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ABSTRACT 
 

The injection molding industry is large and diversified. However there is no 

universally accepted way to bid molds, despite the fact that the mold and related design 

comprise 50% of the total cost of an injection-molded part over its lifetime.  This is due 

to both the structure of the industry and technical difficulties in developing an automated 

and practical cost estimation system.  The technical challenges include lack of a common 

data format for both parts and molds; the comprehensive consideration of the data about a 

wide variety of mold types, designs, complexities, number of cavities and other factors 

that directly affect cost; and the robustness of estimation due to variations of build time 

and cost. In this research, we propose a new mold cost estimation approach based upon 

clustered features of parts.  Geometry similarity is used to estimate the complexity of a 

mold from a 2D image with one orthographic view of the injection-molded part. Wavelet 

descriptors of boundaries as well as other inherent shape properties such as size, number 

of boundaries, etc. are used to describe the complexity of the part.  Regression models are 

then built to predict costs. In addition to mean estimates, prediction intervals are 

calculated to support risk management. 
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 CHAPTER ONE: PROBLEM STATEMENT  
 

Section 1.1 Definition of the problem 
 

The injection molding industry is large and diversified. However there is no 

universally accepted way to bid molds.  The reasons are manifold.  Some of the reasons 

have to do with the structure of the industry. Many companies operate as small job shops 

and may not have the resources to develop a systematic way to bid the molds.  This is one 

of the primary reasons why the most commonly used bidding method in actual use is ad-

hoc.  Any ad-hoc procedure carries significant risk and is dependant on the competency 

of the person doing the bid.  To minimize such risks a systematic method for automated 

cost estimation of injection molds is needed.   

However there are some significant challenges in developing a practical working 

system that will work well for all molders. There are two classes of problems 

encountered.  The first class is associated with data. The historical data of parts, molds, 

and costs is not structured in such a way to facilitate their use for bidding.  The second 

class of problems has to do with bidding risk handling. Some types of parts and molds 

have more variations in build time and cost than others.  This higher variation translates 

into a higher risk of a missed bid.  

 The first data related problem is lack of a common information format for parts 

and molds. Studies have shown that the average molder has over 700 unique parts to 

mold [1].  However there may be no common format for all 700 parts and molds.  A 

recent study by Christman [2] showed that designs are received in many formats for 

bidding.    The most common data format was 2D CAD received in 59.2% of cases.  The 

next most common format was 3D CAD used in 20.6% of cases followed by paper 
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blueprints 13.0%, direct database access 6.4%, and prototype 0.7%.  According to an 

earlier study by Fallbohmer et al. [3], full 3D CAD models are only available in less than 

30% of bidding cases.  There are several reasons for the different data formats.  

Blueprints are easier to access on the shop floor and contain not only geometry but also 

non-geometric information.  This could be information on block tolerances, geometric 

dimensioning and tolerancing, surface finishes, and/or flash or gating requirements. 2D 

CAD could be viewed as an electronic extension of blueprints and currently has the 

widest user base.  3D CAD has the advantage of being able to view the part and mold 

from many perspectives. Given that many formats are used at the same time, data must be 

converted to a common format prior to the use for automated cost estimation.  

The second data related problem is how to store and retrieve design and cost data 

automatically.  The cost of molds can range from $1,000 to $250,000 due to very 

different sizes, mold designs, mold types, part complexities, number of mold cavities, etc.  

Given the great variety of molds, the data of the parts and molds must be categorized 

based on mold types, mold designs, materials, complexities, tolerances, and other factors 

that directly determine the mold cost.    The key question is how to group and retrieve the 

information in an automated or semi-automated way so that it helps the person preparing 

the bid to estimate the cost quickly and accurately. 

The third problem is how to improve the robustness of bidding given the variation 

in costs of similar molds.  Since the data is categorized into similar jobs prior to 

estimation, the estimate may be based upon a very small sample.   This small sample 

could have high variation.  Some job types such as very special molds have inherently 

higher variations in actual build time, and therefore cost, than those regularly built parts 
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and molds.  This variation translates into risk or uncertainty of the cost estimate.  Most of 

the existing mold estimation techniques use only point estimates.  They are not 

accompanied by confidence and prediction intervals to evaluate the robustness of the 

estimate.  

In this research, we will try to tackle the issues above and develop enabling 

methodology to facilitate automated cost estimation for the molding industry. 

 

Section 1.2 Importance of the problem 
 

Here we show the importance of this work by two complementary propositions.  

The first proposition is that the injection molding industry is large and important to the 

U.S. manufacturing sector.  The second proposition is that bidding is crucial to the 

success of this industry.  

 

1.2.1 Size of the injection molding industry 

 

The industry is large and diverse.  The 2005 census of manufacturing defines 

North American Industry Classification System (NAICS) 3261 as Plastics Product 

Manufacturing.  This NAICS code accounted for 163 billion dollars in 2005.  Of this 

amount NAICS code 326199 All Other Plastics Product Manufacturing accounted for 78 

billion dollars [4].  This industry is thought to use the most injection molds.  In 2002 

NAICS code 326199 employed 488 thousand workers [5].   

The molds or dies for this industry have significant revenue themselves.  The 

census of manufacturers NAICS code 333511 is defined as establishments primarily 
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engaged in manufacturing industrial molds for casting metals or forming other materials 

such as plastics, glass, or rubber.  This industry accounted for 5.4 billion dollars in 2005.  

This does not account for those who are primarily engaged in other industries but may 

produce molds in order to make their primary product.  

 

1.2.2 Importance of an accurate bid 

 
The cost estimation of a new mold requires molders to consider the historical data 

of previous jobs.  It is estimated that 70% of the total cost of a product during its lifecycle 

is fixed at design time [6].  In the injection molding domain the mold and related design 

account for 50% of the total cost of manufacturing the plastic part over its lifetime [7]. 

Therefore, getting a good idea of the mold costs at the early design phase facilitates 

design choices that result in lowest total cost.  

The importance of getting the bid right cannot be overstated as many of these 

companies operate as job shops competitively bidding for the job.  A bid that is too high 

could result in not receiving the order and a bid too low would put the potential profits of 

the company at risk. The risk is compounded by the fact that molders consistently have 

low after tax margins historically and sometimes as low as 2.1% [8]. Worldwide 60% of 

the mold shops are classified as small with the average shop in the United States 

producing between 25-50 jobs per year [3]. Therefore one missed bid could put profits at 

risk, as these companies are neither large enough nor profitable enough to absorb missed 

bids.  

Because of the risk associated with a missed bid we would like to develop a 

systematic way to use the past knowledge and designs to estimate mold costs.  
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Section 1.3 Research Objective 
 

The objective of this research is to develop a methodology for cost estimation of 

injection molds by automatic or semiautomatic means that can be used for bidding a wide 

variety of molds with the consideration of mold type, mold design, part complexity and 

bid risk. 

 
 

Section 1.4 Introduction to Methodology 
 

Our overall process is to reduce the dataset for all molds and parts to a smaller 

dataset of only those most relevant molds.  A flowchart is given for these processes (see 

Figure 1).  The functional modules of the proposed automated cost estimation system are 

shown in Figure 2, which may be developed from our methodology for a true industrial 

implementation. However, the scope of this research is developing the methodology to 

implement the system not a software program itself. 

First we convert all data to a common neutral format thereby making maximum 

use of historical data. We convert all part data to a 2D image with multiple orthographic 

views of the part prior to further processing.  A typical 2D image is shown in Figure 3.    

This is a data-prepossessing step that is done offline depending on the format of the data 

received from the customer.   

Second we select mold type depending on the needs of the customer. This is 

shown in the first yellow block in the process overview flowchart (See Figure 1).  We 

consider cost, material, part geometry, estimated annual volumes and the estimated 
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lifecycle of the part.   The mold type for the part being bid is selected as Conventional, 

MUD, or Modular. The database of prior jobs is queried to match the mold type selected 

for the new job.  The user does this selection process from the 2D image of the part.  

Although we use mold type as part of our grouping criteria our methodology does not 

select the mold type for the user. 

Next the mold design is selected based upon the geometry of the part whether 

Straight, Ejector, or CAM Action.  This is shown in the second yellow box in the process 

overview flowchart see (Figure 1). The design of the mold for the new part is selected 

and the database of previous jobs is queried to match the design selected for the new bid.  

Mold design is used as part of our grouping criteria however our methodology does not 

select the mold design for the user. 

Third, the part complexity of the new job being bid is estimated and matched 

against those with similar complexity in the part database.  This is shown in the series of 

blue boxes in the process overview flowchart see (Figure 1).  This is a several step 

process.  A typical 2D image of a part is shown to help visualize the process see (Figure 

3). Notice that in Figure 3 one feature namely the blue through hole has been filled in.  

The outside of the blue filled in area in each view is known as a boundary.  A formal 

definition of a boundary can be found in Gonzalez [9]. This will help to explain the shape 

signature identification process as follows.  

(1) Each enclosed boundary of the part on the 2D image is found for each 

orthographic view.  An example of a boundary would be a profile or outline for the blue 

through hole in one view of the part see (Figure 3). (2) The boundary type is recorded 

whether the boundary is on the outside of the part or an internal feature.  In Figure 3 the 
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blue through hole would be considered one feature on the part.  (3) Each boundary in 

each view is described using a wavelet descriptor and other descriptors.  The descriptors 

for one feature are combined from the descriptors from each view of the part.  Each 

feature will have an wavelet descriptor and other descriptors such as size, perimeter 

length, etc for each view of the part.  (4) Once each feature is described, the overall part 

complexity can be matched to previous parts of similar complexity.  A vector describing 

the part complexity will be developed to include the number of boundaries, the boundary 

type, and wavelet descriptors, along with other descriptors.   

At the end of this process we have decomposed the database of all molds and 

parts into only those relevant molds for cost estimation.  Once we have a small sample of 

relevant molds for cost estimation, the next stage is to estimate the variation in build time 

and cost of those molds.   

 

1.4.1 Example 1 

 

Here we provide an example of how the methodology will work see (Figure 4).  

The overall process is to reduce the dataset to relevant molds for cost estimation.  (1) The 

first step is to select mold type.  In this example Conventional Mold was selected.  Only 

Conventional Molds are in the reduced dataset before the next step.  (2) In the second 

step the mold design was selected as Straight from the reduced dataset for Conventional 

Molds.  Therefore the third step only considers mold type Conventional and design type 

Straight. (3) In the third step a clustering algorithm is used on the part descriptors to 

match parts with similar complexity.  In this example the part being bid was a washer.  
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This washer had a similar part complexity and therefore mold cost to previously built 

molds for washers of mold type Conventional and mold design Straight.  (4) To give 

more information about costs, we calculate mean, standard deviation and other statistics 

on only the washer molds. This provides a way to evaluate the robustness of the 

estimates. 
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Figure 1 Process Overview Flowchart 
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Figure 2 Functional Modules needed for Industrial Implementation of Methodology 
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Figure 3 2D orthographic views; the blue filled in area is one feature of the part 

 

 

 

 
Figure 4 Example 1 of proposed Methodology 
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Section 1.5 How this work is unique 
 
 

Previous researchers have tried to address the problem of injection mold cost 

estimation using both mathematical and analogy-based methods. Mathematical 

approaches are based upon estimating costs from parametric models.  Analogy based 

methods make the assumption that similar jobs yield similar costs and therefore group the 

data.   Our methodology combines the ability of some mathematical methods to estimate 

variation along with the ability to group molds similar to analogy based costing.  We 

believe our method has some distinct advantages over previous efforts for several 

reasons. 

First, the previous methods only work on one data format and cannot make use of 

all the historical data available. This is true for all mathematical and analogy based 

systems we encountered in our research.  The most commonly used part and mold 

representations are blueprints, 2D CAD, and 3D CAD.  The uniqueness of our method is 

that we convert all data to a neutral 2D image format.  Paper blueprints can be converted 

to a 2D image by scanning documents into a bitmap or other compatible format.  2D 

CAD programs either directly export to bitmap or can be converted by a simple screen 

capture to a 2D image of the part.  Almost all 3D CAD programs have a drafting mode.  

In this mode, the representation is similar to 2D CAD and could be converted either by 

export or by direct screen capture. 

Second, other researchers only partially separate the mold and part data into 

homogeneous groups of mold types, designs, and part complexities before estimation.  

This could lead to estimates that are either biased or have a high variance.   Most 

mathematical approaches do not separate the data at all. Previous analogy based methods 
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group by mold type or design.  However they relate the complexity of the part to the cost 

of the injection mold only in a rudimentary and predominately manual way.  The 

previous methods can only distinguish simple shapes such as circles, triangles, or other 

primitives. The importance of this is that non-standard shapes for part features are 

frequently encountered in practice.  Our methodology describes part features exactly 

using wavelet descriptors and can describe any shape.  

Also unique to our work is the use internal features.  Most previous methods only 

focus on the outline or profile of the overall part and ignore similarities not on the profile.  

By recording the line type as internal or external we can describe the part in greater 

detail.  This ability to represent each feature on the part provides a finer degree of 

granularity for shape matching. 

Third, most of the previous methods do not evaluate the variations of mold costs 

on a subset of only relevant molds.  Therefore they cannot assess the risk or uncertainty 

of the bid. In most previous methods that do consider the variance, it is calculated based 

on the population of all molds and therefore not specific to relevant jobs.  Since we group 

by mold type, mold design, and complexity the variance can be reduced and a more 

robust and accurate estimator for cost can be obtained.  

 

Section 1.6 Assumptions 
 

The first assumption is that a subject matter expert in mold cost estimation is 

available for bid preparation.  We do not consider some influential non-geometric factors 

such as tolerances, geometric dimensioning and tolerancing, surfaces finishes, etc., which 

could be relevant to cost in an automated way. These factors are part of our methodology 
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only in mold type and mold design selection indirectly.  The subject matter expert would 

have to consider these factors and include them in the cost of the bid. 

The second assumption is that the 2D images have been preprocessed to eliminate 

lines not related to the geometry of the part.  For example, we manually delete dimension 

lines and ignore partial and sectional views.  We also ignore isometric views or those that 

are not orthographic to each other.  The title block of the drawing may also be removed.   

The third assumption is that the database of previous molds has costing 

information.  Each part in the part database should be matched to exactly one mold in the 

mold database.  Therefore there is a direct link from the part to the mold and to the cost 

of the mold. 
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CHAPTER TWO: LITERATURE REVIEW 
 
 

In this chapter, background and relevant work will be reviewed.  Each section 

outlined will provide the background needed to understand the next section and the 

methodology chosen.  

In Section 2.1, injection molding and associated tooling types will be briefly 

introduced.  In the injection molding industry there are three primary mold types, 

specifically Conventional, Master Unit Die (MUD) and Modular.  Each of these mold 

types has their own cost structure. It would not be appropriate to combine them in most 

cases even for similar parts or designs.  For this monograph design types were limited to 

Straight, Spring Loaded Ejector, and CAM Action.  Each of the designs types also has 

their own cost structure. Therefore it would not be appropriate to lump them into one 

group.  Mold type refers to the system used to tool the part whereas design type refers to 

the design or construction of the mold.  Many types and designs and even combinations 

of these are possible.  However our approach is to use the most common types and 

designs encountered in industry. 

In Section 2.2, we give a review of systematic methods used to estimate the costs 

of injection molds.  Two basic methods are possible those being parametric or 

mathematical approaches and analogy or nonparametric methods.  Each of the methods 

has their advantages and disadvantages. However, they both use history as a guide to 

estimate the cost of the new part under consideration. 
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In Section 2.3 we compare mathematical and analogical methods based upon the 

research.  This comparison of the two approaches provides a basis for the methodology 

chosen. 

In Section 2.4 Part Similarity is reviewed, it is important to restate that for this 

dissertation part similarity, geometry, and complexity are synonymous and considered to 

be related to cost.  The tacit assumption made is that more complex geometries or shapes 

would take more hours to produce and would result in a higher mold cost.  Section 2.5 is 

a review of wavelets and wavelet descriptors. 

 
 

Section 2.1 Injection Molding General Discussion 
 

 

In this section we review some background that will help the reader to understand 

the methodology chosen.  In Section 2.1.1 we review the injection molding process.  In 

Section 2.1.2 we show three mold types.  Specifically we show the Conventional, MUD, 

and Modular mold types.  These are three common systems used in the injection molding 

industry and each one has a unique cost structure.  In Section 2.1.3 three mold designs 

namely Straight, Spring Ejector, and Cam Action are examined.  Each mold design is 

fundamentally different from the others and carries different costs. 

 

2.1.1 Injection Molding Process 

Injection molding is a process where solid plastic pellets approximately the size of 

a grain of rice are heated until they are liquefied and injected into the mold under very 

high pressures on the order of 5000-15000 pounds per square inch see Figure 5.  After the 
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plastic is injected into the mold the plastic cools to a solid state and is ejected from the 

mold in preparation for the next cycle. 

 
Figure 5 Injection Molding Process 

 

 
 2.1.2 Injection Mold Types 

 

2.1.2.1 Conventional Mold 

 
In a conventional mold see Figure 6 one mold is dedicated to one part.  There may 

be many cavities of the part however each cavity is identical for all practical purposes.  

The advantage of conventional molds is that the molder can optimize the process for that 

specific part.  The process does have some disadvantages however.  The first 

disadvantage is that the molder may need to tool many cavities to make the run 

economical.  Another disadvantage is that this process requires its own mold base and 

associated mold base preparation, which could add several thousand dollars to the mold. 
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Figure 6 Conventional mold used in industry 

 

 

2.1.2.2 Master Unit Die 

 

In a MUD or Master Unit Die® the savings are associated with the fact that the 

mold maker is only required to buy the mold base once. The molder reuses this base and 

only buys the insert set that will be needed to produce the parts.  Additionally the mold 

setup cost may be reduced due to the mold base already being setup within the press. The 

operator then slides the insert into a pocket in the mold base of the MUD see Figure 7.   
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Figure 7 Master Unit Die (MUD) mold base and insert 

 

 

 
2.1.2.3 Modular Mold 

 
 

Modular molding has several of the advantages of other types of injection 

molding but does have some limitations.  In modular molding each separate part has its 

own insert in the master mold base.  Those inserts are interchangeable and on any given 

day the makeup of those inserts in the mold base change based upon the orders received 

by the molder.  Each part shown in Figure 8 has its own insert and fits into the master 

mold base. 
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The advantages of this system are manifold.  The first advantage is that the cost of 

the tool is potentially lower because the number of cavities to make an efficient operation 

of the press is shared between the inserts.  Each insert shares the cost of the press.  For 

example, if the total cost of the press is $50.00 per hour and we have 10 inserts, each 

insert would only be required to pay $5.00 per hour for its share of the total cost of 

operation.  The benefit is that the molder tooled one-tenth the number of cavities that 

normally would have been required for the same part cost. This greatly reduces the cost 

of the mold.  Another advantage is that because the press is typically dedicated to a 

specific material and the mold base is already installed in the machine, therefore the setup 

cost is reduced.   

However, modular molding does have some disadvantages.  The first 

disadvantage is that the customer must be able to accept the part in those materials that 

the molder uses for modular molding.  The second disadvantage is that the parts are small 

and would fit in the palm of your hand.  The third disadvantage is the press operation 

cannot be optimized to suit a particular part. This is due to the fact that many different 

inserts share the press.  
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Figure 8 Modular molding trees with many parts 

 

 
 
2.1.3 Mold Design Types 

 

A complete mold design description is beyond the scope of this document.  The 

interested reader is directed to the many good mold design references available such as 

the one by Kluz [10].   

There are many mold designs not considered for categorization and therefore not 

a part of this dissertation.  We only consider the mold designs Straight, Spring Ejector, 

and Cam Action because these are the most common designs.  The salient point is that 

these three mold designs have a different cost structure from each other.  Therefore it 

makes sense to group the mold designs in this way before cost estimation.   
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2.1.3.1 Straight Molding 

A straight molding is the most common, simplest, and least expensive injection 

mold to build. Shown in Figure 6 is a typical straight ejector mold used.  The ejector 

system in an injection mold removes the part after molding.  In straight ejector mold 

designs the injection-molding machine has a mechanism that pushes the part ejector 

system in the mold directly.  

 

2.1.3.2 Spring Loaded Ejector 

In a spring-loaded ejector mold, the mold itself must eject the part.  The molding 

machine does not assist this process.  The ejector system in the mold is spring-loaded and 

the force of the springs against the ejector system ejects the part.  This additional work to 

the mold has a cost and must be included in the bid. 

 

2.1.3.3 CAM Action 

Cam action molds are designed so that internal features of the part may come 

from more than one direction. A typical cam action mold is shown in Figure 9.   

Notice that in Figure 10 some internal features on the part are at right angles to 

one another.  The metal in the mold that forms these internal features must be removed 

before ejection of the part out of the mold.  The molding machine provides only one 

direction of movement.  Therefore additional directions of movement must be provided 

by the mold itself.  Cam action molds require extensive labor and this labor cost must be 

included in the cost of the mold. 



 23

 
 

 
Figure 9 Cam action mold used in industry. 

 

 

 
Figure 10 Injection molded part requiring cam action 
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Section 2.2 Methods to Estimate Cost of Injection Molds 
 
 

As mentioned in the introduction the most common method used to estimate 

injection molds is ad hoc.  The assumption of the ad hoc costing procedure is that an 

experienced bidder prepares the bid. The problem with this method is that it is dependant 

on the experience of the person doing the bid.  Therefore methods have been developed 

to systematically use the information of previous jobs and several methods have been 

developed. 

There have been five groups of methods to estimate the cost of the injection 

molds as outlined by Nagahanumaiah [7].  These methods can be classified as intuitive, 

analogical, analytical, geometric feature based, and parametric. 

We group these five methods into two broad categories.  In the first category the 

past experience of molds is used to estimate costs, these would include the intuitive and 

analogical. In the second category, the mold cost and the drivers of the costs are 

calculated mathematically.  The analytical, geometric feature based, and parametric 

methods fall into this category.    

 

2.2.1 Analogy Based Methods 

 
The analogical method is to group similar jobs together in categories based upon 

the features of the part and mold.  Several variables can be used including the size of the 

mold, material of the mold, complexity, ejector and gating method.   
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One method based on Group Technology was proposed by Poli [11]. The group 

technology approach works the best when applied to families or groups of parts.  An 

injection molder that is a pure job shop may have over one hundred customers in various 

industries so it is difficult to know if it would be possible to create families of parts in 

that setting. 

A combined blackboard and case based reasoning approach was taken by Kwong 

and Smith [12].  The contribution of the paper is that cost estimation is done at early 

design and concept generation stage.  The blackboard design allows interaction with 

other systems and facilitates component design.  Injection molded components are 

generally used in assemblies. Those assemblies may include springs, wire forms, 

stampings, castings, etc.  This effort only selects the mold base and molding machine 

parameters based upon 90 box shaped parts.  It does not calculate the mold cost itself and 

does not support other shapes such as round or cylindrical parts. 

El-Mehalawi [13] presented another effort with a combination of tool information 

such as the type of mold and part information using geometric similarity.  The type of 

mold is characterized by the part complexity, for example, whether or not the part has a 

straight or offset parting line, or whether the part requires cam action.  This method does 

attempt to use both mold and part information to group the parts.  However the method 

has some disadvantages. First, constructive solid geometry (CSG) is used in the 

comparison. Therefore the method of construction could affect the geometric similarity. 

Furthermore it uses 3D CAD models, which may be available in less than 30% of cases 

[3]. The model was not validated and was left for future work.  Therefore its applicability 

is not known.     
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One commercial application was originally designed by Institut fuer 

Kunststoffverarbeitung (IKV). This system was expanded by Simcon Gmbh [14].  The 

current version is called Moldcalc. It groups similar jobs together with the idea that 

similar jobs will produce similar costs. 

Wang et al. [15]  used a case based reasoning system to evaluate the cost of the 

mold with partially known feature vectors consisting of geometry, features, tolerances 

and surface finishes. Various methods are used depending on the similarity of the 

retrieved cases to the current part under consideration.  If they are similar enough (Over 

60% of similarity as judged by a human expert), they use a current case.  If not judged 

similar enough they use the Dixon Poli Method or Boothroyd Dewhurst method.  

Another Case Based Reasoning attempt was a partnership by Legrand and 

Kaidara software.  Legrand’s Center for Studies and Research in Plastics Science based 

in Limoges, France and Kaidara developed the Rapid Cost Estimation for Plastic Parts 

Production (ERCP). This system has over 600 cases with 40 pieces of data including 

photos and CAD drawings.  This enabled Legrand to estimate the cost of molds in 3 days 

as compared to 3 weeks in the previous method and reduced the cost to estimate by 30% 

[16]. 

 

 

 2.2.2 Mathematical Based Approaches 

 

 Mathematical Based Approaches include buildup and parametric 

approaches.  The buildup approach estimates the cost of sub tasks and adds them together 
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or the final bid.  The parametric approach estimates the cost by use of factors thought to 

relate to mold cost.  These factors could be size, number of dimensions, or other factors 

that may have a bearing on cost. 

One approach was developed by Raviwongse and Allada [17] which uses a back 

propagation neural network with 14 factors to calculate the complexity of parts .  The 

authors acknowledged that qualitative factors may be needed and the complexity may not 

be linear. 

Dennis Pearce at the IBM Plastic Development Center developed a program 

called MOLDCOST or (More Or Less Determining Costs Of Selected Tooling), this 

method used a stepwise regression technique based on the following six parameters.  

Number of dimensions, number of surface finishes, length of part, depth of part, tightest 

tolerance, and the number of cavities [18].  This same study mentions that the software is 

inaccurate on small parts where the linear relationship breaks down between these 

variables and the cost function.   

An evaluation of Boothroyd Dewhurst Incorporated (BDI) Method are explored 

by Wong [14].  Wong used the BDI method and compared that to quoted prices for the 

parts.  In some cases the method performed well, but in other cases it performed very 

poorly versus the quoted price. 

Shehab and Abdalla [6] focused on estimating the cost of a machined component 

and an injection-molding component.  Both the injection mold and the plastic part itself 

are estimated.  Predominately considered are part size and the number of cavities.  Part 

complexity is not considered.  The method does have an interesting feature that tried to 

consider the fact that if a company were tooling many cavities the cost per cavity would 
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be reduced.  In another effort by the same authors, a method to get a handle on costs at an 

early design phase was implemented [19]. A fuzzy logic and expert systems approach 

was used.  One problem with this method is that it was validated with only two molds.  

A computerized price quoting system was developed by Chan et al [20]. In this 

work the design of the tool is considered.  Standard costs referred to as primitives are 

assigned to activities such as milling, grinding, and EDM.  Also considered are the 

components that make up the mold such as the mold base, ejector pins, and bushings.   

The method employed in Nagahanumaiah et al [7] is to use the Quality Function 

Deployment Method to estimate the cost of the mold.  This is a breakdown of the costs 

considering features such as cam action tools, and the machining method such as milling, 

turning, and EDM.  The model does take into consideration the surface finish of the 

cavity of the mold.  One potential problem with this method is that the model was 

validated with only 13 sample cases.   

Sapene [21] used a detailed breakdown to estimate the cost of the mold. The 

author used the following general categories for the final bid.  Total cost of standard 

components, total cost of parts manufactured by the mold maker, processing fees, 

tolerance of deviation in the cost estimation (10% of total cost), overhead and unexpected 

costs (10%), and profit (15%). 

 

2.2.3 Overview of injection mold cost methods 

 
An overview of the methods used to estimate the cost of injection molds is given 

in Table 1.  Our research builds upon many of the ideas of previous efforts.  However 

only one effort had automatic part matching like our effort.  The previous effort most like 
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our work is El-Mehalawi [13].  Therefore we would like to point out the differences 

between our approach and El-Mehalawi.  The differences are shown in Table 2. 

 
Table 1 Comparison of cost estimation research projects 
 

 

 

Table 2 Comparison El-Mehalawi vs. Hillsman 
 

 
 

 

Section 2.3 Comparison of Mathematical vs. Analogy Based Methods 
 

Between the mathematical and the analogical approaches, we may wonder how to 

evaluate which one is better.  This question has not previously been explored in injection 

molding domain but has been researched in other areas such as mechanical design and 
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software engineering.  Here we examine these comparisons to shed light on what may be 

most appropriate for our problem. 

 

2.3.1 Mathematical vs. Analogy Based Costing Case Studies 

  

Thibault et al. [22] provided a framework for using analogy based costing for 

mechanical components.  They concluded similar to the work by H’Mida et al. [23] that a 

purely mathematical approach to the cost estimation of mechanical components would 

not be completely successful.  In other words we must group similar components together 

in some way to get an accurate cost model. 

Duverlie and Castelain [24] focused on comparing the mathematical to the 

analogy based costing approach for pistons.  They show that that the analogy-based 

method was superior to the mathematical approach because of simplicity of use and the 

fact that it has a lower error.  They do concede that it may be more difficult to implement.   

A study by Sheppard showed that analogy based costing worked better in 

software cost estimation as well [25].  Specifically he compared analogy, linear 

regression, and stepwise regression.  The measure for success was the mean magnitude of 

relative error (MMRE).  Another related effort in software cost estimation is done by 

Sheppard et al [26].  Shepperd and Schofield used MMRE and the percentage of 

estimates that are within 25% of the actual cost to compare analogy vs. mathematical 

methods. They used 9 total datasets and concluded that the analogy based method 

performed better in 7 of the 9 datasets.  They also list several reasons why the analogical 

approach is superior.  First, coding the data can be simpler, second only things that 



 31

actually happened are considered in the estimation, third the knowledge of failed cases is 

included, fourth is the ability to deal with poorly understood domains, and fifth 

acceptance by users.  

Based upon the above studies, it can be seen that heterogeneous datasets need to 

be grouped into more homogeneous datasets before estimation, which is the approach 

taken in this dissertation. 

 

 

Section 2.4 Part Similarity General Discussion 
 

As explained in the 2.3.1 Mathematical vs. Analogy Based Costing Case Studies 

analogy based costing presents some advantages over the mathematical approaches.  

Therefore it makes sense to group the jobs together in some way.  The most natural way 

is to group them by mold type Conventional, MUD, or Modular.  Once that is done they 

can be grouped based upon the design of the mold whether Straight, Spring Ejector, or 

CAM Action.   

However we still have not grouped them according to complexity and that is the 

purpose of this section.  Suppose our total dataset has 5,000 molds and of those 3,000 are 

found to be mold type Modular.  Suppose we sub query those 3,000 for only design type 

CAM action and are left with 1,000 molds.  While this dataset may be unbiased it may 

also have a large variance.  A preferred dataset should be sparse and reflects only those 

most similar molds for estimation.  In our case we want those types and designs that also 

exhibit the same complexity as the job we are preparing a bid for.  The best way to do 
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that is to use the geometry as a measure of complexity and ultimately cost.  Therefore in 

this section we review how similar geometries are grouped together and represented. 

A core question when considering complexity is the representation of the part or 

geometry itself.  The reason for this is that geometry similarity methods are inherently 

either 2D or 3D. Therefore the representation chosen is a key question to any 

implementation.  In this chapter we examine 2D and 3D representation and similarity 

methods as well as the advantages and disadvantages of each method. 

One observation is that 2D is fundamentally different from 3D.  In 2D methods 

there is only one space. Therefore both the geometry and non-geometric information is 

contained in the same drawing.  Non-geometric data could be dimensions, tolerances, 

geometric dimensioning and tolerancing, or notations.  Typically in 3D methods the 

geometry is defined in the model space and non-geometric information is in the drafting 

space.  

 

2.4.1 Surveys of geometry similarity methods 

 
  There are several active research groups working in the area of geometry 

similarity such as the Temple Shape Similarity Project which can be found at [27], the 

Princeton Shape Retrieval and Analysis Group at [28], and the Purdue PRECISE lab at 

[29]. Therefore a comprehensive coverage of the topic will not be given here.  However, 

a general overview of the some main contributions and ideas are presented.  The field can 

be broken down into two categories 2D shape similarity and 3D shape similarity.  2D 

shape similarity is well studied and represented by the literature.  Some good reviews are 

found in Belongie et al. [30] and Loncaric [31].   3D similarity has grown significantly in 
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the literature in recent years.  Some good 3D references are the survey papers for 3D 

shape similarity given in Iyer et al. [32], Tangelder et al. [33], Cardone et al. [34] and 

Bustos et al [35]. 

 

2.4.2 Common to all Methods 

 
In this section we review some basic properties and issues related to all shape 

similarity. This will provide some background used in later sections related to a specific 

topic.   

 
2.4.2.1 Topology 

Topology alone cannot distinguish between dissimilar parts [36] Although related 

to geometry, topology is the study of how shapes are connected not the geometric shape 

of the item [37].  See Henle [38] for a good introduction to topology.  Two similar 

topologies but different geometries such as a donut and coffee cup would be vastly 

different from a mold design and cost perspective. However elements of topology may be 

useful for our purposes.  Some useful elements may be the Euler characteristic, Betti 

numbers, and Genus as they could help to distinguish between two images of the parts. 

 

2.4.2.2 Metrics 

Metrics play a role to measure similarities. Metric spaces are defined by the following 

four properties: Identity, Positivity, Symmetry, and the Triangle Inequality.  These are 

commonly represented by the following equations. 

(Identity)     0),(, =∈∀ xxdSx     (1) 
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(Positivity)    0),(, >∈≠∀ yxdSyx    (2) 

(Symmetry)     ),(),(, xydyxdSxy =∈∀    (3) 

(Triangle Inequality)   ),(),(),(, zydyxdzxdSxyz +≤∈∀   (4) 

Identity in Eq. (1) states that the same shape is identical to itself and the distance 

between two identical shapes is zero.  Positivity expressed in Eq. (2) ensures that the 

distance metric should always be positive.  To match two items we are comparing 

dissimilarity or distance between two parts.  Therefore absolute values are used for 

comparison not direction of similarity.   As expressed in Eq. (3), Symmetry states that the 

order of comparison should not affect the metric used to compare two shapes. The 

Triangle Inequality in Eq. (4) means that if A is close to B, and B is close to C, then A is 

close to C [39].  The Triangle inequality is important to indexing schemes making search 

more efficient.  A good overview is given in Vleugels and Veltkamp [40].   

Tangelder et al. [33] pointed out that when a measurement has all four properties 

it is referred to as a Metric.  If it obeys all of the four except Positivity this is called a 

semi-metric.  When all four properties except the Triangle Inequality are present then it is 

a pseudo-metric. 

Some other properties that proposed metrics should have are Invariance, 

Robustness, and Computational Efficiency.  Invariance ensures that rotation or translation 

should not effect the metric, Robustness means that the signature should change in 

proportion to the change in shape, and Computational Efficiency makes sure that the 

algorithm should be fast enough for its use according to Cardone et al. [34]. 
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2.4.2.3 Transformations 

Transformations are used to modify the image in several ways.  Transformations 

control rotation, location, reflection, shear and scale relative to the coordinate space.   

These methods could affect a geometry similarity method depending on whether it uses a 

metric, semi-metric, or pseudo-metric so they are mentioned here for completeness.  A 

good discussion about the classes of transformations is given in Dunn [41].   

 

2.4.3 Two-Dimensional shape similarity 

 

In this section we review 2D shape representation and shape similarity as 

background information for the following sections.  In section 2.4.3.1 we review two-

dimensional shape representation, and in section 2.4.3.2 we review how 2D images are 

converted to other 2D forms to make similarity assessment easier in some way. 

 

2.4.3.1 Two-Dimensional shape representation 

Two-dimensional shapes can be represented in many ways.  Historically 

blueprints were used and produced on drafting tables.  Today the most common method 

would be a CAD program of some type however blueprints are still used. 

 

 2.4.3.2 Conversion of images and similarity assessment 

There are several formats that can be used for images.  Here we will review some 

of the more common methods to facilitate the topics to follow. 
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Freeman chain codes are used to represent directions while tracing the boundary 

of an object in the image [42].  There are two types in common usage.  In a 4-directional 

chain code see (Figure 11) the numbers zero though three are assigned to each 90-degree 

direction in a counter clockwise direction with zero representing east, one representing 

north, two representing west, and three representing south. In 8-directional chain codes a 

similar scheme is used at each 45-degree increment counterclockwise starting with zero 

being east.  Using a 4-directional chain code if we trace the boundary of a square in a 

clockwise direction and starting at the lower left corner of the boundary the 4-directional 

chain code would be (0,1,2,3).  After an image is converted to a Freeman Chain Code 

regular expressions are used to compare two geometries. 

 

Figure 11 Four-Direction Freeman Chain Code 

 

 
Another method uses minimum perimeter polygons (MPP).  The theory behind 

this approach is that any shape can be approximated to any desired accuracy using 

polygons.  The goal of this method is to enclose the boundary using minimum polygons 

given a desired approximation.  An algorithm to do this is given in Gonzalez [9]. One 

attractive feature of this method is that varying the number of polygons has the effect of 

increasing or decreasing the generality of the shape.  A low number of polygons will give 

a rough description and a high number a more accurate one.  The sides of the polygon are 
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often traced in one direction and represented as a chain code.  This chain code is 

compared to other shapes by a regular expression.   

Signatures convert a 2-D representation to a 1-D function.  One method is to 

measure the distance from the centroid of object to the boundary for many different 

angles on the boundary.  The distance measured becomes the Y coordinate and the X 

coordinate is the angle from zero to 360 degrees.  Measuring the difference of the radii at 

each angle is how two geometries are compared. 

Boundary segments decompose the boundary into convex and concave sections.  

The sections are divided where there is a transition from convex to concave or visa versa. 

There are several basis used to compare boundary segments including number convex 

sections, number of concave sections, length of the sections etc. 

Skeletonization is a method where an object is thinned to its essential line.  If for 

example we had an image of a human we would progressively thin this image until just 

the skeleton or stick man figure were visible and that skeleton would represent the shape 

of the person.  After this is done the skeletons are compared to each other using several 

methods. 

There are several techniques of simple boundary descriptions to represent the 

shape.  Some are length, diameter, major axis, minor axis, basic rectangle, bounding 

boxes, and area. 

Shape numbers are based upon the first difference of smallest magnitude 

according to Bribiesca and Guzman [43].  This method is independent of the size, 

orientation, and position. The order of the shape number is the number of freeman chain 

codes used to describe the object.   
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Another method is based on statistical moments; the boundary is sampled similar 

to signatures however in this case we normally use a cardinal axis to align one side with 

the x-axis.  We reduce the 2-D representation to a signal and describe it with the 

moments treating the signal as a distribution after normalization.  Hu [44] defined seven 

nonlinear functions on regular moments that were translation, scale, and rotation 

invariant.  

 

 2.4.4 Three-Dimensional Shape Similarity 

 

In this section background will be reviewed to facilitate the topic to follow.  In 

section 2.4.4.1 we review 3D representation, in section 2.4.4.2 we review 3D shape 

similarity. 

 
 
2.4.4.1 Three Dimensional Representation 

3D models are most commonly represented by two methods Constructive Solid 

Geometry (CSG) and Boundary Representation (B-Rep) [45].  These models define the 

geometry exactly.  

A CSG represents a solid by set theoretic Boolean expression of primitives.  It is a 

solid representation not a surface.  In a CSG both the outside and the inside of the object 

are defined implicitly.  A B-Rep model is represented as vertices, faces, and edges.  The 

boundary is enclosed but it is hollow and only the shell.  An excellent book with clear 

explanations is given in Adams [46].  Adams breaks down the process of fundamentals, 

modeling, rendering, and animation.   
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Mesh and voxel models only approximate the surface or true geometry as 

contrasted with B-Rep or CSG. Mesh is a tessellation of the surface made up of triangles 

and was developed for viewing over Internet.  Another method is Voxelization where a 

shape is represented as a matrix of primitive shapes.  The 3D shape is sectioned into 

intervals of the overall shape with each interval being either present or not present 

dependant on whether the 3D solid is present in that section.   The most common 

primitive would be a cube.   

 
 
2.4.4.2 Three Dimensional Shape Similarity 

Moments have been extended from 2D to a 3D setting and are based upon 

statistical moments.  These methods are based on the moments of inertia.  The moments 

are defined by the Riemann integral.   The function is assumed to be piecewise 

continuous.  The set of moments uniquely define the 3D model.  Generally the lower 

order moments are used, the higher moments that may be more prone to noise are 

discarded.  If a voxel model is used, this method can be converted to a summation. Celebi 

et al. [47] compared invariant moments, Zernike moments, and radial Chebyshev 

moments on the MPEG-7 shape database and showed that radial Chebyshev moments 

achieved the highest retrieval performance. 

Spherical harmonics characterize a shape based upon a parameterization on a sphere.  

The availability of a polygonal soup is assumed.  For a good explanation the reader is 

referred to Funkhouser [48].  This method does suffer from the fact that any radii could 

be rotated with respect to the other radii on the sphere and the spherical harmonic would 
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remain unchanged.  From a mold design perspective this could cause serious problems if 

two models were returned by this method that appeared to be similar but were not. 

Volumetric Error methods are based on the idea that two similarly shaped objects 

have little difference in volume after pose and scale normalization.  Generally the 

comparison method uses a voxel representation.   Novotni and Klein [49] used a distance 

measure to compare 2D distances of the voxel based upon slices first and then converts 

that to full 3D.  Histograms are used for comparison.  This method does not use a metric 

because it fails the symmetry property in Eq.(3). In another method by Sanchez-Cruz and 

Bribiesca [50] the number of voxels or volume is normalized between two shapes.  The 

difference between shapes is the total number of voxels that had to be moved to convert 

between one shape and the other divided by the total number of voxels. 

Manufacturing feature based methods are one of the oldest methods of similarity.  

The approach taken by Cicirello and Regli [51] is to extract features for the purposes of 

building a model dependency graph.  Then the graph itself is compared to determine the 

similarity of two products.  A good overview of feature recognition techniques is given in 

JungHyun [52].   

Group Technology is a mature method.  Burbidge [53] used a taxonomy to group 

similar parts together based upon codes.  There are several coding schemes.  The problem 

with this method is that the taxonomy is developed by the user and does not necessarily 

reflect natural groupings based upon geometry or topology. 

One skeleton based method is Dilation Based Multiresolutional Skeletons 

(DBMS). DBMS were developed by Gao et al [54] in order to deal with weaknesses of 

the Medial Axis methods.   A core strategy is the multiresolutional or hierarchical aspect 
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of this technique.  The method goes from rough matching to more detailed matching 

based upon three levels of detail.  The model is complex and the data storage could be 

prohibitive when using this method. However good results were reported on matching 

based upon the F-Measure.  Due to complexity, storage requirements, and the fact the 

method is based upon B-Rep we do not consider this method viable for our research. 

Reeb graphs store slices of a shape as graphs. One effort by Biasotti et al [55]  

used this method to search and retrieve sub parts of a geometry that were similar.  This 

approach allows the user to search for subgeometry within the overall geometry of the 

part. Another effort of this type by Bespalov et al. [56] used scale space feature 

extraction.   

Topological Graph methods use a graph theory representation of the parts.  

However comparing two graphs is not a trivial matter [57].  A balance must be struck 

between computational complexity and the detail needed to distinguish between similar 

and dissimilar parts. 

Model Dependency Graphs are constructed from 3D solid models.  Generally B-

Rep is used.  The process outlined in El-Mehalawi and Miller [58] involves 3 steps.  The 

first step is creation of a STEP file from a 3D solid CAD program such as SolidWorks or 

ProEngineer.  From the STEP file an attributed graph is produced and the attributed 

graphs are compared for similarity.  The process does offer some significant advantages 

over other methods.  The advantages are the fact that topological data, geometric data, 

and part size may be compared using this method.  The disadvantages are the graph 

comparison is slow and known to be NP complete, although a less precise algorithm is 

given in El-Mehalawi and Miller [59] that runs in polynomial time.  El-Mehalawi and 
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Miller point out that STEP files are not unique and susceptible to the specific solid CAD 

software used and the order of construction.  A solution to the order of construction 

problem was presented by Regli  and Cicirello [60]. 

Statistics of shape is based upon landmark features, for example, the distance 

between two holes.  This method is usually applied to similar shapes like the skulls of 

humans [61].  As such this method is not particularly well suited to this monograph but is 

mentioned for completeness.   

Shape Histograms were explored by Dong et al [62].  Shape Histogram methods 

use sample points to represent the shape and then use histograms to record the values. For 

example, if we were recording points from the centroid to the edge of the part, we would 

record how many times these vectors were between 0.25 and 0.50 and that frequency 

would be used to compare the shapes.  

Shape distributions are related to shape histograms and in fact the techniques are 

frequently used together.  The principal is explained in a paper by Osada [63].  Osada et 

al. found that the D2 metric, which computes the distance between two random points, is 

preferred.  In this method two random points on a shape are selected and the distance 

measured between them.  This is done several times and the distances measured are 

placed into a shape histogram.  See also Cardone [64].  This method however is not 

unique and it would be possible for two dissimilar shapes to have the same shape 

histogram.  Therefore it is not recommended for our work. 

Extended Gaussian Images is an orientation histogram of points on the surface of 

a three dimensional object.  It is defined as the inverse of the curvature of given points on 

the surface of a Gaussian sphere.  It can be used to recognize convex objects only as it is 
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not unique for non-convex objects.  EGI can also be used for pose and symmetry 

determination.   Some references on this method are those by Horn [65] and another by 

Zouaki [66].  

Local curvature can be regarded as an extension to Extended Gaussian Images 

and is used to compare objects that have natural shapes found primarily in nature under 

high curvature.  This method would be used to compare a pear to an apple for example.  

Given the purpose it is not particularly well suited to the needs of this monograph in 

which shapes are represented by geometry and generally Euclidian geometry. One 

particular application of this method is Spherical Attribute Images.  A reference to this 

method is given by Hebert [67].  These were developed to overcome the limitation of 

EGI inability to deal with non-convex objects and work by deforming a polyhedral 

sphere to approximate the shape of the object and storing at each point the angle or 

curvature at that point. 

Slope Diagrams of convex shapes can be compared in a method outlined by 

Tuzikov [68].  The methods are invariant under translation and some are invariant to 

scale, rotation, and transformation.  A slope diagram is parameterized where each facet is 

represented as a point, each edge connects the points on the unit sphere and each vertex is 

an intersection of edges.    This method is only applicable to convex shapes and is not 

unique for non-convex shapes.  

Weighted point based methods break a shape down into cubes. In each cube the 

shape is based upon a point within the cube called the salient point and a weight that 

represents the curvature of the salient point.  The idea is that points with higher curvature 

are more descriptive and thus should carry more weight than straight sections.  In the 
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technique proposed by Tangelder [69] a shape is broken down into a 25 by 25 by 25 grid.  

For each of the cubes within the grid a salient point is assigned based upon three 

methods.  The three methods are the Gaussian Curvature, Normal Variation, and 

Midpoint method.  The shapes are then matched based upon a modified earthmovers 

distance.  This method does have an advantage over conventional techniques in that this 

method can be used for polygonal soups on 3D models that are not watertight.  

Aspect graphs define a 3D object by characteristic 2D aspect views of the object.  

Principally each aspect view is the same as another if it is topologically equivalent and 

connected by a continuous path.  The question that this method tries to answer is how 

many views of a 3D object are needed and which ones are characteristic views of the 

object and which ones are redundant.  This method does suffer from a couple of problems 

namely the storage requirements and slow computation.  To offset these drawbacks some 

have taken the practical approach of sampling the viewing sphere at specific locations.  

One method of this type is introduced by Cyr and Kimia [70]. 

Geometric Hashing is a method where sample points from an image are taken, 

scaled, and rotated such that each pair of points called basis points is normalized at the 

origin on the x-axis.  This achieves rotation and scale invariance.  For each possible 

rotation that aligns the basis points with the x-axis all the other points’ location are 

recorded in bins.  A voting strategy is employed similar to the Hough Transform.  The 

method is well outlined in Wolfson and Rigoutsos [71].  This approach was developed to 

recognize objects in a model database in the presence of occlusion.  The approach has 

been extended to 3D models in van Dijck and van der Heijden [72]. 
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Combined methods were recently proposed by Chu and Hsu [73].  In this paper 

they combine topological, form feature, and geometric methods into one method and 

search for the best match based upon several criteria.  Chu and Hsu show the weaknesses 

of any single shape criteria and how the combined method is superior.  They reduce the 

topological graph comparison by mapping into graph cliques thereby reducing the 

computational time greatly and reducing the problem to a linear programming problem 

by the Hungarian method.  The implementation used CATIA ® and SmarTeam®.  This 

method does have some limitations.  The first is that the model does not consider 

chamfers or fillets and does not include things like the tolerances or texture of the part. 

A Hybrid 2D/3D approach was proposed by Pu and Ramani [74]. They start with 

a 2D drawing that they convert to a 2.5D spherical harmonic and 2D shape histogram.  

They transform a 2D shape into a 3D shape then use a comparison between randomly 

chosen points to determine similarity. 

 

2.4.5 Comparison of 2D vs. 3D Methods 

 

In this section we want to compare 2D to 3D methods to determine which is the 

more powerful representation given the shape similarity methods available.  In Section 

2.4.5.1 conversion from one format to another is considered.  In Section 2.4.5.2 we 

explore which methods are more commonly used and why multiple formats are still in 

use.  In section 2.4.5.3 we examine the evidence of which methods are better 2D or 3D? 
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2.4.5.1 Conversion of 2D to 3D models and vice versa 

 
The notion of 2D vs. 3D geometry may be somewhat artificial.  Any 3D model 

can be reduced by one dimension to one or several 2D images though a projection.  Also 

it is possible to reconstruct a 3D image from two or more 2D images using projective 

geometry.  One example of this type of modeling is presented in Pollefeys et al. [75].  

Another work based upon reconstruction of solids of revolution of orthographic 

projections is given in Lee and Han [76].   

There have been several surveys on 2D to 3D reconstruction from line drawings.  

Notably one by Wang et al. [77] and another more recently by Fahiem et al. [78].  The 

methods reviewed in these papers generally follow a common sequence:  find all 2D 

vertices, from 2D vertices find 3D vertices, from 3D vertices define 3D edges, and from 

3D edges construct faces that define the geometry. 

Hidden lines are sometimes used to facilitate the conversion.  Three major 

methods are discussed here.  The first way that hidden lines are used is to give a clue 

about occlusion. The hidden lines help determine the internal shape of the part that we 

could not see if looking at only solid lines without sectional views.  This approach is 

taken by Shi-Xia et al. [79].  In another approach by Cicek et al. [80] the centerline was 

used to locate the center of a solid of revolution.  The half profile of the hidden line was 

revolved about that centerline to form a solid of revolution.  Extrusion was used to 

construct the outside profile of the part.  In the paper by Dimri et al. [81] the hidden lines 

were used to determine whether a feature should be a protrusion or a depression.    

The above showed that although 2D to 3D conversion is possible it is not simple 

nor without problems.  Therefore in this dissertation we suppose that one representation 
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is chosen and all data is converted to that format before we compare complexity between 

methods. 

 

2.4.5.2 Two dimensional vs. Three dimensional representation 

Despite claims that all manufacturing companies are abandoning 2D CAD in 

favor of 3D CAD the real scenario is more complicated [82].  The report states that 

although 71% of current CAD users plan on using 3D CAD, 77% that do use 3D 

modeling also still use 2D CAD.  Overall manufacturing companies are adding 3D 

capabilities but not replacing 2D drafting.  Some cited reasons for using 2D drawings 

include better early engineering development, compatibility from vendors or customers, 

lack of upper management support for 3D, training time for to 3D conversion, and lack of 

sufficient graphics hardware to support 3D. 

 

2.4.5.3 Two dimensional vs. Three dimensional shape similarity 

Historically 2D shape similarity comparison was developed first, and 3D shape 

similarity methods were developed later.  Generally a shape similarity method is 

classified as either 2D or 3D as the methods do not transform well from one 

representation to the other.  In this section we would like to answer whether 2D or 3D 

shape similarity performed better. 

Zaharia et al. [83] compared 2D methods to 3D methods.  The conclusion was 

that 3D shape similarity methods did not outperform 2D methods consistently.  There 

were eight methods evaluated.  The six 3D methods compared were Cord Histograms, 

Random Triangles Histogram, DF 3D Par Extended Gaussian Images, Optimized 3D 
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Hough3D descriptor, Vector quantized O3DHTD, MPEG-7 3D shape spectrum and two 

2D methods Angular Radial Transform (ART) and Contour Scale Space descriptor 

(CSS).  While the optimized 3D Hough3D descriptor was found to perform best, it has a 

higher computational cost.  In addition, the 2D method ART performed almost as well as 

the optimized 3D Hough3D.  It was also shown that the 2D method CSS performed about 

as well and sometimes better than the 3D methods. 

A well cited paper specifically in the engineering shape similarity domain is the 

one by Jayanti et al. [84].   This paper tested feature vector based methods, statistics 

based methods, and 2D based methods.  A total of 12 methods were tested including 

three 2D methods.  In general the 2D methods out performed the 3D methods.  

Matthews et al [85] also showed that 3D representations are not more powerful 

descriptors than 2D based methods once the 2D methods are restricted to orthogonal 

spaces.   

Based upon all the evidence we have, it is the opinion of the author that the 

performance of similarity searching depends upon the dataset, specific problem, and 

measurement method used.  We do not believe that 3D methods outperform 2D ones in 

all cases, which was one criterion in choosing 2D images for our methodology. We use 

wavelet based shape descriptors for similarity measures, which will be introduced in 

Section 2.5.  
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Section 2.5 Wavelets and wavelet descriptors 
 

In this section, we introduce wavelets and wavelet based descriptors.  In section 

2.5.1 we state the background needed to understand wavelets.  We formally define 

wavelets, multiresolution, and filters in section 2.5.2.  Section 2.5.3 is an informal 

comparison between wavelet and Fourier methods and includes some discussion on the 

practical significance of those differences.  In section 2.5.4 wavelet noise removal, 

compression, and approximation of functions is discussed.  Finally in section 2.5.5 we 

describe the wavelet descriptor. 

 
 2.5.1 Background for wavelets 

It is assumed that the reader has some familiarity with linear algebra, Fourier 

methods, and some digital signal processing.  See standard texts by Anton [86] Strang 

[87]  Oppenheim and Schafer [88] Hamming [89] and especially Lyons [90].  Weeks [91] 

has a good basic introduction to Fourier methods and wavelets.  

Only the very basics of wavelets will be introduced in this section.  The reader is 

encouraged to consult the good introductory texts available such as Walker [92] or Jensen 

and Cour-Harbo [93]. 

 

2.5.2 Wavelet definition 

Wavelets are basis functions for the wavelet transform.  We define 1V  as a 

complete vector space.  We also define 0V  as a subspace of the complete vector space, 
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called the scaling function.  The subspace 0V  is a lower resolution subspace of the 

complete vector space 1V . The difference between the complete vector space 1V  and 

the scaling function subspace 0V  is defined as the wavelet 0W .  Therefore wavelets and 

associated scaling functions constitute a basis for a complete vector space and are defined 

by 001 WVV ⊕= .  The wavelet and scaling functions are orthogonal complements 

defined by 0 0 0, , |w W v V w v∀ ∈ ∀ ∈ =  and form a complete basis for all dimensions of 

the vector space.   

The scaling function subspaces form a multiresolutional analysis of the complete 

vector space such as defined by 10345 VVVVV ⊂⊂⊂ −−− K .  At each level the scaling 

function and wavelet can be used to construct the next higher level.  For example, the 0V  

subspace can be reconstructed from the following relation 110 −− ⊕= WVV  where 1−V and 

1−W  are lower resolution subspaces to 0V . 

This multiresolution analysis allows us to build a parsimonious yet descriptive 

model.  We can select the resolution best suited to our needs.  For the discrete wavelet 

transform where there are exactly j resolutions for N samples by the following equation 

jN 2= .  For example if we have eight samples we have three possible levels of 

resolution since 328 =  we have the resolution with the full eight samples, a lower 

resolution with four samples, an even lower resolution with two samples.  This may not 

be an issue with only eight samples however imagine we have over one thousand samples 

of a signal; it may be preferable to deal with a lower resolution version to speed up 

information processing.   
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To enable multiresolution the wavelets and scaling functions must be related to 

each other in specific ways.  The scaling functions are all translations and dilations of a 

father wavelet.  The wavelets are all translations and dilations of a mother wavelet.  Both 

are related to their sons and daughters by the two scale equations. The scaling function 

two-scale equation is defined by )2(2)( 2/ ktt jj
jk −= ϕϕ .  The wavelet two-scale equation 

exists for the mother wavelet and is defined by )2(2)( 2/ ktt jj
jk −= ψψ .  In both equations 

t represents time or distance from the starting point j indicates the level of resolution and 

k represents the translation.   

The series expansion of the scaling vector is )2(2)()( ntnht −=∑ ϕϕ ϕ where ϕh is 

the expansion coefficient of the scaling vector. A similar series expansion exists for the 

wavelet vector and is defined by )2(2)()( ntnht −=∑ ϕψ ψ where ψh is the expansion 

coefficient of the wavelet vector. 

Scaling functions and wavelets are defined by the two scale equations but in 

practice are implemented as filter banks, as seen in Figure 12 and described in 

Wickerhauser [94] or Rao and Bopardikar [95].   The signal is filtered and downsampled 

at each level of resolution.  Also at each level the signal is run through a low pass (LP) 

filter or averaging filter associated with the scaling function. This creates a lower 

resolution of the signal.  No information was lost due to this filtering as the signal was 

also run through a high pass (HP) or differencing filter associated with the wavelet.  The 

signal can be perfectly reconstructed from the LP and HP filters. 
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Figure 12 Wavelet filter bank 

 

 
The Parseval identity for wavelets is useful for relating the energy of the signal 

both before and after the transformation.  The Parseval identity for wavelets is defined by  

2
,

2 )( kj
kj

ddxxf ∑∑∫ =  where k indicates wavelet coefficients within a level and j 

represents the level of resolution as identified in Ogden [96].  The practical significance 

is that we can eliminate small wavelet coefficients as they contain little energy.  After we 

eliminate the numerous small coefficients, we can reconstruct the signal with a much 

smaller number of significant coefficients achieving significant compression and 

enabling our earlier goal of building a parsimonious model.   Eliminating all wavelet 

coefficients above a given level would be equivalent to using the low pass scaling signal 

only which could be considered a good enough approximation for signal comparison. 

 

2.5.3 Wavelet and Fourier basics 

We start by pointing out how wavelets and Fourier based methods are similar. 

Later we point to key differences that help the reader to understand why wavelets were 
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developed and give the reader some intuitive explanation as to when to use wavelets over 

Fourier based methods. 

Wavelets and Fourier based methods are similar in several important ways.  

Wavelets and Fourier methods both form an orthogonal basis for representing a signal.  

Both methods can be used to uncover the frequency components of a signal.  Both 

methods have been used for function approximation, compression, and estimation.  Both 

methods can be used to represent a multiresolutional subspace of the signal.  Finally both 

methods have fast algorithms available. 

Wavelets and Fourier methods differ in some fundamental ways that have an 

effect on their application.   It is the opinion of the author that wavelets and Fourier based 

methods differs in four fundamental ways, as shown in  Table 3 

Table 3 Wavelet versus Fourier 

Fourier Wavelets
Basis Sine and Cosine Adaptable to problem
Support Infinity Rapidly tend to zero
Regularity/Smoothness Smooth Smooth to non-differentiable
Transform Frequency Time and Frequency

 

The first difference between wavelets and Fourier based methods is the form of 

the basis function.  Fourier based methods use one fixed basis function namely sine and 

cosine at various frequencies.  Wavelet basis on the other hand are adaptable to a given 

problem and can assume any shape that is admissible under the definition of the wavelet.  

This ability to adapt a basis function to a given problem can enable better compression, 

approximation, and estimation.  See Figure 13 for some examples of basis functions. 
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A second related way that Fourier methods differ from wavelets is regularity or 

smoothness of the basis function.  Fourier methods use a smooth function that is 

differentiable everywhere.  This may work in some applications, but being able to adapt 

the wavelet basis function to the problem is more desirable for many real world 

applications. 

 

Figure 13 Wavelet basis functions 

 

 The third way in which they differ is by support of the basis functions.  Fourier 

based methods all use sine and cosine basis vectors that have theoretically infinite 

support.  Therefore Fourier series coefficients refer to the entire dimension of the vector 

space for a given frequency.   Some wavelet basis functions have infinite support but they 

rapidly attenuate to zero therefore they are localized in time. 
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The fourth way they differ could be the most important as it points to one of the 

main reasons that wavelets were developed.  After the Fourier transform, the spectrum 

reveals the frequency components of the signal through the Fourier coefficients of the 

Fourier series.  In other words after the transform the coefficients are not well localized in 

time.  To combat this, the short time Fourier transform (STFT) was developed see Figure 

14.  The problem is how we choose the window so that we do not miss important details 

while still being able to detect frequencies outside the window.  There is no good answer 

to this question. The wavelet transform preserves the time and frequency components of 

the signal see Figure 15.   

Because of these differences and properties we can conclude that wavelet based 

methods perform better on aperiodic signals and those which exhibit jumps (see Hubbard 

[97]).  These are exactly the types of signals we expect to encounter in our work. 

 

Figure 14 Short time Fourier transform 
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Figure 15 Wavelet tiling 

 
 
 
2.5.4 Wavelet noise removal, compression, and approximation 

Almost all real world signals contain both the intended signal and noise.  Since 

we are sampling images in our work, we expect some noise.  For example an image of a 

circle is not exactly round.  One way to remove the noise is though filtering as explained 

by Mix [98].  Generally a low pass (LP) filter is used to remove noise.  The scaling 

function is a low pass filter at a given resolution.  The selection of the scaling function 

basis function is directly related to the selection of filters.  Recall that scaling functions 

and wavelets are directly related.  See Mallat [99] for a good discussion on the types of 

signals that are well represented by wavelet and fourier basis functions.  In general, 

aperiodic signals that exhibit jump behavior are better approximated with fewer 

coefficients with wavelets.  This results in higher compression and helps our goal of 

building a parsimonious model. 
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2.5.5 Wavelet descriptor 

 
Wavelet descriptors are a multiscale or multiresolutional method as described in 

Costa and Cesar [100].   Wavelet descriptors are based upon the wavelet series expansion 

coefficients ψh  and scaling function series expansion coefficients ϕh  explained in section 

2.5.2 of this monograph. 

In this work we use the wavelet descriptor for several reasons, which will be 

greatly expanded in the methodology section.  Suffice to say, for now, that the wavelet 

descriptor has some advantages over other shape descriptor methods. 

One of the first reasons to use the wavelet descriptor is ease of computation as 

this method is implemented as a filter bank and available in many software packages such 

as Matlab see Jensen [93] or Mix [101] and S-Plus see Gao [102] as well as stand alone 

packages.  

The second reason is multiresolution since our goal is to build a parsimonious 

model using the least number of coefficients possible. This enables another goal of being 

able to implement this system eventually into a commercial application.  Since we are 

clustering similar shapes together we want to compress the data before clustering to 

speed up the process of clustering. 

A third goal is to use a robust descriptor.  Local changes to a signal remain local 

after the transform.  A local disruption only affects those coefficients that are local to that 

area of the signal.  When using Fourier based methods a local disturbance can affect the 

global coefficients. 
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A fourth reason is that Fourier based methods are not necessarily unique.  After 

the transform we only know which frequencies occurred, we do not know when they 

occurred.  Therefore two signals could have the same spectrum but represent different 

shapes. 

A fifth reason is the ability to distinguish jumps or singularities in the signal.  

Since we are matching complexity those jumps or points of high curvature could contain 

information related to the complexity of the part and consequently the cost. 

 

2.5.5.1 Wavelet descriptor research 

Early work on wavelet descriptors was done by Chang and Kuo [103]  where they 

showed that the wavelet coefficients can be interpreted as random variables and used a 

hierarchical approach on noisy images with good results compared to Fourier methods. 

The work by Antoine et al. [104] is a 1D method of shape description of 2D 

images and shapes.  In this work they use the W-Representation to detect and use 

dominate features for shape matching related to high curvature points. 

Osowski and Nghia [105] investigated which descriptors worked well with which 

classifiers.  They looked at both Fourier descriptors and wavelet descriptors using three 

neural networks.  They concluded that the wavelet descriptor outperformed the Fourier 

descriptor at any noise level and the Kohonen classifier worked the best for all single 

classifiers.  They did develop integrated classifier that outperformed any single method. 

Hierarchical active shape models based upon wavelets were explored by 

Davatzikos et al. [106]  They show that the wavelet based method works better when a 

limited number of samples are available. 
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A combined elliptical fourier and wavelet based approach was advocated by 

Lestrel et al. [107].  They argue that the elliptical Fourier methods can be used to 

represent the global aspects of the shape and the wavelet descriptor can be used on local 

features.  Combining the two methods creates a more powerful descriptor than one 

method alone. 

 

2.5.5.2 wavelet transformation invariance 

 

A generalized uniqueness wavelet descriptor was developed by King-Chu et al. 

[108].  They are able to overcome the problem with wavelet descriptors, which are not 

invariant to starting point. 

Wavelet descriptors that are invariant to affine transformations are developed by 

Rube et al. [109].  They show that the scaling coefficients help reduce noise sensitivity 

when using the hierarchical clustering method based upon wards linkage models. 

The starting point problem of wavelet descriptors was taken up by Kith and 

Zahzah [110].  They propose four simple methods to normalize the starting point and 

show the usefulness of each method. 

Shift invariance is researched by Chen and Xie [111] using the dual tree complex 

wavelet and support vector machines.  They show their method works better than scaling 

function wavelets by about five percent on the dataset tested. 

Fourier, generic Fourier, and wavelet descriptors were compared by Yadav et al. 

[112].  They concluded that taking the Fourier transform of the wavelet descriptor 

coefficients was a method to normalize the wavelet descriptor to affine transformations.  
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They also found that the wavelet Fourier descriptor was less sensitive to noise than other 

methods.  Another paper by the Yadav et al. [113] concluded that wavelet Zernike 

moment descriptors outperformed both Fourier and Legendre moment based descriptors. 

Kong et al. [114] used a centroid radii model and wavelet descriptor to achieve  

translation, rotation, and scaling invariance.  They tested their method on the SQUID 

database and showed good results. 

Based upon the research that has been done it is the opinion of the author that 

wavelet descriptors best fulfill our need for the methodology implemented in this 

monograph. 

 
CHAPTER THREE: METHODOLOGY 

 
 

Our research objective is to develop a methodology for automatic or 

semiautomatic cost estimation of injection molds considering part complexity and 

variation.  See Figure 16 for an overview of this process.  Shown in Figure 16 are the in- 

process parts of the methodology.  The one-time sections of the methodology are not 

shown. 

We would like to use only those mold designs that are the most similar for cost 

estimation.  Therefore our task is to reduce the dataset of all molds to the dataset of 

relevant molds for the purpose of cost estimation.  An overview was given in Section 1.4. 

Now we give more detail of the methodology and explore some of the reasons for 

choosing this methodology. 
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Figure 16 Overview of Methodology 

 

The first part of this process in Section 3.1 is to convert all data to a common 

format.  In Section 3.2 the mold type is selected.  In Section 3.3 the mold design is 

selected.  In Section 3.4 the part complexity is clustered.  In Section 3.5 three-descriptor 

types, (regional, topological and wavelet) are combined into one feature vector for each 

part along with mold type and design data.  In Section 3.6 the combined feature vector is 
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used as a basis for a regression model.  In Section 3.7 the experimental design and 

validation plan is covered.  In Section 3.8 the data problems and remedies are discussed. 

Throughout this work we are using limited data.  We assume that most 

researchers working on this problem will encounter this same problem.  Therefore our 

methodology was chosen to deal with limited data.   This limited data manifests itself 

when putting together the feature vector. 

One of the challenges when selecting a feature vector is the curse of 

dimensionality.  This may be encountered when we partition a dataset.  The number of 

observations that meet all the criteria of the partition reduces the number of observations 

in a particular partition, and makes prediction more difficult.  See Hastie et al. [115] or 

Bishop [116] for a more detailed description of this phenomenon.  Due to the curse of 

dimensionality we strive for parsimonious models with as few variables as possible, 

which still well describe the phenomenon.  This could be considered a practical 

application of Occam’s razor.  This was one of the main reasons we compressed the 

observations in the wavelet descriptor to a minimum and further reduced the 

dimensionality to the cluster of the shape.  Now that we know why we selected the 

method, we can now move on to the practical application of the methodology. 

Section 3.1 Conversion of data to a common neutral format 
 

The purpose of this section is to explain why the format was chosen in Section 

3.1.1 and the mechanics of how the formats are converted to the neutral image format in 

Section 3.1.2. 
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3.1.1 Why 2D images were chosen as the neutral format 
 

One unique feature of our work is that we convert all part data to a neutral format 

as images prior to further processing.  There are several reasons for this.   

If the methodology will eventually be developed into an industrial application, 2D 

images can be displayed in a more natural way.  No special programs are required to 

display the part and mold in 2D images, as opposed to 2D or 3D CAD models.  

Integration with the cost estimation core of our process is much easier. 

The second advantage is that the size of images and the data processing power 

needed to display them is reduced versus 2D or 3D CAD.  Because we are just displaying 

images no special math coprocessors, graphics engine, nor special graphics cards are 

needed. 

The third reason is that there are many algorithms and programs available to 

process images.  Many programs that can do standard image processing or computer 

vision could be used. 

The fourth reason is that 3D is not a more powerful representation than 2D.  This 

was explored in Section 2.4.5.3.  It has not been proven that 3D has any advantage over 

2D methods for shape similarity. 

The fifth reason is ease of conversion.  Although conversion is possible between 

2D and 3D as outlined in Section 2.4.5.1 it is difficult.  The conversion is generally done 

semi-manually and is labor intensive.  Indirect conversion from 3D to 2D is less labor 

intensive than 2D to 3D.  Almost all 3D CAD programs have a 2D drafting mode.  In this 

mode 3D CAD is very similar to 2D CAD.  Therefore conversion from 3D drafting mode 
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to 2D CAD is easier.  The third common data format is blueprints.  Blueprints can be 

scanned and converted to 2D images using image-processing methods. 

 

3.1.2 Methodology of conversion to a neutral format 

 

The first assumption of our data is that the non-geometric information has been 

removed either before or after the conversion process.  The key is that the data was 

preprocessed prior to the part similarity comparison. 

The conversion process itself is dependant on the format of the data received.  For 

this dissertation, it is assumed that one of three formats is available. The three formats are 

blueprints, 2D CAD, or 3D CAD.  However any format that can be converted to an image 

can be used.  

If data were received as a blueprint, it would be scanned and converted to a 2D 

image directly through image-processing software.  Some preprocessing such as 

thresholding may need to be done to obtain a cleaner image before its use.  Thresholding 

is an image processing technique used to separate the background of an image from the 

lines. 

If a 2D CAD file is received, it will be converted either by direct export to bitmap 

or screen capture.  The specifics would depend on which 2D CAD software used to create 

the image. 

If a 3D CAD file is received, this may require further preprocessing.  For this 

work we assume the designer has used the 2D drafting mode in the 3D CAD program to 

create a drawing.  If the designer has not made a 2D drawing then this process would 
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have to be done prior to use in our methodology.  Once a 2D drawing is available the 

conversion is similar to 2D CAD.  The specifics depend on which 3D CAD program was 

used to create the geometry. 

Section 3.2 Mold Type Selections 
 

Selection of mold type is based upon both geometric and non-geometric 

information.  The non-geometric information is equally important to the selection 

process.  Therefore this process must remain at present a selection process done by an 

experienced bidder familiar with mold types.  It is important to note that in our 

methodology the user selects the mold type.  The mold type is not selected by the 

methodology.  Comprehensive examinations of all of the factors that may affect mold 

type selection are beyond the scope of this document.  However some factors that would 

be considered by the bidder are part material, estimated annual usage, lifecycle, 

geometry, surface finishes, geometric dimensioning and tolerancing. 

We restricted ourselves to mold types of conventional, MUD, and modular 

because they were the most common types and would cover a large proportion of all 

molds.   

Section 3.3 Mold Design Selections 
 

Mold design is a process best left to a subject matter expert in mold design.  

Therefore we believe that using a manual section process as in our methodology is 

preferred. 
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There are several good texts available on mold design and construction such as 

the one by Kluz [10].  Although part demolding and part ejections are primary 

considerations, other factors are equally important.  These other factors are beyond the 

scope of this dissertation.  Some factors could be gating location, venting considerations, 

parting line locations, ease of repair, and many other factors that have a bearing on the 

mold design. 

We restrict ourselves to mold designs of straight, spring ejector, and cam action 

because they are the most common types and would cover a wide variety of molds.   

 

Section 3.4 Part Complexity Matching 
 

In this section we describe the proposed process of part matching. For this work 

part complexity will be obtained from images of the part using several descriptors. The 

process consists of many steps.  In Section 3.4.1 we read the images and detect the 

boundaries.   For this work we propose to use one view of the part.  This view will be the 

top view looking directly into the parting line.  Section 3.4.2 describes the image 

normalization.  Section 3.4.3 outlines the process by which we describe each boundary. 

 

3.4.1 Read image and detect boundaries 

Reading the images can be done with standard functions in the Matlab image-

processing library.  A typical image is shown in Figure 17.   

After the images of the part are read the boundaries will be traced with third party 

libraries.  Boundary detection or contour following is a common technique used in image 

processing.  One good reference can be found in Parker [117].   
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Figure 17 Typical image of part 

 
 

 
The next step in this process will be segmentation.  Segmentation is the process of 

dividing the 2D image of the part into regions as described by Gonzalez et al [9].  The 

purpose of this is to separate each view of the part in the image and isolate it. We want to 

deal with one view of the part at a time at this stage.  Namely we want the top view 

looking into the parting line. 

The next step of the process will be to normalize the images; this is done in order 

to create common translations and transformations for comparison. 

 

3.4.2 Normalization 
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The first part of the normalization process is to translate the image to zero point s 

of x and y coordinates and crop the image.  The translation assures a common location 

and cropping creates a bounding box around the part.   In Figure 18 the upper left corner 

is the origin.   

 

Figure 18 Cropped image 

 

Rotation normalization is done so that the x-axis is aligned with the major axis of 

the part.  For this work we assume that the coordinate axis was used to generate the 

drawings and therefore straight edges lie along either the x-axis or y-axis so that either 

the image is rotated ninety degrees or not rotated at all. 

Mirror or reflection normalization is done by comparing the center of the 

bounding box to the center of mass of the boundary.  For this work we assume that all 

images have been normalized so that the upper left quadrant contains the largest mass 

according to the largest boundary or profile of the image in a given view.  

Scale is normalized so that a common pixel to length ratio is maintained for 

example 1000 pixels for one inch of length.  The reason for this is that some variables 
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such as area are likely to be significant for cost estimation, and the images therefore must 

be normalized so that areas are consistent from image to image.   

 

3.4.3 Describe each boundary 

 
It is important to note that the goal of using geometry is an indirect way to 

measure complexity, which is related to cost.  This is slightly different from purely 

measuring shape similarity as reviewed in Section 2.4.  Our goal is to create a feature 

vector of variables that are related to cost.  Each boundary may have wavelet descriptors 

as well as other descriptors such as size, perimeter length, etc for each view of the part.   

There are several ways to measure shape complexity.  The first way to estimate 

complexity and cost is using regional descriptors such as size, eccentricity, bounding box, 

etc.  The second way to estimate complexity is through topological information, for 

example, the number of enclosed boundaries, Euler numbers, Betti Numbers, and Genus. 

The third way is through wavelet descriptors.   

 

3.4.3.1 Regional descriptors 

Regional descriptors are properties that describe a boundary.  A boundary is 

defined as a connected component.   Connected components are continuous and so are 

boundaries. 

There are several regional descriptors that are useful for this work.  One regional 

descriptor that has potential to be significantly related to cost is area.  Area is defined as 

the number of pixels in an enclosed boundary.  It is well known in the molding industry 

that two parts with similar shapes but of different sizes will have a different cost 
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structure.  Therefore it is reasonable to assume that area will be a factor in cost 

estimation.  A second possible regional descriptor is eccentricity.  Eccentricity is the ratio 

of the distance between the foci of the ellipse and its major axis.  Eccentricity is a scalar 

defined on an interval of zero to one.  A value of zero would indicate a circle whereas a 

value of one would indicate a straight line.  Therefore its application will be most useful 

in determining whether or not a given boundary is a circle or how far it deviates from it. 

A third is regional property image. The regional property image is a boundary with the 

same area as the bounding box of the region.  It may be used to determine whether or not 

the boundary in question is a rectangular shape. 

 

3.4.3.2 Topological descriptors 

 
Besides geometry, the second way to capture complexity is through topographical 

information such as Euler numbers and the number of boundaries of the image. Recall 

that topological descriptors describe a view, whereas regional descriptors and wavelet 

descriptors describe a boundary. 

The Euler number is the number of boundaries in the image minus the number of 

holes in those regions.  This may be useful in determining complexity of the image.   

The number of boundaries is thought to be significant, as intuitively an image of a 

plastic part with few boundaries would imply a simple geometry of the plastic part.  This 

would translate into a simpler mold with a lower cost. 

 

3.4.3.3 Wavelet descriptors 
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The third descriptor type will be the wavelet descriptor.  Please see Section 2.5 for 

a detailed overview of the wavelet descriptor.  It is done in several steps see Figure 19.  

Shown are only those steps that would be required in process.  Not shown are some 

preliminary steps such as the selection of the wavelet. 

Start 

Convert boundary to 
signal 

Normalize boundary 

Compress signal  

Scaling coefficients  

Cluster similar shapes 

End 

Combine wavelet cluster 
with overall feature vector 

 
Figure 19 Wavelet descriptor process 

 

In this section it is assumed that the images have been read into memory and the 

boundaries have been detected.  This boundary is normalized for starting point.  The 

starting point is the pixel on the boundary with the shortest Euclidean distance to the 

origin after translation, rotation, and mirroring.     

The general algorithm is as follows. (1) Choose which wavelet to use; (2) convert 

the boundary to a signal; (3) normalize the length of the boundary; (4) compress the 

image; (5) calculate the scaling coefficients; (6) cluster similar shapes together; and (7) 

make the cluster part of the overall feature vector for cost estimation. 
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The first step will be the selection of which wavelet to use.  For this work we use 

the Daubechies wavelet with four coefficients.  This was done for several reasons.  The 

first is that the Daubechies wavelets are some of the most studied wavelets. It is our 

desire to remain transparent so that others may extend what has been done.   A second 

reason is that Daubechies wavelets have a property that is helpful to our work.  See 

Property III in Walker [92].  Define J as the length of the wavelet filter.  If the signal is 

approximately equal to a polynomial of degree less than J/2 over the support, then the 

wavelet coefficients will be approximately zero.  For a Daubechies wavelet filter with 

four coefficients, this means that the wavelet coefficients will be approximately zero for 

all areas of the signal that are straight lines.  Therefore most of the energy of the signal is 

contained in the scaling function coefficients, and the scaling function alone is a good 

approximation of a signal composed mainly of straight lines.  These are the types of 

signals we expect to encounter for mechanical components.  For curved sections and 

circles preliminary experiments indicate that these signals are also well represented by 

the scaling function coefficients.  This is because circles are represented as sine waves in 

our methodology.  Those sine waves contain approximately straight sections that can be 

approximated by the scaling function alone.   

The second step after the wavelet has been selected is to convert the boundaries to 

signals. This is not difficult, when a boundary is traced, the x and y coordinates of the 

boundary are kept in an array.  The first column of the array is the x-axis values or 

distance from the origin.  The second column is the y-axis values or distance from the 

origin.  To convert to a signal in Matlab we just pull off the column that we need and 

transpose that column to be the first row of an array.  In Matlab a row vector is a signal.  
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However we also need to keep track of the distance from the starting point of the 

boundary.  

For this work it was determined that the distance from the starting point would be 

defined as the parameter t.  This would be the horizontal axis in Figure 20. The vertical 

axis is the changes in the x-axis as the boundary is traced see Figure 20 labeled X (t).  

 

 
Figure 20 Boundary converted to a signal 

 

 

 

The third step is to normalize the boundary length.  The image is scaled so that 

the boundary is a standard length, which is a power of two.  In preliminary tests we used 

a boundary length of 1024 pixels.  After the image is scaled so that the boundary length is 

X (t) 
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close to the target of 1024 pixels, a mirroring process is used to minimize edge effects 

when doing the convolution.   

The fourth step is to compress the signal.  It is critical to compress the signal for 

this work as it reduces the time required for further processing.  Even after compression 

the signals retain their essential shape.  Similar shapes of the signal indicate similar 

boundary shapes and dissimilar signals indicate dissimilar shapes of the boundary.  A 

typical rectangular boundary and its associated compressed signal are found in Figure 21 

and Figure 22, respectively.  A typical circular boundary and its associated compressed 

signal are found in Figure 23 and Figure 24, respectively. 

Deciding on how much to compress a signal with wavelets is a decision on how 

many scaling function coefficients are needed.  This question is closely linked with how 

much we can compress the signal and still retain its essential shape.  Recall that at each 

level of the filter bank the signal is downsampled and the energy is compressed into a 

shorter signal with half the coefficients.   The number of coefficients will be determined 

by informal experiment, as it is data dependant. Generally four to sixteen coefficients are 

considered sufficient as described in Chuang and Kuo [103].  In our preliminary 

experiments we converted the boundary to a signal and compressed a signal with one 

thousand and twenty-four coefficients to just seventy.  Sixty-four of these are the scaling 

function coefficients and six were due to the padding added to minimize the boundary 

effects from the convolution.   

Because of these preliminary findings, it is not thought that we need to use a 

thresholding technique to determine which wavelet coefficients to keep.  Thresholding is 
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a technique that allows us to keep significant coefficients regardless of frequency or time.  

For a good discussion on thresholding techniques please see Ogden [96] 

 
Figure 21  A typical boundary on a part print 

 

 

 
 

Figure 22 Compressed boundary 
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Figure 23 Circular boundary 

 

 
Figure 24 Circular signal 

 

After the signal has been compressed, the fifth step is to represent the signal from 

the scaling function coefficients.  These coefficients should contain the bulk of the energy 

of the signal and therefore are a good representation of the original signal.  Shown in 

Figure 25 are the scaling function coefficients of the compressed signals for some test 

images.  Note that there were seventy coefficients although only seven are shown.   
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Figure 25 Wavelet coefficients 

 

 

After we have the scaling function coefficients the sixth step is to cluster together 

similar signals.  Recall that clustering similar signals is the same as clustering similar 

boundaries or shapes of boundaries.  Shown in Figure 26 are preliminary results when 

using a k-means clustering algorithm on the wavelet descriptors.  The left column is the 

cluster that the image belongs to and the right column is the name of the test image.  

Other clustering methods, which could be used, are considered in several references.  One 

reference is Duda et. al [118].  Another text is the one by Russell and Norvig [119]. A 

third reference to do exclusively with self organizing neural networks can be found in 

Carpenter and Grossberg [120]. 
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Figure 26 Clusters 

 

 

The seventh step is to combine the wavelet descriptor, regional descriptors, and 

topological descriptors into one feature vector.  This overall descriptor will be combined 

with the mold type and design data to form exactly one observation for each part.  That is 

the process outlined in section 3.5. 

 

Section 3.5 Create Overall Feature Vector 
 

 

 

At this stage we have described the mold type, mold design and part complexity.  

Our task now is to combine what we know into one uniform descriptor.  It is our desire to 

build a parsimonious model that accurately reflects the relationship between the 
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independent variables and the target variable.  Due to this fact the feature vector has been 

created in stages. 

Recall that the bidder has already selected the mold type and design from a 

drawing of the part manually. Our methodology does not select these factors for the 

bidder.  We also know the cost of similar molds.  The cost will serve as our target in the 

supervised learning method in section 3.6.  See a partial feature vector in Figure 27.  The 

mold feature vector will be combined with feature vectors for part descriptions.  It is 

important to realize that all descriptors of the mold and part form exactly one 

observation.  The part and mold descriptors are the independent variables and cost is the 

dependent variable in the regression model. 

 
Figure 27 Feature vector 

 

 

The next step is to describe what we now know about the part from the 

descriptors calculated from the images of the parts.  This was a core part of our research. 

From the view of the part we have topological descriptors such as Euler numbers, 

and number of boundaries.  In addition, regional and wavelet descriptors are used to 

describe the boundaries of the part itself from the 2D image.    Each boundary within the 

view is described with regional and wavelet descriptors.  The clusters from the wavelet 

descriptors for x(t) and the regional descriptors form a complete descriptor for each 

boundary.   
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Section 3.6 Regression  
 

In this section our goal is to use the information in the feature vector from Section 

3.5 to determine the estimated cost of the mold from the information about the mold and 

the part descriptors.  The multiple regression technique was chosen as the supervised 

learning method for several reasons. 

The first reason was that regression provides a way to combine multiple data 

types.  We expect our feature vector to have a mixture of data types of continuous, 

ordinal, and categorical data. 

The second reason is that our desire is to weigh the variables. Each variable may 

have a correlation to the dependant variable of cost and we would like to know how they 

are related.  

The third reason was to provide mean prediction along with prediction intervals.  

We would like to know how precise our estimate might be given what we know about the 

mold and part. 

 
 

Section 3.7 Experiment and Validation plan 
 

The first important consideration for this work is that we are dealing with 

observed data and not experimental data.  We cannot in most cases change the factors and 

observe their outcome.  We also have a limitation in the number of observations available 

in our dataset.  Because of these two factors we do have some limitations on what we can 

do.  We assume for this section that outliers have been investigated and the data has been 

transformed to make the relationship between independent variables more linear with the 
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target variable, which is cost.  A good discussion on experimental design and 

mathematical statistics can be found in Wackerly et al [121].  

When investigating the relationship between continuous variables and the target 

we will primarily use correlation to investigate variables.   Both Pearson correlation and 

Spearman correlation may be used.  

For categorical variables our main tool is completely randomized analysis of 

variance (ANOVA).  We will also use an F-test to determine whether or not there is a 

difference due to the factor we are exploring in that particular test.  In addition, 

nonparametric tests such as Kruskal-Wallis may be used if there is evidence that the 

population violates one or more of the assumptions of ANOVA such as normality and 

equal variances. 

 

3.7.1 Experiments 

There are several factors we would like to investigate from the observed data.  We 

would like to test some assumptions we have made and determine which factors are the 

most important for cost estimation.  We would first like to test whether or not mold type 

has an effect on the cost.  Second we would like to test whether or not mold design has an 

effect on cost.  A third assumption is that the shape of the part itself has an effect on cost.   

Both the Pearson correlation coefficient and the Spearman’s rank correlation may 

be used to investigate the relationship between continuous variables and the cost of the 

mold.  We may test Euler number, number of boundaries, eccentricity, and area.  
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3.7.2 Validation 

After the regression model has been built, validation will be performed.  Our main 

method for this will use a hold out sample technique.  These jobs have not been used in 

model building and the actual cost will be compared to what the model would have 

predicted for that observation.  In our test we plan on using the leave-one-out strategy. 

 

Section 3.8 Data problems and remedies 
 

3.8.1 Observational vs. experimental data 

Because we have an observed dataset, not an experimental dataset, we cannot 

explore variables in isolation.  The variables are not in most cases independent for an 

observed dataset see (Mendenhall and Sincich [122]).  This is more of a problem in 

explanation than prediction.  Furthermore, for some variables such as number of cavities, 

it would be possible to design an experiment whereas for others such as WaveClust and 

RegClust this would be more difficult.   

 
 
3.8.2 Outliers 

Since we were dealing with three populations of different mold types outlier 

detection was placed later in the methodology.  In other words, outliers are difficult to 

detect when we have a dataset that may be heterogeneous. 

For example from the graph of all cost data in Figure 28 there appear to be many 

outliers in our dataset.  This is not necessarily true.  We could have a mixed distribution 
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and each potential outlier may be perfectly reasonable if placed into its partitioned 

dataset.  Therefore outlier detection was delayed until our datasets were homogeneous. 

This was done so that we could detect true outliers separate from apparent outliers 

at a higher level of data aggregation.  These higher levels of aggregation were 

heterogeneous datasets and not representative of the true relationship of the observations 

or variables of the true model. 

There were several techniques used to detect outliers.  We used scatter plots, box 

plots, and more formal tests such as high leverage points and high-standardized residuals.  

High leverage points were given special emphasis and investigated using graphical 

methods and conversations with the molder that provided the data. 
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Figure 28 Apparent outliers 
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3.8.3 Non-constant variance 

 
A summary of the target variable cost reveals that we have a very wide variety of 

costs.  Our original dataset includes variables from $600 to over $60,000 or a low to high 

factor of over 100.  

Problems may arise when we try to model data with such a wide variance.   The 

first potential problem would likely be non-constant variance that manifests itself when 

modeling over a wide range.  There are three common ways to deal with this (Jennrich 

[123]).  The first way is to transform the target variable.  While this may stabilize the 

variance it may also introduce bias into the model.  Another potential solution is to use 

weighted regression, which is viable but more complex to implement and interpret.  The 

third method is to partition the data before modeling.  We chose to partition the dataset 

into smaller regions before we build the final models.   

 

 

3.8.4 Nonlinearity with target and interaction effects 

 
For each potential variable in the model we investigated both the quadratic and 

interactive effects.  After many experiments we found that interactive effects were in 

general neither informative nor predictive.  However second order effects were frequently 

useful therefore they were included in the model. 

 
 
3.8.5 Noise 

The first limitation is that we are dealing with limited data.  We must also 

consider that the dataset was based upon quoted prices not actual hours.  Therefore not all 
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costs used may reflect the true cost.  Some of the molds may have been intentionally or 

unintentionally overbid or underbid.  We must also take into consideration that factors 

outside our model could have a significant effect on cost.  They include but are not 

limited to flash, tolerance, surface finish, and decorative cavity graphics such as logos 

etc.  We also know that during slow times molders offer molds at a discount.  Another 

reason for a discount may be due to the relationship between the molder and the customer 

or to get the profitable parts orders. 

 

3.8.6 Variable selection 

 
Variable selection will be done in several ways.  By using multiple methods it is 

hoped that we can determine true correlation from apparent correlation. 

The first method will be visual.  Scatter plots will be used to determine whether or 

not continuous variables are related to the target of cost.  Box plots will be used to 

determine whether or not categorical variables seem to be related to cost. 

The second method will be correlation.  The correlation coefficient will be used 

along with gross measures of correlation to determine whether or not a variable is related 

to the target variable, which is cost.  See Kachigan [124] for a discussion on correlation. 

The third way will be through stepwise regression and best subsets regression.  

See Jennrich [123] for a good discussion of stepwise and best subsets regression.  

Stepwise procedures include variables to enter one by one at a given p-value whereas best 

subsets considers that different variable combinations may yield just as good results. 

However the final decision as to which variables to include were arrived at by 

experiment by building multiple models and observing the results.  We do this because 
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we may know or have knowledge apriori to modeling or suspect that certain variables 

should be included or excluded based upon reason. 

 
3.8.7 Multicollinearity 

 
One variable Num_Bound number of boundaries is correlated with other variables 

such as WaveClust and RegClust.  NumBound confused the effects of these variables 

without contributing to the predictive ability of the model. 

 

3.8.8 Data preparation 

Data preparation will be done in several steps.  This is an interactive process and 

may take several iterations in order to transform the data into the proper format see (Pyle 

[125]). 

The first step will be to fill in any missing values.  An attempt will be made to 

justify why the values for any missing values were selected. 

The second step in this process will be outlier detection.  For the purposes of this 

dissertation outliers will be detected in two ways.  The first way is visually through the 

use of scatter plots and box plots.  The second way will be statistical selection.   If an 

observation is more than three standard deviations outside the normal, it will be 

considered an outlier. 

The third step will be residual analysis.  We will consider linearizing transforms 

in order to make the independent variables linear with the target variable, which is cost.  

We select the transform by observing the shape of the residual plots. This is sometimes 

known as the bulge rule see Jennrich [123].  An attempt may be made to standardize the 
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variance with variable transforms.  However this can introduce bias and therefore may 

not be beneficial to our application. 

 

3.8.9 Random sampling 

One potential problem with the data selected is that it may not represent a true 

random sample.  We selected 81 of the most recent jobs.  A sample of this size at the job 

shop that provided the data encompasses many months work.  As such we have many 

mold types, designs, and customers from different industries.  We think of this dataset as 

a large test sample but not necessarily random.  We did not use a stratified sample to 

create a sample that represented the population of all molds.  Another problem is that all 

the data came from one molder.  We assumed since this job shop is winning some jobs 

while loosing others they are competitive with prices from other molders.  We do not 

believe the mold prices are biased. 

 

CHAPTER FOUR: IMPLEMENTATION AND RESULTS 
 

Section 4.1 Implementation 
 

Implementation of the methodology was done in several steps using both 

commercially written software and custom software written by the author of this 

dissertation. 

Microsoft Access was used to store information about the mold and cost.  These 

variables were manually entered into our dataset as shown in Figure 29.  These variables 

are not considered core to our research.   
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Matlab was used to implement the image processing section of our methodology.  

We use regional descriptors, wavelet descriptors, and topological descriptors to estimate 

cost from images.  Matlab standard libraries were used for reading images, boundary 

detection, calculating the wavelet coefficients and the hierarchical clustering.  A library 

from Gonzalez, Woods and Eddins [9] was used extensively for calculating the regional 

descriptors.  The image normalization, creating the datasets and combining the various 

information sources was custom written as Matlab M-file scripts.   

Ultimately all the information from the manual data entry and the automatic data 

collection was combined into Minitab for the statistical computations and regression 

analysis. 

 

 
Figure 29 Mold database 
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Typical data automatically collected from the part print is shown in Figure 30.  

Name is the unique name of the mold at the company that supplied the data.  Columns 1 

and 2 in the dataset named record are the image and boundary number for one image.  

The dataset labeled T is the wavelet cluster.  The data T2 is the cluster based upon the 

regional descriptors.  The variable Eccent is eccentricity of the boundary.  Through our 

investigation it was found that boundaries with an eccentricity below 0.40 were highly 

correlated with circular boundaries.  Therefore the variable Eccent was used to determine 

the number of non-circular boundaries (NonCir) in the image.  Round boundaries are 

easily machined and have a lower cost than non-circular boundaries.   

 
Figure 30 Matlab database 

 

 

 

Section 4.2 Results 
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The dataset consisted of 83 molds of type conventional, master unit die and 

modular. There were 16 conventional molds, 18 master unit dies and 49 modular molds 

in our dataset. 

Our goal is to create one master dataset used to build the regression model from 

the three disparate data sources.  Shown in Figure 31 is the master dataset used in 

modeling.   

 
Figure 31 Minitab dataset 

 

 

To create the master dataset we used three sources of data.  The first source of 

data is the invoices of the molds that include cost.  The second source was the print of the 

mold as shown in Figure 32.  Using the mold print we were able to determine factors 



 91

such as the number of cavities and the design of the mold.  These factors from the mold 

print were used to manually enter these factors into our dataset. The third source of data 

is prints of the plastic parts themselves as shown in Figure 33.  The part prints were used 

in the core research as outlined in our methodology.  Both wavelet descriptors and 

regional descriptors were calculated automatically from the part print.  A computer 

program written in Matlab extracted this data automatically. 

 

 
Figure 32 Mold drawing 
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Figure 33 Part drawing 

 

 

4.2.1 Non core research variables 

 

The first four variables namely, Name, Num_Cav, Design, and Type were taken 

from the mold print.  The next variable named Cost was taken from the invoice.  The data 

from these first two datasets were calculated and entered manually and were not a part of 

our core research.   

Name is the name of the mold and is the unique identifier for that mold within the 

company that supplied the data.   

Num_Cav is the number of cavities in the mold.   Intuitively, the more cavities a 

mold contains, the more labor and materials used.  More labor and material should result 

in higher cost.  We must be cautious, however. This variable is not in isolation due to the 

fact we have observed data.  
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Design is the mold design named straight, spring or cam.  As mentioned in the 

methodology section these are three different engineering designs and are fundamentally 

different.  Therefore they should serve as a partition for the dataset. 

Type is the last data point taken from the mold print. It represents the system 

which was used to manufacture the mold either conventional (cov), master unit die (mud), 

or modular (mod).   As mentioned in the methodology these are fundamentally different 

systems with a fundamental different cost structure. 

Cost was the quoted and sale price.  It was taken directly from the invoice to the 

customer.  These prices were calculated based upon experience of the bidder. However, 

they may not reflect reality in all cases.  Factors such as missed bids, intentional over or 

underbid, and factors not associated with the variables we record such as surface finish or 

tolerance may have been part of the bid. 

4.2.2 Core research variables 

 
 The last four variables Num_Bound, WaveClust, RegClust and NonCir in Figure 

31 were taken from the part print semi-automatically.  They were a part of the core 

research so we would like to discuss this part of the methodology in greater detail.   
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Figure 34 Panel one of parts 
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Figure 35 Panel two of parts 

 

However before these variables can be calculated we must preprocess the data.    

Preprocessing such as removing lines not associated with the geometry of the part is not a 

part of our methodology.  Preprocessing was done in order to test the methodology.  In 

other words raw images of parts such as those displayed in Figure 33 are converted to 

those similar to Figure 36.  Two panels of twenty- four converted parts are shown in 

Figure 34 and Figure 35.  After preprocessing we can move to the semi-automatic data 

collection from the images. 
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4.2.2.1 Number of boundaries 

 

The number of boundaries (Num_Bound) is the number of boundaries of the part 

image.  The number of boundaries is related to the complexity of the part.  For this work 

each boundary is considered to be associated with a feature on the part.  Intuitively the 

more features the higher the resulting cost. In the example shown in Figure 36 the part 

has three distinct boundaries.  These boundaries represent features on the part itself.  The 

first boundary is the gear shaped outer boundary.  The second boundary is internal and 

has a reversed letter c shape.  The third boundary is also internal and circular with a tab 

located on the left side.   
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Figure 36 Part with three boundaries 

 

 
 
4.2.2.2 Wavelet descriptor clustering 

 

The wavelet cluster (WaveClust) is the total number of unique clusters for one 

part out of the twenty general shapes. In other words we defined twenty approximate 

shapes and clustered all boundaries for all parts into those twenty clusters.  Then we 

counted the unique clusters for a given part. 

This was an attempt to measure symmetry as more symmetric parts are assumed 

to have less complexity for a given number of boundaries.  As an example, in Figure 31 
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the part in the first row named B-450 had exactly 14 boundaries.  However some of these 

boundaries are in common clusters and have a similar shape.  Therefore B-450 has 9 

unique boundary shapes.  A typical symmetric part is show in Figure 37.  A typical non-

symmetric part is shown in Figure 38. 

 

 
Figure 37 Symmetrical part 
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Figure 38 Non symmetrical part 

 
 
4.2.2.3 Regional descriptor clustering 

 

Regional cluster (RegClust) is different than the other variables in that it is a 

combination of several regional descriptors.  Seven regional descriptors are used to 

compose this variable.  The regional descriptors are area, eccentricity, convex area, filled 

area, Euler number, extent, and solidity.  The primary reason we selected these regional 

descriptors was these are represented as a scalar and could be combined easily.   

Area is the number of pixels in a region.   Eccentricity is the ratio of the distance 

between the foci of the ellipse and its major axis.   Convex area is the size of a convex 
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polygon approximating the boundary shape.  Filled area is the size of the bounding box.  

Euler number is the number of objects in a region minus the number of holes in those 

objects.  Extent is the area of the boundary divided by the area of the bounding box for 

that region.  Solidity is the area divided by the convex area. 

The values for each individual regional descriptor were calculated for each 

boundary within an image.  Those seven descriptors are clustered into ten approximate 

shapes for all boundaries for all parts.  We then record the cluster number for each 

boundary.  RegClust is defined as the total number of unique clusters for each part out of 

the possible ten clusters.   

RegClust was an attempt to measure symmetry.  The rationale was if a boundary 

was similar based upon all metrics then it is by definition similar and belongs to the same 

cluster.   This was used to measure symmetry and indirectly complexity and cost.  One 

example is shown in Figure 31.  The first part B-450 had 14 boundaries but only 7 unique 

clusters based upon the regional descriptor clustering or RegClust.   

One variable was calculated from a regional property, called eccentricity.  Those 

boundaries with an eccentricity above 0.40 were highly correlated to non-circular 

(NonCir) boundaries.  Intuitively non-circular boundaries are more difficult to machine 

and have a higher cost.  This was a simple way to separate simple boundaries defined as 

circular boundaries from more complex non-circular boundaries.   

Another variable washer, was defined as binary.  If the number of circular 

boundaries was less than two we defined this variable as a washer.  If not it was labeled 

as a more complex shape.  This variable played a role in the regression model for mold 
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type modular and design straight.  Most molds for washers are design type straight.  This 

variable is represented as a constant in the regression model. 

 

Section 4.3 Analysis 
 
4.3.1 Data partitions 

Since we may be dealing with a mixed dataset with three or more distinct 

homogeneous datasets, we want to investigate good ways to partition the data.  

Partitioning the data has two immediate consequences.  First, the variance of residuals is 

likely to be more constant, because we are dealing with data with a smaller range.  The 

second consequence is that we have an easier time investigating outliers when placed 

within their prospective partitions.   

The first partition was by mold type.  Clearly from the box plot these are three 

separate distributions with different cost structures as shown in Figure 39. 
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Figure 39 Box plot cost versus mold type 

 

 

We confirm our intuition from the box plot with ANOVA and Kruskal-Wallis 

tests as shown in Figure 40.  The low p-values for these tests confirm that indeed mold 

type can be used to partition the dataset.   

The data is partitioned, and we use only the modular partition for further tests.  

Later we partition the data again by design and build two regression models on those sub 

partitions.  We build one regression model on mold type modular and design straight.  

We build another regression model on mold type modular and design spring.   
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Figure 40 Statistics cost versus mold type 

 
When we fit a regression model on only modular molds without design being a 

variable, we have a classic case of non-constant variance.  This is detected by the top 

right graph with fitted value versus residual shown in Figure 41.  Therefore although the 

data is more homogeneous, we still require at least one more partition before building the 

regression models. 
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Figure 41 Non constant variance 

 

 
To determine whether or not to partition on design we start with a box plot shown 

in Figure 42.  It is very clear from the box plot that mold design cam has a very different 

cost structure than either straight or spring. 
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Figure 42 Box plot cost versus mold design  

 

The Tukey multiple comparisons tests in Figure 43 clearly indicates that design 

cam is different from either spring or straight since the confidence level does not include 

zero. 
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Figure 43 Statistics cost versus mold design 
 

 

The difference between design spring or straight is less clear. Thus we perform a 

t-test to determine whether or not these are indeed good partitions.  The p-value of 0.12 is 

an indication that the populations are indeed different as shown in Figure 44.   
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Figure 44 Design straight versus spring 

 

 
 
4.3.2  Models of the partitioned datasets. 

 
Here we model two of the partitioned datasets and observe the results.  The first 

partition is of mold type modular and mold design straight.  The second partitioned 

dataset is mold type modular and mold design spring.  Mold type modular and mold 

design cam were not modeled because our dataset only include four observations that met 

this criterion. 

 
4.3.3 Mold type modular and design type straight. 
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This dataset had 31 observations and was considered to be a large enough dataset 

on which to build regression models and make inferences.  The first step in this process 

was the removal of outliers. 

 
4.3.3.1 Outliers 

 
Our initial dataset included 31 observations, which were of type modular and 

design straight.  Of those 31 observations we identified 6 as outliers.  These 6 

observations tended to have a high cost and tended to have an unusually high number of 

clusters for both WaveClust and RegClust.   We believe this is a problem related to 

modeling a dataset with a high variance.  

 

4.3.3.2 Variable selection 

One variable, number of cavities (Num_Cav), was removed from the model 

because of a high p-value and did not appear to contribute to the predictive ability of the 

model.  The quadratic version of this same variable was found to be significant and 

remained in the model. 

 
 
4.3.3.3 The final model and explanations of the modeling process 

 

Our final model includes 25 observations with approximately 68 percent of the 

variance in the data being explained by the model.  This is shown in Figure 45.  We 

believe this is a good representative model.  However we would like to confirm our 

results with a larger dataset.  
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Figure 45 Mold type modular design straight 

 

4.3.3.4 Non-normality 

From the normality plot and the histogram of residuals we do have some non-

normality of the residuals.  This is shown in Figure 46.  We view this as not too serious 

given the nature of the problem and the limited dataset. 
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Figure 46 Residual plot mold type modular design straight 

 

 
4.3.4 Mold type modular and mold design spring  

 
Our dataset included 14 observations that were of type modular and design spring.  

While this dataset is a bit small we do believe it is possible to build models and infer 

some results.  We start by detecting outliers.   

 
4.3.4.1 Outliers 

 
There was one outlier found in this dataset.  This was a true outlier as it was found 

after investigation that this mold was incorrectly coded.  It was an unusual design type 

called double spring load.   

One observation, namely observation 12, had high leverage but was left in the 

model for a few reasons.  The first reason was the concern that we are starting with 



 111

limited data so we should be careful as to what we consider an outlier.  The second 

reason was that although the data point had high leverage its removal only resulted in 

more data points that had high leverage.  Thirdly the predictive ability for the dataset with 

or without this observation was very good.  Therefore leverage may not be a good outlier 

detection method on a model with such a low sum of residuals.   

 
 
4.3.4.2 Variable selection 

 
Two variables were excluded from the final model.  The first was reg_sq and was 

the second order version of the original variable RegClust.  This variable was found to 

have a high p-value and did not contribute to the predictive ability of the model.  The 

other variable the number of boundaries (Num_Bound) was found to be highly correlated 

with RegClust and WaveClust and therefore were removed from the model. 

 
 
4.3.4.3 The final model and explanations of the modeling process 

 
The model for spring was remarkably good as rated by low residual error as 

shown in Figure 47.  We approach such results with cautious optimism.  However, the 

results while significant should be backed up by a larger dataset in future results. 
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Figure 47 Mold type modular design type spring 
 

 
 
 
 

4.3.4.4 Normality 

 

If we observe the normality plot in Figure 48, it appears that non-normality is 

present in this model.  However we do not consider the effects too severe for two reasons.  

The first reason is that we have limited data.  We do not know for certain whether or not 
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the non-normality would be present if given a larger dataset.  The second reason is that 

we do not expect data such as this to be perfectly homogeneous.  Our goal was merely to 

make the data more homogeneous in order to build accurate and representative models.  

We believe it was achieved through our methodology. 
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Figure 48 Residual mold type modular mold design spring 

 

 
 
 

Section 4.4 Cross fold validation 
 

Here we validate the models using cross validation.  Due to the small sample sizes 

we chose to use the leave-one-out strategy.  The leave-one-out strategy is to take one 

observation out of the model and use the rest for modeling.  The one observation left out 

is used for validation.  As a concrete example we use the straight dataset.  The straight 

dataset included 25 observations once outliers were taken out.  Therefore we randomly 
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select one observation for validation to leave out.  The other 24 observations are used to 

build the model.  At the next iteration another observation is chosen.  It is then used for 

validation.  We still have 24 observations because the one left out of the previous 

iteration is replaced and used for modeling. In our case we performed the leave-one-out 

cross validation ten times and recorded the results for both the design straight and design 

spring models.   

First we define which metrics we choose for validation and then discuss the 

results.  Using this methodology we calculated several metrics from the regression model 

for validation as shown in Figure 49 and Figure 50.  Reading from left to right the first 

metric is the prediction (Predict) based upon the regression model.  The following 

columns are the ninety-five-percentage lower (Lower) and upper (Upper) prediction 

intervals, the absolute percentage error (APE), the prediction interval length (PI), the 

name of the hold out (Name) and the actual cost (Cost).  

In the last row in Figure 49 and Figure 50 we see the mean absolute percentage 

error (MAPE).  It is defined as the absolute value between the predicted value and the 

actual value divided by the actual value.  It is a common metric to determine the accuracy 

of the model and can be found in Upton and Cook [126].   

For the straight model we see that the MAPE was twenty one percent as shown in 

Figure 49.  This means that on average the model is off by twenty one percent.   The 

spring model was more accurate with an average MAPE of twelve percent as shown in 

Figure 50. 

 This is remarkable considering several factors.  The first factor is the range of the 

data with a high of $60,000 to a low of $600.  The second factor is that these models 
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were built based upon bids not actual costs.  Even if we had actual cost, it is well known 

in a job shop environment that some jobs go well and others do not, which results in 

noisy data. 

 
 

 
 

Figure 49 Validation of straight model 
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Figure 50 Validation of spring model 

 

 
CHAPTER FIVE: CONCLUSIONS 

 
From this research we have shown that a semiautomatic cost estimation system is 

possible for estimating the cost of injection molds.  However we believe it would be 

difficult to fully automate this process and believe that an experienced bidder should 

always remain in the loop. 

Our main contributions are as follows.  First, we have shown that we can extract 

features automatically from images and relate them to the cost of the mold.  This had not 

been done previously.  Using a unique feature vector we combined knowledge of the 

mold type, mold design, and geometry into a central dataset.  The central dataset was 

later used in the regression models.  Using simple descriptors, wavelet descriptors, and 

regional descriptors, we related geometry to complexity and cost.  Second, we developed 
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our own unique variables to relate images to cost.  Specifically we developed three new 

variables.  The first variable is the number of non-circular boundaries (NonCir).  This 

variable was shown to relate to cost.  The next two variables were a combination of the 

number of boundaries and symmetry.  Specifically they are the number of wavelet 

clusters for a part (WaveClust) and the number of regional clusters (RegClust).  Third, we 

showed that images could be used as the common data format for the part complexity 

portion of mold cost estimation.  Previous researchers could not use all data formats. 

Fourth, we showed that partitioning mold cost data before modeling could be useful.    

This is at the heart of our combination analogy and mathematical approach.  We 

partitioned the data into homogeneous datasets or the analogy portion. Then we built 

regression models or the mathematical portion.  We showed that a combined analogy and 

mathematical approach is in this domain.  Fifth, we provide estimates and prediction 

intervals on relevant molds only.  This was to provide a foundation for later risk 

management efforts. 

Our work does have several limitations.  The first limitation is that a human 

subject matter expert is still needed due to those factors not captured in our model.  From 

the beginning this effort was conceived of as an assistant to an experienced bidder.  Our 

concept is to provide a ballpark cost estimate that could serve two purposes.  One use is 

to provide a double check on the bidders estimate.  The other use is a guide to assist in 

early design decisions.  The second limitation is that all data must be converted to the 

neutral image format before use.  Depending on the current data format of the mold and 

part data this could take significant time.  The third limitation is that data preprocessing 

such as removal of lines not associated with the geometry of the part must be done prior 
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to our methodology.  For our preliminary experiments non-geometric line removal was 

done manually.  This manual process took approximately fifteen minutes per part.  We 

believe that non-geometric line removal could be done automatically but was not a focus 

for this project. 

 

CHAPTER SIX: FUTURE EXTENSIONS 
 
  

This work has been conceived of as an injection molding cost system.  However 

this process could be extended to other net shape manufacturing processes.  These would 

include casting, blow molding, transfer molding, compression molding, stamping, etc.  

The methods provided here form a basis for estimating the tooling cost of many 

processes.  In this way it could be a possible backbone to a blackboard system for many 

parts within an assembly.   

A second extension could be the use of hidden lines for better image processing 

and granularity.  For this work only those features visible from the outside of the part 

were used.  Internal features such as threads or undercuts may be an extension of this 

work in order to bid a wider variety of molds. 

A third extension could be to design a wavelet for a specific application.  In this 

work we used a standard wavelet.  However, we could see applications where this may 

not be adequate.  For example, a custom wavelet may allow for better compression or 

detection of certain features which are relevant to cost estimation in a specific domain. 

A fourth extension would be to move beyond wavelets to wavelet packets or other 

representations.  These methods include ridgelets, ridgelet packets, brushlets, 
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countourlets, and various other methods. These methods are mentioned in the book by 

Welland [127].   

A fifth extension could be to use separable 2D wavelets instead of the 1D 

wavelets we used in our methodology.  It may be possible using 2D wavelets directly to 

detect features.  For example with 2D wavelets it is be possible to detect a square with the 

horizontal and vertical coefficients being significant and the diagonal wavelet coefficients 

being not significant.  We would expect a circle to have significant coefficients on all 

three directions vertical, horizontal, and diagonal.  It may be possible to derive variables 

from this information to separate shapes. 
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