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ABSTRACT

The advancement of semiconductor device technology over the past decades has enabled the de-

sign of increasingly complex electrical and computational machines. Electronic design automation

(EDA) has played a significant role in the design and implementation of transistor-based machines.

However, as transistors move closer toward their physical limits, the speed-up provided by Moore’s

law will grind to a halt. Once again, we find ourselves on the verge of a paradigm shift in the com-

putational sciences as newer devices pave the way for novel approaches to computing. One of such

devices is the memristor – a resistor with non-volatile memory.

Memristors can be used as junctional switches in crossbar circuits, which comprise of intersect-

ing sets of vertical and horizontal nanowires. The major contribution of this dissertation lies in

automating the design of such crossbar circuits – doing a new kind of EDA for a new kind of

computational machinery. In general, this dissertation attempts to answer the following questions:

a. How can we synthesize crossbars for computing large Boolean formulas, up to 128-bit?

b. How can we synthesize more compact crossbars for small Boolean formulas, up to 8-bit?

c. For a given loop-free C program doing integer arithmetic, is it possible to synthesize an

equivalent crossbar circuit?

We have presented novel solutions to each of the above problems. Our new, proposed solutions

resolve a number of significant bottlenecks in existing research, via the usage of innovative logic

representation and artificial intelligence techniques. For large Boolean formulas (up to 128-bit),

we have utilized Reduced Ordered Binary Decision Diagrams (ROBDDs) to automatically syn-

thesize linearly growing crossbar circuits that compute them. This cutting edge approach towards

flow-based computing has yielded state-of-the-art results. It is worth noting that this approach is

scalable to n-bit Boolean formulas. We have made significant original contributions by leveraging
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artificial intelligence for automatic synthesis of compact crossbar circuits. This inventive method

has been expanded to encompass crossbar networks with 1D1M (1-diode-1-memristor) switches,

as well. The resultant circuits satisfy the tight constraints of the Feynman Grand Prize challenge

and are able to perform 8-bit binary addition. A leading edge development for end-to-end com-

putation with flow-based crossbars has been implemented, which involves methodical translation

of loop-free C programs into crossbar circuits via automated synthesis. The original contributions

described in this dissertation reflect the substantial progress we have made in the area of electronic

design automation for synthesis of memristor crossbar networks.
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CHAPTER 1: INTRODUCTION

Moore’s Law and its limitations

Over the last five decades, Moore’s Law [1, 2], has been a driving factor for immense technological

and societal progress. While the advancements have indeed validated the status of Moore’s obser-

vations and projections as a “law” they certainly did not start out as such. The seminal paper simply

explores the trend of fabrication parameters – namely approximate component count, die area and

device density - and breaks down the complexity of chip fabrication into its contributing factors.

These factors are a function of the ones that had previously been observed - die size, dimension

reduction, the product of the above two and a generous smattering of device and circuit design

cleverness. Moore then proceeds to project the complexity curve for the future, which has shown

to be the most impactful contribution of the paper so far, since it predicts the increase in component

count per chip with time. Akin to how Moore’s Law paints a picture for the future of chip design,

Dennard scaling [3] examines possibilities for the scaling of devices - in this case, MOSFETs.

The two-dimensional effects of the semiconductor material are kept at a sub-perceptual level, and

the authors proceed to develop a design methodology to manufacture devices that have a marked

performance improvement over contemporary devices. Further, physical limitations for MOSFET

fabrication are investigated and the authors identify a set of problems that need to be solved in

order to achieve better performance. We can thus see how a potent combination of chip design

methodology and device fabrication technology had driven the industry to its current heights. With

the passage of time and advent of technology, Moore’s Law was shown to be less of a predic-

tion and more of an oracle guiding the innovation of computational machines [4]. It has held true

throughout the MSI (medium scale integration), LSI (large scale integration) and VLSI (very large

scale integration) stages of circuit fabrication.

As had been projected by Moore’s Law, transistor scaling has kept on improving. However, Den-

nard scaling hit a roadblock as CMOS transistors started replacing MOSFETs - this has been
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marked by a shift from micrometer (µm) scale to nanometer (nm) scale devices. There have been

persistent efforts towards technological advancements, while utilizing Moore’s Law as much as

possible. For example, interesting breakthroughs have been made in the area by using self-aligned

double gate MOSFET structures (FinFET) [5], which are projected to scale down to as small as

10nm. Improvements have been made to better the chip density as well, notably by three dimen-

sional layering of active devices [6]. Researchers have also proposed a solution to enhance the

energy efficiency of CMOS-based architectures [7] by intuitively utilizing voltage scaling tech-

niques. Despite these leaps in technology and many similar ones, scaling down devices has kept

on getting more and more difficult, each transition in scale bringing with it a new set of challenges

and problems to be solved [8]. As the device dimensions are reduced, the traditional challenges

posed by capacitance and resistance become more daunting, dielectric properties of materials in-

terfere more, and physical properties like orientation of silicon lattice structures, wafer thickness

and mechanical strain start having more effects on the device behavior. For instance, a cumulative

effect of the above hurdles and the thermal Johnson–Nyquist noise [9] has been identified, which

threatens to completely disrupt the correct behavior transistors at some point in the future. The

greatest hindrance against the continuous downscaling of transistors is faced when the quantum

mechanical properties (intrinsic to the semiconductor material) come into play. Such quantum

effects are explored in [10], and to a greater extent in [11]. A compelling argument against the

continuation of Moore’s law can be drawn from the Heisenberg uncertainty, which establishes an

upper bound on the constant miniaturization of semiconductor devices. Essentially, a transistor

will stop behaving in a deterministic manner at a small enough scale, due to the quantum mechani-

cal properties of matter. Given the above set of limitations (and many similar ones), it is reasonable

to conjecture that Moore’s Law is approaching its eventual demise. In a such a scenario it is only

prudent to turn our attention to computational techniques which are not reliant on Moore’s Law,

thus ensuring undeterred and uninterrupted technological progress.
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Von Neumann bottleneck and beyond

The Von Neumann architecture [12] was the first architecture that introduced the concept of stored-

program computers - a development that sent ripples through the landscape of computational sci-

ence over the following decades following its establishment. The architecture can be explained

very simply by breaking it down into its modular components. The Von Neumann computer in

Figure 1.1 can be interfaced with input and output devices, but its core computational unit is what

interests us. It features a memory unit containing programs and data, which are fetched and pro-

cessed by the central processing unit (CPU). The CPU itself consists of the arithmetic/logic unit

(ALU) along with registers and a control unit consisting of an instruction register and program

counter. The mathematical and engineering foundations for this architecture were subsequently

laid in [13]. Von Neumann himself was acutely aware of some of the limitations of the archi-

tecture [14], and had pondered the possibility of using multiple computers in parallel in order to

perform arduous computations. However, the major flaw in the Von Neumann architecture was the

processor-memory bottleneck, as identified in [15]. As we know, there exists a sizable gap between

processor and memory performance [16].

Input Output

Memory unit

Arithmetic/Logic Unit

Control Unit

Central Processing Unit

Figure 1.1: The Von Neumann architecture of a programmable computer
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Disk (...) (...) Network

Permanent storage

Main memory

L2 L3

L1

Register

] DRAM

]Cache

Microprocessor chip

Figure 1.2: Memory hierarchy with on-chip cache memory

Additionally, the bus connecting the processor and the memory will always have a limited band-

width, thereby throttling performance even further. Given this scenario, the Von Neumann archi-

tecture has ceased to be of much convenience in the current times. Despite the dynamic random

access memory (DRAM) performance improving exponentially, it has been shown [17] that the

processor-memory gap will also increase in an exponential manner, ultimately hitting a memory

wall. One of the major approaches to tackle the bottleneck was the progress of on-chip cache

memory as a component of the existing memory hierarchy [18], as shown in Figure 1.2. Cache

memories boost performance mainly by pre-fetching instructions and data from the main memory

(RAM) onto the microprocessor, thereby eliminating the need to use the limited-bandwidth bus

in certain cases. However, issues like invalidation misses give rise to bad cache behavior [19]

when trying to handle larger problems. With the development of faster microprocessors, there will
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be greater demands placed on memory bandwidth, more specifically pin bandwidth [20], further

choking the performance of future computers. While the Von Neumann architecture had once pro-

vided a simple and highly effective blueprint for computer design by abstracting away a great deal

of engineering problems, it can no longer be utilized due to the plethora of disadvantages that have

been exposed over time.

The eradication of the Von Neumann bottleneck has been targeted by a number of different ap-

proaches. A technique to negate the processor-memory bottleneck is to use the data-flow based

programming paradigm. This model reduces the need to constantly fetch data by implementing

data-driven instructions, i.e. a given instruction is only executed if and if its required operands are

fetched at the end of a preceding instruction. Hence, data that would otherwise be fetched and over-

written (without being used) is no longer fetched, thereby reducing the effects of the bottleneck.

The authors of [21] propose a processor design that employs the data-flow based model and is ca-

pable of performing highly parallel computations with low latency. One of the major pathways of

research is provided by computation-in-memory (CIM) approaches. In [22], the authors propose a

complete CIM-based parallel adder architecture which is shown be smaller, faster and more energy

efficient than the state-of-the-art. A CIM architecture essentially gets rid of separate processor and

memory units by using a crossbar. A crossbar is a circuit consisting of overlapping vertical and

horizontal nanowires, with switchable memory elements placed at every junction where the wires

intersect. Hence, memory can be stored at this location and computational operations are triggered

and achieved by the communication network and external control circuitry. The communication

network can be generalized as a two-dimensional mesh-based interconnection network as exhibited

in [23], where the authors utilize this abstraction to implement a the highly capable Tile64 proces-

sor architecture powered by on-chip interconnects. It is worth noting that a crossbar architecture is

maintained as the computational core of the system. Perhaps one of the most lucrative possibilities

offered by CIM architectures is their capability to seamlessly accelerate parallel executions and

algorithms. A crossbar-based template for such applications is introduced in [24] consisting of

scheduling, placement and routing information - aptly named a “skeleton”. This solution maps the
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data flow of some common parallel algorithms to crossbars and assesses the performance, space

complexity and energy efficiency of the solution. A feasible alternative to having an end-to-end

CIM architecture, a processor-in-memory (PIM) architecture can be used in synergy with a con-

ventional Von Neumann computer to accelerate the execution of a given set of instructions [25].

An in-depth exploration of true potential of the PIM architecture is performed through the develop-

ment of the Gilgamesh framework [26]. The framework accomplishes petaflops scale computing

by implementing features like advanced task and data virtualization, adaptive resource manage-

ment and object-based runtime management of system elements. At this point, we can observe

that taking care of the Von Neumann bottleneck essentially entails the embedding of non-memory

operations in the memory itself. In a similar vein of thought, logical operations are also performed

in-memory [27] - a novel framework called logic-in-memory (LiM), which utilizes interpolation

memory and a seed table with simple arithmetic logic is synthesized and shown be significantly

better than conventional computing methodologies for a specific set of applications. One of the

ways of achieving massively parallel computation had been through associative processors [28],

which basically combines enormous arrays of traditional SIMD processors and memory (based on

Von Neumann architecture). With the eventual demise of Moore’s Law on the horizon, it would

only be judicious to adapt such a simple, yet versatile, architecture to next generation technology

like resistive memory devices [29]. A diligent survey of the above-mentioned literature reveals

that crossbar-based architectures hold a great deal of promise towards yielding considerable break-

throughs in this field. At the heart of most crossbar circuits lie memristors or memristor-like

devices [30], which we will discuss in greater details in subsequent sections.

Memristor - An overview of the fourth fundamental electrical element

In 1971, Leon Chua hypothesized that in addition to resistor, capacitor and inductance, there ex-

isted a fourth fundamental electrical element. This new element, which demonstrated a relation

between flux linkage and electrical charge, was termed as a “memristor” [31] - an amalgamation
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of memory and resistor. This name arose from the fact that a memristor’s resistance varies with

the net current flow through it and the resistance state would be maintained even if the device was

disconnected from a power source, thereby giving it the property of non-volatile memory. It was

further observed that memristors can be charge-controlled or flux-controlled. Given that we have

voltage v, current i, charge q and flux linkage φ we can define the following:

dφ(q) = rate of change of charge with respect to the flux linkage (1.1)

dq(φ) = rate of change of flux linkage with respect to the charge (1.2)

Based on the above definitions, following expressions can be defined:

M(q) =
dφ(q)

dq
(1.3)

W (φ) =
dq(φ)

dφ
(1.4)

Where M(q) is termed as the memristance (since it has dimensional equivalence with resistance)

and W (φ) is termed as the memductance (since it has dimensional equivalence with conductance).

Hence, the voltage across a charge-controlled memristor (at time t) and the current of a flux-

controlled memristor (at time t) is characterized respectively as:

v(t) = M(q(t))i(t) (1.5)

i(t) =W (φ(t))v(t) (1.6)

Hence we can see that the state of a given memristor can be changed by either changing its charge

or its flux linkage, but not both. As we will see later, this has produced voltage-controlled and

current-controlled memristive devices. Essentially, the internal resistance of the memristor is ma-

nipulated to change it’s state. A memristor has two different terminals which correspond to positive

(p) and negative (n) polarities.
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p n

current through

voltage drop

(a) Transition from high resistance
state to low resistance state

p n

current through

voltage drop

(b) Transition from low resistance state
to high resistance state

Figure 1.3: State transition behavior of a memristor

The behavior of a memristor device can also be explained in a simpler manner. From Figure 1.3 we

can see that the voltage drop across the memristor decreases and the current across it increases as

it transitions from a high resistance state (HRS) to a low resistance state (LRS), when an external

stimulus (current or voltage) is applied at the p terminal. In contrast, the voltage drop across

the memristor increases and the current across it decreases when the as it transitions from a low

resistance state (LRS) to a high resistance state (HRS), when an external stimulus (current or

voltage) is applied at the n terminal. The HRS can be related to the highest possible resistance

that the device can have and the LRS to the lowest possible state the device can have. Ideally, the

HRS will be infinity (infinitely high resistance) and the LRS will be zero (no resistance at all).

Therefore, we can say that the HRS is the OFF state and the LRS is the ON state. Hence, it can

be said without doubt that the memristor device can be used as switch, and the transition from

LRS to HRS (and vice versa) is thereby termed as “switching” behavior. A memristor in the LRS

allows current flow across it, akin to a closed circuit or a turned-on switch. A memristor in the

HRS allows no current across it, similar to an open circuit or a turned-off switch. This behavior

is shown in Figure 1.4, and is limited by physical constraints, i.e. ideal behavior is not practically

achievable.
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(a) Low resistance state or ON state (b) High resistance state or OFF state

Figure 1.4: Memristor in ON and OFF states

Memristors were further investigated and characterized using Lissajous figures by Chua [32]. A

memristor’s transitional behavior is identified as a pinched hysteresis loop, which underlies the

special properties associated with a memristor. This makes it possible to explore the possibilities

of using a memristor as an interesting non-linear element for computation, even though we will

stick with its behavior as a switch for the scope of this document. Nearly 37 years after the con-

ception of the memristor, a TiO2−x-based discrete memristor device was fabricated [30] in 2008.

However, it must be taken into account that this device did not use electromagnetism to change the

internal state, even the “ideal” memristor requires a change in the electromagnetic field to change

its internal state. It was recently argued [33] based on this fact that the missing memristor has not

been found and is likely a physical impossibility – this is a debate that is currently active in the

scientific community. The distinction between a device being an “ideal” memristor and it behav-

ing like one is a small but important one. Nevertheless, such devices have tremendous potential to

change the landscape of computer architecture and computer science in general. Let us now take

a look at some interesting applications of memristive devices, which are commonly known was

resistive RAM (RRAM or ReRAM) devices.

The authors of [34] have done a very thorough job of providing a balanced overview of the field

of non-volatile memory devices, where both their applications solely as memory devices as well

as their future as computational elements are examined. A number of different technologies are

surveyed, and memristive devices are shown to be the only branch where full physical implemen-

tation has been achieved. Due their non-volatile property, ReRAMs are primarily being employed

as memory elements in novel memory architectures. The authors of [35] have proposed a com-
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pelling design for 3D stacked ReRAM caches – a design which has been shown to be at least as

good as existing DRAM technology in most cases. However, use of memristors as a component for

in-memory computation is arguably a more exciting area of research. A framework for performing

stateful logic using memristor-based nanoscale crossbar circuits has been provided in [36]. While

purely memristive circuits are shown to be rather intractable in case of large problems, it is pos-

sible to scale up the solution when each memristor is paired with a bi-directional diode. Even

though a memristor can be used as a binary switch, its pinched hysteresis indicates that it also has

analog properties that can be exploited. In [37] simple addition has been performed by combining

this very property with cyclical programming. Here the output is not binary, but a conductance

level at a fixed voltage. The crossbar fabric inherently supports parallel computation, since the

state of all the memristive switches in a crossbar circuit can be changed in parallel quite trivially.

This feature is utilized in [38], where the authors probe the application of memristive crossbar

networks to the field of massively-parallel computing. A maze can be considered an abstraction

for a wide variety of computational problems, and the authors have devised an algorithm to solve

mazes, thereby extending the applicability of their approach a a number of different fields. At the

same time, foundational research has been continuously been going on, as in [39]. It has been

demonstrated that Boolean logic operations can be reliably implemented using a single memristor

– the trick lies in applying the input bits periodically, in a sequential manner instead of applying

them all at once. While this approach compromises the possibility of parallelism, the minimal

size and high power efficiency more than make up for it. One of the impressive displays of us-

ing memristors at the core of parallel computation can be found in [40]. Not only has a design

been proposed for performing parallel matrix multiplication, the scheme has also been shown to

achieve a performance that is orders of magnitude better than existing methods. Finally in [41], a

tentative yet promising solution has been suggested in order to unleash the potential of in-memory

computation with memristors for big-data applications. This is a significant result as it shows that

memristors are not a short-lived trend, but are capable of solving some of the largest and most

complex computational problems that we are faced with today. Of course, there are many more
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examples that validate the true potential of memristors to solve real-world problems – the above

examples capture a reasonable picture of the more relevant sections of that spectrum.
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CHAPTER 2: LITERATURE REVIEW

Circuit synthesis – A synopsis

As is known, synthesis is one of the major steps in circuit design. This can refer to the synthesis

of network parameters or synthesis of the network topology. The synthesis of network parame-

ters continues to be a critical aspect for analog circuit design. Early work in synthesis of network

topology has been done in [42], where the authors had developed a symbolic circuit design tool

SYN. The circuit constraints were provided to the tool, which has been shown to provide clear

and concise results through incremental deduction. Perhaps one of the first overlaps between the

field of algorithms and circuit synthesis can be found in [43]. In this case, the authors had uti-

lized the branch-and-bound technique for constrained optimization of a two-stage CMOS-based

operational amplifier design. With the passage of time and the advent of technology, the demand

for more complex circuits were needed, thereby demanding more powerful automated synthesis

tools. A knowledge-based approach towards such tools is presented in [43]. The OASYS tool

equips the user with a hierarchical design methodology and a systematic exploration of the design

space in order to produce circuits even for high performance systems. The fidelity of the circuits

are as important as their complexity, which is why there is a necessity for tools that ensure reli-

able circuit synthesis even if a mismatch exists [44]. The set of constraints necessary for circuit

synthesis can often be navigated by using innovative representations and search techniques [45]

or by integrating existing techniques into new design methodologies [46]. Accurate synthesis for

analog circuits can often be achieved by accounting for inherent stochastic effects (like parasitic

capacitance) in a more energy-efficient manner [47] or by introducing error correction within the

circuits themselves [48]. Synthesis techniques are equally useful in cases of re-configurable cir-

cuits [49], which enables rapid prototyping to aid in the advent of re-configurable device design.

Circuit synthesis is not limited to analog or digital applications and has been used for synthesis of

reversible [50, 51] and quantum [52, 50] circuits. This progress has facilitated the usage of quan-
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tum computing principles to synthesize Boolean circuits [53]. Tools have also been developed to

synthesize approximate circuits [54], as well as for the efficient synthesis of robust circuits [55].

Circuit synthesis at higher levels of abstraction [56] with a mathematically rigorous basis has also

been explored. In contrast, stochastic search methods have also been effectively utilized [57] to

synthesize novel architectures for a sub-class of circuits. Furthermore, automated design also been

applied to obtain dynamic configurations for FPGA’s [58]. The power of automated synthesis can

also be extended to come up with circuits that not only have lower space requirements, but also

capable to delivering optimal or near-optimal power consumption [59].

One of the earlier developments if the field of logic synthesis was demonstrated through the now

well-known Karnaugh maps [60]. A symbolic method for synthesizing combinational circuits [61]

was demonstrated which yielded functional, but not necessarily optimal circuits. This was soon

followed by the work by McCluskey [62], which laid the groundwork for subsequent synthesis

of combinational circuits executing Boolean logic. Multiplexers were identified [63] as modular

components that could be used for automatically synthesizing combinational circuits – a develop-

ment that would later be utilized widely in the field of circuit design as well as automated circuit

synthesis. The advent of both computer hardware and software yielded one of the earliest circuit

synthesis tools [64]. While MACDAS was capable of producing functional combinational circuits,

there was still a necessity for tools what could construct sequential circuits. This gap was filled

by SIS [65, 66], which truly became one of the landmark tools in automated circuit synthesis. Its

utility was aggregated by the fact that SIS incorporated a number of optimization techniques within

the synthesis process – this resulted in combinational circuit designs which were not only func-

tional but also optimal or near-optimal. Once such potent tools were developed, the next significant

undertaking largely involved the improvement of the said tool. Decompositional logic synthesis

[67] and multi-level logic synthesis [68] were some of the numerous approaches that were probed

in an attempt to further the contemporary automated synthesis techniques. The power of Boolean

satisfiability solving (SAT solving) was applied [69] for producing asynchronous circuits, which

was soon followed by the development of the Tangram framework [70]. The framework was then
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extended as the BALSA system [71] – a tool which would later be used during the development of

self-timed ARM processor cores. The problem of synthesizing sequential synchronous logic cir-

cuits has been attacked in a similar fashion [72], with the added objectives to optimize cycle time.

The research in this direction yielded circuits with lower delay and synthesis algorithms which

were compatible with the existing technologies at the time. The growing interest for research in

the field saw produced some interesting applications like the synthesis of circuits with concurrent

error detection with a reduced area requirement [73], as well as development of larger, more com-

plex pass transistor-based circuits using Boolean decision diagrams (BDDs) [74]. Similar ideas had

been explored at an earlier time, with goals to minimize power consumption [75]. Among many

other publications, the significance of representation and manipulation of combinational circuits

as abstract data structures was consolidated in [76].

Existing memristive and resistive switching devices

The physical switching devices form the basis for realization of the synthesized logic and architec-

ture. A brief summary of notable memristive and resistive switching devices has been provided in

Table 2.1. There also exist a number of comprehensive reviews of such devices in current literature.

The authors of [77] explore the resistive switching phenomena in transition metal oxides. While

[78] takes an in-depth look at a sub-class of the devices developed through oxidation-reduction

(redox) methods and their inherent nanoionic mechanisms, [79] utilizes the NEXAFS tool to gain

a more profound insights into the behavior of TiO2-based devices specifically. The fabrication

challenges often arise from an intent to create smaller devices – reducing the space requirement

for the the switching mechanisms and actual materials both play a crucial role.

A broad perspective of existing technologies and devices is given by [109, 110]. The nature of

the sub-class of thin film resistive switching devices has been thoroughly studied in [111], and the

role of contemporary devices for primarily neuromorphic computing has been considered in [112].
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Table 2.1: Overview of switching devices

Year Device Materials Structure Width

2006 [80] TiO2/TiN Thin film 50nm
[81] Cu/SiO2 Programmable metallization cell 100nm

2007 [82] Ti/ZrO2/Pt Metal–insulator–metal 250µm
[83] Cr/SrTiO3 Metal–insulator–metal 500nm

[84] ZrO2/Zr+ Sandwich 50-800µm
[85] Si/a-Si×Ag Core/shell nanowires 20nm

2008 [86] Cu/ZrO2:Cu/Pt Sandwich 3-20µm
[30] TiO2/TiO2−x Thin film 3nm

[87] NiO/n–doped Si Metal—insulator—semiconductor 160nm
[88] Si/SiO2/Ti/Pt/TiO2/Pt Thin film 50nm-5µm

2009 [89] Ti/Pt/TiO2/Pt Electroformed substrate 70nm
[90] Au/ZnO/stainless steel Thin film 35nm

[91] Pt/TaOx/Ta Stack 100µm2 (area)
[92] Ag/a–Si/p–Si Filament 50nm

2010 [93] Al/GO/ITO Metal—insulator-–metal 30nm
[94] Fe-doped SrTiO3 Thin film 35nm
[95] Pt/TiO2/Pt Metal—insulator-–metal 140nm

[96] ZnO Thin film 82µm
2011 [97] TiN/Al2O3/Pt Metal—insulator-–metal 50nm

[98] p–Si/HfO2/p–Si Filament 50nm (HfO2)

[99] Ag/a-Si/Pt Filament 100nm
2012 [100] Pd/Ta2O5−x/TaOy/Pd Thin film 0.5-2µm

[101] SiOx Thin film 15-120nm

2013 [102] SiO2/Si Cross-point 8nm

2015 [103] Ti/ZnO/Mo Metal—insulator-–metal 50-500nm

2017 [104] Pt/Ta2O5+x/Ta Metal—insulator-–metal 20nm

[105] Pt/HfO2/TiN Filament 300nm
2018 [106] Cu/MoS2/W2N Thin film 200 nm

[107] HSQ Metal—insulator-–metal 200µm-800µm

2019 [108] Ag/HfAlOx/Pt Metal—insulator-–metal 136nm

Memristors are are capable of showing controllable, yet probabilistic, switching behavior in [113] –

an interesting phenomenon of critical importance for practical stochastic computing frameworks.
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Redox devices are revisited in [114], where their applicability with respect to Boolean function

realization is inspected. Finally, a rigorous survey of current resistive switches manufactured using

metal oxides is presented in [115]. All in all, this section provides a broad, surface-level picture of

some compelling memristive and resistive switching devices.

Crossbar synthesis for computation using sneak paths

In any given graph, a path is said to exist between two nodes if there exists a set of edges that

connects the two nodes. In other words, existence of a path implies that one node is reachable

from the other. In a crossbar, a connection might or might not exist between two nanowires. If

a connection does exist, then a current flow introduced in one of the nanowires at time t will be

observable at the other nanowire at a time (t + ε), where ε is the short amount of time it takes

for the current to flow from one point to another. When an undesired path exists, the problem is

termed as a “sneak" path. However, the authors of [116, 117] have managed to turn this potential

drawback into a computational mechanism. A Boolean formula is mapped into a crossbar with the

following properties:

• There must exist memristors in the crossbars corresponding to literals in the Boolean for-

mula.

• The memristors must be switched ON or OFF, depending on the input instances.

• A current flow must be introduced in one of the nanowires, and the index of the nanowire is

constant for a given formula.

• If the Boolean formula evaluates to TRUE for a given input instance, then a current flow

must be observable at a predefined nanowire. The index of this output nanowire must be

constant for a given Boolean formula.
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Figure 2.1: Crossbar implementing ¬A∧¬B∧¬C with two input instances

• If the Boolean formula evaluates to FALSE for a given input instance, then a current flow

must not be observable at a predefined nanowire. The index of this output nanowire must be

constant for a given Boolean formula.

The authors of [116] have mapped Boolean formulas in the negation normal form (NNF). An

example of a crossbar implementing the Boolean formula ¬A∧¬B∧¬C has been provided in

Figure 2.1. The blue circles represent memristors which assume the value of literals, the green

circles represent memristors in the ON state and the grey circles represent memristors in the OFF

state. In Figure 2.1(b) and 2.1(c), the red arrows represent current flow and the crosses represent

lack of current flow. However, this method produces crossbars that are very large and therefore

inefficient with respect to space constraints. For this reason, the authors of [118] have leveraged

the power of formal methods to synthesize compact memristors. The crossbar is synthesized as

a symbolic mapping matrix, which must adhere to certain logical constraints. These constraints

specify the flow-transition behavior of the crossbar, as well as its size constraints. The synthesis

is achieved in a smaller number of computational steps than existing methods and produces more

compact crossbars. One of the designed crossbars implements 4-bit even parity check, as shown

in Figure 2.2, where the blue circles represent memristors which assume the value of literals, the

green circles represent memristors in the ON state and the grey circles represent memristors in

the OFF state. In Figure 2.2(b) and 2.2(c), the red arrows represent current flow and the crosses
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represent lack of current flow.
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Figure 2.2: Crossbar implementing 4-bit parity checking with two input instances

The automated synthesis of compact crossbars opened up the possibility of implementing them in

hardware. In [119], a crossbar implementing a full adder has been realized. The resistive switches

were implemented using a IBM 65nm 10LPe process – each device was fabricated using SiO2,

TaN/Ta, electroplated Cu and HfOx. The design of the fabricated circuit is provided in Figure

2.3. The blue circles represent memristors which assume the value of literals, the green circles

represent memristors in the ON state and the grey circles represent memristors in the OFF state. In

Figure 2.3(b) and Figure 2.3(c), the red arrows represent current flow and the crosses represent lack

of current flow. The mechanism using sneak paths has been used in [120] to perform fast Boolean

matrix multiplication using crossbar circuits. A memristor is usually bi-directional, i.e., an ON

memristor allows current flow through itself regardless of the terminal the flow is introduced in.
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Figure 2.3: Crossbar implementing a full adder with two input instances

However, this is a property that can sometimes generate unwanted sneak paths. In such a scenario,

a diode can be connected in series with the memristor to ensure that current flows in a single

direction. This combined device is termed as a rectifying memristor, and they can be used to

synthesize more compact crossbars that are capable of performing intensive computations [121]

like Boolean matrix multiplications. This is a topic that we will explore in greater depth in some

of the following sections of this document.
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CHAPTER 3: MOTIVATION

From the background work, we can observe that there exists a definite need to eliminate or cir-

cumvent the Von Neumann bottleneck for post-Moore’s Law computing paradigms. Based on the

literature review section, we are aware that there are a significant number of resistive switches that

can serve as nanoscale switches to be deployed in emerging architectures for both in-memory com-

putation and memory systems. The conjunction of these two developmental factors has yielded a

number of novel research topics, ripe for excavation and exploration. The crossbar circuit topol-

ogy has made its way into mainstream technological progress [122, 123]. Moreover, significant

development has been made towards efficient fabrication of the crossbar circuits [124, 125, 126]. A

combination of the above developments has led to the production of high-performance memory de-

vices [127, 128] on the crossbar fabric. While all these advancements have resulted in performance

and scalability improvements, the Von Neumann bottleneck has remained a persistent detractor of

further gains in computing power.

One of the solutions that would effectively deal with the bottleneck is the notion of in-memory

computing – the data is stored on the same physical device that performs computation on it. The

principles of flow-based computing provide a novel and transformational framework to perform

in-memory computing with memristor-based crossbar networks. There exist multiple problems,

as outlined in the abstract, which have potential to make considerable impact upon the current

state-of-the-art in this area of research. Hence, making non-trivial contributions towards the de-

velopment of in-memory computation on memristor-based crossbar circuits serves as compelling

motivation for this body of work.
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CHAPTER 4: AUTOMATED SYNTHESIS OF LARGE SCALE

CROSSBARS WITH REDUCED ORDERED BINARY DECISION

DIAGRAMS

Crossbars as abstractions

In order to synthesize crossbar designs successfully, it is inefficient and cumbersome to stick to

electrical models of crossbar circuits. Hence, we to encapsulate crossbar circuits as abstractions

(that can be easily manipulated to aid in synthesis procedures) as follows:

Definition 1. CROSSBAR A (memristor-based) crossbar is a 3-tuple C= (M,Wr,Wc) where

• M=


m11 m12 · · · m1n

...
...

. . .
...

ml1 ml2 · · · mln

 is a two-dimensional array of memristors with l rows and n columns,

where mi j ∈ [0,1] denotes the state of the memristor (ON or OFF) connecting row i with column j.

• Wr = {r1, · · · ,rl} is the set of horizontal nanowires such that the wire ri provides the same input

voltage to every memristor in row i.

• Wc = {c1, · · · ,cl} is the set of vertical nanowires such that the wire c j provides the same input voltage

to every memristor in row i.

The memristor mi j = 0 is said to be in the high-resistance state or OFF state and mi j = 1 denotes a

memristor in the low-resistance state or ON state.

Definition 2. CROSSBAR DESIGN A crossbar design D(M) maps each memristor mi j in the crossbar

M to one of the following: an input Boolean variable v1, · · · ,vn, its negations ¬v1, · · · ,¬vn or the logical

constants True or False.

For a crossbar with l rows, n columns and v different input variables, each memristor can be
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mapped to 2v+ 2 different values. Hence the number of possible crossbar designs is as large

as (n× l)2v+2. As mentioned previously, “sneak" paths have been used as design primitives for

suitable designed memristive crossbars. For a given crossbar design corresponding to a Boolean

formula and a given set of values for the input variables, a current flow can be introduced in one

of the nanowires. The index of this nanowire is determined by the design specifications, and is

often the top or bottom row (horizontal nanowire) or the first column (vertical nanowire), of the

crossbar. A non-negligible voltage is observed at the output nanowire if and only if the Boolean

formula evaluates to true for the given set of inputs. Conversely, a negligible voltage is observed

at the output nanowire if and only if the Boolean formula evaluates to false for the given set of

inputs. The negligible and non-negligible voltage levels represent the logical constants true and

false, respectively. The index of the output nanowire is once again determined by the design

specifications, and it is often the top or bottom row (horizontal nanowire) of the given crossbar.

Binary Decision Diagrams (BDDs) and Reduced Ordered Binary Decision Diagrams (ROBDDs)

A Boolean Decision Diagram (BDD) [129, 130] is a rooted directed acyclic graph that consists of

two types – terminal nodes representing the logical values 0 (for false) and 1 (for true) and non-

terminal Boolean nodes labeled by Boolean variables. Each decision node has a “high” edge and

a “low” edge. The high edge represents the case when the Boolean variable associated with the

node has a value of 1. Similarly, the “low” edge represents the case when the Boolean variable

associated with the decision variable has a value of 0. For a given value of a variable, only one

of the edges from the decision variable can exist at a time. Hence, for a given set of inputs,

there exists a path from the root node to one of the terminal nodes. The terminal node represents

the output of the given Boolean function with respect to the given set of inputs. If a path exists

from the root node to the zero terminal, then the Boolean formula evaluates to false. Similarly,

if a path exists from the root node to the one terminal, then the Boolean formula evaluates to

true. An Ordered Binary Decision Diagram (OBDD) is a Binary Decision Diagram where the
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variables appear in the same order from the root node to one of the terminal nodes, regardless

of the input set that is provided to it. Variable ordering affects the size of a BDD. The “correct”

or optimal variable ordering can result in a BDD of optimal size, an “incorrect” or non-optimal

variable ordering can cause the size of a BDD to explode. While an optimal variable ordering is

not always necessary, a good variable ordering which yields in a BDD of reasonable size is rather

desirable. A Reduced Ordered Binary Decision Diagram (ROBDD) is an ordered binary decision

diagram where isomorphic sub-graphs have been merged and nodes whose children are isomorphic

to mean other have also been removed. The transformation of an OBDD to a ROBDD returns a

decision diagram with a lower number of nodes at the different levels, or decision diagrams which

have a fewer number of levels overall. The effectiveness variable ordering and reduction varies

with the structure and complexity of the Boolean formula being represented by the ROBDD. Due

to the fact that ROBDDs are canonical for a given function and a specific variable ordering, they

have found significant applications in functional equivalence checking and functional technology

mapping. A number of different libraries like CUDD [131], BuDDy, etc. exist, which facilitate

ROBDD-based research and application development with greater ease.

Inductive mapping of ROBDDs to crossbar circuits

A ROBDD for a Boolean formula φ is a directed acyclic graph Gφ where the nodes are naturally

divided into levels such that all outgoing edges from nodes at level i only connect to nodes at levels

i+1 or higher. The subgraph Gφ [i : j] of a ROBDD containing all nodes from level i to level j is

mapped into a crossbar M(Gphi[i : j]) using induction.

Base Case: The smallest entity in our design approach is a subgraph Gφ [i : i] with nodes at the

same ith level in the ROBDD.

As shown in Figure 4.1, let a single level Gφ [i : i] of a Boolean Decision Diagram contain c nodes

x0,x1, . . . ,xc. Each node xi as at most two children: if the variable x corresponding to the node xi
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is true, the child is xr
i . On the other hand, if the variable x is false, the child of the node xi is xl

i .

The logical value of the children coupled with the logical value of the variable labeling this node

produces the logical value computed by the nodes at this level.

x0 xα xc

xl
0

xl
α

xr
0

xr
α

xl
c

xr
c

Figure 4.1: Nodes at a single level of a ROBDD and their children

Since the nodes xl
0,x

r
0, . . . ,x

l
c,x

r
c are at levels lower than the nodes x0,x1, . . . ,xc, these nodes com-

pute fucntions that are independent of the variable labeling the ith level or of variables in nodes at

higher levels. The single level of a Binary Decision Diagram with c nodes is mapped to a cross-

bar with approximately 3c rows and c columns. From there on, the induction will proceed on the

number if levels H in the fragment Gφ [i : j] of the Boolean Decision Diagram. The variables are

assigned TRUE (ON memristor) or FALSE (OFF memristor) values on the basis of a given input

instance.

Inductive Hypothesis: For every subgraph Gφ [i : j] of a ROBDD containing all nodes from level i

to level j such that j≥ i and j− i≤H, there exists a crossbar M(Gφ [i : j]) that contains horizontal

nanowires hvi−1
0
,hvi−1

1
, . . . ,hvi−1

c−1
computing the value of the Boolean formula corresponding to the

nodes vi
0,v

i
1, . . . ,v

i
c−1 given that the values corresponding to the nodes v j

0,v
j
1, . . . ,v

j
c′−1 are available

on the corresponding input nanowires. Figure 4.2 demonstrates a crossbar that computes Gφ [i : j]
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along with its input and output nanowires. The inductive hypothesis assumes that the subgraph

Gφ [i : j] can be mapped to a crossbar with the inputs (corresponding to level j of the ROBDD)

being fed along the lower rows and the outputs (corresponding to level i of the ROBDD) leaving

the crossbar along the higher rows.

hv j
0

hv j
1

hv j
p′

hv j
c′−1

hvi−1
c−1

hvi−1
p

hvi−1
0

L O G I C

In
pu

ts
O

utputs

Figure 4.2: Mapping a subgraph to a crossbar, as a basis for the inductive hypothesis

Induction: Consider a subgraph Gφ [i : j] containing all nodes from level i to level j ( j > i and

j− i = H) of a ROBDD Gφ for the Boolean formula φ . First, a level k between i and j is cho-

sen. The subgraph Gφ [i : j] is divided into subgraphs Gφ [i : k] and Gφ [k + 1 : j] with directed

edges (uk
0,v

k
0),(u

k
1,v

k
1), . . . ,(u

k
c−1,v

k
c−1) from the subgraph Gφ [i : j] to Gφ [k + 1 : j]. Similarly,

(ui−1
0 ,vi−1

0 ),(ui−1
1 ,vi−1

1 ), . . . ,(ui−1
d−1,v

i−1
d−1) are directed edges coming into Gφ [i : k] and (u j

0,v
j
0),

(u j
1,v

j
1), . . . ,(u

j
e−1,v

j
e−1) are directed edges coming out of Gφ [k+1 : j].
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By the inductive hypothesis, for the subgraph Gφ [k + 1 : j], there exists a crossbar M(Gφ [k +

1 : j]) that contains horizontal nanowires hvk
0
,hvk

1
, . . . ,hvk

c−1
computing the value of the Boolean

formula corresponding to the nodes vk
0,v

k
1, . . . ,v

k
c−1 given that the values corresponding to the

nodes v j
0,v

j
1, . . . ,v

j
e−1 are available on the corresponding input horizontal nanowires. Similarly, the

the inductive hypothesis, there exists a crossbar M(Gφ [i : k]) that contains horizontal nanowires

hvi−1
0
,hvi−1

1
, . . . ,hvi−1

d−1
computing the value of the Boolean formula corresponding to the nodes vi−1

0 ,

vi−1
1 , . . . ,vi−1

d−1 given that the values corresponding to the nodes vk
0,v

k
1, . . . ,v

k
c−1 are available on the

corresponding input horizontal nanowires. As shown in Figure 4.3, the crossbar corresponding to

the subgrpah Gφ [i : j] can be obtained by merging smaller crossbars corresponding to the subgraphs

Gφ [k+1 : j] and Gφ [i : k] of the Boolean Decision Diagram. The lower crossbar may produce out-

puts in a different order than the inputs expected by the upper crossbar but permutations of rows

(or columns) do not change the computation being performed by a crossbar; hence the rows of one

crossbar can be rearranged to meet the desired rows of the other crossbar.

Theorem 1. The number of rows R(N) and the number of columns C(N) of a memristive crossbar

M(Gφ ) that computes the Boolean formula φ corresponding to a ROBDD Gφ is linear in the

number of nodes N of the ROBDD Gφ .

Proof. We will show that R(i)≤ 3i for all i using mathematical induction where i is the number of

nodes between two levels of a ROBDD.

Base Case: An upper bound on the number of rows R(i) for BDDs with one node can be computed

as:

• R(|GTrue|)≤ 3.

• R(|GFalse|)≤ 3.

• R(|Gx|)≤ 3.

• R(|G¬x|)≤ 3.
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(a) The subgraphs Gφ [i : k] and Gφ [k+1 : j] of the BDD with one of the
edges (uk
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k
0).
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(b) Inductive synthesis of the crossbar for Gφ [i : j] from the cross-
bars corresponding to subgraphs Gφ [k+ 1 : j] and Gφ [i : k]. The
nanowire hvk

0
carries the value corresponding to node vk

0 in the
crossbar for Gφ [k+1 : j] to the crossbar for Gφ [i : k].

Figure 4.3: Inductive synthesis of memristor crossbar circuits based on ROBDDs
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Hence, R(1)≤ 3.

Inductive Hypothesis: Assume that R(i)≤ 3i for all i < N, where i is the number of nodes between

two levels of a ROBDD, say Gφ [i : j].

Inductive Step: Consider the number of rows R(N) corresponding to the number of nodes between

two levels of a ROBDD, say Gφ [i : j].

R(N) = R(|Gφ [i : j]|)

≤ R(|Gφ [i : k]|)+R(|Gφ [k+1 : j]|) (by design of the crossbar)

≤ 3|Gφ [i : k]|+3|Gφ [k+1 : j]| (by inductive hypothesis)

= 3(|Gφ [i : k]|+ |Gφ [k+1 : j]|)

= 3N (since, |Gφ [i : k]|+ |Gφ [k+1 : j]|= |Gφ [i : j]|= N)

By symmetry, the number of columns C(N) is also linear in the number of nodes of the ROBDD.

The identical argument is omitted for the sake of brevity.

Next, we show the step-by-step mapping of a given ROBDD to a memristive crossbar circuit. In

this case, the ROBDD represents the most significant bit of the Cout of Boolean addition between

two 3-bit binary numbers, A and B. The least significant bit of the variable A is referred by A0,

the most significant bit is referred by A2, and the middle bit is A1. The same naming convention

is followed for the variable B, as well. The ROBDD with demarcated levels is presented in Figure

4.4. In case of the crossbar, a current flow is introduced at the first column and an output flow (or

lack thereof) is observed at the bottom row. The blank crossbar (without any memristors placed

at the intersections of vertical and horizontal nanowires) is presented in Figure 4.5, along with the

level-by-level mapping of the ROBDD to the crossbar. As can be observed, the nodes are mapped

to the crossbar first, then permanently ON memristors are added to represent the edges between

the nodes. The switches corresponding to the nodes in level 0 of the ROBDD are mapped in Figure

4.5(b).
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A0

B0

A1 A1

B1
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1

Level 0

Level 1

Level 2

Level 3
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Level 5

Figure 4.4: ROBDD representing the most significant bit of 3-bit binary addition

In a similar fashion, the switches corresponding to the nodes in level 1 are added to the crossbar in

Figure 4.5(c), switches corresponding to the nodes in level 2 of the ROBDD are added in Figure

4.5(c) and so on, till Figure 4.5(g), where we add the switches corresponding to the nodes in level

5 of the ROBDD. Finally, the permanently ON memristors corresponding to the directed edges of

the ROBDD are added in Figure 4.5(h). Once these memristors have been placed, the rest of the

junctions are filled with permanently OFF memristors, as shown in Figure 4.5(i). In this way, there

exists a path from the first column to the bottom row if and only if the Boolean formula evaluates to

true and the memristors are turned to the ON or OFF states corresponding to their binary values.

We have presented this approach in [132].
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(a) Blank crossbar

Figure 4.5: Level-by-level mapping of ROBDD to a crossbar
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(i) Completely synthesized crossbar
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CHAPTER 5: CROSSBAR SYNTHESIS USING MODEL COUNTING

Synthesis of crossbars with bidirectional memristive switches

The utilization of ROBDDs helps us synthesize crossbar circuits for a large number of variables.

It is also worth noting that the synthesized crossbars, while functional, are rather inefficient with

respect to space constraints. Hence, the synthesis of functional and more compact crossbars makes

for a worthwhile pursuit. One of such crossbars is presented in Figure 5.1. The crossbar, despite

having only having a size of 4× 3 is functional, and computes the most significant bit of 2-bit

binary addition.

¬b1 a1 ¬a1

¬a0 a0 ¬a0

a0 b0 ¬b0

b1 ¬a1 a1

+V

Figure 5.1: Compact crossbar circuit for computing MSB of 2-bit binary addition

The approach for synthesizing compact crossbars driven by simulated annealing [133] is presented

in Algorithm 1. In line 1, a crossbar design of size l rows and n columns is chosen randomly. Each

memristor in the design is mapped to either True, False, one of the variables v1,v2, . . . ,vk or one

of the negated variables ¬v1,¬v2, . . . ,¬vk using a uniform random distribution. For each crossbar

design D , we assume that a flow of current is injected into the bottom row (lowermost horizon-
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Algorithm 1: Crossbar synthesis algorithm
Input : Target Boolean formula φ over variables {v1,v2, . . . ,vk}

Size of crossbar C: l rows and n columns
Initial temperature for simulated annealing T
Cooling rate c

Output: Crossbar design D(M) mapping each memristor mi j ∈M to the set
{True,False,v1, . . . ,vk,¬v1, . . . ,¬vk}

1 D1← PickRandomCrossbarDesign(l,n,v1, . . . ,vk)
2 B(D1)← BooleanFlow(D1)
3 ∆1←ModelCount(B(D1)⊕φ)
4 while ∆i > 0 do
5 Di+1← PerturbCrossbarDesign(Di,φ)
6 B(D1)← BooleanFlow(Di+1)
7 ∆1←ModelCount(B(Di+1)⊕φ)

8 if rand(0,1)< e−(∆i+1−∆i)/T then
9 i← i+1

10 T ← c×T
11 end
12 Return crossbar design Di

tal nanowire) of the memristor crossbar. In line 2 of the algorithm, we symbolically compute the

Boolean formula representing the values of the memristors under which a flow reaches the topmost

nanowire of the crossbar and denote it by BooleanFlow(D1). Let r(t)i denote the flow value of the

column j at time t. At t = 0, only the first row has flow, i.e. r(0)1 = True and all other rows and

columns are set to False. For all t > 0, the following transitions are defined for each nanowire,

based on the ability of turned-on memristors to create a short-circuit between their horizontal and

vertical nanowires:

∀i ∈ {2, . . . ,n},r(t+1)
i ⇐⇒ (r(t)i ∨

∨
1≤ j≤n

(mi j∧ c(t)j ))

∀ j ∈ {1, . . . ,m},c(t+1)
j ⇐⇒ (c(t)j ∨

∨
1≤i≤l

(mi j∧ r(t)i ))

The above transitions of the rows and columns in the crossbar can be represented using Boolean

functions and described succintly using Boolean Decision Diagrams (BDDs), And-Inverter-Graphs

(AIGs) or other representions.
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Line 3 of the algorithm computes the approximate number of satisfiable instances ∆1 to the Boolean

formula corresponding to the symmetric difference of the target Boolean formula φ and the for-

mula corresponding to the computation performed by the crossbar design D1. Several competitive

implementations of the approximate model counting algorithms are available – any of these are

applicable to our approach, as long as the algorithm produces a count of 0 feasible models only for

unsatisfiable formula [134].

The loop in line 4 through line 12 continues to perturb the crossbar design, evaluate the function

that this perturbed design computes and counts the number of satisfiable instances to the Boolean

formula and the formula computed by the current crossbar design. Lines 8 through 11 are a suc-

cinct description of the simulated annealing algorithm. New crossbar designs are always accepted

if they are better than the existing crossbar design. New crossbar designs that are worse than the

existing crossbar design are accepted with a probability that is a function of both the quality of

the designs and the current temperature of the simulated annealing algorithm. At every iteration

of the loop, the temperature of the simulated annealing algorithm is slightly lowered in Line 11 of

the pseudocode. At any given point in time, only a single memristor is perturbed. The probability

of any given memristor being perturbed is proportional to the number of times the variable corre-

sponding to the memristor occurs in the BDD representation of the symmetric difference between

the Boolean formula and design. If a variable does not occur in the symmetric difference, it is not

perturbed as the remaining error in the design in not related this variable. When the number of

satisfiable instances for the symmetric difference becomes zero, the algorithm stops and reports

the synthesized crossbar design. The above approach was presented in [135]. Some interesting

compact crossbar designs obtained using the above approach are presented in Figure 5.2.
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+V

(a) MSB computation for 3-bit binary addition.

b1 ¬b3 a3 b1

¬a2 b1 a2 a2

b1 a2 ¬b2 ¬b2

¬b1 b1 b1 b1

a1 ¬b1 b1 a1

¬a0 ¬b0 b1 b1

a0 a0 b1 b1

b1 a3 ¬a3 b1

+V

(b) Comparator for 4-bit binary comparison.

b1 ¬a3 b1 a3 ¬b3

a2 ¬a2 b1 b1 ¬b2

¬a2 b1 b1 a2 b2

¬a1 ¬b1 b1 b1 b1

a1 b1 b1¬b1 b1

b1 ¬b0 ¬b0 b1 ¬b0

b1 ¬a0 b0 a0 b1

b1 a3 b1 ¬a3 b3

+V

(c) MSB computation for 4-bit binary addition.

Figure 5.2: Compact crossbars synthesized using model counting
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Synthesis of crossbars with unidirectional memristive switches

A single memristor in the ON state allows the flow of current through it, regardless of the terminal

the current flow is introduced at. While this is an useful property, it can also give rise to paths

that are entirely undesired, even within the framework of utilizing sneak paths as a computational

mechanism. For this reason, it is necessary to develop and implement memristive switches that

allow unidirectional current flow. This is accomplished in a reasonably simple manner in theory,

by connecting a single p-n junction diode in series with a memristor – this composite device is

termed as a 1D1M device, or a 1D1R device in case of resistive switches which don’t necessarily

exhibit memristive behavior. A pictorial representation of the fundamental working principles of

these devices is provided in Figure 5.3.

ON

(a) Turned ON 1D1M device with forward bi-

ased diode

×××

ON

(b) Turned ON 1D1M device with reverse bi-

ased diode

×××

OFF

(c) Turned OFF 1D1M device with forward bi-

ased diode

×××

OFF

(d) Turned OFF 1D1M device with reverse bi-

ased diode

Figure 5.3: Switching states of 1D1M devices
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The composite 1D1M devices are also termed as rectifying memristors, due to the presence of

diodes. As can be observed from the above figure, a given 1D1M device only allows a current flow

if and only if the memristor is turned ON and the diode is forward biased. The forward biased

diode allows the flow of current through it, as opposed to a reverse biased diode which blocks the

flow of current through it. Hence we can see that even if the memristor is turned ON, a current

flow does not exist at the “output” terminal (terminal other than the one where the current flow is

introduced) if the corresponding diode is reverse biased. Similarly, the absence of a current flow at

the output terminal is noted when the diode is forward biased but the corresponding memristor is

in the OFF state. Quite obviously, there is no current flow at the output terminal if the memristor

is in the OFF state, and the corresponding diode is reverse biased as well.

The usage of 1D1M devices empowers us to make an attempt to solve the Feynman Grand Prize

challenge. The approach is presented in [136]. The Feynman Grand Prize offered by the Foresight

Institute requires the design, construction and demonstration of a nanoscale digital computing de-

vice capable of performing 8-bit addition in a cube of edge length 50nm. Assuming that the device

is being created using nanoscale memristors of size 3nm [137] and the inter-memristor gap is only

1nm, the 8-bit adder design can still only use crossbars of size 12×12. Such a compact implemen-

tation was previously not possible, including the approaches mentioned in the earlier sections of

this document. Intuitively, the next step towards the solution would be to utilize a 3-dimensional

stack of nanoscale memristor crossbars. For the sake of simplicity in fabrication, it is necessary

for the different layers in the stack to have limited and structured interactions. Ideally, such in-

teractions between different layers can be accomplished by using external connections among the

layers. Each crossbar layer can operate as a single full adder circuit, and eight such crossbar layers

can be stacked on top of each other. Each crossbar layer in the stack needs to implement a full-

adder circuit within an area of 50nm×50nm. The 3-D stacked crossbar has a limited number of

connections between the different layers. The design of a single crossbar is entirely modular, and

computes the sum, the carry-out and the negation of the carry-out for 1-bit Boolean addition. The

design of a layer is shown in Figure 5.4.
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Figure 5.4: A crossbar circuit computing the Sum, Cout and ¬Cout of 1-bit binary addition

The crossbar has five horizontal nanowires (rows) and four vertical nanowires (columns). The top

row of the crossbar receives the negation of the carry-in bit, while the second row from the top

receives the carry-in bit. The crossbar utilizes two variations of the 1D1M switches. The devices

marked in red only allow flow of current from a horizontal nanowire (row) to a vertical nanowire

(column). Similarly, the devices marked in blue only allow flow of current from a vertical nanowire

(column) to a horizontal nanowire (row). Switches that are constantly in the ON state and OFF

state are marked in green and gray, respectively. The outputs are obtained from the bottom row,

the second row from the bottom and the third row. If the Sum bit is true, a flow is observed in the

bottom row. If the Cout bit is true, then a flow is observed at the second row from the bottom. If the

Cout bit is false, then no flow is observed the second row from the bottom, but a flow is observed at

the third row.

A compact 8-bit adder is constructed by stacking eight identical crossbar layers on top of each

other. The pattern of external connections and stacking of the crossbars presented in Figure 5.5.

The inputs to the crossbars should be loaded into the memristors according to the design in Figure

5.4. The carry-in bit for the first crossbar should be set to 0 and the negation of the carry-in bit

should be set to 1.
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(b) 3D stacking of identical crossbar layers

Figure 5.5: 3D stacking of crossbar circuits and external connections between them

For all the other carry-in bits, the nanowire corresponding to the carry-out bit of the previous

full-adder module should be fed into the carry-in bit of the next full-adder circuit. Similarly, the

negation of the carry-out bit should be fed into the negation of the carry-in bit of the next full-

adder module. The eight crossbars will produce the eight sum-bits of the 8-bit adder on their

lowest nanowires.

It is worth noting that compactness of the synthesized designs is driven largely by the effective uti-

lization of 1D1M devices. Modularity requires our flow-based designs to receive two input flows:

the carry-in bit and its negation. In purely memristive crossbar consisting only of bi-directional

switches, these two flows get mixed-up and produce erroneous results in absence of unidirectional

1D1M devices.
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CHAPTER 6: USING FLOW-BASED CROSSBARS FOR IN-MEMORY

EXECUTION OF COMPUTE KERNELS

Till now, the predominant computer architectures have all been transistor based. Hence, the pro-

gramming paradigm has also evolved to mainly accommodate the usage of transistor-based com-

puters. It is worth noting that memristor based crossbars offer a computational fabric that is fun-

damentally different from transistor-based systems. Among other advantages, the crossbars of-

fer higher spacial density, faster switching times and greater power efficiency over conventional

transistor-based systems. In addition to that, memristors and resistive switches also provide non-

volatility. Even with such superior features, care must be taken when shifting from the old systems

to the new architectures, from a programming standpoint. In this section and in [138], we take a

look at the possible future of programming crossbars in a sustainable manner. As has been dis-

cussed in the previous sections, flow-based crossbar computing allows data to be loaded onto a

memristor crossbar in a well-designed structural pattern such that the flow of current through the

crossbar can be used to perform Boolean computations. Such an in-memory memristive comput-

ing approach may be useful for applications where the same computation needs to be performed

on evolving data sets. However, it a non-trivial task for an application developer to map even the

simplest programs onto such nanoscale memristor crossbars.

Flow-based computing using nanoscale memristor crossbars is particularly suited for single-instruction

multiple-data (SIMD) parallelism. The application developer can be expected to write kernels in a

subset of the C language. Such a kernel should be algorithmically mapped onto a memristor cross-

bar – thereby relieving the programmer of the need to learn a new programming model. Several

interesting applications in computer vision, linear algebra and machine learning can benefit from

such a compilation of restricted C programs to nanoscale memristor crossbars. Our approach uses

thr LLVM compilation framework [139] to transform the compute kernel code in the C program-

ming language into the LLVM intermediate representation. The LLVM IR is then transformed into
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a Boolean Decision Diagram (BDD) and the decision diagram is then mapped onto a nanoscale

memristor crossbar. The parallel Xyces electronic simulation software is then utilized to test the

correctness of the designed nanoscale memristor crossbars.

Compute Kernel

The compute kernel has a structure representing the inputs that it needs to use. Each input can be

an integer whose bit width is specified during compilation. In the example code provided below,

the kernel for edge detection has two inputs: p1 representing one pixel value and p2 representing a

pixel value next to p1. The kernel also has an output structure that has at least one output variable.

Each output variable is an integer whose bit width is again specified during compilation. In the

given example, the output structure has a single integer output o.

// Edge detection kernel

struct Input {int p1; int p2; } input;

struct Output {int o; } output;

void compute ()

{

output.o = input.p2 - input.p1;

}

The core of the kernel is the compute() function that uses the syntax of the C language to define

how the input variables must be manipulated to produce the output variable. The C code inside the

kernel should not have loops that cannot be statically unrolled.
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From C Kernel to Intermediate Representation

The C kernel code is compiled using the LLVM compiler to an intermediate representation. The

structure of the kernel definition makes it easier to obtain the core computations being performed

by the kernel code. The compiled intermediate representation for the running example is provided

at the top of the next page. The LLVM intermediate at representation provides a simple linear list

of arithmetic and logical operations that can then be transformed to Boolean Decision Diagrams.

define void @compute () {

%1 = load i32 , i32* getelementptr inbounds (% struct.Input ,

%struct.Input* @input , i64 0 , i32 0 ), align 4, !tbaa !1

%2 = load i32 , i32* getelementptr inbounds (% struct.Input ,

%struct.Input* @input , i64 0 , i32 0 ), align 4, !tbaa !6

%3 = sub nsw i32 %1, %2

store i32 %3, i32* getelementptr inbounds (% struct.Output ,

%struct.Output* @output , i64 0, i32 0), align4 , !tbaa !7

ret void

}

Intermediate Representation to Boolean Decision Diagram

Boolean Decision Diagram packages like BuDDy provide robust algorithms for mapping logical

and linear arithmetic operations into Boolean Decision Diagrams. The LLVM intermediate repre-

sentation obtained from the computational kernel makes direct references to arithmetic and logical

computations on its operands and enables as one-to-one mapping to Boolean Decision Diagram

operations.
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Figure 6.1: ROBDD for the MSB of 4-bit binary subtraction

In our running example, the LLVM intermediate representation states “%3 = sub nw i32 %1 %2”

indicating that a subtraction operation should be performed using the operands in the first two posi-

tions on the input structure and the result returned as the first element of the output structure. This

is readily achieved in our approach using the bit-vector subtraction operation in the BuDDy pack-

age. Alternate layers of the BDD interleave the Boolean variable in Figure 6.1, which corresponds

to an efficient ordering of the operand bits.
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Non-linear arithmetic operations like multiplication lead to an explosion in the size of the BDD

as the number of bits in the input increases. Hence, the approach based on BDDs is not really

applicable to such non-linear computations. Once the ROBDD is obtained, it can be mapped to a

crossbar using the methodology described in section 3. Once the crossbars are synthesized, they

are validated through simulation using Xyces. This is discussed in the following section.

Illustrative Example

The concepts described in this section are further explored in order to implement a simple edge

detection framework in RBG images. The inputs to the kernel include RGB values of two pixels

and the output is 4 less than the difference of the sum of the RGB values of two pixels. Intuitively,

if this output is less than 0, there is no edge at the location of a given pixel. The C code for this

example is provided below.

// RGB edge detection kernel code

struct Input {int r1; int g1; int b1; int r2; int g2; int b2;

int r3; int g3; int b3;} input;

struct Output {int o; } output;

void compute ()

{

int avg1 , avg2 , diff;

avg1 = input.r1+input.g1+input.b1;

avg2 = input.r2+input.g2+input.b2;

diff = avg2 -avg1;

output.o = diff -4;

}
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Using the above-mentioned approach, the code is transformed into its equivalent LLVM interme-

diate representation, as given below.

%7 = sub i32 -4, %1

%8 = sub i32 %7, %2

%9 = sub i32 %8, %3

%10 = add i32 %9, %4

%11 = add i32 %10, %5

%12 = add i32 %11, %6

This intermediate representation is then transformed into a BDD, which is mapped onto a memris-

tive crossbar, which is then validated through electronic simulation with the Xyces parallel simu-

lator.
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CHAPTER 7: EXPERIMENTAL RESULTS

ROBDD based synthesis

Synthesis of crossbar circuits is an interesting topic of research in computer science. To this end,

there exist some approaches which attempt to synthesize efficient crossbar circuits. Some of these

approaches also utilize BDDs [140], or they might use similar graph-based data structures like

Majority Inverter Graphs (MIGs) which utilize both implication (MIG-IMP) and majority (MIG-

IMP) functions, as shown in [141]. Similarly, we also compare the relevant results from our own

ROBDD-based work [132] (as described in Section 3) with results obtained from existing solutions

both NNF-based [116] and SMT-based [118, 119], all of which use sneak-paths as a computational

mechanism – this is presented in Table 7.1.

Table 7.1: Size comparison of crossbars for n-bit Boolean addition

No. of bits/input NNF-based SMT-based ROBDD-based

8 104×104 Time Out 32×17

16 106×106 Time Out 64×33

32 1011×1011 Time Out 128×65

64 1021×1021 Time Out 256×129

128 1041×1041 Time Out 512×257

As can be seen from the above table, the NNF-based method produces very large crossbars and the

SMT-based methods fail to produces any results for higher values of n, while our ROBDD-based

method manages to produce reasonably succinct crossbars even for larger formulas. Next, let us

compare the performance of the crossbars produced by the previously mentioned methods and our
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ROBDD-based method. It is worth pointing out that the BDD-based method is provided in [140]

and is very different from our ROBDD-based approach. In Table 7.2, the last column represents

the speedup and in Table 7.3, the last column represents the power consumption ratio. For a given

memristor, the switching delay is the time is takes for the memristor to switch from an ON state to

an OFF state and vice-versa. Similarly, the power is power consumed by one memristor to switch

from the ON state to the OFF state. The values for these two parameters – switching delay and

switching power consumption, are adopted from the devices described in [142].

Table 7.2: Delay (in picoseconds) to compute the MSB of n-bit binary addition

No. of bits/input BDD MIG-IMP MIG-MAJ ROBDD-based Improvement

16 16,320 27,200 8,160 5,369 151.9%

32 32,640 54,400 16,320 10,823 150.7%

64 65,280 108,800 32,640 21,729 150.2%

128 130,560 217,600 65,280 43,543 149.9%

Table 7.3: Power consumption (in µW ) to compute the MSB of n-bit binary addition

No. of bits/input BDD MIG-IMP MIG-MAJ ROBDD-based Improvement

16 5,760 9,600 2,880 1,901 151.5%

32 11,520 19,200 5,760 3,832 150.3%

64 23,040 38,400 11,520 7,693 149.7%

128 46,080 76,800 23,040 15,415 149.5%

In addition to the adder circuits, the approach is also used to synthesize crossbar circuits for se-

lected benchmarks from [143]. The results are provided in Table 7.4 and Table 7.5.

54



Table 7.4: Delay (in picoseconds) for selected benchmarks

No. of bits/input BDD MIG-IMP MIG-MAJ ROBDD-based Improvement

5xp1 6,205 8,415 3,060 1,109 275.9%

9sym_d 5,270 14,875 5,100 2,898 200.1%

misex3 15,725 14,025 5,695 5,369 106.1%

sym10_d 5,950 15,895 6,120 4,192 145.9%

clip 7,585 9,350 3,400 1,706 199.3%

Table 7.5: Power consumption (in µW ) for selected benchmarks

No. of bits/input BDD MIG-IMP MIG-MAJ ROBDD-based Improvement

5xp1 2,190 2,970 1,080 393 274.8%

9sym_d 1,860 5,250 1,800 1,027 175.3%

misex3 5,550 4,950 2,010 1,901 105.7%

sym10_d 2,100 5,610 2,160 1,479 146.0%

clip 2,670 3,300 1,200 605 198.3%

Furthermore, it is of utmost importance the output signals for True and False are not ambiguous.

In the following Table 7.6, we can observe from the simulation results there is no overlap in the

voltage ranges for the True and False signals. The minimum value of a True output (in Volts) is at

least 10 times larger than the corresponding maximum value of a False output (in Volts). Hence,

it is practical to distinguish false values from true values unambiguously.
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Table 7.6: Simulation results for n-bit Boolean addition

No. of bits/input Maximum value of false signal Minimum value of true signal

2 4×10−5 0.1

4 8×10−5 0.056

8 16×10−5 0.031

16 31×10−5 0.017

32 22×10−5 0.009

64 20×10−5 0.005

128 17×10−5 0.002

Model counting based synthesis

The attempt to synthesize crossbar circuits based on a model counting approach yields memristor

crossbars that are more compact in comparison to the crossbars produced by the ROBDD-based

approach. The comparison with respect to size are provided in Table 7.7, for computing the MSB

of n-bit binary addition. The last column in the table represents the percentage decrease in the

crossbar size with respect to the prior best best method of crossbar synthesis.

Table 7.7: Comparison of crossbars sizes for n-bit binary addition

No. of bits/input NNF-based SMT-based ROBDD-based Model counting Size decrease

2 64×64 Time Out 8×5 4×4 250%

3 184×184 Time Out 15×9 6×4 562.5%

4 472×472 Time Out 21×12 8×5 630%

56



As expected, the compactness in size of the area-optimized crossbars is accompanied by faster

computation times and higher power efficiency, as shown in Table 7.8 and Table 7.9, respectively.

The last column in Table 7.8 represents the speedup achieved through model counting with respect

to the prior best method. Similarly, the last column in Table 7.9 represents the power consumption

ratio of crossbars produced through model counting with respect to the prior best method. All of

the above crossbars compute the MSB of n-bit binary addition.

Table 7.8: Delay (in picoseconds) for n-bit binary addition

No. of bits/input ROBDD MIG-IMP MIG-MAJ Model counting Speedup

2 425 3400 1020 340 125%

3 765 5100 1530 340 225%

4 1020 6800 2040 425 240%

Table 7.9: Power consumption (in µW ) for n-bit binary addition

No. of bits/input ROBDD MIG-IMP MIG-MAJ Model counting Speedup

2 240 1200 360 300 80%

3 420 1800 540 390 107.7%

4 600 2400 720 720 83.3%

It can be easily observed that there is only marginal advantage in terms of power consumption

when using the model counting approach. It is also worth noting that this approach is unable to

synthesize the requisite crossbars for higher values of n in case of n-bit inputs. The simulations for

this approach and the ROBDD-based approach were all conducted using ngSPICE-26 [144].
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In-memory execution of compute kernels

The circuits developed for the in-memory execution of the simple edge detection kernels are exe-

cuted in the Xyces simulator [145] simulator using its built-in memristor device model. In Table

7.10, the first column represents the index of the output bit, the second column represents the ex-

pected logical state of the output bit, the third column represents the expected flow state at the

output nanowire and the final column represents the measured voltage (in Volts) at the output

nanowire. The inputs provided in this case are: p1=1011 and p2=1000.

Table 7.10: Simulation results for crossbars implementing a simple edge detection kernel

Output bit Logical state Flow state Output voltage (Volts)

0 1 Flow 1.9×10−3

1 0 No-flow 1.8×10−11

2 1 Flow 4.3×10−4

3 1 Flow 1.9×10−4

Hence, we can see that the crossbar does indeed perform correctly. A similar experiment is per-

formed with the crossbar computing the edge detection kernel for RGB pixels. In addition to the

expected and observed outputs, the crossbar sizes for computing the output bits is also provided

in Table REF HERE. The inputs provided in this case are as follows: b1 = 0001, b2=0101, g1 =

1000, g2 = 1001, r1 = 1001 and r2 = 1101.
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Table 7.11: Simulation results for crossbars implementing RGB edge detection

Output bit Logical state Flow state Output voltage (Volts) Crossbar size

0 1 Flow 3.3×10−4 21×12

1 0 No-flow 2.1×10−12 55×29

2 1 Flow 3.3×10−6 103×53

3 0 No-flow 1.9×10−14 171×87

As can be seen above, the crossbars perform as expected.
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CHAPTER 8: CONCLUSION

Emerging high-density non-volatile memory technologies such as memristive RAMs provide a

new opportunity for coupling computation with memory on the same fabric. Earlier approaches to

computing have suffered from a number of different drawbacks. In this document, new research

is presented, which attempts to mitigate the problems inherent in the current methods to auto-

matically synthesize sneak-path based memristor crossbars. The proposed approaches and their

corresponding results accomplish the following goals:

a. The size of our crossbar circuits can be exponentially more succinct than the size of those

designed using structural induction on negation normal forms.

b. Crossbar circuits have been designed for Boolean formulae that are two orders of magnitude

larger than those designed using SMT solvers.

c. It has been shown that a given Boolean formula can be computed using crossbars at most

linear in the size of the ROBDD representation of the formula.

d. Compact crossbars have been designed for interesting examples of Boolean formulae such

as 4-bit adder and 4-bit comparator.

e. The compact crossbars are found be up to 3 time faster than previous approaches and requires

up to 6.3 times less area than the same. The corresponding energy performance is at least as

good as contemporary approaches based on other forms of abstraction.

f. Compute kernels rich in logical and linear arithmetic computations have been automatically

compiled into flow-based crossbar computing designs.

g. The LLVM compilation framework and the BuDDy BDD package has been used for trans-

formation of well-designed compute kernels into in-memory computing accelerators, along

with parallel simulation of the synthesized designs using Xyces.
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h. All of the crossbar designs produced have been been validated by logical enumeration, and

simulated using well-studied memristor models and SPICE software.

In conclusion, novel electronic design automation approaches have been demonstrated for auto-

mated synthesis of sneak-path based crossbar circuits using memristive switching devices. The

work spans computation of n-bit Boolean formulae with linearly growing circuits, 4-bit Boolean

formulae with compact circuits, 8-bit Boolean addition with stacked 2-D crossbars, and compila-

tion of a subset of C programs into crossbar circuits.
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CHAPTER 9: FUTURE WORK

The drawbacks of the work presented in this dissertation and the tasks that can be undertaken in

order to tackle them can be summarized as follows:

• For certain classes of Boolean formulas, ROBDDs grow exponentially. In such cases, appli-

cation of the methods we have presented in [132].

• Mapping of more succinct data structures like and-inverter graphs, majority-inverter graphs,

xor-inverter graphs and free binary decision diagram, to crossbar circuits is a future area of

research.

• Model counting can be limited in its efficacy due to the large number of evaluations.

• Approximation algorithms, especially ones that can leverage the power of existing SIMD

microprocessors, can augment the search process for compact crossbar designs. This remains

an exciting area for future research.

• Much work needs to done on the development of a testing and debugging framework for

compiling C programs to crossbar circuits.

• Synthesis of large fault-tolerant crossbars via intelligent restructuring of ROBDDs is an in-

teresting direction of research.

• Harnessing the capabilities of artificial intelligence methods like deep learning for automated

synthesis of crossbar circuits is a very exciting avenue for future research.

• Intuitively, we can speculate that computation of ternary and m-valued logic operations on

crossbar circuits should be possible by exploiting the state property of memristors and other

resistive memory devices. Currently, there does not exist a reliable body of work supporting

this idea, which makes it a fertile area for future work.
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