Electrical Properties Of Reactive Magnetron Sputtered Vanadium Oxide Thin Films

2006

Vu Huynh Lam
University of Central Florida

Find similar works at: http://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Electrical and Computer Engineering Commons

STARS Citation

http://stars.library.ucf.edu/etd/6127

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
ELECTRICAL PROPERTIES OF REACTIVE MAGNETRON SPUTTERED VANADIUM OXIDE THIN FILMS

by

VU HUYNH LAM
B.S. University of Central Florida, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida

Fall Term 2006
© 2006 Vu Huynh Lam
ABSTRACT

It is well known that vanadium oxide can take many different forms. However for this study, only the amorphous phase was investigated. Amorphous vanadium oxide (VOₓ) thin films were deposited on thermally grown silicon dioxide by DC magnetron sputtering using a vanadium metal target in an argon/oxygen atmosphere. The driving force of this study was to investigate the temperature coefficient of resistance (TCR) and low resistivity in the amorphous films. Sheet resistance is very sensitive to small changes in temperature, making amorphous VOₓ very attractive to thermal sensor applications such as infrared detectors.

To form the vanadium oxide, physical vapor deposition of vanadium metal at 200 Watts of DC power was used with varied amounts of oxygen in a primary argon atmosphere. During deposition, the concentration of oxygen was controlled by using a 20:80 mixture of O₂ and Ar in conjunction with high purity Ar supply. Flow control techniques were derived and calculated to predict the percentage of oxygen before and during deposition to understand the reaction between the vanadium metal and oxygen. Concentrations of O₂ in the deposition chamber were varied from 0.025% to 3.000% with the purpose of gaining an understanding of the affects of O₂ concentration in amorphous VOₓ films. TCR and resistivity measurements were performed to characterize the films. The results showed a resistivity decrement with decreasing oxygen concentration. The films with lower concentrations of oxygen were found to have better TCR values than those with higher percentages of oxygen.

To further reduce the resistivity of the VOₓ and maintain the TCR value, co-sputtering of noble metals (gold and platinum) with VOₓ was studied. The metals were co-sputtered at various power settings with the vanadium oxide reactive process at a fixed percentage of oxygen. The
TCR and resistivity results showed that the additions of Au and Pt into VO$_x$ reduced the resistivity. However, only Au was found to improve TCR value.

The results of these experiments showed that by reducing the amount of oxygen in the film, the ratio between TCR and resistivity further improved. Mechanical limits of the gas delivery system and the relatively low sensitivity to oxygen detection, gas flow control is limited when sputtering with only a single target. Several targets were therefore used during sputtering to allow for higher gas flows thereby increasing the effective sensitivity of the oxygen control. To increase the amount of available vanadium and still have a sufficient amount of detectible oxygen present, four vanadium targets were sputtered simultaneously. The measurements appeared to have a trend of increase in TCR values with a decrease in resistivity. For an ideal case, thermal sensor material should incorporate high TCR and low resistivity for better sensitivity. The amorphous vanadium oxide deposited by 4 vanadium targets seems to satisfy that requirement. In conclusion, a novel method has been established to fabricate amorphous vanadium oxide thin films with high TCR and low resistivity for infrared detectors.
ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge and thank my advisors Dr. Kevin R. Coffey and Dr. Kalpathy B. Sundaram for their guidance and support throughout the years. I would also like to thank to Dr. Jiann S. Yuan for serving on my thesis committee.

I am grateful to Ravi M. Todi for introducing me to the semiconductor material processing and for his valuable guidance. I am also wish to acknowledge Mr. Edward Dein who always inspired and gave helpful suggestions to improve and understand experimental methods and data analysis.

I would like to thank my colleagues Andrew Warren for making the XRD measurements and helping with the understanding of the analysis and Bo Yao for preparing the RBS samples and the analysis of the data. My thanks to Arun Vijayakumar and Matthew Ericson for their help editing my thesis. And at last, I would like to thank my family for their love and moral support at all times.
TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

LIST OF ACRONYMS/ABBREVIATIONS .. x

CHAPTER ONE: INTRODUCTION ... 1

CHAPTER TWO: LITERATURE REVIEW .. 5

CHAPTER THREE: METHODOLOGY .. 12

3.1 The Reactive Magnetron Sputtering System ... 12

3.2 The Deposition Process ... 16

3.3 Sample Preparation ... 18

3.4 Measurements ... 21

3.5 Improvements ... 25

CHAPTER FOUR: RESULTS AND DISCUSSION .. 27

4.1 Experiments Summary .. 27

4.2 Single Vanadium Target Depositions .. 28

4.3 Noble Metals Co-Sputtered With Single Vanadium Target ... 33

4.4 Four Vanadium Targets Depositions ... 45

CHAPTER FIVE: CONCLUSION .. 52

LIST OF REFERENCES .. 53
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>An Example of an Infrared Image</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The Focal Plane Array of an Infrared Detector</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure of a Microbolometer</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>A Zoom In Image of a Microbolometer</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Variable Eg in Hypothetical Silicon</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Hysteretic and Non-hysteretic Property of Crystalline and Amorphous VOₓ</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Dual Ion Beam Sputtered VOₓ from Zintu, et. al. [24]</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Single Vanadium Target Sputtered in Different Percentages of O₂</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Metallic Phase (b) Fully Oxidized Phase</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Reactive Magnetron Sputtering System</td>
<td>15</td>
</tr>
<tr>
<td>3.4</td>
<td>Reaction Between Oxygen and Vanadium</td>
<td>17</td>
</tr>
<tr>
<td>3.5</td>
<td>Sample Preparations for Thickness Measurement</td>
<td>18</td>
</tr>
<tr>
<td>3.6</td>
<td>Sample Preparations for Sheet Resistance Measurement</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>Sample Preparations for TCR Measurement</td>
<td>20</td>
</tr>
<tr>
<td>3.8</td>
<td>Thickness Measurement Technique</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Sheet Resistance Measurement Technique</td>
<td>22</td>
</tr>
<tr>
<td>3.10</td>
<td>Temperature Coefficient of Resistance Measurement System</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Resistivity vs. Percentages of O₂ in Single Vanadium Target Depositions</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>TCR vs. Percentages of O₂ in Single Vanadium Target Depositions</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>TCR vs. Resistivity in Single Vanadium Target Depositions</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Metal Additions to Amorphous VOₓ Thin Film</td>
<td>32</td>
</tr>
</tbody>
</table>
Figure 4.5 Resistivity vs. DC Power of Pt Additions VOₓ Thin Films .. 34
Figure 4.6 TCR vs. DC Power of Pt Additions VOₓ Thin Films .. 34
Figure 4.7 TCR vs. Resistivity of Pt Additions VOₓ Thin Films .. 35
Figure 4.8 Resistivity vs. DC Power of Au Additions VOₓ Thin Films ... 36
Figure 4.9 TCR vs. DC Power of Au Additions VOₓ Thin Films .. 37
Figure 4.10 TCR vs. Resistivity of Au Additions VOₓ Thin Films ... 37
Figure 4.11 TCR vs. Resistivity of Pt and Au Addition VOₓ with Respect to Zintu, et. al. 38
Figure 4.12 Resistivity vs. DC Power of 2nd Au Additions VOₓ Thin Films 40
Figure 4.13 TCR vs. DC Power of 2nd Au Additions VOₓ Thin Films ... 40
Figure 4.14 TCR vs. Resistivity of 1st and 2nd Au Additions VOₓ Thin Films 41
Figure 4.15 TCR vs. Resistivity of 1st and 2nd Au Additions VOₓ with Respect to Zintu, et. al. ... 42
Figure 4.16 Reaction Rates of Oxygen and Vanadium for Single Target and Four Targets 46
Figure 4.17 4 Vanadium Targets Deposition with and without Liquid Nitrogen Cryo-Pump. 47
Figure 4.18 Resistivity vs. Percentages of O₂ for 4 Vanadium Targets Depositions 48
Figure 4.19 TCR vs. Percentages of O₂ in 4 Vanadium Targets Depositions 49
Figure 4.20 TCR vs. Resistivity in 4 Vanadium Targets Depositions ... 50
Figure 4.21 TCR vs. Resistivity in 4 Vanadium Targets Depositions with Respect to Zintu, et. al. .. 50
LIST OF TABLES

Table 4.1 Single Vanadium Target Deposition Data... 28
Table 4.2 Noble Metals Co-Sputter Single Vanadium Target Depositions.............................. 43
Table 4.3 Four Vanadium Targets Depositions. .. 51
LIST OF ACRONYMS/ABBREVIATIONS

Ar / O₂ Argon / Oxygen Gas Mixture
Ar Argon Gas
Au Gold
C Degree in Celsius
CMOS Complementary Metal Oxide Semiconductor
DC Direct Current
E₉ Activation Energy
IR Infrared
O₂ Oxygen
PC Personal Computer
Pt Platinum
RF Radio Frequency
RGA Residual Gas Analysis
ROIC Read Out Integrated Circuit
Rs Sheet Resistance
SCCM Standard Cubic Centimeter per Minute
T Temperature
TCR Temperature Coefficient Resistance
V Vanadium
VOₓ Vanadium Oxide
CHAPTER ONE: INTRODUCTION

Infrared imaging technology has changed greatly due to the development of micromachining technology. Traditionally, infrared sensor has to perform in cryogenic environment to ensure high performance. However with micromachining technology, infrared sensor can operate at room temperature and still maintaining good performance. Figure 1.1 below illustrated an example of an infrared image [10]. The focal plane array of the infrared sensor is an array of microbolometers in which used to absorb infrared radiation as Figure 1.2 illustrated [10].

Figure 1.1 An Example of an Infrared Image.
Each microbolometer has a thermal sensitive layer that changes its sheet resistance with temperature. The basic operation of a bolometer can be described as follows. Infrared radiation emitted and absorbed through a bolometer that changes the resistance of the bolometer thin film. This change in resistance will obtained and converted into image by the CMOS Read out Integrated Circuit (ROIC) below. A microbolometer has a micro-bridge structure that uniquely designed for infrared detection as Figures 1.3 and 1.4 [10]. The bridge structure prevents heat from escaping through the CMOS ROIC and sustains good sensitivity of the bolometer. The diaphragm is hovered above the integrated circuit to maintain a good thermal isolation. The cavity beneath the diaphragm designed to have a distance of $\frac{1}{4}\lambda$ to improve infrared absorption. Also, the beam supported the diaphragm designed to have an appropriate distance in order to optimize heat transportation. If the arm is too long, the heat obtained will slowly disperse which causes poor imaging when the next infrared radiation arrived. If the arm is too short, the heat will
quickly escape and device sensitivity will be decreased. An ideal bolometer material would have high temperature coefficient of resistance (TCR) and low resistivity to maintain high sensitivity. Vanadium oxide has been established and well recognized to be a material that have high resistivity change with temperature and is suitable for bolometer fabrication.

Figure 1.3 Structure of a Microbolometer.
For this study, vanadium oxide thin films have been deposited using DC magnetron sputtering method and the electrical properties were characterized such as TCR and resistivity. The results of the deposited vanadium oxide displayed a high TCR values with low resistivity. However, in order to improve the sensitivity of the bolometer thin film, resistivity of vanadium oxide films can be further reduced. For this purpose, noble metals such as platinum and gold are used to co-sputter with vanadium to deposited vanadium oxide. Platinum doped vanadium oxide yields a great reduction in resistivity, however, its TCR values also reduced as well. Unlike platinum, gold doped vanadium oxide presents a smaller reduction in resistivity but maintains high TCR values. An alternative method to reduce resistivity of vanadium oxide is by lowering the percentage of oxygen concentration while using four vanadium metals. The results presented a new relationship between the TCR and resistivity values which makes it a novel method to develop an ideal material for bolometer thin film.
CHAPTER TWO: LITERATURE REVIEW

Vanadium oxide is a semiconductor material that is well established for infrared sensors. Vanadium oxide is a preferred material over other semiconductors due to its high temperature coefficient of resistance (TCR) with respect to its resistivity values. It obtains high TCR with small resistivity. Both TCR and resistivity are two important parameters that determine the performance of the bolometer thin films used in infrared imaging. Unfortunately, the TCR of semiconductors has a simple physical limit which determines their performance for bolometer thin film. In general, a higher TCR values is accompanied by an extremely high resistivity. For example, intrinsic silicon can be used to demonstrate the TCR and resistivity relationship with respect to band gap energy. The resistivity of intrinsic silicon at room temperature can be written as follows:

\[\rho = \frac{m}{n e^2 \tau} \propto e^{\frac{E_g}{kT}} \]

(2.1)

where \(m \) is the effective mass, \(n \) is the thermally activated intrinsic carrier concentration of silicon, \(e \) is the electron charge, \(\tau \) is the mean free time, \(E_g \) is the band gap energy, \(k \) is Boltzmann constant, and \(T \) is the temperature. With this equation, resistivity can be viewed as a function of band gap energy. This approach can be also applied to calculate the TCR values of intrinsic silicon,

\[\alpha = \frac{1}{R} \frac{dR}{dT} \]

(2.2)
where α is the TCR value, and R is the resistance of the film. R can also be expressed as follows,

$$R = R_o e^{\frac{E_g}{kT}}$$ \hspace{1cm} (2.3)

where R_o is the resistance at room temperature. The TCR equation can be further simplified as follows,

$$\alpha \approx -\frac{E_g}{kT} \frac{1}{T} \propto E_g$$ \hspace{1cm} (2.4)

Figure 2.1 illustrates TCR and resistivity values of hypothetical intrinsic silicon at room temperature having a range of different band gap energies. This shows that semiconductors can have very high TCR values; however, their resistivity will be very high as well. Bolometer thin film are required to have high TCR in order to maintain high sensitivity with and low resistivity for compatibility with low noise readout for infrared imaging devices. From this figure, it can be seen that large band gap semiconductors can be used as a sensor materials with high TCR values, but the high resistivity will not be compatible with readout electronics. Amorphous vanadium oxide is a preferred semiconductor material for infrared imaging bolometer thin film applications due to it relatively high TCR at modest resistivity, and because it can be processed at the relatively low temperatures ($< 200^\circ$C) required for integration in imaging systems.
Vanadium oxides can have multiple stoichiometries and can be categorized based on their structures as crystalline or amorphous. Research has been performed to study these properties of both types of structures. Crystalline vanadium oxide has shown a dramatic resistivity vs. temperature effects due to a semiconductor to metal phase transition. When the temperature rises over a transition point, the crystal structure of VO\(_2\) will change from a monoclinic phase into tetragonal rutile phase. At the same time, high optical transmission of the crystalline vanadium oxide will change to low optical transmission [12]. Different compositions of crystalline vanadium oxides experience phase transitions at different temperatures. For example, when the temperature reaches 68° C, VO\(_2\) undergoes a phase transition. V\(_2\)O\(_3\) has a different crystal...
structure and also undergoes a phase transition, at the much lower temperature of -134° C. V\textsubscript{2}O\textsubscript{5} has yet another structure and changes to metallic state at higher temperature, 250° C [19].

For crystalline VO\textsubscript{2}, the resistance can drop 5 orders of magnitude at the transition temperature, which makes it very attractive to many applications such as photoelectric switch, solar control, and defense laser radiation [28]. Unfortunately, this phase transition is hysteretic. Figure 2.2 illustrates the hysteretic property of crystalline (annealed) VO\textsubscript{2} as compared to the amorphous VO\textsubscript{x} (un-annealed) [32]. For example, VO\textsubscript{2} undergoes a phase transition at 68° C. Its resistance will decrease. However, when the resistance is at the mid point of the transition, a temperature change has no effect on its resistance. The imaging performance of a bolometer thin film will suffer greatly due to this property. Unlike crystalline VO\textsubscript{2}, the amorphous VO\textsubscript{x} does not incorporate this property as figure 2.2 illustrates. Its resistance changes according to the change of temperature in a linear fashion. When the temperature is heating up or cooling down, the resistance will change its value accordingly.
Therefore, amorphous VO$_x$ is a better choice for sensor applications for its non-hysteretic property. Many applications have used amorphous VO$_x$ as a sensor material due to its high TCR value and low resistivity. Such applications include light detectors, surveillance, night vision, detection of gas leakage, infrared detectors, and thermochromic smart windows [1-11].

Many other amorphous semiconductors have been studied as alternative films for bolometer applications. Such materials include amorphous silicon, yttrium barium copper oxide (YBCO), and amorphous germanium [24]. So far, amorphous vanadium oxide seems to be the preferred material for bolometer applications.
Figure 2.3 illustrates the relationship between TCR and resistivity values of amorphous VO$_x$ formed by the dual ion beam sputtering technique [24]. This relationship also shows the trend of increasing TCR with increasing resistivity expected of semiconductors.

![Figure 2.3 Dual Ion Beam Sputtered VO$_x$ from Zintu, et al., [24]](image)

We can use this figure as a reference to determine the goals of our efforts to develop vanadium oxide. An improved vanadium oxide will have a higher TCR and/or lower resistivity than that shown in figure 2.3 and poorly performing vanadium oxide will have a lower TCR and/or higher resistivity. A variety of deposition techniques have been used to develop vanadium oxides, however, the majority of outcomes tend to be crystalline vanadium oxide. Such techniques include thermal evaporation [23], ion beam deposition [22-24], pulse laser deposition [25], [26], atomic layer chemical vapour deposition [27], and reactive magnetron sputtering...
deposition [12-18]. The most common and simplified technique to develop vanadium oxide is reactive magnetron sputtering deposition. With this technique, crystalline and amorphous vanadium oxide can be formed.

Other parameters that are used to control the crystal structure of vanadium oxide are the temperature and the oxygen concentration during and after deposition. The most common technique found in literature is to anneal the deposited vanadium oxide sample in oxygen / argon ambient at high or low temperature to yield a crystalline film. Studies have performed to develop vanadium oxide with different range of temperatures and different percentages of oxygen concentration to yield variety of vanadium oxide compositions. These compositions can be either crystalline or amorphous [28-43]. The compositions of the crystalline materials are VO₂, V₂O₃, and V₂O₅. Elevated temperature, in the range of 200°C to 500°C, can use during deposition or during post-deposition annealing to promote crystallization of the vanadium oxide sample. The percentages of oxygen can range from 6% to 50%. Within these ranges of temperature and oxygen, the resulting vanadium oxide is typically crystalline. Our study is focused on amorphous vanadium oxide thin films, therefore, room temperature deposition in a low percentage of oxygen is used and no post-deposition annealing in performed.
CHAPTER THREE: METHODOLOGY

3.1 The Reactive Magnetron Sputtering System

Amorphous vanadium oxide was chosen as the primary material to study for this project. Sputtering processes normally uses argon gas because it does not react with the target material allowing thin films to be formed. The addition of a gas that reacts with the target material, such as oxygen, will form compounds of the material and the reactant. To determine how vanadium oxide is formed using reactive magnetron sputtering a reactive gas test was performed.

Because the sputtering system uses a DC power supply that allows both voltage and current to float while maintaining constant power, the target voltage can be easily measured and used to infer changes in the impedance of the sputtering plasma. The gun in which the target is mounted is designed to provide a narrow range of impedance to the power supply. With the addition of a reactive gas the impedance of the target changes. Using the fixed conditions of 200 Watts of DC power and a chamber pressure of 4.0 mTorr while introducing increased amounts of oxygen the voltages were recorded. Figure 3.1 illustrated the outcome of this experiment.
Figure 3.1 Single Vanadium Target Sputtered in Different Percentages of O₂.

The plot of gun voltage vs. oxygen percentage has two distinct regions and a very sharp transition point. The lower voltage region, less than about 12.5% oxygen, corresponds to primary metallic vanadium target surface while for oxygen concentrations above 15% the target surface is fully oxidized.

In the metallic region, both argon and oxygen ions bombarded the target’s surface to sputter away metallic vanadium atoms and those that have reacted with oxygen. With small amount of oxygen concentration in the chamber both vanadium and vanadium oxide can be sputtered from the target surface as figure 3.2a illustrates. As these atoms condense on the substrate surface, further oxidation can occur to form an amorphous VOₓ thin film. As the oxygen concentration in the deposition chamber increases, the target surface begins to oxidize.
and will continue to oxidize until the entire surface is fully oxidized. At this point only vanadium oxide is sputtered from the target surface as illustrated in figure 3.2b. This effect is known as target poisoning because the deposition rate is severely reduced. For our application we must maintain low resistivity and high TCR values, thus the low oxygen concentration, metallic region is preferred.

![Figure 3.2 (a) Metallic Phase (b) Fully Oxidized Phase.](image)

Figure 3.3 illustrates the basic schematic of the sputtering system used to produce the thin film samples. The sputter system has two chambers, a load lock chamber and the main process chamber. The load lock chamber is used to isolate the process chamber from exposure to the atmosphere. A magnetically coupled load arm is used to deliver/remove samples to/from the main chamber. The main chamber has six sputter guns that are individually driven by four DC and 2 RF power supplies. The process pressure is maintained by a closed loop control system.
consisting of a variable gate valve and a capacitance monometer pressure sensor. Process gases are controlled by mass flow controllers and are independent of the chamber pressure controller. A residual gas analyzer (RGA) is used to measure the partial pressure of all the gases present inside the chamber. The sample is isolated from the deposition sources by a series of shutters. The primary shutters are integrated into each of the six individual sputter guns which block the stream of material from exiting each gun. The secondary shutter covers the entire sample area and blocks the stream of material even if one or more of the individual gun shutters are opened. To produce a more uniform deposition the sample is rotated about a central axis throughout the deposition process.

Figure 3.3 Reactive Magnetron Sputtering System.
3.2 The Deposition Process

The vacuum condition of the main chamber is critical to the outcome of the thin film depositions. For this reason prior to any deposition, the chamber is pumped down to less than 5.0x10⁻⁸ Torr. In this pressure range most contaminates are eliminated.

To accurately control the percentage of oxygen present in the chamber a mixed gas consisting of 20% oxygen in argon is supplied through one mass flow controller and is diluted with 100% argon gas supplied by a second mass flow controller. To calculate the flow rate of the mixed gas the following formula is used.

\[
D = \frac{Xi \times Ai}{0.2 - 0.8 \times Xi}
\]

(3.1)

The equation above was used to calculate the flow of 20% oxygen in argon mixture in single vanadium target deposition. In the equation D represents the flow rate of 20% oxygen in argon mixture, Xi is the oxygen’s percentage desired and Ai is the fixed 100% argon flow.

Having determined the desired mixed gas flow one can begin the process. The process is started with allowing the oxygen and argon to flow until the flow and the chamber pressure stabilize. Once the gas is stabilized, the gun is turned on. When this occurs the reaction between oxygen and the vanadium cause the percentage of oxygen to fall off. This is illustrated in figure 3.4. When the power is not yet applied to the target, the percentage of oxygen is proportional to the flow rate of oxygen. However, when power is applied to the target, much of the oxygen is consumed to form vanadium oxide. The decrease in the percentage of free oxygen inside the chamber was shown in figure 3.4. For example, a flow of 5 scem yielded 2.5% of oxygen when the gun was off. However, this percentage of oxygen dropped down to 0.4% when the power is
turned on to the target. Hence, by controlling the flow rate at a constant rate of vanadium metal deposition, we can now control the percentage of oxygen inside the chamber during the deposition process.

For each deposition run, two substrates were coated, silicon with 300 nm of SiO$_2$ and a glass slide with 3 liftoff lines. The substrates are mounted on a holder that is transferred between the load lock and the main chamber. The samples are then deposited with vanadium oxide and removed for evaluation.

![Graph showing the reaction between oxygen and vanadium](Image)

Figure 3.4 Reaction Between Oxygen and Vanadium.
3.3 Sample Preparation

To determine the properties of the amorphous vanadium deposition the electrical characterization performed on the thin films included resistivity and TCR measurements, as well as mechanical thickness. In order to calculate resistivity, the thickness and sheet resistance of the VO\textsubscript{x} films have to be determined. For the thickness measurement, the sample was prepared as figure 3.5 illustrates. Glass slides are used as substrates and were thoroughly cleaned prior to deposition. On the surface of the glass slide, 3 ink lines are drawn using a permanent marker. The VO\textsubscript{x} thin films were deposited on top of the marker lines. The glass slides are then immersed in acetone for a short duration to lift off the VO\textsubscript{x} on the region with the ink lines, thus creating a step, which was then used for film thickness measurements.

![Figure 3.5 Sample Preparations for Thickness Measurement.](image)

Figure 3.5 Sample Preparations for Thickness Measurement.
Sheet resistance is measured using the silicon wafer sample and requires no pre-measurement preparation. A typical silicon substrate with VO_x thin film deposition is in figure 3.6.

![Figure 3.6 Sample Preparations for Sheet Resistance Measurement.](image)

TCR sample preparation is more challenging as shown figure 3.7. A small portion of the silicon substrate is cut off and used for TCR measurements. Wires are mounted to the surface of the substrate using a metal epoxy which is electrically conductive. Current is injected by the outermost wires and voltage is sensed by the finer inner wires. The use of different wire sizes improved the accuracy of the measurement by providing improved mechanical attachment for the current sources and minimizing the area of voltage sensing.
Figure 3.7 Sample Preparations for TCR Measurement.
3.4 Measurements

To measure the thickness of the deposited films a Dektak III profilometer was used. The glass slide with the trenches created in the sample preparation step is used for this measurement. The stylus is scanned from the surface of the vanadium oxide thin film to the glass slide surface as figure 3.8 illustrated. There are total of 3 measurements taken from each of the trenches on the glass substrate. The final result for the thickness measurement is the average of the three. With this technique, the surface uniformity of the vanadium oxide can also be estimated.

![Figure 3.8 Thickness Measurement Technique.](image)

For sheet resistance measurement, a 4 point probe, Jandel Model RM3, is used. This instrument can measure very high sheet resistance due to a wide range of current sources. The control panel allows the user to manually enter the current setting and display the sheet
resistance result according to the current set. The current can be set to few hundreds of nano Amperes allowing vanadium oxide with high sheet resistance to be routinely measured.

Throughout the experiments a wide range of sheet resistance was encountered. Some VO_x films’ sheet resistance was as low as 50\(\Omega\) to a maximum around 3M\(\Omega\). Therefore, the current setting has to be selected for the particular measurement range. The relatively large surface area of the sample allowed for multiple sheet resistance measurements to be made then averaged to yield final sheet resistance number.

![Figure 3.9 Sheet Resistance Measurement Technique.](image)

Unlike the other two measurements, TCR measurement is much more complicated. Figure 3.10 illustrates the basic setting for TCR measurement. The TCR sample was placed on the surface of the hot plate with the addition of a thermal conductive compound to provide
adhesive and good thermal transfer between the two. The wires were connected to the current source / voltage meter which measures the resistance of the film. A thermocouple was placed on the surface of the film to measure its temperature. The temperature range for TCR measurement is about 2° C, referenced to room temperature. There are total of 350 data points recorded for 2° C, thus small fractions of temperature changed can be measured with respect to resistance. This method allows us to understand the sensitivity of the film with respect to temperature.

Both temperature and resistance data were recorded by use of a PC-based data acquisition system which was also used to calculate sample’s TCR value. After each TCR measurement is completed, the temperature of the hot plate is cooled back down to room temperature prior to the next measurement. A fan and alcohol wipes are used to accelerate the cooling process. To summarize, a total of 3 TCR measurements are made for each sample and averaged for the final TCR value.
Figure 3.10 Temperature Coefficient of Resistance Measurement System.
3.5 Improvements

During the development of a vanadium oxide experimental process, the measurement values occasionally showed unexpected values. Thickness and TCR measurement techniques were suspected as the sources of these errors. For thickness sample preparation, the surface smoothness is very crucial. If the glass slide’s surface is contaminated prior to deposition, the steps created after liftoff will be poorly generated. This can provide inaccurate results for the thickness measurement. In order to prevent this error, the glass slide surface was cleaned thoroughly to eliminate as much contamination as possible. In addition, the liftoff technique was improved to provide sharper steps by using a droplet to push a strong stream of acetone at the trench area to break the thin film.

Problems from unexpected TCR measurement results were more difficult to solve. Not only is this more complicated equipment setting, but it is also more difficult to controlling the measurement process. One of the most crucial parameters for the measurement is the temperature rising rate. In order to have accurate and repeatable measurement, the temperature rising rate has to be constant throughout each run. However, achieving a constant temperature rising rate is very challenging.

After the TCR measurement is completed, it is very difficult to get the hot plate’s temperature back to room temperature. Even though the fan and alcohol wipes removed most of the heat from the hot plate, some partial heat is still trapped inside the hot plate’s surface. Initially, room temperature seems to be obtained by using this technique. However, after 10 minutes, the temperature will start rising slowly due to the heat of previous run. This trapped
heat can take very long time for a complete removal. To solve this problem, equilibrium temperature needs to be achieved.

A modified cooling technique was used to remove majority of the heat; however, cooling was continued until the temperature was below room temperature. The residual heat from the previous cycle was allowed to equilibrate for about 15 minutes, during which time the temperature reading was continuously monitored. When the temperature reading showed a constant value for a long duration of time, an equilibrium temperature was achieved. With this method, every measurement starting point was similar and the temperature rising rate during measurement was constant for every measurement run.
CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Experiments Summary

Our work on amorphous vanadium oxide deposited using DC magnetron sputtering technique can be categorized into 3 main experiments. The first experiment developed amorphous VO\textsubscript{x} thin films using a single vanadium target sputtered in different concentration of oxygen in the deposition chamber. Resistivity and TCR measurements were performed to characterize the electrical properties of amorphous VO\textsubscript{x} thin films. The second experiment used noble metals to co-sputter along with single vanadium target. This method allows the resistivity of VO\textsubscript{x} thin films to be reduced and was intended to understand the effects of noble metal additions on TCR values. The third experiment used 4 vanadium targets sputtered simultaneously to deposit VO\textsubscript{x} thin films. This method increases the reactive metal deposition rate which allows better control of oxygen concentration in the deposition chamber. In addition, a liquid nitrogen cryo-trap was also applied with this technique to reduce sensitivity to chamber background gas. The experiments were performed in this order such that the results of the previous experiment served to guide for the next experiment.
4.2 Single Vanadium Target Depositions

The first set of sample depositions was performed with small concentrations of oxygen, in the range of 0.025% to 3.000%. The deposition time was 8 minutes and operating pressure was at 4 mTorr. The overall film thickness was about 500 Angstroms and the film sheet resistances are increase with the percentages of oxygen applied during deposition. Table 4.1 included the samples’ data for single vanadium target deposition experiment.

Table 4.1 Single Vanadium Target Deposition Data.

<table>
<thead>
<tr>
<th>% of O2</th>
<th>Thickness (m)</th>
<th>Rs (Ω / sq)</th>
<th>Resistivity (Ω-cm)</th>
<th>TCR (%/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04087</td>
<td>4.36E-08</td>
<td>292.54</td>
<td>0.60128</td>
<td>-1.2966</td>
</tr>
<tr>
<td>0.04431</td>
<td>5.12E-08</td>
<td>1204.61</td>
<td>0.00617</td>
<td>-1.7738</td>
</tr>
<tr>
<td>0.07323</td>
<td>4.32E-08</td>
<td>10637.14</td>
<td>0.04617</td>
<td>-0.2197</td>
</tr>
<tr>
<td>0.09451</td>
<td>5.07E-08</td>
<td>132032.87</td>
<td>0.66966</td>
<td>-2.8318</td>
</tr>
<tr>
<td>0.14999</td>
<td>3.20E-08</td>
<td>246590.65</td>
<td>0.78909</td>
<td>-1.7716</td>
</tr>
<tr>
<td>0.30335</td>
<td>4.71E-08</td>
<td>535374.22</td>
<td>2.52161</td>
<td>-2.7765</td>
</tr>
<tr>
<td>0.30344</td>
<td>5.27E-08</td>
<td>556130.78</td>
<td>2.93081</td>
<td>-2.4995</td>
</tr>
<tr>
<td>0.40098</td>
<td>5.71E-08</td>
<td>594249.44</td>
<td>3.39316</td>
<td>-2.7229</td>
</tr>
<tr>
<td>0.49000</td>
<td>4.32E-08</td>
<td>659338.02</td>
<td>2.84834</td>
<td>-2.8732</td>
</tr>
<tr>
<td>0.59253</td>
<td>5.00E-08</td>
<td>769964.14</td>
<td>3.84982</td>
<td>-4.4451</td>
</tr>
<tr>
<td>0.61509</td>
<td>5.90E-08</td>
<td>648121.39</td>
<td>4.04039</td>
<td>-4.0521</td>
</tr>
<tr>
<td>0.69664</td>
<td>5.26E-08</td>
<td>770284.98</td>
<td>4.06716</td>
<td>-2.7551</td>
</tr>
<tr>
<td>0.99024</td>
<td>4.30E-08</td>
<td>954121.96</td>
<td>4.10272</td>
<td>-3.0605</td>
</tr>
<tr>
<td>1.24539</td>
<td>4.75E-06</td>
<td>1096553.34</td>
<td>5.20910</td>
<td>-5.2249</td>
</tr>
<tr>
<td>1.43957</td>
<td>5.60E-08</td>
<td>1222824.24</td>
<td>6.84782</td>
<td>-3.5845</td>
</tr>
<tr>
<td>1.65512</td>
<td>4.74E-08</td>
<td>1400478.64</td>
<td>6.63827</td>
<td>-2.0754</td>
</tr>
<tr>
<td>1.99691</td>
<td>5.26E-08</td>
<td>1443260.72</td>
<td>7.62042</td>
<td>-3.7908</td>
</tr>
<tr>
<td>2.54525</td>
<td>4.31E-08</td>
<td>2546984.30</td>
<td>10.97707</td>
<td>-1.8253</td>
</tr>
<tr>
<td>3.14118</td>
<td>5.51E-08</td>
<td>3399271.92</td>
<td>18.72999</td>
<td>-1.6736</td>
</tr>
</tbody>
</table>
The sheet resistance values increase corresponding to the increase of oxygen percentage in the chamber. Figure 4.1 illustrate the relationship of resistivity with respect of percentages of oxygen in the chamber. In the range of higher percentages of oxygen, from 0.5% to 3.0%, the resistivity appears to have a small steady slope. However, when the percentages of oxygen decreased below 0.5% the slope increases dramatically. In this region, the resistivity is very difficult to control. Due to the limit of the mass flow control of the sputtering system, it is very difficult to control the oxygen concentration precisely at this low volume of flow. Thus, the stability of amorphous VO$_x$ deposition was more stable at 0.5% oxygen or above.

![Resistivity vs. Percentages of O$_2$ in Single Vanadium Target Depositions.](image)

Figure 4.1 Resistivity vs. Percentages of O$_2$ in Single Vanadium Target Depositions.
The TCR values appear to be very scattered as oxygen concentration increased. Figure 4.2 displays the unexpected TCR values with respect to different percentages of oxygen in the chamber. Some samples appear to have very high TCR values (-5%) which are not consistent with values found in the literature. The TCR measurement technique was suspected to cause this error. This TCR data did approximate the expected trend with respect to resistivity, as shown in figure 4.3. The literature has found increased resistivity with increased TCR values in amorphous VOₓ films as this experiment demonstrated. However, the unknown parameters were present during measurement to cause this inconsistency.

![Figure 4.2 TCR vs. Percentages of O₂ in Single Vanadium Target Depositions.](image-url)
In general, the first experiment had given us some insights about the films’ behavior, measurement techniques, as well as the development process. The results had demonstrated that VO\textsubscript{x} thin films can be very sensitive at low percentages of oxygen thus affects the resistivity outcomes. In addition, a first wafer effect was observed during thin film depositions. With the same setting, the first and the second deposition of vanadium oxide films yielded different results, thus introducing another source of variability. From this we concluded that the chamber condition and background gas can also have an impact on films’ properties.

Resistivity can be further reduced by introducing metallic regions inside the amorphous VO\textsubscript{x} thin films, forming a nanocomposite thin film. Figure 4.4 illustrate the theory of metal additions to amorphous VO\textsubscript{x} thin film. Metal clusters inside the film can act as a short, which
reduces the resistivity. The composite resistivity is still determined by that of the VO_x and should still maintain the TCR value of the vanadium oxide thin film. An experiment was carried out at 0.5% of oxygen in the chamber because it has low resistivity and the most stable TCR values according to the previous experiment data.

Figure 4.4 Metal Additions to Amorphous VO_x Thin Film.
4.3 Noble Metals Co-Sputtered With Single Vanadium Target

A theory of metal additions vanadium oxide had been established to reduce the film’s resistivity. However, its effect on TCR values is still unknown. The first chosen noble metal for this experiment was platinum. By using DC magnetron sputtering deposition technique, platinum can be sputter simultaneously with the vanadium target. By controlling the DC power of platinum, we can control the amount of platinum added to the vanadium oxide thin films. The resistivity of platinum additions to vanadium oxide films has showed a great reduction as shown in figure 4.5. However, the TCR values are also reduced as well. Figure 4.6 has showed that TCR values had dropped at least 2 %/°C when small amount of platinum incorporated in the film.

Base on this experiment, we found that platinum can improved VOₓ film’s resistivity; however, TCR values have suffered greatly. Platinum additions to vanadium oxide appear not to be an improved material for bolometer application as illustrated in figure 4.7.
Figure 4.5 Resistivity vs. DC Power of Pt Additions VOₓ Thin Films.

Figure 4.6 TCR vs. DC Power of Pt Additions VOₓ Thin Films.
The next noble metal that used to co-sputter with the vanadium target was gold. The deposition settings for gold are identical to platinum settings which were used for comparison purposes. The outcome of gold’s resistivity with respect to DC power supply is illustrated in figure 4.8.

The resistivity of gold samples reduces gradually compared to the platinum samples which indicated gold has a better control in term of resistivity. While the resistivity of the gold samples did not drop as much as that of the platinum samples, TCR values of gold samples showed a much more promising result, as figure 4.9 illustrates.
The significantly, the initial TCR value for the smallest gold addition to VO$_x$ sample was not reduced with respect to the pure vanadium oxide sample. This data showed that gold additions to vanadium oxide can improve resistivity and still maintain high TCR value, as figure 4.10 illustrates.
Figure 4.9 TCR vs. DC Power of Au Additions VO\textsubscript{x} Thin Films.

Figure 4.10 TCR vs. Resistivity of Au Additions VO\textsubscript{x} Thin Films.
The theory of noble metals co-sputter with vanadium to deposit vanadium oxide was examined with platinum and gold additions. The results indicate both metals have different effects on vanadium oxide thin films. Platinum reduced resistivity greatly, but did not maintain high TCR values. Thus platinum is not a preferred metal to improve properties of bolometer thin films. Gold, on the other hand, reduced resistivity and maintained the high TCR values of the vanadium oxide thin films. By comparing the data of TCR with respect to resistivity of Zintu, et. al. [24], we can understand the advantages of gold additions to vanadium oxide thin films. Figure 4.11 shows gold samples have better TCR values and/or lower resistivity with respect to Zintu, et. al.. With this data, gold appear to be a preferred metal to improve the properties of amorphous VOₓ thin films.

Figure 4.11 TCR vs. Resistivity of Pt and Au Addition VOₓ with Respect to Zintu, et. al..
In order to confirm the gold data is correct and reproducible, another set of gold addition samples was generated. The resistivity of the second gold series showed a gradually decrease, similar to the first gold series. However, TCR values of the second gold series showed a different trend. Figure 4.12 and 4.13 illustrate the resistivity and TCR values vs. the DC power applied to sputter the gold target. The TCR values of the second gold series were not consistent with the first series. DC power applied to gold at 5, 10, and 15 Watts show an opposite trend compared to the rest of the samples. The TCR measurement technique was suspected to cause this error.

Both gold series were re-measured in term of TCR; and during this process, the improved technique for TCR measurement was developed and established. The inconsistency of TCR values was caused by the variation in the residual heat within hot plate at the start of each measurement run. By removing all excess heat, equilibrium temperature was achieved. Thus provided improved consistency for all the TCR measurements.
Figure 4.12 Resistivity vs. DC Power of 2nd Au Additions VOx Thin Films.

Figure 4.13 TCR vs. DC Power of 2nd Au Additions VOx Thin Films.
Figure 4.14 confirmed the improved TCR measurement technique provides the ability to reproduce the data for both gold sample series. The resistivity for both series match closely and the TCR values for both have a significantly reduced variation.

For both series, 10 Watts of DC power for gold yielded the highest TCR and the lowest resistivity comparing to the amorphous vanadium oxide sample. We can compare the results of the two gold series with that of Zintu, et. al. [24] as figure 4.15 illustrates. The repeatability of gold additions amorphous vanadium oxide was successfully established with the additional improved values in term of TCR and resistivity. The data from these experiments is summarized in table 4.2.
Figure 4.15 TCR vs. Resistivity of 1st and 2nd Au Additions VOx with Respect to Zintu, et. al.
Using noble metals co-sputtered with single vanadium target was a success in terms of finding a new technique to improve the properties of amorphous vanadium oxide. However, the single vanadium target deposition experiments still suffered problems such as the limit of mass flow control and variable chamber background gas. To overcome these limits, 4 vanadium targets were used simultaneously to sputter vanadium at a 4-fold higher rate. This technique increased the reactive metal deposition rate of vanadium which gained a better control of oxygen

<table>
<thead>
<tr>
<th>Samples</th>
<th>Thickness (m)</th>
<th>Rs (Ω / sq)</th>
<th>% of O₂</th>
<th>Resistivity (Ω-cm)</th>
<th>1st TCR (%/°C)</th>
<th>2nd TCR (%/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>050806 A (10W Pt)</td>
<td>3.56E-08</td>
<td>4291.58</td>
<td>0.5</td>
<td>0.01528</td>
<td>-1.0410</td>
<td></td>
</tr>
<tr>
<td>050806 B (20W Pt)</td>
<td>2.83E-08</td>
<td>635.16</td>
<td>0.5</td>
<td>0.00180</td>
<td>-0.4540</td>
<td></td>
</tr>
<tr>
<td>050806 C (30W Pt)</td>
<td>7.40E-08</td>
<td>204.42</td>
<td>0.5</td>
<td>0.00151</td>
<td>-0.1732</td>
<td></td>
</tr>
<tr>
<td>050806 D (40W Pt)</td>
<td>7.48E-08</td>
<td>104.58</td>
<td>0.5</td>
<td>0.00078</td>
<td>-0.1017</td>
<td></td>
</tr>
<tr>
<td>050806 E (50W Pt)</td>
<td>7.54E-08</td>
<td>59.52</td>
<td>0.5</td>
<td>0.00045</td>
<td>-0.0703</td>
<td></td>
</tr>
<tr>
<td>081806 A (10W Au)</td>
<td>5.20E-08</td>
<td>193400.83</td>
<td>0.5</td>
<td>1.00568</td>
<td>-2.8470</td>
<td>-2.7827</td>
</tr>
<tr>
<td>081806 B (20W Au)</td>
<td>5.59E-08</td>
<td>15189.45</td>
<td>0.5</td>
<td>0.08491</td>
<td>-2.1519</td>
<td>-1.9281</td>
</tr>
<tr>
<td>081806 C (30W Au)</td>
<td>8.63E-08</td>
<td>1133.41</td>
<td>0.5</td>
<td>0.00978</td>
<td>-1.3388</td>
<td>-0.6174</td>
</tr>
<tr>
<td>081806 D (40W Au)</td>
<td>1.12E-07</td>
<td>277.96</td>
<td>0.5</td>
<td>0.00311</td>
<td>-0.6729</td>
<td>-0.3001</td>
</tr>
<tr>
<td>081806 E (50W Au)</td>
<td>1.23E-07</td>
<td>123.19</td>
<td>0.5</td>
<td>0.00151</td>
<td>0.4213</td>
<td>-0.0608</td>
</tr>
<tr>
<td>082306 A (10W Au)</td>
<td>4.18E-08</td>
<td>660017.92</td>
<td>0.5</td>
<td>2.75887</td>
<td>-2.5723</td>
<td>-2.4043</td>
</tr>
<tr>
<td>082306 B (15W Au)</td>
<td>4.64E-08</td>
<td>460300.13</td>
<td>0.5</td>
<td>2.13579</td>
<td>-3.1707</td>
<td>-2.1540</td>
</tr>
<tr>
<td>082306 C (20W Au)</td>
<td>4.44E-08</td>
<td>178742.08</td>
<td>0.5</td>
<td>0.2045</td>
<td>-3.4223</td>
<td>-2.5910</td>
</tr>
<tr>
<td>082306 D (15W Au)</td>
<td>5.71E-08</td>
<td>46489.48</td>
<td>0.5</td>
<td>0.26545</td>
<td>-3.6166</td>
<td>-2.2824</td>
</tr>
<tr>
<td>082306 E (20W Au)</td>
<td>6.11E-08</td>
<td>18293.42</td>
<td>0.5</td>
<td>0.11168</td>
<td>-1.7332</td>
<td>-1.4941</td>
</tr>
<tr>
<td>082306 F (25W Au)</td>
<td>7.81E-08</td>
<td>5597.36</td>
<td>0.5</td>
<td>0.04439</td>
<td>-1.4552</td>
<td>-1.3414</td>
</tr>
<tr>
<td>082306 G (30W Au)</td>
<td>7.54E-08</td>
<td>1213.17</td>
<td>0.5</td>
<td>0.00914</td>
<td>-0.2979</td>
<td>-0.2566</td>
</tr>
<tr>
<td>082306 H (50W Au)</td>
<td>1.28E-07</td>
<td>93.33</td>
<td>0.5</td>
<td>0.00120</td>
<td>-0.0631</td>
<td>-0.0836</td>
</tr>
</tbody>
</table>
concentration inside the chamber. In addition, sensitivity to chamber background gas was further reduced by implementing liquid nitrogen cryo-pumping technique.
4.4 Four Vanadium Targets Depositions

A reactive gas test was performed for the 4 vanadium targets depositions. Figure 4.16 demonstrates the single vanadium target and the 4 vanadium targets depositions oxygen flow rate with respect to percentages of oxygen in the chamber. By using 4 vanadium targets techniques, the flow rate is about 4 times higher compared to the single vanadium target deposition. For example, a single target at 10 sccm flow yields the same percentage of oxygen as 4 targets at 40 sccm. This technique allows higher flow rates to gain a better control of oxygen concentration inside the chamber. Due to the increased deposition rate of vanadium, the deposition time was reduced from 8 minutes to 3 minutes.
Figure 4.16 Reaction Rates of Oxygen and Vanadium for Single Target and Four Targets.

In order to reduce chamber background gas, a liquid nitrogen cryo-pumping technique was used. Figure 4.17 illustrated the percentages of oxygen with respect to flow rate with liquid nitrogen and without liquid nitrogen in the cryo-trap. The percentages of oxygen in the chamber showed no effect in either case. However, the resistivity of these two sample sets indicates an effect. In figure 4.18, the liquid nitrogen cryo-pump technique does affect the resistivity of the samples. The sample set with liquid nitrogen cryo-pump shows a higher resistivity than the sample set without liquid nitrogen cryo-pump. With figure 4.17 and 4.18, we do not understand why the liquid nitrogen cryo-pump technique increased the resistivity of the films. The major
The effect is has on the chamber background gas is to reduce the amount of residual water vapor present in the chamber.

Figure 4.17 4 Vanadium Targets Deposition with and without Liquid Nitrogen Cryo-Pump.
Figure 4.18 Resistivity vs. Percentages of O₂ for 4 Vanadium Targets Depositions.

TCR values for the 4 vanadium targets depositions showed a very interesting trend, as shown in figure 4.19. With decreasing percentages of oxygen, TCR values gradually increased. This data also confirmed our improved TCR measurement technique has reduced variability and yields more accurate results. Figure 4.20 displays the relationship between TCR with respect to resistivity for the 4 vanadium targets deposition experiment. In this figure, there is no obvious trend of TCR with respect to resistivity within this range of oxygen percentage. This data range is too small to claim that increased TCR with decreased resistivity for 4 vanadium targets depositions. However, by plotting this data with respect to Zintu, et. al., a new trend had vaguely recognized.
Figure 4.19 TCR vs. Percentages of O₂ in 4 Vanadium Targets Depositions.
Figure 4.20 TCR vs. Resistivity in 4 Vanadium Targets Depositions.

Figure 4.21 TCR vs. Resistivity in 4 Vanadium Targets Depositions with Respect to Zintu, et al..
In figure 4.21, 4 vanadium targets depositions seems to create a new relationship in term of TCR and resistivity. Instead of increased TCR with increase resistivity, the resistivity of 4 vanadium targets experiment is decreasing. This data trend is leading to an ideal bolometer thin film; however, it is too early to say due to a small range of resistivity. Table 4.3 includes all the measurement data from the 4 vanadium targets depositions.

Table 4.3 Four Vanadium Targets Depositions.

<table>
<thead>
<tr>
<th>% Oxygen</th>
<th>Liquid N2</th>
<th>Tck (m)</th>
<th>Rs (kΩ/sqr)</th>
<th>TCR (%/°C)</th>
<th>Resistivity (Ω·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45</td>
<td>Yes</td>
<td>7.52E-08</td>
<td>2032 187</td>
<td>-2.2919</td>
<td>15.28</td>
</tr>
<tr>
<td>2.16</td>
<td>Yes</td>
<td>6.93E-08</td>
<td>1492 000</td>
<td>-2.3626</td>
<td>10.34</td>
</tr>
<tr>
<td>1.87</td>
<td>Yes</td>
<td>7.82E-08</td>
<td>1264 225</td>
<td>-2.6649</td>
<td>9.88</td>
</tr>
<tr>
<td>1.61</td>
<td>Yes</td>
<td>7.35E-08</td>
<td>1110 925</td>
<td>-2.6050</td>
<td>8.16</td>
</tr>
<tr>
<td>1.36</td>
<td>Yes</td>
<td>6.80E-08</td>
<td>950 036</td>
<td>-2.4373</td>
<td>6.46</td>
</tr>
<tr>
<td>1.08</td>
<td>Yes</td>
<td>7.66E-08</td>
<td>843 540</td>
<td>-2.3329</td>
<td>6.46</td>
</tr>
<tr>
<td>0.87</td>
<td>Yes</td>
<td>7.58E-08</td>
<td>768 096</td>
<td>-2.4521</td>
<td>5.82</td>
</tr>
<tr>
<td>0.65</td>
<td>Yes</td>
<td>7.48E-08</td>
<td>612 478</td>
<td>-2.6019</td>
<td>4.58</td>
</tr>
<tr>
<td>0.55</td>
<td>Yes</td>
<td>7.93E-08</td>
<td>543 506</td>
<td>-3.0026</td>
<td>4.31</td>
</tr>
<tr>
<td>0.41</td>
<td>Yes</td>
<td>7.93E-08</td>
<td>470 941</td>
<td>-2.8113</td>
<td>3.73</td>
</tr>
<tr>
<td>2.43</td>
<td>No</td>
<td>6.94E-08</td>
<td>1291 583</td>
<td>-2.2408</td>
<td>8.96</td>
</tr>
<tr>
<td>2.14</td>
<td>No</td>
<td>7.07E-08</td>
<td>1005 388</td>
<td>-1.9625</td>
<td>7.11</td>
</tr>
<tr>
<td>1.85</td>
<td>No</td>
<td>6.81E-08</td>
<td>969 049</td>
<td>-2.4581</td>
<td>6.60</td>
</tr>
<tr>
<td>1.61</td>
<td>No</td>
<td>6.82E-08</td>
<td>838 338</td>
<td>-2.8022</td>
<td>5.72</td>
</tr>
<tr>
<td>1.35</td>
<td>No</td>
<td>7.87E-08</td>
<td>716 773</td>
<td>-2.6222</td>
<td>5.50</td>
</tr>
<tr>
<td>1.13</td>
<td>No</td>
<td>7.34E-08</td>
<td>640 639</td>
<td>-2.2245</td>
<td>4.70</td>
</tr>
<tr>
<td>0.96</td>
<td>No</td>
<td>6.70E-08</td>
<td>595 503</td>
<td>-2.7200</td>
<td>3.99</td>
</tr>
<tr>
<td>0.64</td>
<td>No</td>
<td>7.45E-08</td>
<td>477 237</td>
<td>-2.9773</td>
<td>3.56</td>
</tr>
<tr>
<td>0.54</td>
<td>No</td>
<td>7.95E-08</td>
<td>471 349</td>
<td>-2.3620</td>
<td>3.75</td>
</tr>
<tr>
<td>0.42</td>
<td>No</td>
<td>7.08E-08</td>
<td>406 063</td>
<td>-2.8023</td>
<td>2.88</td>
</tr>
</tbody>
</table>
CHAPTER FIVE: CONCLUSION

Vanadium oxide thin films have been successfully deposited using reactive magnetron sputtering deposition. The oxygen concentration was precisely controlled and measured during the depositions. A DC power supply was used to sputter vanadium metal targets in an oxygen / argon mixture at room temperature to develop amorphous vanadium oxide thin films.

The addition of gold to the vanadium oxide thin films was found to yield higher TCR and lower resistivity when compared to values reported in the literature. Furthermore, TCR measurement techniques have been established providing improved repeatability and accuracy. Vanadium oxide deposition using a four-target array appears to yield an increased TCR with a decrease in resistivity values, and results in an improved oxygen control technique. In summary, a novel nanocomposite bolometer thin film has been developed.
LIST OF REFERENCES

