
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2019

Leaning Robust Sequence Features via Dynamic Temporal Pattern Leaning Robust Sequence Features via Dynamic Temporal Pattern

Discovery Discovery

Hao Hu
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Hu, Hao, "Leaning Robust Sequence Features via Dynamic Temporal Pattern Discovery" (2019). Electronic
Theses and Dissertations. 6294.
https://stars.library.ucf.edu/etd/6294

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6294?utm_source=stars.library.ucf.edu%2Fetd%2F6294&utm_medium=PDF&utm_campaign=PDFCoverPages

LEARNING ROBUST SEQUENCE FEATURES VIA DYNAMIC TEMPORAL PATTERN
DISCOVERY

by

HAO HU
M.S. University of Central Florida, 2014

B.S. Nankai University, 2010

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2019

Major Professor: Liqiang Wang

c© 2019 Hao Hu

ii

ABSTRACT

As a major type of data, time series possess invaluable latent knowledge for describing the real

world and human society. In order to improve the ability of intelligent systems for understand-

ing the world and people, it is critical to design sophisticated machine learning algorithms for

extracting robust time series features from such latent knowledge. Motivated by the successful

applications of deep learning in computer vision, more and more machine learning researchers put

their attentions on the topic of applying deep learning techniques to time series data. However,

directly employing current deep models in most time series domains could be problematic. A ma-

jor reason is that temporal pattern types that current deep models are aiming at are very limited,

which cannot meet the requirement of modeling different underlying patterns of data coming from

various sources. In this study we address this problem by designing different network structures

explicitly based on specific domain knowledge such that we can extract features via most salient

temporal patterns. More specifically, we mainly focus on two types of temporal patterns: order

patterns and frequency patterns. For order patterns, which are usually related to brain and human

activities, we design a hashing-based neural network layer to globally encode the ordinal pattern

information into the resultant features. It is further generalized into a specially designed Recur-

rent Neural Networks (RNN) cell which can learn order patterns in an online fashion. On the other

hand, we believe audio-related data such as music and speech can benefit from modeling frequency

patterns. Thus, we do so by developing two types of RNN cells. The first type tries to directly learn

the long-term dependencies on frequency domain rather than time domain. The second one aims

to dynamically filter out the “noise” frequencies based on temporal contexts. By proposing various

deep models based on different domain knowledge and evaluating them on extensive time series

tasks, we hope this work can provide inspirations for others and increase the community’s interests

on the problem of applying deep learning techniques to more time series tasks.

iii

To my family.

iv

ACKNOWLEDGMENTS

I would like to thank my academic advisors Dr. Guo-Jun Qi and Dr. Liqiang Wang for all their

academic guidance during my PhD career. It is Dr. Qi who led me into the field of deep learning

research, and Dr. Wang helped me prepare this dissertation. Part of works in this dissertation

were done with my former lab mates Dr. Jun Ye and Joey Velez-Ginorio. Thank you for your

contributions and I enjoyed our collaborations. I have spent two summers in California, working

closely with Dr. Zhaowen Wang, and Dr. Qiong Liu, respectively. I learned a lot on how to do

great research from them, and it is my honor to have worked with them. Besides, I also want to

thank Dr. Shaojie Zhang, Dr. Fei Liu and Dr. Qun Zhou to be my committee members. Thank all

of my family for supporting me when I encountered difficulties in my life. It is impossible for me

to write this dissertation without you.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xiv

CHAPTER 1: INTRODUCTION . 1

1.1 Deep Neural Networks . 1

1.2 Challenges and Research Objectives . 3

CHAPTER 2: MINING ORDER PATTERNS FOR BRAIN DISORDER DIAGNOSIS . . 6

2.1 ADHD Detection . 9

2.2 First-Take-All: ADHD Detection by Time-Series Hashing 11

2.2.1 Brain Atlas Construction and Time Course Extraction 11

2.2.2 Temporal Order-Preseving Hashing . 12

2.2.2.1 Sequence Projection . 12

2.2.2.2 First-Take-All Temporal-Order Comparison 14

2.2.3 Learning Optimal Projections . 16

2.2.3.1 Training Loss . 17

vi

2.2.3.2 Projection Orthogonality . 18

2.2.3.3 Putting Together . 19

2.2.3.4 Optimization . 19

2.3 Results for ADHD Detection with FTA Hashing 20

2.3.1 Datasets and Background . 21

2.3.2 Experimental Setting and Baselines . 22

2.3.3 Comparison with Unsupervised Baselines 23

2.3.4 Comparison with Supervised Baselines 25

2.3.4.1 FTA vs JHU . 26

2.3.4.2 FTA vs AGDM . 28

2.3.5 Parameter Sensitivity Analysis . 29

2.3.5.1 Prediction Accuracy vs K . 29

2.3.5.2 Prediction Accuracy vs L . 30

2.4 FTA Summary . 31

CHAPTER 3: IMPROVING VIDEO REPRESENTATION LEARNING THROUGH DY-

NAMIC ORDER ENCODING . 33

3.1 Related Works for Video Representation Learning 35

vii

3.2 Temporal Preserving Recurrent Network . 36

3.2.1 Intuition . 36

3.2.2 Model Architecture . 38

3.2.3 Comparison with other RNNs . 41

3.3 Evaluations for TPRNN . 42

3.3.1 Datasets . 42

3.3.2 Implementation and Training . 43

3.3.3 LSTM vs. TPRNN . 44

3.3.4 Analysis on Subsets . 45

3.3.5 Fuse with Spatial Features . 49

3.4 TPRNN Summary . 50

CHAPTER 4: LEARNING LONG-TERM DEPENDENCIES IN FREQUENCY DOMAIN 51

4.1 Recent Progress for RNN Research . 53

4.2 State-Frequency Memory Recurrent Neural Networks 54

4.2.1 Updating State-Frequency Memory . 55

4.2.1.1 The Joint State-Frequency Forget Gate 56

4.2.1.2 Input Gates and Modulations 57

viii

4.2.1.3 Multi-Frequency Outputs and Modulations 58

4.2.2 Fourier Analysis of SFM Matrices . 59

4.2.3 Adaptive SFM . 60

4.3 Evaluations for SFM . 60

4.3.1 Signal Type Prediction . 62

4.3.2 Polyphonic Music Modeling . 64

4.3.3 Phoneme Classification . 66

4.4 Summarization for SFM . 69

CHAPTER 5: LEARNING TO ADAPTIVELY ADJUST RECURRENT NEURAL NETS 71

5.1 Literature Study for Multiscale RNNs . 73

5.2 Adaptively Scaled Recurrent Neural Networks . 74

5.2.1 Scale Parameterization . 74

5.2.2 Adaptive Scale Learning . 75

5.2.3 Integrating with Different RNN Cells . 77

5.2.4 Discussion . 78

5.3 Experiments for Evaluating ASRNNs . 79

5.3.1 Low Density Signal Type Identification 80

ix

5.3.2 Copy Memory Problem . 81

5.3.3 Pixel-to-Pixel Image Classification . 83

5.3.4 Music Genre Recognition . 84

5.3.5 Word Level Language Modeling . 86

5.4 Summarization for ASRNN . 87

CHAPTER 6: CONCLUSION AND FUTURE WORK 89

APPENDIX : EQUATIONS FOR LEARNING OPTIMAL PROJECTIONS 91

LIST OF REFERENCES . 94

x

LIST OF FIGURES

1.1 The architecture of Convolutional Neural Networks. 2

1.2 The unrolling architecture of Recurrent Neural Networks. 3

2.1 ROIs (AAL[132]) of a human brain and their fMRI time courses. FTA hashes

time courses into fixed-size hash codes by encoding temporal order differ-

ences between latent patterns among them. 6

2.2 Comparison between projections generated by salient and nonsalient pat-

terns. The red solid line represents the projection of a salient pattern with

a small variance, while the blue dotted line represents the projection of a

non-salient pattern with a large variance over the time axis. 13

2.3 Illustration for First-Take-All Temporal-Order comparison when K is set to 3 16

2.4 Prediction Accuracy versus Execution Time. Comparison between FTA and

unsupervised baselines . 25

2.5 Percentage of TDC/ADHD Subjects in each training subset. 27

2.6 Comparison of the temporal order of two patterns between the TDC and

ADHD subjects. It illustrates how the order of these two patterns matters

in detecting ADHD. 27

2.7 Test accuracy across different ROIs, using different K values 30

2.8 Test accuracy across different ROIs, using different L values 31

xi

3.1 Structure of temporal preserving network, where the circle represents the

max-pooling layer and the rounded corner rectangle represents the tempo-

ral preserving layer. 38

3.2 Examples of classes with different foreground and background variations. . . 47

4.1 Several examples of the generated waves on the interval [30, 60] with different

periods, amplitudes, and phases. The red dash lines represent the square

waves while the blue solid lines represent square waves. The ’∗’ markers

indicate the sampled data points that are used for training and testing. 63

4.2 Signal type prediction accuracy of each model. 64

4.3 Piano rolls of the exemplar music clips from the MuseData and Nottingham

dataset. Classical musics from MuseData are presented by complex, high

frequently-changed sequences, while folk tunes from Nottingham contains

simpler, lower-frequency sequences. 66

4.4 Accuracy for frame-level phoneme classification on TIMIT dataset. 67

4.5 The amplitudes of SFM matrices for both the prefixed (SFM) and adaptive

(A-SFM) frequencies. For all subfigures, each row represents a frequency

component. 68

5.1 The similar patterns between a raw square wave and its scale variations. . . . 81

5.2 Cross entropies for copy memory problem. Best viewed in colors. 82

xii

5.3 Statistics of scale selections between each music genre. The height of each

bar indicates the ratio of how much times the scale is selected in the corre-

sponding genre. Best viewed in colors. 86

5.4 Visualized scale variations for a sampled sentence form WikiText-2 dataset. . 87

xiii

LIST OF TABLES

2.1 Performance comparison between the unsupervised baselines and the FTA. . . 24

2.2 Performance evaluation of JHU and FTA . 26

2.3 Performance evaluation on individual sets 28

3.1 Structural differences between LSTM, GRU and TPRNN. Here n represents

hidden states dimension and d represents input dimension. 42

3.2 Recognition Accuracy on UCF-101 dataset 45

3.3 Mean Average Precision on Charades dataset 45

3.4 Accuracy of predicting reverse/unreverse on 10 classes of UCF-101 46

3.5 Average Precision (AP) and Mean Average Precision (MAP) of each class

pairs and action type group. sth. indicates different visual objects 48

3.6 Late fusion results on UCF101 and Charades 50

4.1 Hidden neuron numbers of different networks for each task. The total number

of parameters (weights) will keep the same for all the networks in each task.

Task 1, 2 and 3 stand for signal type prediction (sec 4.3.1), polyphonic music

prediction (sec 4.3.2) and phone classification (sec 4.3.3), respectively. The

last column indicates the unique hyperparameters of each network. 61

xiv

4.2 Log-likelihood on the four music datasets. The last two columns contain the

results from the proposed SFM models. 65

5.1 Accuracies for ASRNNs and baselines . 80

5.2 Classification accuracies for pixel-to-pixel MNIST. N stands for the num-

ber of hidden states. Italic numbers are results reported in the original pa-

pers. Bold numbers are best results for each part. ACC=accuracy, UNP/PER

means the unpermuted/permuted cases respectively. 83

5.3 Music genre recognition on FMA-small. N stands for the number of hidden

states. ACC=accuracy. 85

5.4 Perplexities for word level language modeling on WikiText-2 dataset. Italic

numbers are reported by original papers. 87

xv

CHAPTER 1: INTRODUCTION

Time series is a fundamental existing form for a large amount of data in the real world. Every

day, tones of sequential data is generated through the daily activities of both people and machines:

visitors and tourists post traveling videos on the Internet to share their journey with audiences

around the world; doctors collect health monitoring data from various medical devices in order to

make correct treatment decisions; and sensors deployed on precisional manufacturing instruments

continuously transmit surveillance sequences for quality analysis such that there is little chance for

creating defective products. Thus, times series have been a part of our lives today, and usually con-

tain massive hidden information that can reflect essential patterns for understanding and solving

realistic problems. Due to the fact that modern people need to frequently interact with many types

of time series such as music, videos, speech and sensor readings, it is important to build reliable

intelligent processing systems that can improve the efficiency of such interactions. A promising

way is to design machine learning algorithms for extracting time series features, which can be con-

sidered as abstract representations of original data that are easier to analyze. The quality of features

can vary dramatically according to different machine learning models, it is important to develop

the sophisticated models to acquire robust features for time series. Currently, the most popular

machine learning models for time series are Deep Neural Networks (DNN), the core technique of

the deep learning.

1.1 Deep Neural Networks

Recently, inspired by the advancement in computer vision, which is fueled by the development

of deep Convolutional Neural Networks (CNN), topics on applying deep learning techniques to

time series data are drawing more and more attention. As shown in Figure 1.1, CNN, a family of

1

specially designed DNN that inspired by the human visual perception system, usually consists of a

set of stacked convolutional layers and fully-connected layers. For each convolutional layer, a set

of kernels make convolution with a small neighborhood region at each location and slide along the

dimensions of the input. The convolved outputs are further activated by non-linearity functions and

less salient outputs are discard for reducing the size. Thus, CNN can generate hierarchical features

and different level. Since CNN simulates the human visual system, it works well for visual-related

tasks such as image recognition and segmentation etc [116, 56].

Figure 1.1: The architecture of Convolutional Neural Networks.

Comparing to vision tasks, learning to extract high quality features from time series is more chal-

lenging, as the deep models need to consider various additional temporal patterns. Instead of CNN,

Recurrent Neural Network (RNN) becomes a much more suitable choice for times series. Unlike

CNN, whose nodes are all connected to other nodes, part of RNN nodes are connected to them-

selves and can be updated by their previous states and current inputs. These self-connections can

be further unrolled along time to generate a deep forward structure without spawning inner circles.

In this fashion, the nodes of RNN are connected to form a directed graph that can be aligned with

a temporal sequences. Such unrolling architecture provides natural neural structures for temporal

pattern modeling. Some of specially designed RNN cells, like Long-Short Term Memory (LSTM)

[57], have achieved impressive performance gains on several natural language processing (NLP)

2

tasks, demonstrating the potential power of modeling time series through RNNs.

Figure 1.2: The unrolling architecture of Recurrent Neural Networks.

1.2 Challenges and Research Objectives

However, it is still very struggle to populate RNN models from NLP to a wider range of application

domains such as signal processing and music modeling, etc., since most of such attempts didn’t

yield superior performance gain comparing with traditional state-of-the-art, non deep learning-

based methods. The reasons behind this phenomenon are twofold: first, based on the experience

from computer vision and NLP, large-scale datasets with labels are indispensable for training deep

neural networks; while it is impractical to collect so much data and accurately label them in other

application tasks. For example, commonly used NLP benchmarks like Penn Treebank dataset [84]

includes over one million English words, on the contrary, the GTZAN dataset [131], a popular

benchmarks for music genre classification, only contains one thousand music tracks, whose label

are hard to determine due to various music tastes of people. This makes training RNN even harder

for music modeling-related tasks. Moreover, the pattern types that current RNN models are aiming

to model are also limited: most of gated structures target on the long-term dependency modeling,

which might not be a critical consideration for certain data like signals.

3

In order to handle such issues, revisiting the well-studied techniques for individual domain could

be helpful to find out new perspectives for training better deep learning models. In this study, we

are driven to explore the potential ways to develop hybrid solutions for deep learning of general-

purposed time series, which are implemented by incorporating the domain-specific knowledge with

the purely data-driven RNN models. This is motivated by the fact that domain-specific knowledge

can serve as the constraint rules to compensate the shortage of well-labeled data, and different

underlying patterns characterize time series accordingly based on different tasks. We are partic-

ularly interested in two types of temporal patterns: The order pattern and the frequency pattern,

as they are commonly measured in a lot of sequential modeling tasks. For example, we may

differentiate actions via the ordinal relationships between their subactions; and traditional signal

processing techniques tell us the frequency patterns could be critical for analyzing signal data.

More specifically, we explicitly encode the order patterns by developing a hashing-based layer and

a temporal sensitive RNN structure. These two approaches are employed to solve the real world

applications of brain disorder diagnosis and video representation learning, respectively. On the

other hand, we propose two different RNN variants to integrate the frequency pattern modeling

with the deep learning models, and evaluate them with a bunch of sequential modeling tasks across

various domains. Our evaluation results provide positive evidence to support the combination of

domain-specific patterns and data-driven deep models as a promising strategy for a wider range of

time series modeling tasks.

The rest of this dissertation is organized as follows: Chapter 2 describes the details of First-Take-

All (FTA), a hashing-based deep learning layer to encode order patterns for brain disorder diag-

nosis; then TPRNN, another order-based RNN design for video representation learning will be in-

troduced in Chapter 3. Chapter 4 and Chapter 5 reveal the details of two frequency pattern-related

RNN variants, which are named as State-Frequency Memory (SFM) and Adaptively Scaled RNN

(ASRNN), respectively. Finally, Chapter 6 concludes the dissertation.

4

CHAPTER 2: MINING ORDER PATTERNS FOR BRAIN DISORDER

DIAGNOSIS

Figure 2.1: ROIs (AAL[132]) of a human brain and their fMRI time courses. FTA hashes time
courses into fixed-size hash codes by encoding temporal order differences between latent patterns
among them.

In this chapter, we present a new hashing-based learning algorithm by explicitly encoding order

patterns for brain disorder diagnosis. Recent advancements in brain imaging technology, one of the

greatest efforts in Neuroscience, aim to uncover features unique to certain neurophysiological phe-

nomena [13, 71]. The intuition is that the neural activity pattern of a healthy human subject ought

to appear different from that of a patient suffering from some neural disorder, such as Attention

Deficit Hyperactive Disorder (ADHD) and Alzheimer’s disease.

Categorized alongside other neurodevelopmental disorders, ADHD is one of the most common

brain diseases. It manifests early and is typically first diagnosed in one’s childhood. The pre-

dominant effects consist of sustained difficulty in maintaining focus, often offering difficulties

5

assimilating at school, at home, or within the community. Fortunately, despite lacking a cure,

brain imaging technology provides an opportunity to timely observe and diagnose ADHD[23, 24].

Several methods for recording sequences of neural activity from the brain exist. Generally, they

range from invasive to non-invasive procedures. Whilst the data from invasive techniques such as

Electrocorticography (ECoG) or multielectrode arrays possess higher quality data [94], the oppor-

tunity to collect such data seldom arises. By nature of the procedure, it is much more practical for

researchers and medical practitioners to opt for non-invasive techniques such as functional Mag-

netic Resonance Imaging (fMRI). fMRI indirectly measures changes in neural activity by detecting

changes in blood flow caused by increased activations of neurons during specific tasks (or resting-

state conditions) [104, 26]. In this context, fMRI time-courses 1 offer a feature-rich representation

of high level functional organization in the brain (Figure 2.1).

Considering the representations, we aim to exploit its rich nature for the task of ADHD diagnosis

as a pattern classification problem [79]. Utilizing the structure of the resting-state fMRI time-

courses, we generate hash codes encoding the temporal structure of the data. These hash codes can

then be compared to detect similarities and differences between the fMRI time-courses of healthy

patients versus those diagnosed with ADHD. It is known that neural connections exist whether

or not regions of the brain are functionally active, hence forth the resting-state fMRI provides a

controlled dataset to test for fundamental differences in functional neural networks in the brain.

Tasked with hashing time-series data, our approach centers on fast detection based on retrieval of

the similar disorder patterns from a database of brain neural imaging activities. Specifically, we

propose the First-Take-All (FTA) hashing method for encoding varied-length fMRI sequences into

fixed-size hash codes. The problem of fast matching similar fMRI sequences boils down to a fast

1In medical imaging terminology, a “time course” refers to an obtained sequence for an imaged area. In this
chapter, we will use this term interchangeably with “time series” when there is no confusion in the context.

6

search of similar hash codes based on their Hamming distances that can be calculated efficiently.

Specifically, the algorithm first projects an input sequence of varied length onto different subspaces,

each representing a sequence of latent patterns. After encoding the temporal order of these patterns

to hash the fMRI time-courses, the pattern that appears first among a selection of patterns is used to

index the time-course 2. This scheme can yield a compact encoding of temporal relations between

the selected patterns that really matter in distinguishing between healthy individuals and those

diagnosed with the ADHD. The optimal pattern projections will be learned to result in the hash

codes that minimize the diagnosis errors. In this way, FTA allows for not only high detection

rates, but a scalable solution for detecting fMRI sequences. Since the projections are learned as

opposed to randomly generated, the solution scales well with large-scale input fMRI sequences

using compact hash codes.

Suitably, the objective of this chapter is to provide a scalable and efficient [69, 105] solution to the

problem of detecting neurodevelopmental disorders (specifically ADHD) via fMRI time-courses.

Doing so also reverberates to improved success in brain imaging technologies. The proposed

temporal order-based hashing algorithms are much more generic, providing a new framework for

fast matching and detection to other forms of time-series data. In this chapter, the method has

implications on functional neural analysis[40, 55]. Being able to reliably infer causal relation-

ships between brain structures and functions presents an interesting opportunity for further inves-

tigations, the range of which include areas of classification outside neurodevelopmental disorders

[37]. Ultimately, learning the projections to hash a time-series space efficiently provides important

practicality to the design.

The contributions of this chapter are:

2Without loss of generality, we can also designate the second or the third appearing pattern or so on to hash a fMRI
sequence. As a convention, we choose the first-appearing pattern in this chapter.

7

1. We propose a novel FTA hashing algorithm to hash time series with varied length into fixed-

size hash codes by encoding the temporal order of the latent patterns inside the time series.

2. In order to acquire the optimal projections, we formulate it as a learning problem whose

training loss can be minimized in an efficient fashion.

3. We perform extensive experiment studies on benchmarks of ADHD detection and demon-

strate the superior performance of the proposed FTA hashing with several evaluation metrics.

The remainder of this chapter is organized as follows: Section 2.1 briefly reviews the related work.

The ADHD detection paradigm including FTA hashing algorithm is introduced and discussed in

Section 2.2, with the learning algorithm for searching optimal projections. Experiments and per-

formance studies are presented in Section 2.3. Finally, Section 2.4 summarizes the chapter.

2.1 ADHD Detection

In this section, we review several related topics pertinent to the task of ADHD detection. Among

these, the overall theme fosters support for classification analysis of fMRI time-courses.

It is known that multivariate data mining and machine learning methods have been used to approach

the classification of fMRI data[37, 24]. Similar to the approach in the chapter, multivariate methods

presume from a core tenet of neuroscience that neural data encodes itself across larger functional

regions in the brain. Intriguingly, the motivation behind utilizing multiple ROIs in test and training

exists within other works as well; as ROI selection can be viewed as a form of feature selection

[37, 97]. Similar works [24] also suggest the widespread adoption of multivariate techniques

including Support Vector Machines (SVMs) [22] and Linear Discriminant Analysis (LDA) [11]

in spite of the traditional uni-variate alternatives. Fueling this shift was a dissatisfaction with

8

how univariate models rely exclusively on the information contained in time-courses contained in

individual voxels[24].

In tune with our method’s focus on preserving temporal structure is the Dynamic Time Warping

(DTW) to find similar patterns between two time series [10]. The idea is to create a sequence

alignment algorithm that preserves and efficiently discovers knowledge from potentially large data

archives. The approach used in this chapter (FTA) maintains similar motivations, insofar as it

aims to solve the task of presenting a model for efficient and scalable knowledge discovery in the

domain of neural data.

The related works presented offer several intriguing points of support to our investigation. Fore-

most, the premise has been set for the intuitions behind fMRI analysis for ADHD detection[24].

For example, [29] extracts features from fMRI time courses to improve the ADHD detection rate.

Meanwhile, the method proposed by [36] combines both unsupervised and supervised algorithms

and achieves best performance in ADHD-200 Global Competition. This reliably shows that the

problem of knowledge discovery in brain imaging can be improved through utilization of Ma-

chine Learning models. In addition, other efforts suggest that a detection scheme for analysis of

fMRI time-courses can be expanded to other neural datasets and disorders[29, 24]. This offers an

expanded utility to the model presented in this chapter, in which the FTA can be used on other prob-

lems within Neuroscience and a host of other topic areas, all whilst preserving efficiency. Lastly,

DTW offers an element of distinction between former methods in time-series analysis versus those

of which focus specifically on preserving temporal order during encoding of time-series data [10].

In doing so, FTA provides clear advantages over methods which eschew these temporal features

[42].

9

2.2 First-Take-All: ADHD Detection by Time-Series Hashing

In this section, we introduce a novel hashing-based paradigm to automatically identify ADHD

subjects. The structure of our method can be summarized as following: First, brain atlases con-

taining a number of Regions of Interest (ROIs) will be constructed and corresponding time courses

of each ROI will be extracted based on the ADHD subjects’ resting state fMRI data of the brain.

Then, we propose a new temporal order-preserving hashing algorithm called First-Take-All to hash

time courses into binary sequences. With those sequences, we compare the distance (similarity)

between them to determine whether a patient is an ADHD subject.

2.2.1 Brain Atlas Construction and Time Course Extraction

In brain neuroanatomy, many approaches, such as automated anatomical labeling (AAL) [132],

Eickhoff-Zilles (EZ) [32], Talairach and Tournoux (TT) [75] and Harvard-Oxford (HO) [41], have

been proposed to construct brain atlases by using structural anatomic or functional information.

After that, voxels in the regions that have structural or functional similarities will be grouped into

Regions of Interest (ROIs) and the time courses of these ROIs can be extracted from the voxels of

the subjects’ resting state fMRI data. Since the brain atlas construction and time-course extraction

are not the focus of this chapter, we will employ the existing brain atlases pre-constructed by the

neuroanatomy community. The details will be presented in Section 2.3.

With time courses of ROIs extracted, every subject can be mapped to a unique vector (multivariate)

sequence which describes the brain activities of that subject. For example, X = [x1,x2, · · · ,xT]

can be a subject’s time-courses of ROIs, where each xt ∈ RD, t = 1, · · · , T represents the brain

activities of that subject in D different ROIs.

10

2.2.2 Temporal Order-Preseving Hashing

Now we propose a hashing algorithm for time-series data which can map a TC into a fixed-size hash

codes regardless of its original length. It can be roughly divided into 2 parts. First, a TC will be

projected into several subspaces to produce a set of projection sequences. Then, we generate hash

codes for entire TC by conducting an operation called First-Take-All (FTA) on those projection

sequences.

2.2.2.1 Sequence Projection

Consider a TC X = [x1,x2, · · · ,xT] of length T described in Section 2.2.1. The first step is to

project X into several subspaces defined by an optimized projection matrix W = [w1, · · · ,wK] ∈

RD×K . Each wk ∈ RD is a projection vector taken from W that generates a sequence sk = wᵀ
kX

for k ∈ {1, · · · , K}. The way to find the optimal W will be given in section 2.2.3.

Intuitively, each sequence sk represents the score over the occurrence of a latent pattern3 wk, and

any TC is composed of a sequence of temporally-ordered patterns. The orders of certain unknown

neural activation patterns often matter in ADHD detection. Thus, we seek to find these relevant

patterns as well as compactly represent their orders in a hash code space, where the similarity

between TCs can be directly computed by their Hamming distance.

To model the temporal order of patterns, first we need to locate the moment they appear. Here we

use softmax to compute the probability that a pattern k appears at time t:

pk,t =
exp(wᵀ

kxt)∑T
t′=1 exp(wᵀ

kxt′)
(2.1)

3These patterns are latent because they are unlabeled.

11

Let u = [1/T, 2/T, · · · , t/T, · · · , 1]ᵀ be the normalized timescale, each entry of which denotes a

relative time moment on the range of [0, 1] in an input sequence of length T . Then, the expected

moment mk that the pattern k appears can be calculated as

mk = Et∼pk,t

[
t

T

]
=

T∑
t=1

t · pk,t
T

= uᵀpk (2.2)

where pk = [pk,1, · · · , pk,T]ᵀ is a vector containing the probability of pattern k appearing at each

moment.

Figure 2.2: Comparison between projections generated by salient and nonsalient patterns. The red
solid line represents the projection of a salient pattern with a small variance, while the blue dotted
line represents the projection of a non-salient pattern with a large variance over the time axis.

Note that a pattern related with ADHD detection usually corresponds to a salient pattern of neural

activation in brain ROIs. Thus, we expect that it should have a sharp appearance in the projection

sequence such as the p1 shown in figure 2.2. Accordingly, we propose to minimize the variance

of pattern occurrence

vk = Vart∼pk,t

[
t

T

]
=

T∑
t=1

(t−mk)
2 · pk,t

T 2
(2.3)

12

together with the other criteria to learn the projection matrix W in Section 2.2.3. This regulariza-

tion term is more likely to generate a salient pattern that really matters in detecting ADHD.

2.2.2.2 First-Take-All Temporal-Order Comparison

Now putting the expected appearing moments of K patterns into m = [m1, · · · ,mK], we wish to

develop an ordinal hashing algorithm directly encoding their temporal order for a TC. Specifically,

we perform a First-Take-All (FTA) comparison to rank the patterns by their temporal order – the

pattern whose expected appearing moment comes first wins the FTA comparison, and its index is

used to hash the entire TC.

For example, when we have two projected sequences (i.e., K = 2), FTA simply encodes the

pairwise order between two corresponding patterns. When K > 2, FTA makes a higher-order

comparison to decide which pattern appears first. Note that the output FTA hash code is not binary;

instead it is a K-ary code. For this reason, we call K the FTA base.

For a pairwise FTA comparison involving only two patterns, knowing the first coming pattern

completely encodes the temporal order between these two patterns. This can be generalized to

high-order comparison if more than two patterns are involved for choosing the first-coming pattern.

Such a high-order FTA comparison could generate more compact code to distinguish between

different types of TCs. For example, suppose there are three types of TCs have different orders

of patterns 1 – 2 – 3 – 4, 1 – 3 – 2 – 4 and 1 – 4 – 3 – 2, respectively. Then an effective FTA

comparison only needs to make a order-3 comparison between the last three patterns 2, 3 and 4,

which will output the FTA code 2, 3 and 4 to distinguish these three types of TCs. In this case,

there is no need to make comprehensive comparisons between all possible pairs of patterns.

However, the patterns whose orders matter in classifying different types of TCs are unknown a-

13

priori. A suitable group of patterns must be learned so that the same type of TCs will have similar

pattern orders. We will discuss the detail about the learning of these patterns in Section 2.2.3.

Mathematically, the index of the first-appearing pattern can be expressed as

h = arg min
θ
θᵀm = θᵀ[uᵀp1| · · · |uᵀpK] = uᵀPθ (2.4)

where θ ∈ {0, 1}K ,1ᵀθ = 1 and h is an 1-of-K indicator of the FTA winner – its unique nonzero

entry is indexed by the first-appearing pattern in the input TC, and P = [p1, · · · ,pK].

Algorithm 1 First-Take-All Hashing

1: Input: TC X, code length L, a set of projection matrices {Wi}Li=1

2: Initialize: b← empty sequence

3: for i = 1 to L do

4: S = Wᵀ
iX

5: for each row sk of S, calculate mk through Eq.(2.1) and Eq. (2.2)

6: k∗ ← arg min
1≤j≤K

mk.

7: b← bk∗ (concatenation)

8: end for

9: return b

An algorithmic description for the entire FTA hashing procedure is shown in Algorithm 1. Multiple

FTA codes can be generated with a set of projection matrices. The code length L in the algorithm

represents the number of hash codes generated for a TC.

14

Figure 2.3: Illustration for First-Take-All Temporal-Order comparison when K is set to 3

Figure 2.3 illustrates the FTA comparison when K is set to 3. Here p1, p2 and p3 in Figure 2.3 are

the probability of each pattern appearing over the time axis t. From them, we can get their expected

pattern appearing moments m1, m2 and m3, which are approximately shown in the figure, where

we have m2 < m3 < m1. By the FTA comparison, we choose the index of m2 as the hash code

for the TC, which is 2.

Before the end of this section, let us analyze the computational complexity of hashing a sequence

by FTA. First, it costs O(TDK) to apply the projection matrix to an input TC X. Then finding

the expected moments of K projected sequences costs O(TK). It also costs O(K) to find the

first-appearing pattern which wins FTA comparison out of K candidates. Hence, FTA totally costs

O(TDK) to hash an input TC up to a constant factor.

2.2.3 Learning Optimal Projections

A learning algorithm to find out the optimal projections W will be presented in this section, in-

cluding the formulation of the optimizing problem and its efficient solution.

15

2.2.3.1 Training Loss

Given a TC X and the expected appearing moments of K patterns m = [m1, · · · ,mK], which is

acquired from a fixed W. Then we can apply the following softmin to calculate the probability

that the kth pattern will appear first:

hk , P (pattern k comes first|X) =
exp(−mk)∑K
k′=1 exp(−mk′)

(2.5)

The smaller the mk, the more likely the pattern k will appear first.

Now consider a pair of TCs X(i) and X(j), along with their label si and sj . We hope that through

our learning algorithm, the resultant FTA hash codes can reflect the label similarity between two

TCs. In other word, when si = sj , there is a greater chance that the same pattern will appear first

in both X(i) and X(j); otherwise, different patterns will appear first if si 6= sj if si 6= sj .

Mathematically, it is easy to see that h(i)k h
(j)
k is the probability that the kth pattern will appear first

in both X(i) and X(j). Suppose hij represents the probability that the same pattern will appear first

in both TCs. It can be computed as by summing up over all patterns

hij =
K∑
k=1

h
(i)
k h

(j)
k (2.6)

Our goal is to maximize hij when si = sj and to minimize it when si 6= sj . This results in the

following objective function

Oij = (1− hij)sij(hij)(1−sij) (2.7)

Here, sij = 1 i.f.f. si = sj; and sij = 0 otherwise. We wish to minimize it for all TC pairs.

Suppose the training set is T = {X(i), si}Ni=1 with N TCs. Then the total logarithmic training loss

16

over T becomes

L =
N∑
i=1

N∑
j=1

[
sij log

(
1− hij

)
+ (1− sij) log

(
hij
)]

(2.8)

Minimizing it can minimize the pairwise diagnosis errors on the training set incurred by the resul-

tant FTA hash codes.

2.2.3.2 Projection Orthogonality

In addition to the minimization of training loss, it is worth mentioning that the redundancy between

the learned patterns also affects the FTA hashing performance. With a set of redundant patterns

learned, their projection sequences would be highly correlated or even identical to one another.

This could reduce the degree of the temporal order being distinguished between different patterns.

In this case, a smaller perturbation or local warping would change the temporal orders significantly,

thereby degenerating the FTA’s performance in presence of noises.

To improve the resiliency of FTA against perturbations or noises on TCs, we wish to reduce the

redundancy between patterns by minimizing the following normalized inner products between

projection vectors

Ω =
K∑

k 6=k′=1

(
wᵀ
kwk′

‖wk‖‖wk′‖

)2

(2.9)

Clearly, minimizing it can make the learned projection vectors as orthogonal to each other as

possible, thereby minimizing the redundancy between the corresponding patterns 4.

4The projection orthogonality can also be imposed as a hard constraint in the optimization problem. However, by
experiments, we found that the performance is more stable by posing it as a soft term that penalizes the projection
redundancy in the objective function.

17

2.2.3.3 Putting Together

In addition to the training loss (2.8) and the projection orthogonality (2.9), we also consider to

minimize the variance of pattern occurrences as shown in Eq. (2.3). This can be expressed as the

following total variance over the training set:

V =

N,K∑
i,k=1

v
(i)
k

where v(i)k is the occurrence variance of pattern k in the ith TC of training set. As aforementioned,

minimizing the variance of pattern occurrences can generate salient patterns for ADHD diagnosis.

Then putting them together, we can define the following minimization problem to learn the projec-

tion matrix W

min
W
F , L · · · training loss

+ γ Ω · · · Projection Orthogonality

+ η V · · · Variance of pattern occurences

(2.10)

where two positive coefficients γ and η are two hyper parameters that control the contributions of

the projection orthogonality and the minimization of pattern occurrence variance.

2.2.3.4 Optimization

We adopt the stochastic gradient descent method to minimize F as to find the optimal projection

W = [w1, · · · ,wK] ∈ RD×K . For each training iteration, we randomly pick up a pair of TCs

and their labels and calculate the gradient ∇WF . Since F is differentiable w.r.t. W, it allow us

to calculate ∇WF , leading to an efficient learning procedure. All equations needed to calculate

∇WF can be found in Appendix and the entire optimization procedure is described in Algorithm

18

2.

Algorithm 2 Learning Optimal Projections

1: Input: training TC set χ = {X(i), si}Ni=1, K, learning rate α

2: Initialize: Randomly initialize W = [w1, · · · ,wK], wk ∈ RD×1, k = 1, · · · , K

3: repeat

4: Select training pair X(i), X(j).

5: P (i) = [p
(i)
k,t]K×T , P (j) = [p

(j)
k,t]K×T , calculate p(i)k,t and p(j)k,t based on Eq.(2.1)

6: for each wk, k = 1, · · · , K, compute ∂F
∂wk

with p(i)k,t and p(j)k,t based on Eq.(.2), (.3), (.4), (

.5), (.6), (.7), (.8), (.9).

7: ∇WF ← [∂F
∂w1

, · · · , ∂F
∂wK

]

8: W←W − α∇WF

9: until Convergence.

The above paragraph depicts the training algorithm for a projection matrix resulting in one FTA

hash code. The above learning algorithm can be used as a subroutine in a standard ensemble

method like AdaBoost. This will yield multiple FTA codes for a TC. The similarity between TCs

can be computed with the Hamming distance between their concatenated FTA codes. Then, ADHD

can be fast detected by retrieving the similar TCs from a labeled database.

2.3 Results for ADHD Detection with FTA Hashing

In this section, we demonstrate the effectiveness of the proposed method by conducting experi-

ments on ADHD 200 dataset, a dataset developed for ADHD detection. First we give a brief in-

troduction on ADHD dataset. Then we discuss the experiment setting. We compare the proposed

method with several supervised and unsupervised baselines with different evaluation metrics. Fi-

19

nally, we study the impact of the hyper-parameters K and L on the performance.

2.3.1 Datasets and Background

We evaluate the proposed FTA approach on ADHD-200 dataset. ADHD-200 was initially pre-

pared by ADHD-200 Consortium[89] for the ADHD-200 Global Competition, a competition that

aimed to improve the understanding of the neural basis of ADHD through the implementation

of the scientific discovery. It contains 776 records of the resting-state fMRI and anatomical data

across 8 independent imaging sites, 491 of which come from typically developing individuals

and 285 from children and adolescents diagnosed with ADHD (ages: 7-21 years old). Accom-

panying phenotypic information includes: diagnostic status, dimensional ADHD symptom mea-

sures, age, sex, intelligence quotient (IQ) and lifetime medication status. Preliminary quality

control assessments (usable vs. questionable) based upon visual time-series inspection are in-

cluded for all resting state fMRI scans. An additional 197 individuals from six imaging sites

were released without the diagnosis labels during the competition for testing purposes and their

labels were released separately afterwards. More information on the dataset can be found at

http://fcon 1000.projects.nitrc.org/indi/adhd200/.

In order to bring the ADHD-200 Global Competition to a wider audience, The Neuro Bureau5 made

preprocessed versions of the competition data freely available to the general public to help those

whose specialities lay outside of resting-state fMRI analysis to bypass technical obstacles. There

are several preprocessed datasets available which were preprocessed by different pipelines. In

order to fairly compare the proposed method with the baselines, we choose the dataset preprocessed

by Athena pipeline[6] which is also used by the baseline methods. More information about the

5http://www.neurobureau.org/

20

http://fcon_1000.projects.nitrc.org/indi/adhd200/

Athena pipeline can be found at Neuro Bureau’s website6.

2.3.2 Experimental Setting and Baselines

For the sake of fair comparison, we follow the experiment setting similar with the baselines. For the

proposed FTA hashing, we determine the values of hyper parameters K, L, γ and η by conducting

5-fold cross validation on the training set. As mentioned in section 2.2.1, the TCs we used for

evaluation were extracted from the pre-constructed brain atlas which was built with automated

anatomical labeling (AAL)[132]. The way to extract TCs is averaging the time courses within

each ROI voxel6. Note that the AAL atlas was constructed using anatomic and cyto-architectonic

information and did not incorporate functional information. Thus the resultant TCs do not contain

any prior phenotypic information which may impact the evaluation. Based on the cross validation,

FTA base K and code length L are set to 2 and 200 respectively.

We compare the proposed method with following algorithms:

• Dynamic Time Warping (DTW)[103]: A well known time series alignment technique that

computes optimal distance between two time series of different lengths while preserving

their temporal order.

• Derivative Dynamic Time Warping (DDTW)[70]: This method uses derivatives of the origi-

nal time series to improve alignment by DTW.

• Canonical Time Warping (CTW)[145]: This method combines canonical correlation analysis

(CCA) with DTW.

6http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:
AthenaPipeline

21

• Method from Johns Hopkins University (JHU)[36]: The winner of ADHD-200 Global Com-

petition which achieved the state-of-the-art performance.

• Attributed Graph Distance Measure (AGDM)[29]: This method proposed a graph based

feature called Attributed Graph Distance Measure which can be used to classify ADHD

subjects.

Note that DTW, DDTW and CTW are unsupervised methods while JHU and AGDM are super-

vised. Following the settings of these baselines, we evaluate the proposed method with four statis-

tical metrics: Prediction Accuracy, Specificity (= True Negative Rate), Sensitivity (= True Positive

Rate) and J-Statistic (= Specificity + Sensitivity - 1). Among them the Prediction Accuracy is

the primary metric for scoring. Note that the detection rate used in [29] is identical to prediction

accuracy.

2.3.3 Comparison with Unsupervised Baselines

We begin our evaluation by demonstrating comparison results with the unsupervised baselines. As

mentioned in Section 2.3.1, the training set consists of 8 subsets collected from different sites while

the test set consists of 6 subsets. We implement FTA in Matlab and use the Matlab implementation

of DTW, DDTW and CTW provided by [144] to conduct the experiments. The training and testing

are performed on the training and testing subsets across all the eight imaging sites. The hardware

configuration for the experiment is Intel i7-4790 CPU at 3.6GHz and 8GB RAM. Table 2.1 shows

all four evaluation metrics and the computing time of three unsupervised baselines and the FTA.

As shown, the FTA outperforms all three baselines by nearly 15% to 18% on the prediction accu-

racy, a significant improvement to these well known time-series alignment methods. This demon-

strates the FTA can better encode the temporal patterns which are important for predicting ADHD

22

subjects than the unsupervised baselines. All four methods have a high specificity but a relatively

low sensitivity. The FTA can reach the best specificity of 0.9149 but with a sensitivity of 0.2727.

This is reasonable since there are much more TDC subjects than ADHD children diagnosed in the

training set (491 TDC and 285 ADHD children) thus the ability of a classifier to detect ADHD

children is dampened – the prior distribution of TDC is biased by a large number of TDC samples

in a general population. Such an unbalance between TDC and ADHD subjects can be relieved

by imposing a larger penalty on missing ADHD subjects. However, we do not perform such a

re-balance for the sake of a fair comparison with the other baselines.

Table 2.1: Performance comparison between the unsupervised baselines and the FTA.

Metric DTW DDTW CTW FTA
Accuracy 0.4678 0.4386 0.4678 0.6140
Specificity 0.7127 0.6915 0.8085 0.9149
Sensitivity 0.2987 0.2987 0.1818 0.2727
J-Statistics 0.0115 -0.0098 -0.0097 0.1876

Time(s) 149.5502 267.8659 47996.5866 20.771

Next we perform efficiency evaluation for all four methods. Since all three baselines adopt Dy-

namic Programming (DP) to perform similarity search, it can be expected that they will have a

much slower speed than the proposed FTA hashing which performs similarity search by the Ham-

ming distance. Figure 2.4 shows the Prediction Accuracy versus the Execution Time for all the

methods. Compared with the baselines, FTA achieves more than 30% higher prediction accuracy

on the entire test set and at least 7 times faster than DP based baselines. That suggests the proposed

FTA hashing can be used for fast detection of ADHD subjects.

23

Figure 2.4: Prediction Accuracy versus Execution Time. Comparison between FTA and unsuper-
vised baselines

2.3.4 Comparison with Supervised Baselines

Now we compare the proposed method with two supervised baselines: JHU[36] and AGDM[29].

The approach proposed by JHU is a weighted combination of several algorithms including CUR

decompositions, random forest, gradient boosting and support vector machine et al. It adopts both

fMRI data and the accompanying phenotypic information like IQ to predict the ADHD subjects.

On the contrary, another baseline AGDM only requires fMRI data to make the prediction. Accord-

ing to [29], features called AGDM were extracted from fMRI data to encode the brain network

structure first. Then they were used to train a SVM classifier which made the final prediction.

Since two baseline methods have different experiment settings, we follow their individual settings

to make a fair comparison.

24

2.3.4.1 FTA vs JHU

Similar to Section 2.3.3, we train and test the FTA on all the training subsets across the eight sites.

More specifically, we randomly sample 3, 000 pairs from all the 8 training subsets and use them to

find the optimal projections. We also report the evaluation metrics following the definitions from

the ADHD-200 Global Competition [89]. The comparison results between the JHU and the FTA

are summarized in Table 2.2.

Table 2.2: Performance evaluation of JHU and FTA

Metric JHU FTA
Prediction Accuracy 0.6102 0.6140

Specificity 0.94 0.9149
Sensitivity 0.21 0.2727
J-Statistics 0.15 0.1876

From the table, we can see the proposed FTA outperforms the JHU on three metrics – prediction

accuracy, sensitivity and J-Statistics. This is an impressive result, considering FTA only uses fMRI

time courses to achieve such performance, whereas the JHU method involves both fMRI time

courses and phenotypic information. Especially, compared with the JHU result, FTA improves

the sensitivity by 29.85% while still keeping a competitive specificity (over 0.9). Such results

demonstrate that encoding the temporal orders of the different neural activity patterns is definitely

a helpful clue to identify the ADHD subjects.

25

Figure 2.5: Percentage of TDC/ADHD Subjects in each training subset.

Figure 2.6: Comparison of the temporal order of two patterns between the TDC and ADHD sub-
jects. It illustrates how the order of these two patterns matters in detecting ADHD.

We further justify this claim by showing some real examples of temporal orders of learned patterns.

Figure 2.6 shows the sequences of two patterns projected from the TCs corresponding to the TDC

and ADHD subjects. Figure 2.6a comes from a TDC subject while Figure 2.6b is obtained from

a ADHD subject. It is clear that these two patterns exhibit different temporal orders between the

26

TDC and ADHD subjects. Since the FTA can encode the temporal order of patterns, the resultant

hash codes can characterize the neural activity difference between different types of TCs.

2.3.4.2 FTA vs AGDM

Unlike the JHU method, the AGDM conducted their experiments on the individual subsets. There

are totally eight subsets collected by different imaging sites and AGDM chose four of them to

evaluate their approach. The chosen subsets are collected by 1) Kennedy Krieger Institute (KKI), 2)

NeuroIMAGE, 3) Oregon Health & Science University (OHSU) and 4) Peking University (Peking)

respectively. To evaluate the proposed method, we follow the same experiment setting as the

AGDM, and train and test on each subset separately.

Table 2.3: Performance evaluation on individual sets

Sites
Prediction Accuracy Specificity Sensitivity J-Statistic
AGDM FTA AGDM FTA AGDM FTA AGDM FTA

KKI 0.5455 0.8182 0.625 1 0.3333 0.3333 -0.0417 0.3333
NeuroImage 0.48 0.8 0.6429 0.8571 0.2727 0.7273 -0.0844 0.5844

OHSU 0.8235 0.8676 0.8929 0.9643 0.5 0.6667 0.3929 0.6310
Peking 0.5882 0.6176 0.9259 1 0.2083 0.25 0.1342 0.25

Average 0.6281 0.7759 0.8312 0.9554 0.2727 0.4943 0.1003 0.4497

Table 2.3 shows the comparison results between the FTA and the AGDM on individual sets. Appar-

ently, the FTA significantly outperforms the AGDM on every evaluation metrics. Specifically, the

average prediction accuracy and the average sensitivity of FTA outperform the AGDM by around

15% and 20% respectively. This means more than 75% of subjects can be correctly classified, and

nearly half of ADHD patients can be successfully detected by the FTA. Moreover, the specificities

of FTA on all four subsets are obviously boosted compared with the AGDM. Especially on KKI

and Peking, the specificity achieves 1 – all TDC subjects are correctly identified.

27

Similar results can be found about the sensitivity. On the NeuroIMAGE and the OHSU subsets, the

sensitivities have reached over 0.7 and 0.6, much closer to the corresponding specificity. Consider

our discussion in Section 2.3.3 – the low sensitivity is caused by high ratio of TDC in the training

set. We calculated the percentage of TDC and ADHD subjects on each subset, which are illustrated

in Figure 2.5. It shows that the ratio of TDC/ADHD subjects on NeuroIMAGE and OHSU is close

to 1, while it is much higher on KKI and Peking. This implies that the low sensitivity is caused by

a high ratio of TDC/ADHD.

2.3.5 Parameter Sensitivity Analysis

Finally, we evaluate the FTA’s performance by varying its hyper-parameters. In particular, we

study the impact of the code length L and FTA base K on the performance. Besides the AAL,

we also conduct experiments with TCs extracted from 3 other pre-built brain atlas: Talairach and

Tournoux (TT)[75], Harvard-Oxford (HO)[41] and CC200[25].

2.3.5.1 Prediction Accuracy vs K

By varying the FTA base K, it can be shown that it affects the test accuracy of the FTA model. For

a fixed code length of 200, a variety of K values were used: from 2 through 7. The results show

differences in impact of K for different ROI atlases. For instance, with the CC200, an increased

K tends to improve the accuracy, whereas an increased K in the AAL results in a subtle decrease

in the test accuracy followed by an increase after K = 6. Overall, all four ROI atlases, begin

to converge to a median of performance when K approaches 7. Throughout the tests, the results

indicate only small dependencies contingent on the values of K.

28

K Value

2 3 4 5 6 7

T
e
s
t
A

c
c
u
ra

c
y

0.3

0.4

0.5

0.6

0.7

0.8
K Parameter Test

AAL

CC200

HO

TT

Figure 2.7: Test accuracy across different ROIs, using different K values

Considering K is the number of patterns involved in generating a hash code, assessing its role

offers a way to tune the amount of discriminant information available at any given comparison.

From Figure 2.7, it seems that for slight increases in K (e.g., from K = 4 to K = 6 for CC200)

the amount of information increases, offering an increased test accuracy. However, there appears

to be a point at which further increasing the value of K no longer improves the test accuracy

(beyond K = 6). Ultimately, this leads to a decline in performance due to the redundancies in the

comparison of a too large number of patterns.

2.3.5.2 Prediction Accuracy vs L

Now let us assess the code length parameter L. Fixed at K = 2, a variety of code lengths were

tested, ranging from L = 10 to L = 1000. In Figure 2.8, it can be seen that L acts differently across

different ROIs, especially between the range of 10 to 200 code length. Incidentally, it is shown that

this range experiences the most abrupt shifts in performance, whilst the range 200-1000 shows

either constant or steady trends. In the case of AAL and HO, they are particularly sensitive to

29

this parameter. Within the L = 10 to L = 200 range, the performance reaches its peak and then

drops subsequently. Extending to the set of other ROIs, Figure 2.8 shows that this trend (to a lesser

degree) is exhibited on CC200 and TT as well.

L Value

0 200 400 600 800 1000

T
e
s
t
A

c
c
u
ra

c
y

0.3

0.4

0.5

0.6

0.7

0.8
L Parameter Test

AAL

CC200

HO

TT

Figure 2.8: Test accuracy across different ROIs, using different L values

Resulting from this experiment, it can be shown that varying code lengths has impact on perfor-

mance, with tuning required particularly in the range of compact codes from L = 10 and L = 200.

Yet similar to K, simply increasing the value indefinitely does not result in a better test accuracy

because of higher redundancies that might exist in longer codes.

2.4 FTA Summary

In this chapter, we propose a novel FTA algorithm to hash time series of varied length into fixed-

size codes. We use the resultant hash codes to efficiently detect the ADHD subjects by fast retriev-

ing the similar subjects. To maximize its performance, we design an effective algorithm to learn the

optimal projections W. The results of extensive experimental evaluations show the proposed FTA

outperforms both unsupervised and supervised methods on the ADHD-200 dataset for identifying

30

ADHD subjects, beating the winning algorithm in the ADHD-200 Global Competition.

31

CHAPTER 3: IMPROVING VIDEO REPRESENTATION LEARNING

THROUGH DYNAMIC ORDER ENCODING

In this chapter, we introduce a RNN-based recurrent model to encode even more complicated

order patterns for video representation learning, which is a very active research area due to its

fundamental role in many computer vision tasks. It attempts to close the huge performance gap

between the state-of-the-art recognition systems and human beings. Inspired by the tremendous

success of the Convolutional Neural Networks (CNN) in learning image representations [74, 116,

123, 63, 56], recent works focus on generalization the CNN architectures to learn high quality

video representations [68, 126, 130, 117, 141]. Although these approaches make a significant

progress in learning better video features, the performance on many tasks has a large gap to what

has been achieved on the image-related tasks such as image classification [74, 116, 123, 56], human

face recognition [112, 102] and human pose estimation [18, 139].

One of the possible reasons making video representation learning so challenging is video clips usu-

ally contain very rich global and local temporal information which is essential for distinguishing

different videos with similar frame level information. For example, videos of opening/closing a

door can be easily classified by the temporal information on when the door leaves/approaches the

wall, while it is hard to classify them solely based on the visual information of individual frames.

Most CNN-based video features handle the challenge by leveraging the local temporal information

between consecutive frames [130, 68, 117, 38]. Some other methods employ Long-Short-Term-

Memory (LSTM) [57] to capture the long-term dependencies between frames [31, 119]. However,

the LSTM model encodes its output as a nonlinear function of frame-level image features, which

still limits its capability to model how the temporal orders of action patterns would impact the

recognition tasks.

32

This inspires us to encode global temporal information into video representations. Specifically,

we present the Temporal Preserving Recurrent Neural Network (TPRNN) by generalizing the idea

behind the First-Take-All framework [60], a novel representation that learns discrete-valued rep-

resentations of sequential data by encoding the temporal orders of latent patterns. The proposed

TPRNN architecture is designated to extract rich patterns over an entire video sequence and encode

them as compact video features in ordered temporal structures. Different from the LSTM that is

designed to memorize the long-term dependencies between frames, the proposed TPRNN gener-

ates video features directly from the ordinal relationships between action patterns in the temporal

domain. Compared to frame-level features, the TPRNN features can be more discriminative in rec-

ognizing videos captured in the same context (e.g., background, objects and actors) but comprising

different sequences of ordered action patterns.

To evaluate the proposed TPRNN model, we conduct extensive experiments on two action recog-

nition datasets, UCF-101 [118] and Charades [115]. To verify the effectiveness of the model

in encoding temporal orders of actions, we construct new action classes by reversing the origi-

nal videos and test if the model can distinguish the reverse action from its original counterpart.

Our experiment results show that the proposed TPRNN model outperforms the LSTM model on

both datasets. Moreover, the TPRNN features also significantly improve the performance of the

frame-level CNN features and LSTM on recognizing action classes that are only distinguishable

by different temporal orders of action patterns.

The rest of this chapter is organized as follows. Section 3.1 reviews related literature on video

representation learning. Then we introduce the proposed TPRNN architecture in Section 3.2. We

show our experiment results on video action datasets in Section 3.3, and summarize the entire

chapter in Section 3.4.

33

3.1 Related Works for Video Representation Learning

Deep features acquired by CNN-based architectures achieved great success in many computer

vision applications such as image classification [74, 116, 123, 56], face recognition [112, 102],

pose estimation [18, 139], etc. Due to its superior performance compared to conventional methods,

recent works tend to expand the application of CNN features to a wider range of areas. In terms

of video representation learning, several recent works have investigated the question of how to

leverage temporal information in addition to the frame level spatial information. These efforts

can be roughly divided into two different categories. One is to extend the convolution operation

to the temporal axis with 3 dimensional filters learn spatiotemporal features. For example, [65]

tries to stack consecutive video frames and extend 2D CNN into time axis. While [68] studies

several approaches for temporal sampling shows they cannot encode the temporal information

effectively as they only report a marginal improvement over a spatial CNN. Moreover, C3D method

[130] introduces a architecture similar to [116] but allowing all filters to operate over spatial and

temporal domain. [120] introduces another way to learn spatiotemporal features by factorizing 3D

convolution into a 2D spatial and a 1D temporal convolution.

Another way to encode temporal information is represented by the two stream approach originally

proposed by [117]. The method decomposes a video clip into spatial and temporal components

and feeds them into two separated CNN architectures to learn spatial and temporal representations

separately. Then the final prediction is based on the late fusion of the softmax scores from both

streams. Rather than performing late fusion at softmax outputs, [38] studies several different fusion

strategies including both spatial fusion (sum, concatenation, bilinear, etc.) temporal fusion (3D

pooling). The fused features produced by the two stream approach is shown very effective in

action recognition and has been deployed into several action recognition methods [17, 44].

Besides CNN-based features, some other methods employ LSTM [57] to encode the long-term

34

dependencies between frames into the video features. A typical way to do this is Long-Term

Recurrent Convolutional Network (LRCN) [31], which is the most closely related work to ours.

LRCN combines CNN structure and LSTM into a unified framework and can be trained in an end-

to-end fashion. Similar works include [141] and [137]: [141] investigates ways to pool temporal

features across longer time span, as well as sequential modeling with deeply stacked LSTM, while

[137] fuses different types of features including two stream, stacked LSTM, spatial pooling and

temporal pooling to make final prediction. Moreover, [119] treats LSTM layer as an autoencoder

and learns video representations in an unsupervised fashion. Although LSTM can discover long-

range temporal relationships between frames, the resultant video features are still from spatial

feature space. On the contrary, First-Take-All hashing [60] encodes temporal order information

directly from time space and can achieve good performance on time sensitive datasets.

3.2 Temporal Preserving Recurrent Network

In this section, we introduce Temporal Preserving Recurrent Network, a novel RNN-based model

which is designed to encode temporal structure information between video frames. First, we ex-

plain the design principles for the proposed network along with the connection between the afore-

mentioned First-Take-All Hashing [60], then we present the architecture of the proposed network

including the definition of each layer and its functionality. Finally, we compare the proposed net-

work with other recurrent networks, which share similar structures.

3.2.1 Intuition

We design the proposed Temporal Preserving Recurrent Network based on the inspiration from the

First-Take-All (FTA) hashing [60], which employs the temporal order information to compactly

35

represent videos. In FTA, a multi-dimensional process is projected to a latent subspace at each

time step, generating a set of 1D latent temporal signals. The occurrences of the maximal values

are compared among all the latent signals, and the one with the first maximum occurrence is

used to index the hash code. However, there are several drawbacks with the FTA formulation.

(1) Only the index of the first-appearing patterns is used to represent the sequence. Others are

ignored which may also contain useful information. (2) In the FTA comparison, The only learnable

parameter is the linear projection. The number of projections and the dimension of each projection

are also determined heuristically. Therefore, the learning capability and scalability of FTA is

limited. (3) Since FTA is an hashing algorithm, the binary nature of the FTA codes prevents

them from representing input sequences more accurate than those floating-point features.

To address the weaknesses of FTA hashing, we reformulate the FTA comparison in a recursive

fashion, so that it can be implemented with a computational model such as recurrent neural net-

work. Denote the original multi-dimensional process as {xt}, and the linear projection as Z, the

running maximum mt of projected latent signals can be obtained by

mt = max(Zxt,mt−1). (3.1)

All scalar functions such as max(·) are applied in an element-wise way unless otherwise stated.

The time steps st when the maximal values mt first occurred so far can be recorded as

st =

t̃, if Zxt >mt−1,

st−1, otherwise.
(3.2)

where t̃ stands for the normalized version of time index in [0, 1]. After recursive updating with

equations 3.1 and 3.2, at the final step T , FTA calculates a binary hash code based on the index

arg mini sT (i). Note that the conditional expression of st can be controlled by a logic gate σ(Zxt−

36

mt−1), where σ(·) is a sigmoid function approximating the hard boolean operation.

3.2.2 Model Architecture

Based on the components of FTA, we propose a Temporal Preserving Recurrent Neural Network

(TPRNN) with stronger temporal modeling capability. TPRNN is a RNN-based network with

evolving memory cells connected in the same way at each time step. An illustration of the network

structure at one time slice is shown in Figure 3.1. An input xt (video frame feature) is fed into

the network together with the current time step t, and the hidden states mt, st are updated with

the control of gate gt. There are several components in the network with distinct functionality as

described in below.

Figure 3.1: Structure of temporal preserving network, where the circle represents the max-pooling
layer and the rounded corner rectangle represents the temporal preserving layer.

Max-pooling Layer The bottom circle in Figure 3.1 is a max-pooling layer over adjacent time

steps. Same as equation 3.1 for FTA, this layer evaluates the latent patterns of input feature xt with

linear projection Z, and stores the current maximal projected values in state mt by comparing with

37

the previous state mt−1.

Temporal-preserving Layer This layer in the rounded corner rectangle of Figure 3.1 plays a

key role in constructing the temporal preserving representation. It keeps track of important time

moments t in state st with a control gate gt:

st = (1− gt) · st−1 + gt · t̃, (3.3)

The gate gt is a sigmoid function which is activated when the most salient moment of a latent event

is detected:

gt = σ(Wxt −Umt−1), (3.4)

where the current input feature xt is compared with the previous maximal response mt−1 in latent

spaces spanned by matrices W and U.

The temporal-preserving layer introduces a few extensions based on the FTA comparison in equa-

tion 3.2. First, rather than following a hard activation condition, we employ a soft activation func-

tion to monitor latent patterns, which is differential and more sensitive to subtle temporal changes.

Similar to the gates in LSTM, gt measures the likelihood of a latent pattern occurrence. It controls

how much to forget about the previous state st−1 and how much to remember for the current time

step t. Such soft updating scheme enables multiple time steps to contribute as the occurrences of

salient events. As a result, the temporal-preserving layer is capable of leveraging more high-order

temporal information than solely considering the maximal response moments.

More importantly, two additional parameters W and U are introduced in equation 3.4 for better

modeling of complex dynamic visual events. The projection U is applied on the max-pooling state

mt−1 to extract more semantic information from input feature. The projection W together with

38

the original parameter Z provide two different latent spaces of xt for activating gate and detecting

maximal response, sharing similar motivation as the key/value addressing mechanism in Neural

Turing Machine [54]. If we set U = I and W = Z, the temporal-preserving layer will reduce to

FTA comparison.

Output Layer At the last time step T , the hidden state sT accumulates the occurrence information

of latent patterns in all previous steps. Thus, each dimension of sT represents the expected time

step when a latent pattern occurs. To encode the temporal order relationship among different

visual patterns, we apply a weighted softmax layer to sT to get the output representation o of video

sequence:

o = softmax(YsT) =
exp(YsT)∑
i exp(Y(i)sT)

, (3.5)

where Y is output weight matrix and Y(i) is the i-th row of Y. Each row of Y selects two or more

latent patterns and compares their relative temporal order through a learned linear combination.

The strength of all the ordinary relationships is normalized to a probability vector by a softmax

function. In contrast to FTA, equation 3.5 gives us more flexibility to encode temporal informa-

tion. The total number of ordinal relationships to encode is controlled by the number of rows in

Y, and the number of latent patterns involved in each comparison is controlled by the number of

non-zero entries in the rows of Y. An `1 regularization can be used to control the sparsity of Y.

For a further understanding of the proposed model, we give an intuitive example of how each

component works in TPRNN. In the max-pooling layer, the projected value of xt indicates the

likelihood of visual concepts, such as arm and forearm, appearing in current video frame. The

most prominent responses of visual concepts are kept in the state mt. The temporal-preserving

layer projects the visual concepts into some higher-order subspace with W and U, capturing in-

39

formation such as the pose of elbow (angle between arm and forearm). When the elbow pose

changes significantly (with arms stretching or folding), the gate gt will be activated and the current

event moment will be memorized in st. By aggregating all the time steps when elbow pose changes

and comparing with other correlated poses such as shoulder movement, the output representation

o can be useful to characterize videos containing boxing activity which requires joint elbow and

shoulder motion. The proposed model mainly relies on dynamic order information to represent

and distinguish videos, which is why we call it temporal-preserving network.

3.2.3 Comparison with other RNNs

We compare the proposed network with the other variants in the RNN, which include the con-

ventional LSTM [57] and Gated Recurrent Unit (GRU) [19]. Similar to these models, the pro-

posed TPRNN also employs the activation gate to forget and store useful information in the hidden

states. However, compared to both LSTM and GRU, there are several differences in the proposed

TPRNN model. A major difference in the proposed TPRNN model is the encoding space. Rather

than learning temporal dependencies from the frame-level (spatial) feature space, TPRNN intends

to capture temporal order structures directly from the time space. This allows video sequences

to be represented from a new perspective that totally different from using the spatial features. If

two video sequences contain the same visual concepts but only with different orders (for example,

open/close a door), the temporal order information is very useful to distinguish their differences.

In such cases, the feature generated by TPRNN can be a great complement for spatial features.

Another straightforward difference is the proposed TPRNN has a simpler structure than LSTM

and GRU. Table 3.1 summarizes the distinction between three structures in terms of the number of

activation gates and the number of parameters. We can see that LSTM has the most complicated

structure with the most activation gates and parameters, while TPRNN only contains less than half

40

of its parameters with only one gate. This makes TPRNN more invulnerable to overfitting.

Table 3.1: Structural differences between LSTM, GRU and TPRNN. Here n represents hidden
states dimension and d represents input dimension.

of gates # of parameters
LSTM 4 4 ∗ (n ∗ d+ n2)
GRU 2 3 ∗ (n ∗ d+ n2)

TPRNN 1 2 ∗ n ∗ d+ n2

3.3 Evaluations for TPRNN

We evaluate the proposed TPRNN representations by performing video classification tasks on two

public available datasets: UCF-101 [118] and Charades [115]. The evaluation aims to validate the

properties of TPRNN from three aspects. First, we compare TPRNN with conventional LSTM

structure to demonstrate the advantage of TPRNN encoding temporal order structures. Then, we

analyze the performance of TPRNN on time-sensitive classes. At last, we prove that the TPRNN

feature can be a good complement of the spatial features by fusing TPRNN features with frame

level features.

3.3.1 Datasets

We employ two video benchmarks to evaluate the proposed TPRNN model: UCF-101 [118] and

Charades [115]. UCF-101 dataset includes 13320 videos from 101 action categories with average

over 150 frames per video. Each video clip in dataset is segmented to exactly contain one of 101

categories. Charades dataset contains 9848 videos of daily indoors activities with temporal anno-

tations for 157 action classes. Unlike UCF-101, each video clip in Charades dataset may contain

multiple action classes in different temporal locations. For UCF-101, We use split-1 with 9537

41

and 3783 videos as training and testing samples, to conduct our experiments. And for Charades,

we exclude videos without any action labels so the final version of the dataset in our experiments

contains 7811 training and 1814 testing samples, respectively.

3.3.2 Implementation and Training

We implement both the conventional LSTM and the proposed TPRNN with Theano [128] python

math library. Note that the time scale is normalized to 1 for all video clips such that the occurrences

of all visual concepts are in [0, 1]. The deep features used in the experiments come from several

different Convolutional Neural Network (CNN) models including AlexNet [74], VGG [116] and

LRCN-single-frame [31]. It is worth mentioning that the VGG models we use to compute RGB

(spatial) and flow (temporal) features are provided by [38] which is also fine-tuned on UCF-101,

while the adopted AlexNet is pre-trained on ImageNet [107]. All these features are computed with

Caffe [66] framework.

We compare the TPRNN features with another two baselines. One is using frame features to

represent video clips by averaging across all frames. Another is feeding frame features to LSTM

to learn long-term frame dependencies, then average the outputs across all time steps to get video

representations. We feed these features into a linear classifier and produce the softmax score for

each class. The weights of linear classifier can be learned along with TPRNN by minimizing the

cross-entropy loss.

Although TPRNN can be trained along with the CNN in an end-to-end fashion, we fix the CNN

weights to compute spatial features and only update weights of LSTM and TPRNN to focus our

experiments on the recurrent module. This makes sure we evaluate the impact of encoding tempo-

ral order information without changing the spatial inputs. We follow the different frame sampling

protocols specified by [38] and [115] on UCF-101 and Charades respectively. During the training

42

phase, the first frame of each video is randomly cropped with an input size of the CNN networks

then the same spatial crop is applied to all frames. Specifically, for Charades dataset, we follow

the setup in [115] that only train the models with untrimmed intervals which don’t include action

localization information for multi-labeled video clips. Unless otherwise specified, we employ the

central crops to do the testing and the number of hidden states and batch size are always set to 200

and 16 videos per batch, respectively.

At last, we adopt prediction accuracy as evaluation metric for the single label cases of UCF-101

while we adopt mean average precision to handle multi-label cases of Charades.

3.3.3 LSTM vs. TPRNN

We compare TPRNN with the conventional LSTM by generating video representations with var-

ious frame level spatial features. Table 3.2 and 3.3 demonstrate the comparison results on both

datasets. From tables we can see the proposed TPRNN outperforms the conventional LSTM with

most input spatial features. On UCF-101, we also test both methods additionally with flow image

inputs computed by [38]. Table 3.2 shows that TPRNN achieves around 1% better performance

than LSTM with all input features from different fully connected layers and RGB/flow images. We

can also observe that the improvement from LSTM to TPRNN is more obvious when using RGB

frames. This is reasonable since RGB features only contain static spatial information, while flow

features already have some local motion information. So TPRNN seems producing less benefit

to the flow inputs. During the training, we also find LSTM more sensitive to the overfitting since

there are much more weights in LSTM as discussed in section 3.2.3.

Similar results can be observed on Charades dataset, where TPRNN can also outperform LSTM

with both fc6 and fc7 features from AlexNet. However, compared to UCF-101, the gap between

LSTM and TPRNN is much smaller with features from fc6 than fc7. Note that during the training

43

phases on the Charades dataset, we perform untrimmed training which doesn’t utilize any action

localization information provided by training set. Thus learning long-term dependencies between

input frames may be not as effective as encoding visual concept occurrences along the time domain,

since visual concepts occurrences can be served as some boundary points for trimmed interval

presenting interested actions.

Table 3.2: Recognition Accuracy on UCF-101 dataset

UCF-101 LSTM TPRNN
VGG-16-fc6 0.7766 0.7861
VGG-16-fc7 0.7769 0.7938

VGG-16-flow-fc6 0.8039 0.8118
VGG-16-flow-fc7 0.8007 0.8107

Table 3.3: Mean Average Precision on Charades dataset

Charades LSTM TPRNN
AlexNet-fc6 0.1027 0.1061
AlexNet-fc7 0.0996 0.1119

3.3.4 Analysis on Subsets

Although we demonstrate the TPRNN can achieve better performance on both datasets, it is bene-

ficial to analyze which video classes can benefit more from temporal features of TPRNN. Based on

[38] which achieves over 80% recognition accuracy with only spatial VGG features on UCF-101,

we can see most of action types can be discriminated well with only spatial context (e.g. back-

ground). In order to evaluate the discriminability based on temporal differences without too much

interference of spatial context information, we first reverse the frame orders for all video clips to

add another 101 classes to the original dataset (total 202 classes after reverse). So the reversed

44

classes can only be distinguished by their temporal order differences. Then we train both LSTM

and TPRNN plus using only spatial features as baseline on the dataset with fine-tuned VGG-16

model used in section 3.3.3, and test with fc7 layer features for each of the original classes by

predicting whether a sample from that class is reversed or not.

Table 3.4: Accuracy of predicting reverse/unreverse on 10 classes of UCF-101

Class LSTM TPRNN Performance Gain
Cliffdiving 0.6410 0.9359 +0.2949
HighJump 0.5676 0.8378 +0.2702

CleanAndJerk 0.5000 0.8182 +0.3182
BalanceBeam 0.5697 0.7742 +0.2045

PoleVault 0.7125 0.7125 +0.0000
CricketBowling 0.5417 0.6667 +0.1240

LongJump 0.6154 0.6538 +0.0384
BlowingCandles 0.5000 0.5152 +0.0152

TennisSwing 0.5000 0.5102 +0.0102
Rowing 0.5000 0.5000 +0.0000
Overall 0.5697 0.6877 +0.1180

We test and report the original/reversed prediction results for 10 representative UCF-101 classes

whose video clips are with different level of foreground, background changes and camera varia-

tions. For example, video clips in CliffDiving class begin with a background of cliff but end with a

background of water, while video clips of BlowingCandles usually have a static background with

relatively small region of interest (candle fire, etc.). As it is a binary classification problem, us-

ing only spatial features output =0.5 accuracy for all 10 classes, as the spatial features are exactly

symmetric for test samples. This indicates it is impossible to distinguish the original/reversed clips

without any long-term or temporal information. Other results are summarized in Table 3.4, which

includes prediction accuracy and performance gain of TPRNN over LSTM for individual and the

overall classes. We can see that LSTM performs obviously better than random guess on around

half of classes but still produces poor results for another half. In contrast, TPRNN outperforms

45

LSTM with a significant margin on most of classes. However, on some classes it performs close

to a random guess.

(a) CliffDiving

(b) TennisSwing

(c) Rowing

Figure 3.2: Examples of classes with different foreground and background variations.

We notice that in the classes where TPRNN and LSTM are significantly better than random, video

clips usually contain distinct background or camera variations throughout the frames. For Instance,

as shown in Figure 3.2a, video clips of CliffDiving class always start with a person standing height.

After the action begins, the camera will track the person dropping from height until he/she gets into

water. So there will be notable background order difference between original and reversed classes,

making them much easier to be classified by TPRNN. In such cases, the action region is very small

and is not a crucial factor to classify the video. Besides, for those classes which TPRNN performs

similarly poor as TennisSwing (Figure 3.2b), we can see that such actions often take place at some

static locations such as tennis ground, etc. Thus background variations contribute very little in

temporal order differences and TPRNN will rely on the variations of much smaller action regions

46

(poses), making it less beneficial for these classes. What’s more, Rowing class represents classes

whose video clips are temporally symmetric. As shown in Figure 3.2c, the background is almost

static and the action region varies periodically. In such cases, encoding the temporal differences

may not characterize video clips well and let the TPRNN features perform like random guess.

Similar behavior also can be observed on the remaining classes.

Table 3.5: Average Precision (AP) and Mean Average Precision (MAP) of each class pairs and
action type group. sth. indicates different visual objects

Group 1– Opening/Closing sth.
Spatial LSTM TPRNN

Door 0.2671 0.2662 0.3261
Box 0.0410 0.0446 0.0357

Laptop 0.0186 0.0252 0.0440
Closet/Cabinet 0.1612 0.1704 0.1660

Refrigerator 0.1673 0.0984 0.1712
MAP 0.1311 0.1209 0.1486

Group 2– Taking/Putting sth. somewhere
Spatial LSTM TPRNN

Bag 0.0441 0.0457 0.0530
Shoes 0.0379 0.0421 0.0525

Sandwich 0.0305 0.0304 0.0367
Blanket 0.0857 0.0806 0.0972
Broom 0.0416 0.0381 0.0482
MAP 0.0480 0.0474 0.0575

Overall MAP 0.0896 0.0842 0.1031

Unlike UCF-101, Charades dataset contains many class pairs that naturally with forward and back-

ward orders, e.g. closing/opening a door. Moreover, the classes in such pairs can be further

aggregated into some action types like putting something somewhere and take something from

somewhere, etc. These action types share similar temporal order patterns only with different vi-

sual concepts. We train all three methods (spatial classifier, LSTM, TPRNN) on entire dataset and

47

then calculate the Average Precision (AP) for each class. We report testing results on two different

pair groups. Each group contains 5 class pairs in forms of the same action types but with different

visual objects. For example, action type of group 1 is opening/closing something while the one

of group 2 is putting/taking something somewhere. Table 3.5 demonstrates the AP for each pair

as well as their Mean Average Precision (MAP) for each group, where the AP of each pair is the

average of two classes. As we expected, TPRNN works better in most of class pairs and clearly

boost the overall performance.

3.3.5 Fuse with Spatial Features

The TPRNN representation is designed to capture more temporal information and therefore is

expected to be a good complement for spatial feature. To verify this argument, we combine it

with spatial features and test the performance boost on the same recognition tasks. We compare

the spatial, TPRNN features and their late fusion results in Table 3.6 with different frame feature

inputs. Note that for spatial results, we average all frame features of each video clip to generate

a fixed-size video feature and then perform the classification, while for late fusion, we follow the

fusion setting of [117] by averaging the prediction score of Spatial features and TPRNN features

to get the final prediction score. For each CNN architecture, we experiment with features from

both fc6 and fc7 layer but only report fc7 results since fc6 results are quite similar. We can see

that on UCF-101, late fusion with spatial features and TPRNN features achieves different level

of boosting. In cases that TPRNN achieves same level performance as spatial features (VGG-16-

RGB and flow), late fusion improves about 1% recognition accuracy than single feature, while

when TPRNN performs better than spatial ones such as using LRCN-single frame inputs, fusion

results are less boosted because of the discrimative gap between two types of features. Similar

results can be observed on Charades dataset. Such results coincide with the expectation that the

fusion with two features can achieve better performance.

48

Table 3.6: Late fusion results on UCF101 and Charades

UCF-101 Spatial TPRNN Late Fusion
LRCN[31]-single-fc7 0.6952 0.7112 0.7187

VGG-16-RGB-fc7 0.7893 0.7938 0.8057
VGG-16-flow-fc7 0.8096 0.8107 0.8197

Charades Spatial TPRNN Late Fusion
AlexNet-fc7 0.1034 0.1119 0.1136

3.4 TPRNN Summary

This chapter presents a novel Temporal Preserving Recurrent Network (TPRNN) that aims to learn

video representation directly from the temporal domain. The proposed network architecture mod-

els the temporal order relationships between visual concepts by leveraging their occurrences from

spatial feature inputs. The resultant video features provide a new way to characterize video clips

with temporal information only. Compared to other RNN structure such as LSTM [57] and GRU

[19], TPRNN has simpler inner structure with less parameters which makes it more invunerable to

overfitting. The structure design also let the TPRNN overcome the shortcomings that First-Take-

All [60] hashing suffers and be able to leverage much more temporal order information in the video

representation. We evaluate the proposed TPRNN model on UCF-101 and Charades dataset for

action recognition with extensive experiments. The results indicate the proposed TPRNN model

outperforms the conventional LSTM and can further improve by combining the spatial features. In

particular, significant performance boost is achieved for action classes only are distinguishable by

temporal orders.

49

CHAPTER 4: LEARNING LONG-TERM DEPENDENCIES IN

FREQUENCY DOMAIN

Other than order patterns, this chapter focuses on a new pattern type by proposing a novel de-

sign for capturing long-term dependencies in frequency domain. Generally speaking, research in

modeling dynamics of time series has a long history and is still highly active due to its crucial

role in many real world applications [82]. In recent years, the advancement of this area has been

dramatically pushed forward by the success of recurrent neural networks (RNNs) as more training

data and computing resources are available [88, 5, 52]. Although some sophisticated RNN models

such as Long Short-term Memory (LSTM) [57] have been proven as powerful tools for modeling

the sequences, there are some cases that are hard to handle by RNNs. For instance, [90] demon-

strates that RNN models either perform poorly on predicting the optimal short-term investment

strategy for the high frequency trading or diverge, making them less preferred than other simpler

algorithms.

One of the possible reasons for such situations is that RNN models like LSTM only consider the

pattern dependency in the time domain, which is insufficient if we want to predict and track the

temporal sequences over time at various frequencies. For example, in phonemes classification,

some phonemes like ‘p’, ‘t’ are produced by short, high-frequency signals, while others like ‘iy’,

‘ey’ are related to longer, low-frequency signals. Thus modeling such frequency patterns is quite

helpful for correctly identifying phonemes in a sentence.

Similarly, music clips are often composed of note sequences across a rich bands of frequencies.

Automatically generating music clips often requires us to model both short and long-lasting notes

by properly mixing them in a harmonic fashion. These examples show the existence of rich fre-

quency components in many natural temporal sequences, and discovering them plays an important

50

role in many prediction and generation tasks.

Thus, we strive to seamlessly combine the capacity of multi-frequency analysis with the modeling

of long-range dependency to capture the temporal context of input sequences. For this purpose, we

propose the State-frequency Memory (SFM), a novel RNN architecture that jointly decomposes

the memory states of an input sequence into a set of frequency components. In this fashion, the

temporal context can be internally represented by a combination of different state-frequency basis.

Then, for a prediction and generation task, a suitable set of state-frequency components can be se-

lected by memory gates deciding which components should be chosen to predict and generate the

target outputs. For example, the high-frequency patterns will be chosen to make very short-term

prediction of asset prices, while the low-frequency patterns of price fluctuations will be selected

to predict returns in deciding low-term investment. Even more, we also allow the model to auto-

matically adapt its frequency bands over time, resulting in an Adaptive SFM that can change its

Fourier bases to more accurately capture the state-frequency components as the dynamics of input

sequences evolves.

First we demonstrate the effectiveness of the proposed SFM model by predicting different forms

of waves that contain rich periodic signals. We also conduct experiments on several benchmark

datasets to model various genres of temporal sequences, showing the applicability of the proposed

approach in the real world, non-periodic situations. Our results suggest the SFM can obtain com-

petitive performance as compared with the state-of-the-art models.

The remainder of this chapter is organized as follows. Section 4.1 reviews relevant literature on

different RNN-based architectures and their applications. Then we introduce the proposed SFM

model in Section 4.2 with its formal definitions and mathematical analysis. Section 4.3 demon-

strates the experiment results for different evaluation tasks. Finally, we conclude the chapter in

section 4.4.

51

4.1 Recent Progress for RNN Research

Recurrent Neural Networks (RNNs), which is initially proposed by [35, 67], extend the standard

feed forward multilayer perceptron networks by allowing them to accept sequences as inputs and

outputs rather than individual observations. In many sequence modeling tasks, data points such

as video frames, audio snippets and sentence segments, are usually highly related in time, making

RNNs as the indispensable tools for modeling such temporal dependencies. Unfortunately, some

research works like [7], has pointed out that training RNNs to capture the long-term dependencies

is difficult due to the gradients vanishing or exploding during the back propagation, making the

gradient-based optimization struggle.

To overcome the problem, some efforts like [9], [96] and [85], aim to develop better learning al-

gorithms. While others manage to design more sophisticated structures. The most well-known

attempt in this direction is the Long Short-Term Memory (LSTM) unit, which is initially pro-

posed by [57]. Compared to the vanilla RNN structures, LSTM is granted the capacity of learning

long-term temporal dependencies of the input sequences by employing the gate activation mecha-

nisms. In the realistic applications, LSTM has also been proved to be very effective in speech and

handwriting recognition [50, 49, 109]. Recently, [19] introduce a modification of the conventional

LSTM called Gated Recurrent Unit, which combines the the forget and input gates into a single

update gate, and also merges the cell state and hidden state to remove the output gate, resulting in

a simpler architecture without sacrificing too much performance.

Besides LSTM and its variations, there are a lot of other efforts to improve RNN’s sequence mod-

eling ability. For example, Hierarchical RNN [33] employs multiple RNN layers to model the

sequence in different time scale. Moreover, [113] and [48] connect two hidden layers of RNN and

LSTM with opposite directions to the same output, respectively. Such bidirectional structures al-

low the output layer to access information from both past and future states. In addition, Clockwork

52

RNN [73] and Phased LSTM [92], attempt to design new schema to allow updating hidden states

asynchronously.

Instead of developing novel structures, many researchers focus on applying existing RNN model

to push the boundary of the real-world applications. For example, [5] and [122] have reached the

same level performance as the well-developed systems in machine translation with RNN-encoder-

decoder framework; [39] proposes the hierarchical Connectionist Temporal Classification (CTC)

[51] network and its deep variants has achieved the state-of-the-art performance for phoneme

recognition on TIMIT database [52]. Lastly, [12] reports that RNN yields a better prior for the

polyphonic music modeling and transcription.

4.2 State-Frequency Memory Recurrent Neural Networks

To introduce the State-Frequency Memory (SFM) recurrent neural networks, we begin with the

definition of several notations. Suppose we are given a sequence X1:T = [x1,x2, · · · ,xT] of

T observations, where each observation belongs to a N -dimensional space, i.e., xt ∈ RN for

t = 1, · · · , T . Then we use a sequence of memory cells of the same length T to model the

dynamics of the input sequence.

Like the conventional LSTM recurrent networks, each memory cell of the SFM contains D-

dimensional memory states; however, unlike the LSTM, we decompose these memory states into

a set of frequency components, saying {ω1, · · · , ωK} of K discrete frequencies. This forms a joint

state-frequency decomposition to model the temporal context of the input sequence across differ-

ent states and frequencies. For example, in modeling the human activities, action patterns can be

performed at different rates.

For this purpose, we define a SFM matrix St ∈ CD×K at each time t, the rows and columns of

53

which correspond toD dimensional states andK frequencies. This provides us with a finer-grained

multi-frequency analysis of memory states by decomposing them into different frequencies, mod-

eling the frequency dependency patterns of input sequences.

4.2.1 Updating State-Frequency Memory

Like in the LSTM, the SFM matrix of a memory cell is updated by combining the past memory

and the new input. On the other hand, it should also take into account the decomposition of the

memory states into K frequency domains, which can be performed in a Fourier transformation

fashion (see Section 4.2.2 for a detailed analysis) as:

St = ft ◦ St−1 + (gt ◦ it)

ejω1t

· · ·

ejωKt

T

∈ CD×K (4.1)

where ◦ is an element-wise multiplication, j =
√
−1, and [cosω1t+ j sinω1t, · · · , cosωKt+ j sinωKt]

are Fourier basis of K frequency components for a sliding time window over the state sequence;

ft ∈ RD×K and gt ∈ RD are forget and input gates respectively, controlling what past and current

information on states and frequencies are allowed to update the SFM matrix at t. Finally, it ∈ RD

is the input modulation that aggregates the current inputs fed into the current memory cell.

The update of SFM matrix St can be decomposed into the real and imaginary parts as follows.

ReSt = ft ◦ ReSt−1 + (gt ◦ it) [cosω1t, · · · , cosωKt] (4.2)

and

ImSt = ft ◦ ImSt−1 + (gt ◦ it) [sinω1t, · · · , sinωKt] (4.3)

54

Then the amplitude part of St is defined as

At = |St| =
√

(ReSt)2 + (ImSt)2 ∈ RD×K (4.4)

where (·)2 denotes element-wise square, each entry |St|d,k captures the amplitude of the dth state

on the kth frequency, and the phase of St is

∠St = arctan(
ImSt
ReSt

) ∈
[
−π

2
,
π

2

]D×K
(4.5)

where arctan(·) is an element-wise inverse tangent function. It is well known that the amplitude

and phase encode the magnitude and the shift of each frequency component.

Later, we will feed the amplitude of state-frequency into the memory cell gates, and use the dis-

tribution of memory states across different frequencies to control which information should be

allowed to update the SFM matrix. The phase ∠St of state-frequency is ignored as we found it

does not affect the result in experiments but incurs extra computational and memory overheads.

4.2.1.1 The Joint State-Frequency Forget Gate

To control the past information, two types of forget gates are defined to decide which state and

frequency information can be allowed to update SFM matrix. They are the state forget gate

f ste
t = σ(Wstezt−1 + Vstext + bste) ∈ RD (4.6)

and the frequency forget gate

f fre
t = σ(Wfrezt−1 + Vfrext + bfre) ∈ RK (4.7)

55

where σ(·) is an element-wise sigmoid function; zt is an output vector which will be discussed

later; W∗ and V∗ are weight matrices; and b∗ is a bias vector.

Then a joint state-frequency gate is defined as an outer product ⊗ between f ste
t and f fre

t

ft = f ste
t ⊗ f fre

t = f ste
t · f fre′

t ∈ RD×K (4.8)

In other words, the joint forget gate is decomposed over states and frequencies to control the

information entering the memory cell.

4.2.1.2 Input Gates and Modulations

The input gate can be defined in the similar fashion as

gt = σ(Wgzt−1 + Vgxt + bg) ∈ RD (4.9)

where the parameter matrices are defined to generate a compatible result for the input gate. The

input gate decides how much new information should be allowed to enter the current memory cell

to update SFM matrix.

Meanwhile, we can define the following information modulation modeling the incoming observa-

tion xt as well as the output zt−1 fed into the current memory cell from the last time

it = tanh(Wizt−1 + Vixt + bi) ∈ RD (4.10)

which combines xt and zt−1.

56

4.2.1.3 Multi-Frequency Outputs and Modulations

To obtain the outputs from the SFM, we produce an output from each frequency component, and

an aggregated output is generated by combing these multi-frequency outputs modulated with their

respective gates.

Specifically, given the amplitude part At of the SFM matrix St at time t, we can produce an output

vector zkt ∈ RM for each frequency component k as

zkt = okt ◦ fo(Wk
zA

k
z + bkz), for k = 1, · · · , K (4.11)

where Ak
t ∈ RD is the kth column vector of At corresponding to frequency component k, fo(·)

is an output activation function, and okt is the output gate controlling whether the information on

frequency component k should be emitted from the memory cell at time t,

okt = σ(Uk
oA

k
t + Wk

oz
k
t−1 + Vk

ox
k
t + bko) ∈ RM (4.12)

where Uk
o are weight matrices. These multi-frequency outputs {zkt } can be combined to produce

an aggregated output vector

zt =
K∑
k=1

zkt =
K∑
k=1

okt ◦ fo(Wk
zA

k
z + bkz) ∈ RM (4.13)

Then {okt |k = 1, · · · , K} can be explained as the modulators controlling how the multi-frequency

information is combined to yield the output.

57

4.2.2 Fourier Analysis of SFM Matrices

Now we can expand the update equation for the SFM matrix to reveal its temporal structure by

induction over t. By iterating the SFM matrix St over the time t, Eq. 4.1 can be written into the

following final formulation

St = (ft◦ft−1◦· · ·◦f1)◦S0+(gt◦it)

ejω1t

· · ·

ejωKt

T

+
t∑

t′=2

ft◦· · ·◦ft′◦gt′−1◦it′−1

ejω1(t′−1)

· · ·

ejωK(t′−1)

T

(4.14)

where S0 is the initial SFM matrix at time 0.

By this expansion, it is clear that St is the Fourier transform of the following sequence

{(ft ◦ ft−1 ◦ · · · ◦ f1) ◦ S0} ∪ {gt ◦ it} ∪ {ft ◦ · · · ◦ ft′ ◦ gt′−1 ◦ it′−1|t′ = 2, · · · , t} (4.15)

In this sequence,the forget and input gates ft′ and gt′ weigh the input modulations it′ that aggregates

the input information from the observation and past output sequences. In other words, the purpose

of these gates is to control how far the Fourier transform should be applied into the past input

modulations.

If some forget or input gate has a relatively small value, the far-past input modulations would be

less involved in constituting the frequency components in the current St. This tends to localize the

application of Fourier transform in a short time window prior to the current moment. Otherwise,

a longer time window would be defined to apply the Fourier transform. Therefore, the forget

and input gate dynamically define time windows to control the range of temporal contexts for

performing the frequency decomposition of memory states by the Fourier transform.

58

4.2.3 Adaptive SFM

The set of frequencies {ω1, · · · , ωK} can be set to ωk = 2πk
K

for k = 0, · · · , K − 1, i.e., a set of

K discrete frequencies evenly spaced on [0, 2π]. By Eq. 4.14, this results in the classical Discrete-

Time Fourier Transform (DTFT), yielding K frequency coefficients stored column-wise in SFM

matrix for each of D memory states.

Alternatively, we can avoid prefixing the discrete frequencies ω = [ω1, · · · , ωK]T by treating them

as variables that can be dynamically adapted to the context of the underlying sequence. In other

words, ω is not a static frequency vector with fixed values any more; instead they will change

over time and across different sequences, reflecting the changing frequency of patterns captured

by the memory states. For example, a certain human action (modeled as a memory state) can be

performed at various execution rates changing over time or across different actors. This inspires

us to model the frequencies as a function of the memory states, as well as the input and output

sequences,

ω = Wωxxt + Wωzzt−1 + bω (4.16)

where W∗ and bω are the function parameters, and multiplying 2π with a sigmoid function maps

each ωk onto [0, 2π]. This makes the SFM more flexible in capturing dynamic patterns of changing

frequencies. We call the Adaptive SFM (A-SFM) for brevity.

4.3 Evaluations for SFM

In this section, we demonstrate the evaluation results of the SFM on three different tasks: signal

type prediction, polyphonic music modeling and phoneme classification. For all the tasks, we

divide the baselines into two groups: the first one (BG1) contains classic RNN models such as

the conventional LSTM [57] and the Gated Recurrent Unit (GRU) [19]; while the second group

59

(BG2) includes latest models like Clockwork RNN (CW-RNN) [73], Recurrent Highway Network

(RHN) [146], Adaptive Computation Time RNNs (ACT-RNN) [47], Associative LSTM (A-LSTM)

[27] and Phased LSTM (P-LSTM) [92]. Compared to the proposed SFM, baselines in BG2 share

similarities like hierarchical structures and complex representation. However, they either don’t

contain any modules aiming to learn frequency dependencies (RHN, ACT-RNN, A-LSTM), or only

have implicit frequency modeling abilities that are not enough to capture the underlying frequency

patterns in the input sequences (CW-RNN, P-LSTM).

Table 4.1: Hidden neuron numbers of different networks for each task. The total number of pa-
rameters (weights) will keep the same for all the networks in each task. Task 1, 2 and 3 stand for
signal type prediction (sec 4.3.1), polyphonic music prediction (sec 4.3.2) and phone classification
(sec 4.3.3), respectively. The last column indicates the unique hyperparameters of each network.

Task 1 Task 2 Task 3 Note
of Params ≈ 1k ≈ 139k ≈ 80k -

GRU 18 164 141 -
LSTM 15 139 122 -

CW-RNN 30 295 245 Tn ∈ T 1

ACT-RNN 18 164 141 -
RHN 9 94 76 d = 41

A-LSTM 15 139 122 n = 41

P-LSTM 15 139 122 ron = 0.051

SFM 50× 4 50× 4 30× 8 -

In order to make a fair comparison, we use different numbers of hidden neurons for these networks

to make sure the total numbers of their parameters are approximately the same. Per the discussion

in Section 4.2, the hidden neuron number is decided by the size D × K of the SFM matrix St ∈

CD×K , where D stands for the dimension of the memory states and K is the number of frequency

components. The hidden neuron setups for three tasks are summarized in Table 4.1. We implement

1Tn - clock period, T = {20, · · · , 24}; d - recurrent depth; n - # of copies; ron - open ratio. Please refer to each
baseline paper for more details.

60

the proposed SFM model using Theano Python Math Library [127].

Unless otherwise specified, we train all the networks through the BPTT algorithm with the AdaDelta

optimizer [142], where the decay rate is set to 0.95. All the weights are randomly initialized in

the range [−0.1, 0.1] and the learning rate is set to 10−4. The training objective is to minimize the

frame level cross-entropy loss.

4.3.1 Signal Type Prediction

First, we generate some toy examples of sequences, and apply the SFM to distinguish between

different signal types. In particular, all signal waves are periodic but contain different frequency

components. Without loss of generality, we choose to recognize two types of signals: square waves

and sawtooth waves. By the Fourier analysis, these two types of waves can be represented as the

following Fourier series, respectively.

ysquare(t) =
4A

π

∞∑
n=1,3,5,···

1

n
sin(

2nπ

T
(t+ P)) + V, t ∈ [0, L] (4.17)

ysawtooth(t) =
A

2
− A

π

∞∑
n=1

1

n
sin(

2nπ

T
(t+ P)) + V, t ∈ [0, L] (4.18)

where L, T,A, P, V stand for the length, period, amplitude, phase and bias, respectively. The

square waves contain the sine base functions only with the odd n’s, while sawtooth waves contain

both the odd and even n’s. This makes their frequency components quite different from each other,

and thus they are good examples to test the modeling ability of the proposed SFM network.

We artificially generate 2, 000 sequences, with 1, 000 sequences per signal type. Figure 4.1 illus-

trates the generated waves samples. Our goal is to correctly classify each of the blue solid and

61

red dash signals. We denote by U(a, b) a uniform distribution on [a, b], then the sequence of each

wave is generated like this: we first decide the length of the wave L ∼ U(15, 125) and its period

T ∼ U(50, 75). Then we choose amplitude A ∼ U(0.5, 2), phase P ∼ U(0, 15) and the bias

V ∼ U(0.25, 0.75). At the last step, we randomly sample each signal 500 times along with their

time stamps, resulting in a sequence of 2-dimensional vectors. Specifically, a vector in a sequence

has the form of (y, t), where y is the signal value and t is the corresponding time stamp. In exper-

iments, we randomly select 800 sequences per type for training and the remaining are for testing.

Figure 4.1: Several examples of the generated waves on the interval [30, 60] with different periods,
amplitudes, and phases. The red dash lines represent the square waves while the blue solid lines
represent square waves. The ’∗’ markers indicate the sampled data points that are used for training
and testing.

We compare the proposed SFM with all BG1 and BG2 baselines and summarize the prediction

results in Figure 4.2. The result shows by explicitly modeling the frequency patterns of these two

types of sequences, both SFM and Adaptive SFM achieve best performance. In particular, the

Adaptive SFM has achieved 0.9975 in accuracy – almost every signal has been classified correctly.

62

Figure 4.2: Signal type prediction accuracy of each model.

4.3.2 Polyphonic Music Modeling

In this subsection, we evaluate the proposed SFM network on modeling polyphonic music clips.

The task focuses on modeling the symbolic music sequences in the piano-roll form like in [12].

Specifically, each piano roll can be regarded as a matrix with each column being a binary vector that

represents which keys are pressed simultaneously at a particular moment. This task of modeling

polyphonic music is to predict the probability of individual keys being pressed at next time t + 1

given the previous keys pressed in a piano roll by capturing their temporal dependencies. Such

a prediction model plays a critical role in polyphonic transcription to estimate the audible note

pitches from acoustic music signals.

The experimental results are obtained on four polyphonic music benchmarks that have been used

in [12]: MuseData, JSB chorales [2], Piano-midi.de [98] and Nottingham. In addition to the

baselines in BG1 and BG2, we also compare with the following methods that have achieved the

best performance in [12].

• RNN-RBM: Proposed by [12], RNN-RBM is a modification of RTRBM [121] by combining

63

a full RNN with the Restrict Boltzmann Machine.

• RNN-NADE-HF: RNN-NADE [76] model with the RNN layer pretrained by the Hessian-

free (HF) [85]

Table 4.2: Log-likelihood on the four music datasets. The last two columns contain the results
from the proposed SFM models.

Dataset LSTM GRU
CW-
RNN

ACT-
RNN

RHN
A-

LSTM
P-

LSTM
RNN-
RBM

RNN-
NADE-

HF
SFM

A-
SFM

MuseData −5.44 −5.36 −5.35 −5.20 −5.79 −5.03 −5.09 −6.01 −5.60 −4.81 −4.80
JSB chorales −6.24 −6.14 −6.04 −5.89 −5.74 −5.63 −5.65 −6.27 −5.56 −5.47 −5.45
Piano-midi.de −7.27 −7.14 −7.83 −7.41 −7.58 −6.96 −7.02 −7.09 −7.05 −6.76 −6.80
Nottingham −5.60 −5.63 −5.90 −5.82 −5.60 −5.64 −5.70 −2.39 −2.31 −5.67 −5.63

We directly report the results of these methods from [12]. We follow the same protocol [12] to

split the training and test set to make a fair comparison on the four datasets. The MIDI format

music files are publicly available2 and have been preprocessed into piano-roll sequences with 88

dimensions that span the range of piano from A0 to C8. Then, given a set ofN piano-roll sequences

and Xn = [xn1 , · · · ,xnTn] is the nth sequence of length Tn, the SFM uses a softmax output layer to

predict the probability of each key being pressed at time t based on the previous ones x1:t−1.

The log-likelihood of correctly predicting keys to be pressed has been used as the evaluation metric

in [12], and we adopt it to make a direct comparison across the models. The results are reported

in the Table 4.2. As it indicates, both SFM and Adaptive SFM have outperformed the state-of-

the-art baselines except on the Nottingham dataset. On the rest of three datasets, both SFM and

Adaptive SFM consistently perform 0.2 ∼ 1.0 better than BG1 and BG2 baselines in terms of the

log-likelihood. We also note that the Adaptive SFM obtains almost the same result as the SFM,

suggesting that using static frequencies are already good enough to model the polyphony.

2http://www-etud.iro.umontreal.ca/∼boulanni/icml2012

64

(a) MuseData (b) Nottingham

Figure 4.3: Piano rolls of the exemplar music clips from the MuseData and Nottingham dataset.
Classical musics from MuseData are presented by complex, high frequently-changed sequences,
while folk tunes from Nottingham contains simpler, lower-frequency sequences.

On the Nottingham dataset, however, the two compared models, RNN-RBM and RNN-NADE-

HF, reach the best performance. The dataset consists of over 1000 folk tunes, which are often

composed of simple rhythms with few chords. Figure 4.3 compares some example music clips

from the Nottingham to the MuseData datasets. Clearly, the Nottingham music only contains

simple polyphony patterns that can be well modeled with the RNN-type models without having to

capture complex temporal dependencies. On the contrary, the music in the MuseData is often a

mixture of rich frequency components with long-range temporal dependencies, which the proposed

SFM models are better at modeling as shown in the experiment results.

4.3.3 Phoneme Classification

Finally, we evaluate the proposed SFM model by conducting the frame level phoneme classification

task introduced by [48]. The goal is to assign the correct phoneme to each speech frame of an input

65

sequence. Compared with other speech recognition tasks like spoken word recognition, phoneme

classification focuses on identifying short-range sound units (phonemes) rather than long-range

units (words) from input audio signals. We report the frame-level classification accuracy as the

evaluation metric for this task.

Figure 4.4: Accuracy for frame-level phoneme classification on TIMIT dataset.

We perform the classification task on TIMIT speech corpus [43]. We preprocess the dataset in

the same way as [48]. First we perform Short-time Fourier Transform (STFT) with 25ms input

windows and 10ms frame size. Then for each frame, we compute the Mel-Frequency Cepstrum

Coefficients (MFCCs), the log-energy and its first-order derivatives as the frame-level features.

Similarly, in order to maintain the consistency with [48], we use the original phone set of 61

phonemes instead of mapping them into a smaller set [106].

We train the proposed and compared models by following the standard splitting of training and test

sets for the TIMIT dataset [43]. In addition, we randomly select 184 utterances from the training

set as the validation set and keep the rest for training.

Figure 4.4 compares the classification accuracy by different models. In addition, we include the

result of the bidirectional LSTM (Bi-LSTM) [48] for comparison. From the figure, we can see

that both SFM and Adaptive SFM outperform the BG1 and BG2 baselines with approximately the

66

same number of parameters. Especially when compared with the conventional LSTM, CW-RNN

and ACT-RNN, the proposed SFM models have significantly improved the performance by more

than 5%. This demonstrates the advantages on explicitly modeling the frequency patterns in short-

range windows, which plays a important role in characterizing the frame-level phoneme. Besides,

the Adaptive SFM also perform slightly better than the state-of-the-art Bi-LSTM model.

(a) At T
4 (b) At T

2

(c) At 3T
4

(d) At T

Figure 4.5: The amplitudes of SFM matrices for both the prefixed (SFM) and adaptive (A-SFM)
frequencies. For all subfigures, each row represents a frequency component.

67

Additionally, we find adapting frequencies, which is the main difference between the Adaptive

SFM and SFM, yields improved performance on this dataset. In order to further analyze such

difference, we visualize the SFM matrices of both the SFM and Adaptive SFM by forwarding a

sampled TIMIT sequence. Suppose the length of the sampled sequence is T , Figure 4.5 illustrates

the matrix amplitudes of both the SFM and Adaptive SFM at time T
4

, T
2

, 3T
4

and T , from which

the two networks demonstrate distinct ways to model the sequence. Based on section 4.2.3, the

frequency set of the SFM keeps the same across the time. And in all subfigures of Figure 4.5,

most highlights are around frequency component 1 and 2, indicating the two are the primary com-

ponents for modeling the sequence, while other components are rarely involved. On the contrary,

the frequency set of Adaptive SFM is constantly updated and different at each time step. Under

such conditions, modeling the sequence calls for more frequency components, which are varied

dramatically across the time as shown in Figure 4.5. Compared with the SFM, the Adaptive SFM

is able to model richer frequency patterns.

4.4 Summarization for SFM

In this chapter, we propose a novel State-Frequency Memory (SFM) Recurrent Neural Network

which aims to model the frequency patterns of the temporal sequences. The key idea of the SFM is

to decompose the memory states into different frequency states such that they can explicitly learn

the dependencies of both the low and high frequency patterns. These learned patterns on different

frequency scales can be separately transferred into the output vectors and then aggregated to repre-

sent the sequence point at each time step. Compared to the conventional LSTM, the proposed SFM

is more powerful in discovering different frequency occurrences, which are important to predict or

track the temporal sequences at various frequencies. We evaluate the proposed SFM model with

three sequence modeling tasks. Our experimental results show the proposed SFM model can out-

68

perform various classic and latest LSTM models as well as reaching the competitive performance

compared to the state-of-the-art methods on each benchmark.

69

CHAPTER 5: LEARNING TO ADAPTIVELY ADJUST RECURRENT

NEURAL NETS

In this final chapter for techniques, we further explore the way of modeling frequency patterns

by proposing a novel paradigm to filter out the noisy frequency information based on dynamic

temporal contexts. As we know, Recurrent Neural Networks (RNNs) play a critical role in sequen-

tial modeling as they have achieved impressive performances in various tasks [14][16][20][93].

Yet learning long-term dependencies from long sequences still remains a very difficult task [8]

[58][140][61]. Among various ways that try to handle this problem, modeling multiscale patterns

seem to be a promising strategy since many multiscale RNN structures perform better than other

non-scale modeling RNNs in multiple applications [72][93][20][16][14][15]. Multiscale RNNs

can be roughly divided into two groups based on their design philosophies. The first group trends

to modeling scale patterns with the hierarchical architectures and prefixed scales for different lay-

ers. This may lead to at least two disadvantages. First, the prefixed scale can not be adjusted to

fit the temporal dynamics throughout the time. Although patterns in different scale levels require

distinct frequencies to update, they do not always stick to a certain scale and could vary at different

time steps. For example, in polyphonic music modeling, distinguishing different music styles de-

mands RNNs to model various emotion changes throughout music pieces. While emotion changes

are usually controlled by the lasting time of notes, it is insufficient to model such patterns using

only fixed scales as the notes last differently at different time. Secondly, stacking multiple RNN

layers greatly increases the complexity of the entire model, which makes RNNs even harder to

train. Unlike this, another group of multiscale RNNs models scale patterns through gate structures

[93][14][99]. In such cases, additional control gates are learned to optionally update hidden for

each time step, resulting in a more flexible sequential representations. Yet such modeling strat-

egy may not remember information which is more important for future outputs but less related to

70

current states.

In this chapter, we aim to model the underlying multiscale temporal patterns for time sequences

while avoiding all the weaknesses mentioned above. To do so, we present Adaptively Scaled Re-

current Neural Networks (ASRNNs), a simple extension for existing RNN structures, which allows

them to adaptively adjust the scale based on temporal contexts at different time steps. Using the

causal convolution proposed by [133], ASRNNs model scale patterns by firstly convolving input

sequences with wavelet kernels, resulting in scale-related inputs that parameterized by the scale

coefficients from kernels. After that, scale coefficients are sampled from categorical distributions

determined by different temporal contexts. This is achieved by sampling Gumbel-Softmax (GM)

distributions instead, which are able to approximate true categorical distributions through the re-

parameterization trick. Due to the differentiable nature of GM, ASRNNs could learn to flexibly

determine which scale is most important to target outputs according to temporal contents at each

time step. Compared with other multiscale architectures, the proposed ASRNNs have several

advantages. First, there is no fixed scale in the model. The subroutine for scale sampling can be

trained to select proper scales to dynamically model the temporal scale patterns. Second, ASRNNs

can model multiscale patterns within a single RNN layer, resulting in a much simpler structure and

easier optimization process. Besides, ASRNNs do not use gates to control the updates of hidden

states. Thus there is no risk of missing information for future outputs.

To verify the effectiveness of ASRNNs, we conduct extensive experiments on various sequence

modeling tasks, including low density signal identification, long-term memorization, pixel-to-pixel

image classification, music genre recognition and language modeling. Our results suggest that

ASRNNs can achieve better performances than their non-adaptively scaled counterparts and are

able to adjust scales according to various temporal contents. We organize the rest chapter like this:

the first following section reviews relative literatures, then we introduce ASRNNs with details in

next section; after that the results for all evaluations are presented, and the last section concludes

71

the chapter.

5.1 Literature Study for Multiscale RNNs

As a long-lasting research topic, the difficulties of training RNNs to learn long-term dependencies

are considered to be caused by several reasons. First, the gradient exploding and vanishing prob-

lems during back propagation make training RNNs very tough [8] [58]. Secondly, RNN memory

cells usually need to keep both long-term dependencies and short-term memories simultaneously,

which means there should always be trade-offs between two types of information. To overcome

such problems, some efforts aim to design more sophisticated memory cell structures. For exam-

ple, Long-short term memory (LSTM) [57] and gated recurrent unit (GRU) [19], are able to capture

more temporal information; while some others attempt to develop better training algorithms and

initialization strategies such as gradient clipping [95], orthogonal and unitary weight optimiza-

tion [3][77] [136][100][135][101] etc. These techniques can alleviate the problem to some extent

[125][80][134].

Meanwhile, previous works like [72] [93] [20] [124] [62] suggest learning temporal scale struc-

tures is also the key to this problem. This stands upon the fact that temporal data usually contains

rich underlying multiscale patterns [111][91] [34] [81] [59]. To model multiscale patterns, a pop-

ular strategy is to build hierarchical architectures. These RNNs such as hierarchical RNNs [34],

clockwork RNNs [72] and Dilated RNNs [16] etc, contain hierarchical architectures whose neu-

rons in high-level layers are less frequently updated than those in low-level layers. Such properties

fit the natures of many latent multiscale temporal patterns where low-level patterns are sensitive

to local changes while high-level patterns are more coherent with the temporal consistencies. In-

stead of considering hierarchical architectures, some multiscale RNNs model scale patterns using

control gates to decide whether to update hidden states or not at a certain time step. Such struc-

72

tures like phased LSTMs [93] and skip RNNs [14], are able to adjust their modeling scales based

on current temporal contexts, leading to more reasonable and flexible sequential representations.

Recently, some multiscale RNNs like hierarchical multi-scale RNNs [20], manage to combine

the gate-controlling updating mechanism into hierarchical architectures and has made impressive

progress in language modeling tasks. Yet they still employ multi-layer structures which make the

optimization not be easy.

5.2 Adaptively Scaled Recurrent Neural Networks

In this section we introduce Adaptively Scaled Recurrent Neural Networks (ASRNNs), a simple

but useful extension for various RNN cells that allows to dynamically adjust scales at each time

step. An ASRNNs is consist of three components: scale parameterization, adaptive scale learning

and RNN cell integration, which will be covered in following subsections.

5.2.1 Scale Parameterization

We begin our introduction for ASRNNs with scale parameterization. Suppose X = [x1,x2 · · · ,xT]

is an input sequence where xt ∈ Rn. At time t, instead of taking only the current frame xt as input,

ASRNNs compute an alternative scale-related input x̃t, which can be obtained by taking a causal

convolution between the original input sequence X and a scaled wavelet kernel function φjt .

More specifically, let J be the number of considered scales. Consider a wavelet kernel φ of size

K. At any time t, given a scale jt ∈ {0, · · · , J − 1}, the input sequence X is convolved with a

73

scaled wavelet kernel φjt = φ(i
2jt

). This yields the following scaled-related input x̃t at time t

x̃t = (X ∗ φjt)t =
2jtK−1∑
i=0

xt−iφ(
i

2jt
) ∈ Rn (5.1)

where for any i ∈ {t − 2jtK + 1, · · · , t − 1}, we manually set xi = 0 iff i ≤ 0. And the causal

convolution operator ∗ [133] is defined to avoid the resultant x̃t depending on future inputs. We

also let φ(i
2jt

) = 0 iff 2jt - i. It is easy to see that x̃t can only contain information from xt−i when

i = 2jtk, k ∈ {1, · · · , K}. In other words, there are skip connections between xt−2jt (k−1) and

xt−2jtk in the scale jt. While jt becomes larger, the connections skip further.

It is worth mentioning that the progress for obtaining scale-related input x̃t is quite similar as the

convolutions with the real waveforms in [133]. By stacking several causal convolutional layers,

[133] is able to model temporal patterns in multiple scale levels with its exponential-growing re-

ceptive field. However, such abilities are achieved through a hierarchical structure where each layer

is given a fixed dilation factor that does not change through out time. To avoid this, we replace

the usual convolution kernels with wavelet kernels, which come with scaling coefficients just like

jt in equation 5.1. By varying jt, x̃t is allowed to contain information from different scale levels.

Thus we call it scale parameterization. We further demonstrate it’s possible to adaptively control

jt based on temporal contexts through learning, which will be discussed in subsection 5.2.2.

5.2.2 Adaptive Scale Learning

To adjust scale jt at different time t, we need to sample jt from a categorical distribution where each

class probability is implicitly determined by temporal contexts. However, it is impossible to di-

rectly train such distributions along with deep neural networks because of the non-differentiable na-

ture of their discrete variables. Fortunately, [64] [83] propose Gumbel-Softmax (GM) distribution,

74

a differentiable approximation for a categorical distribution that allow gradients to be back prop-

agated through its samples. Moreover, GM employs the re-parameterization trick, which divides

the distribution into a basic independent random variable and a deterministic function. Thus, by

learning the function only, we can bridge the categorical sampling with temporal contexts through

a differentiable process.

Now we introduce the process of learning to sample scale jt with more details. Suppose πt =

[πt0, · · · , πtJ−1] ∈ [0, 1]J are class probabilities for scale set {0, · · · , J−1} and zt = [zt0, · · · , ztJ−1] ∈

RJ are some logits related to temporal contexts at time t. The relationship between πt and zt can

be written as

πti =
exp(zti)∑J−1
i′=0 exp(zti′)

(5.2)

where i ∈ {0, · · · , J−1}. Let yt = [yt0, · · · , ytJ−1] ∈ [0, 1]J be a sample from GM. Based on [64],

yti for i = 0, · · · , J − 1 can be calculated as

yti =
exp((log πti + gi)/τ)∑J−1
i′=0 exp((log πti′ + gi′)/τ)

(5.3)

where g0, · · · , gJ−1 are i.i.d. samples drawn from the basic Gumbel(0, 1) distribution and τ con-

trols how much the GM is close to a true categorical distribution. In other words, as τ goes to 0,

yt would become jt, the one-hot vector whose jtth value is 1.

Thus with GM, it is clear that the sampled jt is approximated by a differentiable function of zt. We

further define zt with the hidden states ht−1 ∈ Rm and input xt ∈ Rn as

zt = Wzht−1 + Uzxt + bz ∈ RJ (5.4)

where Wz,Uz are weight matrices and bz is bias vector. Combing equations 5.2, 5.3 and 5.4, we

achieve our goal of dynamically changing jt by sampling from GM distributions that parameterized

75

by ht−1 and xt. Since the entire procedure is differentiable, matrices Wz and Uz can be optimized

along with other parameters of ASRNNs during the training.

5.2.3 Integrating with Different RNN Cells

With both the techniques introduced in previously introduced two subsections, we are ready to

incorporate the proposed adaptive scaling mechanism with different RNN cells, resulting in various

forms of ASRNNs. Since both x̃t and sampling for jt don’t rely on any specific memory cell

designs, it’s straightforward to do so by replacing original input frames xt with x̃t. For example, a

ASRNN with LSTM cells can be represented as

ft, it,ot = sigmoid(Wf,i,oht−1 + Uf,i,ox̃t + bf,i,o) ∈ Rm (5.5)

gt = tanh(Wght−1 + Ugx̃t + bg) ∈ Rm (5.6)

ct = ft ◦ ct−1 + it ◦ gt (5.7)

ht = ot ◦ tanh(ct) (5.8)

while a ASRNN with GRU cells can be written as

zt, rt = sigmoid(Wz,rht−1 + Uz,rx̃t + bz,r) ∈ Rm (5.9)

gt = tanh(Wg(rt ◦ ht−1) + Ugx̃t + bg) ∈ Rm (5.10)

76

ht = zt ◦ ht−1 + (1− zt) ◦ gt (5.11)

where W∗,U∗ are weight matrices and b∗ are bias vectors, and ◦ means element-wise multipli-

cation. For rest of this chapter, we use ASLSTMs to refer those integrated with LSTM cells,

ASGRUs for those integrated with GRU cells and so on and so forth. We still call them ASRNNs

when there is no specified cell types. It is also worth mentioning that a conventional RNN cell is

the special case of its ASRNN counterpart when J = K = 1.

5.2.4 Discussion

Finally, we briefly analyze the advantages of ASRNNs over other multiscale RNN structures. As

mentioned at the beginning of this chapter, there are many RNNs, including hierarchical RNNs

[34] and Dilated RNNs [16] etc, that apply hierarchical architectures to model multiscale patterns.

Compared to them, the advantages of ASRNNs are clear. First, ASRNNs are able to model patterns

with multiple scale levels within a single layer, making their spatial complexity much lower than

hierarchical structures. Although hierarchical models may reduce the neuron numbers for each

layer to have the similar size as single layer ASRNNs, they are harder to train with deeper struc-

tures. What’s more, compared with the fixed scales for different layers, adapted scales are easier

to capture underlying patterns as they can be adjusted based on temporal contexts at different time

steps.

Besides, other multiscale RNN models like phased LSTMs [93] and skip RNNs [14] etc, build

gate structures to manage scales. Such gates are learned to determine whether to remember the

incoming information at each time. However, this may lose information which is important for

future time but not for current time. This problem would never happen to ASRNNs as according to

77

equation 5.1, the current input xt will always be included in x̃ and ht is updated every step. Thus

there is no risk for ASRNNs to lose critical information. This is an important property especially

for tasks with frame labels. In such cases previously irrelevant information may become necessary

for later frame outputs. Thus information from every frame should be leveraged to get correct

outputs at different time.

5.3 Experiments for Evaluating ASRNNs

In this section, we evaluate the proposed ASRNNs with five sequence modeling tasks: low density

signal type identification, copy memory problem, pixel-to-pixel image classification, music genre

recognition and word level language modeling. We also explore how the scales would be adapted

along time. Unless specified otherwise, all the models are implemented using Tensorflow library

[1]. We train all the models with the RMSProp optimizer [129] and set learning rate and decay rate

to 0.001 and 0.9, respectively. It is worth mentioning that there is no techniques such as recurrent

batch norm [114] and gradient clipping [95] applied during the training. All the weight matrices

are initialized with glorot uniform initialization [45]. For ASRNNs, we choose Haar wavelet as

default wavelet kernels, and set τ of Gumbel-Softmax to 0.1. We integrate ASRNNs with two

popular RNN cells, LSTM [57] and GRU [19] and use their conventional counterparts as common

baselines. Besides, the baselines also include scaled RNNs (SRNNs), a simplified version that

every jt is set to J−1. Additional baselines for individual tasks will be stated in the corresponding

subsections if there are. For both SRNNs and ASRNNs, The maximal considered scale J and

wavelet kernel size K are set to 4 and 8, respectively.

78

5.3.1 Low Density Signal Type Identification

We begin our evaluation for ASRNNs with some synthetic data. The first task is low density

signal type identification, which demands RNNs to distinguish the type of a long sequence that

only contains limited useful information. More specifically, consider a sequence with length of

1000, first we randomly choose p subsequences at arbitrary locations of the sequence where p ∈

{3, 4, 5}. Each subsequence has different length T where T ∈ Z+ ∩ [20, 100] and we make sure

that subsequences don’t overlap with each other. For one sequence, all of its subsequences belong

to one of the three types of waves: square wave, saw-tooth wave and sine wave, but with different

amplitudeA sampled from [−7, 7]. The rests of the sequence are filled with random noises sampled

from (−1, 1). The target is to identify which type of wave a sequence contains. Apparently,

a sequence carries only 6% ∼ 50% useful information, requiring RNNs capable of locating it

efficiently.

Table 5.1: Accuracies for ASRNNs and baselines .

ACCURACY (%) RNN SRNN ASRNN
LSTM 81.3 83.6 97.7
GRU 84.1 88.1 98.0

Following above criterion, we randomly generate 2000 low density sequences for each type. We

choose 1600 sequences per type for training and the remaining are for testing. Table 5.1 demon-

strates the identification accuracies for baselines and ASRNNs. We can see the accuracies of both

ASLSTM and ASGRU are over 97.5%, meaning they have correctly identified the types for most

of sequences without being moderated by noise. Considering the much lower performance of

baselines, it’s confident to say that ASRNNs are able to efficiently locate useful information with

adapted scales. Besides, we also observe there are similar patterns among some waves and their

79

scale variation sequences. Figure 5.1 gives such an example, from which we see the scale 0 and

1 are more related to noises while the scale 2 and 3 only appear in the region with square form

information. Moreover, the subsequence where the scale 2 is located is harder to identify as its

values are too close to the noise. We believe such phenomena implies the scale variations could

reflect some certain aspects that are helpful for understanding underlying temporal patterns.

(a) A square wave sample. (b) The corresponding scale variations.

Figure 5.1: The similar patterns between a raw square wave and its scale variations.

5.3.2 Copy Memory Problem

Next we revisit the copy memory problem, one of the original LSTM tasks proposed by [57] to test

the long-term dependency memorization abilities for RNNs. We closely follow the experimental

setups used in [3] [136]. For each input sequence with T + 20 elements, The first ten are randomly

sampled from integers 0 to 7. Then the rest of elements are all set to 8 except the T + 10th to 9,

indicating RNNs should begin to replicate the first 10 elements from now on. The last ten values

of output sequence should be exactly the same as the first ten of the input. Cross entropy loss

is applied for each time step. In addition to common baselines, we also adopt the memoryless

baseline proposed by [3]. The cross entropy of this baseline is 10 log(8)
T+20

, which means it always

predict 8 for first T + 10 steps while give a random guess of 0 to 7 for last 10 steps. For each T ,

we generate 10000 samples to train all RNN models.

80

(a) T = 200. (b) T = 300.

Figure 5.2: Cross entropies for copy memory problem. Best viewed in colors.

Figure 5.2 demonstrates the cross entropy curves of baselines and ASRNNs. We notice that both

LSTM and GRU get stuck at the same cross entropy level with the memoryless baseline during

the entire training process for both T = 200 and T = 300, indicating both LSTM and GRU are

incapable of solving the problem with long time delays. This also agrees with the results reported

in [53] and [3]. For SRNNs, it seems like fixed scales are little helpful since only the SGRU at T =

200 can have a lower entropy after 250 hundred steps. Unlike them, cross entropies of ASRNNs

are observed to further decrease after certain steps of staying with baselines. Especially for T =

200, ASGRU almost immediately gets the entropy below the baseline with only a few hundreds

of iterations passed. Besides, comparing figure 5.2a and 5.2b, ASGRUs are more resistant to

the increasing of T as ASLSTMs need more time to wait before they can further reduce cross

entropies. Overall, such behaviors prove ASRNNs have stronger abilities for memorizing long-

term dependencies than baselines.

81

Table 5.2: Classification accuracies for pixel-to-pixel MNIST. N stands for the number of hidden
states. Italic numbers are results reported in the original papers. Bold numbers are best results for
each part. ACC=accuracy, UNP/PER means the unpermuted/permuted cases respectively.

RNN N
OF

WEIGHTS

MIN.
SCALE

MAX.
SCALE

AVG.
SCALE

UNP

ACC(%)
PER

ACC(%)
LSTM 129 ≈ 68K 0 0 0 97.1 89.3
SLSTM 129 ≈ 68K 3 3 3 97.4 87.7
ASLSTM 128 ≈ 68K 0 3 0.92 98.3 90.8

GRU 129 ≈ 51K 0 0 0 96.4 90.1
SGRU 129 ≈ 51K 3 3 3 97.0 89.8
ASGRU 128 ≈ 51K 0 3 0.75 98.1 91.2

TANH-RNN [77] 100 - - - - 35 .0 33 .0
URNN [3] 512 ≈ 16K - - - 95 .1 91 .4
FULL-CAPACITY

URNN [136]
512 ≈ 270K - - - 96 .9 94 .1

IRNN [77] 100 - - - - 97 .0 82 .0
SKIP-LSTM [14] 110 - - - - 97 .3 -
SKIP-GRU [14] 110 - - - - 97 .6 -
STANH-RNN [143] 64 - - - - 98 .1 94 .0

RECURRENT

BN-RNN [21]
100 - - - - 99.0 95.4

5.3.3 Pixel-to-Pixel Image Classification

Now we proceed our evaluation for ASRNNs with real world data. In this subsection, we study

the pixel-to-pixel image classification problem using MNIST benchmark [78]. Initially proposed

by [77], it reshapes all 28 × 28 images into pixel sequences with length of 784 before fed into

RNN models, resulting in a challenge task where capturing long term dependencies is critical. We

follow the standard data split settings and only feed outputs from the last hidden state to a linear

classifier [138]. We conduct experiments for both unpermuted and permuted settings.

Table 5.2 summarizes results of all experiments for pixel-to-pixel MNIST classifications. The first

two blocks are the comparisons between common baselines and ASRNNs with different cell struc-

82

tures. Their numbers of weights are adjusted to keep approximately same in order to be compared

fairly. We also include other state-of-the-art results of single layer RNNs in the third block. It is

easy to see that both SRNNs and ASRNNs achieve better performances than conventional RNNs

with scale-related inputs on both settings. This is probably because causal convolutions between

inputs and wavelet kernels can be treated as a spatial convolutional layer, allowing SRNNs and AS-

RNNs to leverage information that is spatially local but temporally remote. Moreover, the adapted

scales help ASRNNs further reach the state-of-the-art performances by taking dilated convolutions

with those pixels that more spatially related to the current position. It is also worth mentioning

the proposed dynamical scaling is totally compatible with the techniques from the third part of the

table 5.2 such as recurrent batch normalization [21] and recurrent skip coefficients [143]. Thus

ASRNNs can also benefit from them as well.

5.3.4 Music Genre Recognition

The next evaluation mission for ASRNNs is music genre recognition (MGR), a critical problem

in the music information retrieval (MIR) [86] which requires RNNs to characterize the similarities

between music tracks across many aspects such as cultures, artists and ages. Compared to other

acoustic modeling tasks like speech recognition, MGR is considered to be more difficult as the

boundaries between genres are hard to distinguish due to different subjective feelings among peo-

ple [110]. We choose free music archive (FMA) dataset [28] to conduct our experiments. More

specifically, we use the FMA-small, a balanced FMA subset containing 8000 music clips that dis-

tributed across 8 genres, where each clip lasts 30 seconds with sampling rate of 44100 Hz. We

follow the standard 80/10/10% data splitting protocols to get training, validation and test sets. We

compute 13-dimensional log-mel frequency features (MFCC) with 25ms windows and 10ms frame

steps for each clip, resulting in very long sequences with about 3000 entries. Besides, inspired by

recent success of [133] and [108], we are also encouraged to directly employ raw audio waves as

83

inputs. Due to limited computational resources, we have to reduce the sampling rate to 200 Hz for

raw music clips while resultant sequences are still two times longer than MFCC sequences.

Table 5.3: Music genre recognition on FMA-small. N stands for the number of hidden states.
ACC=accuracy.

FEATURES METHODS N
OF

WEIGHTS

MIN.
SCALE

MAX.
SCALE

AVG.
SCALE

ACC(%)

MFCC

LSTM 129 ≈ 74K 0 0 0 37.1
SLSTM 129 ≈ 74K 3 3 3 37.7
ASLSTM 128 ≈ 74K 0 3 1.34 40.9
GRU 129 ≈ 56K 0 0 0 38.2
SGRU 129 ≈ 56K 3 3 3 38.5
ASGRU 128 ≈ 56K 0 3 1.39 42.4
MFCC+GMM [4] - - - - - 21.3

RAW

LSTM 129 ≈ 68K 0 0 0 18.5
SLSTM 129 ≈ 68K 3 3 3 18.9
ASLSTM 128 ≈ 68K 0 3 1.47 20.1
GRU 129 ≈ 51K 0 0 0 18.8
SGRU 129 ≈ 51K 3 3 3 18.4
ASGRU 128 ≈ 51K 0 3 1.59 19.5
RAW+CNN [30] - - - - - 17.5

We demonstrate all the MGR results on FMA-small in the Table 5.3. Besides RNN models, we also

include two baselines without temporal modeling abilities (GMM for MFCC and CNN for raw).

We can see when using MFCC features, both the ASLSTM and ASGRU can outperform SRNNs

and their conventional counterparts with about 3 ∼ 4% improvements. This is an encouraging

evidence to show how adapted scales can boost the modeling capabilities of RNNs for MGR.

However, the recognition accuracies drop significantly for all models when applying raw audio

waves as inputs. In such cases, the gains from adapted scales are marginal for both the ASLSTM

and ASGRU. We believe it is due to the low sampling rate for raw music clips since too much

information is lost. However, increasing sampling rate will significantly rise the computational

costs and make it eventually prohibitive for training RNNs.

84

Figure 5.3: Statistics of scale selections between each music genre. The height of each bar indicates
the ratio of how much times the scale is selected in the corresponding genre. Best viewed in colors.

To further understand the patterns behind such variations, we do statistics on how many times a

scale has been selected for each genre, which is normalized and illustrated in figure 5.3. In general,

all genres prefer to choose scale 0 and 3 since their ratio values are significantly higher than the

other two. However, there are also obvious differences between genres within the same scale.

For example, instrumental music tracks have more steps with scale 0 than Pop musics, while it’s

completely opposite for scale 3.

5.3.5 Word Level Language Modeling

Finally, we evaluate ASRNNs for the word level language modeling (WLLM) task on the WikiText-

2 [87] dataset, which contains 2M training tokens with a vocabulary size of 33k. We use perplexity

as the evaluation metric and the results are summarized in the Table 5.4, which shows ASRNNs

can also outperform their regular counterparts. Besides, Figure 5.4 further visualizes captured

scale variations for a sampled sentence. It indicates scales are usually changed at some special

tokens (like semicolon and clause), which comfirms the flexibility of modeling dynamic scale pat-

85

terns with ASRNNs. What’s more, although state-of-the-art models [87] [46] perform better, their

techniques are orthogonal to our scaling mechanism so ASRNNs can still benefit from them.

Table 5.4: Perplexities for word level language modeling on WikiText-2 dataset. Italic numbers
are reported by original papers.

METHODS N
OF

WEIGHTS

MIN.
SCALE

MAX.
SCALE

AVG.
SCALE

PPL

LSTM 1024 ≈ 10M 0 0 0 101.1
SLSTM 1024 ≈ 10M 3 3 3 97.7
ASLSTM 1024 ≈ 10M 0 3 1.51 93.8

GRU 1024 ≈ 7.8M 0 0 0 99.7
SGRU 1024 ≈ 7.8M 3 3 3 95.4
ASGRU 1024 ≈ 7.8M 0 3 1.38 92.6

ZONEOUT + VARIATIONAL LSTM [87] - - - - - 100.9
POINTER SENTINEL LSTM [87] - - - - - 80.8
NEURAL CACHE MODEL [46] 1024 - - - - 68.9

Figure 5.4: Visualized scale variations for a sampled sentence form WikiText-2 dataset.

5.4 Summarization for ASRNN

We present Adaptively Scaled Recurrent Neural Networks (ASRNNs), a simple yet useful ex-

tension that brings dynamical scale modeling abilities to existing RNN structures. At each time

step, ASRNNs model the scale patterns by taking causal convolutions between wavelet kernels and

input sequences such that the scale can be represented by wavelet scale coefficients. These coeffi-

cients are sampled from Gumbel-Softmax (GM) distributions which are parameterized by previous

hidden states and current inputs. The differentiable nature of GM allows ASRNNs to learn to ad-

just scales based on different temporal contexts. Compared with other multiscale RNN models,

86

ASRNNs don’t rely on hierarchical architectures and prefixed scale factors, making them simple

and easy to train. Evaluations on various sequence modeling tasks indicate ASRNNs can outper-

form those non-dynamically scaled baselines by adjusting scales according to different temporal

information.

87

CHAPTER 6: CONCLUSION AND FUTURE WORK

In this dissertation, we have explored a possible strategy to scale up the application of deep learn-

ing to a wider range of time series modeling tasks. Due to lack of well-labeled data, it is difficult to

solve these problems via state-of-the-art deep models. We address the challenge by demonstrating

the plausibility of extending the pure data-driven deep models with the domain-specific knowledge,

which can provide priors to explicitly model the task-related temporal patterns for compensating

the data shortage. We propose several designs and algorithms to mainly focus on the order patterns

and frequency patterns modeling. For order patterns, we propose FTA, a hashing-based algorithm

for brain disorder diagnosis. It projects the time courses of brain activities onto a set of latent pat-

terns, and uses the index of the first coming pattern to globally represent the original time courses.

The learning objectives of FTA is differentiable, thus it can be optimized as a layer of deep neural

networks. We further extend FTA with RNNs for more complicated order patern-related model-

ing tasks such as video representation learning, resulting in the TPRNN, which employs gates to

manage the ordinal relationships between latent patterns. For frequency patterns, we design SFM

to explicitly model the long-term dependencies on the frequency domain. SFM decomposes its

memory states into multiple frequency components and learns to control the information flows on

individual component only, and the representative frequencies of each component can also be re-

garded as learnable weights and optimized along with other network weights. On the other hand,

we develop the ASRNN for dynamically filtering out unnecessary frequency bands based on its

temporal context. To do so, ASRNN convolves the input with a wavelet kernel, which provides a

natural coefficient to adjust the scale of the convolution. The coefficient can be further sampled

from a distribution which is conditioned by the temporal contexts.

Since most of our evaluation results have achieved better performances than baselines across var-

ious time series modeling tasks, explicitly integrating domain-specific temporal pattern modeling

88

with RNNs can be considered as a promising way for occasions with limited well-labeled data.

We hope this dissertation could serve as a cornerstone for extending the applications of the deep

learning techniques for more time series-related tasks. We also expect it can provide inspirations

for other researchers to develop more hybrid solutions that combines the data-driven deep models

with their own domain-specific knowledge. In the future, we plan to explore and leverage more

types of temporal patterns that play a key role to characterize modeling tasks. Meanwhile, we are

also interested in utilizing massive unlabeled data to boost the feature learning for sequences. For

this purpose, designing novel network structure and learning objectives based on certain domain-

related knowledge could be a feasible option for further investigation.

89

APPENDIX : EQUATIONS FOR LEARNING OPTIMAL PROJECTIONS

90

This section contains the equations required to derive the gradient of F w.r.t. W in learning the

optimal projections (section 2.2.3.4).

Here, we use Lij to denote the logarithmic training loss for a pair of TCs X(i) and X(j), i.e.,

Lij = sij log
(
1− hij

)
+ (1− sij) log

(
hij
)

(.1)

The following equations can be calculated by applying the chain rule of the derivatives on F of

Eq. (2.10).

∂F
∂wk

=
N∑

i,j=1

∂Lij

∂wk

+ γ
∂Ω

∂wk

+ η
∂V
∂wk

(.2)

∂Ω

∂wk

=
K∑

k 6=k′=1

2wᵀ
kwk′

‖wk‖4‖wk′‖2
[(wᵀ

kwk)wk′ − (wᵀ
kwk′)wk] (.3)

∂V
∂wk

=

N,K∑
i,k=1

T∑
t=1

1

T 2

[
2 (t−mk) (−∂m

(i)
k

∂wk

)p
(i)
k,t

+ (t−mk)
2(p

(i)
k,tx

(i)
t − p

(i)
k,t

(
T∑
t′=1

p
(i)
k,t′x

(i)
t′

)] (.4)

∂Lij

∂wk

=

− 1

1−hij
∂hij

∂wk
si = sj

1
hij

∂hij

∂wk
otherwise

(.5)

∂hij

∂wk

=
K∑
k′=1

h
(i)
k′
∂h

(j)
k′

∂wk

+
K∑
k′=1

h
(j)
k′
∂h

(i)
k′

∂wk

(.6)

91

∂h
(i)
k

∂wk

= h
(i)
k (−∂m

(i)
k

∂wk

)− (h
(i)
k)2(−∂m

(i)
k

∂wk

) (.7)

∂h
(i)
l

∂wk

= −h(i)l h
(i)
k (−∂m

(i)
k

∂wk

), when l 6= k (.8)

∂m
(i)
k

∂wk

=
T∑
t=1

t

T

(
p
(i)
k,tx

(i)
t − p

(i)
k,t

(
T∑
t′=1

p
(i)
k,t′x

(i)
t′

))
(.9)

92

LIST OF REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-

ing, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

[2] M. Allan and C. K. Williams. Harmonising chorales by probabilistic inference. In NIPS,

pages 25–32, 2004.

[3] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural networks. In

International Conference on Machine Learning, pages 1120–1128, 2016.

[4] J.-J. Aucouturier and F. Pachet. Finding songs that sound the same. In Proc. of IEEE Benelux

Workshop on Model based Processing and Coding of Audio, pages 1–8, 2002.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473, 2014.

[6] P. Bellec, C. Chu, F. Chouinard-Decorte, D. S. Margulies, and C. R. Craddock. The neuro

bureau adhd-200 preprocessed repository. bioRxiv, page 037044, 2016.

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[8] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[9] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Advances in optimizing recurrent

networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on, pages 8624–8628. IEEE, 2013.

93

[10] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In

KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine

Learning research, 3:993–1022, 2003.

[12] N. Boulanger-lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies

in high-dimensional sequences: Application to polyphonic music generation and transcrip-

tion. In Proceedings of the 29th International Conference on Machine Learning (ICML-12),

pages 1159–1166, 2012.

[13] G. Buzsaki. Rhythms of the Brain. Oxford University Press, 2006.

[14] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang. Skip rnn: Learning to skip

state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834, 2017.

[15] S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and T. S. Huang. Factorized simi-

larity learning in networks. In Data Mining (ICDM), 2014 IEEE International Conference

on, pages 60–69. IEEE, 2014.

[16] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock, M. A. Hasegawa-

Johnson, and T. S. Huang. Dilated recurrent neural networks. In Advances in Neural Infor-

mation Processing Systems, pages 76–86, 2017.

[17] G. Chéron, I. Laptev, and C. Schmid. P-cnn: Pose-based cnn features for action recognition.

In Proceedings of the IEEE International Conference on Computer Vision, pages 3218–

3226, 2015.

[18] X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature learning for pose estimation.

arXiv preprint arXiv:1603.09065, 2016.

94

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[20] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural networks. arXiv

preprint arXiv:1609.01704, 2016.

[21] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville. Recurrent batch nor-

malization. arXiv preprint arXiv:1603.09025, 2016.

[22] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[23] S. Cortese, C. Kelly, C. Chabernaud, E. Proal, A. Di Martino, M. P. Milham, and F. X.

Castellanos. Toward systems neuroscience of adhd: a meta-analysis of 55 fmri studies.

American Journal of Psychiatry, 2012.

[24] D. D. Cox and R. L. Savoy. Functional magnetic resonance imaging (fmri)”brain read-

ing”: detecting and classifying distributed patterns of fmri activity in human visual cortex.

Neuroimage, 19(2):261–270, 2003.

[25] R. C. Craddock, G. A. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg. A whole brain

fmri atlas generated via spatially constrained spectral clustering. Human brain mapping, 33

(8):1914–1928, 2012.

[26] J. Damoiseaux, S. Rombouts, F. Barkhof, P. Scheltens, C. Stam, S. M. Smith, and C. Beck-

mann. Consistent resting-state networks across healthy subjects. Proceedings of the national

academy of sciences, 103(37):13848–13853, 2006.

[27] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves. Associative long short-

term memory. In Proceedings of The 33rd International Conference on Machine Learning,

pages 1986–1994, 2016.

95

[28] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson. Fma: A dataset for music

analysis. In 18th International Society for Music Information Retrieval Conference, 2017.

URL https://arxiv.org/abs/1612.01840.

[29] S. Dey, A. R. Rao, and M. Shah. Attributed graph distance measure for automatic detection

of attention deficit hyperactive disordered subjects. Frontiers in neural circuits, 8, 2014.

[30] S. Dieleman and B. Schrauwen. End-to-end learning for music audio. In Acoustics, Speech

and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 6964–

6968. IEEE, 2014.

[31] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,

and T. Darrell. Long-term recurrent convolutional networks for visual recognition and de-

scription. In CVPR, 2015.

[32] S. B. Eickhoff, K. E. Stephan, H. Mohlberg, C. Grefkes, G. R. Fink, K. Amunts, and

K. Zilles. A new spm toolbox for combining probabilistic cytoarchitectonic maps and func-

tional imaging data. Neuroimage, 25(4):1325–1335, 2005.

[33] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependen-

cies. In Nips, volume 409, 1995.

[34] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependen-

cies. In Advances in neural information processing systems, pages 493–499, 1996.

[35] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[36] A. Eloyan, J. Muschelli, M. B. Nebel, H. Liu, F. Han, T. Zhao, A. Barber, S. Joel, J. J.

Pekar, S. Mostofsky, et al. Automated diagnoses of attention deficit hyperactive disorder

using magnetic resonance imaging. 2012.

96

https://arxiv.org/abs/1612.01840

[37] J. A. Etzel, V. Gazzola, and C. Keysers. An introduction to anatomical roi-based fmri

classification analysis. Brain research, 1282:114–125, 2009.

[38] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for

video action recognition. arXiv preprint arXiv:1604.06573, 2016.

[39] S. Fernández, A. Graves, and J. Schmidhuber. Sequence labelling in structured domains

with hierarchical recurrent neural networks. In IJCAI, pages 774–779, 2007.

[40] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle.

The human brain is intrinsically organized into dynamic, anticorrelated functional networks.

Proceedings of the National Academy of Sciences of the United States of America, 102(27):

9673–9678, 2005.

[41] J. A. Frazier, S. Chiu, J. L. Breeze, N. Makris, N. Lange, D. N. Kennedy, M. R. Her-

bert, E. K. Bent, V. K. Koneru, M. E. Dieterich, et al. Structural brain magnetic resonance

imaging of limbic and thalamic volumes in pediatric bipolar disorder. American Journal of

Psychiatry, 2005.

[42] T.-c. Fu. A review on time series data mining. Engineering Applications of Artificial Intel-

ligence, 24(1):164–181, 2011.

[43] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett. Darpa timit

acoustic-phonetic continous speech corpus cd-rom. NASA STI/Recon technical report n, 93,

1993.

[44] G. Gkioxari and J. Malik. Finding action tubes. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 759–768, 2015.

[45] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural

97

networks. In Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pages 249–256, 2010.

[46] E. Grave, A. Joulin, and N. Usunier. Improving neural language models with a continuous

cache. arXiv preprint arXiv:1612.04426, 2016.

[47] A. Graves. Adaptive computation time for recurrent neural networks. arXiv preprint

arXiv:1603.08983, 2016.

[48] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional lstm

and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

[49] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional re-

current neural networks. In Advances in neural information processing systems, pages 545–

552, 2009.

[50] A. Graves, N. Beringer, and J. Schmidhuber. Rapid retraining on speech data with lstm

recurrent networks. Technical Report IDSIA-09-05, IDSIA, 2005.

[51] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classifica-

tion: labelling unsegmented sequence data with recurrent neural networks. In Proceedings

of the 23rd international conference on Machine learning, pages 369–376. ACM, 2006.

[52] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural

networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international

conference on, pages 6645–6649. IEEE, 2013.

[53] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.

[54] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.

98

[55] J.-D. Haynes and G. Rees. Decoding mental states from brain activity in humans. Nature

Reviews Neuroscience, 7(7):523–534, 2006.

[56] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385, 2015.

[57] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, 1997.

[58] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies, 2001.

[59] H. Hu and G.-J. Qi. State-frequency memory recurrent neural networks. In International

Conference on Machine Learning, pages 1568–1577, 2017.

[60] H. Hu, J. Velez-Ginorio, and G.-J. Qi. Temporal order-based first-take-all hashing for fast

attention-deficit-hyperactive-disorder detection. In Proceedings of the 22Nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 905–

914, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.

2939774. URL http://doi.acm.org/10.1145/2939672.2939774.

[61] H. Hu, Z. Wang, J.-Y. Lee, Z. Lin, and G.-J. Qi. Temporal domain neural encoder for video

representation learning. In Computer Vision and Pattern Recognition Workshops (CVPRW),

2017 IEEE Conference on, pages 2192–2199. IEEE, 2017.

[62] X.-S. Hua and G.-J. Qi. Online multi-label active annotation: towards large-scale content-

based video search. In Proceedings of the 16th ACM international conference on Multime-

dia, pages 141–150. ACM, 2008.

[63] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

99

http://doi.acm.org/10.1145/2939672.2939774

[64] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016.

[65] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action

recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–

231, 2013.

[66] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[67] M. I. Jordan. Serial order: A parallel distributed processing approach. Advances in psychol-

ogy, 121:471–495, 1997.

[68] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale

video classification with convolutional neural networks. In Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[69] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining applica-

tions. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 285–289. ACM, 2000.

[70] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In Sdm, volume 1, pages

5–7. SIAM, 2001.

[71] S. Klöppel, A. Abdulkadir, C. R. Jack, N. Koutsouleris, J. Mourão-Miranda, and P. Vemuri.

Diagnostic neuroimaging across diseases. Neuroimage, 61(2):457–463, 2012.

[72] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork rnn. arXiv preprint

arXiv:1402.3511, 2014.

100

[73] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork rnn. In Proceedings of

The 31st International Conference on Machine Learning, pages 1863–1871, 2014.

[74] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages

1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[75] J. L. Lancaster, M. G. Woldorff, L. M. Parsons, M. Liotti, C. S. Freitas, L. Rainey, P. V.

Kochunov, D. Nickerson, S. A. Mikiten, and P. T. Fox. Automated talairach atlas labels for

functional brain mapping. Human brain mapping, 10(3):120–131, 2000.

[76] H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In AISTATS,

volume 1, page 2, 2011.

[77] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent networks of

rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[78] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[79] S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. Müller. Introduction to machine learning

for brain imaging. Neuroimage, 56(2):387–399, 2011.

[80] K. Li, G.-J. Qi, J. Ye, and K. A. Hua. Linear subspace ranking hashing for cross-modal

retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, (9):1825–1838,

2017.

101

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[81] T. Lin, B. G. Horne, P. Tino, and C. L. Giles. Learning long-term dependencies in narx

recurrent neural networks. IEEE Transactions on Neural Networks, 7(6):1329–1338, 1996.

[82] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks for

sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[83] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation

of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[84] M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of

english: The penn treebank. 1993.

[85] J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimiza-

tion. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),

pages 1033–1040, 2011.

[86] C. McKay and I. Fujinaga. Musical genre classification: Is it worth pursuing and how can

it be improved? In ISMIR, pages 101–106, 2006.

[87] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv

preprint arXiv:1609.07843, 2016.

[88] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent neural net-

work based language model. In Interspeech, volume 2, page 3, 2010.

[89] M. P. Milham, D. Fair, M. Mennes, S. H. Mostofsky, et al. The adhd-200 consortium:

a model to advance the translational potential of neuroimaging in clinical neuroscience.

Frontiers in systems neuroscience, 6:62, 2012.

[90] R. Mittelman. Time-series modeling with undecimated fully convolutional neural networks.

arXiv preprint arXiv:1508.00317, 2015.

102

[91] M. C. Mozer. Induction of multiscale temporal structure. In Advances in neural information

processing systems, pages 275–282, 1992.

[92] D. Neil, M. Pfeiffer, and S.-C. Liu. Phased lstm: Accelerating recurrent network training

for long or event-based sequences. In Advances in Neural Information Processing Systems,

pages 3882–3890, 2016.

[93] D. Neil, M. Pfeiffer, and S.-C. Liu. Phased lstm: Accelerating recurrent network training

for long or event-based sequences. In Advances in Neural Information Processing Systems,

pages 3882–3890, 2016.

[94] G. A. Ojemann, J. Ojemann, and N. F. Ramsey. Relation between functional magnetic reso-

nance imaging (fmri) and single neuron, local field potential (lfp) and electrocorticography

(ecog) activity in human cortex. Front Hum Neurosci, 7:34, 2013.

[95] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural net-

works. In International Conference on Machine Learning, pages 1310–1318, 2013.

[96] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural net-

works. ICML (3), 28:1310–1318, 2013.

[97] R. A. Poldrack. Region of interest analysis for fmri. Social cognitive and affective neuro-

science, 2(1):67–70, 2007.

[98] G. E. Poliner and D. P. Ellis. A discriminative model for polyphonic piano transcription.

EURASIP Journal on Applied Signal Processing, 2007(1):154–154, 2007.

[99] G.-J. Qi. Hierarchically gated deep networks for semantic segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2267–2275,

2016.

103

[100] G.-J. Qi, X.-S. Hua, and H.-J. Zhang. Learning semantic distance from community-tagged

media collection. In Proceedings of the 17th ACM international conference on Multimedia,

pages 243–252. ACM, 2009.

[101] G.-J. Qi, C. C. Aggarwal, and T. S. Huang. On clustering heterogeneous social media objects

with outlier links. In Proceedings of the fifth ACM international conference on Web search

and data mining, pages 553–562. ACM, 2012.

[102] H. Qin, J. Yan, X. Li, and X. Hu. Joint training of cascaded cnn for face detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3456–3465, 2016.

[103] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. 1993.

[104] R. P. N. Rao. Brain-Computer Interfacing: An Introduction. Cambridge University Press,

New York, NY, USA, 2013. ISBN 1139032801, 9781139032803.

[105] C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using

learned constraints. SIAM, 2004.

[106] T. Robinson. Several improvements to a recurrent error propagation network phone recog-

nition system. 1991.

[107] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-

nition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

doi: 10.1007/s11263-015-0816-y.

[108] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals. Learning the speech

front-end with raw waveform cldnns. In Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

104

[109] H. Sak, A. Senior, and F. Beaufays. Long short-term memory based recurrent neural network

architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128,

2014.

[110] N. Scaringella, G. Zoia, and D. Mlynek. Automatic genre classification of music content: a

survey. IEEE Signal Processing Magazine, 23(2):133–141, 2006.

[111] J. Schmidhuber. Neural sequence chunkers. 1991.

[112] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recogni-

tion and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 815–823, 2015.

[113] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions

on Signal Processing, 45(11):2673–2681, 1997.

[114] S. Semeniuta, A. Severyn, and E. Barth. Recurrent dropout without memory loss. arXiv

preprint arXiv:1603.05118, 2016.

[115] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in

homes: Crowdsourcing data collection for activity understanding. In European Conference

on Computer Vision, 2016.

[116] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2014.

[117] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition

in videos. In Advances in Neural Information Processing Systems, pages 568–576, 2014.

[118] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes

from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

105

[119] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video repre-

sentations using lstms. CoRR, abs/1502.04681, 2, 2015.

[120] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using factorized

spatio-temporal convolutional networks. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4597–4605, 2015.

[121] I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted boltzmann

machine. In Advances in Neural Information Processing Systems, pages 1601–1608, 2009.

[122] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.

In Advances in neural information processing systems, pages 3104–3112, 2014.

[123] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[124] J. Tang, X.-S. Hua, G.-J. Qi, and X. Wu. Typicality ranking via semi-supervised multiple-

instance learning. In Proceedings of the 15th ACM international conference on Multimedia,

pages 297–300. ACM, 2007.

[125] J. Tang, X. Shu, G.-J. Qi, Z. Li, M. Wang, S. Yan, and R. Jain. Tri-clustered tensor com-

pletion for social-aware image tag refinement. IEEE transactions on pattern analysis and

machine intelligence, 39(8):1662–1674, 2017.

[126] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-

temporal features. In European conference on computer vision, pages 140–153. Springer,

2010.

[127] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-

106

las, F. Bastien, J. Bayer, A. Belikov, et al. Theano: A python framework for fast computation

of mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

[128] Theano Development Team. Theano: A Python framework for fast computation of mathe-

matical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.

org/abs/1605.02688.

[129] T. Tieleman and G. Hinton. Divide the gradient by a running average of its recent magnitude.

coursera: Neural networks for machine learning. Technical report, Technical Report. Avail-

able online: https://zh. coursera. org/learn/neuralnetworks/lecture/YQHki/rmsprop-divide-

the-gradient-by-a-running-average-of-its-recent-magnitude (accessed on 21 April 2017).

[130] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal fea-

tures with 3d convolutional networks. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 4489–4497. IEEE, 2015.

[131] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Transactions

on speech and audio processing, 10(5):293–302, 2002.

[132] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix,

B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in spm using a

macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage, 15

(1):273–289, 2002.

[133] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbren-

ner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv

preprint arXiv:1609.03499, 2016.

[134] J. Wang, Z. Zhao, J. Zhou, H. Wang, B. Cui, and G. Qi. Recommending flickr groups with

social topic model. Information retrieval, 15(3-4):278–295, 2012.

107

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

[135] X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Supervised quantization for similarity

search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2018–2026, 2016.

[136] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas. Full-capacity unitary recurrent

neural networks. In Advances in Neural Information Processing Systems, pages 4880–4888,

2016.

[137] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling spatial-temporal clues in a

hybrid deep learning framework for video classification. In Proceedings of the 23rd ACM

international conference on Multimedia, pages 461–470. ACM, 2015.

[138] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. ACM Sigkdd

Explorations Newsletter, 12(1):40–48, 2010.

[139] W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learning of deformable mixture of

parts and deep convolutional neural networks for human pose estimation. CVPR, 2016.

[140] J. Ye, H. Hu, G.-J. Qi, and K. A. Hua. A temporal order modeling approach to human action

recognition from multimodal sensor data. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), 13(2):14, 2017.

[141] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and

G. Toderici. Beyond short snippets: Deep networks for video classification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4694–4702,

2015.

[142] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,

2012.

108

[143] S. Zhang, Y. Wu, T. Che, Z. Lin, R. Memisevic, R. R. Salakhutdinov, and Y. Bengio. Archi-

tectural complexity measures of recurrent neural networks. In Advances in Neural Informa-

tion Processing Systems, pages 1822–1830, 2016.

[144] F. Zhou and F. De la Torre. Generalized time warping for multi-modal alignment of human

motion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[145] F. Zhou and F. Torre. Canonical time warping for alignment of human behavior. In Advances

in neural information processing systems, pages 2286–2294, 2009.

[146] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber. Recurrent highway networks.

arXiv preprint arXiv:1607.03474, 2016.

109

	Leaning Robust Sequence Features via Dynamic Temporal Pattern Discovery
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Deep Neural Networks
	1.2 Challenges and Research Objectives

	CHAPTER 2: MINING ORDER PATTERNS FOR BRAIN DISORDER DIAGNOSIS
	2.1 ADHD Detection
	2.2 First-Take-All: ADHD Detection by Time-Series Hashing
	2.2.1 Brain Atlas Construction and Time Course Extraction
	2.2.2 Temporal Order-Preseving Hashing
	2.2.2.1 Sequence Projection
	2.2.2.2 First-Take-All Temporal-Order Comparison

	2.2.3 Learning Optimal Projections
	2.2.3.1 Training Loss
	2.2.3.2 Projection Orthogonality
	2.2.3.3 Putting Together
	2.2.3.4 Optimization

	2.3 Results for ADHD Detection with FTA Hashing
	2.3.1 Datasets and Background
	2.3.2 Experimental Setting and Baselines
	2.3.3 Comparison with Unsupervised Baselines
	2.3.4 Comparison with Supervised Baselines
	2.3.4.1 FTA vs JHU
	2.3.4.2 FTA vs AGDM

	2.3.5 Parameter Sensitivity Analysis
	2.3.5.1 Prediction Accuracy vs K
	2.3.5.2 Prediction Accuracy vs L

	2.4 FTA Summary

	CHAPTER 3: IMPROVING VIDEO REPRESENTATION LEARNING THROUGH DYNAMIC ORDER ENCODING
	3.1 Related Works for Video Representation Learning
	3.2 Temporal Preserving Recurrent Network
	3.2.1 Intuition
	3.2.2 Model Architecture
	3.2.3 Comparison with other RNNs

	3.3 Evaluations for TPRNN
	3.3.1 Datasets
	3.3.2 Implementation and Training
	3.3.3 LSTM vs. TPRNN
	3.3.4 Analysis on Subsets
	3.3.5 Fuse with Spatial Features

	3.4 TPRNN Summary

	CHAPTER 4: LEARNING LONG-TERM DEPENDENCIES IN FREQUENCY DOMAIN
	4.1 Recent Progress for RNN Research
	4.2 State-Frequency Memory Recurrent Neural Networks
	4.2.1 Updating State-Frequency Memory
	4.2.1.1 The Joint State-Frequency Forget Gate
	4.2.1.2 Input Gates and Modulations
	4.2.1.3 Multi-Frequency Outputs and Modulations

	4.2.2 Fourier Analysis of SFM Matrices
	4.2.3 Adaptive SFM

	4.3 Evaluations for SFM
	4.3.1 Signal Type Prediction
	4.3.2 Polyphonic Music Modeling
	4.3.3 Phoneme Classification

	4.4 Summarization for SFM

	CHAPTER 5: LEARNING TO ADAPTIVELY ADJUST RECURRENT NEURAL NETS
	5.1 Literature Study for Multiscale RNNs
	5.2 Adaptively Scaled Recurrent Neural Networks
	5.2.1 Scale Parameterization
	5.2.2 Adaptive Scale Learning
	5.2.3 Integrating with Different RNN Cells
	5.2.4 Discussion

	5.3 Experiments for Evaluating ASRNNs
	5.3.1 Low Density Signal Type Identification
	5.3.2 Copy Memory Problem
	5.3.3 Pixel-to-Pixel Image Classification
	5.3.4 Music Genre Recognition
	5.3.5 Word Level Language Modeling

	5.4 Summarization for ASRNN

	CHAPTER 6: CONCLUSION AND FUTURE WORK
	APPENDIX : EQUATIONS FOR LEARNING OPTIMAL PROJECTIONS
	LIST OF REFERENCES

