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ABSTRACT 

The supramolecular aggregates of π-conjugated molecules have become an area of great 

interest to the scientific community in recent years for their promise in biosensors and 

optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of π-

conjugated dye molecules are particularly interesting because of their unique optical and excitonic 

properties that are not given by individual molecules. H-aggregates are composed of dye molecules 

in a face-to-face stacking, giving rise to a blue-shifted absorption band compared with the 

monomer band and a strong emission quenching. In contrast, J-aggregates represent an edge-to-

edge stacking of dye molecules, showing a red-shifted absorption band with respect to the 

monomer band and a strong fluorescence emission. However, the use of J- and H-aggregates in 

biosensors and optoelectronic devices remains a challenge because of the difficulty of controlling 

their sizes and morphologies.   

In this dissertation, we develop two different paths for controlling the size and morphology of 

J- and H-aggregates. First, we show that the co-assembly of cyanine dyes and lithocholic acid 

(LCA) in ammonia solution can lead to the formation of mesoscopic J- and H-aggregate fibers, 

depending on the condition under which the co-assembly occurs. Second, we report the formation 

of mesoscopic J-aggregate tubes by using the preformed LCA tubes as a template. The structure, 

optical, and electronic properties of these J- and H-aggregate fiber and tubes are studied as a 

function of temperature. Finally, we exploit their applications as photo-induced electron transfer 

supramolecular probes for the detection of dopamine, an important neurotransmitter in central and 

peripheral nervous systems.  
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CHAPTER 1: INTRODUCTION 

1.1 Bile Acids 

Bile acids are important physiological molecules within the human body and researchers have 

been trying to determine the full extent of the role they play since their first discovery. It was 

originally believed the bile acids only served the role of helping maintain cholesterol 

homeostasis[1]. The breakdown of cholesterol is the primary formation mechanism of bile acids 

within the body. This occurs within the hepatocyte as a byproduct of cholesterol breakdown and 

bile acids formed in this fashion are termed ‘primary’ bile acids. Bile acids can also form via the 

removal of a hydroxy group by bacteria inside the colon and these are termed ‘secondary’ bile 

acids[2]. The formation of bile acids via the breakdown of cholesterol is a highly catabolic process 

that ends up eliminating half of the total amount of cholesterol in the body[1, 3, 4]. The process 

begins with the breakdown of cholesterol into 7α-hydroxycholesterol which is further broken down 

into the bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA), an illustration of this can 

be seen in Figure 1. The secondary bile acid, lithocholic acid (LCA), which is part of the primary 

focus of this dissertation, is formed by the further breakdown of CDCA. While in the large 

intestine, the bacteria 7α-hydroxylase removes a hydroxyl group from CDCA that ultimately 

produces LCA. The majority of LCA produced is then secreted into bile, while a small amount is 

circulated back into the liver[5]. The structure of LCA can be seen in Figure 2a and Figure 2b. 
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Reproduced with permission from T. Li and J. Y. L. Chiang, “Bile Acid Signaling in Metabolic 

Disease and Drug Therapy,” Pharmacological Reviews, vol. 66, no. 4, pp. 948-983, 2014. 

Copyright 2014 The American Society for Pharmacology and Experimental Therapeutics [5]. 

 

Figure 1 Schematic of the process that converts cholesterol into primary and secondary bile acids 

within the human liver. Cholesterol is first converted into 7α-hydroxycholesterol which is 

subsequently converted into 7α-hydroxy-4-cholesten-3-one. At this point both CA and CDCA 

are produced. Then, in the large intestine, both CA and CDCA are broken down again into DCA 

and LCA respectively. 

For the longest time bile acids were only considered as detergent molecules that only 

served important roles in the digestive process such as cholesterol solubilization. They recently 

have been discovered to be even more physiologically important. Bile acids can also act as 

hormones that activate signaling pathways in cells and nuclear receptors in the liver and 

gastrointestinal tract[6].  

Even with all this research into the role of bile acids in the human body, all the answers are 

not currently known. High concentrations of secondary bile acids within different portions of the 
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body have been correlated to increased incidence of certain diseases, including colon cancer[6, 7]. 

It is currently believed that by controlling the formation of secondary bile acids within the colon 

one can alter the toxicity and pathophysiology of bile acids to cells in the liver and gastrointestinal 

tract[6]. However, it is not due to the physiological importance of bile acids that there is an interest 

in them from a materials science aspect. Their planar structure differs from most other types of 

amphiphilic molecules and this allows them to exhibit interesting self-assembly abilities that prove 

useful in the formation of different nanostructures from nanotubes to spherulites, as will be 

examined in later chapters. 

 

Figure 2 a) 2D and b) 3D chemical structure of lithocholic acid; a typical secondary bile acid. 

1.2 Self-Assembly of Amphiphilic Molecules 

Depending on the surrounding environment, certain molecules are able to organize themselves 

via non-covalent interactions (i.e. van Der Waals, electrostatic, hydrophobic) into organized 

supramolecular structures without the need of outside intervention. This process is known as self-

assembly and it can occur in a static environment or a dynamic environment. In the former case, 

no external energy needs to be added to the system in order for the self-assembly to take place. In 

a) b) 
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the case of dynamic self-assembly, there needs to be some external energy sources providing 

additional energy to the system[8]. Often, molecules that can undergo a self-assembly process are 

amphiphilic in nature. For a molecule to be an amphiphile it needs to contain both hydrophilic and 

hydrophobic moieties. Nature is full of amphiphilic molecules, and an example would be 

carbohydrate amphiphiles. These biological amphiphiles are an important stability and functional 

contributor of cell membranes[9, 10]. These molecules are able to precisely self-assemble into 

supramolecular structures that range from simple micelles and vesicles to monolayers and tubules 

in solution or at an interface. The primary driving force in the self-assembly process is the desire 

for the hydrophobic or non-polar portion of the molecule to extricate itself from contact with water. 

The type of structure that is formed can depend on many factors including the size and geometry 

of the hydrophobic and hydrophilic portion of the molecule and the composition of the solvent 

environment.  

Surfactants (surface active agents) are one of the most highly studied groups of amphiphilic 

molecules. They typically consist of a long tail that is built primarily of hydrocarbons and a head 

group that can be ionic or non-ionic in nature. Due to being composed of hydrocarbons, the tails 

of surfactants are hydrophobic. They tend to aggregate at the air-water interface where the tails 

can stick out through the surface into air and the head group remains in the aqueous solution. When 

the concentration of surfactants is high enough, micelle formation in aqueous solution will take 

place. This will allow the hydrophobic tails to shield themselves from the aqueous environment 

while allowing the head group to contact with the aqueous environment. The concentration at 

which this occurs is called the critical micelle concentration (CMC) and for commonly used 

surfactants the CMC is usually less than 0.01M [11].  
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Reproduced with permission from M. Salim, H. Minamikawa, A. Sugimura, and R. Hashim, 

“Apmphiphilic designer nanocarriers for controlled release: from drug delivery to diagnostics,” 

MedChemComm, vol. 5, no. 11, pp. 1602-1618, 2014. Copyright 2014 Royal Society of 

Chemistry [12]. 

 

Figure 3 Schematic representation of expected micelle structures for different values of the 

critical packing parameter. 

The type of structures that are formed during micelle formation is strongly dependent on the 

geometry of the amphiphile being used. Because surfactants are composed of a head group and 

long hydrophobic chain, they are typically the easiest to use when predicting micelle shape. 

Micelle formation is dependent upon the critical packing factor of the surfactant which is defined 

as 𝐶𝑝𝑝 = 𝑉0 𝐴𝑚𝑖𝑐𝑙𝑐⁄ ; where 𝑉0 is the effective volume of the hydrocarbon tail, 𝐴𝑚𝑖𝑐 is the head 
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group surface area at the aggregate-solution interface, and 𝑙𝑐 is the chain length of the hydrocarbon 

tail. The value of this factor will determine whether the formed micelle is spherical, cylindrical or 

lamellar in nature [11, 13]. Schematic representations and value ranges for each case can be seen 

in Figure 3[12].  

Aside from surfactants, there is another particularly interesting class of amphiphilic molecules 

that undergoes a micelle formation process, and that is bile salts. Bile salts are not typical 

amphiphilic molecules, as discussed briefly in Section 1.1. Instead of the head to tail configuration 

of their hydrophilic and hydrophobic groups, bile salts are arranged in a nearly planar fashion with 

hydrophilic and hydrophobic sides. This unusual amphiphilic geometry arises from the fact that 

the hydrophilic -OH groups and the hydrophobic -CH3 groups are arranged on opposite sides of 

the tetracyclic ring system. Because of their geometry, bile salts also tend to have a much lower 

CMC than other amphiphiles [14]. The first mechanism devised to explain the aggregation 

behavior of bile salts was developed by Small [15]. He developed a primary-secondary micelle 

model in which, at first, micelle formation takes place in the usual way. The bile salts come 

together and turn their hydrophobic faces in towards each other which results in the expulsion of 

water from the micelle core. Once the concentration becomes high enough, hydrogen bonding 

between the hydrophilic faces of the bile salts can occur, allowing for the elongation of the primary 

micelle into a host of different structures[15].  

Another possible mechanism is known as a chiral self-assembly and it involves the formation 

of an intermediate helical ribbon that is able to then collapse into a hollow tube [16]. Once the 

helical ribbon is formed there are three possible pathways forward, a schematic of these pathways 

may be seen in Figure 4 [17, 18]. First the molecules assemble into spherical micelles that then 

aggregate to form the helical ribbons. As long as the temperature stays below the gel-to-liquid 
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transition temperature, one of two different routes will occur. Either the pitch of the ribbon will 

shorten while maintaining a constant width and collapsing into a tube or the width will increase 

while maintaining a constant pitch and the ribbon will expand into a tube. If the temperature is 

raised above the gel-to-liquid transition temperature the structure will revert back to the spherical 

micelle formation. There are a number of different molecules that have been shown to undergo 

chiral self-assembly. These include carbohydrate amphiphiles [19-21], amino-acid based 

amphiphiles [18, 22-24], nucleotide-based amphiphiles [25, 26] and bile acids [17, 27-29]. LCA 

is one of the bile acids that can undergo a variety of self-assembly mechanisms, including chiral 

self-assembly.  

 

Reproduced with permission from T. Shimizu, M. Masuda, and H. Minamikawa, 

“Supramolecular nanotube architectures based on amphiphilic molecules,” Chemical Reviews, 

vol. 105, no. 4, pp. 1401-1444, 2005. Copyright 2005 American Chemical Society [16]. 

 

Figure 4 Schematic representation of the three-possible chiral self-assembly pathways. (a) Width 

of the helical ribbon stays constant as the pitch of the ribbon decreases and the ribbon fuses 

together to form a hollow tube. (b) Pitch of the ribbon stays constant as the width of the ribbon 

increases, eventually fusing together and forming a tube. The last possible option is for the 

temperature to be above the gel-to-liquid temperature and the ribbon will revert back to a 

spherical micelle [17,18] 
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Previous studies have shown that LCA can form small vesicles that linearly aggregate into 

hollow tubes over time in alkaline solution without the intermediate helical ribbon stage [29]. That 

same study found that LCA tubes could withstand changes in pH from 12.3 down to 7.4 all while 

reversibly changing their morphology from helical to straight. It is because of its many self-

assembly mechanisms and various morphologies that LCA is an attractive option to be used in 

research involving the formation of molecular dye aggregates, as will be seen in later chapters.  

 

1.3 Light Harvesting Systems and H-/J-Aggregates of Cyanine Dyes 

Nature has proven to be the designer of some of the most efficient structures and processes, 

and it is for this reason that humans have striven to mimic these natural structures and processes 

for centuries. One of the best examples of a highly efficient natural process is that of 

photosynthesis. It is a constant goal of researchers to attain high efficiency, artificial 

photosynthetic systems and promising advance have been made[30-33]. Within nature the largest 

and most efficient light-harvesting devices in the natural world are chlorosomes. They form the 

light-harvesting antenna of the green sulfur bacteria which allows the bacteria to harvest light in 

incredibly low light intensities[34]. Chlorosomes do this by forming energy gradients, made up of 

closely-packed molecular aggregates, between different light harvesting complexes that allow 

absorbed light energy to be funneled downhill to its eventual destination, the reaction complex[35, 

36]. This downhill funneling is what allows the natural light harvesting systems to become large 

on a microbial scale and maintain their high efficiency. It has been found that while trying to mimic 

these natural systems that without the energy gradient found in nature, the energy gets lost in the 

system before reaching its final destination[35]. A schematic representation of the energy gradient 
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within the photosynthetic complex of the green sulfur bacteria can be seen in Figure 5[37]. Here 

we see that after light absorption in the bacteriochlorophyll (BChl) aggregate the exciton relaxes 

down into the Fenna-Matthews-Olson (FMO) protein complex. From here the energy is transferred 

into the reaction center of the green sulfur bacteria. 

 
Reproduced with permission from J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of 

the energy flow through the entire photosynthetic apparatus,” Nature Chemistry, Article vol. 8, p. 

705, 05/30/online 2016. Copyright 2016 Springer Nature [37]. 

 

Figure 5 Schematic representation of the exciton energy path in the photosynthetic complex of 

the green sulfur bacteria. 

The first step towards this goal was the discovery, by Jelley and Scheibe, of the organized 

supramolecular structure of dye molecules, specifically of pseudoisocyanine chloride[38-41]. 

They found that at high enough concentrations, the adsorption band of pseudo isocyanine, which 

was typically broad and centered around 525 nm, would become sharp and shift to 570 nm. This 

aggregation of dye molecules would come to be termed J-aggregates. J-aggregates exhibit a narrow 
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and intense absorption band (J-band), red-shifted with respect to the monomer, that is due to the 

electronic coupling of molecular dipoles[39, 42]. J-aggregates form a bricklike structure that 

allows for high exciton transfer rates that are facilitated by the strong exciton delocalization within 

the J-aggregate structure[43]. A schematic representation[44] of this structure can be seen in 

Figure 6.  

 
Reproduced with permission from G. Pesitelli, L. Di Bari, N. Berova, “Application of electronic 

circular dichroism in the study of supramolecular systems,” Chemical Society Reviews, vol. 43, 

no. 15, pp. 5211-5233, 2014. Copyright 2014 Royal Society of Chemistry [44]. 

 

Figure 6 A schematic representation of H- and J-aggregate structure and the corresponding 

blue/red shift associated with each structure. H-aggregate is characterized by a blue shift and 

involves monomer molecules stacking on top of each other. J-aggregate is characterized by a red 

shift and involves the monomer molecules stacking in a brick layer fashion. 

Around the same time as their discovery, the model that could be used to describe the 

optical properties of J-aggregates had already been developed. This model is termed the Frenkel 

exciton model and was developed in the 1931 by Frenkel[45]. In a system of N identical molecules, 

when one molecule is brought into its excited state, it forms an N-fold degenerate excited state, 

barring any intermolecular interactions. Due to the coupling of the optical transition dipoles 
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between different molecules, this N-fold degeneracy results in the formation of new excited states 

that are shared coherently by the molecules[46]. Using the Frenkel exciton model, many of the 

optical properties of J-aggregates can be understood[47]. For example, the red-shift in the 

absorption band was described mathematically by Knoester. He described the eigenstates of linear 

J-aggregates as Bloch states, where the eigen states are given by Equation 1 [48]:  

|𝑘⟩ =
1

𝑁
𝑒

2𝜋𝑖𝑘𝑛
𝑁⁄ |𝑛⟩ (1) 

with the energy eigenstates given by: 

𝐸𝑘 = 𝜖0 − 2𝐽 ∑
1

𝑛3 𝑐𝑜𝑠
2𝜋𝑘𝑛

𝑁
 

(𝑁−1)
2⁄

𝑛=1
(2)  

where k denotes the quantum number and takes the values k = 0, ±1, ±2, ±((𝑁 − 1)/2)2. Here 

then the molecular oscillator strengths of the exciton states are given by: 

|𝑀𝑘|2 = 𝑁𝜇2𝛿𝑘,0 (3) 

And this is the most important result of Knoester’s mathematical run-through. In this result, we 

see that the k=0 state collects all the molecular oscillator strength, and all of the other states remain 

“dark”. This is due to the fact that all the molecular dipoles oscillate in phase in the k=0 state. The 

result of this is that within the exciton band, all of the energy is bound up in the lowest energy 

state, leading to a superradiant, red-shifted absorption band[48]. The opposite of this is true for 

molecular aggregates that are stacked in a parallel fashion, termed H-aggregates. In that case, all 

the molecular oscillator strength is bound up in the topmost energy state within the exciton band. 

This leads to a blue-shifted absorption band compared to the monomer absorption.  

 The previous result by Knoester is for the case when you have linear aggregations, which 

were common for dyes known to form J-aggregate. However, as is the case in nature with the green 
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sulfur bacteria, cylindrical molecular aggregates can form and therefore require a different 

mathematical treatment to describe their more complex optical properties. The primary difference 

between linear and cylindrical molecular aggregates is that often there is more than one state that 

exhibits a superradiant emission. The Bloch eigenstates and energy equations are significantly 

more complex and the oscillator strength is given by the following equation: 

|𝑀𝒌|2 =  𝑁1𝑁2𝜇2 [𝑐𝑜𝑠2𝛽𝛿𝒌,0 +
1

2
𝑠𝑖𝑛2𝛽(𝛿𝒌,𝒉 + 𝛿𝒌,−𝒉)] (4) 

with h = (
𝛾𝑁1

2𝜋⁄ , 1), which is the helical wave vector[48, 49]. As can been seen in the equation 

above, there will be three superradiant states in a cylindrical or helical system. The first 

superradiant state will arise from the case where k = 0, which is polarized along the long axis of 

the cylinder. The k = ±h states are perpendicular to the long axis of the cylinder and are degenerate 

which implies that they together create one superradiant state. Therefore, it stands that a cylindrical 

or helical molecular aggregate will have two superradiant states that appear within the absorption 

spectrum when one accounts for the fact that the second state is degenerate.   

 The applications of the J-type structure are far-reaching, from biomolecular science to 

organic solid-state science to nonlinear optics and quantum computing. J-aggregates of 

amphiphilic cyanine dyes have been shown to promote the growth of silver nanowires by behaving 

as structure-directing agents with the ability to reduce silver ions to silver nanoparticles[50]. J-

aggregates have also been used in the development of solid-state integrated devices that operate in 

the strong coupling limit of cavity quantum electrodynamics, due to exhibiting a collective narrow 

linewidth high oscillator strength optical transition that arises from their molecular arrangement 

and strong dipole coupling[51]. Cyanine dyes in general are an important near-infrared dye that 

have been in use since the mid-1800’s for applications ranging from photography to industrial 
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paints and from biological probes to laser materials[52]. Cyanine dyes are able to self-assemble 

into J-aggregate films in certain situations but in order to fully utilize their electron transport 

properties it is important for them to be arranged in a tubular fashion, similar to the green sulfur 

bacteria’s light harvesting antenna. The dyes used in our experiments consist of two nitrogen-

containing heterocyclic rings that are joined by a polymethine bridge. The LCA molecule can be 

deprotonated in alkaline solution, leading to the formation of a COO- group that allows the cyanine 

dye to electrostatically interact with the LCA. In this work, we synthesize J- and H-aggregates in 

two different fashions. First, we utilize a co-assembly process between LCA and cyanine dyes in 

ammonia solution and analyze how varying the molar ratio of LCA and cyanine dyes can change 

the morphology of the J- and H-aggregates formed via the co-assembly process. We also analyze 

the kinetics of the formation process and the size of the final product at the different molar ratios 

of LCA and cyanine dyes. We then analyze how altering the ammonia concentration of the solvent 

can change the type of molecular aggregates. Next, we utilize a two-step assembly process to form 

J- and H-aggregate of cyanine dyes on an LCA tube template at different ammonia concentrations. 

We also characterize the H- and J-aggregate coated LCA tubes optically and electronically. 

Finally, we look at potential applications of the H- and J-aggregate coated tubes by attempting to 

detect dopamine in buffer solution.   
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CHAPTER 2: FORMATION OF SPHERULITIC J-AGGREGATES FROM 

THE CO-ASSEMBLY OF LITHOCHOLIC ACID AND CYANINE DYE 

Portions of this chapter were originally published in Rhodes, S.; Liang, W.; Shteinberg, E.; Fang, 

J.; Formation of Spherulitic J-aggregates from the Co-assembly of Lithocholic Acid and Cyanine 

Dye. J. Phys. Chem. Lett., 2017, 8(18), 4504-4509. 

2.1 Introduction 

 Supramolecular aggregates of organic dyes through non-covalent interactions have 

attracted great interest in chemistry and materials science because they exhibit collective optical 

and excitonic properties[53, 54]. Cyanine dyes with two aromatic nitrogen-containing heterocycles 

linked by a polymethine chain are an important class of cationic dyes, which are widely used in 

color photography, nonlinear optics, and photoelectric devices[52]. The polarizability and 

hydrophobicity of cyanine dyes are the main driving forces for the formation of supramolecular 

aggregates. Depending on the spatial stacking of dye molecules, two types of supramolecular 

aggregates can be formed[38, 39]. J-aggregates represent an edge-to-edge stacking of dye 

molecules, showing a red-shifted absorption band with respect to the monomer band and a strong 

florescence emission. On the contrary, H-aggregates represent a face-to-face stacking of dye 

molecules, showing a blue-shifted absorption band compared with the monomer band and a strong 

emission quenching. The collective optical and excitonic properties of J- and H-aggregates can be 

explained by the Frenkel exciton theory[45]. Despite the importance of J-and H-aggregates of 

cyanine dyes in diverse optoelectronic applications, the control of their morphologies remains a 

challenge. 
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 Recently, efforts have been made in the use of the self-assembly of amphiphilic cyanine 

dyes to form tubular J-aggregates[55-63]. The co-assembly of amphiphilic cyanine dyes with 

surfactants has been used to alter the size and morphology of tubular J-aggregates and 

consequently their optical properties[64-66]. Bile acids are an amphipathic biological surfactant 

with a rigid steroid skeleton[67]. The concave side of the steroid skeleton of bile acids is 

hydrophilic, while the convex side is hydrophobic. The structure of bile acids is different from that 

of conventional surfactants, which often have a long hydrophobic tail and a hydrophilic polar 

headgroup. The amphipathic nature of bile acids is manifested in their unusual self-assembly 

ability. For example, lithocholic acid (LCA) in alkaline solution is able to self-assemble into well-

ordered supramolecular aggregates including micelles, ribbons, and tubes, depending on the 

condition under which the self-assembly occurs[29, 68-73]. The co-assembly of bile acids and 

other molecules has been proven to be an effective way to form complex supramolecular 

aggregates[74-78]. Herein, we report the formation of spherulitic J-aggregates from the co-

assembly of LCA with 3,3’-diethylthiacarbocyanine iodide (DiSC2(3)) in ammonia solution. The 

structure and optical properties of spherulitic J-aggregates are studied at different mixed molar 

ratios of LCA and DiSC2(3). We show that each spherulite contains a core, which serves as a 

nucleus for the growth of radially oriented J-aggregate fibrils. The growth kinetics of spherulitic 

J-aggregates are studied with absorption spectroscopy and optical microscopy. 

2.2 Experimental Methods 

Bile acids used in our experiments were CA, DCA, and LCA purchased from Sigma-

Aldrich. DiSC2(3) was from Molecular Probes. All chemicals were used without further 

purification. Ammonia solution was from Sigma-Aldrich. Water used in the experiments was 
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purified with an Easypure II system (18 MΩ cm, pH 5.7. Holey Formvar filmed grids were from 

SPI.  

The co-assembly of LCA and DiSC2(3) at different molar ratios was carried out in 1% w/w 

ammonia solution, in which the concentration of LCA was always kept at 1 mM. The mixture was 

sonicated in an ultrasonic bath (Branson 1510, Branson Ultrasonics) at ~60°C for 5 min and then 

allowed to cool to room temperature. The structure and morphology of supramolecular aggregates 

from the co-assembly were characterized with an optical microscope (Olympus BX), an SEM 

(Hitachi S3500N), a TEM (FEW Technai F30), and an AFM (Dimension 3100 Veeco 

Instruments). The optical property of supramolecular aggregates was characterized with a Cary 

300 UV-Vis spectrophotometer. For SEM and TEM measurements, aggregate solution was dried 

on a holey Formvar filmed grid at room temperature for 24 hours and then imaged at an 

accelerating voltage of 20 and 100 kV, respectively. AFM images were taken with a silicon nitride 

cantilever (Nanosensors) with a spring constant of 30 N/m and a resonant frequency of 260 kHz 

in tapping mode. For optical microscope observations, a drop of aggregate solution was placed on 

a glass substrate, followed by placing a cover glass slide on the top of the drop. IV curves were 

obtained using a Keithley 2400 Sourcemeter and the temperature was manipulated using an Instec 

Heating Stage.  
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Figure 7 Schematic illustration of the fabrication of interdigitated gold electrodes 

For the fabrication of interdigitated gold (Au) electrodes, a 100 nm thick SiO2 insulation layer was 

first grown on a 3-inch Si wafer by thermal oxidation process. A metallic seed film which consists 

of 100 nm Au layer over 10 nm Ti layer was then deposited on the top of the SiO2 layer by e-beam 

evaporation. A thin layer of positive photoresist (Microposit S1813, Dow Electronic Materials) 

was then spin-coated (3000 rpm, 30 sec), soft-baked (105°C, 3 min), exposed under I-line UV 

aligner (8 seconds) and developed (Microposit MF CID-26 Developer, 35 sec) to obtain 

photoresist patterns for the interdigitated electrodes with a gap of 20 μm. The developed patterns 

were hard-baked at 105°C for 10 min and used as a protective layer for subsequent etching steps. 

The Au/Ti seed layer in exposed areas was chemically etched with an Au etchant (KI and I2 

mixture solution) and a Ti etchant (0.5% HF). The remaining photoresist was dissolved in acetone 

and the interdigitated Au electrodes were formed after cleaning in methanol and deionized water. 

The schematic illustration of the fabrication of the interdigitated gold electrodes is shown in Figure 

7. 
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Figure 8 Chemical structure of 3,3’-diethylthiacarbocyanine iodide (DiSC2(3)) and (b) 

lithocholic acid. (c) Adsorption spectra of LCA/DiSC2(3) solution with the mixed ratio of 2:1 

and 5:1 after 24-hour incubation at room temperature, together with the adsorption spectrum of 

0.5 mM DiSC2(3) in 1% w/w ammonia solution. (d) Optical microscopy, (e) polarizing optical 

microscopy, and (f) SEM images of spherulitic J-aggregates formed in LCA/DiSC2(3) solution 

with the mixed ratio of 2:1 after 24-hour incubation. The concentration of LCA is 1 mM. 

2.3 Results and Discussion 

The chemical structure of DiSC2(3) and LCA used here is shown in Figure 8a,b. We find 

that LCA is able to induce the J-aggregation of DiSC2(3) in 1% w/w ammonia solution. As can be 

seen in the absorption spectra shown in Figure 8c, DiSC2(3) in 1% w/w ammonia solution shows 

a strong band at 558 nm, which agrees with the monomer absorption band (556 nm) reported in 
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the literature[79]. The addition of 1 mM LCA in DiSC2(3) solution at the mixed molar ratio of 5:1 

and 2:1 results in the significant decrease and the slight shift of the monomer band. Interestingly, 

a new strong band at 590 nm appears, which is red-shifted with respect to the monomer band. The 

red-shifted band at 590 nm is a result of the J-aggregation of DiSC2(3) through the interaction with 

LCA. At the mixed molar ratio of 2:1, a weak H-band at 459 nm is also observed, suggesting that 

a small fraction of DiSC2(3) forms H-aggregates. The weak H-band disappears at the mixed molar 

ratio of 5:1. When the mixed molar ratio is reduced to 1:1, there is still a large fraction of DiSC2(3) 

presenting as monomers, which is evident from the strong monomer band seen in Figure 9.  

 

Figure 9 Adsorption spectrum of LCA/DiSC2(3) solution with the mixed molar ratio of 1:1 after 

24-hour incubation at room temperature, together with the adsorption spectrum of 0.5 mM 

DiSC2(3) in 1% w/w ammonia solution. The concentration of LCA is 1 mM. 

Our results suggest the higher mixed molar ratio of LCA and DiSC2(3) is required to form 

J-aggregates. Interestingly, the absorption spectrum of DiSC2(3) in 1% w/w ammonia solution 

remains unchanged after the addition of either deoxycholic acid (DCA) or cholic acid (CA) with 
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the concentration below and above their critical micelle concentrations, which can be seen in the 

absorption spectra in Figure 10, suggesting that they are unable to induce the J-aggregation of 

DiSC2(3). CA, DCA, and LCA in 1% w/w ammonia solution with pH 11.3 are ionized due to the 

deprotonation of the carboxyl group. These bile acids differ from each other in the number and 

position of hydroxyl groups on their steroid skeleton. It has been shown that the order of the 

hydrophobicity is LCA > DCA > CA[80]. Thus we conclude that the hydrophobic interaction of 

LCA and DiSC2(3) plays a major role in the formation of J-aggregates.  

 

Figure 10 (a) Adsorption spectra of CA/ DiSC2(3) and (b) DCA/ DiSC2(3) solution with the mixed 

molar ratio of 5:1 after 24-hour incubation at room temperature. The concentration of CA is 1 mM 

and 13 mM, respectively. The concentration of DCA is 1 mM and 9 mM, respectively. The critical 

micelle concentration is 13 mM for CA and 9 mM for DCA[81]. 

Optical microscopy images reveal that the J-aggregates from the co-assembly of LCA and 

DiSC2(3) have a spherulitic morphology (Figure 8d). Each spherulite contains a core surrounded 

by radially oriented fibrils with pink color, which is the evidence of the presence of DiSC2(3) in 

the fibrils. The absorption spectra shown in Figure 8c suggest that DiSC2(3) in the fibrils forms J-

aggregates. The spherulitic J-aggregates exhibit a characteristic Maltese-cross extinction pattern 

of light extinction when being viewed under a polarizing optical microscope (Figure 8e). However, 

the core of the spherulites appears to be nonbirefringent, suggesting that it does not have a long-
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range ordered molecular arrangement. The structure of J-aggregate spherulites is further examined 

with a scanning electron microscope (SEM). Although SEM images show the spherulites collapse 

after being dried on substrates (Figure 8f), individual J-aggregate fibrils can still be resolved. They 

either stick out or lay down at the surface of the collapsed spherulites. The diameter of the J-

aggregate fibrils is measured in the range from 200 to 300 nm. Low-resolution optical microscopy 

and SEM images reveal the presence of many spherulitic aggregates in LCA/ DiSC2(3) solution 

(Figure 11). Occasionally, we can see the core in the SEM image of collapsed spherulitic 

aggregates (Figure 12). The surface of the core appears to be featureless.  

 

Figure 11(a) Low-resolution optical microscopy and (b) SEM images of spherulitic J-aggregates 

formed in LCA/ DiSC2(3) solution with the mixed ratio of 2:1 after 24-hour incubation. The 

concentration of LCA is 1 mM. 

In general, spherulites can be divided into two categories based on nucleation 

mechanisms[82]. Category I spherulites are a result of heterogenous nucleation, in which fibers 

grow outward radially from a nucleation site and branch intermittently to maintain a space-filling 

character. In contrast, Category II spherulites are a result of homogeneous nucleation, in which 

needles first form in solution and then subsequently split at their tips. Clearly, the spherulitic J-

aggregates from the co-assembly of LCA and DiSC2(3) resemble Category I spherulites. The 
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representative optical microscopy images inset in Figure 13 shows the growth of J-aggregate fibrils 

from the core over time. The formation mechanism of spherulitic J-aggregates is similar to that of 

spherulitic amyloaid fibrils[83, 84]. In addition, the representative optical microscopy images also 

show that the core gradually disassociates by changing its color over a long incubation time.  

 

Figure 12 SEM image of a collapsed spherulitic J-aggregate 

The radius of J-aggregate spherulites formed in LCA/ DiSC2(3) solution with the mixed 

molar ratio of 2:1 increases from ~5.0 to ~34 μm as the incubation time increases from 1 to 48 

hours; beyond that it remains almost unchanged (Figure 13). It is also evident in Figure 13 that the 

radius of spherulitic J-aggregates formed at the mixed molar ratio of 2:1 is slightly larger than that 

formed at the mixed molar ratio of 5:1 for the same incubation time. We note that spherulitic J-

aggregates formed at the mixed molar ratio of 5:1 have a slightly smaller core compared with the 

spherulitic J-aggregates formed at the mixed molar ratio of 2:1. In addition, the number of 

spherulitic J-aggregates decreases with the increase in the mixed molar ratio. When the mixed 

molar ratio increases to 10:1, there are very few J-aggregate spherulites observed. 
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 Spherulitic J-aggregates can be disrupted by sonicating spherulite solution in an ultrasonic 

bath (Figure 14a,b). The J-aggregate fibrils broken from the spherulites were examined with 

atomic force microscopy (AFM) and transmission electron microscopy (TEM). Both individual J-

aggregate fibrils and branched fibrils are observed in the AFM image shown in Figure 14c. The J-

aggregate fibrils have a smooth surface with the tip at their ends. After the sonication, the intensity 

of the J-band at 590 nm slightly decreases and a weak H-band at 453 nm appears (Figure 15), 

suggesting that a small fraction of DiSC2(3) transits into H-aggregates in the fibrils. We would like 

to point out that 1 mM LCA is able to self-assemble into nanotubes with a diameter of ~70 nm in 

1% w/w ammonia solution only after 1-week incubation (Figure 14d), in which helical ribbons 

serve as a precursor of LCA nanotubes. The closing of the gap of helical ribbons leads to the 

formation of nanotubes. However, there is no hollow structure observed in the TEM image of J-

aggregate fibrils (Figure 14e). The formation mechanism of J-aggregate fibrils is different than 

that of LCA nanotubes.  

 



24 

 

 

Figure 13 Growth kinetics of J-aggregate spherulites formed in LCA/ DiSC2(3) solution with a 

mixed ratio of 2:1 and 5:1. The representative optical microscopy images of J-aggregate 

spherulites formed at the mixed ratio of 2:1 are inset in Figure 2. The concentration of LCA is 1 

mM. 
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Figure 14 Optical microscopy images of broken spherulitic J-aggregates by (a) 1 min and (b) 5 

min sonication time. (c) AFM image of J-aggregate fibrils from broken spherulitic J-aggregates 

by 10 min sonication. (d) TEM images of LCA nanotubes and (e) J-aggregate fibrils. The 

spherulitic J-aggregates were formed in LCA/ DiSC2(3) solution with the mixed ratio of 2:1. The 

concentration of LCA is 1 mM 

Figure 16a shows the time-dependent adsorption spectra of LCA/ DiSC2(3) solution with 

the mixed molar ratio of 2:1. In the early stage after the addition of LCA in DiSC2(3) solution, a 

broad absorption band with a maximum at 459 nm is observed, suggesting the formation of H-

aggregates. The intensity of the less well-defined J-band at 590 nm appears, and its intensity 

increases over time. There is an isosbestic point in the time-dependent absorptions spectra; that is, 

the absorbance at 530 nm is not changed during the growth of J-aggregates and the decay of H-

aggregates. The isosbestic point represents the equilibrium between J-aggregates and H-

aggregates. Figure 16b is the plot of the intensity of the J-band as a function of incubation time, 
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showing a sigmoidal shape with an initial lag time, followed by a period of rapid growth and finally 

a slow approach to the equilibrium position. The sigmoidal growth kinetics of J-aggregate fibrils 

resembles that of amyloid β peptide fibrils[85].  

 

Figure 15 Adsorption spectra of J-aggregate spherulite solution before and after 10 min 

sonication. 

 Bile acids are known to form either primary or secondary micelles in aqueous solution as 

their concentrations approach the critical micelle concentration (CMC)[86]. Primary micelles 

contain a small aggregation number (2-10) formed through the hydrophobic interaction of bile 

acids, while secondary micelles are formed via the hydrogen bonding of primary micelles. It has 

been reported recently that hydrophobic molecules can be incorporated in the hydrophobic cavity 

of bile acid micelles[87, 88]. In our experiments, the concentration of LCA is 1 mM, which is close 

to its CMC[81]. Thus, it is reasonable for us to assume that DiSC2(3) molecules are incorporated 

in the hydrophobic cavity of LCA micelles through hydrophobic interaction. To verify this 
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hypothesis, we carried out the co-assembly of LCA and DiSC2(3) in 1% w/w ammonia solution 

with the mixed molar ratio of 5:1, where LCA concentration was 0.5 mM, which is lower than its 

CMC. In this case, a broad absorption band with a maximum at 459 nm is observed (Figure 17). 

The intensity of the less well-defined H-band at 459 nm remains unchanged even after 24 hours of 

incubation. The intense J-band at 590 nm, which appears at the LCA concentration of 1 mM, is 

not observed at the LCA concentration of 0.5 mM.  

 

Figure 16 (a) Time-dependent adsorption spectra of LCA/ DiSC2(3) solution with the mixed ratio 

of 2:1. (b) Intensity of J-band at 590 nm as a function of incubation time. The concentration of 

LCA is 1 mM. (c) Schematic representation of a LCA micelle with the J-aggregates of DiSC2(3) 

molecules in its hydrophobic cavity and (d) autocatalytic aggregation of J-aggregate incorporated 

LCA micelles into J-aggregate fibrils. 

 The length of LCA molecules from its hydroxyl to its carboxyl group (~1.5 nm) is slightly 

longer than the length of DiSC2(3) molecules (~1.4 nm). Thus, the hydrophobic cavity of LCA 
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micelles should be able to accommodate DiSC2(3) molecules. The formation of the intense J-band 

at 590 nm suggests that the DiSC2(3) molecules incorporated in the hydrophobic cavity of LCA 

micelles form J-aggregates. The number of coherently coupled molecules (Ncoh) in J-aggregates 

can be estimated from their absorption spectra according to equation[66]  

𝑁𝑐𝑜ℎ =  
3

2

∆𝜈𝑚
2

∆𝜐𝐽
2

− 1 (5) 

where Δνm and ΔνJ are the full widths at the half-maxima of the monomer and J-aggregate bands, 

respectively. On the basis of the adsorption spectra shown in Figure 8c, we estimate that there are 

four or five DiSC2(3) molecules incorporated in the hydrophobic cavity of LCA micelles to form 

J-aggregates (Figure 16c). It has been shown that the carboxylate ion of a LCA engages itself in 

hydrogen binding with the hydroxyl group of another LCA[70]. The linear aggregation of LCA 

vesicles through hydrogen binding has been reported in the literature[29]. Thus, we propose that 

the growth of J-aggregate incorporated LCA micelles through the hydrogen binding.  

 

Figure 17 Absorption spectrum of LCA/ DiSC2(3) solution with the mixed molar ratio of 5:1 

after 24-hour incubation at room temperature. The concentration of LCA is 0.5 mM. 
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Figure 18 a) IV curves of J-aggregate spherulites and b) J-aggregate spherulites bridging the gap 

of interdigitated Au electrodes with 20 μm gap. 

Upon drying of the J-aggregate spherulites on an interdigitated Au electrode, the IV characteristics 

of the spherulites were able to be determined. The IV curve of the sample prepared at a 5:1 mix 

ratio can be seen in Figure 18a. An optical microscope image of the spherulite bridging the 

electrode can also be seen in Figure 18b. It should be noted that slight variations in the temperature 

of the sample produced drastically different current levels. At low temperatures, there were much 

higher current levels than at high temperature and changes in current level could be seen in 

temperature changes as little as 2°C. The reduction in current is exponential as the temperature 

increases, with the largest drops occurring in the first few degrees of change. This can be seen in 

Figure 19a where we measure the current changes as a function of temperature for individual 

voltage levels. Figure 19b shows the cycling behavior of the J-aggregate spherulites. When cycled 

between 16°C and 24°C, the current level is reduced by more than half after the first two cycles 

and then levels off for a time before again dropping after the 14th cycle. These changes in current 
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level at different temperatures are believed to be caused by a reduction in the number of coherently 

coupled molecules as the temperature of the J-aggregate fibers increases. As the sample is cycled 

between low and high temperature, the molecules in the J-aggregate fibers become more and more 

disjointed and lose their ability to recover as the number of cycles increases. 

 

Figure 19 a) Current as a function of temperature at various voltage levels and b) cycle behavior 

of J-aggregate spherulites under a bias voltage of 3V at 16°C and 24°C. 

Another indication this may be the case is that the UV-vis absorption intensity of the J-

band is affected by variations in temperature. Results of taking the UV-vis spectrum of the J-

aggregate fibrils at different temperatures can be seen in Figure 20a. Similar to the IV curves, there 

is a noticeable reduction in absorption intensity as temperature of the sample solution is increased. 

The change from 18°C to 28°C results in a reduction of peak intensity corresponding to nearly 

60% which can be seen in Figure 20b showing the absolute percent change of absorption intensity 

and number of coherently coupled molecules as a function of temperature. The number of 

coherently coupled molecules could be calculated in the same manner as above and the average 
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number of coupled molecules decreases as the temperature of the solution is increased with a 

maximum average decrease of 1.86 molecules. 

 

 

Figure 20 a) UV-vis spectra of J-aggregate spherulites at various temperatures and b) percent 

change in absorption intensity and number of molecules coupled as a function of temperature. 

 In conclusion, we report the spherulitic J-aggregates formed by the co-assembly of LCA 

and DiSC2(3) in ammonia solution. Microscopy studies show that the spherulites contain a core, 

which serves as a nucleus for the growth of J-aggregate fibrils. Spectroscopy studies reveal that 

the growth of spherulitic J-aggregates follows a sigmoidal kinetic curve with an initial lag time, 

followed by a period of rapid growth and finally a slow approach to equilibrium. On the basis of 

spectroscopy measurements, we estimate that there are four or five DiSC2(3) molecules in LCA 

micelles to form J-aggregates through the hydrophobic interaction. The linear aggregation of J-

aggregate incorporated LCA micelles through the hydrogen binding leads to the growth of J-

aggregate fibrils. 

 The J-aggregate spherulites are capable of bridging the gap of an electrode and exhibit 

temperature-dependent electrical properties that are semi-reversible and cyclable. The changes in 



32 

 

the IV curves can be explained by the decrease in the number of coherently coupled molecules as 

the temperature of the sample is increased which is evidenced by a corresponding decrease in the 

absorption intensity upon heating of the sample solution. The average decrease in number of 

coupled molecules between low temperature (18°C) and high temperature (28°C) is nearly 2 

molecules.  

 In the following chapter, we examine the structure and properties of co-assembled 

structures formed by DiSC2(3) and LCA at higher ammonia concentrations.   
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CHAPTER 3: CONTROLLED FORMATION OF J- AND H-AGGREGATE 

FIBERS BY THE CO-ASSEMBLY OF CYANINE DYES AND BILE ACIDS 

3.1 Introduction 

 There has been great interest in designing one-dimensional (1D) supramolecular structures 

of π-conjugated molecules for the development of organic electronic and optoelectronic 

devices[89-94]. The arrangement of π-conjugated molecules in 1D supramolecular structures 

defines their physical properties and consequently device performances. Among various 1D 

supramolecular structures, J- and H-aggregates of π-conjugated dye molecules are particularly 

interesting because of their unique optical and excitonic properties that are not given by individual 

dye molecules[53]. H-aggregates are composed of dye molecules in a face-to-face stacking, giving 

rise to a blue-shifted absorption band compared with the monomer band and a strong emission 

quenching. In contrast, J-aggregates represent an edge-to-edge stacking of dye molecules, showing 

a rad-shifted absorption band with respect to the monomer band and a strong fluorescence 

emission[38, 40]. It has been shown that the optical and excitonic properties of J- and H-aggregates 

depend on their dimensions and morphologies.  

 Inspired by the antennae of photosynthetic green sulfur bacteria, which is the most efficient 

natural light-harvesting complexes, in which large numbers of bacteriochlorophylls organize into 

ID supramolecular aggregates with delocalized excitation[95], there has been great interest in 

designing J-aggregate ribbons, fibers, and tubes to achieve excellent optical and excitonic 

properties for electronic and optoelectronic applications. Cyanine dyes are a highly conjugated 

molecule composed of two nitrogen-containing heterocyclic rings, which are linked by a 

polymethine bridge[52]. Great efforts have been made in the use of the self-assembly of 
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amphiphilic cyanine dyes with the hydrophobic substituents chemically linked to their 

chromophores to form J-aggregate nanotubes[55-57, 60-63, 96-98]. However, it is still a challenge 

to form H-aggregate fibers and tubes using the self-assembly of amphiphilic cyanine dyes[99]. 

Recently, the co-assembly of structurally different molecules has been proven to be a promising 

approach for forming 1D supramolecular structures without requiring time-consuming processes 

for the synthesis of amphiphilic molecules, in which the structure and properties can be easily 

tuned by properly choosing molecules[100-102]. Lithocholic acid (LCA) is a biological surfactant 

having a rigid and planar steroid backbone and a carboxyl group linked to the steroid backbone 

through a short alkyl chain[67]. Due to its unique self-assembly capability[29, 68, 70, 72, 73], 

LCA has been used as a directing agent to organize other molecules into 1D supramolecular 

structures such as ribbons and tubes at different length scales[74-78, 103, 104]. 

 Here, we report the use of the co-assembly of 3,3’-diethylthiacarbocyanine iodide 

(DiSC2(3)) and lithocholic acid (LCA) in ammonia solution to control the formation of J- and H-

aggregate fibers by altering the condition under which the co-assembly occurs. Specifically, we 

find that the co-assembly of DiSC2(3) and LCA in 30% ammonia solution at the mixed molar ratio 

of 5:1 and 2:1 form H-aggregate fibers. When the mixed molar ratio is reduced to 1:1, the co-

assembly of LCA and DiSC2(3) leads to the formation of H-/J-aggregate hybrid rods, which split 

into J-aggregate fibers as ammonia evaporates. The electronic properties of J- and H-aggregate 

fibers placed on interdigitated gold electrodes are measured as a function of temperature. 
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3.2 Experimental 

3.2.1 Materials 

 Lithocholic acid (LCA), 3,3’-diethylthiacarbocyanine iodide (DiSC2(3)), and ammonia 

water were purchased from Sigma-Aldrich and used without further purification. Water used in 

our experiments was purified with an Easypure II system (18 MΩ cm, pH 5.7). Holey Formvar 

filmed grids were from SPI. 

3.2.2 Methods 

 The co-assembly of LCA and DiSC2(3) with different mixed molar ratios was carried out 

in 1%, 5%, 10%, 15% and 30% w/w ammonia solution, in which the concentration of LCA was 

always kept at 1 mM. The mixture was sonicated in an ultrasonic bath (Branson 1510, Branson 

Ultrasonics Co.) at ~23°C for 5 min and then allowed to sit in the dark overnight for the 

formation of J- and H-aggregate fibers. 

 Interdigitated gold (Au) electrodes were formed with a conventional photolithography 

process. Briefly, a 100 nm thick SiO2 insulation layer was first grown on a 3-inch Si wafer by 

thermal oxidation process. A metallic seed film which consists of 100 nm Au layer over 10 nm Ti 

layer was then deposited on the top of the SiO2 layer by e-beam evaporation. A thin layer of 

positive photoresist (Microposit S1813, Dow Electronic Materials) was then spin-coated (3000 

rpm, 30 sec), soft-baked (105 ℃, 3 min), exposed under I-line UV aligner (8 seconds) and 

developed (Microposit MF CID-26 Developer, 35 sec) to obtain photoresist patterns for the 

interdigitated electrodes with a gap of 20 m. The developed patterns were hard-baked at 105℃ 

for 10 min) and used as a protective layer for subsequent etching steps. The Au/Ti seed layer in 

exposed areas was chemically etched with an Au etchant (KI and I2 mixture solution) and a Ti 



36 

 

etchant (0.5% HF). The remaining photoresist was dissolved in acetone and the interdigitated Au 

electrodes were formed after cleaning in methanol and deionized water. The interdigitated Au 

electrodes were cleaned with deionized water before the deposition of J and H-aggregate fibers. In 

our experiments, 4L J- and H-aggregate fiber solution was dropped on the interdigitated Au 

electrodes and dried in air at room temperature. 

3.2.3 Instruments 

The structure and morphology of supramolecular aggregates from the co-assembly of LCA 

and DiSC2(3) were characterized with an optical microscope (Olympus BX), a scanning electron 

microscope (SEM, Hitachi S3500N), and an atomic force microscope (AFM, Dimension 3100 

from Veeco Instruments). The optical properties of the supramolecular aggregates were 

characterized with a Cary 300 Uv-vis spectrophotometer. For SEM measurements, aggregate 

solution was dried on a holey Formvar filmed grid at room temperature for 24 hours and then 

imaged at an accelerating voltage of 20 kV. AFM images were taken with a silicon nitride 

cantilever (Nanosensors) with a spring constant of 30 N/m and a resonant frequency of 260 kHz 

in tapping mode. For optical microscope observations, a drop of aggregate solution was placed on 

a glass substrate, followed by placing a cover slide on the top of the drop. Current-voltage (I-V) 

measurements were performed with a Keithley 2400 sourcemeter. 

3.3 Results and Discussion 

 The chemical structure of DiSC2(3) and LCA is shown in Figure 21a and b, respectively. 

LCA has a carboxyl group and several chiral centers. It was shown that the interplay of 

electrostatic, van der Waals, and chiral interactions was responsible of the self-assembly behavior 

of LCA in aqueous solution. In a previous publication, we showed that LCA and DiSC2(3) at the 
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mixed molar ratio of 1:1, 2:1 and 5:1 were able to co-assemble into spherulitic J-aggregates in 1% 

w/w ammonia solution[104]. In each case, the concentration of LCA was kept at 1 mM, which 

was higher than its critical micelle concentration (CMC). There was no J-aggregation observed if 

the co-assembly of LCA and DiSC2(3) occurred at an LCA concentration below 1 mM. In our 

current work, the co-assembly of LCA and DiSC2(3) with the molar ratio of 1:1, 2:1 and 5:1 was 

carried out in aqueous solution with the ammonia concentration from 1% to 30%, in which the 

concentration of LCA was kept at 1 mM. The absorption spectra from the co-assembly at the molar 

ratio of 5:1 reveals a sharp J-band at 590 nm, which is red-shifted with respect to the monomer 

band of DiSC2(3) (556 nm), in the ammonia concentration from 1% to 15% (Figure 21c). The J-

aggregates from the co-assembly of LCA and DiSC2(3) show a spherulitic morphology containing 

a core surrounded by radially oriented fibrils (Figure 21d). 
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Figure 21 Chemical structures of (a) DiSC2(3) and (b) LCA. (c) absorption spectra of 

LCA/DiSC2(3) solution with the mixed ratio of 5:1 after 24 hour incubation at room temperature 

in 1%, 5%, 10% and 30% w/w ammonia solution. (d) Optical microscopy image of J-aggregate 

spherulites. (e) and (f) are optical microscopy and SEM images of H-aggregate fibers 

The J-band at 590 nm significantly decreases as the ammonia concentration increases to 

30%. Instead, we observed a sharp and intense H-band at 530 nm (Figure 21c), which is blue-

shifted with respect to the monomer band of DiSC2(3) (556 nm). The H-aggregates have a fiber-

like morphology with pink color (Figure 21e). The pink color suggests the incorporation of 

DiSC2(3) in the fibers. The sharp and blue-shifted H-band at 530 nm indicates that the incorporated 

DiSC2(3) forms H-aggregates. Figure 21f shows the typical SEM image of the H-aggregate fibers. 

The diameter of H-aggregate fibers is in the range from 200 nm to 300 nm. The bundles of H-

aggregate fibers are also visible in Figure 21f. It is clear that the formation of J-aggregate 
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spherulites and H-aggregate fibers follows different pathways. We note that the solubility of 

DiSC2(3) molecules in 1% ammonia solution is low. 

 

Figure 22 SEM image of random aggregates of 0.2 mM DiSC2(3) in 1% ammonia solution. 

They randomly aggregate together to form particles (Figure 22) Thus, the J-aggregate fibers from 

the co-assembly of LCA and soluble DiSC2(3) in 1% ammonia solution efficiently nucleate on the 

surface of the random aggregated particles, resulting ultimately in the formation of J-aggregate 

spherulites (Figure 21d). The solubility of DiSC2(3) in 30% ammonia solution is significantly 

improved. There is no random aggregate particle of DiSC2(3) observed. In this case, the H-

aggregate fibers from the co-assembly of LCA and DiSC2(3) nucleate and grow in solution (Figure 

21e). Our results also show the nature of the aggregation of DiSC2(3) in the fibers depends on the 

co-assembly pathways. DiSC2(3) forms J-aggregates in the fibers grown out from the surface of 

the randomly aggregated particles, while the H-aggregates of DiSC2(3) are formed in the fibers 

grown in solution. 
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Figure 23 Absorption spectra of H-aggregate fibers from the co-assembly of LCA and DiSC2(3) 

with the molar ratio of (a) 2:1 and (b) 5:1 in 30% ammonia solution before and after 19.5 hours 

of evaporation at room temperature. 

 The sharp H-band at 530 nm is also observed from the co-assembly of LCA and DiSC2(3) 

with molar ratio of 2:1 in 30% ammonia solution (Figure 23a). However, when the molar ratio of 

LCA and DiSC2(3) is reduced to 1:1, a broad band with the maximum at 426 nm is observed 

(Figure 24a), which is blue-shifted with respect to the monomer band of DiSC2(3). Surprisingly, 

the change of the absorption spectra takes place as ammonia evaporates at room temperature. The 

broad H-band decreases, while a well-defined J-band at 590 nm appears and rapidly increases over 

time as the evaporation progresses. Figure 24b is the plot of the intensity of the sharp J-band at 

590 nm and broad H-band with the maximum at 426 nm as a function of evaporation time. The 

broad H-band gradually decreases over time as the evaporation of ammonia takes place. The 

intensity of the J-band shows a sigmoidal shape with an initial lag time (~ 9 hours) followed by a 

period of rapid growth and reaches a saturation region after 19 hours. 

(a) (b)
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Figure 24 (a) Time-dependent absorption spectra of LCA/DiSC2(3) solution with the mixed ratio 

of 1:1 as the evaporation of ammonia solution takes place at room temperature. (b) Intensity of J-

band at 590 nm and H-band at 426 nm as a function of evaporation time. Optical microscopy of 

H-/J-aggregate hybrid rods (c) before and (d) after 19 hours evaporation time. (e) SEM image of 

J-aggregate fibers from the splitting of H-/J-aggregate hybrid rods. 

This result indicates that the H- to J-aggregate transition begins to take place after 9 hours 

evaporation and completes after 19 hours evaporation, at which time the H-band completely 

disappears. An image of the solution before and after the evaporation process can be seen in Figure 

25a and Figure 25b, respectively. There is no H- to J-aggregate transition observed for H-aggregate 

fibers with the sharp H-band at 530 nm from the co-assembly of LCA and DiSC2(3) with the molar 

ratio of 5:1 and 2:1 in 30% ammonia solution (Figure 23).  
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Figure 25 a) H-aggregate solution formed at a 1:1 molar ratio before evaporation takes place and 

b) J-aggregate solution formed at a 1:1 molar ratio via the evaporation of ammonia after 24-

hours evaporation time. 

Optical microscopy observations show that the H-aggregates have a rod-like morphology with 

brown color (Figure 24c). The H-aggregate rods have the length in the range from 25 μm to 40 

μm. They appear to be unstable. After 15 hours evaporation of ammonia at room temperature, the 

rods split into fibers at their ends and their color shifts to a dark purple (Figure 24d). After 20 hours 

evaporation, a large amount of dispersed fibers through the splitting of rods are observed (Figure 

24e). After being excited at 580 nm, the J-aggregate fibers show a strong emission at 610 nm and 

can be clearly seen with a fluorescent microscope (Figure 26), which is another feature of J-

aggregates besides the red-shifted absorption band at 590 nm.  
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Figure 26 (a) Absorption and emission spectra of J-aggregate fibers formed from the co-

assembly of LCA and DiSC2(3) with the molar ratio of 1:1 in 30% ammonia solution. (b) 

Fluorescent microscope image of J-aggregate fibers 

 The H- to J-aggregate transition of individual rods can be in situ monitored with a 

polarizing optical microscope (POM) during the drying of a drop of solution on a glass substrate, 

in which the evaporation occurs rapidly. As can be seen in the POM images shown in Figure 27a, 

three rods marked with white circles show initially blue color and then transform into a red color 

within 10 minutes. The blue-to-red color transition starts form the ends of the rods and then extends 

along their long axis (Figure 27b and c). The different colors of H- and J-aggregates in POM 

images can be explained by their different absorption regions[105]. Thus, which light illumination 

under a POM can provide different transmission of colors. The apparent diameter of the rods in 

the POM image enlarges after the H- to J-aggregate transition (Figure 27c). The enlarged diameter 

is a result of the splitting of the rods, which is evident in the AFM image shown in Figure 27d. 

The AFM image shows that the rods appeared in the optical microscopy images (Figure 24c, Figure 

27a) are actually the bundles of tightly packed fibers. After being dried on glass substrates, the 

(b)

5µm
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rods split into fibers from their ends to form sheaf-like bundles, in which individual fibers with the 

diameter of 120 ± 20 nm and the length of 30-40 μm are clearly visible in the AFM image. 

 

Figure 27 (a – c) Polarized optical microscopy images of H-/J-aggregate hybrid rods during the 

drying of a drop of rod solution on a glass substrate. (d) AFM image of H-/J-aggregate rods dried 

on glass substrate. (e) Schematic representation of H- to J-aggregate transition during the 

splitting of H-/J-aggregate rods 

 The absorption spectra shown in Figure 24a reveals that DiSC2(3) forms J-aggregates in 

the fibers split from the rods. The broad H-band of the rods is likely due to the formation of the 

possible H-type coupling of the DiSC2(3) molecules in the neighboring J-aggregate fibers, which 

are tightly packed in the rods (Figure 27e). The H-type coupling of interfibers may mark (suppress) 

the J-coupling of DiSC2(3) molecules in the fibers, leading to the apparent optical property of rods 

resembling H-aggregate character. The splitting of fibers breaks the H-coupling of interfibers and 

restores the J-aggregate character of the fibers (Figure 27e). Thus, the rods can be considered as a 

J-/H-aggregate hybrid system. 
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Figure 28 Absorption spectra of H-/J-aggregate rods formed from the co-assembly of LCA and 

DiSC2(3) with the molar ratio of 1:1 in 30% ammonia solution as a function of time. The rod 

solution was sealed in a glass bottle. 

 Our control experiments show that there is no H- to J-aggregate transition if the rod solution 

was sealed in a glass bottle (Figure 28), suggesting that the evaporation of ammonia causes the 

splitting of H-/J-aggregate hybrid rods. The pKa value of LCA is ~ 7.0. In 30% ammonia solution 

with pH 11.2, LCA should be deprotonated. Thus, J-aggregate fibers should be negatively charged. 

The interplay between van der Waals attraction and electrostatic repulsion should contribute to the 

formation and splitting of rods (bundles of J-aggregate fibers). The formation of rods is likely to 

be a result of the charge screening of J-aggregate fibers by NH4
+ counterions. As the evaporation 

of ammonia occurs, the concentration of NH4
+ counterions will drop. The electrostatic repulsion 

of J-aggregate fibers causes the splitting of the rods. To verify this hypothesis, we restored J-

aggregate fiber solution back to its original volume by filling 30% ammonia solution. As can be 

seen in Figure 29a, the sharp J-band at 590 nm significantly decreases 24 hours after the addition 
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of 30% ammonia solution. Two H-bands appear, on at 426 nm and the second at 525 nm. The 

appearance of the H-bands is due to the interaction of DiSC2(3) molecules in adjacent J-aggregate 

fibers in the rods, which masks the J-band at 590 nm. Optical microscopy images reveal that purple 

J-aggregate fibers recombine together to form brown H-/J-aggregate hybrid rods due to the charge 

screening as the concentration of NH4
+ counterions increases, reverting to H-type coupling (Figure 

29b and c). Our observations confirm the rods are J-/H-aggregate hybrid systems, in which H-type 

coupling among the fibers masks the J-type coupling in the fibers. The absorption spectra show 

that there is no J- to H-aggregate transition taken place after the addition of 500 mM NaCl (Figure 

29a). In this case, loosely packed bundles of J-aggregate fibers are observed (Figure 29d). There 

is no color change taken place after the formation of loosely packed bundles. The lateral interaction 

of J-aggregate fibers is responsible for H-type coupling. This result may suggest that Na+ 

counterions partially mask the electrostatic repulsions between J-aggregate fibers, leading to the 

formation of loosely packed bundles, in which the H-coupling does not occur. It has been shown 

that NH4
+ counterions can induce the formation of hexagonally packed bundles of self-assembled 

LCA tubes[68]. While the highly ordered organization of LCA tubes is not observed in Na+ 

counterions. The fine charge screening by NH4
+ allows van der Waals attraction to overwhelm the 

electrostatic repulsion of J-aggregate fibers to form closely packed bundles, in which the H-type 

coupling between J-aggregate fibers occurs. The H-type coupling of J-aggregate fibers from the 

co-assembly of LCA and DiSC2(3) is similar to that which occurs from the assembly of conjugated 

polymers, which also exhibit two classes of electronic couplings: J-type coupling within a polymer 

chain and H-type coupling between polymer chains when they bundled together. The increase of 

the separation distance between the polymer chains breaks the H-coupling[106]. 
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Figure 29 (a) Absorption spectra of J-aggregate fiber solution before (black) and after the 

addition of 1 mL 30% ammonia solution (blue) and 500 mM NaCl (red). (b) Optical microscopy 

images of dispersed J-aggregate fibers (c) H-/J-aggregate hybrid rods afer the addition of 1 mL 

30% ammonia solution and (d) loosely packed J-aggregate fiber bundles after the addition of 500 

mM NaCl 

 The current understanding of electronic transport properties of J- and H-aggregates, even 

for the well-studied J-aggregate tubes, is rather limited[107, 108]. To exploit the potential 

application of J-and H-aggregate fibers in electronic devices, we measure their electrical properties 

by depositing them on the interdigitated Au electrodes with a gap of 20 μm, which were fabricated 

on a SiO2 substrate by photolithography and a schematic representation can be seen in Figure 7. 

The electronic transport through the H- and J-aggregate fibers should depend on both the properties 

of the fibers and the fiber-electrode contact. The bridging of the deposited H-aggregate fibers of 

the gap between the Au electrodes was confirmed by AFM (Figure 30a). 
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Figure 30 (a) AFM image of H-aggregate fibers bridging the 20 μm gap between interdigitated 

Au electrodes. (b) Temperature-dependent I-V curves of H-aggregate fibers and (c) J-aggregate 

fibers. (d) Resistance of H- and J-aggregate fibers as a function of temperature and (e) 

temperature-dependent absorption spectra of J- and H-aggregate fibers in solution. 

 We find that the I-V curves of H-aggregate fibrils are non-linear with the threshold voltage 

of ~1.2 V (Figure 30b). Above the threshold, the current I increases rapidly with the increase of 

voltage. The nonlinear I-V curves suggest the Schottky contact between the H-aggregate fibers 

and the Au electrodes. In contrast, the I-V curves of J-aggregate fibers are linear (Figure 30c), 

suggesting the Ohmic contact of the J-aggregate fibers and the Au electrode. The different contacts 

of J-and H-aggregate fibers with Au electrodes can be explained by their different electron energy 

levels with respect to the Fermi level of the Au electrodes. In order to obtain the HOMO/LUMO 

levels of the J- and H-aggregate fibers, cyclic voltammetry was done in 1 M KCl solution with the 

samples dried on ITO. The scan rate was 1 mV/s. The CV curves of the H- and J-aggregates can 
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be seen in Figure 31a. The HOMO/LUMO levels were calculated using the empirical equations 

[109]: 

𝐸(𝐻𝑂𝑀𝑂) =  −𝑒(𝐸𝑜𝑛𝑠𝑒𝑡 + 4.4), (6) 

𝐸(𝐿𝑈𝑀𝑂) = 𝐸𝑔 + 𝐸(𝐻𝑂𝑀𝑂), (7) 

The band gap energy, Eg, of J- and H-aggregate fibers can be calculated according to the 

equation[109]: Eg = 1242/λonset. For J-aggregate fibers, λonset is 590 nm and thus Eg is 2.10 eV. For 

the H-aggregate fibers, λonset is 530 nm and Eg is 2.34 eV. Based on these values for the band gaps 

of the H- and J-aggregate fibers we can calculate the HOMO/LUMO levels by finding the onset 

potential of oxidation in the CV curves provided in Figure 31a. For the H-aggregate fibers, 

E(HOMO) = -4.65 eV and E(LUMO) = -2.32 eV. For the J-aggregate fibers, E(HOMO) = -4.63 

eV and E(LUMO) = -2.51 eV. This indicates that the conduction band of the H-aggregate fibers is 

higher than that of the J-aggregate fibers which agrees with the fact that the excited state of H-

aggregates being higher energy than that of J-aggregates. A schematic energy level diagram of H- 

and J-aggregate fibers together with the Fermi level of Au electrodes is shown in Figure 31b. 
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Figure 31 a) CV curves of H-aggregates formed at a 5:1 mix ratio (black) and J-aggregates 

formed via evaporation of ammonia from 1:1 mix ratio sample (red) done in 1 M KCl solution 

and b) Energy level diagram of the HOMO/LUMO levels of the H- and J-aggregates compared 

to the Fermi level of Au. The red line denotes the LUMO level of J-aggregates, blue line the 

LUMO level of H-aggregates and the gold line is the Fermi level of Au. 

The Schottky contact indicates that the Fermi level of Au electrodes is located between the 

conduction and valence bands of H-aggregate fibers. Thus, a large voltage is required to remove 

the difference and make the electronic injection from the Au electrode to the H-aggregate fibers. 

The Ohmic contact indicates that the conduction band of J-aggregate fibers is lower than the Fermi 

energy of Au electrodes. There is a negligible contact resistance, allowing the electrons to freely 

flow across the contact. During the drying process on the Au electrodes, the large amount of 

ammonia ions in solution will adsorb onto the Au electrodes and alter the Fermi level of the Au 

electrodes[110]. This coupled with changes in the Fermi level due to being at room temperature 

will bring the Au Fermi level to a value of -2.5 eV which lines up almost exactly with the 

conduction band of the J-aggregate fibers and below the conduction band of the H-aggregate 

fibers[111]. In addition, the I-V curves of H-aggregate fibers are only slightly affected by 
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temperatures in the range from 18°C to 28°C (Figure 30b). However, large changes in the I-V 

curves of J-aggregate fibers are observed as the temperature is increased from 18°C to 28°C 

(Figure 30c). For the H-aggregate fibers, the resistance was calculated from the slope of the linear 

part of the I-V curves. As can be seen in Figure 30d, the resistance of the H-aggregate fibers 

remains a near constant of 4 MΩ as the temperature increase from 18°C to 28°C. while the 

resistance of the J-aggregate fibers increases from 6 MΩ to 190 MΩ as the temperature increase 

from 18°C to 28°C. To better understand the difference in the temperature-dependent resistances 

between J-aggregate and H-aggregate fibers, we measure the temperature-dependent absorption 

spectra of J-aggregate and H-aggregate fibers in solution. Upon heating of the solution from 18°C 

to 28°C at a rate of 5 degree/minute, the intensity of the J-band drops 37%, while the intensity of 

the H-band only drops 15% (Figure 30e). Since there is no monomer band observed during the 

heating, the intensity decrease should be a result of the change of molecular packing in the fibers. 

Our results suggest that the face-to-face interaction of DiSC2(3) in the H-aggregate fibers is 

stronger than the edge-to-edge interaction of DiSC2(3) in the J-aggregate fibers, which agrees with 

the results of J- and H-aggregates formed within the groove of DNA templates[112]. The number 

of coherently coupled molecules (Ncoh) in the J-aggregate fibers is significantly reduced. Ncoh can 

be calculated from the absorption spectra according to Equation (5) [66, 113]. Thus, we use the 

equation to calculate the Ncoh, which decreases from 4 to 2 as the increase of temperature from 18 

°C to 28°C (Figure 32). This explains the strong temperature-dependent resistance change of J-

aggregate fibers. 
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Figure 32 Number of coherently coupled molecules in the J-aggregate fibers as a function of 

temperature 

 In summary, we show that the co-assembly of LCA and DiSC2(3) in NH4OH solution can 

lead to the formation of J- and H-aggregate fibers, depending on the condition under which the co-

assembly occurs. Significantly, the co-assembly of LCA and DiSC2(3) at the mixed molar ratio of 

5:1 and 2:1 in 30% ammonia solution form H-aggregate fibers. When the molar ratio is reduced to 

1:1, the co-assembly of LCA and diSC2(3) leads to the formation of H-/J-aggregate hybrid rods, 

which gradually split into J-aggregate fibers as ammonia evaporates. The transition from H-/J-

aggregate hybrid rods to J-aggregate fibers is reversible and can be in situ observed by optical 

microscopy due to their color changes. The I-V curves of interdigitated Au electrodes bridged by 

J- and H-aggregate fibers shows that H-aggregate fibers form a Schottky junction with Au 

electrodes and J-aggregate fibers show Ohmic contact with Au electrodes. Our findings offer a 

simple way for controlling the formation of J- and H-aggregate fibers by the co-assembly of LCA 
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and DiSC2(3). The J- and H-aggregate fibers with distinct physical properties might serve as the 

functional materials for electronic devices.   
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CHAPTER 4: TWO-STEP ASSEMBLY OF H- AND J-AGGREGATE 

COATINGS ON LITHOCHOLIC ACID BASED NANOTUBES 

4.1 Introduction 

Self-assembled supramolecular structures have been of great interest in the scientific 

community over the last two decades due to their wide range of potential applications. Of most 

interest has been the structures formed by amphiphilic molecules, of which an important class is 

the surfactant. Surfactants are able to self-assemble into a wide range of geometries with a wide 

range in sizes[114]. These structures have been studied for their potential in microelectronics, as 

drug delivery systems, and for their unique encapsulation abilities[115]. As mentioned before in 

Chapter 1, bile acids are an important class of amphiphilic molecules. They are biologically active 

surfactants that serve a valuable role in the human body as emulsifiers of cholesterol. They also 

have a unique molecular structure which consists of a concave hydrophilic face and a convex 

hydrophobic face that leads to aggregation behavior that is different than that of typical 

surfactants[15]. They are able to aggregate at much lower concentrations into primary micelles 

that will continue to aggregate into elongated secondary micelles via hydrogen bonding between 

the outward facing hydrophilic groups[14]. Further study of bile acid aggregation has shown that 

certain derivatives of bile acids are able to assemble into a wide range of different morphologies 

including helical fibers[116], ribbons[28], and straight tubes[69] depending on a variety of factors. 

These can include things such as solution pH, the ionic strength of the solvent, as well as 

concentration of bile acid. Our current work is solely focused on the self-assembly behavior of 

LCA. LCA has very low solubility at physiological pH, and therefore the pH of the solvent needs 

to be increased to alkaline values in order to increase solubility. This increase in solubility is due 
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to the deprotonation of the carboxyl group from COOH into COO-[72]. With an increase in 

solubility the formation time of LCA tubes is decreased from two months to only a few days. LCA 

tube formation is indicated by a transition in solution appearance from clear to a milky white which 

takes place over a time period of 48 hours. In this work we form LCA tubes in 1% w/w NH4OH 

solution and study its structure via optical microscopy, SEM, TEM and AFM measurements.  

Cyanine dyes are an important class of near-infrared dyes that are composed of two 

nitrogen containing heterocyclic rings that are joined by a polymethine bridge of varying 

length[52]. Dyes used in our experiments are cationic dyes and therefore are able to interact with 

the deprotonated LCA to form H- and J-aggregate coatings on the surface of the preformed LCA 

tubes. In this work we show a path towards the templated formation of H- and J-aggregates on the 

surface of preformed nanotubes via the electrostatic interaction. H- and J-aggregate coatings are 

then characterized via UV-vis absorption spectra, TEM, and electrical measurements using a 

sourcemeter. 

4.2 Experimental 

4.2.1 Materials 

Lithocholic acid (LCA), NH4OH solution, 3,3’-diethylthiadicarbocyanine iodide (D25), 

and 3,3’-dipropylthiadicarbocyanine iodide (D35) were purchased from Sigma Aldrich.  All 

chemicals were used without further purification.  Water used in the experiments was purified an 

Easypure II system (18 MΩ cm, pH 5.7).  Silicon wafer and carbon coated copper grids were from 

Sigma-Aldrich and Electron Microscopy Science, respectively.  
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4.2.2 Formation of J-aggregate Tube 

LCA was added, at a concentration of 3 mM, to aqueous solution containing 1% and 15% 

NH4OH at room temperature.  The samples were then sonicated for 2-3 minutes at a temperature 

of 50˚C, after which they were stored for 24-48 hours at room temperature to allow for tube growth.  

Once LCA tube formation had occurred D25 and D35 were added to the tube solution for a final 

dye concentration of .13 mM per sample.  The samples were then stored in the dark to allow for 

the dye to coat the tubes overnight. 

4.2.3 Characterization 

The adsorption properties of the J-aggregate tubes were characterized with a Cary 300 UV-

vis spectrophotometer.  The morphology of the J-aggregate tubes was imaged with a transmission 

electron microscope (FEW Technai F30 TEM), a scanning electron microscope (Hitachi S3500N 

SEM), an atomic force microscope (AFM) and an optical microscope (Olympus BX51).  For the 

TEM measurements, tubes were dried on carbon coated copper grids. AFM images of tubes dried 

on a glass substrate were taken with a Dimension 3100 AFM from Veeco Instruments in air at 

room temperature.  A silicon nitride cantilever (Nanosensors) with a spring constant of 30 N/m 

and a resonant frequency of 260 kHz was used in tapping mode.  The size of the cantilever tips 

(radius of curvature) was about 15 nm according to the manufacturer. Cyclic voltammetry (CV) 

measurements were performed in aqueous solution containing 1M KCl using a CS 350 

Electrochemical workstation, in which J-aggregate nanotubes were deposited on an ITO working 

electrode, a platinum wire acted as the counter electrode and Ag/AgCl served as a reference 

electrode.  Current-voltage measurements were performed with a Keithley 2400 sourcemeter. 
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4.2.4 Fabrication of Interdigitated Gold Electrodes 

For the fabrication of interdigitated gold electrodes, a 100 nm thick SiO2 insulation layer 

was first grown on a 3-inch Si wafer by thermal oxidation process.  A metallic seed layer which 

consists of 100 nm Au over 10 nm Ti was then deposited on the top of the SiO2 layer by e-beam 

evaporation. A thin layer of positive photoresist (Microposit S1813, Dow Electronic Materials) 

was then spin-coated (3000 rpm, 30 sec), soft-baked (105 ℃, 3 min), exposed under I-line UV 

aligner (8 sec) and developed (Microposit MF CID-26 Developer, 35 sec) to obtain photoresist 

patterns for interdigitated electrodes with a gap of 50 m. The developed patterns were hard-baked 

at 105℃ for 10min) and used as a protective layer for subsequent etching steps. The Au/Ti seed 

layer in exposed areas was chemically etched with an Au etchant (KI and I2 mixture solution) and 

a Ti etchant (0.5% HF). The remaining photoresist was dissolved in acetone and the interdigitated 

electrodes were made ready after cleaning in methanol and deionized water. A schematic 

representation of this process can be seen in Figure 7. 
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4.3 Results and Discussion 

 

Figure 33 a) TEM and b) SEM of tubes formed in 1% ammonia 

LCA dissolved in 1% ammonia solution was observed to form long, straight tubes over a 

period of 24-48 hours. Figure 33shows the tubes under a) TEM and b) SEM. The TEM image 

supplies information on the active formation mechanism in ammonia solution. Previously in our 

group it had been shown that in NaOH solution, LCA forms small vesicles that linearly aggregate 

into tubes over time. These tubes formed via small vesicle aggregation were able to switch their 

morphology from helical to straight as the pH of the solution was changed. In the current case, it 

is shown that the LCA tubes form via a different mechanism. In ammonia solution, LCA sheet 

formation takes place initially. Over time these sheets begin to twist and collapse in on themselves 

to form tubes via a chiral self-assembly process as described in Chapter 1. TEM supplies us with 

the direct evidence of this, as Figure 33a clearly shows helical ribbon that appears to be collapsing 

in on itself alongside an already formed LCA tube. The tube walls are clearly visible and appear 
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to have a thickness of approximately 20 ± 5 nm. The SEM image provided in Figure 33b shows a 

large number of tubes formed in the solution with an overall thickness on the order of .1-.5 um.  

 

Figure 34 Dye structures of a) D25 and b) D35. UV-vis of aggregates formed by c) D25 coating 

and d) D35 coating of LCA tubes in 1% ammonia. 

Once tube formation had occurred, dye solutions were prepared and the tubes were coated. 

The solution was left overnight to allow ample time for the coating to form before measurements 

were carried out. The dye structures for D25 and D35 can be seen in Figure 34a and Figure 34b 

respectively. The two dyes have a conjugate backbone with the same length, while the length of 

the two side chains includes one additional carbon bond for D35. This variation in the side chain 

length will affect how the dye is able to pack on the outside of the LCA tube. The UV-vis 

absorption spectra for both the dye monomers and aggregates can be seen in Figure 34c (D25) and 

Figure 34d (D35). All the spectra were normalized to max intensity of 1 for the sake of comparison. 

For D25, the monomer band appears at 652 nm in a solution of methanol. Once coated on the LCA 
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tubes, the primary aggregate formed is H-aggregate, with a peak appearing at 590 nm which is 

blue-shifted from the monomer by 62 nm. There is also a small J-band that forms at 686 nm, with 

a 34-nm red-shift from the monomer. For D35, the monomer band appears at 653 nm in methanol. 

Upon coating of the LCA tubes, there is only one peak the forms and that is at 714 nm, which is 

red-shifted from the monomer by 61 nm which indicates the formation of J-aggregate. Figure 35 

shows the LCA tubes with large dark patches that indicate the dye has absorbed onto the surface 

of the tubes. Of note is that the tube is also surrounded by a large number of dark particles. The 

dark patches on the tubes also seem to consist of multiple small particles that have absorbed onto 

the surface. This would indicate that the coating is formed by the adsorption of small aggregate 

particles. 

 

Figure 35 TEM showing patches of dye coating on the surface of LCA tubes during the coating 

process. 
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Over time, the J-aggregate formed by D35 remains stable on the surface of the LCA tubes, 

however the same cannot be said for the H-aggregate formed by D25. This H-aggregate appears 

to be a metastable state that partially dissociates and then undergoes an aggregation into a J-

aggregate configuration with a peak at 701 nm, which can be seen in Figure 36a. Unlike in Chapter 

3, where H-aggregate directly slips and transforms into J-aggregate, there is no isosbestic point 

which indicates that the H-aggregate must be partially dissociating over time. This then free 

monomer can aggregate into a head-to-tail fashion and form J-aggregate. Another indication that 

this is the likely formation mechanism of the J-aggregate is that the absorption intensity at 650 nm 

is nearly 0 on day 1 but fluctuates at non-zero values over the course of the next few days, 

producing a shoulder on the J-aggregate peak. It never becomes as defined as pure monomer since 

the share of free molecules to H- or J-aggregated molecules is low.  The dissociation of H-

aggregate is governed by an inverse power law, while the consequent J-aggregate formation is 

governed by a power law suggesting that at equilibrium there will always be both H- and J-

aggregate for the coating formed by D25 as can be seen in Figure 36b. 
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Figure 36 a) Time-dependent UV-vis absorption spectra of the D25 coated LCA tubes showing 

the transition of the H-aggregate coating into the J-aggregate coating and b) a plot of UV-vis 

absorption intensity as a function of time showing the gradual decrease of the H-band and 

increase of the J-band. 

The templated H- and J-aggregates were deposited on interdigitated gold electrodes and 

their IV characteristics were measured. As was the case with the H-aggregate formed via co-

assembly in Chapter 3, the D25 H-aggregates also exhibit semiconductor behavior with a threshold 

voltage of approximately 2.5V as can be seen in Figure 37a. However, once the H- to J- transition 

begins to occur, the electrical properties become slightly different. The current level under negative 

bias begins to grow exponentially once a bias voltage of -2V is reached, and dramatically increases 

between -4V and -5V. Under positive bias, the current increase is not nearly as dramatic as under 

negative bias, as can be seen in Figure 37b. This data was taken after the solution was aged for 3 

days and therefore there was a substantial J-aggregate peak formed. When the dye used forms only 

J-aggregate, as is the case with the D35 coating, the electrical properties change once more, seen 

in Figure 37c. The same behavior is seen at negative bias where the current begins to increase at 
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an exponential rate. However, instead of showing semiconductor behavior under a positive bias, 

there is a drastically reduced current level as opposed to negative bias. The overall characteristics 

of the curve seem to be shifting towards a more linear nature. This change in behavior as the 

aggregation type switches from H- to J-aggregate can be understood in terms of changes of the 

band gap with respect to the fermi level of the Au electrodes. When the H-aggregate begins to 

transit into J-aggregate, it results in a reduction in the band gap energy of the dye aggregate. This 

reduction in the band gap energy will also result in the position of the Au electrode fermi level 

shifting with respect to the HOMO and LUMO levels of the dye coating. Figure 38a and Figure 

38b show CV curves of the D25 H-aggregate coating and the D35 J-aggregate coating respectively. 

From these curves we can calculate the HOMO/LUMO levels via Equation (6) and Equation (7). 

We calculate the HOMO level of the H-aggregate coating to be -4.83 eV and the LUMO level to 

be -2.73 eV. For the J-aggregate coatings the HOMO and LUMO levels are -4.76 and -3.01 eV 

respectively. Figure 38c shows a schematic representation of the energy levels with respect to the 

fermi level of Au. The literature shows that with low ammonia adsorption on the surface of Au, 

the fermi level can be altered, and in this case, end up at -3.25 eV[110]. Due to this difference in 

the HOMO/LUMO levels between H- and J-aggregates with respect to the fermi level of Au, the 

IV characteristic behavior will change from being a semiconductor with a symmetric shape to 

having more linear nature in the middle of the curve. Because the H-aggregate peak never 

completely disappears there is still some semiconductor behavior observed after the solution is 

aged a few days. However, when the dye used forms solely a J-aggregate, we no longer observe 

any symmetric semiconductor IV curve behavior, and instead we shift to slightly more ohmic 

behavior. Figure 37d shows the coated tubes bridging the gap of the interdigitated Au electrodes.  
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Figure 37 a) IV curve of fresh D25 coated LCA nanotubes, b) IV curve of D25 coated LCA 

nanotubes that were aged for 3 days, c) IV curve of D35 coated LCA tubes showing the behavior 

of a pure J-aggregate and d) SEM image of the dye coated LCA nanotubes bridging the 

interdigitated Au electrodes. 

Similar to the co-assembled H- and J-aggregates, both dye coatings respond sensitively to 

changes in temperature. The IV curves at different temperature can be seen in Figure 39a for D25 

and Figure 39b for D35. In both cases there is an appreciable decrease in current level as the 
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temperature is increased. However, unlike the co-assembled structures formed in Chapter 2 and 

Chapter 3, there is a different explanation for the reduction of the current level with increasing 

temperature for the coated LCA tubes. The dye coatings on the LCA tubes consist of a large 

number of smaller dye aggregates adsorbed onto the surface of the tubes. Once dried on the 

interdigitated Au electrodes, the coating becomes brittle in nature and therefore as the temperature 

is increased, the coating can crack and become disjointed at the interfaces between individual 

patches of dye absorbed on the surface. This cracking and disjointed nature will result in fewer 

conduction paths as the temperature is increased and therefore the current level should show a drop 

as temperature of the sample rises. 

 

Figure 38 Cyclic curves of a) D25 H-aggregate coated tubes and b) D35 J-aggregate coated 

tubes. Schematic energy level diagram (c) of the HOMO/LUMO levels of H-aggregate and J-

aggregate coatings with respect to the fermi level of Au electrodes. 
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One way in which to verify that this is the cause of the current level drop is to examine the 

absorption spectrum as a function of temperature. The UV-vis absorption spectra as a function of 

temperature for both the D25 H-aggregate coating and D35 J-aggregate coating can be seen in 

Figure 40a and Figure 40b, respectively. Unlike the case with the co-assembled structures seen in 

Chapters 2 and 3, there is no appreciable change in the absorption spectra of the H- and J-aggregate 

coatings. This indicates that there is no change in the molecular arrangement as the temperature of 

the aggregates are increased in solution. Thus, the changes as a function of temperature in the IV 

curves must be the result of physical changes in the quality of the coating as opposed to changes 

in the molecular packing of the aggregates as the temperature is increased. 

 

 

Figure 39 a) IV curves at different temperatures for the D25 coating and b) IV curves at different 

temperatures for the D35 coating. 
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4.4 Conclusion 

 In this chapter we examined the ability of cyanine dyes to coat the surface of preformed 

LCA tubes in 1% w/w ammonia solution. We found that cyanine dyes D25 and D35 were both 

able to effectively coat the LCA tubes. For D25, a quasi-stable H-aggregate is formed that 

transforms over time into a J-aggregate. Plots of UV-vis intensity versus time indicated that over 

time the system would reach an equilibrium in which both H- and J-aggregates of D25 exist on the 

surface of the LCA tubes. For D35, a pure J-aggregate is formed that remains stable over time. 

The IV behavior of the fresh D25 H-aggregate coating shows that it behaves like a semiconductor 

and as time passes and the H- to J-aggregate transition occurs, the behavior begins to change to 

show less symmetry in the IV curve. This would indicate a shift in the HOMO and LUMO levels 

of the D25 H-/J-aggregate coating. For a pure J-aggregate of D35, the IV curve shows highly non-

symmetric behavior with much higher current levels under negative bias and a nearly flat IV curve 

under positive bias. In the next chapter we will utilize these H-/J-aggregate coatings to detect 

dopamine in pH 10 buffer solution via photo-induced electron transfer.  

 

Figure 40 UV-vis absorption spectra at different temperatures for LCA tubes coated with a) D25 

and b) D35 
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CHAPTER 5: TEMPLATED H-/J-AGGREGATE NANOTUBES FOR THE 

DETECTION OF DOPAMINE 

Portions of this chapter were originally published in Rhodes, S.; Wang, X.; Liang, W.; Cho, H.J.; 

Fang, J.; Templated J-aggregate Nanotubes for the Detection of Dopamine. J. Mat. Sci. and 

Chem. Eng., 2017, 5, 142-154. 

5.1 Introduction 

J-aggregates of dye molecules represent an organized supramolecular structure, in which 

molecules form a head-to-tail staircase arrangement[39]. The strong interaction of transition dipole 

moments in J-aggregates leads to new electronic excitations. The new electronic excitations in J-

aggregates are coherently delocalized over many molecules rather than confined to individual 

molecules. The delocalized excitation of J-aggregates leads to an intense absorption band (J-band) 

and favors for efficient electron transfer. Therefore, they have long been used for mimicking 

photosynthetic light-harvesting antennas[54, 117-119]. Due to the remarkable optical and transport 

properties, J-aggregates have also shown great promise in color photography[120], nonlinear 

optics[121, 122], light emitting diodes[123, 124], and solar cells[125, 126]. However, the 

application of J-aggregates in biosensors is still limited[78, 127, 128]. This is largely due to the 

poor stability of J-aggregates in biological fluids, in which the interaction of J-aggregates with 

proteins and salts may change their structures and consequently optical properties. Recently, 

efforts have been made in stabilizing J-aggregates by assembling them on lipid vesicles[128], lipid 

nanotubes[78], DNA helix[129] , β-sheet fibrils[130], and peptide nanotubes[131].  

 J-aggregate nanotubes are attractive for efficient electron transfers because they share the 

molecular packing feature with photosynthetic light-harvesting antennas[55-57, 60, 61, 96]. In this 
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paper, we report the formation of templated J-aggregate nanotubes by the adsorption of 3,3’-

diethylthiadicarbocyanine iodide (D25) on the self-assembled nanotubes of lithocholic acid 

(LCA). The optical and electronic properties of the templated J-aggregate nanotubes are 

investigated with UV-vis absorption spectra, cyclic voltammetry methods and current-voltage 

measurements. We fabricate a sensor platform by depositing the templated H-/J-aggregate 

nanotubes on interdigitated gold electrodes for the detection of dopamine (DA). DA is known to 

ban an important neurotransmitter in central and peripheral nervous systems[132]. The 

concentration level of DA is associated with a series of neural diseases including Parkinson’s and 

Alzheimer’s diseases[133]. It is for this reason that DA has long been used as an important 

biomarker in the diagnosis of neural diseases. Electrochemical methods[134, 135], capillary 

electrophoresis[136, 137], and liquid chromatography-mass spectrometry[138] are conventional 

analytical methods for the detection of DA. However, these methods are time consuming and 

require expensive instruments. The sensitivity of the H-/J-aggregate nanotube-based sensor 

platform for DA is studied by measuring the photo-induced current change as a function of DA 

concentrations. We find that the detection limit of the H-/J-aggregate nanotube-based sensor 

platform for DA is 0.27 nM, which is two orders of magnitude lower than these conventional 

analytical methods.  

5.2 Experimental 

5.2.1 Materials 

Lithocholic acid (LCA), NH4OH solution, dopamine (DA), and uric acid (UA) were 

purchased from Sigma-Aldrich. 3,3’-diethlythiadicarbocyanine iodide (D25) was purchased from 

Molecular Probes. All chemicals were used without further purification. Water used in the 
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experiments was purified with Easypure II system (18 MΩ cm, pH 5.7). silicon wafer and carbon 

coated copper grids were from Sigma-Aldrich and Electron Microscopy Science, respectively. 

5.2.2 Formation of Templated H-/J-aggregate Nanotubes 

LCA was added into 10% w/w NH4OH solution in a glass vial to achieve a final 

concentration of 3 mM, followed by 5 min sonicaton in an ultrasonic bath (Branson 1510, Branson 

Ultrasonics Co.) at 50°C. LCA nanotubes were formed when LCA solution was cooled to room 

temperature. Once LCA nanotubes were formed, 0.13 mM D25 was added. The mixture was 

incubated overnight for the adsorption of D25 on LCA nanotubes, leading to the formation of 

templated H-/J-aggregate nanotubes, which were then purified through centrifugation to remove 

excess D25. The templated H-/J-aggregate nanotubes are stable for weeks in the dark.  

5.2.3 Characterization 

The morphology of LCA nanotubes and templated H-/J-aggregate nanotubes was studied 

with a transmission electron microscope (TEM, FEW Technai F30), a scanning electon 

microscope (SEM, Hitachi S3500N), and an atomic force microscope (AFM, Dimension 3100 

Veeco Instruments). For the TEM measurements, nanotubes were dried on carbon coated copper 

grids. AFM images of nanotubes were dried on carbon coated copper grids. AFM images of 

nanotubes dried on glass substrates were taken with a silicon nitride cantilever (Nanosensors) with 

a spring constant of 30 N/m and a resonant frequency of 260 kHz in tapping mode. The optical 

properties of H-/J-aggregate nanotubes were characterized with a Cary 300 UV-vis 

spectrophotometer. Cyclic voltammetry (CV) measurements were performed in aqueous solution 

containing 1M KCl using CS 350 Electrochemical workstation, in which templated J-aggregate 

nanotubes were deposited on an ITO working electrode, a platinum wire acted as the counter 
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electrode and Ag/AgCl served as a reference electrode. Current-voltage (I-V) measurements were 

performed with a Keithley 2400 sourcemeter. 

5.2.4 Fabrication of H-/J-aggregate Nanotube-Based Sensor Platform 

The interdigitated Au electrodes were cleaned with deionized water before the deposition 

of templated J-aggregate nanotubes. In our experiments, 4 μL of H-/J-aggregate nanotube solution 

was dropped on the interdigitated Au electrodes and dried in air at room temperature. The H-/J-

aggregate nanotube-based sensor platform was immersed in buffer solution at pH 10 for 1 hour, 

followed by the addition of DA in the dark. After 30 min incubation, the H-/J-aggregate nanotube-

based sensor was irradiated with visible light for 30 seconds, followed by measuring current 

changes with a sourcemeter. 

 

Figure 41 (a) Chemical structure of lithocholic acid and (b) 3,3’-diethylthiadicarbocyanine 

iodide. 
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5.3 Results and Discussion 

The chemical structures of D25 and LCA are shown in Figure 41a and b, respectively. D25 

is a positively charged carbocyanine dye consisting of two nitrogen-containing heterocyclic ring 

systems, which are linked by a methane bridge. LCA is a secondary bile acid having a nearly 

planar steroid backbone and a carboxyl group linked to the steroid backbone through a short alkyl 

chain. It has been shown that negatively charged LCA in alkaline aqueous solution can self-

assemble into tubular structures with different diameters and shapes, depending on experimental 

conditions[27, 29, 68, 70, 71, 139]. Figure 42a is an AFM image of LCA nanotubes formed in 

NH4OH solution. The LCA nanotubes show a smooth surface and a uniform diameter along their 

long axis. The hollowness of the LCA nanotubes is clearly visible in the TEM image shown in 

Figure 42b. They have an external diameter of ~ 80 nm and a wall thickness of ~ 15 nm. The wall 

thickness of the LCA nanotubes is larger than the length of the LCA molecule (~1.6 nm), 

suggesting that the wall of the LCA nanotubes has a multi-lamellar structure. 

 

Figure 42(a) AFM of LCA nanotubes dried on glass substrates and (b) TEM images of LCA 

nanotubes dried on a carbon coated copper grid. 
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 After the adsorption of positively charged D25 through electrostatic interaction, the surface 

of negatively charged LCA nanotubes becomes rough (Figure 43a). UV-vis absorption spectra 

show that the D25 molecules adsorbed on LCA nanotubes form J-aggregates (Figure 42b). The 

templated H-/J-aggregate nanotubes show an intense adsorption band (J-band) at 590 nm. The 

delocalized excitation length of J-aggregates, which represents the number of coherently coupled 

molecules (Ncoh) in the J-aggregates, can be calculated from their absorption spectra according to 

the Equation (5) [140, 141], where Δνmon and ΔνJ are the full widths at the half maxima of 

monomer and J-aggregate absorption bands, respectively. Thus, we use the Equation (5) to 

calculate the delocalized excitation length of the templated J-aggregate nanotubes from their 

absorption spectra to be 22 monomers. 
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Figure 43 (a) AFM image of templated H-/J-aggregate nanotubes dried on a glass substrate. (b) 

Absorption spectra of templated H-/J-aggregate nanotubes and D25 monomer in NH4OH 

solution. 

 The templated H-/J-aggregate nanotubes were deposited on the interdigitated Au electrodes 

with a gap of 20 μm for measuring their electronic properties (Figure 44a). As can be seen in 

Figure 44b, the templated H-/J-aggregate nanotubes form a network bridging the interdigitated Au 

electrodes. Individual H-/J-aggregate nanotubes without metallic coating are visible in the SEM 
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image shown in Figure 44c. The formation of H-/J-aggregate nanotube networks on interdigitated 

Au electrodes provides a large number of conductive paths for the connection of external circuits. 

 

Figure 44 (a) Schematic of J-aggregate nanotube-based sensor platform. (b) Optical microscopy 

and (c) SEM images of interdigitated Au electrodes with deposited J-aggregate nanotube 

networks. 

 Figure 45 shows the current-voltage (I-V) curves of H-/J-aggregate nanotube networks in 

the applied voltage from -5V to +5V. These I-V curves are symmetrical. There is no change in the 

I-V curve observed when the H-/J-aggregate nanotube network is exposed to visible light 

irradiation (Figure 45). We note that the H-/J-aggregate nanotube networks deposited on the 

interdigitated Au electrodes with the gap of 20 μm are stable in buffer solution over time and 

during multiple measurements. However, when the gap of interdigitated Au electrodes reduces to 

8 μm, the deposited H-/J-aggregate nanotube networks become unstable after being immersed in 

buffer solution. This result suggests that the contact of H-/J-aggregate nanotubes with the SiO2 

layer plays an important role for immobilizing them on the interdigitated Au electrodes.  
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Figure 45 I-V curves of H-/J-aggregate nanotube-based sensors with (circle) and without 

(square) visible light irradiation. 

We exploit the application of the H-/J-aggregate nanotube network deposited on the 

interdigitated Au electrodes with the gap of 20 μm as a sensor platform for the detection of DA in 

alkaline buffer solution. It has been shown that DA has pH-dependent oxidation and reduction 

potentials (Figure 46)[142]. In alkaline buffer solution, DA is easily oxidized into quinone by 

oxygen. DA-quinone is an electron acceptor[143]. In our experiments, the H-/J-aggregate 

nanotube based sensor platform was immersed in 50 mL buffer solution at pH 10, followed by the 

addition of DA in the dark. It has been shown that DA is able to adsorb on a variety of organic 

surfaces through strong intermolecular interactions including hydrogen-bonding, π-π interaction, 

and metal chelation[144]. The H-/J-aggregate nanotubes are stable in the buffer solution at pH 10. 

There is no adsorption spectrum change observed. After 30 min incubation at room temperature 

for the oxidization and adsorption of DA on the H-/J-aggregate nanotube networks, the H-/J-

aggregate nanotube-based sensor was irradiated with visible light for 30 seconds, followed by 
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measuring the current change under the forward voltage at 5V. To avoid sensor-to-sensor 

variations, we used the normalized current change ΔI/I0 to represent the current response of H-/J-

aggregate nanotube-based sensors to DA, where ΔI is I0-I, I0 is the current without DA, and I is 

the current with DA. As can be seen in Figure 8, the normalized current change of H-/J-aggregate 

nanotube based sensors after the addition of 20 nM DA at the forward voltage of 5V with visible 

light irradiation is much higher than that without light irradiation. Thus, we infer that the current 

change of the H-/J-aggregate nanotube-based sensor in response to DA under visible light 

irradiation is a result of the photoinduced electron transfer (PET) from the excited H-/J-aggregate 

nanotubes to the adsorbed Da-quinone (see the schematic insert in Figure 47). 

 

Figure 46 Schematic illustration of the oxidization of DA induced by pH values. 

 It is known that the relative HOMO and the LUMO levels between a donor and an acceptor 

determines the electron transfer. Cyclic voltammetry (CV) measurements show the irreversible 

oxidation of the templated H-/J-aggregate nanotubes immobilized on ITO in aqueous solution 

containing 1M KNO3 (Figure 48). The templated H-/J-aggregate nanotubes are oxidized at the 

positive potential of +0.43V with no corresponding reduction peak. The highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels of H-/J-

aggregate nanotubes can be calculated with Equation (6) and Equation (7) (6)[109], where Eonset 

is .43V and Eg is the optical band gap energy which can be calculated according to the 
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equation[145]: Eg=1242/λonset. For the templated H-/J-aggregate nanotubes, λonset is 590 nm. Thus, 

Eg is calculated to be 2.10 eV. Using the empirical equations, we find that the E(HOMO) and 

E(LUMO) level of the templated H-/J-aggregate nanotubes is -4.83 eV and -2.73 eV, respectively. 

The LUMO level of DA-quinone is -3.85 eV [146], which is inside the HOMO-LUMO energy gap 

of the templated J-aggregate nanotubes, favoring the electron transfer from the excited H-/J-

aggregate nanotube to the adsorbed DA-quinone. 

 

Figure 47 Current change of H-/J-aggregate nanotube-based sensor platform in response to 20 

nM DA in buffer solution at pH 10 with and without 30s visible light irradiation. Schematic of 

photoinduced electron transfer (PET) from the templated H-/J-aggregate nanotube to the 

adsorbed DA is insert in figure. 

 The current change due to the PET from the excited H-/J-aggregate nanotubes to the 

adsorbed DA-quinone provides a basis for the detection of DA. Figure 49a shows a plot of ΔI/I0 

as a function of DA concentration in buffer solution at pH 10. The plot can be fitted linearly with 

a correlation coefficient of 0.9748 in the concentration range from 10 nM to 70 nM, which falls 

within the concentration level of DA for patients with Parkinson’s disease[147]. 
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Figure 48 Cyclic voltammogram of H-/J-aggregate nanotubes immobilized on ITO in aqueous 

solution containing 1M KCL. Scan rate: 0.1 v/s 

The detection limit of H-/J-aggregate nanotube sensors for DA is calculated by multiplying 

the ratio of the standard deviation to the slope of the linear fit curve by 3.3 to be ~0.27 nM. The 

detection of DA is often complicated by the presence of uric acid (UA), which coexists with DA 

in vivo at a concentration of 100-1000 times higher than DA[148]. We find that the current 

response of the H-/J-aggregate nanotube-based sensors for DA is significantly higher than that for 

UA even when the concentration of UA is 1000 times higher than DA (Figure 49b). The selectivity 

of H-/J-aggregate nanotube-based sensors for DA should associate with its high affinity to the H-

/J-aggregate nanotubes and the efficient electron transfer between them.  
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Figure 49(a) Current changes of H-/J-aggregate nanotube-based sensor platform as a function of 

DA concentrations in buffer solution at pH 10 with 30s visible light irradiation. (b) Current 

changes of H-/J-aggregate nanotube-based sensor platform in response to 10 nM DA and 10 μM 

UA in buffer solution at pH 10 with 30s visible light irradiation. 

5.4 Conclusion 

We have shown that the adsorption of D25 on self-assembled LCA nanotubes can lead to 

the formation of H-/J-aggregate nanotubes. The templated H-/J-aggregate nanotubes show an 

intense J-band at 590 nm, which is red-shifted with respect to the adsorption band of D25 monomer 
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at 550 nm. A sensor platform is fabricated by forming the network of the templated H-/J-aggregate 

nanotubes on interdigitated Au electrodes for the sensitive and selective detection of DA. The J-

aggregate nanotube networks provide a high density of H-/J-aggregate nanotubes for the 

accessibility of DA and a large number of conductive paths to external circuits. The photo-induced 

electron transfer from the H-/J-aggregate nanotubes to the adsorbed DA leads to the current change 

of the H-/J-aggregate nanotube-based sensor, which serves as the basis for the detection of DA. 

We find that the current change of the H-/J-aggregate nanotube-based sensor in response to DA is 

linear in the concentration range from 10 nM to 70 nM with the detection limit of 0.27 nM, which 

is significantly lower than that of conventional analytical methods reported in thte literature. The 

high sensitivity is a result of efficient photo-induced electron transfer from the H-/J-aggregate 

nanotubes to DA. The H-/J-aggregate nanotube-based sensors are potable and open up an 

important avenue for the label-free and sensitive detection of DA. 
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CHAPTER 6: CONCLUSION 

 In this dissertation we have examined the formation of J- and H-aggregates via the co-

assembly of cyanine dyes and LCA. We found that at low ammonia concentration we are able to 

form spherulitic J-aggregates. These spherulites are the result of the low solubility of cyanine dye 

in 1% w/w ammonia concentration. The dye aggregates into particles that get slowly broken down 

by LCA. As LCA breaks down these aggregate particles, it forms a fiber structure with the cyanine 

dye arranging itself into a J-aggregate within the hydrophobic cavity of the LCA micelles. Over 

time the dye particles are completely broken down and a spherulite structure remains with J-

aggregate fibers radiating out from the center. These spherulites can be broken down into 

individual fibers without destroying the dye aggregation within the fibers. They can also be dried 

on an interdigitated electrode and exhibit semiconductor behavior that is highly sensitive to 

variations in temperature. The current at low temperatures is at a much higher level than when 

measured at high temperatures. This variation in current level with temperature is due to the 

packing of the dye molecules in the fiber being changed as temperature increases. UV-vis 

absorption measurements showed that as temperature increases the number of molecules 

coherently coupled within the fibers decreases, verifying that temperature changes can alter the 

number of coupled molecules in the fibers.  

 When we take the same cyanine dye and dissolve it in different concentrations of ammonia 

we can alter the type of aggregation that takes place. When the mix ratio of LCA:dye remains 

constant at 5:1, J-aggregate is formed until the ammonia concentration reaches 15% w/w. At this 

point and beyond an H-aggregate appears and forms differently than the spherulites described 

above. In this case the dye and LCA couple in solution and aggregate together to form H-aggregate 
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fibers. If we increase the mix ratio from 5:1 to 1:1 at high ammonia concentrations we observe and 

even further shifted H-band. This band appears very broad in the UV-vis absorption spectrum and 

under the optical microscope appears brown in color while the H-aggregates formed at a mix ratio 

of 5:1 appear purple in color. At a mix ratio of 1:1 the H-aggregate rods formed show an interesting 

property upon the evaporation of ammonia counter ions. As the ammonia counterions evaporate 

out, the co-assembled rods split at the ends and eventually breakdown into a bunch of fibers that 

are pink in color. These fibers have a sharp J-band in the absorption spectra. It is believed that 

initially J-aggregate fibers are formed and these fibers bundle into rods. LCA has a negative charge 

in alkaline solution so the ammonia counterions screen that charge allowing for the formation of 

bundles. These individual J-aggregate fibers will exhibit H-type coupling with their neighboring 

fibers and therefore change color in the bundled rod, as well as exhibit a very broad H-band in the 

UV-vis absorption spectrum. This H- to J-aggregate transition is semi-reversible in nature. The H-

aggregate formed in 5:1 and the J-aggregate formed via ammonia evaporation of the 1:1 mix ratio 

sample exhibit different electronic properties. The H-aggregate is a semiconductor while the J-

aggregate is a conductor and this can be explained by the fact that the LUMO of the J-aggregate 

is closer to the fermi level of Au than the H-aggregate. In order for current to flow through the H-

aggregate fibers a threshold voltage needs to be achieved, therefore classifying it as a 

semiconductor.  

 H- and J-aggregates of cyanine dyes can also form via a two-step assembly process. In this 

case there is a preformed structure that can be coated by the dye. In our experiments we formed 

LCA nanotubes in ammonia solution and coated the tubes with cyanine dyes of similar conjugated 

length but different side chain lengths. We found that the dye with the shorter side chain length 

(D25) first forms a quasi-stable H-aggregate on the surface of the LCA tube while the longer side 
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chain dye (D35) forms a pure J-aggregate that is stable over time. As the transition between the 

quasi-stable H-aggregate and stable J-aggregate of the D25 coating occurs, the coating exhibits 

different electronic behavior. Early in the transition process when there is more H-aggregate than 

J-aggregate the D25 coating exhibits pure semiconductor behavior. However, as more J-aggregate 

appears the IV curve becomes less symmetric. When we examine the IV curve of the D35 coating 

we see that there is no symmetry under negative and positive bias with much larger current levels 

attained under negative bias. This again is due to the position of the LUMO level with respect to 

the fermi level of the Au electrodes. At first the H-aggregate has a large band gap with the fermi 

level of Au position in between the HOMO and LUMO levels. As the H- to J-aggregate transition 

occurs, this band gap is reduced due to the peak absorption wavelength shifting to longer 

wavelengths. This will alter the position of the Au fermi level with respect to the LUMO level of 

the D25 J-aggregate and cause a shift in the IV characteristic behavior. When a dye (D35) that 

forms pure J-aggregate is used, we see a complete flattening out of the IV curve under positive 

bias while large current levels are maintained under negative bias. Finally, we utilized the D25 

coating as a sensor platform for the detection of dopamine-quinone in pH 10 buffer. We find that 

it is able to sensitively detect dopamine with a detection limit of .27 nM. This successful 

application of the D25 coating shows the promise of these molecular dye aggregates being used in 

further biosensor development.  

 The control of the morphology and size of cyanine dye aggregates has been notoriously 

difficult without expensive and time-consuming chemical engineering. By developing and 

investigating these simple methods for the controlled aggregation of cyanine dyes this dissertation 

has shown a way forward for the potential development of optoelectronic devices that utilize H- 

and J-aggregates. Future work in this area would involve a more detailed study of the coating 
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behavior of cyanine dyes on LCA tubes and how counterion concentration can affect the 

aggregation type of different categories of cyanine dyes.  
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