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ABSTRACT 

The thesis contributes to our understanding of incorporating heterogeneity in discrete 

choice models with respect to exogenous variables and decision rules. Specifically, we evaluate 

latent segmentation based mixed models that allow for segmenting population based on 

decision rules while also incorporating unobserved heterogeneity within the segment level 

decision rule models. In our analysis, we choose to consider the random utility framework 

along with random regret minimization approach. Further, instead of assuming the number of 

segments (as 2), we conduct an exhaustive exploration with multiple segments across the two 

decision rules. Within each segment we also allow for unobserved heterogeneity. The model 

estimation is conducted using a stated preference data from 695 commuter cyclists compiled 

through a web-based survey. The probabilistic allocation of respondents to different segments 

indicates that female commuter cyclists are more utility oriented, however the majority of the 

commuter cyclist’s choice pattern is consistent with regret minimization mechanism. Overall, 

cyclists’ route choice decisions are influenced by roadway attributes, cycling infrastructure 

availability, pollution exposure, and travel time. The analysis approach also allows us to 

investigate time based trade-offs across cyclists of different classes. Interestingly, we observed 

that the trade-off values in regret and utility based segments for roadway attributes are similar 

in magnitude; but the values differ greatly for cycling infrastructure and exposure attributes, 

particularly for maximum exposure levels.    
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CHAPTER ONE: INTRODUCTION 

 

1.1 Population Homogeneity 

Discrete choice models and their variants are employed extensively for analyzing 

decision processes in various fields including transportation, marketing, social science, bio-

statistics, and epidemiology. In discrete choice models, decision maker’s choice behavior is 

examined as a response to several exogenous variables that include attributes of the choice 

alternative or characteristics of the decision maker. The widely employed traditional discrete 

choice models restrict the impact of exogenous variables to be the same across the entire sample 

of records. The assumption is referred to as population homogeneity and is often highlighted 

as a limitation.  

Several approaches have been employed to address population homogeneity restriction 

in discrete choice models. Segmenting the population based on exogenous variables and 

estimating separate models for each segment is a common approach. However, because there 

may be many variables to consider in the segmentation scheme, the number of segments 

(formed by the combination of the potential segmentation variables) can explode rapidly. To 

address the potential explosion of segments, clustering methods have been employed where 

target groups are divided into different clusters based on a multivariate set of factors and 

separate models are estimated for each cluster. However, both methods require allocating data 

records exclusively to a particular cluster, and do not consider the possible effects of 

unobserved factors that may moderate the impact of observed exogenous variables. 

Additionally, these approaches might result in very few records in some clusters resulting in 

loss of estimation efficiency. 

A second approach to allow heterogeneity effects (variations in the effects of variables 

across the sample population) is to specify random coefficients (rather than imposing fixed 
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coefficients) (for example, see (Eluru and Bhat, 2007, Kim et al., 2013, Morgan and 

Mannering, 2011, Paleti et al., 2010, Srinivasan, 2002)). But, while the mean of the random 

coefficients can be allowed to vary across decision makers based on observed exogenous 

variables, the random coefficients approach usually restricts the variance and the distributional 

form to be the same across all decision makers. A third approach to accommodate heterogeneity 

is to undertake an endogenous (or sometimes also referred to as latent) segmentation approach 

(see, for example (Bhat, 1997, Eluru et al., 2012, Xie et al., 2012, Xiong and Mannering, 2013, 

Yasmin and Eluru, 2016, Yasmin et al., 2014b)). In this approach, decision makers are 

allocated probabilistically to different segments, and segment-specific choice models are 

estimated. At the same time, each segment is identified based on a multivariate set of 

exogenous variables. The approach limits the number of segments to a manageable number 

(relative to the combinatorial scheme realized in the first approach).  

A further extension of this approach would be accommodating unobserved 

heterogeneity in segment specific choice models (Hess and Stathopoulos, 2013) thus 

subsuming the choice models from the second approach. Overall, the endogenous segmentation 

with segment level unobserved heterogeneity, offers an elegant alternative to address 

heterogeneity (observed and unobserved). In recent years, several studies have employed 

endogenous segmentation approaches (with or without unobserved heterogeneity) across 

different areas in transportation (for example, see (Eluru et al., 2012, Xie et al., 2012, Xiong 

and Mannering, 2013, Yasmin et al., 2014b) in safety and see (Anowar et al., 2014, Bhat, 1997, 

Drabas and Wu, 2013, Walker and Li, 2007) in travel behavior). 

 

1.2 Decision Rule Homogeneity 

The exact formulation of discrete choice models are a function of the decision rule 

employed. In traditional discrete choice models, the analyst generally assumes the same 
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decision rule across the sample population. The predominantly adopted decision rule for 

developing discrete choice models is the random utility maximization (RUM) that hypothesizes 

that decision makers, when faced with multiple alternatives with varying attributes, choose the 

alternative that provides them with the highest utility or satisfaction (Ben-Akiva and Lerman, 

1985, McFadden, 1974, Train, 2009). While random utility model formulations have served as 

the predominant decision rule for discrete choice models, there is growing recognition of their 

limitations. The implicit compensatory nature of the formulation allows for a poor performance 

on an attribute (such as travel time) to be compensated by a positive performance on another 

attribute (such as travel cost) (Chorus et al., 2008). In some choice occasions, such behavior is 

not realistic. In recent years, motivated by research in behavioral economics, there has been 

considerable interest in alternative decision rules for discrete choice models such as relative 

advantage maximization (Leong and Hensher, 2015), contextual concavity model (Kivetz et 

al., 2004), fully-compensatory decision making (Arentze and Timmermans, 2007, Swait, 

2001), prospect theory (PT) (Kahneman and Tversky, 1979, Tversky and Kahneman, 1992) 

and random regret minimization (RRM) (Chorus, 2010, Chorus et al., 2008).  

 

1.3 Current Study in Context 

Based on the aforementioned discussion, it is evident that homogeneity in both 

exogenous variable impact and decision rule restrict the flexibility offered by discrete choice 

models. While several research studies have focused on exogenous variable homogeneity, the 

decision rule homogeneity assumption has received less attention (for example see (Hess et al., 

2012, Boeri et al., 2014)). The proposed research contributes to our understanding of 

incorporating heterogeneity in discrete choice models with respect to exogenous variables and 

decision rules. Specifically, we evaluate latent segmentation based mixed models that allow 

for segmenting population based on decision rules while also incorporating unobserved 
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heterogeneity within the segment level decision rule models. In our analysis, we choose to 

consider the random utility framework along with random regret minimization approach. The 

random regret minimization approach has received wide application because of its 

mathematical similarity to the random utility approach and its intuitive appeal (Boeri et al., 

2012, Boeri et al., 2013, Chorus, 2010, Chorus and Bierlaire, 2013, Chorus and de Jong, 2011, 

Hensher et al., 2013, Thiene et al., 2012). The proposed approach extends in such  way where 

a latent segmentation model with one segment represented by random utility formulation and 

the other segment assuming a random regret formulation (Hess et al., 2012). In our approach, 

instead of assuming the number of segments (as 2), we conduct an exhaustive exploration with 

multiple segments across the two decision rules. Further, within each segment we also allow 

for unobserved heterogeneity. The reader would note that the estimation of latent class models 

become complex with increasing segments and presence of unobserved heterogeneity (see 

(Sobhani et al., 2013) for some discussion).   

The extensive modeling exercise is developed employing a stated preference data 

compiled to understand influence of air pollution exposure on bicycle route choice. While 

bicycling offers health benefits, there is growing recognition that these potential health benefits 

might be offset by increasing exposure to air pollutants for bicyclists. Several research efforts 

have documented the potential increased exposure to air pollution for bicyclists owing to their 

close proximity to traffic, high respiration rates, and longer journeys (Bigazzi et al., 2016, 

Broach and Bigazzi, 2017, Int Panis et al., 2010). Furthermore, there is growing evidence from 

health research studies highlighting the potential consequences of increased air pollution 

exposure (for example see (Weichenthal et al., 2011)). Thus, there is need to explore the impact 

of air pollution exposure on bicycling choices. Several research efforts have examined bicycle 

route choice decision process in literature. Most of these approaches rely on stated preference 

survey compiled data for route choice analysis. The most commonly employed analytical 
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approaches include ordinary least squares (OLS), binary logit (BL) or multinomial logit 

(MNL), mixed multinomial logit (MMNL), multinomial probit (MNP) models, and heuristic 

approaches. Based on earlier research (Abraham et al., 2002, Aultman-Hall et al., 1997, Bigazzi 

et al., 2016, Broach et al., 2011, Cervero, 1996, Dill and Carr, 2003, Dill and Voros, 2007, Guo 

et al., 2007, Heinen et al., 2010, Hunt and Abraham, 2006, Larsen and El-Geneidy, 2011, 

Martens, 2007, Menghini et al., 2010, Moudon et al., 2005, Noland and Kunreuther, 1995, 

Parkin et al., 2007, Pucher and Buehler, 2006, Pucher et al., 1999, Rondinella et al., 2012, 

Segadilha and Sanches, 2014, Sener et al., 2009, Stinson and Bhat, 2004, Stinson and Bhat, 

2003, Stinson and Bhat, 2005, Timperio et al., 2006, Anowar et al., 2017, Hatzopoulou et al., 

2013), the most important attributes affecting route choice include: travel time, trip distance, 

gradient, traffic volume, exclusive bicycle paths, traffic control systems (see Table 1.1). The 

current study builds on the first research effort that studied the impact of air pollution exposure 

on bicycling route choice (see (Anowar et al., 2017) ). In the previous study, the emphasis was 

on examining if air pollution exposure information affected route choice. The study employed 

stated preference experiment data from 695 commuter cyclists and evaluated using a random 

utility approach to examine cyclist’s willingness to trade-off air pollution exposure with other 

attributes such as roadway characteristics, bike facilities, and travel time. 

 

1.4 Thesis Structure 

The remainder of the thesis is organized as follows. Chapter 2 provides a discussion of 

the econometric methodology applied. In Chapter 3, data source and variables considered are 

presented in detail. Model estimation results are presented and discussed in Chapter 4. The 

results from the trade-off analysis is presented in Chapter 5. Finally, Chapter 6 concludes the 

thesis with recommendations based on the empirical findings of the study. 
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Table 1.1 Factors Affecting Bicycling and Bicyclist’s Route Choice Decision 

 Demographics Route Characteristics 
Traffic 

Characteristics 

Environment 

Characteristics 
Facilities 

Trip 

Characteristics 

Pre-Cycling 

Gender, 

Age, 

Education, Employment 

Status, 

Income 

Exclusive Bicycle 

Paths, 

Grade/Slopes 

Traffic Volume 
Season, 

Climate/Weather 
– 

Trip 

Distance/Length, 

Travel Time, 

Transportation 

Costs 

During 

Cycling 
– 

Parking Along Road, 

Continuity, 

Exclusive Bicycle 

Paths, 

Traffic-controlling 

Systems, 

Surface Quality, 

Grade/Slopes, 

Physical Barriers 

Traffic Volume, 

Motor Vehicle 

Speed 

Security, 

Attraction 
– 

Trip 

Distance/Length, 

Travel Time 

Post Cycling – – – – 

Presence of Showers, 

Changing Facilities and 

Lockers, 

Parking Facilities 

– 
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CHAPTER TWO: METHODOLOGY 

In this chapter, the econometric framework of the latent segmentation model with 

random utility based Multinomial Logit Model and regret based Multinomial Logit model is 

presented. 

 

2.1 Econometric Modeling Framework 

In this section, we describe the mathematical formulation of the model used in the 

current study. Let 𝑐 (𝑐 = 1,2, … , 𝐶) be the index for cyclists, 𝑖 (1, 2, … , 𝐼) be the index for route 

alternatives characterized by 𝑚 (𝑚 = 1,2, … , 𝑀) attributes, and 𝑘 (1, 2, … , 𝐾) be the index for 

choice occasions for each cyclist. In our case, 𝐼 = 3 and 𝐾 = 5 for all 𝑐. Let us also consider 

𝑆 possible number of segments where the cyclists would be probabilistically assigned. 

According to conventional utility based MNL model, the probability that cyclist 𝑐 belongs to 

segment 𝑠 (𝑠 = 1,2, … , 𝑆) is given as:  

𝑃𝑐𝑠 =  
exp(𝛾𝑠

′𝑧𝑐)

∑ exp(𝛾𝑠
′𝑧𝑐)𝑆

𝑠=1

 (1) 

𝑧𝑐 is a (M x 1) column vector of cyclist attributes that influences the propensity of 

belonging to segment s, 𝛾𝑠
′ is a corresponding (M x 1) column vector of estimable coefficients. 

Within the latent class approach, the unconditional probability of a cyclist 𝑐 choosing a 

commuting route 𝑖 is given as: 

𝑃𝑐(𝑖) = ∑(

𝑆

𝑠=1

𝑃𝑐(𝑖) | 𝑠)(𝑃𝑐𝑠) (2) 

where 𝑃𝑐(𝑖)|𝑠 represents the probability of cyclist 𝑐 choosing route 𝑖 within the segment 

𝑠. Note that the decision paradigm used to obtain the conditional probability 𝑃𝑐(𝑖)|𝑠 may follow 

either utility or regret based unordered choice (traditionally multinomial logit) mechanism. 
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If a random utility based multinomial logit model is assumed to evaluate the route 

choice decision accommodating unobserved heterogeneity, the conditional probability would 

take the following form: 

𝑃𝑐(𝑖) | 𝑠 =  ∫ (∏
exp(𝛼𝑠

′ 𝑥𝑐𝑖𝑘)

∑ exp(𝛼𝑠
′ 𝑥𝑐𝑖𝑘)𝑅

𝑟=1 )

𝐾

𝑘=1
) 𝑓(𝛼)𝑑𝛼 (3) 

Here, 𝛼𝑠
′  is a (L x 1)-column vector of coefficients, and 𝑥𝑐𝑖𝑘 is (L x 1) column vector 

of route attributes, where 𝑓(𝛼) is a density function specified to be normally distributed with 

mean 0 and variance 𝜎2. On the other hand, if a random regret based multinomial logit model 

is assumed to evaluate the route choice decision, the conditional probability would be given as: 

𝑃𝑐(𝑖)| 𝑠 =  ∫ (∏
exp(−𝑅𝑐𝑖𝑘 )

∑ exp(−𝑅𝑐𝑖𝑘 )
𝑅
𝑟=1

𝐾

𝑘=1
)  𝑓(𝛿)𝑑𝛿 (4) 

Here, 𝑅𝑐𝑖𝑘 = ∑ ∑ ln[1 + exp {𝛿𝑚(𝑥𝑐𝑗𝑚𝑘 − 𝑥𝑐𝑖𝑚𝑘)}]𝑀
𝑚=1𝑗≠𝑖 ; 𝛿𝑚 is (Lx1) column vector 

of estimable coefficients associated with attribute 𝑥𝑚; 𝑥𝑖𝑚 and 𝑥𝑗𝑚 are (Lx1) column vector of 

route attributes for the considered alternative 𝑖 and another alternative 𝑗, respectively, where 

𝑓(𝛿) is a density function specified to be normally distributed with mean 0 and variance 𝜌2. 

The log-likelihood function for the entire dataset with appropriate 𝑃𝑐(𝑖)|𝑠 is as follows: 

𝐿𝐿 =  ∑ log (𝑃𝑐(𝑖
𝐶

𝑐=1
)) (5) 

Contrary to the traditional endogenous segmentation approaches, capturing decision 

rule heterogeneity involves a more computationally intensive estimation approach. The 

estimation approach begins with single segment models from each regime. Then, a new 

segment from one of the two approaches is added. The process is continued until there is no 

further improvement in data fit. The approach allows for multiple segments originating from 

the same decision rule i.e. the segmentation model can have multiple RUM and RRM segments 

thus offering enhanced flexibility. Finally, given the complexity of adding multiple segments 
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from both regimes, we also consider overall sample shares of the segments in arriving at the 

final model as opposed to only data fit. 

 

2.2 Summary 

The current chapter presented the econometric framework employed for latent 

segmentation. The empirical context is presented in the subsequent chapter. 
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CHAPTER THREE: DATA COLLECTION AND COMPILATION 

In this chapter, we present details of how the Stated Preference data on bicycle route 

choice was collected.  We also discuss data preparation steps for the research effort.  

 

3.1 Data Source and Experimental Design 

The survey design was coded on a Survey Monkey platform (www.surveymonkey.net) 

for web dissemination which was approved by the Health Sciences Research Ethics Board 

(HSREB) of the University of Toronto, Canada. Cyclists who are 18 years of age or older from 

the cities of Toronto, Montreal, Calgary, New York, and Orlando are the main focus of our 

dissemination. The definition of commuter (utilitarian) and non-commuter (non-utilitarian) 

cycling was provided at the beginning of the survey.  

In this survey, responses from bicyclists were collected along four dimensions. (1) 

Respondent’s personal and household characteristics (such as gender, age, education level, 

employment type and schedule, nearest intersections at the place of residence and work, 

household income, number of persons in the household, level of automobile and bicycle 

ownership, and commute time in minutes); (2) Cycling habits (frequency of cycling, if 

accompanied by children while making the trip, regular bicycling experience in years, primary 

reasons for cycling, seasons of cycling, and how often they switch their usual biking route); (3) 

Hypothetical choice scenarios with three route options per scenario; and (4) Cyclist’s 

perception about the characteristics of his/her usual commuting route.  

The experimental design for identifying the hypothetical choice scenarios for the SP 

game was developed considering the following attributes: roadway characteristics: grade, 

traffic volume, and roadway type; bike route characteristics: cycling infrastructure continuity 

and segregation and landmarks along the route; and air pollution: mean exposure level (in ppb) 
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and maximum exposure level (in ppb). A detailed description of the considered attributes and 

the corresponding attribute levels are presented in Table3.1. Considering and comparing all of 

these attributes would burden the respondents significantly and complicate their route choice 

process. Hence, an innovative partitioning technique where only five attributes were used to 

characterize the alternative routes in each of the SP scenarios was used. Of these five attributes, 

the air pollution attributes (mean and maximum exposure1) were always retained. These air 

pollution exposures were measured as a concentration of Nitrogen dioxide2 (NO2) in units of 

parts per billion (ppb). In addition, one attribute from roadway characteristics and one from 

bike route characteristics were randomly chosen for each individual through carefully designed 

rotating and overlapping approach to capture all variable effects when the responses from the 

different SP choice scenarios across different individuals are compiled together. Route choice 

alternatives were developed by experimental design routines in SAS in such a way that every 

individual gets three choice experiments in the survey. The SP scenarios were preceded by 

clear definitions of the attributes – pictorial representations were provided to give respondents 

a clearer idea about exclusive/shared and continuous/discontinuous cycling infrastructure. 

                                                 

1 Typical bicyclists are most likely unaware of the analytical measurement units of air pollutant 

concentrations (for example, parts per billion or ppb) or the potential amount of pollution they are exposed to 

while on the road. In this survey, two measures were identified that represent the amount of traffic-related air 

pollution the cyclists are exposed. The first measure is the mean exposure that refers to the average air pollution 

level over the length of the route. The second measure is the maximum exposure i.e. the maximum level of air 

pollution that cyclists would encounter for a short part of their trip (for example, when biking behind a bus/truck). 

While participants might not completely evaluate the exact levels, the research is also interested in how the 

bicyclists consider the information provided. 
2 NO2 concentrations in cities like Toronto and Montréal in Canada typically range between 5 ppb and 

50 ppb. We chose NO2 for representing air pollution because NO2 is a marker of traffic-related air pollution and 

is highly associated with air pollution from traffic in urban areas (see Hatzopoulou et al., 2013). Other pollutants 

such as CO, SO2 are also generated from other sources and it becomes a lot more difficult for participants to 

understand. NO2 is routinely monitored in urban areas and the vast majority of the epidemiology literature on air 

pollution and health effects is based on exposure to NO2. 
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An “information provision” experiment was also conducted to understand two issues. 

First, to identify if receiving information on the potential health effects resulting from exposure 

to traffic-related air pollution has any impact on a cyclist’s route choice decision and second, 

to study the sensitivity towards the nature of information provided. For this purpose, three types 

of informational messages were devised. One (or none) of these messages was presented to the 

respondent in a window preceding the scenarios and following the description of attributes. 

The survey was designed so that information display was randomized to ensure that a quarter 

of the respondents received no information while the rest of them received at least one of the 

three messages. The details of the experimental design, attribute selection process, and survey 

dissemination strategies with demographic profile of commuters are described in (Anowar et 

al., 2017) . The sample characteristics of commuter cyclists found from the survey is presented 

in the Appendix A. 

 

3.2 Variables Considered 

In our study, we considered household and individual socio-demographic characteristics 

for latent segmentation component and bicycle route choice attributes for segmentation based 

choice model part. The socio-demographic characteristics considered are: gender, age category, 

education, employment status, experience of bicycling, bicycling frequency, companionship 

with children and actual commute time needed reported by respondents, number of household 

members, number of automobiles and bicycles owned by household. The variables considered 

for the route choice part are: (1) roadway characteristics: grade (flat, moderate, and steep), 

traffic volume (low, medium, and heavy), and roadway type (residential/local street, minor 

arterial, and major arterial), (2) bike route characteristics: cycling infrastructure continuity and 



 

 

13 

 

cycling infrastructure segregation (exclusive and shared), and (3) air pollution (mean exposure 

level and maximum exposure level), and (4) trip characteristics: travel time.  

   Note that residential/local streets are those with light traffic with speeds < 40 km/h or 

25 mph, minor arterials are those with moderate traffic with speeds 40-60 km/h or 25-40 mph 

and major arterials are those with heavy traffic with speeds > 60 km/h or 40 mph. A bicycle 

route is labeled continuous if the whole route has a bicycle facility (a bike lane or a shared-use 

path). In contrast, a bicycle route is considered to be discontinuous if on some portions of the 

route bicyclists must share a lane with automobiles. Finally, exposure to traffic-generated 

pollution was expressed in two ways. First, mean exposure ranging from 5-15 ppb and 

maximum exposure ranging from 20-60 ppb. We used discretized travel time attribute ranging 

from 20-40 minutes. 

 

3.3 Summary 

The chapter presented an overview of the data source, SP survey design and 

dissemination and an overview of the variables compiled for analysis.  
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Table 3.1 Attribute Levels for the SP Experiments 

Attribute 

Category 
Attribute Definition of Attribute Attribute Levels 

Roadway 

characteristics 

Grade Nature of terrain 

1. Flat 

2. Moderate 

3. Steep 

Traffic volume Amount of traffic on the roadway 

1. Light 

2. Moderate 

3. Heavy 

Roadway type 
Functional classification of 

roadway 

1. Residential /Local roads 

2. Minor arterial 

3. Major arterial 

Bike route 

characteristics 

 

Cycling 

infrastructure 

continuity 

Continuous bike route – if the 

whole route has a bicycle facility 

(a bike lane or shared-use path) 

Discontinuous - otherwise 

1. Continuous 

2. Discontinuous 

Cycling 

infrastructure 

segregation 

Exclusive/Segregated– if 

physically separated from motor 

vehicle traffic 

Shared – otherwise 

1. Exclusive 

2. Shared 

Environmental 

condition 

Amount of traffic-

related air pollution 

subjected to while 

cycling 

Mean exposure levels to 

pollutants 

1. 5 ppb 

2. 10 ppb 

3. 15 ppb 

Maximum exposure levels to 

pollutants 

1. 20 ppb 

2. 40 ppb 

3. 60 ppb 

Trip 

characteristics 
Duration of trip 

Travel time to destination (for 

commuting bicyclists only) 

1. 20 minutes 

2. 25 minutes 

3. 30 minutes 

4. 35 minutes 

5. 40 minutes 
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CHAPTER FOUR: EMPIRICAL ANALYSIS 

Employing the data described in the preceding chapter, we estimated several models 

including random utility based multinomial logit model, random utility based mixed 

multinomial logit model, random regret based multinomial logit model, random regret based 

mixed multinomial logit model and several latent segmentation based models from utility and 

regret regimes. The current chapter identifies the various model frameworks estimated and 

presents the results for these models. The presentation of results includes model estimates and 

segmentation characteristics for the model segments (as appropriate).  

 

4.1 Model Specification and Performance Evaluation 

The empirical analysis in this research effort involves the estimation of several models. 

More specifically, we estimated four traditional models and nine latent class models. Four 

traditional models include: (1) random utility based multinomial logit model, (2) random utility 

based mixed multinomial logit model, (3) random regret based multinomial logit model, (4) 

random regret based mixed multinomial logit model. The estimated latent class models are: (1) 

random utility based latent multinomial logit model with two segments, (2) random regret 

based latent multinomial logit model with two segments, (3) random regret based latent 

multinomial logit model with three segments, (4) latent class multinomial logit model with 

hybrid segments (LCMHS). In the LCMHS category, we tested different combinations of 

decision rules with different number of classes. These are: (1) LCMHS with two segments (1 

random utility based segment, 1 random regret based segment), (2) LCMHS with three 

segments (2 random regret based segment – 1 random utility based segment), (3) LCMHS with 

three segments (1 random regret based segment – 2 random utility based segment), (4) LCMHS 

with four segments (2 random regret based segment – 2 random regret based segment), (5) 

LCMHS with four segments (3 random regret based segment – 1 random utility based segment) 
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and (6) LCMHS with four segments (1 random regret based segment – 3 random utility based 

segment). Note that we also tested for taste heterogeneity in the segment specific models, but 

the results were not supportive of the presence of further segment level unobserved 

heterogeneity. 

The performance of the estimated (13) models was compared based on two goodness 

of fit measures best suited for comparing non-nested models: (1) Akaike information criterion 

(AIC) and (2) Bayesian Information Criterion (BIC). The AIC for a given empirical model is 

equal to: 

𝐴𝐼𝐶 =  2𝑘 −  2𝑙𝑛(𝐿) (6) 

where 𝑘 is the estimated number of parameters and 𝐿 denotes the maximized value of 

likelihood function for a given empirical model. The empirical equation of BIC is: 

𝐵𝐼𝐶 =  − 2𝑙𝑛(𝐿)  +  𝐾 𝑙𝑛(𝑄) (7) 

where 𝑙𝑛(𝐿) denotes the log likelihood value at convergence, 𝐾 denotes the number of 

parameters, and 𝑄 represents the number of observations. Many of the earlier studies suggested 

that the BIC is the most consistent information criterion (IC) among all other traditionally used 

ICs (AIC, AICc, adjusted BIC) for number of segments selection in latent class models 

(Anowar et al., 2014, Bhat, 1997, Collins et al., 1993, Eluru et al., 2012, Nylund et al., 2007, 

Yasmin et al., 2014b). The advantage of using BIC is that it imposes substantially higher 

penalty than other ICs on over-fitting. The model with the lowest AIC and BIC value is the 

preferred model. The BIC and AIC values for the final specifications of all the models are 

presented in Table 4.1.  Based on these values, LCMHS with four segments (3 random regret 

based segment – 1 random utility based segment) offers the best data fit.
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 Table 4.1 Goodness of Fit Measures 

Model Log-likelihood  
Number of 

Parameters (K) 

Number of 

Observations 

(Q) 

BIC AIC 

Traditional Choice Models 

RUM based MNL -2765.470 23 3475 5718.467 5576.940 

RUM based mixed MNL -2759.650 24 3475 5714.980 5567.300 

RRM based MNL -2709.500 35 3475 5704.367 5489.000 

RRM based mixed MNL -2688.781 32 3475 5638.470 5441.563 

Latent Segmentation Models 

RUM based Latent MNL with two segments -2734.217 20 3475 5631.500 5508.434 

RRM based Latent MNL with two segments -2693.295 23 3475 5574.118 5432.591 

RRM based Latent MNL with three segments -2665.158 26 3475 5542.304 5382.316 

LCMS with two segments (1 RUM based segment-1 RRM based 

segment) 
-2729.685 20 3475 5622.438 5499.371 

LCMS with three segments (2 RUM based segment-1 RRM based 

segment) 
-2601.792 36 3475 5497.104 5275.583 

LCMS with three segments (1 RUM based segment-2 RRM based 

segment) 
-2647.804 29 3475 5532.055 5353.608 

LCMS with four segments (2 RUM based segment-2 RRM based 

segment) 
-2559.369 42 3475 5461.178 5202.738 

LCMS with four segments (1 RUM based segment-3 RRM based 

segment) 
-2566.263 33 3475 5401.587 5198.526 

LCMS with four segments (3 RUM based segment-1 RRM based 

segment) 
-2624.438 34 3475 5526.090 5316.876 
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4.2 Population Share Distribution Among Segments 

The latent segmentation component determines the probability that a cyclist is assigned 

to the identified segments. We used the model estimations to generate the population share 

across the various segments of all the latent class models following the equation (Yasmin et 

al., 2014a, Bhat, 1997) below: 

𝐺𝑆 =  
∑ 𝑃𝑐𝑠𝑐

𝐶
 (8) 

where 𝐶 denotes the total number of respondents in the sample. The shares are 

presented in Table 4.2. The table offers some interesting insights. In all the latent class models 

with mixed choice paradigms, cyclists are more likely to be part of the segment(s) with random 

regret decision rule. For instance, in our best specified model, only 30% of the cyclists are 

likely to be allocated to the random utility based segment while the rest of them to the three 

random regret based segment (8%, 43%, and 19%). It is interesting to note that the split of 

cyclists who make their route choice decision following regret minimization concept is not 

equal. 
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Table 4.2 Population Share Distribution 

Model Segment-1 Segment-2 Segment-3 Segment-4 

RUM based Latent MNL with two segments 72 28 - - 

RRM based Latent MNL with two segments 47 53 - - 

LCMHS with two segments (1 RUM based 

segment-1 RRM based segment) 
35 65 - - 

RRM based Latent MNL with three segments 16 18 66 - 

LCMHS with three segments (2 RUM based 

segment-1 RRM based segment) 
30 34 36 - 

LCMHS with three segments (1 RUM based 

segment-2 RRM based segment) 
24 21 55 - 

LCMHS with four segments (2 RUM based 

segment-2 RRM based segment) 
19 14 21 46 

LCMHS with four segments (1 RUM based 

segment-3 RRM based segment) 
8 30 43 19 

LCMHS with four segments (3 RUM based 

segment-1 RRM based segment) 
13 25 33 29 
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4.3 Model Results 

In addition to the best model fit, LCMHS with four segments (3 random regret based 

segment – 1 random utility based segment) provided the most intuitive behavioral 

interpretation in terms of route choice decision. Hence, in this section we only discuss about 

the results of this model in detail. Table 4.3 presents the results for the segmentation component 

(top panel of results) and segment specific route choice models (bottom panel of results). The 

results for all other models are presented in the Appendix B (Table B.1-B.10). The reader would 

note that utility based MNL and regret based MNL model results are not presented as they are 

very similar to utility based mixed MNL and regret based mixed MNL model results 

respectively.  

 

4.3.1 Latent Segmentation Component 

The variables in the segmentation part with positive (negative) coefficient indicate 

increase (decrease) in the propensity of the cyclists being part of the segment. In our analysis, 

we considered Segment 1 as the base. The positive sign on the constant term does not have any 

functional interpretation, but simply reflects the larger likelihood of bicyclists being part of 

other three segments. The variables influencing segment membership include gender, age, auto 

ownership, biking frequency, and commute length. Our results indicate that female bicyclists 

are more likely to be assigned to segment 2 (utility based decision rule segment). Examining 

the coefficients of Segment 3, we find that bicyclists in this class are more likely to be daily 

commuters, less than 35 years of age, from a household with less number of automobiles, and 

have a moderate commute duration. Interestingly, Segment 4 is more likely to be comprised of 

daily commuters as well (with a slightly higher propensity for Segment 4 membership than 

Segment 3 membership) but with short commute length.   
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Table 4.3 Results of LCMS with Four Segments (1 RUM Based Segment-3 RRM Based Segment) 

Variables 
Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RRM) Segment-4 (RRM) 

Estimate t-statistics Estimate t-statistics Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 0.892 3.225 2.710 6.854 0.710 1.836 

Female (Base: Male) - - 0.869 3.697 - - - - 

Age (Base: 18-34 years)  

 35 or more years      - - - - -1.119 -4.883 - - 

Auto Ownership - - - - -0.498 -3.913 - - 

Biking frequency (Base: Rarely) 

 Daily - - - - 0.546 2.023 0.795 2.36 

Commute length (Base: Short commute) 

 Long Commute - - - - -1.013 -2.442 - - 

 Moderate to Long Commute - - - - - - -0.978 -3.448 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep - - -1.795 -6.221 -2.131 -10.220 - - 

Traffic Volume (Base: Light) 

       Medium - - -1.027 -3.492 - - - - 

 Heavy - - -1.604 -5.906 -1.137 -6.399 -1.906 -5.760 

Roadway Type (Base: Residential roads) 

 Minor arterial - - -0.904 -5.156 - - - - 

 Major arterial - - -2.178 -6.356 -1.843 -11.443 - - 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous - - 1.325 6.071 1.000 5.486 - - 

Infrastructure Segregation (Base: Shared) 

 Exclusive - - 1.859 8.215 1.029 8.136 - - 

Environmental condition 

Mean Exposure -0.055 -3.433 -0.058 -3.027 -0.067 -5.776 -0.050 -3.404 

Maximum Exposure - - -0.034 -6.957 -0.015 -5.723 -0.027 -6.984 

Trip Characteristics 

Travel Time - - -0.050 -4.247 -0.248 -12.122 -0.139 -8.205 

Log-likelihood at Convergence -2566.263 
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4.3.2 Segment Specific Route Choice Models 

A cursory examination of the results indicates the presence of the higher number of 

segment specific effects for segment 2 and segment 3. On the other hand, segment 1 route 

choice behavior is only influenced by one variable. It is also evident that the across the various 

segments the variable impacts are significantly different manifesting the presence of population 

heterogeneity. We provide a discussion of model results across the 4 segments in this section 

by variable characteristics. 

 

4.3.2.1 Roadway Characteristics 

Grade, traffic volume and roadway type variables influence route choice behavior in 

segments 2, 3 and 4. As expected, for commuting purposes, steep roadway grades reduce the 

likelihood of choosing the route in both utility (segment 2) and regret (segment 3) segments.  

In segment 2, the coefficient indicates a reduction in utility for routes with steep grade. In 

segment 3, commuter bicyclists will be predisposed to lower regret toward routes with flat or 

moderate grades relative to routes with steep grades. Cyclists are inclined to avoid steep grade 

presumably because of the discomfort from rigorous physical activity while commuting to 

work (see similar results in (Sener et al., 2009, Anowar et al., 2017)). High vehicular traffic 

volume (medium and heavy) on roadway deters cyclists from choosing those routes. In segment 

2, in particular, there is a larger drop in utility for routes with heavy traffic. The negative 

coefficients for heavy traffic volume in Segment 3 and Segment 4 suggest that regret reduces 

if traffic volume on the non-chosen alternatives is higher, thus reducing the likelihood for 

opting for route with heavy traffic (see (Dill and Voros, 2007)). The presence of increased 

vehicular traffic will increase the probability of conflict between cyclists with motorized 

vehicles; so it is expected that that commuter cyclists prefer routes with lower traffic levels. In 
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terms of roadway type, routes on minor and major arterials (relative to routes on residential 

roads) are less likely to be chosen for commuting purpose. The effect is more pronounced in 

Segment 2, the utility for a route drops significantly when that route is located on a major 

arterial. In segment 3, the coefficient for major arterial is negative indicating that the regret 

associated with not choosing a route with major arterial is lower (relative to other alternatives). 

The results are quite intuitive and could be attributed to cyclist’s perception of higher level of 

safety on residential streets.  

 

4.3.2.2 Bike Route Characteristics 

The effect of bike route characteristics is found significant only in Segment 2 and 

Segment 3 – these two classes captured respondents who are highly sensitive to cycling 

infrastructure. The routes with continuous or segregated facilities are associated with higher 

utility in segment 2 and larger regret in segment 3 increasing the inclination to choose routes 

with continuous or segregated facilities relative to routes without continuous or segregated 

facilities. The results indicate that cyclists prefer to ride on a route with continuous cycling 

facility or on an exclusive route segregated from vehicular traffic with a slightly higher 

preference for exclusive routes. The result is expected and is reported in earlier research as well 

(see similar results in (Barnes et al., 2006, Dickinson et al., 2003, Dill and Voros, 2007, Larsen 

and El-Geneidy, 2011, Pucher and Buehler, 2006, Stinson and Bhat, 2005, Winters et al., 

2011)). On the other hand, the bicycle infrastructure variables have no impact on segment 1 

and 4.  
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4.3.2.3 Air Pollution 

 Of the two air pollution attributes, only mean exposure were found to affect route 

choice behavior across all segments. This essentially implies that irrespective of the decision 

rule, cyclists in all segments are strongly sensitive to exposing themselves to air pollution while 

on road. As expected, increase in mean exposure for a route reduces the likelihood that a 

bicyclist chooses the alternative. On the other hand, maximum exposure affects route choice 

behavior in segments 2, 3 and 4. The influence of maximum exposure is also along expected 

lines – increase in maximum exposure along the route reduces the probability of choosing that 

route (see (Anowar et al., 2017) for similar results). The reader would note that between mean 

and maximum exposure, the influence of mean exposure is consistently larger than the 

influence of maximum exposure on a parts per billion basis. The higher negative coefficient 

for mean exposure level indicates that cyclists are more sensitive towards a constant level of 

pollution on a regular basis rather than instantaneous exposure to pollution. 

 

4.3.2.4 Trip Characteristics 

For commuters, travel time is an important determinant of route choice. The variable 

influences route choice decision in segments 2, 3 and 4. An increase in travel time is associated 

with reduction in utility or reduction in regret for the route with longer travel time. Thus, these 

routes have a lower probability of being chosen. Several studies have highlighted the impact 

of travel time along the same lines (see, (Sener et al., 2009, Stinson and Bhat, 2005, Anowar 

et al., 2017)). It is however, quite interesting that for segment 1, travel time is not a factor. The 

results highlight the behavior of a small population group that is focused solely on reducing 

their exposure to air pollution. The discovery of their presence would not have been possible 

without the 4 segment latent segmentation model developed in our study.  
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4.4 Summary 

This chapter identified the various model structures considered and estimated in our 

analysis. Further, we provided the goodness of fit measures for all the model frameworks and 

provided a discussion of the best fitting model. A trade-off analysis will be discussed in the 

subsequent chapter. 
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CHAPTER FIVE: TRADE-OFF ANALYSIS 

While the model results were generally intuitive, the model results themselves do not 

provide an easy mechanism to understand the magnitude of the various exogenous factors 

considered in the model. Thus, to illustrated the value of the proposed model, we conduct  a 

detailed trade-off analysis. The current chapter documents the trade-off analysis approach and 

presents the “Value of Clean Ride (VCR)” – a very useful measure for policy makers. 

 

5.1 Trade-off Value 

Using the outputs from the model, we computed the time-based trade-offs, i.e. how 

much (in minutes) bicyclists are willing to travel extra for using routes with better facilities or 

less traffic-generated pollution. This analysis gives us an insight on how the trade-off values 

are varying across different segments of cyclists. For segment 2, the calculation is 

straightforward – dividing the coefficient value of each attribute by the coefficient value of 

travel time. However, Segment 1, Segment 3 and Segment 4 are random regret based classes. 

When all attributes in a model are evaluated using random regret decision rule, the calculation 

of trade-offs is done using the following equation: 

∑ −𝛽𝑡/(1 + 1/𝑒𝑥𝑝[𝛽𝑡(𝑡𝑗 − 𝑡𝑖)])𝑗≠𝑖

∑ −𝛽𝑟/(1 + 1/𝑒𝑥𝑝[𝛽𝑟(𝑟𝑗 − 𝑟𝑖)])𝑗≠𝑖

 (9) 

where 𝛽𝑡 and 𝛽𝑟 are the estimated coefficients for the two attributes for which we are 

calculating the trade-off. In our case, the 𝑟𝑡ℎ attribute is travel time and the 𝑡𝑡ℎ attribute 

represents the attribute for which the “willingness to travel extra” for a one-unit 

increase/decrease is being investigated. The results from the trade-off exercise (for main effects 

only) are presented in Table 5.1.  
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The results of the trade-off analysis provide some interesting insights. For the utility 

oriented segment, as expected, cyclists are willing to travel 15-45 minutes extra to avoid steep 

grade, medium/heavy traffic volume, and riding on minor/major arterial. Moreover, they are 

also willing to travel in excess of 25 minutes to ride on a continuous or exclusive bike facility. 

“Value of Clean Ride (VCR)” for mean exposure, was estimated at 1.16 min/ppb and for 

maximum exposure, was estimated at 0.68 min/ppb suggesting that commuter cyclists are more 

sensitive to mean exposure than maximum exposure. The value obtained in our current analysis 

is double the value obtained in a previous analysis using the same data (see (Anowar et al., 

2017)). This signifies that segment 2 commuter cyclists who more likely to be females are 

strongly sensitive to air pollution and are willing to travel 5-40 minutes extra to avoid them. 

Trade-off values from random utility paradigm is insensitive to the changes in the 

attribute values. However, we can see from Table 5.1 that random regret formulation based 

trade-offs calculated for Segment 3 and 4 are alternative and choice set dependent and 

monotonically decrease with increase in travel time.3 For example, from trade-off values we 

can see that when a chosen alternative does poorly in terms of roadway attribute (has steep 

grade, or has heavy vehicular traffic or is located on a major arterial), but has a faster 

commuting time, an increase in travel time leads to a small increase in regret while 

improvement in terms of road grade leads to a relatively large decrease in regret. Hence, 

cyclists are willing to travel more than 40, 20, and 35 minutes, respectively for travelling on a 

route with better grades (medium or flat), better traffic situation (medium or low), and 

convenient roadway type (minor or residential). Cyclists in Segment 4 are willing to travel 

longer than cyclists in Segment 3 to avoid heavy traffic. Interestingly, the trade-off values in 

                                                 

3 Trade-off values for travel time cannot be estimated for Segment 1 as the ‘Travel Time’ attribute was 

insignificant.  
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regret and utility based segments for roadway attributes are similar in magnitude; but values 

differ greatly for cycling infrastructure and exposure attributes, particularly for maximum 

exposure levels.   

 

5.2 Summary 

This chapter provided a summary of the results of a trade-off analysis conducted for the 

LCMHS model with four segments (3 random regret based segment – 1 random utility based 

segment). The results included “Value of Clean Ride (VCR)” for all of the segments 

accommodating both utility and regret based MNL. 
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Table 5.1 Time Based Trade-offs 

Attribute Attribute Levels 

Travel Times (minutes) 

Segment-2 

(RUM) 
Segment-3 (RRM) Segment-4 (RRM) 

20-40 20 25 30 35 40 20 25 30 35 40 

Grade Steep 35.90 46.22 13.95 7.68 5.30 4.19 - - - - - 

Traffic Volume 
Medium 20.54 - - - - - - - - - - 

Heavy 32.08 20.89 6.31 3.47 2.39 1.89 34.04 18.23 11.94 8.88 7.24 

Roadway type 
Minor Arterial 18.08 - - - - - - - - - - 

Major Arterial 43.56 38.61 11.65 6.42 4.43 3.50 - - - - - 

Infrastructure 

Continuity 
Continuous 26.50 3.26 0.99 0.54 0.37 0.30 - - - - - 

Infrastructure 

Segregation 
Exclusive 37.18 3.29 0.99 0.55 0.38 0.30 - - - - - 

Environmental 

Condition 

Mean Exposure (5 ppb) 5.80 3.07 0.93 0.51 0.35 0.28 2.09 1.12 0.73 0.55 0.44 

Mean Exposure (10 ppb) 11.60 8.13 2.45 1.35 0.93 0.74 5.13 2.75 1.80 1.34 1.09 

Mean Exposure (15 ppb) 17.40 15.17 4.58 2.52 1.74 1.38 9.11 4.88 3.20 2.38 1.94 

Maximum Exposure (20 ppb) 13.60 2.84 0.86 0.47 0.33 0.26 3.44 1.84 1.21 0.90 0.73 

Maximum Exposure (40 ppb) 27.20 7.28 2.20 1.21 0.83 0.66 11.08 5.93 3.88 2.89 2.36 

Maximum Exposure (60 ppb) 40.80 13.32 4.02 2.21 1.53 1.21 22.91 12.26 8.03 5.97 4.87 
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CHAPTER SIX: CONCLUSIONS 

   In the extant literature, several approaches have been employed to address population 

homogeneity restriction in discrete choice models, latent class model is one of the elegant and 

intuitive approaches. While several of these studies have focused on exogenous variable 

homogeneity, the decision rule homogeneity assumption has received less attention. Our study 

aims to bridge the gap in the literature in this context by analyzing population and decision rule 

heterogeneity drawing on a novel empirical context – impact of air pollution on bicycle route 

choice. In our analysis, we choose to consider the random utility framework along with random 

regret minimization approach. Further, instead of assuming the number of segments (as 2), we 

conduct an detailed exploration with multiple segments across the two decision rules. Within 

each segment we also allow for unobserved heterogeneity. The model estimation is conducted 

using a stated preference data from 695 commuter cyclists compiled through a web-based 

survey. Model fit measures revealed that latent class models with four segments (3 random 

regret based segment – 1 random utility based segment) provided the best data fit. The 

probabilistic allocation of respondents to different segments was achieved based on 

multivariate set of cyclist demographics and cycling habits. The results indicate that female 

commuter cyclists are more utility prone, however the majority of the commuter cyclist’s 

choice pattern is consistent with regret minimization mechanism.  

Overall, cyclists’ route choice decisions are influenced by roadway attributes, cycling 

infrastructure availability, pollution exposure, and travel time. Although travel time is the most 

important attribute for commuter cyclists in their route choice decision, it is however, quite 

interesting that for one of the segments, travel time is not a factor. The results highlight the 

behavior of a small population group that is focused solely on reducing their exposure to air 

pollution. The discovery of their presence would not have been possible without the 4 segment 
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latent segmentation model developed in our study. This observation has interesting policy 

implications – it suggests that bicyclists’ exposure to air pollution should be incorporated in 

bicycle route planning. In addition, we find that between mean and maximum exposure, the 

influence of mean exposure is consistently larger than the influence of maximum exposure on 

a parts per billion basis. The higher negative coefficient for mean exposure level indicates that 

cyclists are more sensitive towards a constant level of pollution on a regular basis rather than 

instantaneous exposure to pollution. The analysis approach also allows us to investigate time 

based trade-offs across cyclists of different classes. Interestingly, we observed that the trade-

off values in regret and utility based segments for roadway attributes are similar in magnitude; 

but the values differ greatly for cycling infrastructure and exposure attributes, particularly for 

maximum exposure levels.  
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APPENDIX A: 

DEMOGRAPHIC PROFILE OF COMMUTER BICYCLISTS
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Figure A.1 Demographic Profile of Commuter Bicyclists
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 APPENDIX B:  

RESULTS OF RUM BASED MIXED MNL, RRM BASED MIXED 

MNL AND OTHER LATENT SEGEMNTATION MODELS  
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Table B.1 Results of RUM Based Mixed MNL 

Attribute 

Category 
Attribute Attribute Levels Coefficient t-statistics 

Roadway 

Characteristics 

Grade 

(Base: Flat) 

Steep -0.982 -10.579 

 Female -0.804 -5.601 

Traffic Volume 

(Base: Light) 

Moderate -0.657 -7.729 

Heavy -1.508 -16.662 

Roadway Type 

(Base: Residential Roads) 

Minor arterial -0.398 -4.776 

Major arterial -1.290 -15.025 

 Female -0.345 -2.576 

Bike Route 

Characteristics 

Infrastructure Continuity 

(Base: Discontinuous) 
Continuous 0.879 13.485 

Infrastructure Segregation 

(Base: Shared) 

Exclusive 0.939 10.353 

 Female 0.306 2.561 

Environmental 

Condition 

Mean Exposure 

Mean exposure -0.054 -8.791 

 Biking experience (Base: 2 or more years) 

  Less than 2 years -0.021 -1.961 

Maximum Exposure 
Maximum exposure -0.019 -10.271 

Standard deviation 0.016 6.480 
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 Exposure impact information (Base: No information) 

  Short-term  -0.007 -2.148 

Trip 

Characteristics 
Travel Time 

Travel time -0.075 -4.551 

 Female 0.018 2.942 

 Age (Base: 18-24 years) 

  25-34 years -0.043 -6.740 

  55-64 years 0.027 2.656 

  65 years or more 0.056 2.762 

 Biking frequency (Base: Rarely) 

  Once or several times a month -0.049 -2.988 

  Daily -0.080 -4.982 

 Commute length (Base: Short commute) 

  Moderate 0.030 4.831 

  Long 0.072 7.997 

Log-likelihood at convergence (N = 3475): -2759.650 
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Table B.2 Results of RRM Based Mixed MNL 

Attribute 

Category 
Attribute Attribute Levels Coefficient t-statistics 

Roadway  

Characteristics 

Grade  

(Base: Flat) 

Steep -1.803 -3.897 

      Female -0.403 -3.916 

      Age Range (Base: 18-24 Years) 

               25-34 Years -0.596 -5.974 

      Bicycling Experience (Base: More than 5 Years) 

               Less than 5 Years -0.412 -3.910 

      Accompanied (Base: With Children) 

               Without Children     1.033 2.653 

Traffic Volume  

(Base: Light) 

Medium -0.585 -5.607 

      Age Range (Base: 18-24 Years) 

               45-54 Years -0.395 -2.653 

      Frequency of Bicycling (Base: Rarely) 

               Daily 0.301 2.197 

Heavy -1.095 -18.011 

Roadway Type 

(Base: Residential Roads) 

Minor Arterial -0.245 -4.258 

Major Arterial -0.667 -10.776 

      Female -0.221 -2.359 

      Age Range (Base: 18-24 Years) 

               25-34 Years -0.230 -2.408 

Bike Route Characteristics 

 

Infrastructure continuity 

(Base: Discontinuous) 

 

Continuous 

 

0.817 12.920 

      Age Range (Base: Less than 35 Years) 

               35 Years or more -0.242 -3.544 

Infrastructure segregation 

(Base: Shared) 

Exclusive  

 

0.826 8.604 

      Female 0.229 2.520 

      Frequency of Bicycling (Base: Rarely) 
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               Daily -0.196 -2.028 

Environmental  

Condition 

Mean Exposure 

Mean Exposure -0.034 -5.858 

Standard Deviation 0.069 11.331 

      Bicycling Experience (Base: 2 or more Years) 

               Less than 2 Years -0.027 -2.448 

Maximum Exposure 

Maximum Exposure  

 

-0.015 -11.136 

Standard Deviation 0.012 6.705 

    Exposure impact information (Base: No information)  

 
                Short-term  -0.005 -2.298 

Trip Characteristics 
 

Travel Time 

 

Travel time  

     

Female  

 

-0.106 -16.615 

      Female 

 

0.017 3.675 

      Age Range (Base: 18-24 Years) 

               25-34 Years -0.033 -5.251 

               35 Years or more 0.022 3.803 

      Frequency of Bicycling (Base: Rarely) 

               Daily -0.027 -5.842 

      Bicycling Experience (Base: Less than 5 Years) 

               More than 5 Years 0.011 2.383 

      Commute length (Base: Short commute) 

               Moderate 0.021 4.948 

               Long 0.049 7.692 

Log-likelihood at Convergence (N = 3475): -2688.781 
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Table B.3 Results of RUM Based Latent MNL with Two Segments 

Variables 
Segment-1 Segment-2 

Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 0.1207 0.544 

Female (Base: Male)   -1.1213 -4.071 

Age (Base: 18-34 years)  

 35 or more years      - - -0.5829 -2.256 

Biking frequency (Base: Rarely) 

 Less than once to several times per month - - -0.7634 -2.446 

Commute length (Base: Short commute) 

 Moderate to Long Commute - - -0.5278 -2.103 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep -1.9901 -10.796 - - 

Traffic Volume (Base: Light) 

    Medium -0.5979 -5.052 - - 

 Heavy -1.8195 -11.781 - - 

Roadway Type (Base: Residential roads) 

 Minor arterial -0.5826 -6.036 0.4712 2.619 

 Major arterial -2.1185 -12.618 - - 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous 1.0168 10.244 - - 

Infrastructure Segregation (Base: Shared) 

 Exclusive 1.4147 11.821 0.3814 2.126 

Environmental condition 

Mean Exposure -0.0646 -7.174 -0.0511 -3.118 

Maximum Exposure -0.0169 -8.678 -0.0341 -7.64 

Trip Characteristics 

Travel Time -0.1185 -18.196 -0.1816 -10.278 

Log-likelihood at Convergence -2734.216875 



 

 

40 

 

Table B.4 Results of RRM Based Latent MNL with Two Segments 

Variables 
Segment-1 Segment-2 

Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 0.5567 1.831 

Age (Base: 18-34 years)  

 35 or more years      - - -1.0154 -4.443 

Auto Ownership     

 2 or more - - -0.7959 -2.835 

Biking frequency (Base: Rarely) 

 Daily - - 0.5885 2.319 

Commute length (Base: Short commute) 

 Moderate to Long Commute - - -0.5905 -2.683 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep -0.3618 -4.058 -1.7995 -10.907 

Traffic Volume (Base: Light) 

     Medium -0.395 -3.653 - - 

 Heavy -0.8146 -7.267 -1.263 -9.178 

Roadway Type (Base: Residential roads) 

 Minor arterial -0.4006 -5.628 - - 

 Major arterial -0.9872 -5.95 -0.8877 -5.647 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous 0.5074 6 0.8509 6.739 

Infrastructure Segregation (Base: Shared) 

 Exclusive 0.6684 8.75 1.342 4.336 

Environmental condition 

Mean Exposure -0.0425 -6.243 -0.0524 -5.857 

Maximum Exposure -0.0165 -10.23 -0.0156 -7.7 

Trip Characteristics 

Travel Time -0.0354 -6.71 -0.2045 -13.681 

Log-likelihood at Convergence -2693.295275 
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Table B.5 Results of LCMHS with Two Segments (1 RUM Based Segment-1 RRM Based Segment) 

Variables 
Segment-1 (RRM) Segment-2 (RUM) 

Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 1.0009 3.041 

Female (Base: Male) - - 0.4835 2.03 

Age (Base: 18-34 years)  

 35 or more years      - - -0.5952 -2.294 

Auto Ownership - - -0.3474 -2.777 

Income (Base: Low Income) 

 High Income - - 0.638 2.555 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep -0.414 -3.783 -2.3841 -8.804 

Traffic Volume (Base: Light) 

     Medium - - -1.2563 -7.065 

 Heavy - - -2.4797 -11.709 

Roadway Type (Base: Residential roads) 

 Minor arterial - - -0.6397 -5.518 

 Major arterial - - -2.8088 -12.347 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous - - 1.353 8.485 

Infrastructure Segregation (Base: Shared) 

 Exclusive 0.4319 3.962 1.484 10.007 

Environmental condition 

Mean Exposure -0.0401 -4.813 -0.0475 -4.069 

Maximum Exposure -0.0187 -8.432 -0.0144 -4.71 

Trip Characteristics 

Travel Time -0.0442 -7.943 -0.2009 -14.887 

Log-likelihood at Convergence -2729.685475 
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Table B.6 Results of RRM Based Latent MNL with Three Segments 

Variables 
Segment-1 Segment-2 Segment-3 

Estimate t-statistics Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - -0.2721 -0.94 2.2434 5.432 

Female (Base: Male) - - 0.8565 3.026 - - 

Age (Base: 18-34 years)  

 35 or more years      - - - - -0.8104 -3.45 

Auto Ownership - - - - -0.4917 -3.843 

Biking frequency (Base: Rarely)   

 Daily - - - - 0.8847 3.518 

Biking experience (Base: Less than 2 years) 

 2 to 5 Years - - - - 0.9802 2.95 

Commute length (Base: Short commute)   

 Moderate to Long Commute - - - - -0.6445 -2.747 

Route Choice Component 

Roadway Characteristics    

Grade (Base: Flat)   

 Steep - - -1.4436 -4.439 -1.2822 -10.691 

Traffic Volume (Base: Light)   

 Heavy -0.788 -3.684 -0.5474 -3.304 -1.0213 -11.128 

Roadway Type (Base: Residential roads)   

 Minor arterial - - -0.4583 -2.085 - - 

 Major arterial - - - - -1.2264 -13.715 

Bike Route Characteristics   

Infrastructure Continuity (Base: Discontinuous)   

 Continuous - - 1.5098 4.963 0.6078 7.015 

Infrastructure Segregation (Base: Shared)   

 Exclusive - - 2.1802 4.908 0.7595 9.181 

Environmental condition   

Mean Exposure -0.0407 -3.948 - - -0.0505 -7.328 

Maximum Exposure -0.0145 -5.767 -0.0199 -5.77 -0.016 -10.507 

Trip Characteristics   

Travel Time -0.0354 -6.71 -0.0281 -2.853 -0.1706 -17.948 
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Log-likelihood at Convergence -2665.1582   
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Table B.7 Results of LCMHS with Three Segments (1 RUM Based Segment-2 RRM Based Segment) 

Variables 
Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RRM) 

Estimate t-statistics Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - -2.4359 -5.031 -0.0287 -0.107 

Female (Base: Male) - - - - 0.4435 2.019 

Age (Base: 18-34 years)  

 35 or more years      - - 1.0596 3.489 - - 

Auto Ownership - - 0.4901 3.429 - - 

Biking experience (Base:5 years or more) 

 Less than 2 years - - 0.9852 2.508 - - 

 Less than 5 years - - - - 0.6805 2.792 

Commute length (Base: Short commute) 

 Moderate to Long Commute - - 1.3112 3.775 0.9811 3.42 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep - - - - -1.8319 -10.961 

Traffic Volume (Base: Light) 

     Medium -0.835 -2.548 - - - - 

 Heavy -1.802 -5.638 -1.1947 -5.032 -0.7621 -7.02 

Roadway Type (Base: Residential roads) 

 Major arterial -0.4642 -2.663 - - -1.7609 -10.852 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous 0.4694 2.587 - - 0.8338 7.614 

Infrastructure Segregation (Base: Shared) 

 Exclusive 0.4709 2.507 0.8839 5.572 1.1475 10.312 

Environmental condition 

Mean Exposure -0.0647 -3.689 -0.0457 -3.517 -0.0326 -3.902 

Maximum Exposure -0.0199 -5.884 -0.02 -5.962 -0.0176 -8.508 

Trip Characteristics 

Travel Time -0.1954 -8.568 - - -0.1385 -15.047 

Log-likelihood at Convergence -2647.80405 
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Table B.8 Results of LCMHS with Three Segments (2 RUM Based Segment-1 RRM Based Segment) 

Variables 
Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RUM) 

Estimate t-statistics Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 0.5664 1.616 -0.3167 -0.583 

Female (Base: Male) - - - - 0.9036 3.871 

Age (Base: 18-34 years)  

 35 or more years      - - -0.855 -3.194 - - 

Employment Status 

 Full-time or Part-time Worker - - 0.6878 2.417 0.72 2.492 

Number of Household Member - - - - 0.3255 2.746 

Bicycle Ownership - - - - -0.4846 -3.008 

Auto Ownership - - -0.4639 -3.359 - - 

Biking experience (Base:5 years or more) 

 Less than 5 years - - 0.5126 2.194 - - 

Commute length (Base: Short commute) 

 Moderate to Long Commute - - - - 0.7794 3.375 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep -0.3006 -2.325 -4.8934 -6.019 -1.6774 -6.893 

Traffic Volume (Base: Light) 

    Medium -0.6115 -3.455 - - -0.4568 -2.495 

 Heavy -1.1337 -7.485 -2.4846 -5.153 -1.0687 -5.916 

Roadway Type (Base: Residential roads) 

 Minor arterial - - -0.8284 -3.376 -0.7873 -5.053 

 Major arterial - - -4.4786 -9.179 -2.2092 -7.949 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous - - 1.9149 4.124 0.9804 6.286 

Infrastructure Segregation (Base: Shared) 

 Exclusive 0.2954 2.552 1.5321 5.593 1.4442 8.488 

Environmental condition 

Mean Exposure -0.0653 -5.877 -0.0782 -3.535 -0.0365 -2.692 
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Maximum Exposure -0.0248 -9.868 - - -0.019 -6.29 

Trip Characteristics 

Travel Time -0.0912 -11.681 -0.423 -8.299 -0.0417 -4.39 

Log-likelihood at Convergence -2601.791575 
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Table B.9 Results of LCMHS with Four Segments (2 RUM Based Segment-2 RRM Based Segment) 

Variables 

Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RUM) Segment-4 (RRM) 

Estimate t-statistics Estimate 
t-

statistics 
Estimate 

t-

statistics 
Estimate t-statistics 

Segmentation Component 

Constant - - -0.3441 -1.554 0.845 1.591 2.0661 5.166 

Female (Base: Male) - - - - -0.7824 -2.556 - - 

Age (Base: 18-34 years)  

 35 or more years      - - - - -0.6656 -2.02 -1.2007 -4.733 

Number of Household Member - - - - -0.2769 -2.048 - - 

Auto Ownership - - - - - - -0.5001 -3.862 

Biking frequency (Base: Rarely) 

       Daily - - - - 0.9291 2.46 0.5643 2.024 

Commute length (Base: Short commute)   

 Long Commute - - - - -1.4334 -2.071 -1.1423 -2.723 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep -0.9015 -5.908 - - - - -2.0274 -9.947 

Traffic Volume (Base: Light) 

       Medium -0.6841 -3.859 1.0208 2.715 -1.3025 -2.372 - - 

 Heavy -1.0481 -5.383 - - -2.656 -3.154 -1.1102 -6.132 

Roadway Type (Base: Residential roads) 

 Minor arterial - - -1.2814 -3.477 - - -0.2789 -2.263 

 Major arterial -0.5335 -3.013 -1.8661 -4.236 - - -1.8005 -12.094 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous - - 2.0755 6.536 0.6078 2.392 0.9639 5.703 

Infrastructure Segregation (Base: Shared) 

 Exclusive 0.3327 2.506 2.9195 4.47 0.7444 2.92 0.8961 6.778 

Environmental condition 

Mean Exposure -0.0398 -3.671 - - -0.1272 -4.429 -0.0463 -4.149 

Maximum Exposure -0.0228 -8.025 -0.0159 -2.254 -0.0319 -6.427 -0.0155 -6.167 

Trip Characteristics 
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Travel Time - - -0.0489 -2.858 -0.2252 -8.513 -0.2004 -11.018 

Log-likelihood at Convergence -2559.368775 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

49 

 

Table B.10 Results of LCMHS with Four Segments (3 RUM Based Segment-1 RRM Based Segment) 

Variables 

Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RUM) Segment-4 (RUM) 

Estimate t-statistics Estimate 
t-

statistics 
Estimate 

t-

statistics 
Estimate t-statistics 

Segmentation Component 

Constant - - -1.4278 -2.539 3.9151 3.571 0.9716 3.676 

Female (Base: Male) - - 0.512 2.079 - - - - 

Age (Base: 18-34 years)  

 35 or more years      - - - - - - -0.6226 -2.475 

Employment Status 

 Full-time or Part-time Worker - - 0.6862 2.301 - - - - 

Number of Household Member - - 1.2878 3.17 - - - - 

Bicycle Ownership (Less than 2) 

       2 or more - - -0.7503 -2.254 - - - - 

Auto Ownership - - 0.3698 2.623 - - - - 

Accompany (Base: With Children) 

 No Children - - - - -1.6005 -2.861 - - 

Commute length (Base: Short commute) 

 Long Commute - - 1.5101 3.004 1.1199 2.121 - - 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep - - - - -3.132 -6.531 -5.0334 -7.418 

Traffic Volume (Base: Light) 

       Medium - - - - -1.2787 -4.867 2.0723 2.057 

 Heavy - - -0.7466 -3.913 -2.3774 -8.497   

Roadway Type (Base: Residential roads) 

 Minor arterial - - -0.754 -4.215 - - -1.0871 -3.113 

 Major arterial - - -2.0681 -7.849 - - -6.8506 -8.125 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous)   

 Continuous - - 0.9905 5.115 0.7945 3.588 - - 

Infrastructure Segregation (Base: Shared) 

 Exclusive - - 1.4949 7.655 0.8669 4.293 1.8778 5.281 
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Environmental condition 

Mean Exposure - - - - -0.121 -6.649 - - 

Maximum Exposure -0.0393 -3.911 - - -0.0341 -6.655 - - 

Trip Characteristics 

Travel Time -0.1386 -4.621 -0.0237 -2.229 -0.1401 -7.423 -0.4295 -9.089 
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