investigated tourist behavior using Twitter data. 

Abbasi et al.(Abbasi et al., 2015) considered tourists who are traveling both into and outside of 

Sydney within four weeks. Analyzing geo-tagged tweets, they could identify the most visited 

places by local residents and tourists. Using geo-tagged tweets, Lee et al.(Lee et al., 2016) 

demonstrated the growth of activity space of 116 Twitter users over 17 weeks and determined 

their major activity locations. In literatures different types of spatial clustering techniques have 

been used as a popular tool to find the groups of closely related destinations. Most of the 

clustering methods like the partitioning clustering methods such as K-Means (Kanungo et al., 
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2002), hierarchical clustering such as Ward‟s method(Ward Jr, 1963), and density-based clustering 

methods such as density-based spatial lustering of applications with noise or DBSCAN (Ester et 

al., 1995) uses distance measure (i.e. Euclidean distance) to group the similar (nearby) objects 

together. Zheng et al. (Zheng et al., 2012) used DBSCAN on geo-tagged photos to identify tourist 

regions of attractions. Majid et al. (Majid et al., 2013) used DBSCAN to find tourists locations 

from geo-tagged photos. In similar kind of data sets other studies applied K-Means(Kennedy and 

Naaman, 2008) and Mean-Shift(Yin et al., 2011) clustering methods for location identification.  

K-Means clustering algorithm divides a set of n observations in a d-dimensional space into k 

number of sets (k≤n) in a way that the within-cluster sum of squares or mean squared distance is 

minimized. With input parameter k (number of expected clusters), the algorithm uses Euclidean 

distance as a metric and variance as a measure of cluster scatter.  

Mean-Shift clustering, popular as the mode seeking algorithm (Cheng, 1995), locates the 

maxima of a density function. The iterative process starts with initial estimation and typically uses 

Gaussian Kernel Density function to re-estimation of the mean from the weight of nearby points. 

It requires a parameter bandwidth that determines the shape of kernel density distribution 

(Comaniciu and Meer, 2002).  

DBSCAN is a density-based clustering algorithm which forms a set of points and groups 

together the points that are packed closely within a given threshold distance in space and marks 

points as outliers that lie alone in low density regions. DBSCAN requires two parameters, i.e. 

epsilon which is the maximum distance between two samples to be considered in the same 

neighborhood and the minimum number of points required to form a dense region (Ester et al., 

1996). 

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
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4.3 Parameter Selection 

The selected clustering methods require different boundary parameters. We determined the 

optimum parameters to start the clustering process. It should be noted that the perfect values of 

the parameters cannot be known beforehand. Based on some preliminary analyses on the data sets 

we select the most likely values to start the clustering process. The parameters selected are 

therefore, liable to changes based on the outputs as we try to find better results. 

  

(a) Elbow plot for Residents (b)  Elbow plot for Tourists 

FIGURE 4. 1 Parameter Selection for K-Means clustering method. 

 

In K-Means clustering, each observation is assigned to one of the k number of clusters, where 

k is decided by the analyst. To select k, we have used an elbow plot which is a 2-dimensional plot 

of the distortion (percentage of variance) vs. the number of clusters (k) (Bholowalia and Kumar, 

2014). The optimum number of clusters should be chosen in a way that adding another cluster 

does not significantly reduce the variance of the data (Bholowalia and Kumar, 2014). From Figure 

4.1(b), the optimum number of cluster for tourists is 6. As there is also another bend in the region 

with k = 12, hence we also tried with 12 clusters for tourists. Similarly, from Figure 4.1 (a) for the 
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residents there is no clear elbow and therefore we have run the clustering model with two 

different k values (k=8 and k=13) and considered the better result.    

 
 

(a) Mean Distance of each points from the other points 

for Resident Coordinate 

(b) Mean Distance of each points from the other points for 

Tourist Coordinate set 

  

(c) Minimum number of coordinates within 12 km 

radius for Resident Coordinate set 

(d) Minimum number of coordinates within 10 km radius 

for Tourist Coordinate set. 

 

FIGURE 4.2: Parameter Selection for Mean-Shift and DBSCAN clustering methods. 

In order to find a realistic value of the bandwidth of Mean-Shift algorithm, we determine the 

mean distance of each point to all of its nearby neighbor points and plotted a histogram of the 

number of coordinates vs. the ranges of mean distance. For residents, about 19,000 coordinates 

are within a radius of 0.025 radian (159.275 kilometer) from all other resident coordinates; and 
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for tourists, more than 9,500 coordinates are within a radius of 0.015 radian (95.565 kilometer) 

from all other tourist coordinates. Since the data was collected within the Central Florida region, 

we find the radius for the coordinates inside the data collection boundary. For the coordinates 

inside Central Florida, we find that most of the resident coordinates are within 0.006 radian or 

38.226 kilometer (Figure 4.2(a)) from the other resident coordinates and most of the tourist 

coordinates are within 0.004 radian or 25.484 kilometer (Figure 4.2(b)) from the other tourist 

coordinates. Thus, in the Mean-Shift algorithm, we have used the bandwidth parameter of values 

0.006 radian and 0.004 radian for clustering resident and tourist locations, respectively. 

Although the parameter „epsilon‟ in DBSCAN is similar to „bandwidth‟ of Mean-Shift, using 

the same value in both methods leads to a misrepresentation of the sample data.  With larger 

epsilon value, DBSCAN will reduce the number of clusters as with each iteration it‟s core points 

will reach more neighbors within specified epsilon. Whereas, Mean-Shift will go for the densest 

region with radius set equal to the bandwidth. In DBSCAN, we have the freedom to choose the 

distance in kilometer of earth surface distance between two coordinates (as DBSCAN uses 

„haversine‟ distance metric instead of „Euclidian‟ in K-Means and Mean-Shift).  

In our study, we have selected epsilon value equal to12 kilometer for resident coordinates and 

10 kilometers for tourist coordinates. To find the minimum number of points we plotted the 

number of coordinates within a minimum distance from each coordinates, the minimum distance 

being equal to 12 kilometers for resident coordinates (Figure 4.2(c)) and 10 kilometers for tourist 

coordinates (Figure 4.2 (d)). The minimum number of samples for DBSCAN is selected in a way 

that too many points do not fall as noisy points or outliers. From Figure 4.2(c-d) the minimum 

sample is selected to be 25 for tourist location clustering and 50 for resident location clustering. 
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4.4 Clustering Results 

Our main goal of clustering is to find the most visited regions/areas by tourists and residents 

inside the state of Florida. The only similarity of the points inside a cluster is that they are nearer 

to each other than other points in other clusters and/or from points without clusters (outliers in 

DBSCAN). From the output clusters, we have found the centers of each cluster in all the three 

methods. Google Places API (“The Google Places API Web Service,” 2017) is used to extract the 

street level address information of the places associated with the cluster centers‟ coordinates. 

Also, the number of unique users and number of sample coordinates forming each cluster are also 

determined. The rationale of using three different approaches is to find the method which best 

serves our goal, i.e. grouping the coordinates into distinctive clusters in a real time fashion. The 

centers of clusters in all the three different methods are shown in Figure 4.3. 

In K-Means clustering, k=13 provides good results for resident‟s location clustering. For 

Mean-Shift there are 25 clusters and for DBSCAN we have found 18 clusters. The numbers of 

clusters for tourists were found to be 12, 47 and 17 for K-Means, Mean-Shift and DBSCAN 

clustering techniques, respectively (Figure 4.3). It should be noted that the number of outliers 

(coordinates without any cluster) was 543 (of 207 users) for tourist location clustering and 879 (of 

212 users) for resident location clustering.  
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(a) K-Means (b) Mean-Shift (c) DBSCAN* 

   
(d) K-Means (e) Mean-Shift (f) DBSCAN* 

*shown only the centers for DBSCAN as there are too many cluster in DBSCAN 

FIGURE 4.3: Clustering of Tourist Coordinates: (a)- (c); and Resident Coordinates: (d) - (f). 

The dots represent the coordinates within specific clusters separated by different colors and 

the comparatively larger dot with black border represents the centers of the clusters.   

Table 4.1 presents the detail information of the top clusters (based on the total number of 

unique users and total number of coordinates in each cluster) in all the three methods. We did not 

report the clusters with too few users and sample coordinates.  
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TABLE 4.1: Clustering Results for Tourist Coordinates. 

Sl. 

No 
Street Address City/Area Nearby Landmarks 

Number 

of Unique 

Users 

Number 

of 

Points 

 K-Means 

1 4050 Kingsport Dr Orlando 
Universal Studios, Island of 

Adventure 
941 4788 

2 Coronado Springs Kissimmee 
Walt Disney World Resort, Animal 

Kingdom and Theme Park, Epcot  
908 4801 

3 2425 N Rocky Point Dr Tampa 
Cypress Point Park, Tampa Bay, 

Tampa International Airport 
117 571 

4 9974 NW 87th Terrace Doral 
Francis S. Taylor Wildlife 

Management Area 
96 460 

5 38 Bramble Grove Pl 
Santa Rosa 

Beach 

Deer Lake State Park, Grayton Beach 

State Park 
80 394 

6 8084 Estero Blvd 
Fort Myers 

Beach 
Lovers Key State Recreation Area  71 335 

7 Pineda Causeway 
Satellite 

Beach 

Banana River Aquatic Preserve, 

Manatee Cove Golf Course 
107 305 

8 1662 Century Acres Ln  Jacksonville Julington Creek Golf Club 70 217 

9 4731-4735 White Tail Ln Sarasota 
Stoneybrook Golf and Country Club, 

TPC Prestancia 
44 199 

10 522 Fairpoint Dr Gulf Breeze Shoreline Park, Pensacola bay bridge 45 182 

11 732 Iowa St 
Daytona 

Beach 

Daytona Rising-Daytona International 

Speedway, Daytona Beach 

International Airport 

59 147 

Mean Shift 

1 
8519-8527 Sand Lake 

Shores Dr 
Orlando 

Orange County Convention Center, 

Rosen Inn At Pointe Orlando 
1251 9230 

2 1201 NW 89th Ct Miami 
Mall of the Americas, Doral Central 

Park 
69 286 

3 6727 126th Ave N Largo 
Largo Golf Course, Travel World RV 

Park,St. Pete–Clearwater International 
59 276 
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Sl. 

No 
Street Address City/Area Nearby Landmarks 

Number 

of Unique 

Users 

Number 

of 

Points 

Airport 

4 1514-1598 N Florida Ave Tampa 

Water Works Park, The Florida 

Aquarium, Amalie Arena, Tampa 

General Hospital 

65 243 

5 120-130 Cullman Ave 
Santa Rosa 

Beach 

Grayton Beach State Park, Grayton 

beach, Deer Lake State Park  
57 242 

6 
Martin Andersen 

Beachline Expy 
Merritt Island 

Cape Canaveral, Cocoa Beach, 

Kennedy Space Center  
80 238 

7 4325 E Memorial Blvd Auburndale 
Schalamar Creek Golf & Country 

Club Community, Sadle Crek Park 
68 181 

8 7219 Antigua Pl Sarasota TPC Prestancia-Golf Club 40 166 

9 732 Peake's Point Dr Gulf Breeze 

Pensacola NAS(Naval Air Station) 

DRMO, Blue Wahoos Stadium, 

Pensacola Bay Bridge 

41 165 

10 21381 Widgeon Terrace 
Fort Myers 

Beach 

Estero Bay Preserve State Park, Fort 

Myers Beach 
43 158 

11 
6781-6785 Southern Oak 

Ct 
Naples 

Clam Pass Park, Kensington Glof 

Course 
29 130 

12 5200 Hancock Rd 
Southwest 

Ranches 

Sunshine Ranches Equestrian Park, 

Flamingo Gardens, Everglades 

Wildlife Management Area 

26 126 

13 
341-349 Regatta Bay 

Blvd 
Destin 

Henderson Beach State Park, Emerald 

Bay Golf Course, Mid Bay Bridge 
26 113 

14 724 S Palmetto Ave 
Daytona 

Beach 

Daytona Beach, Samuel L. Butts 

Archeological Park 
42 111 

15 2598 Pit Bull Ln Mims 
Buck Lake Conservation Area, 

Seminole Ranch Conservation Area 
50 102 

16 12 Grouper Hole Dr Cape Haze 
The Boca Grande Resort & 

Hotel,Cape Haze Aquatic Preserve 
26 71 

17 678-944 Woodlawn Rd St. Augustine 

Northeast Florida Regional Airport, 

Twelve Mile Swamp Conservation 

Area 

22 58 
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Sl. 

No 
Street Address City/Area Nearby Landmarks 

Number 

of Unique 

Users 

Number 

of 

Points 

DBSCAN 

1 10232 Turkey Lake Rd Orlando 

Orange County Convention Center, 

Aquatica, SeaWorld's Waterpark 

Orlando, Seaworld Orlando 

1280 9490 

2 2650-2660 W 76th St Hialeah Carl F Slade Park 85 412 

3 
9155 Charles M Rowland 

Dr 

Port 

Canaveral 

Disney Cruise Line, Carnival Cruise 

Line-Port Canaveral  
73 198 

4 45 Town Center Loop 
Santa Rosa 

Beach 
Gulf Place Getaway-vacation spot 70 350 

5 1900-1998 E 13th Ave Tampa 
Centro Ybor Complex, Historic Ybor 

city 
66 238 

6 Unnamed Road 
Fort Myers 

Beach 

Lover's Key State Park - beach, 

Recreation Area 
62 302 

7 12547 66th St N Largo Vacation Village RV Resort 59 275 

8 720 Peake's Point Dr Gulf Breeze Shoreline Park, pensacola bay bridge 38 153 

9 337 N Tamiami Trail Osprey 
Bay Preserve at Osprey-reception 

venue, Historic Spanish Point 
35 165 

10 721 Ballough Rd 
Daytona 

Beach 

Daytona Beach Brodwalk, Daytona 

Lagoon 
35 89 

 

Some city/areas such as Orlando, Tampa, Daytona Beach, Fort Myers, St. Augustine, Gulf 

Breeze, and Santa Rosa Beach are common as a center in all three clustering methods. The nearby 

landmarks column in Table 4.1 reports the famous visiting places and tourist spots within 3 

kilometer of the centers. To qualitatively validate the clustering output, we have considered some 

of the most recent statistics about tourism spots in Florida. According to an FDOT report (Eye et 

al., 2017), top most annual visitor attendance in Central Florida for the year 2014 were found in 

Magic Kingdom, Epcot, Animal Kingdom, Hollywood Studios, Universal Studios, Island of 
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Adventure, Sea World etc. All of these places are within 3 km radius of cluster centers found with 

K-Means method (colored sections of Table 4.1). The latest tourist attractions in Florida are 

Daytona Rising and Expansion of Port Canaveral (Eye et al., 2017), which are also found from 

clustering outputs. The output clusters also reveal popular state parks and reserved forests and 

wetlands. Along with the existing facilities, clustering techniques are able to identify some 

emerging attractions, accommodation facilities such as Orange County Convention Center, Rosen 

Inn at Pointe Orlando, Centro Ybor Complex, Mall of the Americas etc. 

In Table 4.2 we find the nearby locations of the residents‟ cluster centers. 

TABLE 4.2: Clustering Result for Resident Coordinates. 

Sl. 

No 
Street Address City/Area Nearby Landmarks 

Number 

of Unique 

Users 

Number 

of 

Points 

 K-Means 

1 520 S Lake Formosa Dr Orlando 

Florida Hospital, Residential Housing 

complexes, Menello Museum, 

Orlando Science Center, 

792 6647 

2 3301 Bonnet Creek Rd Orlando 

Grand cypress golf resort, Disney 

World Cast Softball Field, Disney‟s 

Port Orleans Resort 

715 5133 

3 I-275 
Feather 

Sound 

St. Pete-Clearwater International 

Airport, Golf clubs. 
234 4082 

4 1106 Bartow Rd Lakeland 

Lake Bonny, Philip O‟Brien 

Elementary School, Lakeland Senior 

High School, Residential Area and 

Apartment complexes 

185 1565 

5 3050 Aberdeen Stables Deltona Sand Lakes  174 1355 

6 
21100-21298 NW 86th 

Ave 
Micanopy 

Paynes Prairie Preserve State Park, 

near I-75 
106 767 

7 874-898 Spiller St Melbourne 
Residential area at the bank of Indian 

river 
105 942 

8 8700-3 Western Lake Ap Jacksonville Residential Area, Lake Crest Condos  101 864 

9 Three Oaks Pkwy 
Bonita 

Springs 

Residential Apartment, Estero High 

School, Golf clubs 
74 820 

10 7625 Kapok Dr  Sarasota 
Residential Area, Lakeview 

Elementary School, Golf Clubs  65 993 

11 111 SW 107th Ave Miami Residential area, Town Shopping 52 326 
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Sl. 

No 
Street Address City/Area Nearby Landmarks 

Number 

of Unique 

Users 

Number 

of 

Points 

Center, Florida International 

University,  

 Mean Shift     

1 FL-400  Orlando 
The Holy Land Experience, Millenia 

Plaza, near I-4 
1156 13010 

2 4906 E Dr M.L.K. Jr Blvd  Plant City 
Industrial establishment, Residential 

areas, Plant City Airport,  
228 1929 

3 
Ulmerton Rd & FL-93 & 

I-275 

 St. 

Petersburg 

St. Pete-Clearwater International 

Airport, Weedon Island Preserve  
188 3595 

4 6621 Southpoint Pkwy Jacksonville 

Autobahn Indoor Speedway, St. 

Vincent‟s Medical Center Southeast, 

Residential Area 
109 896 

5 265 Stewart Dr 
 Merritt 

Island 

Banana River Aquatic Preserve, 

Indian River bank  
94 796 

6 
22132-22198 Cinnamon 

Ln 
 Estero Residential Area, Golf clubs 76 822 

7 2100 NE 30th Ave  Ocala Suntran Station 71 504 

8 4725 Hamlets Grove Dr  Sarasota Residential Area 64 960 

9 14409 Co Rd 234  Micanopy Paynes Prairie Preserve State Park 52 312 

10 10033 SW 33rd St  Miami Residential Area, Tamiami Park 50 320 

DBSCAN 

1 16326 Macon St  Clermont 
Residential area, Lake Louisa State 

Park, Golf Club 1292 18370 

2 Robles Ln  Rockledge 
Residential area, Indian River bank, 

near US Highway Route 1. 86 767 

3 4537 Emerson St  Jacksonville 
Cuba Hunter Park, Church, UF Health 

Endocrinology 73 587 

4 901 6th St  Holly Hill Shopping Mall, Residential area. 70 224 

5 22050 US-41  Estero Residential area 64 731 

6 8425 Country Park Way  Sarasota Residential area, Shopping Mall 52 730 

 

Most of the residents‟ location clusters are centered around residential areas with some major schools, 

shopping centers/malls, small golf courses in the radius of 3 kilometer. Some clusters are found on the 

recreational establishments, near the down town area and near some of the state parks. 
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4.5 Clustering Performance Measure 

Clustering performance can be measured based on an external or internal validation technique. 

We utilized internal validation methods as we applied unsupervised clustering methods. Among 

the various validation indices, we applied Calinski-Harabasz (Caliński and Harabasz, 1974), 

Dunn(Dunn, 1974), Davies-Bouldin (Davies and Bouldin, 1979) and Silhouette (Rousseeuw, 

1987) Index. We adopted these measures based on the accuracy and popularity of these measures 

in the literature, and simplicity/efficiency of implementation. Calinski-Harabasz uses the average 

between- and within cluster sum of squares to evaluate the cluster validity. Higher values of 

Calinski-Harabasz are expected for better clusters. 

TABLE 4.3: Cluster Performance by Internal Validation Indices 

Validation Index Clustering Method Tourist_Cluster Resident_Cluster Optimum Criteria 

Calinski-Harabasz 

DB_SCAN 4831 2704 

Maximum K_MEANS 61619 3.39290 

MEAN Shift 37103.3 27237 

Silhouette Index 

DB_SCAN 0.7063 0.2090 

Maximum K_MEANS 0.3.3438 0.3.33.300 

MEAN Shift 0.7661 0.7023.3 

Dunn Index 

DB_SCAN 0.0484 0.0833.3 

Maximum K_MEANS 0.6782 0.8444 

MEAN Shift 0.3738 0.3.3603.3 

Davies Bouldin 

Index 

DB_SCAN 223.2449 23.39.663.36 

Minimum K_MEANS 217.0733.3 188.9890 

MEAN Shift 1486.7238 400.2237 

 

Dunn index is the ratio of weighted value of inter-cluster separation to weighted values of intra-

cluster compactness, where separation is the minimum pairwise distance between objects in 
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different clusters and compactness is the maximum diameter among all clusters. A higher Dunn 

index indicates better clusters. Silhoeutte index gives an idea about the samples similarity with 

other samples within the same cluster (cohesion) and dissimilarity with other samples in other 

clusters (separation). It ranges from −1 to +1, where the higher the value the greater the within 

cluster similarity and the lower the intra-cluster similarity. For a well-separated cluster, the 

Davies-Bouldin Index is expected to be lower. In Davies-Bouldin, the highest value of similarities 

(i.e. C
1

s) between a single cluster and all other clusters is computed and this value for all the 

clusters (i.e. C
1

s to C
n

s) are then averaged to report the index. 

From Table 4.3 it is found that according to Calinski-Harabasz, Davies-Bouldin and Dunn 

Index K-Means clustering has performed best for both tourist and resident location clustering. 

From Silhouette Index Mean Shift has found to be the best among the three methods for tourist 

and resident location clustering. From the clustering outputs, we find that K-Means clustering 

gives satisfactory results when the input parameter (number of cluster) is carefully selected. With 

selected epsilon and minimum number of samples, DBSCAN provides clusters with low number 

of unique users and points; about 4.33.3% tourist coordinates and 3.64% resident coordinates 

have been marked as noisy data in DBSCAN. On the other hand, Mean-Shift algorithm provides 

satisfactory results with the selected bandwidth and it provides most number of clusters with least 

average number of coordinates in each cluster. Parameter for K-Means are estimated rather easily, 

whereas for Mean-Shift and DBSCAN more detail procedures were adopted.  

We could have selected the best clustering technique (i.e. selecting proper k for K_Means) 

depending on the optimum values of these indices. However, some of these index measurement 

methods are associated with high computational costs. For instance, measuring Dunn index 

becomes difficult as the number of clusters and dimensionality of the data increases. Therefore, 
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we started from basic data visualization to assume the initial starting parameters for the clustering 

techniques rather than running these time and computational-intensive methods in an iterative 

way. As we found out appropriate clustering results, we applied internal validation indices to 

comment on the best type of clustering method for the data set.  

 

4.6 Summary 

In this chapter we have utilized K-Means, Mena-Shift and DBSCN clustering techniques to 

visualize the spatial patterns of tourist and resident destinations. From the nearby landmarks of 

the top cluster centers we found that the tourist mainly cluster around the popular tourist attraction 

places such as theme parks, beaches, famous state parks and reserves; while the majority of the 

resident geo-tagged posts are found to be clustered around some of the dense residential areas 

with schools, shopping centers/malls and small golf courses in the neighborhood. We have also 

found some resident clusters around the famous tourist spots, beaches and state parks in Florida. 

From preliminary analyses we found the parameters of the three clustering methods and finally 

evaluated their performances based on some common internal validation indices. K-Means is 

found to perform better than DBSCAN and Mean-Shift clustering methods. 
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CHAPTER FIVE: TOURISTS NEXT DESTINATION TYPE PREDICTION 

5.1 Introduction 

Knowing where the tourist will visit next can help to build a proactive method to enhance the 

traffic operation of certain region. Predicting the type of next visited location is considered to 

have a sequential structure as an individual tourist‟s future activity location depends on his/her 

current location. Generative models such as hidden Markov models (HMM), Gaussian mixture 

models (GMM) etc. and discriminative models such as maximum entropy Markov model 

(MEMM), conditional random field (CRF) etc. can find out statistical patterns from sequential 

relationships between the visited places by individual tourists. These models are also probabilistic 

in nature as they provide a probability distribution as solution rather than a single valued. As we 

have longitudinal data for tourist visited locations it is therefore possible to draw meaningful 

relationships from their travel sequence. In this study, we have applied a probabilistic model to 

predict the next destination type of tourists. From each of the geo-located tweets we have 

extracted several features such as the day of week, the hour of the day and day of the trip.  

 

5.2 Data Preparation 

As described in section 2.3, for this study Twitter data is prepared for two different time window. 

For the analyses described in this chapter we used the data set collected from March 29, 2017 to 

October 10, 2017. We then filtered the data based on BOT score and number of geo-tagged tweets 

in the same way as the first set of data used in chapter 3 and chapter 4. Then we extracted the user 

posted locations for the filtered users and separated 2438 tourists (posted location in Twitter 

profile is describe places outside of Florida). Using Twitter REST API we then collected the latest 
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3200 tweets of 2438 user accounts. From March 29 to October 10, these users have posted 35,680 

geo-tagged tweets. From them we selected the tweets posted with at least 1 hour time difference. 

As we are considering the tweets as sequence of activities, keeping same location several times 

within small time frame for the same user might affect the model performance. These reduced the 

sample size from 35,680 to 26,187 geo-tagged posts. 

Using ArcGIS we found the POIs (point of interests) of the locations given by the geo-tagged posts. 

For the ease of analyses we divided the POIs into eight different classes (Table 5.1).  

TABLE 5. 1: Location Types visited by Tourists. 

Location 

type 
Description 

Number of geo-

tagged posts 

Percentage of total 

geo-tagged posts 

1 Airport, Amtrak, bus Stations (Entry/Exit) 828 3.2 

2 Beach and Bay areas, beach side restaurant 2838 10.8 

3 Theme Parks, Sea World etc. 12546 47.9 

4 Restaurants, Fast Food 2129 8.1 

5 Other Entertainments (Stadium, Arena, Amway 

Center, Convention Center, Lake, Shopping 

Mall, cemetery, university, hospitals, ZOO) 

3742 14.3 

6 Hotel, Motel, Small resorts (Residential Areas) 891 3.4 

7 National/State Park, Reserved Forests, Golf 

courses 
874 3.4 

8 On the road, Gas Stations, Garage 2339 8.9 

 

We have spatially joined destinations with Florida geographic shapefiles including polygon 

shapefiles of golf courses, national/state parks boundary, wildlife reserves, lakes etc. We have 

used buffer and intersection for available point and line shapefiles which includes the hotels, civic 

centers, tourists attraction points, springs, highways, trails and scenic byways etc.  
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(a) (b) 

FIGURE 5. 1: Spatial Join of Tourists Location Coordinates: (a) with available geographic POI 

files and (b) points labeled manually. 

All the files were gathered from different sources including the tigerline shape files (United 

States Census Bureau), Florida geographic files database(“Florida Geographic File Database,”) 

etc. (Figure 5.1(a)). 

The points those did not fall within any of the joins were classified manually by using the 

latest street map in ArcGIS basefile.  

 

5.3 Model Selection 

Semantic labels of locations can be predicted using a hidden-Markov model (HMM) which 

represents the joint probability distribution p(y, x), where y represents the semantic labels of the 

locations that are to be predicted, and x represents the observed features extracted from the geo-

located tweets. Different studies used different types of Markov models for location prediction 

and/or inference. Alvarez et al. (Alvarez-Lozano et al., 2013) used HMM to predict the next point 

of interests or POI from mobile phone data. A hybrid model based on HMM was proposed in 

(Mathew et al., 2012), where the HMM is trained using the clusters made earlier based on the 
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users visited locations. Hierarchical HMM was applied in (Liao et al., 2007b) to identify users 

transportation routines.  

However, for a large feature set, modeling the joint distribution becomes difficult as one has 

to account for the complex dependencies among the features in general HMM. Also, as described 

in Lafferty et al. (Lafferty et al., 2001) probabilistic models such as maximum entropy Markov 

model (MEMM), HMM, etc. have the problem of label bias. These models will prefer the output 

label that has been more common in the training data set and thereby will affect the predictive 

capability of the model. Sequence modeling problems can be framed into a conditional random 

field (CRF) (Lafferty et al., 2001) model which directly models the conditional distribution p(y|x) 

instead of modeling the joint distribution p(y,x). Unlike discrete classifiers a CRF can take context 

into account; e.g., the linear chain CRF predicts sequences of labels for sequences of input 

samples. In case of sequential data different types of CRF have also been applied in different 

transportation problems. Liao et al. (Liao et al., 2007a) applied hierarchical CRF to extract 

location and activity types from users GPS data. In (Liao et al., 2006) the authors applied 

Relational Markov Networks which is an extension of CRF to label individual‟s activities 

performed in significant places using their GPS data. 

Given the longitudinal data, the extractable features relating to the location choices and the 

successful application of CRF models in the literature we decided to apply linear chain CRF in 

our study.  

 

5.4 Model Formulation 

In our problem formulation we have a list of observation, each containing a list of features (i.e. 

trip day, day of week, hour of day etc.) and the label for the visited location type (1,2,…8). Our 
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inputs in the model are the feature set, arranged in a list and the output will be the location types. 

Following figure shows a graphical presentation of the CRF model structure for this study. 

 

 

 

 

 

   

 

FIGURE 5. 2: Graphical model representation of linear chain CRF. 

 

As linear chain CRF are closely related to HMM we discuss the model formulation by 

comparing it with HMM structure. HMM makes two independence assumptions while modeling 

the joint distribution p(y,x) (Sutton and McCallum, 2011). First, it assumes that each current state 

(yt) depends only on its immediate predecessor (yt-1). Second, it also assumes that each 

observation variable xt depends only on the current state yt. Following the discussion in (Sutton 

and McCallum, 2011), we can specify an HMM using three probability distributions: the 

distribution p(y1) over initial states, the transition distribution p(yt|yt-1) and the observation 

distribution p(xt|yt). Thereby, the joint probability of a state sequence y and an observation 

sequence x factorizes as: 
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In order to describe linear chain CRF first equation 1 is re-written in the following form: 

 

1{ } { } { } { 0}

,1

1
( , ) exp{ 1 1 1 1

t t t t

T

ij y i y j oi y i x

i j S i S o Ot

p y x
Z

 
   

  

                                               (5.2) 

 

Lt-1 

X(t-1)1 X(t-1)2 

 
X(t-1)n 

 

Lt 

Xt1 Xt

2 

 

Xtn 

 

Lt+

1 

X(t+1)

1 

X(t+1)

2 

 

X(t+1)n 

 

 

L =labels/location type 

 

 = conditions 

 

X = features 



44 

 

Where, { , }ij oi    represent the real valued parameters of the distribution and Z represents 

normalization constant selected in a way so the sum of distribution becomes 1. Equation 2 can be 

presented using feature functions. Here, each feature function has the form 1( , , )k t t tf y y x . Each 

feature kf  describes the sequence x at position t with label yt observed along a transition from 

label states yt−1 to yt in the finite state machine. The feature function kf  ranges over both all of the 

ijf  and all of the iof . The probability distribution can be written as: 

1,
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( , ) exp{ ( , )}

T K

k k t t t

kt

p y x f y y x
Z

 



                                                                             (5.3) 

 

Then the conditional distribution will be: 
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In general the linear chain CRF describes the conditional probability for a state sequence y = y1, 

y2, ….., yT given an input sequence of feature x = x1, x2, ….., xT to be: 
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Where, Y, X are random vectors, ϴ is parameter vector and 
1 1{ ( , , )}K

k t t t kf y y x 
 are set of real 

valued feature functions. And, Z(x) is defined as: 

1,

11

( ) exp{ ( , )}
T K

k k t t t

y kt

Z x f y y x 



                                                                                (5.6) 

 

To estimate the parameter ϴ of CRF the training data set containing state sequence y = y1, y2, 
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….., yT given an input sequence of feature x = x1, x2, ….., xT is given. In this study we assume all 

the tourists behave is a similar fashion, thereby creating a single sequence for the whole 

observation. Assuming an arbitrary prior p(y; ϴ`), the joint likelihood of p(y,x) can be written as: 

( , ) ( | ; ) ( ; ')p y x p y x p y                                                                                                  (5.7) 

The logarithm on both sides of equation 5.7 provides: 

log ( , ) log ( | ; ) log ( ; ')p y x p y x p y                                                                                (5.8) 

As the choice of ϴ` does not affect optimization over ϴ, we can write: 

( ) ( )
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                                                                                               (5.9) 

The term (i) denotes the sequence for individual users. As we consider all users behaving in same 

manner, we do not have use of this notation. Substituting the CRF model in equation 5.3 we have 

the following log-likelihood equation: 
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                                   (5.10) 

Optimization of LL(ϴ) yields the model parameters. In this study we have used LBFGS or limited 

memory Broyden–Fletcher–Goldfarb–Shanno algorithm for the optimization. More details of the 

CRF model formulation and parameter estimations can be found in Lafferty et al., (2001) and 

Sutton and McCallum, (2011).  

 

5.5 Results 

We have developed CRF model to predict the next destination types using tweet posted time (in 

hour of day), tweet posted day (in day of week), the type of current location visited by the 

tourists, individual tourist‟s trip day (i.e. 1
st
 day or 2

nd
 day or n

th
 day of his/her visit in Florida)  as 
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features. The best results were found by using the first three features. We used 70% of the data set 

for training and 30% for testing.  

 

FIGURE 5.3: Performance of linear chain CRF in location type prediction. 

The results show accuracy, precision, recall and f-score of 65%, 64.7%, 64.9% and 64.8% 

respectively while predicting the next location type. In the following table the prediction 

performances for each type of destination is reported.  

TABLE 5.2: Performance with CRF model in Predicting Destination Type.  

Location 
Type 

Description precision recall f1-score support 

1 Airport, Amtrak, bus Stations (Entry/Exit) 0.259 0.178 0.211 230 

2 
Beach and Bay areas, beach side 

restaurant 0.62 0.603 0.611 839 

3 Theme Parks, Sea World etc. 0.818 0.824 0.821 3787 

4 Restaurants, Fast Food 0.329 0.338 0.333 622 

5 

Other Entertainments (Stadium, Arena, 

Amway Center, Convention Center, Lake, 

Shopping Mall, cemetery, university, 

hospitals, ZOO) 0.527 0.546 0.536 1120 

6 
Hotel, Motel, Small resorts (Residential 

Areas) 0.466 0.463 0.465 285 

7 
National/State Park, Reserved Forests, 

Golf courses 0.562 0.526 0.543 285 

8 On the road, Gas Stations, Garage 0.459 0.48 0.47 689 

Average  0.647 0.649 0.648 7857 

0.650 

0.647 
0.649 

0.648 

0.625

0.630

0.635

0.640

0.645

0.650

0.655

Accuracy Precision Recall F1_Score
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From Table 5.2 we see that CRF has better performance in predicting location type 2 and 3, 

i.e. theme parks, beach, beach side attractions etc. It has moderate precisions in predicting 

location type 5 and 7, i.e. the other entertainment centers (Stadium, Arena, Amway Center, 

Convention Center, Lake, Shopping Mall, cemetery, university, hospitals, Zoo) and state parks, 

golf courses etc. Theme parks, beaches and national/state reserves and parks are the main 

attractions of Florida. These locations have the higher percentages in the geo-tagged tweets. We 

can relate these predicted travel information with the traffic data in spatial and temporal frames to 

find out the probable traffic impacts around the facilities.  

 

5.6 Summary 

Studies (Liao et al., 2007a, 2006) have found 83.3% to 90% accuracy while using CRF and 

extensions CRF models to predict place and activity types. Using HMM to similar types of 

problem some studies has found as low as 14% (Mathew et al., 2012) to as high as 69% (Alvarez-

Lozano et al., 2013). But, these studies used high resolution GPS data which is difficult to collect 

for tourists. Therefore, with limited features, our model has shown reasonable performance with 

average accuracy of 65%. As CRF can use numerous features, future works can include other 

attributes of the travel and the traveller to enhance model performance. Users‟ age and gender can 

be useful features, which are difficult to extract from profile information, especially when the 

sample size is large. In proposed CRF model we considered all the tourists behave in the same 

manner as we did not include in traveller attributes.  
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CHAPTER SIX: DESTINATION CHOICE MODEL FOR RESIDENTS 

6.1 Introduction 

Destination Choice is an important input in transportation demand modeling. It is vital to know 

which groups of people are travelling to where and for what purposes. Trip attributes such as 

distance traveled, transportation mode chosen; individual attributes such as age, gender, income 

etc.; and origin and destination attributes such as land use types, number of attraction points 

(offices, schools, civic centers) etc. are the input parameters for a long term planning of any urban 

area. Updated travel data are necessary to develop more informed models describing recent travel 

behavior of a population. Up until now all the major planning agencies rely on time consuming 

and/or costly traditional data collection methods such as household survey, telephone survey etc. 

This study proposes an extensive data merging technique to overcome the limitations of 

traditional surveys in collecting latest travel data and inferring the travel behavior through 

appropriate model frameworks.  

Usually destination choice modeling is characterized by a large set of alternatives (Hendrik 

and Perdana, 2014). However, during many transport related problems (such as model 

development) data acquisition for each alternative is not a feasible proposition. Such data 

collection is arduous as found in some researches. Simma et al. (Simma et al., 2002) explored 

such variables in detail for long distance leisure travel in Switzerland, reporting that the data 

collection work was indeed particularly arduous. This paper presents an alternative approach, 

using aggregated data from the location based social network (LBSN) Foursquare to represent 

destination attractiveness in the utility function of a multinomial logit model. 

Big data, such as those collected by Foursquare or Twitter, are a described as the “topic du 
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jour” in transport modeling in (Molloy and Moeckel, 2017). Rashidi et al.(Rashidi et. al,  2017) 

presented the first comprehensive literature review exploring the opportunities and challenges 

inherit to working with such data, with a special focus on travel demand modeling. They 

examined the recent applications of social media data to both aggregate and disaggregate models, 

activity behavior, traffic behavior, incidents and natural disasters. Twitter data has been used in 

(Lin et al., 2013.3) to model the impact of extreme weather on freeway speed for the Buffalo-

Niagara, New York, metropolitan area. The study merged three sets of data namely Twitter data, 

weather station data and traffic data to develop two linear regression models, one with and 

another without the Twitter data. From their R-square values they found improved model 

performance by incorporating the Twitter variables. 

To the author‟s best knowledge, only one research has been done using both social media and 

existing surveys by Molloy and Moeckel (Molloy and Moeckel, 2017). They utilized foursquare 

check-in data and Transport Survey of Residents of Canada (TSRC) data to model long distance 

destination choice model for Ontario, Canada. 

 

6.2 Data Preparation 

We utilized python‟s geohash (“Geohash 1.0,” 2015) library to locate the users home census tract. 

Geohash divides the geographical area into pre-defined rectangular boundaries (in our case we 

selected 152 meter by 152 meter geohash). We have counted the number of coordinates that fall 

within each geohash and reported the geohash with the largest number of coordinates as the user‟s 

home location. Again, we set a minimum threshold of 3 geo-tagged posts within a geohash to 

consider the location as the user‟s home. In this method we found home locations of nearly 400 

users, but we were only able to manually extract the demographic information (age group and 
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gender) of 345 users. Therefore, we have worked the subsequent analyses for the destinations of 

these 345 users. Using ArcGIS we have spatially joined destinations with Florida census tracts 

shapefile. We have merged different data sources containing the number of offices, schools, 

entertainment centers, hospitals etc. in Florida and spatially joined them with the census tract 

shapefile. The files were gathered from different sources including the tigerline shape files 

(United States Census Bureau), Florida geographic files database(“Florida Geographic File 

Database”) etc. The destinations are divided into three major types, i.e. recreational, shopping and 

others. Based on the destination types the trips are denoted as recreational trips, shopping trips 

and others. The data set contained 345 users with home in 199 different census tracts and 44,085 

destinations in 1651 different census tracts.  

 

FIGURE 6.1:  Merging user home and destination with census tracts. 

We kept the destinations those make sense based on timeline analyses. We excluded any 

destination if a user has posted several times from the same location within very short period of 
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time. We have randomly drawn 29 alternative census tracts as alternative destination against each 

trip. The sample data set is given in Table 6.1.  

TABLE 6. 1: Sample data for destination choice model. 

Case id 
Person 

ID 
Trip ID 

Gender 

(male=1) 

Age 

group 

Distance 

(km) 
Choice 

Trip 

Purpose* 

1307581 5 21006 0 3 7.964441 1 3 

1307582 5 21006 0 3 121.1204 0 3 

1307583 5 21006 0 3 54.14300 0 3 

1307584 5 21006 0 3 332.8362 0 3 

1307585 5 21006 0 3 172.9131 0 3 

*Trip purpose: 1= recreation, 2=shopping, 3 = others. 

The variables we have extracted include: 

 User age (divided into 5 Age groups: up to 15, 16-25, 26-40, 41-55, 56 and above), and 

user gender from Twitter profile pictures. 

 Per-capita income (individual mean, 3.3 year estimate) in 1000 USD. 

 Number of civic center, schools, hospitals, government building in point shape files. 

 Land use types using the area of residential, industrial, institutional, recreational, office, 

and landuse mix of the destination and home census tracts. 

 Distance from the center of the home census tract to the center of the destination census 

tract in kilometers. 

Table 6.2 lists the variables and their description used in the models. 
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TABLE 6.2: Description of Variables used in Choice Model 

Variable Description Variable Description 

HINDUSTR Industrial area in home  DINDUSTR Industrial area in destination 

HRECREAT Recreational area in home DRECREAT Recreational area in destination 

HOFFICE Office area in home DOFFICE Office area in destination 

HAGRICUL Agricultural area in home DAGRICUL Agricultural area in destination 

HRESIDEN Residential area in home DRESIDEN Residential area in destination 

HLANDMIX Landuse mix in home DLANDMIX Landuse mix in destination 

HHOSPITA Number of hospitals in home DHOSPITA Number of hospitals in destination 

HSCHOOL Number of schools in home DSCHOOL Number of schools in destination 

HCIVICCE Number of civic centers in home DCIVICCE Number of civic centers in destination 

HINCOME Per-capita income in home DINCOME Per-capita income in destination 

HGOVMNTB Number of government buildings 

in home 

DGOVMNTB Number of government buildings in 

destination 

DISTKM Distance in kilometer Weekend Dummy variable for Weekend 

PShop Dummy variable for shopping trips PRec Dummy variable for recreational trips 

Pother Dummy variable for other trips Female Dummy variable for gender (female=1) 

 

Income in home census tract, age, gender etc. are the invariant alternatives (does not change 

with individual, no matter whatever destination he/she chooses). The dependent variables are two 

categories: „1‟ for the selected destination and „0‟ for the 29 alternatives chosen randomly for each 

trip. With „0‟ value all the alternatives are the base categories and significant parameter estimates 

of the variables signifies the effect of that particular variable on choosing the destination. We have 

explored various interactive variables which are described in the result section of this chapter. 
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6.3 Model Selection and Formulation 

“Discrete choice models can be used to analyze and predict a decision maker‟s choice of one   

alternative from a finite set of mutually exclusive and collectively exhaustive alternatives” 

(Koppelman and Bhat, 2006). In this study the goal is to capture the destination‟s characteristics 

as well as individual‟s characteristics those affect the choice. Therefore, a number of alternatives 

have been included in each trip to draw those effects, assuming one individual can select any of 

the alternatives. This provides a dependent variable with nominal outcome, and therefore, 

multinomial logistic regression is a better choice for this problem. Again in this study we tried to 

segment the population into different groups based on the observed variables such as income, land 

use of the home census tracts, trip purpose etc. Instead of doing it exclusively based on some 

predefined criteria (male or female, or age group) we used latent or endogenous segmentation 

(Bhat, 1997) approach which allocated population among different segments in a probabilistic 

fashion. This helps to better understand the heterogeneity captured in modeling as it allows the 

influences of exogenous variables to vary across the different segments (Sobhani et al., 2013). 

Also, in our case we have repeated choice situations for individual which allows us to look into 

the heterogeneity across the individual as well as panel data. Therefore, we proposed a Panel 

Latent Segmentation Multinomial Logit (PLSMNL) model. A brief description of PLSMNL 

model employed in our study is provided below.  

Let us consider S homogenous segments of trips (the optimal number S is to be 

determined) The utility for assigning a trip j (1, 2, … J) made by individual i (1,2,…, I) to 

segment s is defined as: 

 
𝑈𝑖𝑗𝑠

∗ = 𝛽𝑠
′𝑧𝑖𝑗 + 𝜉𝑖𝑗𝑠 

           (6.1) 
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𝑧𝑖𝑗 is a (M x 1) column vector of attributes that influences the propensity of belonging to segment 

s, 𝛽𝑠
′ is a corresponding (M x 1) column vector of coefficients and 𝜉𝑖𝑗𝑠 is an idiosyncratic random 

error term assumed to be identically and independently Gumbel-distributed across trips j and 

segment s. Then the probability that trip j made by individual i belongs to segment s is given as:  

 𝑃𝑖𝑗𝑠 =  
exp(𝛽𝑠

′𝑧𝑖𝑗)

∑  exp(𝛽𝑠
′𝑧𝑖𝑗)𝑠

 (6.2) 

Now let us assume k (1,2, … K, in our study K=30) to be an index to represent the 

destination zone. When a trip is probabilistically assigned to a segment s and zone k is chosen as 

the destination, the random utility formulation takes the following form: 

 𝑈𝑖𝑗𝑘| 𝑠 = 𝛼𝑠
′ 𝑥𝑖𝑗 + 𝜀𝑖𝑗𝑘 (6.3) 

𝑥𝑖𝑗 is a (L x 1) column vector of attributes that influences the utility of destination choice model. 

𝛼𝑠
′  is a corresponding (L x 1)-column vector of coefficients and 𝜀𝑖𝑗𝑘 is an idiosyncratic random 

error term assumed to be identically and independently Gumbel distributed across the dataset. 

Then the probability that trip j chooses zone k as destination within the segment s for individual i 

is given as: 

 
𝑃𝑖𝑗(𝑘) | 𝑠 =  

exp(𝛼𝑠
′𝑥𝑖𝑗)

∑ exp(𝑘 𝛼𝑠
′ 𝑥𝑖𝑗)

 (6.4) 

Within the latent segmentation framework, the overall probability of trip j by individual i 

to be destined to zone k is given as: 

 𝑃𝑖𝑗(𝑘) =  ∑(

𝑆

𝑠=1

𝑃𝑖𝑗(𝑘) | 𝑠)(𝑃𝑖𝑗𝑠)           (6.5) 
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Therefore, the log-likelihood function for the entire dataset is: 

 𝐿𝐿 = ∑ ∑ log(𝑃𝑖𝑗(𝑘𝑖𝑗
∗ ))

𝐽

𝑗=1

𝐼

𝑖=1

 (6.6) 

where 𝑘𝑞
∗  represents the chosen zone for trip j by individual i. By maximizing this log-likelihood 

function, the model parameters β and α are estimated. GAUSS matrix programming language is 

used to code the maximum likelihood model estimation.  

 

6.4 Model Results and Interpretation 

For PLSMNL we have used 34,000 unique trips of 345 users selected randomly out of 44,085 

trips. The first step of PLSMNL is to probabilistically assign each individual into given number of 

segments based on the exogenous variables. Starting from two segments we have included 

additional one segment at a time and measured the data fit. Finally, we selected the number of 

segments in a fashion that adding another segment does not significantly improve the data fit and 

does not enhance the intuitive interpretations of the variables. We have utilized Bayesian 

Information Criterion (BIC) to statistically measure the fit as it applies higher penalty on over-

fitting and is the most common information criteria used to identify the suitable number of classes 

for latent segmentation based analysis (Nylund et al., 2007). We have estimated the model with 2, 

3 and 4 segments and found the best intuitive results with 3 segments. 

The segmentation results are shown in Table 6.3 with the significant variables (at 90% 

confidence interval) that decide the segment membership. 
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TABLE 6.3: Segmentation Characteristics of PLSMNL 

 Segment 1 Segment 2 Segment 3 

Segment Share 0.2029 0.5359 0.2612 

Variable Estimates t-stats Estimates t-stats Estimates t-stats 

Constant -1.0005 -2.038 0.9274 2.752   

WEEKEND 0.736 3.046 -0.573 -1.933 _ _ 

FEMALE -1.0239 -1.917 -1.1573 -2.43 _ _ 

HAGRICUL 0.5064 2.527 _ _ _ _ 

HRESIDEN -2.2669 -2.996 _ _ _ _ 

HOFFICE 0.219 4.069 _ _ _ _ 

PShop _ _ 5.1135 20.241 _ _ 

The estimates of the segment variables reported in Table 6.3 provide the information 

regarding the segment characteristics. Specifically, destination choices made over the weekend 

are most likely to be allocated to segment 1 while they are least likely to be allocated to segment 

2. In terms of individual gender variable, destination choices of female users are likely to be 

assigned to segment 3. The segment membership variables are also affected by land use variables. 

The individuals residing in census tracts with higher agricultural and office area are more likely to 

be assigned to segment 1 while individuals residing in census tracts with lower residential density 

are least likely to be allocated to segment 1. Trip purpose variables also influence segment 

membership. The trips for shopping are most likely to be allocated to segment 2. 

In addition to identifying the various factors affecting segment membership, the PLSMNL 

model allows us to compute the shares of the various segments. In our analysis, the segment 

shares are as follows: segment 1 – 20.3%, segment 2 – 53.6% and segment 3 – 26.1%. The 

PLSMNL model can also be employed to generate segment level means for the independent 

variables (see Table 6.4). 

In addition to identifying the various factors affecting segment membership, the PLSMNL 

model allows us to compute the shares of the various segments. In our analysis, the segment 
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shares are as follows: segment 1 – 20.3%, segment 2 – 53.6% and segment 3 – 26.1%. The 

PLSMNL model can also be employed to generate segment level means for the independent 

variables (see Table 6.4). 

TABLE 6.4: Segment shares in PLSMNL 

 Segment 1 Segment 2 Segment 3 Variable Mena in 

Overall Sample Variables Mean of Independent Variables 

PShop 0.00303 0.32223 0.00326 0.17415 

PRec 0.63685 0.36170 0.55391 0.46774 

POther 0.36011 0.31608 0.44283 0.35812 

WEEKEND 0.49882 0.25468 0.34367 0.32747 

FEMALE 0.42563 0.26684 0.50669 0.36171 

Home Agricultural area 0.09390 -0.01161 0.00780 0.01487 

Home Office area 11.65662 1.63968 2.193297 3.81717 

Home Residential area 0.45286 0.17878 0.11802 0.21854 

Distance in Km 45.83628 24.39721 35.74828 31.71260 

 

 

An examination of the trip purpose variable means indicates that each segment is dominated 

by one activity purpose: (1) Segment 1 is likely to be recreational destinations, (2) Segment 2 is 

mostly shopping activity oriented destination and (3) Segment 3 is predominantly other activities. 

The reader would note that the segment membership allocation is probabilistic (not exclusive) and 

hence other activity purposes might exist within these segments. Overall, based on segment 

membership characteristics from Table 4, it is possible to label the various segments in the model. 

Segment 1 is predominantly a male weekend recreational activity segment. Segment 2 is geared 

toward shopping destinations on weekdays. Finally Segment 3 mainly represents female other 

activity destination trips. 

All the individuals assigned to particular segment are assumed to have identical preferences 

while choosing the destination or in other word should have the same utility function (Bhat, 
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1997). The segment specific multinomial logit models (MNL) are there to capture effects of the 

variables on destination choice for individuals in each segment (Table 6.5). 

TABLE 6.5: Destination Characteristics from Segments specific MNL. 

Variable 
Segment 1 Segment 2 Segment 3 

Estimates t-stats Estimates t-stats Estimates t-stats 

DISTKM -0.0064 -4.327 -0.2161 -8.629 -0.0602 -7.06 

DINDUSTR -0.3572 -2.398 0.3424 2.707 -0.2095 -2.372 

DRECREAT 0.06 3.439 _ _ _ _ 

DOFFICE _ _ 0.1249 7.629 0.4253 4.824 

DAGRICUL _ _ _ _ 0.5686 5.126 

DLANDMIX 0.3623 4.37 0.2218 2.15 _ _ 

DSCHOOL 0.1168 2.167 0.2825 3.832 _ _ 

DCIVICCE 0.4525 15.562 _ _ 0.4666 5.319 

DINCOME 0.2031 2.605 0.287 2.836   

DGOVMNTB _ _ _ _ 0.3659 3.698 

 

In the segment specific model estimation, we employed several destination characteristics. A 

cursory examination of the results clearly highlights how the variables (and parameter 

sign/magnitude) influencing the destination choice models across the various segments are quite 

different. The result provides strong support to our study hypothesis for the presence of 

population heterogeneity.  

In all models, travel distance has a negative coefficient. While a direct comparison of the 

travel distance across segments needs to be judiciously conducted, a preliminary examination 

highlights intuitive trends. A low magnitude for the impact of destination is observed for weekend 

recreational destinations, indicating the higher spatial flexibility over weekends for such trips. A 

high negative magnitude is observed for the weekday shopping segment highlighting inherent 

preference for shorter distance trips on weekdays.  
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In segment 1 destination tract recreational area, land use mix, number of schools, number of 

civic centers and per-capita income are found to have significant positive impact on the 

destination alternative. On the other hand, the increased presence of industrial area is likely to 

reduce the preference for the destination.  

In segment 2 industrial area, office area, land use mix, number of schools and income of the 

destination census are found to have significant positive impact on the individual choice of 

destination. The results are intuitive considering segment 2 is predominantly weekday shopping 

destinations. The positive impact of number of schools and office areas variables can be related to 

the fact that people on weekdays do not leave home only for shopping, rather they prefer 

shopping on their way to office or in some cases near schools. 

For segment 3 we find the variables for office area, agricultural area, number of civic centers 

and government buildings in the destination census are found to have significant positive impacts 

(Table 6.5).  

It must be noted that our panel structure was unbalanced, meaning that the number of repeated 

observations for individuals (trips made by individuals) varies across the dataset (from 1 trip to 

1823 trips with the mean of 98.6 and median of 31 trips). Please note that while we correct for the 

panel effect in the standard error estimation we did not explicitly consider unobserved 

heterogeneity due to the repetitions. However, the PLSMNL performed better comparing to 

simple trip-specific MNL. We developed four different MNL models:  one model for all trips and 

three models by activity purpose for recreational, shopping and other trips. The log-likelihood 

values for these models were found to be -48688.757, -20595.791, -2078.21 and -20969.19 

respectively. The overall log-likelihood for all observations for trip purpose models was -

43,643.19 (-20595.791, -2078.21 and -20969.19). The log-likelihood for the PLSMNL model was 



60 

 

-34,752.8 significantly lower than the overall MNL model or the trip purpose based model suite. 

Therefore, it is clear that the PLSMNL model provides superior fit. 

 

6.5 Summary 

In this chapter we have demonstrated a way of creating joint database by combining social media 

data with traditional census tract based socio-economic, landuse and infrastructural data for using 

in the context of transportation demand studies. We propose a panel based endogenous 

segmentation MNL model to analyze the destination choice preferences of the residents. With 

three segments we have found out the segment specific MNL models to explain the characteristics 

of the residents under each segment. Proposed PLSMNL outperformed the trip specific MNL 

models both quantitatively in terms of goodness of fit and qualitatively by providing better 

interpretation of the results. 
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CHAPTER SEVEN: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this study, we presented methods to extract and analyze large-scale data for tourists‟ and 

residents‟ travel related information from Twitter. Filtering steps are followed to remove social 

bots from the dataset and prepare a reliable sample for analysis. From the filtered Twitter data, we 

identified tourists and residents using a simple heuristic classification approach. The proposed 

algorithm outperformed some of the widely used supervised classification methods. When 

compared to some of the state of art ensemble classification techniques, AdaBoost classifier 

performed better than the proposed heuristic. All the features used to train these advanced 

classification techniques are drawn from geographical coordinates (from geo-tagged posts) 

without making a time intensive content-based analysis. 

To find spatial patterns of destination choices made by tourists and residents, we applied three 

common clustering techniques, i.e. K-Menas, Mean-Shift and DBSCN. From the tourists 

clustering results, locations are found to be clustered around some of the famous tourist spots, 

reserved forests and wetlands, airports and beaches in Florida. The number of unique users and 

total number of coordinates within each cluster indicate tourist attractions in Florida. On the other 

hand, resident locations are found to be clustered around the residential apartment complexes with 

some schools, shopping centers and small golf courses within the 3 kilometer radius. Based on 

some of the widely used validation measures, the performances of the clustering methods are 

measured. From these indices, K-Means clustering method performed best among the three 

clustering methods. 

To predict the next destination types of the tourists, we have applied CRF model with the 
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extracted temporal and spatial features of the geo-tagged tweets. The model had a good 

performance with overall accuracy, precision, recall and f1-score of 65%, 64.7%, 64.9% and 

64.8% respectively. 

To understand the destination choice behavior of the residents, we proposed a PLSMNL 

model. The model had best fit with three segments and outperformed the trip specific MNL 

models. The qualitative assessments of the models indicated that the proposed PLSMNL 

successfully represented different types of trips (shopping, recreational and others) into different 

segments. The data integration part of these models will be of great interest for future works using 

social media data for transportation modeling. 

Our analysis of tourists‟ and residents‟ destination patterns has significant implications. First, 

it shows how to collect and prepare reliable data on tourist travel behavior from social media. 

Extraction and analysis of most recent data are required for the planning of large states, especially 

tourism dependent states such as Florida. Where traditional surveys are highly expensive and 

difficult to conduct; social media can become a useful cost-effective source providing the most 

recent travel data of growing region. Second, our analysis shows how to infer different patterns 

from tourist destination choices. Combining the spatial clusters in temporal windows, it is 

possible to find out traffic impacts of tourists in a study area. Third, with extensive data merging 

techniques, this study presents a framework to understand individual level travel behavior for 

tourists and residents. Thus, this study showed a promising direction towards using social media 

data for understanding tourist travel behavior and the methods and findings from this study will 

be significantly useful in future studies on tourist travel behavior. 
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7.2 Limitations of the Study 

There are some limitations of this study. We have thoroughly noted down the limitations as it will 

help the researchers to advance this research forward and to make more useful contributions 

transportation planning studies.  

The data set used in this study was collected by setting a boundary for the central Florida 

region only. A more detailed data set with more tourist and resident users can be extracted by 

setting the boundary for the whole Florida state.  

In the process of BOT filtering, it is possible that we might have excluded many individual 

user profiles along with the social BOTs as the filtering process is not 100% accurate. For 

instance, there are some individual users with BOT score greater than 0.4, and also there are some 

actual BOTs with BOT score less than or equal to 0.4. A more detailed procedure of BOT 

filtration can be adopted to overcome this limitation.  

Self-declared location information, used as a ground truth, can also become erroneous in some 

cases. Although very few in number, we observed that some users actually reside in different 

places instead of the locations posted in their profiles. A better filtering procedure will help to 

introduce more users (residents and tourists) and find more diverse destination patterns. 

In resident destination choice model, we considered all the trips as home-based trips, i.e. all 

the trip‟s origin is home. This can be avoided if we could have extracted the travel start time from 

the tweet posted time. But the problem is that people do not tweet at the exact time when they 

leave one place or reach to a place. For instance, during leaving for office one will not tweet just 

before starting his trip, and also one may not tweet instantly after reaching office.  
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7.3 Recommendations and Future Research 

The main data source of the study is Twitter and as explained in (Zheng et al., 2015) social data is 

always evolving with time. Therefore, systematic data fusion approaches are needed to connecting 

social media data with different geographical and infrastructural database to add more information 

to models. 

Using spatio-temporal clustering, it is possible to find out traffic impacts of tourists in a study 

area. But in that case researchers must be careful while using the tweet posted time for the clusters 

as individuals often do not post tweets at the exact starting or ending time of their activity.  

For residents‟ destination choice, there are possibilities to enhance the models by 

incorporating more types of trips such as school trips, office/work trips etc. In this case, collecting 

a significant sample size may prove to be difficult as individuals are less likely to post geo-tagged 

tweets from these locations. 

Lastly, to keep the analyses simple we did not use any tedious text mining process. As text is 

an important part of Twitter data, future studies can include features extracted from tweet texts 

and include them in the destination prediction models. 
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APPENDIX: RESIDENT DESTINATION CHOICE MODEL 
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TABLE A1: MNL for all Trips. 

 

Parameters Estimates Standard Error t-stat 

DISTKM -0.0296063 0.000178 -166.27 

DAGRICUL 0.0428767 0.015523 2.76 

DRESIDEN 0.0948184 0.016194 5.86 

DOFFICE 0.0669291 0.007265 9.21 

DLANDMIX 0.2210507 0.00904 24.45 

DGOVMNTB 0.1654784 0.010166 16.28 

DHOSPITA 0.0878285 0.005896 14.9 

DSCHOOL 0.1403953 0.006081 23.09 

DCIVICCE 0.2403403 0.008739 27.5 

DINCOME 0.208048 0.012313 16.9 

Male_DAGRICUL 0.0631316 0.017523 3.6 

Male_DRESIDEN -0.060991 0.019041 -3.2 

Male_DOFFICE 0.0272397 0.009159 2.97 

Male_DGOVMNTB -0.0836544 0.012501 -6.69 

Male_DCIVICCE -0.0573614 0.01061 -5.41 

Male_ DINCOME -0.0755817 0.016081 -4.7 
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TABLE A2: MNL for Recreational Trips. 

Parameters Estimates Standard Error t-stat 

DISTKM -0.02354 0.000217 -108.34 

DLANDMIX 0.319271 0.019527 16.35 

DGOVMNTB 0.136443 0.00835 16.34 

DCIVICCE 0.328753 0.007436 44.21 

DRECREATION  0.070236 0.012205 5.75 

DINCOME 0.326134 0.010863 30.02 

Male_DOFFICE 0.14297 0.007433 19.23 

Male_DCIVICCE -0.0636 0.011016 -5.77 

Male_DLANDMIX -0.06161 0.024924 -2.47 

  

 

TABLE A3: MNL for Shopping Trips. 

Parameters Estimates Standard Error t-stat 

DISTKM -0.25664 0.006075 -42.25 

DINSTITUTIONAL 1.103844 0.453156 2.44 

DRESIDENTIAL 0.200517 0.065837 3.05 

DOFFICE 0.242138 0.032857 7.37 

DINDUSTRIAL 0.163188 0.08158 2 

DGOVMNTB 0.422072 0.06524 6.47 

DSCHOOL 0.321163 0.02738 11.73 

DINCOME 0.195943 0.036871 5.31 

Male_DOFFICE -0.27463 0.04256 -6.45 

Male_DLANDMIX 0.279822 0.043544 6.43 

Male_DCIVICCE 0.156366 0.023694 6.6 

Male_DGOVMNTB -0.62596 0.078539 -7.97 
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TABLE A4: MNL for Other Trips. 

Parameters Estimates Standard Error t-stat 

DISTKM -0.02933 0.000274 -106.97 

DAGRICULTURAL 0.102649 0.018747 5.48 

DRESIDENTIAL 0.068642 0.015537 4.42 

DOFFICE 0.029873 0.012748 2.34 

DRECREATIONAL 0.085015 0.013012 6.53 

DLANDMIX 0.260602 0.013769 18.93 

DGOVMNTB 0.266412 0.014414 18.48 

DSCHOOL 0.255883 0.015177 16.86 

DCIVICCE 0.133883 0.007995 16.75 

DINCOME 0.162022 0.021221 7.63 

Male_DAGRICULTURE -0.03851 0.013864 -2.78 

Male_DOFFICE -0.10365 0.017929 -5.78 

Male_DGOVMNTB -0.77994 0.067714 -11.52 

Male_DRECREATION -0.20834 0.018956 -10.99 

Male_DSCHOOL 0.07935 0.020457 3.88 

Male_DINCOME -0.11151 0.02659 -4.19 
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TABLE A5: Segment Shares for PLSMNL. 

Variables Mean of Independent Variables Variable Mena in 

Overall Sample 
 Segment 1 Segment 2 Segment 3 

AGE15 0.00590 0.00258 0.00712 0.00444 

AGE1625 0.09010 0.05563 0.09502 0.07291 

AGE2640 0.57565 0.62839 0.55796 0.59929 

AGE4155 0.27527 0.24973 0.24511 0.25371 

AGE56 0.05233 0.06343 0.09395 0.06915 

FEMALE 0.42563 0.26684 0.50669 0.36171 

PSHOP 0.00303 0.32223 0.00326 0.17415 

PREC 0.63685 0.36170 0.55391 0.46774 

POTHER 0.36011 0.31608 0.44283 0.35812 

HAGRICULTURAL 0.09390 -0.01161 0.00780 0.01487 

HINDUSTRIAL 0.80618 0.19245 0.19874 0.31865 

HINSTITUTIONAL -0.02250 -0.02226 -0.02332 -0.02258 

HRECREATION 0.01137 -0.02817 -0.02666 -0.01975 

HRESIDENTIAL 0.45286 0.17878 0.11802 0.21854 

HOFFICE 11.65662 1.63968 2.19330 3.81717 

HBUA 0.19221 0.00053 0.01760 0.04389 

HLANDMIX 0.84659 0.33081 0.45246 0.46725 

HGOVMNTBUILDING 0.58614 0.51493 0.57211 0.54432 

HHOSPITAL 0.04214 0.12884 0.13467 0.11277 

HSCHOOL 0.91779 1.00072 0.70210 0.90590 

HCIVICCENTER 6.85813 1.78206 1.87492 2.83649 

HINCOME 0.01268 0.03979 0.12637 0.05690 

DAGRICULTURAL 0.10177 -0.04344 0.00111 -0.00233 

DINDUSTRIAL 0.56183 0.20329 0.27183 0.29396 

DINSTITUTIONAL -0.01528 -0.01992 -0.01848 -0.01860 

DRECREATION 0.01803 -0.00512 0.01657 0.00524 

DRESIDENTIAL 0.42787 0.16326 0.20760 0.22854 

DOFFICE 8.77714 3.11301 4.09335 4.51855 

DBUA 0.17819 -0.00979 0.04542 0.04278 
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Variables Mean of Independent Variables Variable Mena in 

Overall Sample 
 Segment 1 Segment 2 Segment 3 

DLANDMIX 0.64311 0.45145 0.48407 0.49887 

DGOVMNTBUILDING 0.48698 0.32611 0.45881 0.39341 

DHOSPITAL 0.07109 0.18085 0.17306 0.15654 

DSCHOOL 0.78526 0.75808 0.72269 0.75435 

DCIVICCENTER 5.26990 2.23893 2.74115 2.98521 

DINCOME 0.04375 -0.02437 0.03959 0.00616 

WEEKEND 0.49882 0.25468 0.34367 0.32747 

DISTKM 45.83628 24.39721 35.74828 31.71260 
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