
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations 

2018 

A Review and Selective Analysis of 3D Display Technologies for A Review and Selective Analysis of 3D Display Technologies for 

Anatomical Education Anatomical Education 

Matthew Hackett 
University of Central Florida 

 Part of the Anatomy Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Hackett, Matthew, "A Review and Selective Analysis of 3D Display Technologies for Anatomical Education" 
(2018). Electronic Theses and Dissertations. 6408. 
https://stars.library.ucf.edu/etd/6408 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/903?utm_source=stars.library.ucf.edu%2Fetd%2F6408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6408?utm_source=stars.library.ucf.edu%2Fetd%2F6408&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR 
ANATOMICAL EDUCATION 

 

 

 

 
by: 

MATTHEW G. HACKETT 
BSE University of Central Florida 2007,  

MSE University of Florida 2009,  
MS University of Central Florida 2012 

 
 
 
 

A dissertation submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy in the Modeling and Simulation program  

in the College of Engineering and Computer Science 
at the University of Central Florida  

Orlando, Florida  
 
 
 
 

Summer Term  
2018  

 
 
 
 

Major Professor: Michael Proctor  



   ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2018 Matthew Hackett 
  



   iii 
 

ABSTRACT 
 
 

The study of anatomy is complex and difficult for students in both graduate and undergraduate 

education. Researchers have attempted to improve anatomical education with the inclusion of 

three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. 

However, there is limited research on the relative efficacy of different 3D modalities, including 

monoscopic, stereoscopic, and autostereoscopic displays. This study analyzes educational 

performance, confidence, cognitive load, visual-spatial ability, and technology acceptance in 

participants using autostereoscopic 3D visualization (holograms), monoscopic 3D visualization 

(3DPDFs), and a control visualization (2D printed images). Participants were randomized into 

three treatment groups: holograms (n=60), 3DPDFs (n=60), and printed images (n=59). 

Participants completed a pre-test followed by a self-study period using the treatment visualization. 

Immediately following the study period, participants completed the NASA TLX cognitive load 

instrument, a technology acceptance instrument, visual-spatial ability instruments, a confidence 

instrument, and a post-test. Post-test results showed the hologram treatment group (Mdn=80.0) 

performed significantly better than both 3DPDF (Mdn=66.7, p=.008) and printed images 

(Mdn=66.7, p=.007). Participants in the hologram and 3DPDF treatment groups reported lower 

cognitive load compared to the printed image treatment (p < .01). Participants also responded more 

positively towards the holograms than printed images (p < .001). Overall, the holograms 

demonstrated significant learning improvement over printed images and monoscopic 3DPDF 

models. This finding suggests additional depth cues from holographic visualization, notably head-

motion parallax and stereopsis, provide substantial benefit towards understanding spatial anatomy. 

The reduction in cognitive load suggests monoscopic and autostereoscopic 3D may utilize the 
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visual system more efficiently than printed images, thereby reducing mental effort during the 

learning process. Finally, participants reported positive perceptions of holograms suggesting 

implementation of holographic displays would be met with enthusiasm from student populations. 

These findings highlight the need for additional studies regarding the effect of novel 3D 

technologies on learning performance.  
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CHAPTER 1: INTRODUCTION 

 The understanding of anatomy is a key component to all medical professions. Ranging 

from first responders, such as emergency medical technicians (EMT), to highly skilled physicians, 

anatomy forms a significant portion of the necessary knowledge foundation. Anatomy is defined 

as the science of various structures that comprise the human organism (Gray, 1918), from a macro 

to a micro level. The complementary study of physiology is of equal importance. Unlike anatomy, 

physiology is the science of body functions, or how a living organism works. This ranges from the 

study of individual molecular activity, such as cellular respiration, to the interplay of organ 

systems, such as the interaction between the nervous system and the cardiovascular system 

(Widmaier, Raff, & Strang, 2006). A thorough knowledge of both anatomy and physiology is 

necessary to have a complete understanding of the human body, as form and function are deeply 

interrelated.  

 Since it is such a crucial component to practicing medicine, anatomical training is common 

during education for a vast array of medical practitioners. In the civilian world, the National 

Institute of Health (NIH) has broadly split medical professions into five broad categories: primary 

care, nursing care, drug therapy, specialty care, and immediate care. Primary care consists of 

medical doctors (MDs), physician assistants (PAs), and nurse practitioners (NPs) who treat day to 

day healthcare issues. Nursing care includes registered nurses and licensed practice nurses, who 

work in conjunction with higher echelon medical professionals. Drug therapy contains 

pharmacists, who process drug prescriptions and instruct safe and effective drug administration. 

Specialty care includes all medical specialists, such as surgeons, oncologists, radiologists, 

dermatologists, etc. (Vorvick, 2012). The National Highway Traffic Safety Administration 

describes immediate care, or point of injury care, as initial treatments provided by emergency 
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medical services (EMS) such as emergency medical responders, EMTs, and advanced medical 

technicians (NHTSA, 2009). A similar classification exists in the military sector defined by the 

Army Techniques Publication on Casualty Care, ATP 4-02.5, with primary care, nursing care, drug 

care, and specialty care all performing the same roles as their civilian counterparts ("ATP 4-02.5," 

2013). Emergency care within the military is provided by Combat Medics and Combat Life Savers. 

Combat Life Savers are closely related to emergency medical responders and have proficiency in 

a limited number of treatments. Combat Life Saver skills primarily focus on skills to stabilize a 

casualty. Combat Medics train in a wider range of medical treatments, akin to EMTs, as defined 

by the Combat Medic Handbook (Army, 2009).  

 Despite the variety in medical professions, the underpinning of each includes training in 

anatomy. However, it is important to realize that the extent of the anatomy training differs 

significantly. For example, an EMT or Combat Medic requires general understanding of the major 

organ systems including the nervous, respiratory, musculoskeletal, endocrine, and circulatory 

systems, but the digestive, urinary, and reproductive systems are beyond the scope of training 

(EMT-Training, 2008). Nurses and PAs require knowledge of the entire human body, with each 

organ system being covered more extensively. Additionally, at this level, knowledge of 

embryology and cytology, is required (Vanderbilt, 2014). Finally, MDs, PAs, and NPs require 

extensive knowledge in all of the subdisciplines of anatomy (Table 1), with intensive study during 

specialization. For example, neuro-surgeons require specialized training in neuroanatomy, 

including cortical anatomy, three-dimensional (3D) sub-cortical and deep brain anatomy, 

ventricular, and cisternal anatomy (Dare & Grand). The overarching theme is that all health 

professions require a thorough understanding of the anatomy in order to provide the best possible 

care. 
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Table 1: Selected Subdisciplines of Anatomy 

 Subdisciplines of Anatomy Study of 

Embryology Structures that emerge from the time of the fertilized egg 
through the eighth week in utero 

Developmental Biology Structures that emerge from the time of the fertilized egg to the 
adult form 

Histology Microscopic structure and organization of tissues 

Surface Anatomy Anatomical landmarks on the surface of the body through 
visualization and palpation 

Gross Anatomy Structures that can be examined without using a microscope 

Systemic Anatomy Structure of specific systems of the body such as nervous or 
respiratory systems 

Regional Anatomy Specific regions of the body such as the head or chest 

Cytology Physical properties, structure, and organelles of cells  

Pathological Anatomy Structural changes (from gross to microscopic) associated with 
disease 

Radiographic and Imaging-
Based Anatomy 

Body structures that can be visualized with X-Rays or other 
medical imaging modality 

Source: (Derrickson & Tortora, 2006) 

The focus of this dissertation is the delivery of anatomical education, specifically using 

technology to visualize anatomy. Presented herein is a brief summary of historical anatomical 

instruction, followed by current educational practice, and the challenges facing anatomical 

education. The background presented within this chapter will establish the foundation and 

motivation for this dissertation research.  
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History of Anatomy 

Imparting the understanding of anatomy has been a challenge posed to teachers and 

medical professionals for thousands of years. The first key to teaching anatomy was to understand 

the human body. Anatomists have long studied the human body trying to determine the form, and 

subsequently deduce the function. The earliest known anatomists and physicians were based in 

Egypt, starting with Hesy-Ra (Selin & Shapiro, 2003) and Imhotep (Osler, 1921) in mid-27th 

century BC. Egyptian physicians and anatomists gathered information including knowledge of 

non-invasive surgery, bone setting, and pharmacology. Much of this knowledge was based on their 

understanding of anatomy, which included the heart, liver, spleen, kidneys, hypothalamus, uterus, 

bladder, and blood vessels (Porter, 1999). The Egyptians knew spreading this knowledge was 

necessary. To accomplish this, the Egyptians used Papyrus to record descriptions of anatomical 

content. The oldest, dating to ca 1600 BCE, and most well-known among them is the Edwin Smith 

Papyrus, shown in Figure 1 (Allen, 2005).   

 
Source: photograph by Jeff Dahl, distributed under a CC-BY 2.0 license. 

Figure 1: Edwin Smith Papyrus 
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The Edwin Smith Papyrus covered 48 medical cases including various injuries and wounds, 

including detailed anatomical descriptions and treatment (Porter, 1999). The Edwin Smith Papyrus 

is unlike other medical papyri of the time, such as the George Ebers or London Medical Papyri, in 

that it presents the medical information in a rational and scientific context, rather than through 

magic or supernatural phenomena (Ghalioungui, 1963). 

 The anatomists of Egypt furthered the knowledge of the human body substantially, and the 

knowledge passed to other civilizations of the world, and in particular to Greek scholars. One such 

researcher was Hippocrates, who was heralded as the “Father of Medicine” and attributed with the 

Hippocratic oath, which sets forth an ethical guideline for all physicians to follow (Boylan, 2005). 

Other Greek researchers added to the knowledge base, including Erasistratus, Herophilus, and 

Aristotle (Duckworth, Lyons, & Towers, 1962). Notably, Aristotle was the first to use the term 

“anatome”, which is a Greek word meaning “cutting up or taking apart” (Siddiquey, Husain, & 

Laila, 2009), although he focused primary on biology rather than the study of the human body. 

Arguably, the most influential Greek medical researcher was Galen. Galen was first to demonstrate 

the larynx creating vocal sounds and to recognize the difference between venous and arterial blood 

based on coloration (Nutton, 1984).  

 Rivaling these contributions, Ibn-Sina created the extensive medical works entitled the 

Canons. Within these encyclopedic tomes, he synthesized knowledge including general medicine, 

pharmacology, and extensive pathology. Specifically relating to anatomy, he discovered all the 

subcomponents of the eye and the functioning of the aortic valve. He also was the first to determine 

that muscle movements were the result of the nerves connected to them. His contributions to 

anatomical sciences were long lasting, with the Canons being used in teaching for hundreds of 

years (Virk, 2014). Demonstrating his lasting impact on medicine, the primary hospital in 
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Baghdad, Iraq is the Ibn Sina hospital, used by the United States Armed Forces as Combat Support 

hospital from 2003 until 2009 (Associated-Press, 2009).  

 Until this time, anatomy education was primarily done through mentorship, individual 

discovery, or isolated centers of education. For example, Hippocrates trained at the Asclepeion on 

Kos, and Galen trained at the Asclepion in Pergemon (Hatzivassiliou, 1997). Unfortunately, 

teaching anatomy in this fashion led to a great deal of knowledge fragmentation. During the 17th 

and 18th centuries, the science of anatomy rapidly advanced, and anatomy education began 

formalization. A number of factors contributed to this, primarily the introduction of  the printing 

press (McLuhan, 2011). The printing press allowed mass reproduction of anatomical content that 

could be easily disseminated.  

 One popular educational format that emerged during this time was the anatomical theater. 

The anatomical theater was a large room, typically circular, with a table in the center for dissection 

of cadavers and animals (Castiglione, 1941; Winkler, 1993).  Students were able to view the 

dissection from seats around the room, with a professional anatomist or physician performing a 

dissection and instructing on the related anatomy and physiology (Figure 2). With the 

standardization of curriculum and the wide spread use of anatomical theaters, the study of anatomy 

became relatively stable, with limited research. Soon, the modern age of anatomical education 

would began as a result of technology advancement, including computers and powerful 

microscopes providing new perspectives into molecular and cellular processes (Wong & Tay, 

2005).   
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Source: drawing by Johannes Woudanus, distributed under a CC-BY 2.0 license. 

Figure 2: Anatomical Theater 

 

Current Medical Education 

 The current state of medical education evolved substantially due to technology advances, 

changes in curriculum, and time and budgetary constraints. To begin, the didactic, or lecture-based, 

portion of anatomy training changed as more and more information became available regarding 

cellular processes. These processes are important, especially related to drug and treatment 

interaction, and were subsequently included medical education. However, to allow time for 

teaching this information, anatomy courses were shortened, from a year and a half or two years to 

a single year (Wong & Tay, 2005). The truncation of these anatomy courses provides a challenge 

to instructors, to fit a year and half of anatomical information into a year or less.   

 Anatomists also refined training techniques and processes. The anatomical theater, so 

widespread for hundreds of years, has been largely replaced by cadaver dissection laboratories 
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(Siddiquey et al., 2009). These laboratories provide students hands-on dissection access, allowing 

for individuals to learn at their own pace and to independently study anatomical structures in more 

detail. However, a small subset of medical schools have chosen to retain the anatomical theater 

approach in order to save money and provide a more structured learning format (McLachlan, Bligh, 

Bradley, & Searle, 2004). In a lower cost alternative to cadavers, physical models may be used to 

augment training, providing a 3D view and tactile experience. Physical models allow for viewing 

of surface anatomy and a limited amount of interactivity, through the removal of pieces / parts 

(Figure 3). The physical, hands-on, portion of anatomy education has become highly prevalent in 

anatomy training, either through cadaver dissection, physical model study, or a combination of 

teaching aids.  

 

Source: Industrial Anatomy, https://industrialanatomy.wordpress.com/ 

Figure 3: Physical Anatomical Model 

 Technology advancement in medical imaging allowed for very detailed and high fidelity 

visualization of anatomy and physiology. A variety of medical imaging techniques exist for 

anatomical study, including magnetic resonance imaging (MRI) and computed tomography (CT). 

Magnetic resonance imaging uses a strong, uniform magnetic field and radio waves to create 

images of anatomical structures and pathologies. By detecting the signals emitted by excited 
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hydrogen atoms, the MRI technique is able to determine changes in water concentration, and 

thereby determine different tissue variants. CT scanning takes a series of X-rays by rotating around 

360º of the body. CT scanning uses a computer to combine the X-rays into a high resolution image 

of anatomy and pathology (Bushberg & Boone, 2011). In general, MRI scans give superior 

resolution for soft tissue imaging, while CT scans give better results for skeletal imaging (Figure 

4).  

 
Source: Alexander Towbin, https://blog.cincinnatichildrens.org/radiology/ 

Figure 4: CT (Left) and MRI (Right) Images of Transverse Slice of the Brain 

Functional imaging can be used to tie these anatomical visualizations to physiological 

function, such as functional MRI (fMRI) or fluoroscopy. fMRI is primarily used to detect changes 

in brain activity and correlate these with anatomical structures. fMRI uses MRI techniques to 

image the anatomical structures, combined with the ability to detect blood oxygenation. As 

sections of the brain increase in activity, blood flow and oxygenation change allowing the fMRI 

to overlay the activity upon the MRI image of the brain (Jezzard, Matthews, & Smith, 2001) 

(Figure 5).  
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Source: (Kassam, Markey, Cherkassky, Loewenstein, & Just, 2013) 

Figure 5: fMRI Image of Human Brain Activity

Fluoroscopy works in a similar fashion. Fluoroscopy places a patient between a fluorescent 

screen and an X-ray emitter. This technique allows real-time imaging of internal structures, and is 

commonly used for gastrointestinal diagnoses and orthopedic surgeries (Figure 6) (FDA, 2014).  

Combined with other imaging modalities, physicians and students now can visualize the anatomy 

and physiology of a patient.     

 
Source: (Ranschaert, 2010) 

Figure 6: Fluoroscopy of Barium Swallowing 
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The largest change in medical education results from the implementation of the personal 

computer within medical education. The ability to access medical content quickly in a variety of 

formats has completely changed the landscape of anatomical learning. Students have the ability to 

view photographs, illustrations, videos, anatomical models, medical imaging, and patient cases on 

demand. The large quantity of content combined with the ease of access and low cost has made 

personal computers a pivotal component in anatomical education. 

 Modern anatomy training still serves a vital role in medical education, providing the 

foundation necessary for understanding physiology, pathologies, and treatments. Numerous 

technologies and processes have enabled anatomy to be learned more efficiently, including 

medical imaging, personal computers, and cadaver dissections. However, a number of issues pose 

significant problems to anatomy education, and must be addressed through intelligent change and 

additional technological improvements.  

 

Challenges in Contemporary Anatomy Education 

 Contemporary anatomy education has many challenges, as touched upon earlier, but 

additional detail is necessary to fully understand the problem space. To begin, learning anatomy 

is an exceptionally difficult task. The naming convention for many anatomical structures is based 

upon Latin or Greek languages and has been translated to modern English or British. 

Unfortunately, these translations are not uniformly done; as a result, there are a number of 

nomenclature variations across the healthcare community (Gest, Burkel, & Cortright, 2009). 

Additionally, the language bases many times result in terminologies that have little resemblance 

to our day-to-day vernacular. As a result, anatomical nomenclature seems very foreign to incoming 

students (Rector, 1999). Further, the scope of anatomical nomenclature is comprehensive of the 
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body, meaning the problem space is huge (Kachlik, Baca, Bozdechova, Cech, & Musil, 2008). 

These factors combined demonstrate why learning only the proper terminology to identify 

anatomy is a challenge.  

 The challenge of learning the nomenclature is exacerbated when tied to spatial 

relationships. The names of anatomical structures are important, but in order to understand 

anatomy, the location, size, and orientation of the structure is equally important. The relationship 

of form and function is a key to learning medicine. For example, understanding where arteries and 

nerves lie is vital to knowing where and how deep to make an incision during surgery. Furthermore, 

the spatial relationship of a ligament to a bone is important when diagnosing many injuries, such 

as determining the correct ligament injured during a knee sprain. These situations highlight the 

urgent need to understand the spatial relationships, connections, and interdependencies within the 

human body. These spatial relationships are very difficult to learn, and many times rely on a 

student’s innate visual-spatial ability. Garg et al. (1999), conducted a series of experiments to study 

how medical students learned spatial anatomy. The studies found students with high visual spatial 

ability (VSA) performed better using key views of anatomical structures. These findings were 

reinforced with a second study conducted by Garg, Norman, and Sperotable (2001) using 146 first-

year students, which found spatial ability played a critical role in anatomical education. In a later 

study focusing more on the difficulty of spatial anatomy, Pandey and Zimitat (2007) conducted a 

survey of first-year medical students at an Australian university. These students reported learning 

anatomy and the spatial knowledge associated with anatomy as “hard work”. Additionally, the 

study found that it was important for students to combine memorization, understanding, and 

visualization strategies to learn anatomy.  
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The struggle of anatomy students to learn anatomy has been demonstrated and discussed 

thoroughly in the literature. In the Netherlands, Maastricht University conducted two experiments 

studying student perceptions of anatomical education. In 1997, Van Mameran et al. (1997), 

reported that clinical residents felt a need for additional anatomical understanding before and 

during residency. Later, Drukker et al. (1999), reported that post-graduate medical students felt 

they lacked sufficient knowledge in gross anatomy. Prince et al. (2000) focused on the problem at 

the undergraduate level, and found that students were deficient in basic science knowledge, 

particularly in anatomy. Additionally, these students had issues translating their theoretical 

anatomical knowledge to clinical practice. Looking even further at this problem, Prince et al. 

(2003) sought to determine if problem-based learning approaches were a factor in student’s poor 

perception of their anatomical knowledge. The group reported that both traditional learning 

approaches and newer problem-based learning curricula both resulted in poor student perceptions 

of anatomical knowledge. A great deal of this work was synthesized by Bergman et al. (2008), 

which came to the conclusion that nearly all students were insecure in their anatomical knowledge. 

More recent studies indicate that the problem still persists. Fitzgerald et al. (2008) sought the 

opinion of newly qualified doctors and found that nearly half the respondents felt they had 

insufficient anatomical education for their chosen specialties. The group tied this to the feeling to 

the decline in time spent learning anatomy. In a 3 year study, Bhangu et al. (2010) used Likert 

scale surveys to determine attitudes towards anatomy education during the 2nd year of medical 

school, and then again during the final year. The group reported that only 28% of 2nd year medical 

students and 31% of final year medical students felt their anatomy prepared them to interpret 

medical imagery. Worse still, only 14% of final year medical students felt confident in their overall 

understanding of anatomy. In an attempt to create an objective metric of anatomical understanding, 
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Gupta, Morgan, Singh, and Ellis (2008) generated a test covering 15 areas of anatomical 

knowledge, including the anatomy of clinical examinations of the heart, chest, and nervous system; 

interpretation of radiographs; anatomy of common fractures; and anatomy of clinical procedures. 

The test was administered to junior doctors and a range of more senior level doctors. The disparity 

was significant, with junior doctors scoring substantially lower. The authors concluded that 

additional attention should be given to anatomy education. The literature from the past 15 years is 

consistent: students believe they are lacking in anatomy education, and in some cases, have been 

objectively shown to be deficient.    

In addition to the student’s perceived difficulty in learning anatomy, instructors have 

similar perceptions. Cottam (1999) conducted a study to determine the attitude of residency 

directors about incoming residents. The study reported that the majority (57%) of residency 

directors felt incoming medical residents needed a refresher in anatomy training. Waterson and 

Steward (2005) conducted a survey that found a majority of clinicians felt that anatomy teaching 

time was inadequate. Even more compelling, these clinicians felt that the deficiency in anatomical 

knowledge was significant enough to place knowledge below the minimum level for providing 

safe patient care. Lazarus, Chinchilli, Leong, and Koffman (2012) conducted a study gathering the 

perceptions of students, clinicians, and academic anatomists at the same time. The study found 

that medical students and clinicians felt that the students had difficulty translating their anatomical 

knowledge to the clinical setting and patient care. The authors feel this “suggests that while some 

anatomical learning, either through review or application, is taking place during clinical rotations 

this education is not to the degree and/or scope required for a successful clinical practice”. The 

combination of instructor and student perception that students are deficient in anatomy knowledge 

gives credence to the scope and severity of the problem.  
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Until this point, the issues in contemporary anatomical education have been focused on 

typical civilian medical education. Military medical education experiences similar issues. The 

Uniformed Services University for Health Sciences (USUHS) trains many of the physicians in the 

Armed Services, and faces the same challenges as other medical schools. However, military 

medical training also encounters certain unique issues. To begin, casual conversations with 

confidential Navy physicians and medical trainers who work in JPC-1, a joint steering and funding 

committee for military medical simulation, indicate that military medical training does not always 

take place in a traditional educational setting. Refresher training for anatomy and procedures 

requiring anatomical understanding may occur in austere conditions. For example, these 

confidential experts and trainers indicate that the Navy may conduct shipboard refresher training 

during deployments. In such scenarios, the space is constrained, meaning anatomical aids such as 

cadaver labs or cadaver display tables are not feasible. Another user group experiencing austere 

training conditions is the Special Forces Medics. This group many times will have minimal 

infrastructure to train, including minimal power and limited or no internet connectivity. In such a 

case, lower-power education adjuncts would be needed to help train.  

Within both the military and civilian sectors, medical education comprises a key role. 

Anatomical education serves as a key foundational piece to that education, but faces many 

challenging issues. Decreased teaching time, difficult subject matter, and complex spatial 

relationships all combine to create a difficult subject that students and teachers feel is not being 

conveyed adequately.     
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3D Visualization Technology – A Potential Part of the Solution 

 The inherent difficulty of anatomy combined with current challenges, including truncation 

of teaching time and the inclusion of large quantities of new information, has created a difficult 

environment within anatomy education. In 2014, Yammine (2014) reviewed the current state of 

anatomy, and found the study of anatomy was in a steady state of decline at the undergraduate and 

graduate level. One of the author’s suggestions was an evaluation of 3D visualization technologies 

to augment anatomy education. Within this dissertation, a new 3D visualization training adjunct, 

holography, will be utilized with the goal of improving spatial understanding of anatomical 

structures. 3D visualization, as used in this dissertation, focuses on “the visualization of three-

dimensional phenomena (architectural, meteorological, medical, biological, etc.), where the 

emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth” 

(Friendly & Denis, 2012). 3D visualization has the potential for improving student performance 

and spatial understanding, while reducing cognitive load. Cognitive load refers to the total amount 

of mental effort being used for a task (J Sweller, 1994).  This dissertation will continue with chapter 

2 presenting a thorough literature review covering 3D technologies used to visualize anatomy, and 

the assessment of those technologies. Chapter 3 covers experimental design, including the 

instruments for data collection and the proposed data analysis techniques. Chapters 4 and 5 present 

the results of the experiment, and the conclusions drawn. 
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CHAPTER 2: LITERATURE REVIEW 

Visualization is “the act or process of interpreting in visual terms or of putting into visible 

form” ("Visualization," 2015). More specifically, visualization “represents a support technology 

that enables scientists and engineers to understand complex relationships typically represented by 

large amounts of data” (Lang, Kieferle, & Wössner, 2003). While the focus of this dissertation is 

on the display hardware used during visualization, it should be noted that a large subset of the 

research in visualization focuses on the software needed to assemble and analyze large quantities 

of data and generate a representation that humans can more easily comprehend. Within medical 

visualization, the tasks handled by software include image reading, sampling, segmentation, 

volume rendering, and surface display (Starreveld, Gobbi, Finnis, & Peters, 2001). A recent review 

paper by Botha et al. (2014) discusses the advances in medical visualization during the past 30 

years and includes discussion of the current challenges and future directions in the field, including 

advances in data acquisition, mobile display technologies, illustrative visualizations in medicine, 

and hyper-realism.  

The aforementioned software tools are necessary to generate the representation of a 

medical data set, but without a display hardware component, the user gains no further insight into 

the data. The display component generates the visible light for the human visual system to process. 

Historically, the use of cathode ray tube (CRT) monitors was the primary display modality. More 

recent techniques focus on a flat screen, including liquid crystal displays (LCD), plasma display 

panels (PDP), light emitting diodes (LED), and organic light emitting diodes (OLED). Castellano 

reviewed these displays and the techniques used to create them thoroughly (Castellano, 2012). 

However, basic versions of these displays only physically provide the horizontal and vertical 
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dimensions, and must rely on alternative means to provide the third dimension of spatial perception 

– visible depth.    

Three dimensional displays have the potential to be a valuable tool in medical visualization 

by providing visible depth in a more comprehensive fashion. The human visual system is able to 

perceive depth using a combination of monocular and binocular depth cues. Before further 

discussing 3D displays, a brief primer on the human visual system and depth cues is presented.  

 

Human Visual System 

The human visual system has evolved to allow for 3D perception through a series of optical 

improvements. Rods and cones, or photoreceptors, in the retina allow for color perception, of up 

to 10 million color distinctions. Extra-ocular muscles allow for the motion of the eye for a wide 

field of view. A complex lens with attached musculature allows for focusing at a variety of scales 

and distances. These, combined with a host of other anatomical features, have enabled the human 

eye to provide spectacular vision capability (Montomery, 2014). 

The human visual system uses the eye as the detector, and the brain as the processing unit. 

The brain receives the nervous signals from the eye and processes the incoming scene. To perceive 

a scene in three dimensions, the human visual system uses a variety of cues to determine the depth 

of objects within the scene. These depth cues are generally split into two categories: monocular, 

sometimes referred to as pictorial, depth cues, requiring only a single eye; and binocular depth 

cues, requiring the input of both eyes. These depth cues are summarized below (Table 2).  
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Table 2: Monocular and Binocular Depth Cues 

Cue Category Definition 

Retinal Image Size Monocular When the real size of the object is known, our brain 
compares the sensed size of the object to this real 
size, and thus acquires information about the 
distance of the object. 

Texture Gradient Monocular The closer we are to an object the more detail we can 
see of its surface texture. So objects with smooth 
textures are usually interpreted being farther away. 

Motion Parallax Monocular The effect whereby the position or direction of an 
object appears to differ when viewed from different 
positions. The motion of the viewer produces motion 
parallax.  

Kinetic Depth Effect Monocular The effect whereby the three-dimensional structural 
form of an object can be perceived when the object 
is moving 

Linear Perspective Monocular A type of monocular cue in which parallel lines 
appear to converge at some point in the distance. 

Overlap Monocular When objects block each other out of our sight, we 
know that the object that blocks the other one is 
closer to us. 

Lighting and Shading Monocular When the location of a light source is known and 
objects casting shadows on other objects, we know 
that the object shadowing the other is closer to the 
light source. 

Accommodation Monocular Accommodation is the tension of the muscle that 
changes the focal length of the lens of eye. 

Convergence Binocular A binocular cue based on signal sent from muscles 
that turn the eyes. To focus on near or approaching 
objects, these muscles turn the eyes inward. The 
brain uses the signal sent by these muscles to 
determine the distance of the object. 

Stereopsis Binocular The perception of depth produced by the reception 
in the brain of visual stimuli from both eyes in 
combination. 

Source: (Hackett & Fefferman, 2014; Kalloniatis & Luu, 2007; Teittinen, 2014) 

 

By understanding the mechanisms employed in the human visual system, the potential 

benefits of 3D displays become more apparent. Monocular depth cues only give a piece of the 

puzzle, and the human visual can be easily confused without the addition of binocular depth cues. 

One of the most famous examples that demonstrates this confusion is known as Ame’s Room. 

Ame’s Room presents a viewer with a monocular view of a specially designed trapezoidal room 
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(Ames Jr, 1951). The viewer perceives that the person on the right is a much larger in size that the 

person on the left; when in fact the room is shaped to take advantage of monocular cues such as 

retinal image size (Figure 7). Binocular cues such as convergence and stereopsis, or the addition 

of motion parallax, would overcome the confusion of this illusion and give the viewer the 

appropriate depth perception. 

 

 
 

Source: Alex Valavanis, https://commons.wikimedia.org/wiki/File:Ames_room.svg 

Figure 7: Ames' Room 

From the example above, binocular and parallax depth cues are important components to 

accurately understanding a 3D scene. Since traditional 2D displays are unable to generate these 

cues, 3D display modalities have become more widespread. The implementation of 3D 

visualization has increased for a variety of purposes, including medicine, geography, engineering, 

human-computer interaction, and spatial understanding tasks. The visualization of three-

dimensional representations has demonstrated considerable advantages in a variety of areas and 

tasks, ranging from generalized spatial knowledge acquisition to in-depth medical procedures. A 
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review by Geng (2013) broadly split displays into three categories: traditional 2D displays; 

stereoscopic 3D displays requiring special glasses; and autostereoscopic 3D displays not requiring 

glasses. This review is organized using these categories, and adds a category for augmented reality. 

This chapter covers the techniques and technology used to achieve 3D visualizations, studies 

demonstrating 3D display technology in anatomical education, and studies assessing the effect of 

3D visualization in anatomical education. 

 

Techniques and Technology for 3D Visualization 

Researchers use the visual system as the starting point to create a 3D visualization. The 

basic principle is the same for nearly all 3D display technology: each individual eye must be 

presented with a unique view of an object in a positionally correct fashion. In doing this, 

researchers allow the visual system to take over and process the object in a similar manner to 

physical objects. For many years, researchers have achieved this through a variety of clever 

mechanisms, which each have strengths and weaknesses regarding the nature of 3D visualization 

they provide. Within this literature review, the technologies and techniques used in 3D 

visualization for anatomical content will be covered using Geng’s categorization, including 

monoscopic 3D, stereoscopic 3D, autostereoscopic 3D, augmented reality visualizations, and 

finally holography.  

 

Monoscopic 3D 

The most fundamental method to achieve a base level of 3D spatial perception of an 

anatomical model is through monocular depth cues. Computer graphics replicate these depth cues, 

including image attributes such as interposition, occlusion, size, shading, surface texture gradients, 
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atmospheric effects, and brightness (Pfautz, 2000; Sherman & Craig, 2002). Pfautz gave a series 

of examples within a thesis, outlining simplistic representation of monoscopic depth cues using 

computer graphics (Figure 8). Monocular-based spatial reasoning is occasionally referred to as 

“2.5D” (Van Dam & Feiner, 2014), but within this article the more precise term of monoscopic 

spatial reasoning, or monoscopic 3D is used in place of more ambiguous terms such as “2.5D” or 

“pseudo-3D”. Two additional depth cues can be added to traditional monoscopic 3D displays, 

which are parallax and the kinetic depth effect.  

 
Source: (Pfautz, 2000) 

Figure 8: Monoscopic Depth Cues in Static Computer Graphics 

Parallax Display 

Parallax is a depth cue that may be obtained in computer visualization through motion of 

the viewer. Using head tracking, such as “fishtank 3D” shown in Figure 9 or HMD tracking show 
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in Figure 10, the perception of the depth of an object may be viewed by tracking the relative motion 

of the user and displaying the changed viewpoint of the world. 

 
Source: (Sherman & Craig, 2003, pg 140) 

Figure 9: Fishtank VR with Head Tracking Camera

 
Source: (Sherman & Craig, 2003, pg 120) 

Figure 10: Depth Cue from Viewer Motion  
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Kinetic Depth Effect 

The kinetic depth effect refers to the ability to perceive the three-dimensional structural 

form of an object when the object is moving (Wallach & O'connell, 1953). The amount of depth 

perception is based on the number and amount of angular and/or translational displacement degrees 

of freedom afforded the object in motion. Motion, primarily rotation, may be through automatic 

movement of a 3D object or through user interaction, such as via touch screen or mouse. Quality 

of depth perception depends on the object fidelity given translation closer to or further away from 

the viewer. The Spinning Dancer is an example of kinetic depth effect in an illusion with few other 

depth cues, shown in Figure 11.   

 
Source: Nobuyuki Kayahara, https://commons.wikimedia.org/wiki/File:Spinning_Dancer.gif 

Figure 11: Kinetic Depth Effect Present in the Spinning Dancer Illusion 

 

Stereoscopic 3D displays 

Stereoscopic 3D display involves multiplexing two different views of an image to the 

viewer, in what are commonly known as “stereo pairs”, and requires the viewer to wear glasses 

(McIntire, Havig, & Geiselman, 2012) (Figure 12). Multiplexing techniques deliver the stereo 
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pairs spatially or temporally interlaced. Spatial interlacing technologies use 3D glasses with 

passive color anaglyph lenses or polarization interlaced lenses to filter the stereo pairs (Sherman 

& Craig, 2003). Time-multiplexed technology interlaces the stereo pairs by rapidly shuttering lens 

for each eye. Shuttering presents a rendered image to the left eye, while blocking the view of the 

right eye, then presenting a rendered image to the right eye while blocking the left (Geng, 2013). 

Through these methods, stereoscopic displays provide all the cues present in monoscopic 3D, 

while adding binocular depth cues, such as stereopsis.  

 
Source: www.neuroangio.org 

Figure 12: Stereo Pairs of Anterior Cerebral Artery  

Stereoscopic 3D displays encounter certain issues, particularly with head mounted displays 

(HMDs). In stereoscopic displays, convergence accommodation conflict occurs when focus cues, 

namely accommodation and blur, specify the depth of the display rather than the depth of the 

image. In other words, the eyes focus on the depth of the display which conflicts with the depth of 

the presented image (Inoue & Ohzu, 1997). This conflict can result in visual fatigue, and in some 

cases, significant discomfort (Kooi & Toet, 2004). Specific to HMDs, there is the discomfort of 

wearing the physical device, which grows over time and with devices that are heavier.  
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Augmented and mixed reality displays 

Augmented reality and mixed reality are hybrid techniques that overlay digital information 

on real world objects to enhance the user experience (Berryman, 2012). As an example, the 

Microsoft HoloLens or the Magic Leap “overlays 3D images on the real world, such as a 

‘hologram’ of a tiny building that appears to be sitting on a coffee table that’s really in front of 

you” (McCracken, 2015). For anatomy, this may be an overlay onto a live human, a medical 

mannequin, or a physical model. Augmented reality uses a video or optical see-through HMD, or 

a mobile display technology, to achieve the superimposed visuals (Figure 13). Issues with 

registration of the augmented visuals and poor visibility in bright environments, such as direct 

sunlight, continue to challenge augmented reality displays.  

  
Source: Microsoft Hololens: https://www.youtube.com/watch?v=SKpKlh1-en0 

Figure 13: Augmented Reality via Optical See-Through HMD (Left)  

and Video See-Through (Right) 

 

Auto-stereoscopic displays   

 Auto-stereoscopic visualization presents a 3D image to the viewer, including both 

monocular and binocular depth cues, without the aid of glasses or HMDs (Dodgson, 2005). 

Dodgson categorized autostereoscopic displays as either multi-view displays or volumetric 
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displays. Multi-view display technologies use a barrier or film applied to the display surface, such 

as lenticular lens or parallax barrier. Lenticular lens employs a series of flat-cylindrical lenses 

placed across the image plane to create an auto-stereoscopic image (Hong et al., 2011). The lenses 

are aligned with the vertical pixel columns, and a set number of pixel columns are assigned to a 

single view. The role of a lenticular lens is to magnify and transfer the information of specific 

pixels to the designated position. Therefore, observers in different viewpoints can watch different 

images, and binocular disparity, convergence, and motion parallax can be realized (Hong et al., 

2011). An example of a 5-view lenticular lens display system is shown in Figure 14.   

 
Source: (Geng, 2013) 

Figure 14: 5-View Lenticular Lens Display

Understanding the functioning of the lenticular lens, it becomes clear that this technique 

has one significant advantage, principally the reuse of 2D fabrication processes (Geng, 2013). The 

lens can be applied after fabrication of the display, and potentially used to create a 3D display in 
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an ad hoc fashion. However, lenticular lens has a number of challenges compared to other forms 

of autostereoscopic 3D.  

1) A lenticular lens display has a limited number of views due to the width of the lenses, 

meaning the display only has a limited amount of horizontal parallax (Geng, 2013).  

2) A lenticular display has limited resolution. The lenses cut the resolution of the full 

display by 1/N, where N is the number of views (Geng, 2013). As such, high-resolution 

autostereoscopic displays are very difficult to achieve with lenticular lens. Certain 

techniques can be used to overcome some of this issue, such as slanting the lenticular 

lenses (De Zwart, IJzerman, Dekker, & Wolter, 2004). 

3) The lenticular lens modality allows for cross-talk and image flips. When one sees the 

view intended for another eye, the human visual system perceives the stereo effect 

incorrectly (Geng, 2013). 

4) A lenticular lens lacks full parallax in the horizontal direction and provides no parallax 

in the vertical direction. If a user wishes to look fully around a 3D object, a lenticular 

lens cannot provide that effect. The 3D effect is only for a limited field of view and 

only in single direction. 

5) Convergence accommodation conflict is present and can lead to visual fatigue, 

discomfort, and perceived distortion in 3D structure (D. M. Hoffman, Girshick, Akeley, 

& Banks, 2008).  

A second common auto-stereoscopic technology is a parallax barrier. A parallax barrier is 

an opaque sheet of material with slits at regular intervals. If a viewer is positioned appropriately, 

the right eye view of the stereo pair will be visible only to the right eye, and the left eye will view 

the stereo view for the left eye (Halle, 2005). A parallax barrier and lenticular lens produce the 
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same horizontal parallax only effect, and present an optically analogous 3D image (Geng, 2013). 

The techniques are illustrated side by side to show the similarity (Figure 15).  

           
Source: (Geng, 2013) 

Figure 15: Parallax Barrier (Left) and Lenticular Lens (Right) 

 Since the techniques are so similar, it follows that the challenges and advantages are also 

similar. A parallax barrier, just as a lenticular lens, can be applied onto a 2D display with proper 

alignment and sizing, allowing it to take advantage of existing displays and fabrication facility. 

All of the disadvantages of lenticular lens – limited views, limited resolution, cross-talk, image 

flip, horizontal parallax only, and convergence accommodation conflict – apply to parallax 

barriers. Parallax barriers have one additional significant challenge, which is brightness. The 

opaque material over the display blocks light, meaning only the light coming through the slits 

reaches the viewer. This results in significantly decreased brightness of the display (Geng, 2013). 

 Another form of auto-stereoscopic display is integral imaging. Integral imaging uses a 

similar technique to lenticular lens, except it uses circular lenslets rather than flat-cylindrical lenses 

(Martinez-Cuenca, Saavedra, Martinez-Corral, & Javidi, 2009). This allows integral imaging 

displays to achieve both horizontal and vertical parallax. Integral imaging also avoids the problem 

of convergence – accommodation conflict, which as mentioned prior can cause discomfort and 
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visual fatigue (Xiao, Javidi, Martinez-Corral, & Stern, 2013). Figure 16 shows a visual 

representation of an integral-imaging based display using spherical lenses.        

 
Source: (Geng, 2013) 

Figure 16: Autostereoscopic 3D Display using Integral Imaging 

 With integral imaging, resolution is an important consideration. Similar to lenticular lenses 

and parallax barriers, the resolution of the display is reduced by 1/N, N being the number of views. 

Because of the horizontal and vertical parallax of this display, that means the resolution is reduced 

in both directions, making the resolution a significant limiting factor. Additionally, Kim et al. 

report limitations in viewing angle and image depth range (Kim, Hong, & Lee, 2010).  

 The other category of auto-stereoscopic displays is volumetric displays. Volumetric 

displays project image points to definite loci in a physical volume of space where they appear 

either on a real surface, or in translucent (aerial) images forming a stack of distinct depth 

planes(Pastoor & Wöpking, 1997). Volumetric displays are generally classified into 3 categories: 

swept volume, static volumes, and holographic displays (Favalora, 2005). In swept volume 
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displays, the image space is generated by mechanical motions of a display panel (either a 2D panel 

such as a mirror (Jones, McDowall, Yamada, Bolas, & Debevec, 2007) or a helix panel (Gately, 

Zhai, Yeary, Petrich, & Sawalha, 2011))(Figure 18). Swept volume displays have improved in 

recent years due to the implementation of LED light sources (Gately et al., 2011), open-source 

display architectures to drive down costs (Abraham, 2013), and general improvements in the 

optical design (Sun, Chang, Cai, & Liu, 2014). The main drawbacks to swept volume displays are: 

1) Large number of moving parts 

2)  Limited scalability 

3) Barrier between the observer and the image (Geng, 2013).  

 

Static volume displays generate 3D imagery by coaxing a volume into emitting light in 

which the bulk properties remain static (Favalora, 2005). In these, a liquid, gas, or solid is excited 

by laser in a precise manner, causing the material to illuminate and generate a 3D image (Langhans, 

Guill, Rieper, Oltmann, & Bahr, 2003). Generally, these samples have to be enclosed and separated 

from the viewer, but a technique introduced by Cho et al. uses a pulsed laser to ignite molecules 

in the air and generate plasma light points, removing the need for a specialized volume of material 

(Cho, Bass, & Jenssen, 2007; Kimura, Uchiyama, & Yoshikawa, 2006) (Figure 17). Unfortunately, 

static volume displays are difficult to manufacture and many times represent safety risks to viewers 

due to the necessity for high-power lasers (Geng, 2013). Additionally, these are many times not in 

color, due to the material used within the static volume.  
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Source: (Jones et al., 2007; Kimura et al., 2006) 

Figure 17: Swept Volume Display (Left) and Static Volume Ignited Plasma Display (Right)  

Holography 

The concept of holography has been around since 1947, when Dennis Gabor invented a 

new method for encoding and displaying 3D objects (Gabor, 1948). However, the technology was 

not sufficient to realize his theories, until 1960 when the white light laser became available. At 

this point, practical white light holography was achieved by Leith and Upatnieks (Leith & 

Upatnieks, 1962). Based on these principles, researchers have created a variety of holographic 

visualization technologies. Generally, holographic displays are split into two groups: computer 

generated holography to print holograms and computer generated electroholography (Geng, 2013).      

Printed holograms are created in a process known as direct write digital holography 

(DWDH), wherein the holographic substrate is divided into a matrix of small holographic pixels 

(“hogels” or “holopixels”), each of which is recorded using a compact object and reference beam 

(Brotherton-Ratcliffe et al., 2011). Improving the print time, Klug et al., created a single step 

process to create large format full-color reflective holograms (Klug, Holzbach, & Ferdman, 2001). 
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The current generation of reflective holograms allows full color, autostereoscopic, fully-parallax 

visualizations of 3D objects on a print media. Print holograms are reflective displays, meaning that 

the light source must be external and directed at the surface of the hologram to view the 3D image. 

Lastly, these holograms have the significant drawback of being static; the image does not move. 

Examples of these holograms have been created by Zebra Imaging, RabbitHoles Media, and 

Holoxica (Figure 18).  

       

 
Source: Zebra Imaging (Top Left), RabbitHoles Media (Top Right), and Holoxica (Bottom) 

Figure 18: Digital Holographic Prints 

Computer generated electroholography is used to create dynamic holographic displays, 

meaning the display is capable of 3D motion. Current displays utilize spatial light modulators and 

advanced optical arrays to generate the holographic image (Reichelt et al., 2012). These displays 

are autostereoscopic, and have high degrees of parallax. Some displays have full 360º parallax, 
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allowing users to stand at all angles around a display and collaborate (Klug et al., 2013). 

Holographic displays are not confined to a static volume or housed behind a panel, allowing closer 

and safer viewing than other volumetric displays. The Zebra zScape motion display (Klug et al., 

2013), the Ostendo holographic display (Lewin, 2014), and the Holoxica holographic display 

(Khan, Can, Greenaway, & Underwood, 2013) are some current commercial offerings.  

While holographic displays have been referred to as “the holy grail” of 3D display due to 

being autostereoscopic, fully parallax, light field display technology (Benton & Bove Jr, 2008), 

the displays current have a set of serious drawbacks. The first is resolution; in order to have a fully 

holographic display, a pixel pitch size of 1μm is required; this would lead to a reasonable screen 

size having pixels numbering in the trillions. This leads to issues in all areas of the technology, 

from data transmission, computation, visualization, and display optics (Geng, 2013). The current 

generation tries to overcome these issues with clever engineering, but the displays all have 

deficiencies in resolution, refresh rate, color consistency, brightness, uniformity, tiling, and 

scaling. Photographs of the current state of the art highlight these deficiencies (Figure 19).    
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Source: Zebra Imaging zScape (Top Left), University of Arizona (Top Right),  

Ostendo (Bottom Left), MIT Media Lab (Bottom Right) 

Figure 19: State of the Art in Holographic Displays 

Display technology summary 

3D display technologies have strengths and weaknesses, summarized in Table 3. Educators 

and researchers should determine their operating environment and visualization needs, and make 

technology choices to best accommodate their use case. Display technology trends continue to 

progress to improve resolution, view angle, refresh rate, and cost. At present, monoscopic 3D and 

stereoscopic 3D are the most accessible due to cost and availability of technology. In the future, 

commercial investments in products such as HoloLens and Google Glass may drive augmented 

reality towards increased accessibility and lower cost. Holographic and other autostereoscopic 

displays represent the most capability and don’t require glasses or an HMD, but are the least mature 

and subsequently least accessible at present.   
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Table 3: Summary of Strengths and Weaknesses of 3D Display Technologies 

Technology Strengths Weaknesses 

Monoscopic 
Spatial 

Perception 

- Utilizes traditional print media or low 
cost monitors 

- No special eye glasses required 
- High resolution 
- Commercially available in Black & 

White and various levels of Color 

- No binocular depth cues 
- No parallax 

Monoscopic 
Spatial 

Perception with 
Kinetic Depth 

Effect 

- No special eye glasses required 
- High resolution 
- Commercially available 
- Object movement (e.g. innately 

propelled or user interaction) produces 
kinetic depth effect depth cue 

- No binocular depth cues 
- Amount of depth perception based on the 

number / amount of angular and/or 
translational displacement degrees of 
freedom. Quality of depth perception depends 
on object fidelity at viewing distance. 

Monoscopic 
Spatial 

Perception with 
Head Motion 

Parallax 

- Head tracking device required but no 
special eye glasses required 

- High resolution 
- Commercially available 
- Parallax through movement of viewer  

- No binocular depth cues 
- Amount of depth perception based by the 

number and amount of angular and/or 
translational displacement afforded the viewer 
by the display type  

Color Anaglyph 
- Utilizes traditional low cost screens 
- High resolution 
- Commercially available 

- Skewed sense of color 
- Requires eye glasses 
- Convergence-Accommodation Conflict 

Polarization 
Interlaced 

- High resolution 
- Commercially available 

- Requires expensive projectors 
- Requires eye glasses 
- Convergence-Accommodation Conflict 

Time-
Multiplexed 

- High resolution 
- Commercially available  

- Reduced brightness due to shuttering 
- Convergence-Accommodation Conflict 

Augmented 
Reality 

- High resolution 
- Highly immersive 

- Expensive, man-worn equipment 
- Physical fatigue and potential for eye strain 
- Registration and occlusion issues  

Lenticular Lens 
- Autostereoscopic 
- Can be applied to existing displays 

- Horizontal Parallax Only 
- Reduces resolution 
- Cross talk and image flip 
- Limited viewing angle  

Parallax 
Barrier 

- Autostereoscopic 
- Can be applied to existing displays 

- Horizontal Parallax Only 
- Reduces resolution 
- Cross talk and image flip 
- Reduced brightness due barrier opacity 
- Limited viewing angle 

Volumetric 
Displays 

- Autostereoscopic 
- Voxel based visualization 
- Provide full spectrum of depth cues 

- Limited interactivity 
- Not commercially available 
- Low refresh rate 
- Eye safety issues  

Electro-
Holography 

- Autostereoscopic 
- Fully parallax 
- Provides full spectrum of depth cues 

- Requires extensive computation and 
bandwidth to create light field information 

- Not commercially available 
Digital 

Holographic 
Prints 

- Autostereoscopic 
- Fully parallax 
- High resolution 

- Only presents static 3D images 
- Requires a print medium 
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Progress of 3D Technologies within Anatomy Education 

Monoscopic visualization   

Both educators and researchers use 3D display technology to visualize anatomy. Standard 

computer libraries such as OpenGL enable monoscopic 3D display of end user models, an example 

being custom hepatobiliary models (H. M. Hoffman, Murray, Irwin, & McCracken, 1996). To 

expedite model creation, researchers use tools including the QuickTime Virtual Reality (QTVR) 

framework, resulting in models such as the Yorick-VR skull (Gary L. Nieder, Scott, & Anderson, 

2000), an interactive heart (Friedl et al., 2002), and libraries of organ and organ systems (Gary L 

Nieder, Nagy, Pearson, & Wagner, 2002) (Figure 20). Other models use CT and MRI data sets as 

a starting point, such as the Visible Human Program (Spitzer, Ackerman, Scherzinger, & Whitlock, 

1996). Voxel-Man, a monoscopic 3D anatomical atlas, created interactive perspective views of the 

Visible Human data set and produced QTVR movies (Schiemann et al., 2000). More recently, 

research groups have created Visible Human projects for other races, including the Chinese Visible 

Human (Zhang, Heng, & Liu, 2006) and the Korean Visible Human (Park et al., 2005). Current 

projects use these newer Visible Human data sets to generate visualizations, including a 3D brain 

atlas (Li, Ran, Zhang, Tan, & Qiu, 2014) and a virtual model of the larynx (Liu et al., 2013).  

 
Source: http://anatomy.uams.edu/anatomyhtml/qtvr_movs.html 

Figure 20: QTVR Images of the Heart and Brain 
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Web-based programming tools, including the Web3D platform, VRML, WebGL, X3D, 

and Java 3D allow for high fidelity monoscopic 3D anatomy visualizations using standard web-

browsers. Brenton et al. (2007) used these tools to create a library of 3D anatomical models for 

undergraduate nervous system education. The wide-spread popularity of YouTube prompted the 

use of streaming video with monoscopic depth cues as a tool for anatomy education (Jaffar, 2012). 

Commercial companies created large web-based 3D atlases as the end products. One review study 

found over 45 websites actively providing anatomical content (Frasca, Malezieux, Mertens, 

Neidhardt, & Voiglio, 2000). The review revealed that the majority of the sites were improving 

both in quantity and quality of anatomical content, including Biodigital Human (Qualter et al., 

2011), Visible Body, Zygote Body, Google Body, Anatronica, and more. Web-based anatomical 

content is also available for mobile devices. A recent review highlighted many mobile applications, 

such as Visible Body, 3D4Medical, and Pocket Anatomy, and indicated these could be a useful 

tools for teaching anatomy (Lewis, Burnett, Tunstall, & Abrahams, 2014).  

In August 2005, the European Computer Manufacturers Association International 

standardized a format to view and interact with a 3D computer object on screen, commonly 

referred to as Universal 3D or 3D pdf (ECMA, 2007). With a device as simple as a smartphone or 

tablet, one may now interact with a 3D pdf with a finger or stylus and gain the advantage of 

parallax. Additionally, the technology improves accessibility due to the widespread acceptance of 

the PDF format. The 3D PDF format has been discussed as a promising means of disseminating 

biomedical content (Newe, 2015; Rico, Méndez, Mavar-Haramija, Perticone, & Prats-Galino, 

2014; Ruthensteiner, Baeumler, & Barnes, 2010). The format has been used to display surface 

cadaver models (Shin et al., 2012), the face and brain (Ziegler et al., 2011), and the radiological 

images (Phelps, Naeger, & Marcovici, 2012). 
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Extending the discussion to include human interaction with anatomical visualizations, 

researchers employ commercial hardware interfaces to augment interaction with visualizations. 

The Nintendo Wii (Luigi Gallo, De Pietro, Coronato, & Marra, 2008) and a tracking glove (L. 

Gallo & Ciampi, 2009) enabled interaction with monoscopic medical imaging data; the interface 

included actions to point, select, and rotate in the X, Y, and Z dimensions. More recently, Zhu et 

al. (2014) used the Kinect to facilitate user interaction with a web-based anatomical atlas, with 

user actions including translation, rotation, scaling, and taking a screenshot. 

Stereoscopic visualization 

Stereoscopic displays lack the widespread popularity of monoscopic 3D models, but are 

increasing in use as the technology becomes more commercially available. Early on, Trelease 

(1998) reported the use of a stereoscopic 3D display for a practical examination in gross anatomy, 

with anatomical structures including the thorax, abdomen, pelvic region, and upper and lower 

extremities. Conveniently, many of the same tools and datasets used for monoscopic 3D are also 

applicable for stereoscopic visualization. Using the QTVR format, Balogh et al. (2004) created 

stereo pairs of neurosurgical images taken during live surgery, allowing for review and education. 

Based upon the Visible Human dataset, researchers generated a 3D pelvis model (Sergovich, 

Johnson, & Wilson, 2010) and a virtual temporal bone to teach anatomy associated with cranial 

base surgery (R. A. Kockro & Hwang, 2009). More recently, Nobouka et al. (2014) used a 

stereoscopic camera system to record multi-view images of the hepatic and pancreatic regions, for 

use in surgical education. While widespread use of stereoscopic displays in the anatomical 

education field has been limited to date, the 3D data is readily available through monoscopic 3D 

anatomical atlases or through new technology such as stereoscopic cameras. With software and 



   40 
 

hardware available to create stereo pairs easily, the capability to use stereoscopic displays is within 

reach of educators and researchers.  

 

Augmented and mixed reality visualizations 

Early augmented reality prototypes applied to anatomy visualization used a video see-

through HMD to display the bones of the elbow (Kancherla, Rolland, Wright, & Burdea, 1995; JP 

Rolland, Wright, & Kancherla, 1997). Significant issues surfaced including tracking and 

registering the augmented content, especially during motion of the elbow joint. Later studies 

focused on HMD display of internal airway anatomy overlaid upon a human patient simulator (L. 

Davis et al., 2002; Jannick Rolland et al., 2003) and an augmented reality display of the skull 

(Chien, Chen, & Jeng, 2010). Chien, Chen, and Jeng highlighted the potential in a tangible user 

interface’, allowing a user to physically touch a model with 3D overlays, combining sensory inputs 

for potentially better understanding.  

 Mobile augmented reality displays make use of the cameras included in tablets or smart 

phones to record the environment for visualization and superimpose 3D visuals over existing 2D 

material or internal structures over a 3D object, such as an anatomical model. Using this method, 

researchers have successfully created mobile augmented reality for the inner ear (Zariwny, 

Stewart, & Dryer, 2014), cardiac anatomy (Sulaiman, 2014), and other anatomical components 

(Juanes et al., 2014).  

A unique technology called ‘mirracle’ uses a technique dubbed a ‘magic mirror’ to enable 

interaction with a display through hand and arm motions, thereby moving through planes of their 

own body (Blum, Kleeberger, Bichlmeier, & Navab, 2012). A video system combined with a depth 

sensor collects data on the person standing in front of the ‘magic mirror’. A screen then displays 
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the user and augments underlying anatomical structures, allowing the user to “look inside their 

own body”. By defining bone landmarks, researched demonstrated improved registration between 

the augmented visuals and the viewer’s body (Meng et al., 2013).   

Augmented reality presents a new twist on visualization, combining real-world visuals with 

computer generated overlays using a variety of techniques. The capability to display underlying 

anatomy and dynamic motion visualizations represents a significant tool for anatomy training and 

medical education (Kamphuis, Barsom, Schijven, & Christoph, 2014; Zhu, Hadadgar, Masiello, 

& Zary, 2014).  

 

Autostereoscopic visualization 

Autostereoscopic visualization benefits from being glasses-free, and represents significant 

potential in health sciences education. Early discussion by Satava and Jones (1998) proposed 

holography as a potential technological to augment medical education. Gorman, Meier, Rawn, and 

Krummel (2000) suggested that a patient based hologram could change medicine and medical 

education entirely, allowing physicians to visualize anatomy and practice procedures on the 

hologram, aptly describing the shift as “from blood and guts to bits and bytes”. Recently, Khan 

(2014) concluded that autostereoscopic displays would be an ideal platform for medical education.  

Research using such displays is emerging as the displays become more available. Using a 

multi-view auto-stereoscopic display, Portoni et al. (2000) created software to allow for real-time 

interaction with 3D medical models from the Visible Human Data set. The display used a lenticular 

lens over an LCD display with up to 8 views, but reported significant issues regarding resolution. 

Ilgner et al. (2006) used stereoscopic video taken during surgical procedures and presented it on a 

Sharp Mebius autostereoscopic laptop display. Recently, Christopher, William, and Cohen-Gadol 
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(2013) reported the first use of an autostereoscopic display for neurosurgical review. The group 

used a 9 view lenticular lens display. In the study, they report that the use of an autostereoscopic 

display is feasible due to being glasses-free and viewable by 20-30 viewers simultaneously. The 

authors note that the resolution is an issue due to the lenticular lens, similar to the findings of 

Portoni et al.   

Until recently, holograms have not been sufficiently technologically mature to be usable in 

educational setting. In 2009, Chu et al. (2009) used a 360º motion holographic display with a 

rotating diffusing screen to visualize patient imagery data. Teng, Pang, Liu, and Wang (2014) 

created a shiftable cylindrical lens to generate holographic images, showing an exemplar model of 

the pelvis. 

 

Technology Assessments: Student Perceptions, Cognitive Load, and Knowledge Gains 

 Simple use studies demonstrate the capability and explore the technical feasibility of 3D 

display in anatomy, but do not extend to the effect of the display on anatomical education. 

Assessment studies conducted using 3D visualization technologies generally attempt to gather data 

in support of two primary hypotheses: students will enjoy using and feel more confident in their 

skills due to the technology; and students will perform better in terms of knowledge gains, 

cognitive load, and spatial awareness metrics. 

 

Student perceptions  

Beginning with studies focusing on user satisfaction, Petersson, Sinkvist, Wang, and 

Smedby (2009) implemented a web-based monoscopic 3D anatomical application and found that 

students had a very positive outlook upon the visualization. Results also indicated a trend of 
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beneficial performance results from the program. Battulga, Konishi, Tamura, and Moriguchi 

(2012) also studied online monoscopic 3D computer models; the findings indicated the interactive 

models had positive effects on medical education and suggested that monoscopic 3D computer 

models are more efficient than textbooks alone in medical education. The authors also suggest the 

3D technology can motivate students to understand complex anatomical structures. Tourancheau 

et al. (2012) focused on the quality of experience when using a stereoscopic 3D display and an 

autostereoscopic multi-view display for anatomy display. The results indicated the population felt 

3D displays were beneficial for their work, but that visual fatigue and discomfort were issues 

affecting user experience. Brown, Hamilton, and Denison (2012) created a stereoscopic 

visualization of an aorta and a ruptured aorta, reporting that students felt the system aided their 

understanding of anatomy and pathology and provided an advantage compared to current anatomy 

classes.   

Focusing on topics related to students’ perceived confidence, Thomas, Denham, and 

Dinolfo (2011) found that students using web-based monoscopic 3D visualizations as part of a 

gross anatomy lab perceived an improved ability to name major anatomical structures from 

memory, to draw major anatomical structures from memory, and to explain major anatomical 

relationships from memory. Yao et al. (2014) compared groups using 2D CT scans of sinus 

anatomy and a reconstructed 3D visualization of the scans. The group using the 3D reconstruction 

had higher perceived understanding of the content and believed the technology accelerated their 

understanding of sinus anatomy. A study from Ruisoto, Mendez, and Galino (2014) involved 

students using a tool to explore 3D models of neuroanatomy; participants reported perceiving the 

tool as having a high level of educational value. 
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A subset of publications studied student perceptions within the framework of technology 

acceptance. Technology acceptance seeks to predict the future adoption level of a technology 

based on perceived usefulness, perceived ease of use, and intention to use (Fred D. Davis, 1989; 

F. D. Davis, Bagozzi, & Warshaw, 1989; Venkatesh & Davis, 2000). A study by Huang, Liaw, 

and Lai (2013) used these metrics to assess a 3D stereoscopic projection of anatomical content to 

an entire classroom, and then monoscopic 3D models in individual self-guided sessions. The 

results indicated that an imagination metric, closely related to spatial visualization, was the largest 

contributor to perceived usefulness. The students rated the technology highly, with positive 

perceptions related to perceived ease of use, perceived usefulness, and intent to use. Rasimah, 

Ahmad, and Zaman (2011) conducted a technology acceptance evaluation of an augmented reality 

system for biomedical science students learning tissue engineering concepts. The system employed 

a webcam paired with a monoscopic 3D visualization, and overlaid computer generated graphics 

on the video feed from the webcam. The participants reported a high level of technology 

acceptance, including positive rating for perceived usefulness, perceived ease of use, and intent to 

use. Yeom et al (2013) evaluated the combination of monoscopic 3D models and a haptic device 

to determine whether medical students accepted the haptic interface for 3D exploration. The results 

indicted perceived ease of use and perceived usefulness were both positive for the display and 

haptic interface.  

 

Student performance 

 In addition to student perceptions, many studies focus on performance measures, such as 

knowledge gains. Beginning with monoscopic 3D visualization, Nicholson, Chalk, Funnel, and 

Daniel (2009) reported the use and study of a monoscopic 3D model of the ear produced significant 
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learning gains among students on post-test material. Similar studies comparing monoscopic 3D to 

standard 2D material have found significant performance improvements for other anatomical 

structures including the brain (Estevez, Lindgren, & Bergethon, 2010) and the liver (Muller-Stich 

et al., 2013). In a study comparing monoscopic 3D models against traditional cadaver instruction, 

Codd and Choudhury (2011) found no significant difference in the two groups, indicating that 

virtual reality anatomy can be used to compliment traditional methods effectively. Using 

monoscopic 3D models on mobile displays, Noguera, Jimenez, and Osuna-Perez (2013) generated 

content to train manual therapy. The researchers conducted an outcomes study, which found 

students studying the knee in 3D performed better on post-tests compared to those using the 2D 

representations. Additionally, participants reported high levels of user satisfaction. Augmented 

reality has been sparsely evaluated; a single assessment study found that students using an 

augmented textbook demonstrated improved lower limb knowledge and improved motivation 

(Ferrer-Torregrosa, Torralba, Jimenez, García, & Barcia, 2014). 

Another measure of performance is anatomical structure localization and identification. 

Beerman et al. (2010), presented students with 2D CT images or 3D representations of the liver. 

The results showed the 3D representation resulted in significant improvements during 

identification of complex liver anatomy, with men showing a larger increase than women. Settapat, 

Achalakul, and Ohkura (2014) created a web-based monoscopic 3D medical image visualization 

framework with a focus on biomedical engineering students. Within the study, students visualized 

medical imaging in 2D and through the monoscopic 3D visualization tool. The results reported 

students using the 3D tool had a higher percentage of correct answers when asked to locate brain 

structures. Additionally, students felt the material was easier to learn in 3D and indicated that 3D 

visualization was preferred for education to the standard 2D image tools. Focusing on pathology, 
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Jurgaitas et al. (2008), studied the tumor localization in the liver. The results indicate that students 

achieved better improved tumor localization when using the 3D monoscopic visualization 

compared to 2D CT images, and planned a more precise tumor surgery. 

A metric related to improved anatomical knowledge is response time. Ruisoto et al. (2012) 

focused on localization of brain structures within monoscopic 3D visualizations compared against 

2D cross-sectional visualizations. The study found that the percentage of correct answers and 

response time were significantly better in the group that used the 3D visualization. A study of liver 

anatomy conducted by Muller-Stich et al. (2013) found significant improvement of monoscopic 

3D over 2D visualization in post-test results. The study also found participants in the 3D group 

answered questions significantly faster. Faster response times in these studies could indicate 

increased student confidence or improved access to learned content due to 3D visualization.  

Shifting to from monoscopic 3D representations to stereoscopic displays, Luursema et al. 

(2006) compared a stereoscopic 3D display with a 2D display and reported significant 

improvement of anatomical structure identification due to the stereoscopic 3D display. 

Additionally, this study found that users of low visual-spatial ability had significantly improved 

results, indicating that the use of 3D may help students with low VSA to overcome visualization 

difficulties. In a follow up experiment, the group found that displays using computer generated 

stereopsis provided a significant benefit to an anatomical localization task of the pelvic region; 

however, visual-spatial ability was still the primary performance driver (Luursema, Verwey, 

Kommers, & Annema, 2008). Hilbelink (2009) conducted a study comparing color anaglyph 

stereoscopic 3D to a 2D representation of the skull. Results showed significant improvement in 

identification of structures and knowledge of spatial relationships.  
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  Focusing on the final display category of autostereoscopic displays, Abildgaard et al. 

(2010), found that an autostereoscopic, parallax barrier display benefited the visualization and 

identification of arteries when studying angiography. Leung, Lee, Mark, and Lui (2012) also used 

a parallax barrier display, but focused on students learning epidemiology and the 3D shape of 

viruses. The results showed using an autostereoscopic display allowed students to better remember 

and recreate the shape of viruses.  

 

Cognitive load 

In addition to knowledge gains, one notable metric in education is cognitive load, defined 

as the mental effort expended to conduct a task (J Sweller, 1994). The ideal findings for a 

visualization tool are a reduction in cognitive load and an increase in performance; in other words, 

the work is easier and the results are better. Researchers want to understand how 3D visualization 

affects cognitive load in anatomy training and spatial learning.  

A series of studies conducted in the late 1990s and early 2000s sought to determine the 

relationship between cognitive load, 3D visualization, and visual-spatial ability (A. Garg et al., 

1999; G. N. Garg, Lawrence Spero, Ian Taylor, Amit, 1999). The initial studies found that multi-

view monoscopic 3D representations showed no improvement over key view monoscopic 3D 

representations, indicating that the benefit of computer based models may be limited in terms of 

spatial learning. However, subsequent studies found students showed improved spatial knowledge 

using a multi-view monoscopic 3D visualization of carpal anatomy with rotation-based 

interactivity (A. X. Garg et al., 2001).  

Recent studies have returned to the topic of cognitive load. Foo et al. (2013) used 

monoscopic 3D models of the gallbladder, celiac trunk, and superior mesenteric artery, focusing 
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on localization tasks of the anatomical structures. The study found participants in the 3D group 

had improved localization and reduced mental demand using the NASA-Task Load Index(TLX) 

cognitive load scale. In a study using print holograms of cardiac anatomy, Hackett (2013) reported 

an improvement in post-test performance and a reduction in cognitive load. The study also reported 

on cognitive efficiency, a metric combining performance and cognitive load; it was determined 

that the holograms provided significant improvement in cognitive efficiency over traditional 2D 

textbook materials. In a follow-up study from Hackett and Fefferman (2014), researchers displayed 

cardiac anatomy and neuroanatomy, comparing a dynamic holographic display with commercial 

3D stereoscopic televisions using active-shuttering glasses. Results showed participants were able 

to assess anatomical dimensions more quickly and more accurately using the holographic display, 

possibly indicating more rapid cognitive processing due to the autostereoscopic display.   

 

Mixed and neutral results 

While many studies show the benefits of 3D visualization, the findings are not uniform. 

The initial studies by Garg et al. (1999a, 1999b) indicated a mixed result, showing no significant 

difference due to the monoscopic 3D models. Metzler et al. (2012) conducted an experiment to 

determine if studying 3D images would improve interpretation of 2D medical imaging, finding no 

difference between the 2D and 3D groups. While the result is significant, since the study focused 

on interpretation of 2D imaging, the spatial relationships learned in the 3D training may have been 

unused. Studies focusing on the larynx (Hu et al., 2010; Tan et al., 2012), the liver (Keedy et al., 

2011), and cranial nerves (Yeung, Fung, & Wilson, 2012) found no significant difference in 

performance between a monoscopic 3D anatomical presentation and traditional textbook 

materials; however, all studies indicated students preferred using the 3D models. Yeung et al. also 
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suggested these models may be beneficial by helping pique student interest. Hoyek et al. (2014) 

performed a study on monoscopic 3D animations focused on trunk and limb assessment. The study 

had mixed results, with students using a 2D drawing representation performing better on the trunk 

assessment. However, students performed better in terms of spatial understanding using the 3D 

animations.  

Regarding stereoscopic displays, a study from Al-Khalil and Coppoc (2014) found no 

significant difference in post-test results when studying using a 2D video compared to a 3D 

stereoscopic video. The study focused on veterinary anatomy, but the results may translate to 

human anatomy. Kockro et al. (2015) used a polarization interlaced stereoscopic display for 

teaching neuroanatomy. The study found medical students preferred the 3D visualization to 2D 

PowerPoint material, but there was not a statistically significant difference in learning gains. 

 

Conclusion 

 This literature review began with a primer on the human visual system and the depth cues 

used to perceive depth. The review thoroughly explains the visualization technologies employed 

in contemporary 3D displays, including the depth cues they exhibit. The displays include 

monoscopic depth cues on 2D screens (2.5D), stereoscopic displays, augmented reality, 

autostereoscopic displays, and holographic displays. The pros and cons of these displays are 

highlighted by Table 3 and illustrate that there is no current ‘perfect display’.  

Tables 4, 5, 6, and 7 summarize the assessment studies, including the anatomical 

structure(s) used in the study, the 3D visualization technology, and the major findings. From the 

literature review, 32 articles reported cases of simple 3D display use, with another seven articles 

discussing the potential for 3D display technologies within anatomical education. Beyond simple 
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use and theoretic discussions, another 38 articles reported assessment of 3D display technologies 

based on student perceptions, cognitive load, and performance improvements. The majority of 

assessment research, 28 publications representing 74% of the assessment studies, concluded 3D 

display technology had beneficial results when used in anatomical education settings. These 

findings align with the meta-analysis conducted by Yammine and Violato (2014). Six articles 

reported mixed results (16%) and four articles reported no positive effects due to 3D (10%). No 

studies indicated 3D visualization caused an adverse effect on student perception, cognitive load, 

or performance.  

Table 4: Beneficial Perception Results of 3D Visualization 

Reference Anatomy 3D Visualization Major Findings 
Petersson et al., 

2009 Vasculature Monoscopic - Trend of improved learning gains 
- Positive student perception of technology 

Battulga et al., 
2012 General Monoscopic - Positive student perceptions 

- Potential improvement in student motivation 

Tourancheau et 
al., 2012  General 

Stereoscopic and 
Multi-View 

Autostereoscopic 
- Positive perceptions from medical doctors  

Brown et al., 2012 Aorta 
Polarization 
Interlaced 

Stereoscopic 

- Positive student perception of system and 
education value 

Thomas et al., 
2011  Various Monoscopic 

- Improved student perception of their ability to 
name, draw, and explain major anatomical 
structures 

Yao et al., 2014  Sinus Monoscopic 
- Higher perceived understanding of anatomy 
- Students believed the technology accelerated 

their understanding of sinus anatomy 
Ruisoto et al., 

2014  
Neuro-

anatomy Monoscopic - Students rated visualization tool as high level 
of educational value 

Huang et al., 2013 Multiple 
Systems 

Stereoscopic and 
Monoscopic 

- High degree of perceived usefulness and 
perceived ease of use 

Rasimah et al., 
2011 

Tissue 
Properties Augmented Reality 

- High willingness to use 3D technology  
- Perceived ease of use and perceived 

usefulness both showed positive results 

Yeom et al., 2013 General Monoscopic 
- Paired a haptic interface with 3D visualization 
- High levels of perceived usefulness and 

perceived ease of use 
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Table 5: Beneficial Performance Results of 3D Visualization 

Reference Anatomy 3D Visualization Major Findings 
Nicholson et al., 

2006 Inner Ear Monoscopic - Improved post-test performance 
- Positive student perception of technology 

Estevez et al., 
2010  

Neuro-
anatomy Monoscopic - Improved 3D spatial understanding  

- Students preferred 3D presentation 
Muller-Stich et al., 

2013 Liver Monoscopic - Improved post-test performance 
- Faster student response time 

Codd & 
Choudhury, 2011  Forearm Monoscopic - Comparable to use of dissection and textbooks 

- Positive feedback from users 

Noguera et al., 
2013  

Manual 
Therapy of 
the Knee 

Monoscopic - Improved post-test performance 
- High levels of user satisfaction 

Beerman et al., 
2010 Liver Monoscopic - Improved performance on identification tasks  

Settapat et al., 
2014  Brain Monoscopic 

- Improved performance on identification tasks 
- Students felt 3D content was easier to learn 
- Students preferred 3D visualization to 2D 

Jurgaitis et al., 
2008  Liver Monoscopic - Improved tumor localization  

Ruisoto et al., 
2012 

Neuro-
anatomy Monoscopic - Improved performance on post-test 

- Faster student response time 

Foo et al., 2013  Gallbladder; 
Celiac Trunk Monoscopic - Improvement on anatomical localization tasks 

- Reduced mental effort using NASA-TLX scale 
Luursema et al., 

2006;  
Luursema et al., 

2008 

Abdomen Time-Multiplexed 
Stereoscopic 

- Improved performance on identification tasks 
- Beneficial for participants with low visual-

spatial ability 

Hilbelink, 2008 Skull Color Anaglyph 
Stereoscopic 

- Improved student performance in anatomical 
identification and spatial relationships 

Abildgaard et al., 
2010  Vasculature Autostereoscopic 

Parallax Barrier 
- Improved performance on identification of 

arteries 

Leung et al., 2012  Viral 
Structures 

Autostereoscopic 
Parallax Barrier 

- Improved retention and ability to recreate viral 
shapes 

Ferrer-Torregros 
et al., 2014 Lower Limb Augmented Reality 

Textbook 
- Positive student motivation 
- Improved performance on post test 

Hackett, 2013  Cardiac 
Anatomy Digital Holograms 

- Improved post-test performance 
- Trend of reduced cognitive load  
- Improved cognitive efficiency 

Hackett & 
Fefferman, 2014  

Cardiac and 
Neuro-

anatomy 

Dynamic 
Holographic 

Display 

- Reduced time to assess anatomical dimensions 
- Improved accuracy when students determined 

anatomical dimensions 
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Table 6: Mixed Results of 3D Visualization 

Reference Anatomy Visualization 
Technique Major Findings 

Garg et al., 
1999;  

Garg et al., 
2001 

Carpal bones Monoscopic 

- No difference between multi-view 3D models and 
key view models 

- Later study found students had better spatial 
awareness with multi-view 3D using rotation 
interaction 

Hu et al., 
2010 Larynx Monoscopic - Improved student perception 

- No difference in performance 

Keedy et al., 
2011 Liver Monoscopic 

- Students reported higher satisfaction for 3D 
visualization 

- No difference in performance over traditional 
textbook materials 

Hoyek et al., 
2014 

Limb and 
Trunk 

Assessment 
Monoscopic 

- Traditional 2D representation led to improved 
performance on trunk assessment 

- 3D visualization results in improved spatial 
understanding of anatomy 

Kockro et 
al., 2015 

Neuro-
anatomy Stereoscopic 

- Students preferred using 3D visualization 
- No statistically significant learning gains due to 3D 

use 
 
  

Table 7: No Effect Results of 3D Visualization 

Reference Anatomy Visualization 
Technique Major Findings 

Metzler et 
al., 2012 Liver Monoscopic - Correct interpretation of 2D imaging does not differ 

in students trained in 3D or 2D 
Tan et al., 

2012 
 

Larynx Monoscopic - 3D representations and 2D images were equivalent 
in performance and spatial understanding 

Yeung et al., 
2012 Cranial Nerve Monoscopic - No significant different between traditional 

text/image-based instruction and the 3D tool. 
Al-Khalil & 

Coppoc, 
2014 

Veterinary Stereoscopic Video - No significant difference on post-test results 
between 3D video and 2D Video 

 

While the majority of anatomy research indicates 3D provides beneficial results, further 

research would solidify this position. Research articles on stereoscopic, autostereoscopic, and 

augmented reality displays in education are presently underrepresented. Possible rationale for the 

limited research may be technical immaturity, lack of availability, and higher cost associated with 

these display variants. Additionally, for many years, the quality of these displays in terms of 
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resolution and refresh rate was poor, making them unappealing and ill-suited to high resolution 

anatomical models. The potential capabilities of newer displays include a more complete sense of 

3D perception and eliminating common issues associated with 3D displays, such as convergence 

accommodation conflict. Studies are needed to determine whether the added cost and complexity 

of autostereoscopic and augmented reality displays, when compared with their additional 3D 

capability, represent a value added proposition.  

Studies employing frameworks of technology acceptance and technology adoption seek to 

predict the potential for successful adoption and identify deficiencies in a particular technology 

(Straub, 2009). Huang et al. (2013), Rasimah et al. (2011), and Yeom et al. (2013) used the 

technology acceptance model to assess adoption of 3D displays in anatomy education, with all 

studies indicating a high degree of potential adoption. None of the articles utilized alternative 

frameworks for technology adoption, such as the concerns-based adoption model (Hall, Loucks, 

Rutherford, & Newlove, 1975) or innovation diffusion theory (Rogers & Shoemaker, 1971).  

Comparison studies between 3D modalities, such as comparing monoscopic 3D to 

stereoscopic 3D, may determine which 3D modality is ideal for anatomical education. The answer 

may depend on other factors, such as user group characteristics and the operating environment. 

Such studies would help derive future requirements regarding resolution, refresh rate, and other 

pertinent display metrics, guiding future technical development.  

Notably, the majority of assessment research focused on short term exposure to a 3D 

display and immediate assessment of knowledge gains and student perception. Longitudinal 

studies focusing on long term retention, knowledge decay, and transfer of knowledge to clinical 

skills are absent. The question of whether 3D visualization impacts long term knowledge 

acquisition is unanswered.  
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Interaction as a dependent variable was rarely included in studies. Research related to the 

impact of virtual rotation, dissection, virtual exploration, and other interaction, is largely 

unexplored, especially in newer display technologies. Studies may include interaction, such as 

using a simulator to teach anatomy (Hariri, Rawn, Srivastava, Youngblood, & Ladd, 2004), but 

don’t compare to a baseline of non-interaction or other interaction modes.  

Related to interaction, literature gaps exist related to the effect of 3D interfaces, in both 

hardware and software capabilities. The status quo of mouse and keyboard may not represent the 

optimal interface for 3D visualizations. Exploration of interface platforms, including the Wii 

(Luigi Gallo et al., 2008), a data glove (L. Gallo & Ciampi, 2009), and the Kinect (H. Zhu et al., 

2014), with 3D anatomy lacked evaluation of usability or performance improvement. Further, the 

continuing evolution of technology is supplying many new interface platforms, including the 

Kinect 2, Myo arm bands, Leap motion, and others, which may represent more intuitive interfaces 

for interacting with 3D anatomical visualizations, and therefore warrant further study.  

In conclusion, the majority of research indicates 3D display have significant potential for 

positively impacting anatomical education. Monoscopic, stereoscopic, autostereoscopic, and 

augmented reality displays have demonstrated benefits, though newer display modalities have far 

fewer associated studies. Literature gaps exist related to new display technologies, alternative 

technology adoption frameworks, interaction paradigms, longitudinal studies, and comparisons 

between display variants.  
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CHAPTER 3: METHODOLOGY 

 Based on the noted gaps in anatomy visualization, this dissertation focuses on the use of 

autostereoscopic holographic visualization in learning anatomy. The experiment compares color 

holographic prints, monoscopic spatial perception with kinetic depth effect via touchscreen display 

of a color model, and monoscopic spatial perception found in traditional color anatomical textbook 

materials. Metrics of particular interest include usability, technology acceptance, cognitive load, 

knowledge performance, confidence, and visual spatial ability. In addition, the study analyzes the 

correlation between VSA and test performance. The individual metrics of interest are discussed in 

detail in the following sections, including the associated research questions, hypotheses, and 

instruments.   

 

Demographics  

 Demographics of the population will be collected, including age, gender, and handedness. 

The demographic survey is shown an appendix F.  

 

Usability 

System usability is defined in ISO 9241 draft standard as the ‘‘extent to which a product 

can be used with effectiveness, efficiency and satisfaction in a specified context of used’’ (Abran, 

Khelifi, Suryn, & Seffah, 2003). Usability studies are formative or summative in nature. Formative 

studies take place during development and allow for iterative improvements by identifying 

usability issues. Summative studies use a finalize product to test whether the usability goals of the 

project are met (Albert & Tullis, 2013). In particular, usability metrics focusing on ease of use, 

ease of learning, and user satisfaction are of particular interest. After using the holograms, users 
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completed a post-test survey using a Likert scale. A typical item in a Likert scale is a statement 

that responders rate their level of agreement, commonly on a scale of one to five, seven, or nine 

(Likert, 1932). The survey questions used in this experiment are from the system usability scale, a 

widely used instrument with a reliability of 0.85 (Bangor, Kortum, & Miller, 2008), shown in 

appendix B.  

1. Research Question: Does the use of holograms for anatomical education result in high levels 

of user satisfaction?   

Hypothesis 1: Users will feel the holograms are easy to use.  

 

2. Research Question: Does the use of holograms for anatomical education result in higher levels 

of user satisfaction compared to monoscopic spatial perception via printed images?  

Hypothesis 2: Users will feel the holograms are easier to use than printed images.  

 

3. Research Question: Does the use of holograms for anatomical education result in higher levels 

of user satisfaction compared to monoscopic spatial perception with kinetic depth effect via 

computer models?  

Hypothesis 3: Users will feel the holograms are easier to use than monoscopic computer 

models with kinetic depth effect. 

 

Technology Acceptance 

 While the goal of many research projects is to expand the knowledge base, another goal is 

to transition a technology into the community for use. A key component to technology adoption is 

the acceptance and positive perception within the user group. The Technology Acceptance Model 
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(TAM) seeks to predict technology adoption using two metrics: perceived ease of use and 

perceived usefulness (Fred D Davis, 1989). The framework was extended to use other measures, 

including intent to use (Venkatesh & Davis, 2000). Using these metrics, researchers derive the 

general acceptance of the technology and the potential for adoption if the technology were 

provided. The instrument is composed of a series of Likert scale items focused on perceived ease 

of use, perceived usefulness, and intent to use, based on the questionnaire developed by Venkatesh 

and Davis. Cronbach’s alpha for these are as follows: perceived ease of use (α=0.86 to 0.98); 

perceived usefulness (α=0.87 to 0.98); intent to use (α=0.82 to 0.97). The instrument for this is 

included in appendix B along with the usability instrument.   

 

4. Research Question: Do students exhibit a high level of technology acceptance for holograms 

in the realm of anatomy training?  

Hypothesis 4: Students exhibit a high level of technology acceptance for holograms in the 

realm of anatomy training.  

 

Cognitive Load 

 Cognitive load is the load imposed upon the working memory by executive processes (J 

Sweller, 1994). Cognitive Load Theory (CLT) relies on the model of human information 

processing, which occurs through three types of memory: sensory memory, working memory, and 

long-term memory. Sensory memory originates from sensory organs, such as the eyes and ears, 

and lasts only a few seconds. Working memory provides processing of the information from 

sensory memory. Working memory has significant limitations in terms of size and duration 

(Simon, 1974) holding only seven items or elements at a time (Miller, 1956). The brain moves the 
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information from working memory into long-term memory through the use of organizational 

schemas, which categorize the information in the manner it will be used (Chi, Feltovich, & Glaser, 

1981). Other research discusses this information organization conceptually as chunks (Miller, 

1956) or scripts (Schank & Abelson, 2013); however, they are functionally the same concept.  

In order to optimize the presentation of information, CLT targets the working memory 

process where cognitive load exists. The central tenet of CLT is that working memory can be 

overloaded with information, resulting in decreased learning performance. Conversely, by 

reducing cognitive load, additional learning processes can occur. Within CLT, cognitive load is 

split into three sub-components:  intrinsic cognitive load, germane cognitive load, and extraneous 

cognitive load (J. Sweller, 1988). Intrinsic cognitive load relates to the inherent characteristics of 

the content (J Sweller, 1994), such as the number of elements or element interactivity. Studies 

show that instruction design changes cannot alter intrinsic cognitive load (Ayres, 2006; F. Paas, 

Tuovinen, Tabbers, & Van Gerven, 2003). For example, intrinsic load during anatomy training 

results from a high amount of information, but a relatively low interaction between the learning 

elements (J. Sweller, van Merrienboer, & Paas, 1998). As a result, learning the names of individual 

muscles, bones, nerves, etc., does not impose a high cognitive load, but manipulating these into 

usable units for understanding spatial and functional relationships results in extensive intrinsic 

cognitive load (Khalil, Paas, Johnson, & Payer, 2005). 

Germane load focuses on converting the information within working memory into schemas 

for storage in long term memory. Germane load is incredibly important because it directly relates 

to learning processes, including the construction of schemas and the automation of schemas (J. 

Van Merriënboer, Schuurman, De Croock, & Paas, 2002). The tasks involved in the construction 

of schemas include interpreting, exemplifying, classifying, inferring, differentiating, and 
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organizing information (Mayer, 2002). The goal of instructional designers is to encourage these 

learning processes to the utmost extent.  

The final component of cognitive load is extraneous cognitive load. Extraneous load is load 

not related to learning and can be altered by instructional interventions (van Merrienboer & 

Sweller, 2005). The vast majority of research focuses on reducing extraneous cognitive load within 

information presentations. The goal of reducing extraneous cognitive load is ultimately to reduce 

time and mental resources wasted during processing of excess information. The combination of 

extraneous load, germane load, and intrinsic load comprise overall cognitive load; when the 

cognitive load imposed exceeds the capacity of the working memory, cognitive overload occurs 

(Figure 21). The presentation of medical holograms may impact both germane and extraneous 

processes. 

 
Source: (Hackett, 2013) 

Figure 21: Cognitive Load Illustrated 

A related theory to CLT is the cognitive theory of multimedia learning (CTML) (Mayer, 

2005). CTML is based on three cognitive principles of learning: dual channel processing for visual 

and auditory processing, each channel has limited processing capacity, and active learning requires 
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a coordinated set of cognitive processes during learning. CTML and CLT are consistent with one 

another, with CLT suggesting similar notions, especially in regards to the limits of working 

memory being a primary driver of learning. One of the primary difference between CLT and 

CTML is the focus of CTML on the kinds of information processes, rather than cognitive load as 

a whole.  

One of the most common methods for determining cognitive load is a self-reported metric 

of mental effort. After post-treatment testing, participants reported their perceived cognitive load 

and overall workload using the NASA TLX (Hart & Staveland, 1988). The instrument has shown 

reliability of 0.74. The instrument is shown in appendix C. 

 

5. Research Question: Does the use of holograms for anatomical education result in changes in 

the cognitive load of participants?  

Hypothesis 5: Using the holograms will result in lower levels of cognitive load compared to 

printed images and monoscopic computer models with kinetic depth effect.   

 

Anatomical Knowledge Gains 

 The desire to improve anatomical education lies at the heart of this research effort. The 

immediate measure of anatomical knowledge is test performance. Using a pre-test / post-test 

methodology, researchers may determine a student’s knowledge gains. In this case, the pre-test 

and post-test will include the same questions, but in a different order. The students will also have 

a delay from their period of study, to remove the effect of immediate recall. The areas of interest 

will be cardiac anatomy, including the valves and major vessels of the heart. The instrument for 
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pre- and post-test is shown in appendix G and H. The test was developed with instructors of the 

nursing program.     

 

6. Research Question: Do students using holograms demonstrate improved gains in spatial 

anatomical knowledge compared to monoscopic spatial perception via printed images?  

Hypothesis 6: Students using holograms demonstrate improved gains in spatial anatomical 

knowledge based on post-test results, when compared with post-test results using printed 

images.    

 

7. Research Question: Do students using holograms demonstrate improved gains in spatial 

anatomical knowledge compared to monoscopic spatial perception with kinetic depth effect 

via computer models?  

Hypothesis 7: Students using holograms demonstrate improved gains in spatial anatomical 

knowledge based on post-test results, when compared with post-test results using monoscopic 

computer models with kinetic depth effect.  

   

Confidence 

 Student confidence in learned material is a vital component to education, especially 

medical education. Remembering the aforementioned studies which found that the majority of 

students felt insecure in their knowledge of anatomy, improving student confidence is an important 

concept. Within this study, a single Likert-scale item was used to assess confidence in cardiac 

anatomy before the study period and following the study period. The single item was included at 

the end of the demographics survey and the end of the technology acceptance instrument.  
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8. Research Question: Do students using holograms demonstrate improved confidence related to 

anatomical knowledge when compared with printed images and 3DPDF?  

Hypothesis 8: Students using holograms will demonstrate improved ability to identify 

anatomical structures and nomenclature, compared to monoscopic 3D models with kinetic 

depth effect.  

 

Visual Spatial Ability 

 Spatial and visual perception abilities are “concerned with an individual’s abilities to 

search the visual field, apprehend the forms, shapes, and positions of objects as visually perceived, 

forming mental representations of those forms, shapes, and positions, and manipulating those 

mental representations” (Carroll, 1993).  Thus, spatial ability is not a single attribute, but a 

collection of specific skills related to visualization and spatial cognition (Voyer, Voyer, & Bryden, 

1995). These visual skills include: spatial ability, mental rotation, spatial perception, and spatial 

visualization (Linn & Petersen, 1985). Spatial ability is defined as over-arching concept that 

generally refers to skill in representing, transforming, generating, and recalling symbolic, 

nonlinguistic information. Mental rotation involves the ability to rapidly and accurately rotate a 

2D or 3D figure. Spatial perception is person’s ability to determine spatial relationships with 

respect to the orientation of his or her own body. Lastly, spatial visualization involves complicated, 

multi-step manipulations of spatially presented information. These tasks require analysis of the 

relationship between different spatial representations, rather than a matching of those 

representations. Mental rotation and spatial perception may or may not be elements of the analytic 

strategy required to complete the task (Bogue & Marra, 2003).  
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 Visual spatial ability and the associated skills are important to learning anatomy (A. X. 

Garg et al., 2001; Guillot, Champely, Batier, Thiriet, & Collet, 2007; N. Hoyek et al., 2009; 

Langlois et al., 2009), and may be predictors for success related to surgical and other clinical skills 

(Hegarty, Keehner, Cohen, Montello, & Lippa, 2007; Kyle R. Wanzel, Hamstra, Anastakis, 

Matsumoto, & Cusimano, 2002; Kyle R Wanzel et al., 2003). To determine an individual’s VSA, 

there are a wide variety of tests that may be conducted. To determine spatial visualization ability, 

the instrument VZ-2 Paper Folding test from ETS will be used. This instrument has been validated 

and shown to consistently load onto factors related to spatial visualization (Carroll, 1993). The 

instrument is shown in appendix D. Additionally, the card rotation test will be used, which has 

also been validated and shown to consistently load onto factors related to spatial visualization 

(Carroll, 1993). The instrument is shown in appendix E. This dissertation seeks to answer the 

following research questions related to VSA and the relationship with autostereoscopic holograms.  

 

9. Research Question: Is there a relationship between an individual’s VSA and their performance 

when using holograms?  

Hypothesis 9: There is a relationship between an individual’s VSA and their performance using 

holograms.  

 

10. Research Question: Do students with a low VSA have increased benefit from the addition of 

3D holographic content compared to students with high VSA?  

Hypothesis 10: Students with low VSA show larger improvements due to the addition of 3D 

holographic content compared to students with high VSA.  
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Description of Technologies 

The model used is a model of the heart generated using Maya. The model is in the .OBJ 

format. The same model was used as the basis for the printed images, 3D PDF file, and holographic 

prints. The printed images will include 4 views of the heart: one of the full heart, one of the full 

heart with labels, one of the heart cutaway to reveal the valves, and one of the heart cutaway with 

labels.  

The monoscopic 3D models used will be in the 3D PDF format. The 3D PDF was generated 

from the same model as the printed images. The 3D PDF was generated using the PDF3D 

ReportGen software, which imported the .OBJ file and converted it into an interactive 3D PDF. 

The 3D PDF will be presented on a laptop screen, an HP Elitebook 8770W with a 17.3” display. 

The 3D PDF software used for viewing and interaction is Adobe Reader.  

The holographic technology used will be autostereoscopic holographic prints. The 

holographic prints are full-color, fully parallax, and static. The holograms will have two views 

included, one printed on the front of side of the holographic print and one on the reverse side. The 

front view is the full heart with labels, and the back view is the cutaway heart with labels. The 

holograms used in this experiment measure 12” X 12”. The lighting source is a white LED bulb 

positioned eighteen inches from the hologram, which is built into a light stand. To switch between 

views, the participant picks up the holographic print, flips the hologram, and inserts it back into 

the light stand. The setup is shown in Figure 22, with the front view, the hologram being flipped, 

and the back view.   



   65 
 

 

Figure 22: Hologram in Light Stand  

 

Experimental Design 

The experimental study will be conducted at the Medical Education and Training Campus 

(METC), in San Antonio, TX. Participants will be first year nursing students, with limited 

anatomical knowledge. The steps within the experiment and the associated time requirements are 

detailed in Table 8.  
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Table 8: Experimental Design 

Task Time Required 

1. Participants complete informed consent forms 5 minutes 

2. Participants complete pre-test and demographics.  10 minutes 

3. Participants given study material. Group 1 receives printed images, 
group 2 receives monoscopic 3D, and group 3 receives holograms.  5 minutes 

4. Participants complete cognitive load instrument.  4 minutes 

5. Participants complete VSA instruments.  6 minutes  

6. Participants complete technology acceptance and usability 
instruments. 5 minutes 

7. Participants complete post test.  10 minutes 

Total Time 45 minutes 

 

The study design assumes a medium effect size, α=.05, and β=.2. Participants will be split into 

three groups via simple randomization procedures (computerized random numbers). To determine 

the total number of participants necessary, Cohen outlined the number of participants needed for 

statistical significance in various tests and at various effect sizes (Cohen, 1992). Using Cohen’s 

finding and the aforementioned statistical parameters, a test for the difference between multiple 

means will be used on the anatomical test scores, usability, technology acceptance, and cognitive 

load scores and will require at least 52 participants in each group, totaling 156 participants. To 

determine the correlation between VSA and the anatomical performance scores, Pearson’s r will 

be used. Cohen suggests using at least 67 participants total for this statistical test.  
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CHAPTER 4: RESULTS 

 The data collection for this experiment took place at the Nursing Science Building at the 

METC from June 2017 through Oct 2017. A total of 182 participants volunteered for the 

experiment, randomized into three groups: printed images, 3DPDF, and holograms. Three 

participants were excluded from the final results: one left the study due to a prior medical 

appointment and two were disqualified for using study material during the testing period. After 

exclusions, the final sample sizes were n=59 for printed images, n=60 for 3D PDF, and n=60 for 

holograms. The study population included 96 men and 83 women, with a mean age of 22.3 (Table 

9).   

Table 9: Population Demographics 

Average Age 22.3M ± 4.6SD  Years 

Gender Male: 96 
Female: 83 

Dominant Hand Left: 25 
Right: 154 

 

Analysis Technique 

Analysis focused on post-test scores, mental effort values, technology acceptance 

measures, usability measures, and VSA test scores. All analyses were conducted using SPSS 

version 24. Nonparametric statistics were employed due to the lack of normality inherent to Likert 

scale data such as the NASA TLX and the technology acceptance instrument. Nonparametric 

statistics were employed on the post-test comparisons due to a group of outliers in the hologram 

treatment, which researchers chose not to exclude for reasons of completeness.  
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Post-test scores were compared using a Kruskal-Walllis test, followed by post-hoc Mann-

Whitney tests. Three post-hoc comparisons were made, so a Bonferroni correction was applied, 

shifting the level of significance tested against from .05 to .0167. The same analysis technique was 

applied for mental effort, usability, confidence, and technology acceptance.  

In addition to raw test scores, researchers analyzed the number of passing scores for each 

of the three conditions, using a between-groups Chi-Square test, followed by post-hoc pairwise 

Chi-Square analyses. Passing was determined as a score of 70% or greater, as specified by the 

nursing program. The odds ratio was computed to determine the effect size of the pairwise 

associations.  

The relationship between VSA and the ability to learn spatial anatomy is noteworthy. VSA 

was measured with both the paper-folding test and the card-rotation test. The correlation between 

each of these scores and the post-test score was analyzed using Spearman’s Rho. Additionally, 

researchers sought to determine the effect of these visualization treatments on students with low 

visual-spatial ability compared to the rest of the test population. The score on the paper-folding 

exam was used to separate the participants into quintiles, with the lowest quintile representing 

students with low visual-spatial ability. The difference between post-test scores and the score 

improvement was compared for the low quintile against the other four quintiles using a series of 

Mann-Whitney pairwise comparisons.  

Lastly, researchers computed the efficiency of instructional condition, which is a composite 

metric combining performance and mental effort. The technique converts performance and mental 

effort to z-scores, allowing for relative condition efficiency to be compared (F. G. Paas & Van 

Merriënboer, 1993). A Kruskal-Wallis test and post-hoc Mann-Whitney tests were conducted on 

this computed measure. 
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Usability  

Usability was assessed using questions from the System Usability Scale. Question response 

values were averaged for each participant, with more positive values indicating more positive 

response. These values were used to assess the follow hypotheses: 

Hypothesis 1: Users will feel the holograms are easy to use.  

 Hypothesis 2: Users will feel the holograms are easier to use than printed images.  

Hypothesis 3: Users will feel the holograms are easier to use than monoscopic computer 

models with kinetic depth effect. 

Results indicated that the participant’s usability response was affected by the display modality 

(H(3) = 15.184; p = .001)(Table 10). Compared to printed images (Mdn. = 4.0), participants felt 

both the holograms (Mdn. = 4.67; U = 1026.5, p  < .001; r = .36) and the 3DPDFs (Mdn. = 4.5; U 

= 1265.5; p = .007; r = .25) had better usability. There was no significant difference between the 

usability of the 3DPDF and holograms treatment (p = .443).  

 

Technology Acceptance 

Closely related to usability, technology acceptance focuses on user perceptions of 

technology in terms of ease of use, usefulness, and intent to use. The individual metrics as well as 

a combined technology acceptance score was compared across treatment groups. This data was 

used to assess the following hypothesis:  

Hypothesis 4: Students exhibit a high level of technology acceptance for holograms in the 

realm of anatomy training.  

Results indicated that the participant’s technology acceptance was affected by the display modality 

across all modalities (Table 10). There was a significant difference for overall technology 
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acceptance (H(3) = 16.75, p < .001), perceive ease of use (H(3) = 23.8, p < .001), perceived 

usefulness (H(3) = 7.75, p = .021), and intent to use (H(3) = 7.17, p = .028).  

 

Table 10: Usability and Technology Acceptance Measures 

Measure 
 

Holograms 
(1) 

3D PDF 
(2) 

Printed Images 
(3) 

Between 
Treatment 

Statistic  

p-Value Post Hoc 

Median Usability 4.67 4.5 4.0 H .001 1>3*, 2>3* 

Median Technology 
Acceptance 

4.67 4.50 4.09 H <.001 1>3*, 2>3* 

Median Ease of Use 4.50 4.50 4.0 H <.001 1>3*, 2>3* 

Median Usefulness 4.67 4.67 4.0 H .021 1>3*, 2>3* 

Median Intent to Use 5.0 5.0 4.0 H .028 - 

* p<.01       

 

Post-hoc analyses found that overall technology acceptance was significantly better for holograms 

and 3DPDF compared to printed images (Table 11). Participants felt both holograms and 3DPDFs 

were easier to use than printed images. Participants rated the holograms as more useful study aids 

than printed images. Pairwise comparisons of intent to use did not reach statistical significance. 

There were no significant differences between the holograms and 3D PDF groups for any of the 

technology acceptance measures.  
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Table 11: Post Hoc Pairwise Comparisons 

Measure 
 

Mann-Whitney U  p-Value Effect size (r) 

Median Usability    

Holograms / Printed Images 1026.5 <.001* .36 

Holograms / 3D PDF 1627.5 .443 - 

3D PDF / Printed Images 1265.5 .007* .25 

Median Technology Acceptance    

Holograms / Printed Images 966.5 <.001* .37 

Holograms / 3D PDF 1500.5 .246 - 

3D PDF / Printed Images 1161 .008* .24 

Median Ease of Use    

Holograms / Printed Images 868.5 <.001* .44 

Holograms / 3D PDF 1410.5 .051 - 

3D PDF / Printed Images 1172.5 .003* .27 

Median Usefulness    

Holograms / Printed Images 1307 .014* .22 

Holograms / 3D PDF 1614 .458 - 

3D PDF / Printed Images 1405 .109 - 

Median Intent to Use    

Holograms / Printed Images 1394 .021 - 

Holograms / 3D PDF 1782.5 .906 - 

3D PDF / Printed Images 1415 .028 - 

 

Cognitive Load 

 Cognitive load was assessed to determine the amount of mental effort associated with 

studying with the visualization treatment. The NASA TLX was used, with a focus on the mental 

effort subcategory. The results were used to assess the following hypothesis:  

Hypothesis 5: Using the holograms will result in lower levels of cognitive load compared to 

printed images and monoscopic computer models with kinetic depth effect.   

Mental effort associated with studying cardiac anatomy was significantly affected by display 

modality (H(3) = 11.60, p = .003). Participants in the printed image treatment group (Mdn. = 6.0) 
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reported significantly higher mental effort than both the hologram treatment (Mdn. = 4.0; U = 

1225.5, p = .004, r = .27) and the 3DPDF treatment (Mdn. = 4.0; U = 1216.5, p = .003, r = .27). 

There was no significant difference in mental effort between the hologram and 3D PDF treatment 

groups.  

 

Anatomical Knowledge Performance 

 Anatomical knowledge performance was assessed using the pre- and post-test instruments 

to verify the follow hypotheses.  

Hypothesis 6: Students using holograms demonstrate improved gains in spatial anatomical 

knowledge based on post-test results, when compared with post-test results using printed 

images.    

Hypothesis 7: Students using holograms demonstrate improved gains in spatial anatomical 

knowledge based on post-test results, when compared with post-test results using monoscopic 

computer models with kinetic depth effect.    

 

As indicated in the two rows of Table 12, the pre-test confirmed lack of cardiac anatomy 

knowledge among the nursing students. Median scores and number of students passing the pre-

test were statistically equivalent across treatment groups. As indicated in the post-test rows of 

Table 12, all within treatment post-test median scores and number of passing students 

demonstrated statistically significant improvements from pre-test performance (p < .001 for all 

treatments).   
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Table 12: Cardiac Anatomy Knowledge Performance Outcomes and Efficiency of 
Instructional Conditions 

Measure 
 

Holograms 
(1) 

3D PDF 
(2) 

Printed Images 
(3) 

Between 
Groups  
p-Value 

Pairwise 
Comparison 

Pre-Test  
Median 
IQR 
Range 
Passing Students 

 
33.3 

20.0 – 51.7 
6.7 – 93.3 

6 

 
40.0 

26.7 – 66.7 
0.0 – 93.3 

12 

 
33.3 

26.7 – 60.0 
6.7 – 100.0 

10 

 
.144 

 
 

.303 

 
-  
 
 
- 

Post-Test  
Median 
IQR 
Range 
Passing Students 

 
80.0 

66.7 – 86.7 
26.7 – 100.0 

41 

 
66.7 

53.3 – 80.0 
26.7 – 100.0 

26 

 
66.7 

53.3 – 80.0 
13.3 – 100.0 

25 

 
.008 

 
 

.006 

 
1>2*, 1>3* 

 
 

1>2*,  1>3* 

Mental Effort  
Median 
Mean  
SD 

 
4.0 
4.9 

3.56 

 
4.0 
4.9 

3.79 

6.0 
7.5 
4.9 

 
.003 

 
1<3*, 2<3* 

Instructional Efficiency  
Mean  
SD 

 
 

0.35  
0.85 

 
 

0.03 
1.06 

 
 

-0.36 
1.12 

 
 

.002 

 
 

1>3* 

p < .01      
 

Most importantly, Table 12 presents between treatment analysis indicating post-test 

performance (H(3) = 9.59; p = .008) and number of passing students (χ2(2) = 10.375, p = .006) 

was significantly affected by display modality.  Pairwise comparisons revealed hologram scores 

were significantly higher compared to both printed image (U = 1262.5, p = .007, r = .25) and the 

3DPDF scores (U = 1299.5, p = .008, r = .24). Figure 23 visually portrays the pre- and post-test 

performance across treatment groups. Due to the lack of normality of the post-test data, median is 

the primary reported metric; however, to be thorough, the averages for each group are shown in 

Figure 24.  
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Figure 23: Box Plot of Pre- and Post-Test Scores Clustered by Treatment Group 
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Figure 24: Bar Graph of Average Pre- and Post-Test Scores and Standard Deviation 
Clustered by Treatment Group 

Continuing the performance analysis, the number of passing students in the hologram 

treatment was significantly higher compared to printed images (χ2(1) = 8.12, p = .004) and 3DPDFs 

(χ2(1) = 7.60, p = .006). When using holograms, the odds of a student passing the post-test was 

2.84 times higher than students using 3DPDF, and 2.91 times higher than students using printed 

images, based on the odds ratio. There was no significant difference in post-test scores or number 

of passing students between the 3D PDF and printed images treatments. 
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Combining the aforementioned mental effort with knowledge performance, the efficiency 

of instructional condition was significantly different between treatments (H(3) = 12.47, p < .01) 

(Figure 25). Holograms were significantly more efficient than printed images (U = 1115, p < .001, 

r = .31). While noticeable, the difference between holograms and 3D PDF (p = .097) and between 

3D PDF and printed images (p = .051) did not reach statistical significance.  

 

Figure 25: Efficiency of Hologram, 3DPDF, and Printed Image Conditions 
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Confidence 

Confidence was measured in a single Likert-scale item at the end of the demographics 

survey and the end of the technology acceptance instrument. The scale ran from 1-7, with 1 

representing very low confidence and 7 representing very high confidence in cardiac anatomy. The 

results from that item were used to assess the following hypothesis:   

Hypothesis 8: Students using holograms will demonstrate improved ability to identify 

anatomical structures and nomenclature, compared to monoscopic 3D models with kinetic 

depth effect.  

The results of the confidence analysis showed improvement in confidence between pre- 

and post-study across each treatment group (p < .001 for each treatment) and the overall study 

population (z = -9.68, p < .001; r = .73). Pre-study confidence did not differ between treatment 

groups (H(3) = 1.69; p = .431). Post-study confidence was significantly different between 

treatment groups (H(3) = 6.96; p = .031). Pairwise analysis found that participants studying with 

holograms (Mdn. = 5) were significantly more confident than those using printed images (Mdn. = 

5; U = 1262.5, p = .007, r = .27). In this comparison, the median confidence value is the same 

while the statistical test showed a significant difference; as such, additional values for mean and 

mean rank are included in Table 13. The differences in confidence between holograms and 3DPDF 

(p = .11) and between 3DPDF and printed images (p = .38) did not reach statistical significance.      
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Table 13: Pre- and Post-Study Anatomical Confidence Among Participants 

Measure 
 

Holograms 
(1) 

3D PDF 
(2) 

Printed Images 
(3) 

Between 
Treatment 

Statistic  

p-Value Post Hoc 

Pre-Study Confidence 
Median 

3 3 4  H .431 -  

Post-Study Confidence 
Median 

5 5 5 H .031 1>3* 

Post-Study Confidence 
Mean 

5.23 4.82 4.71    

Post-Study Confidence 
Mean Rank 
* p < .01 

101.97 86.82 78.21    

 
 

Visual Spatial Ability 

 Visual Spatial ability was assessed with two instruments: the paper-folding test and the 

card-rotation test.  

Hypothesis 9: There is a relationship between an individual’s VSA and their performance using 

holograms.  

Hypothesis 10: Students with low VSA show larger improvements due to the addition of 3D 

holographic content compared to students with high VSA.  

There was no meaningful relationship between learning gains or post-test performance and VSA 

for participants studying with holograms (Table 14). Strong correlations were found between post-

test score and learning gain and between paper folding score and card rotation score.  
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Table 14: Correlation Between Knowledge Performance and Visual Spatial Ability  

 
 

Card Rotation 
Score  

Paper Folding 
Score 

Post Test 
Score 

Learning Gain 

Learning Gain -.132 .018 .478* 1 

Post Test Score .116 .130 1  

Paper Folding Score .522* 1   

Card Rotation Score 
p < .01 

1    

 

Focusing on the knowledge performance of students with low visual-spatial ability, the learning 

gains (H(3) = 7.638, p = .022) and post-test performance (H(3) = 5.7, p = .05) differed significantly 

across treatment groups (Table 15). Post-hoc analysis found that the post test scores of low visual-

spatial ability hologram participants (Mdn. = 73.3) showed improvement compared to low VSA 

participants using printed images (Mdn. = 60.0; U = 141.5, p = .029; r = .41) and near significance 

compared to 3DPDF (p = .072). Looking at learning gains, hologram participants showed a 

significantly larger learning gain (Mdn = 40.0) compared to 3DPDF (Mdn. = 10.0; U = 53, p = 

.007; r = .48).  

Table 15: Comparison of Knowledge Performance Measures for Participants with Low 
Visual-Spatial Ability 

Measure 
 

Holograms 
(1) 

3D PDF 
(2) 

Printed Images 
(3) 

Between 
Treatment 

Statistic  

p-Value Post Hoc 

Median Post-Test Score 73.3 63.3 60.0  H .05 1>3* 

Median Learning Gains 
p < .05 

40.0 10.0 33.3 H .022 1>2* 
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CHAPTER 5: SUMMARY OF FINDINGS, CONCLUSIONS, RESEARCH 

LIMITATIONS, AND FUTURE RESEARCH 

Summary of Findings and Conclusions 

 Human anatomy is a complex subject, and many students struggle to learn and translate 

this knowledge to clinical care. Technological means have been used to address this problem, 

including 3D display technology; however, the vast majority of research has been conducted on 

monoscopic 3D displays. This research directly targets a gap in research related to 

autostereoscopic 3D displays and comparative study of 3D displays in anatomical education.  

 The experiment employed a randomized control-group study design with a control and two 

treatment groups. The control group received printed images, a monoscopic 3D treatment group 

received 3DPDF models via laptop computer with a traditional 2D display, and an 

autostereoscopic 3D treatment group received static holographic prints. The outcome measures 

included usability, technology acceptance, anatomical knowledge performance, cognitive load, 

confidence, and VSA.  

 

Usability 

 The usability of the holograms was rated as quite high, with a median response of 4.67 out 

of 5, with higher scores indicating more positive response (H1). Participants rated the holograms 

significantly better in terms of usability than printed images (H2). There was not a statistically 

significant different between the reported usability of the holograms and 3D PDF (H3).  
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Technology Acceptance 

Participants rated the holograms positively across all measures of technology acceptance on a scale 

from 1 (low) to 5 (high): ease of use (4.5), usefulness (4.67), intent to use (5.0) and overall 

technology acceptance (4.67) (H4). Comparing with the other treatment groups, both holograms 

and 3DPDF were rated significantly better than printed images in ease of use and overall 

technology acceptance. Holograms were rated significantly more useful than printed images. There 

were no differences in intent to use across the treatment groups.  

 The overall positive perceptions of the holographic technology in terms of both usability 

and technology acceptance suggest that the holograms were well-received and would likely be 

used if implemented into a curriculum. Furthermore, the holograms and the 3DPDF showed similar 

levels of user satisfaction and technology acceptance. The fact that the holograms, an unfamiliar 

technology, was able to show similar ease of use and usefulness to a technology as well-known as 

computer-based models, is very promising.  

 

Cognitive Load 

 Participants self-reported their cognitive load immediately after studying with their 

treatment visualization, using the NASA-TLX with a scale from 1 (low) to 20 (high). The median 

cognitive load measures follow: holograms (4.0), 3DPDF (4.0), and printed images 6.0). Both the 

hologram treatment group and the 3DPDF treatment group reported significantly lower cognitive 

load than the printed images group (H5). There was no significant difference in reported cognitive 

load between the hologram and 3DPDF treatment groups.  

 Literature indicates that minimizing extraneous cognitive load, the portion of cognitive 

load induced by the presentation of the instructional material, enables improvements in learning 
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processes (Mayer, 2002; J Sweller, 1994).  In this study, lower mental effort was reported by the 

holographic and 3DPDF groups, indicating that these visualization techniques minimize 

extraneous cognitive load compared to printed images. Researchers hypothesize this change in 

cognitive load may result from additional 3D information in the hologram and 3DPDF 

presentations. These visualizations may promote the transformation of 2D and 3D thinking and 

reduce cognitive loads, a mechanism inferred by other researchers for subjects such as chemistry 

(Wu & Shah, 2004).  Interestingly, 3DPDF resulted in similar cognitive load to holograms, despite 

having significantly lower post-test results. These findings tend to support the theory in the 

literature that a more efficient instructional medium, in this case holographic visualization, may 

result in decreased extraneous load while also optimizing germane cognitive load processes, such 

as the construction of schemas (Kirschner, 2002). This would result in a similar overall cognitive 

load for both visualizations, with holograms having a larger segment of germane load and thereby 

improved performance (J. J. Van Merriënboer & Sweller, 2010).    

 

Anatomical Knowledge Performance 

 The results from the pre- and post-test were used to assess differences between the 

treatment groups regarding anatomical knowledge performance. There was no statistically 

significant difference between the pre-test scores across treatment groups. Additionally, there was 

not a significant difference in the number of students passing the pre-test across groups. Focusing 

on post-test performance, there was a significant affect from the treatment modality seen across 

treatment groups. The median post test scores follow: holograms (80.0), 3DPDF (66.7), and 

printed images (66.7). The hologram treatment group showed statistically significant improve in 

post-test performance compared to both the printed images (H6) and 3DPDF (H7) treatment 
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groups. Furthermore, participants using the holograms treatment were significantly more likely to 

pass the post-test than participant using printed images or 3DPDFs. When using holograms, the 

odds of a student passing the post-test was 2.84 times higher than students using 3DPDF, and 2.91 

times higher than students using printed images, based on the odds ratio. 

 Combining the performance data with cognitive load data, the efficiency of instructional 

condition was computer for each treatment: holograms (.35), 3DPDF (.03), and printed images  

(-.36). The holograms were a significantly more efficiency instructional condition compared to 

printed images. While noticeable, the differences between holograms and 3D PDF and between 

3D PDF and printed images did not reach statistical significance.  

 These results indicate autostereoscopic holograms improve anatomical learning and reduce 

cognitive load of students. Specifically autostereoscopic holograms appear to impart spatial 

information more completely, as evidenced by improvements in post-test scores and number of 

students meeting minimum proficiency levels. This improvement appears caused by stereopsis, 

convergence, and motion parallax depth cues present with holographic visualization but not 

present in the printed image and monoscopic 3D treatments. This finding is in line with analyses 

across other domains, suggesting human performance when learning spatial relationships and 

recalling objects / scenes is heavily influenced by stereoscopic depth cues (McIntire et al., 2012). 

 

Confidence 

 Participants reported their confidence in cardiac anatomy on a scale from 1 (very 

unconfident) to 7 (very confident), prior to and after the treatment study period. There was not a 

significant difference in reported confidence between the treatment groups on the pre-study 

confidence assessment. Following the study period, all treatment groups reported significant 



   84 
 

improvement in confidence. In the post-test confidence assessment, participants in the holograms 

group reported significantly higher confidence than the printed images group (H8). Comparisons 

between holograms and 3DPDF and between 3DPDF and printed images did not reach statistical 

significance.  

 The confidence findings suggest that studying with an autostereoscopic display gives 

students a better assurance of understanding the material. A less complete 3D representation of an 

object, such as printed images or a monoscopic 3D model, leaves room for a participant’s visual 

system to reconstruct the image. This process may subconsciously trigger notions of potential 

errors in reconstruction, thereby reducing self-confidence in the source material. Additionally, the 

holograms group did perform better on post-tests, suggesting that students were accurate when 

assessing their confidence in cardiac anatomy.   

 

Visual Spatial Ability 

 Visual spatial ability was assessed using the card rotation test and the paper folding test. 

There was not a significant correlation between the VSA scores and the post-test performance for 

the holograms treatment group (H9). The analysis then focused on students with low VSA, with 

the notion that 3D technology might be able to improve performance of low VSA. Low VSA 

participants in the holograms group scored significantly higher on the post-test than low VSA 

participants in the printed images group, and approached significance compared to the 3DPDF 

group. Looking at learning gains, the holograms group showed a significantly larger improvement 

than the 3DPDF group. These findings suggest that the holograms had significant effect on the low 

VSA students, improving their performance compared to other treatments.  
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Study Limitations 

To begin, the study design had limitations. Since the post-test and study period were only 

separated by a short period of time, during which participants completed the NASA-TLX and 

technology acceptance instruments, the post-test performance measure is more akin to short-term 

recall than long-term knowledge gains.  Additionally, related to the cognitive load outcome, the 

NASA-TLX instrument is a subjective measure of workload. Other measures of cognitive load, 

such as dual-task performance or brain activity (fMRI), would provide a more objective, direct 

metric(Brunken, Plass, & Leutner, 2003); however, these techniques are expensive and generally 

ill-suited for a classroom environment.  

The subjects were not tested for stereopsis prior to enrollment in this study, such as the 

Frisby test(Tong et al., 2014). The study was limited in the amount of time with students, which 

required the elimination of certain tests, including stereopsis testing. While the data could provide 

interesting comparisons, the practical value was limited. In a real world scenario in which 

holograms were placed into an education setting, students would not be excluded due to a lack of 

stereopsis.  

 

Future Research  

 This research establishes protocols and baseline outcomes that may be reused to investigate 

new display modalities. Due to sample size limitations, additional displays, such as stereoscopic 

3D or autostereoscopic lenticular lens, could not be studied while maintaining statistically 

meaningful results.  By reusing the protocols and baseline outcomes presented above, future 

research can expand the understanding of novel technology treatments without having to repeat 

past treatments.  Considerations for future research include additional studies using 3DPDFs, such 
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as the effect of touchscreen interaction on mental effort or displaying a 3DPDF using 

autostereoscopic 3D display devices such as lenticular displays. 3DPDFs are of particular interest 

because of the scalability of the format, the low cost per instance, and the ability accommodate 

various display technologies with a single, ubiquitous file format.    

 While not the primary focus of this dissertation, the area of augmented reality is certainly 

of great interest and importance in medical education. The combination of physical reality with 

augmented visual information provides strong depth cues with the benefit of virtual information. 

Comparing augmented reality with other 3D modalities is a largely unexplored domain.  

 Though autostereoscopic display technology is nascent, advances in the realm of 

holographic and volumetric displays (Smalley et al., 2018) are occurring rapidly. These displays 

would serve as an enabling technology for a vast array of medical education subjects: more 

immersive virtual patients; improved visualization during anatomical education or surgical 

planning; and even speculative topics such as telesurgery. Studies looking at task-based training 

applications, such as surgical or diagnostic skills, would be an important research avenue for 

autostereoscopic displays. For example, a comparative study between a 2D display, a stereoscopic 

display, and an autosteoscopic display for a virtual patient, to assess immersion and user 

performance would be very valuable.  

 In general, there still exists a significant gap in knowledge to determine the appropriate 

display modality for medical tasks. The popular notion is that display choice will be task 

dependent, with some tasks appropriate for 2D displays, while others might be best suited for 

stereoscopic, autostereoscopic, or augmented reality. Based on the rapid development of display 

technology and positive findings of this study, researchers believe additional research in 



   87 
 

autostereoscopic displays and comparative analyses between display technologies would benefit 

the medical community and numerous other communities which employ 3D visualization. 

  



   88 
 

APPENDIX A: IRB APPROVAL
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APPENDIX B: USABILITY / TECHNOLOGY ACCEPTANCE 

INSTRUMENT 
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APPENDIX C: NASA TLX COGNITIVE LOAD INSTRUMENT 
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APPENDIX D: VZ-2 VISUALIZATION INSTRUMENTS 
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APPENDIX E: CARD ROTATIONS TEST 
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APPENDIX F: DEMOGRAPHICS
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APPENDIX G: ANATOMY PRE- AND POST-TEST 
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