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ABSTRACT 
 

Across all industries, from manufacturing to services, decision-makers must deal day to 

day with the outcomes from past and current decisions that affect their business. Last-

mile delivery is the term used in supply chain management to describe the movement of 

goods from a hub to final destinations. This research proposes a methodology that 

supports decision making for the execution of last-mile delivery operations in a supply 

chain. This methodology offers diverse, hybrid, and complementary techniques (e.g., 

optimization, simulation, machine learning, and geographic information systems) to 

understand last-mile delivery operations through data-driven decision-making. The hybrid 

modeling might create better warning systems and support the delivery stage in a supply 

chain. The methodology proposes self-learning procedures to iteratively test and adjust 

the gaps between the expected and real performance. This methodology supports the 

process of making effective decisions promptly, optimization, simulation, and machine 

learning models are used to support execution processes and adjust plans according to 

changes in conditions, circumstances, and critical factors. This research is applied in two 

case studies. The first one is in maritime logistics, which discusses the decision process 

to find the type of vessels and routes to deliver petroleum from ships to villages. The 

second is in city logistics, where a network of stakeholders during the city distribution 

process is analyzed, showing the potential benefits of this methodology, especially in 

metropolitan areas. Potential applications of this system will leverage growing 

technological trends (e.g., machine learning in supply chain management and logistics, 

internet of things). The main research impact is the design and implementation of a 
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methodology, which can support real-time decisions and adjust last-mile operations 

depending on the circumstances. The methodology allows taking decisions under 

conditions of stakeholder behavior patterns like vehicle drivers, customers, locations, and 

traffic. As the main benefit is the possibility to predict future scenarios and plan strategies 

for the most likely situations in last-mile delivery. This will help determine and support the 

accurate calculation of performance indicators. The research brings a unified 

methodology, where different solution approaches can be used in a synchronized form, 

which allows researches and other interested people to see the connection between 

techniques. With this research, it was possible to bring advanced technologies in routing 

practices and algorithms to decrease operating cost and leverage the use of offline and 

online information, thanks to connected sensors to support decisions. 
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 INTRODUCTION 

 

Last-mile delivery is the term used in supply chain management to describe the 

movement of goods from a hub to final destinations. This research proposes a 

methodology that supports decision making for the execution of last-mile delivery 

operations in a supply chain. Across all industries, from manufacturing to services, 

decision-makers must deal day to day with the outcomes from past and current decisions 

that affect their supply chain. The result of the decisions and their consequences are 

reflected in the activities related to the flow and transformation of products or services in 

a specific market or business. So far, practitioners and academics agreed over the 

concept of supply chain management as the practice of handling flows of resources that 

link between different parties in a supply chain. The resources are information, material, 

products, services, and money (Mentzer et al. 2001). For example, for the manufacturing 

industry, it can include the process of manufacturing and distributing products, starting 

with the suppliers of raw materials or components, following with the various facilities; 

which include manufacturing plants, warehouses or distribution centers, and concluding 

with customers or final consumers(Shapiro, 2006), nowadays called last-mile delivery.  

This research proposes a methodology to improve the performance of distribution 

operations, considering key factors such as better use of the heterogeneous fleet and 

efficient routing systems. For this purpose, this research effort concentrates on two case 

studies, a case study for maritime logistics delivery of fuel to villages and a case study for 

city logistics delivery to stores.  
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The maritime logistics case examines a maritime corporation's delivery of fuel. 

Specifically, it is concerned with the specialized fleet of vessels that reaches the remote 

parts of Western Alaska as they become accessible during the summer months. In the 

process of fuel delivery, the principal tankers hold fuel, where tankers and lighter vessels 

collect and supply the product.  

The purpose of this first case is to analyze and implement the methodology to 

improve the decision process to determine the type of vessels and routes to deliver 

petroleum derives from ships to villages. This case study is characterized to allow split 

deliveries, where customers (villages in this case) can be attended for more than one 

vehicle (vessels). The objective is to minimize the total fleet satisfying clients’ demands. 

In this case, the methodology is focusing on the use of optimization and simulation 

techniques to handle the problem. Deep reinforcement learning is introducing to 

determine the delivery process. 

The case study for city logistics represents an emerging market where factors such 

as fragmentation, higher congestion, parking issues, and dense commercial areas 

combined with residential habitats are the main challenging factor for dispatchers. 

Therefore, this case is focusing on urban logistics, which analyzes the network of 

stakeholders during the city or urban distribution process, showing the potential benefits 

of this methodology, especially in understudied metropolitan areas from emerging 

markets. All these factors in towns affect the execution of daily last-mile operations and 

fulfillment of stores. Design methodologies to determine the same-day and next-day 

service are needed for manufacturers and retailers. Consequently, the use of highly 
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effective decision support tools becoming more important for all stakeholders. These tools 

must be able to address strategic and operational decisions for multiple stakeholders 

(Taniguchi et al. 2012; Macharis et al. 2014) 

This proposed work contributes to the research community by understanding the 

evolution of last-mile delivery logistics and define future trends of research and 

applications. This research creates a data-driven methodology to assess the behavior 

and interrelationships between last-mile stakeholders, like CPG (Consumer Packaged 

Goods) manufacturers, freight carriers, retailers (including Nano stores) and end 

consumers. Other stakeholder’s behavior analysis as city administrators decisions are 

out of the scope, but it’s expected that this methodology will allow to include other 

stakeholders for future investigation. This research project aims to have a sense of how 

multiple stakeholders face changes in the last-mile operation environment. Analytical 

techniques are used to represent and understand the logistics operations. 

1.1 Background 

Researches and industry managers have realized the need to improve the execution 

of daily transportation operations and noted how it had become a source of 

competitiveness growth and cost reduction. Routing planners struggle to accurately set 

and forecast delivery routes based on the day of the week, time, location, customer, and 

driver behavior. For example, in a city, high traffic, customers’ location, buyer regret, lack 

of nearby parking, elevators out of service, and many other operational issues, all add 

cost, time and troublesomeness to this critical activity. Given the challenges 
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transportation, supply chain managers, and city planners face with managing data 

complexity and prediction techniques; some gaps have been exposing in this research.   

In this section, background in data-driven supply chain management is described, 

followed by the challenges in the integration between decision levels in a supply chain, a 

short discussion of hierarchical models for production systems and finally the issues 

addressed in last-mile delivery operations.  

 Data-Driven Analytics and Supply Chain Management 

The decision-making in the context of supply chain management has been 

considered as a task performed depending on the kind of problem and decision time 

frame (planning horizon). For instance, decisions about process control in a factory must 

be taken for a short period (real-time) or on the contrary, arrangements that must deal 

with the configuration (facilities location) of the supply chain, should be taken for an 

extended period. Commonly, those decisions are divided into three main categories: 

strategic, tactical, and operational (Shapiro, 2006). The strategic level decisions are those 

that must be taken for long periods, years usually, for example, decisions about the supply 

network design. Tactical decisions are those for the medium term, months or weeks, like 

production plans. The third category is the operational level decisions; for short terms, 

like days or hours. 

Thanks to the advance in technology and the internet of things with the use of 

sensors in industrial processes (automatic control), a new level of decision has been 

added to the classical view. The Execution Level sometimes also called Control Level, 

where decisions should be taken in near real-time (Darby et al., 2011). This level is 
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characterized to handle possible disturbances that mandate to do rescheduling, rerouting, 

new vehicle dispatching, among other decisions (Montoya et al., 2010; Grossmann, 

2012).  

Table 1 brings an example of the primary issues and main objectives for each level 

of decision for a supply chain (Simchi-Levi et al., 2009). 

Table 1:Decision Levels in a Supply Chain 

 

Strategic decisions are made for long term impact. Some examples of strategic issues in 

a supply chain are: 

• How many, when, and where should the production plants, and distribution 

centers be located?  

• How should the products flow through the distribution network? 

 Decision Level Key Issues Time Horizon Main Objectives

Network Design Years Finance

Distribution strategies Months Sustainability

Outsourcing 

Product Design 

Production Months Resource Allocation

Sourcing Weeks Finance

Inventory Control

Supply Contracts

Inventory-Routing

Dispatching plan Days Support the execution

Scheduling Hours

Vehicle dispatching Minutes Avoid disturbances

Process Control Seconds Manage unpredictive events

Rerouting Minimize costs

Sensing Customer Service Level

Delivery

Rescheduling

Strategic

Tactictal

Execution

Operational
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• How should be the configuration, size, capacity of fleet vehicles for the supply 

chain? 

Tactical decisions are made for medium-term impact and are mainly applied to set 

operational goals. Balance the capacity with demand and the allocation of resources. 

Some tactical issues in a supply chain are: 

• What is the optimal mix between private fleet and a third-party fleet? 

• Which distribution center should serve each consumer center? 

• What products and in what quantities should be produced in each plant and 

equipment? 

• Which supplier, and in what quantities, should attend each plant? 

Operational decisions are related to the execution level, such as programming of 

daily transport, manufacturing operations. Examples of decisions of operational issues in 

a supply chain are: 

• Which are the most efficient modes of transportation? 

• What are the best routes to serve customers? 

Execution decision should be taken in a short period, (1 day). Plans have to be 

prepared to address problems, with a horizon of time of hours or minutes. This kind of 

situations mostly arises when anomalies exist, and a decision should be implemented. 

Gartner, whose is an advisory firm recognized worldwide, defines the focus of the supply 

chain execution as: “Supply chain execution (SCE) is focused on execution-oriented 

applications, including warehouse management systems (WMSs), transportation 

management systems (TMSs), global trade management (GTM) systems and other 



 

7 
 

execution applications, such as real-time decision support systems (for example, dynamic 

routing and dynamic sourcing systems) and supply chain visibility systems within the 

enterprise.” (Gartner IT Glossary, 2017). 

Data analytics methodologies impact industrial and service operations. These 

schemes have been relevant for a wide selection of traditional engineering areas, such 

as the best performance defined by lean six-sigma initiatives, customer segmentation for 

resource optimization, pattern identification, classification strategies, and forecasts. The 

data analytics practice is divided into four main areas: 

Descriptive Analytics: At this stage, descriptive statistics and data mining are commonly 

used to do segmentation, dimensionality reduction, and classification. Generally, large 

amounts of data are analyzed to discover patterns.  

Visual Analytics: Information visualization enabled by dashboards to analyze and 

visualize the data to extract useful information. The methods of visual analysis combine 

descriptive and inferential statistical techniques with specific knowledge in engineering 

and systems management. The graphics can show accurate data to capture the behavior 

of a system and to understand its trends and cycles. The design of dashboards with 

business intelligence software to show the Key Performance Indicators (KPIs) is the trend 

across many organizations.  

Predictive Analytics: Use techniques of classical linear and non-linear regression, 

simulation, regression trees, random forests, and neural networks. Analyze historical data 

to make estimations about future or unknown events. It is used for inventory 

management, customer and traffic behavior, among others. 
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Prescriptive Analytics: This stage of the analytics oversees the best course of action 

for a given situation. Techniques such as dynamic programming and stochastic modeling 

are widely used for supply chain management to demonstrate previous techniques, along 

with simulation (discrete, dynamic, agent base) and operations research (mixed integer 

programming).  

A group of technologies deals with data analytics, which refers to the methods and 

techniques to extract patterns and new information from structured, semi-structured, 

and/or unstructured data. Figure 1 represents how the data flows across different stages 

throughout the different kinds of analytics paradigms. 

 

Figure 1: Data-Driven Enterprise Optimization. 

Once the data is obtained, a process of cleaning, organizing, and storing starts, 

followed by analytics and implementation. These are tools that help handle data volume, 

diversity, and imprecisions and provide robust solutions. The techniques of data mining 

and predictive analytics help the enterprise make a better decision-making process.  The 
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main objective of these technologies and approaches is to extract valuable information 

(Insights) from the data, to support the decision-making process.  

The scheme in Figure 2 depicts how the data goes through different stages, such 

as for example, preprocessing data with some statistical and data mining techniques to 

be prepared for a simulation-optimization modeling process. After the data and the 

analysis is done, a decision-making process is supported thanks to that process. A series 

of scenarios are listed at the end of the analysis to make the decision. Furthermore, with 

this analysis, data scientists can also discover causalities. Data analytics is not only used 

to identify patterns but also is used to understand what happened in the past and to have 

a solid base to apply predictive analytics and infer what can happen in the future.  

 

Figure 2: Example of Data analytics stages. 
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The value creation thanks to the use of analytics is demonstrated in several cases 

(Brynjolfsson et al., 2011) when a company can obtain detailed information regarding its 

performance in detail and a convenient manner. (Monitoring and Visualization). ii) When 

an organization can utilize resources more efficiently as products and services are 

targeted to meet specific needs through customizable actions. (Optimization, Simulation 

modes, Hybrid modeling) and iii) When human force is replaced or supported by 

algorithms. (Artificial Intelligence) 

1.1.1.1 Dynamic business metrics 

 

Analytics support the main three objectives of a company, such as revenue, risk, 

and profitability. Figure 3 presents some dynamics business metrics that can be achieved 

in an organization. The main groups of indicators are in technology, revenue, risk, and 

profitability. 

 The construction of dynamic business metrics can be achieved throughout the 

detailed analysis of the business. Nowadays, a lot of companies are invested in data 

analytics (Rivera, 2014). The current techniques, methodologies, and architectures of 

data analytics are affecting how the organizations can measure their inputs and outputs. 

Analytics can support the construction of these indicators in terms of computational times 

and managing the information (Groschupf et al., 2013). 
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Figure 3: Business Metrics. 

In conclusion, analytics help organizations increase revenue, speed time to market, 

optimize its workforce, or realize other operational improvements. (Morgan, 2015). Data 

analytics is named as a scientific paradigm for discoveries (Hey et al., 2009). 

Optimization, simulation, and machine learning models or analytics aim to give the 

necessary base to handle complex problems in terms of scalability and the amount of 

data and sources. (Bell et al., 2009; Chen et al., 2014).   

 Challenges for integration between decision levels in a supply chain 

Nowadays, the integration between decision levels is one of the main concerns in 

academia and industry. Substantial process in this endeavor has been more notable in 

the execution and operations levels.   

The primary application area has been in the manufacturing industry (Chu et al. 

2015). In Figure 4, Dias and Lerapetritou (2017), depict an example of the different stages 
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from the execution process to the supply chain management. Each of which is 

represented considering the time horizon and the opportunity for optimization. 

.  

Figure 4: Decision Making in supply chains. Source: Dias et al., 2017. 

Measuring the impact of the operational decisions throughout the supply chain is 

one of the challenges many companies encounter. Holding better methodologies to 

support the coordination between the execution and the other levels helps to reach 

benefits for the organization.  
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The decisions usually follow a policy, a previous plan, and a schedule. At times in 

the execution phase, decisions should be made under an uncertain environment, due to 

unforeseen events and in a short time. Decision-makers have struggled to find ways to 

predict the most likely variations and analyze various possible conditions. Figure 5 depicts 

a learning process between the original plans and the deviations in the execution process. 

 

Figure 5: Learning process in last-mile delivery. 

Scenario planning approaches are the most common tools to support the decision 

instead of just with mental models. Consequently, having better tools to make predictions 

that support the decisions and synchronization between the plans and the execution 

throughout the different functional areas in a supply chain, helps to decrease the 

vagueness in making decisions under uncertain situations. This is the future’s state of the 

art for supply chain management operations. 

Furthermore, the availability of technology and information in near real-time 

provides excellent opportunities for businesses across all industries to offer a better 

experience for their customers. However, it also comes along with challenging problems 
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such as ineffective forecasting methods for customer behavior prediction, responsiveness 

to market changes, and inadequate infrastructures, among others. 

 Hierarchical Models in Production Systems Supply Chains 

The decisions in a supply chain are expected to be organized hierarchically between 

the strategic, tactical, and operational levels. However, in practice, this is not the rule. 

One of the challenges many companies face is the lack of design integration of the 

operational decisions throughout the supply chain (Shah, 2005). Figure 6 depicts a 

comparison between service and manufacturing supply chains.  

Hierarchical structures have been proposed mainly for production in manufacturing 

systems. Usually, the different decision levels are organized depending on the impact, 

purposes, and planning horizon.   

 

Figure 6: Hierarchical model for production systems in manufacturing and service 
supply chains. 
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It is based on the hierarchical model proposed by the International Society of 

Automation (ISA), (Scholten, 2007). The upper layer deals with the strategy and tactical 

decisions, where the decision should be taken for the long and medium-term. It is followed 

by and connected with the manufacturing operations which set the activities to meet the 

final product. It is under medium and short time and is mainly under operative decision 

level in a supply chain. Finally, it’s the sensing and execution levels where automatic 

control systems, dashboards, and communication systems support the operation. 

Allowing data integration and flow of information. Systems like ERP’s Enterprise 

Resource Planning, Manufacturing Execution Systems, (MES), Supervisory Control and 

Data Acquisition -SCADA. With more analytic oriented systems such as Advance 

Planning Optimization APO and Enterprise-Wide Optimization EWO methodology (Chu 

et al. 2015). 

The systems mentioned above and the interaction between the different layers 

allows for the gathering and analysis of information in short periods. Going uphill from the 

execution level with the results of the actions to the management level and downward 

transferring instructions to do the activities. Having better methodologies to support the 

coordination between the execution levels helps reach benefits for the organization. The 

decisions are addressed from decision-makers in strategic levels to the operative ones, 

going through the tactical levels. It has been demonstrated that better decisions are 

supported for the use of feedback practices which flows in the opposite direction (Van et 

al., 2007), after the analysis of this feedback the system can make better decisions. 
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A more specific example of the hierarchical model is presented by Chu et al. 2015 

(Figure 7.)  The authors recreate different decisions structured in a hierarchy structure for 

the typical manufacturing industry. In the high level represent the configuration of the 

supply chain, which is the strategic level. The next level should be defined as production 

quantities by the planning period. A scheduling plan should accompany this process. 

Finally, in the last two levels, the authors display the feedback control system with a 

dynamic optimization model.  

The decision support systems and the transactional information technologies allow 

the flow of information between the different layers. However, the software design along 

with modeling and optimization methods is a highly active research area for decision-

making systems that can capture the experience and learnings between the different 

decision levels (Grossmann, 2005; Chu et al., 2015).  

 

Figure 7: Hierarchical structure in the manufacturing industry. Source: Chu et al., 2015. 
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It is common for the chemical and energy industry to use hierarchical 

methodologies. The service industry has been adopting these practices during the last 

years.  For instance, challenges in transportation and logistics aim to reduce the low 

performance in delivery strategies which are linked to non-forecasted uncertainties (on 

consumers’ and drivers’ behavior) and inappropriately managed delivery processes.   

The lack of shared information distorts visibility among suppliers, retailers, and 

logistics operators, affecting quick gains in logistics and obstruct effective horizontal 

collaboration to forecast the performance of the operations accurately. Consequently, if 

the prediction is below the real outcome, it will cause higher costs, (Example: lost sales) 

and increase uncertainty, risks. On the other hand, if the prediction is above that of the 

real requirement, resources will be poorly planned and will also increase costs. 

The literature review in chapter two digs into scopes, model formulations, solution 

approach, and implementation strategies have been used to face the challenges in the 

execution process in the supply chain and specifically in last-mile operations. Additionally, 

some examples are described. Most of them are in the manufacturing process. This 

research is aimed to bring a methodology which allows the integration of different levels 

of the decision in time and process in a supply chain, and it is focused on the execution 

level. 

1.2 Last-Mile Delivery Operations  

The term used in supply chain management to describe the movement of goods 

from a hub to final destinations is Last-Mile (Figure 8). The execution of last-mile delivery 

operations in a supply chain is just as important as the operation success at any point of 
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the supply chain. “Last-mile logistics is the least efficient stage of the supply chain and 

comprises up to 28% of the total delivery cost” (Ranieri et al., 2018). Therefore, the search 

for improvement techniques represents a considerable challenge for the corporate and 

academic community.   

 

Figure 8: Last Mile Stage in the Supply Chain 

With the constant positive economic growth of cities around the world, the need for 

material movement is increasing quickly. When analyzing how stores are switching to a 

just-in-time stock system (Nuzzoloa et al., 2018), it is possible to relate it to the increase 

of orders being made to vendors, therefore increasing the work activity of delivery 

companies. With that, more delivery vehicles will be on the streets; that, together with the 

unstoppable increase of the range on heavy traffic hours in big urban areas, magnifies 

issues such as pollution and traffic itself, consequently, affects the quality of life the 
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population. Therefore, the necessity of better methodologies to handle this situation is a 

must for involved stakeholders.  

Concerning the main problems affecting the city's logistics (CL), the synergy 

between the main stakeholders, such as customers, delivery companies and city 

governments, should be understood and analyzed to reduce the negative effects the 

delivery process would cause (Ananda et al., 2016). This synergy is related to how the 

process occurs in a city environment and how it creates good or adverse events. One 

way to observe it is by going to the beginning of the process which is the order being 

made; it ultimately causes goods being transported inside of the city, therefore one more 

truck occupying road area and polluting the area. From that point, the analysis should 

focus on how to reduce that impact to the minimum while providing the best service to the 

clients, that being by reducing the time the trucks spend on streets. 

The focus of the stakeholder analysis is kept as taking into account the interests 

among all of the active participants of the process (Anand et al., 2012). The point of this 

analysis is to define another challenge as being the maintenance of the process for 

reaching all stakeholders objectives, as they are distinct and sometimes differ in 

magnitude and importance (Van Heeswijk et al., 2016). 

With the increasing application of optimization of processes inside of smaller 

companies around the globe, they have been reducing the size of their stocking areas; 

which is a benefit, as the newly regained area can be now used for other purposes. The 

issue is that the prediction of usage of those goods needs to be improved in a way that 

the just-in-time system needs to be applied (Nuzzoloa et al., 2018). The impact of the 
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increasing rate of that system directly hits the volume and speed requirements for the 

delivery companies. Therefore, even more, vehicles will have to be in the streets. 

The use of innovative methods for the delivery of goods is nowadays faced with a 

variety of factors to be considered. These factors include cost reductions, services levels, 

and the environment itself where concerns exist regarding pollution of the air, noise 

pollution, traffic, and mobility issues. (He et al., 2019). 

This research effort considers the state of the art methodologies for supply chain / 

last-mile operational strategies, having into account the existence of routing software 

applications and intelligent solutions that can account for the suitability, risks, limitations, 

and restrictions of the existing urban freight transportation systems. 

1.3 Problem Statement  

Nowadays, across industries, managers are struggling to find ways to close the gap 

between strategy and execution. Generally, a strategic problem is habitually solved 

without considering operational and implementation levels. Commonly because issues 

are considered and addressed sequentially and individually, therefore, due to the 

complexities that can arise in the execution process (unpredicted events, perturbations, 

changes in human behavior) when the problems occur at this level, the resolution should 

be made under the conditions established by the strategic and tactical levels. This may 

result in inefficiencies across the system. 

Under the idea of widespread efficiency, the understanding of different decision 

making of stakeholders is challenging. Currently, the manufacturing industry appears to 
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be more mature in this endeavor. On the other hand, the design and implementation of 

an integrated scheme for the service industry, like transportation and logistics, is a 

complex mission. 

 Important factors remain to be solved. Such as dynamic address behavior from 

humans and the environment besides the common unstable conditions from logistics 

operations. Predictive and normative hybrid techniques must be designed and used to 

support the execution process and adjust plans according to changes in critical factors 

according to a set of potential scenarios. 

Data-driven analytics might be an essential step to understand critical issues, build 

proper measurement systems, predict the evolution of systems, and lead stakeholders to 

reinvent their strategies, policies, and technology. Hybrid modeling approaches can 

improve execution operations through optimization and agent-based modeling, among 

other techniques. In consequence, it can leverage a methodology driven by the possibility 

of integrating different decision layers. 

1.4 Research Questions  

Given the challenges identified in the problem statement, the research questions for 

this research are:  

a) Is there a way to translate and contextualize the characteristics of last-mile 

operations in their different stakeholder's decision making, to create useful insights 

and predictions and identify the possible consequences in the execution 

operation?    
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b) Is it possible to develop a methodology that leverages better coordination between 

different stakeholders, to enable optimization and better forecasting on the 

execution of operations? And lastly,  

c) Could this methodology be developed to combine the analytic models with 

emerging technologies and applications to solve the business and the industrial 

characteristics of last-mile delivery operations simultaneously? 

1.5 Research Contribution 

The main contribution of this research is to provide a decision methodology to 

analyze and capture the information involved in different areas of last-mile delivery to 

reach integrated solutions for decision making in functional areas. 

 Through the analysis of the information systems, sensors information, optimization, 

and simulation-optimization-ML (machine learning) models are projected to translate data 

and contextualize information, between devices and systems on an execution network.    

The proposal is different from the existing literature and contributes to the research 

community by integrating characterization and prediction of stakeholders’ behavior in 

supply chain operations; using machine learning, dynamic and stochastic techniques to 

forecast behaviors, trends and performance.  

The goal is to integrate methods which support decisions in the decision-making 

levels.  

The methodology is designed with three main objectives: 
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• Propose a comprehensive and scalable methodology to model and integrate 

different decision-making levels in terms of operational and management 

decisions. 

• Design a model-based decision-making methodology, which can capture and 

learn from the activities across different time and space scales in last-mile 

operations. 

• Identify the research gaps and future research on this topic. 

Last-mile operations require accurate and realistic simulation virtual environments 

that enable risk-free training and testing of learning agents. These simulations need to be 

much more sophisticated than collections of scenarios. It should also be able to capture 

the complexity of dynamic environments and agents’ behaviors, including those that have 

a low probability of occurrence. We are proposing a methodology that allows virtual 

environments (simulations) to interact with learning agents. 

The methodology proposes hybrid modeling and self-learning procedures to 

iteratively test and adjust the gaps between the expected and real performance. This 

methodology supports the process of making effective decisions promptly, optimization 

models and machine learning models are used to support execution processes and adjust 

plans according to changes in conditions, circumstances, and critical factors. All of which 

can be anticipated via scenario planning and dynamic models. The methodology 

architecture intends to leverage and synchronize technological trends, such as the 

internet of things in supply chain networks by considering the use of complementary 

approaches. 
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This research proposes a potential technology solution for enabling and improving 

near real-time decision-making process in logistics operations. It also contributes to the 

development of a methodology and architecture for leveraging operations research 

management techniques and machine learning tools to define requirements for an 

application methodology.  

The methodology is designed to create warning systems and, together with 

mathematical models, support more effective delivery processes and proactive, dynamic 

decision-making during the execution stage considering real-time data. 

Moreover, it is also proposed that the contributions from this methodology can be 

extended by other researchers or industry actors to drive the adoption and potential 

standardization of an open real-time solution paradigm within the logistics/supply chain 

operations. 

1.6 Document Outline 

Chapter 1 defined the background about decision-making in supply chains and went 

over the main definitions and challenges, to provide the contextual information and 

terminology that are significant to this work. The different sections describe the traditional 

and current methodologies followed by the tendencies in technology and methods. At the 

end of the chapter is focusing on the last-mile operations context the opportunities to 

understand and analyze the integrating decisions on different stakeholders, the problem 

definition, the research questions, and the research contribution are described. Chapter 

two is focused on the literature review. Due to the extensive research in supply chain 

management (since the 1980s), only sources from the last decade are referenced, and it 
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is emphasized on the study at the execution level and last-mile research tendencies. This 

chapter highlights the main characteristics and the main challenges that should be solved. 

Chapter three describes the proposed methodology and each of the steps to be followed 

to tackle the last-mile delivery operations. Chapter four presents two case studies for 

logistics operations; and chapter five states conclusions and future research. 
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 LITERATURE REVIEW 

 

This literature review has three main objectives. First, to provide the contextual 

knowledge to analyze the execution level in a supply chain. Here is where the outcomes 

from the previous level decisions are revealed. Secondly, to bring an overview and detect 

challenge s and opportunities for the hierarchical Integration of decision-making in supply 

chains (Gutierrez et al., 2011). Third, to identify the advances and challenges in 

transportation and logistics such as a vehicle-dispatching problem for the delivery of 

goods in a city. Therefore, this literature review aims to provide a comprehensive 

background to discover research gaps that could be feasibly addressed by the proposed 

methodology.   

2.1 The methodology of the Literature Review  

The articles were gathered mainly from the engineering literature database; Ei 

Compendex. The search was aimed at finding implementation strategies, solution 

approaches, and scopes of decision-making strategies. Most of the revised articles were 

quantitative oriented. The next Figure depicts a mental map of the search. Keywords such 

as analytics, agent-based simulation, hybrid methods, hybrid modeling, artificial 

intelligence, dynamic optimization, dynamic routing, and control and integration, were 

used. One or more combinations of those keywords were specified under main topics 

such as supply chain management, supply chain execution, and last-mile delivery. 
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Figure 9: Mental map for decision-making tools in Supply Chain Management. 

 This literature review is split up into subject areas to address the core problem 

statement of hierarchical integration between levels that confirm a supply chain in an 

organization (Figure 10).  The first two sections cover the integration methods mainly for 

Tactical, Operational, and Execution levels and discuss characteristics of modeling 

approaches and solution algorithms. The motivation of the second section is mostly over 

the practices in data analytics, showing some industrial cases using operations research 

techniques in the industry.  
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Figure 10: Ei Compendex searching method. 

The third section focuses on delivery logistics, which is the executive level in 

services companies and determines what state of the art is in that area. Due to the 

particular interest in the industry and their challenges, and opportunities in the service 

industry, the vehicle dispatching task was chosen. The fourth section summarizes the 

conclusions of this review and determines a research gap to justify the proposed 

methodology.  

2.2 Integration of Operational and Execution Level 

Practitioners and academics have reported the benefits of the integrated method. 

Nie at coauthors in 2012, has published that decreases in net profit can be up to 40% for 

the use of a sequential approach against integrated methods (Nie et al., 2012). The 

performance of the systems is improved and reveals better coordination between 

decision-makers.  
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Most of the solution approaches that aim to have an integrated method use 

principles of system engineering by modeling different decision levels at the same time. 

A formal methodology widely known in the manufacturing industry is called: Enterprise-

Wide Optimization (EWO). The method integrated optimization models with management 

science mainly for uses in chemical companies. (Grossmann, 2005). The next table lists 

the main challenges found in the literature. 

Table 2: Challenges for integrated decision levels 

 

Preceding literature review in this topic discusses the theory, the models, 

applications, methods, and methodologies. Most of them are about production scheduling 

and routing problems. 

For instance, Harjunkoskia and coauthors in 2014, discuss in-depth the production 

scheduling problems and describe in detail the strengths and weaknesses of the models 

(Harjunkoskia et al., 2014).  Harjunkoski presented a more narrowed work; where the 

author is more interested in industrial environments; he depicted the hurdles for deploying 

scheduling solutions, some relations with ongoing technological transition were considered 

(Harjunkoski, 2016).  

Challenge Characteristic

Heterogenety Dynamic models and Logical Restrictions

Uncertainty Control system always worl online in a closed loop

Multi-scale Time integration between diferent time scales.

Implementation Large computational time to solve it 

Large Scale Multiple dynamic models

Combination Two or more challenges to solve
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The integration between control (execution level) and scheduling (operative Level) 

have been reported as the key for successful operational processes in the reduction of 

costs (Baldea and Harjunkoski, 2014) and the advantages of sharing information between 

decision levels (Harjunkoskic et al., 2009).  

Regarding methodology and solution approaches, Grossmann did an excellent job 

explaining the concept of Enterprise-Wide Optimization (EWO). The process industry is 

susceptible to issues of coordination. EWO allows optimization of the operations of supply 

(planning), manufacturing (scheduling) and distribution (real-time optimization) activities 

at the same time, to reduce costs and inventories. Furthermore, it highlights the necessity 

of deterministic and stochastic linear and nonlinear optimization models among IT tools) 

to support supply chain operations and bring customer satisfaction. (Grossmann, 2005, 

Varma et al., 2007). Other approaches include the Integration of methodologies and 

software platform, which allows for the modeling of integrated design for scheduling and 

control problems. (Pistikopoulos and Diangelakis, 2016).  

Sahinidis in 2004 presents a review centered on the techniques and 

methodologies to handle uncertainty considerations to reduce the gap between models 

and real-world industries (Sahinidis, 2004).  The Chu and You proposed a bi-level program 

to manage uncertainty in the integration of planning and scheduling. In the model, the upper level 

solves the planning problem, and the in the lower level it solves the scheduling problem. 

Considerations on disturbances are also taken into account (Chu et al., 2012).  Similar 

approaches have been presented. For example, Koller & Ricardez proposed a dynamic 

optimization methodology to understand the implications of design and control on 
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scheduling decisions (Koller and Ricardez-Sandoval, 2017). Finally, under the topic of 

uncertainty, a detailed taxonomy of different types of uncertainty faced by scheduling algorithms 

and its relevance on executing production schedules are presented in 2005 (Aytug et 

al.,2005). 

Some examples of integration between operational planning and control are 

segmented into two different problems: scheduling and routing problem. There could be 

other problems attended by researchers worldwide. However, the main is related below. 

Harjunkoskia et al., 2014, have attended scheduling problems which include a 

control stage; Engell and Harjunkoski, 2012; Baldea et al., 2014; Pistikopoulos et al., 

2016; and Chu and You, 2012; Munawar, 2005 to name a few. 

On the other hand, for the service industry routing problems has been attended by 

Subramanyam et al., 2017, with a multi-period vehicle routing problem allowing for 

customer service requests which are received dynamically over the planning horizon. The 

decision-making process is analyzed as a multi-stage robust optimization problem with 

binary recourse decisions.  

The techniques applied to solve scheduling problems, the most common are 

mixed-integer dynamic optimization (MIDO) (Chu and You, 2012), recourse-based 

stochastic programming, robust stochastic programming, probabilistic programming, 

fuzzy programming, and stochastic dynamic programming (Gutierrez et al. 2008; 

Sahinidis, 2004).  
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Other applications based on hybrid models (HM) and Artificial Intelligence (AI) 

have been used to attend scheduling and control problems. It is the case of a Hybrid 

Mathematical Programming Discrete-Event Simulation Approach for Large-Scale 

Scheduling Problems, proposed by Castro et al., 2011; or the inputs of Chu et al., 2015, 

related with an integrated problem into a bi-level program.  

Also, some applications and extension of Control Theory (CT), have been studied 

by Ivanov et al., 2012. The author describes essential issues and perspectives that 

delineate dynamics in supply chains, where the identification of Control Theory to 

production, logistics, and SCM in the period from 1960 to 2011; Years before, Branicky 

et al., 1998., introduced a mathematical model of hybrid systems as interacting collections 

of dynamical systems, evolving on continuous-variable state spaces and subject to 

continuous controls and discrete transitions.  

The use of artificial neural networks (ANNs) has been successfully applied to solve 

a variety of problems for decades ago (Ruiz et al, 2007). As is the case of Sabuncuoglu 

and Gurun, 1996, who proposes a new neural network approach to address the single 

machine mean tardiness scheduling problem and the minimum makespan job shop 

scheduling problem. Li and Jayaweera (2015), present in their study: “Reinforcement 

learning aided smart-home decision-making in an interactive smart grid,” a Markov 

decision process (HM-MDP) model for customer real-time decision making. Specifically, 

they proposed a Q-learning algorithm, which is used under the approximate dynamic 

programming (ADP) approach. Van Tongeren and coauthors presented another Q-

Learning approach in 2007. Their work focuses on the description of each of the echelons 



 

33 
 

in a supply chain as an agent that can sequentially take decisions and learn over the time 

the best policies (Van Tongeren et al., 2007) 

 Parallel to work mentioned above, Li et al., 2015, presents a methodology which 

takes into account real-time decisions in a smart electricity grid. In this case, the solution 

is to focus on ensuring grid-stability and Quality-of-Service (QoS).  This methodology was 

based on Machine Learning applications. McDonnell et al. have proposed another 

learning approach to improve decision-making in a hierarchical manufacturing 

environment, 2005. In this case, a reinforcement learning approach is employed for 

specifying the payoffs in reconfiguration games through capturing the effects of a 

sequence of reconfiguration decisions. Therefore, in the long run, the “machine-level 

controller” can learn the results of past decisions, and improve its decision-making 

process in manufacturing during the time (McDonnell et al., 2005). 

Recently, a work focused on the human process of decision making under supply 

chain management circumstances was done by De Maio et al., 2016, they presented a 

methodology to support and trace social decision-making activities when different 

decision-makers have to find a consensus to select a most promising alternative to follow. 

The method takes into account theory of fuzzy logic and also uses a Reinforcement 

Learning algorithm to learn the weight of the decision-makers through the analysis of past 

process executions considering context and performances of business processes for the 

Consensus Model. In the same way, Apak et al., 2013, presents A Decision-Making 

Model for the Evaluation of Supply Chain Execution and Management Systems. This work 

presents a fuzzy logic-based approach oriented to integrate the Fuzzy Analytic Hierarchy 
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Process to weigh the decision criteria and the Fuzzy Technique. Also, according to Long, 

2017, the complicated microstructures, macro emergencies, and dynamic evolutions in a 

supply chain network pose challenges to solving operational problems for the network’s 

performance improvement. In this work, long proposes a methodology of data-driven 

decision making for supply chain networks based on Agent-based modeling to recreate 

the dynamics in a supply chain network and to verify the solutions generated for the 

decision-agents. Other authors also support their research with ABS, for example, Ta et 

al., 2005, developed a multi-agent approach for supply chain management for the 

operational level which integrates planning, execution, and supervising. In this study, task 

allocation and performance for supply chain management were attended.  

Mathematical programming and Artificial Intelligence methods are used mainly for 

execution problems. Uncertainty in planning, scheduling, and control are the primary 

concerns. Some works were found to attend operations and execution problems such as 

scheduling and rescheduling, routing and rerouting, and other real-time optimization 

problems. However, applications that include strategic and operation-execution decision 

level are still developing. 

Another point to highlight is the AI applications are used mainly to support real-

time optimization and decision support systems. On the other hand, models based on 

fuzzy and multi-criteria extensions, have been used to model human considerations, 

uncertainty, and vagueness on decision-making processes across supply chains 

operations.  
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2.3 Data-Driven Decision Making in Supply Chains 

Data analytics is not only used to identify patterns, but it is also used to understand 

previous occurrences and to have, and solid base to apply predictive analytics and infer 

what can happen in the future.  Hazen (2014) determines how important the quality of the 

data is, to manage a supply chain and its use in business analytics. In his research, he 

states four essential characteristics: 1) the accuracy of the data is essential in order to 

have error-free data, 2) timelines to have up-to-date analysis, 3) consistency to have data 

presented in the same format, or at least by groups (structured, unstructured and semi-

structured) and finally 4) completeness to check if there is missing data or there is the 

necessary data. 

For many organizations, much of this data is scattered among numerous kinds of 

software on different applications, sometimes in different geographies and in many 

different formats instead of being consolidated. In the last decades, it has been a concern 

for many organizations to know how to gain more insight and protect their information at 

the same time. This issue has always been essential to align the organization with its 

mission and vision.  

In the last three decades, it has been an increasing tendency for companies to 

seek the incorporation of business analytics into their business model pursuing economic, 

environmental, social, and government benefits. (Sanchez, 2014) The objective of these 

tendencies is to maximize profitability and minimize externalities (Miller et al.,, 2014) in 

order to optimize the use of scarce resources and promote waste reduction (Blanco, 
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Sheffi, 2015) some of them through mathematical models using simulation and 

optimization techniques (Sterman, 2012) (Rabelo, Hughes, 2005).  

A survey of 560 enterprises Chen et al., (2014) shows how the use of analytics 

techniques and the big data technology represents advantages for the improvement in 

business, above 50% are agree that with these techniques operational efficiency can be 

achieved (Gutierrez et al., 2016).  

Nowadays, with big data tools, a new application is rising to support the process 

of traditional modeling and simulation processes. With these, it is possible to obtain data 

for initialization of the models, set up scenarios, and evaluate the results of these models 

(Tolk, 2015). Operations research has been playing an essential role in this field, mainly 

in the formulation and solution of many big data and data mining problems (Olafsson et 

al., 2008).  

Data mining uses optimization techniques to resolve problems that arise in the 

presence of large amounts of data and their corresponding optimization models 

(Xanthopoulos et al., 2012). Data mining optimization is a big field of work for many 

organizations; due to their need to extract useful information for their processes. 

Optimization and Simulation models are extensively used for these organizations, but 

they can be better exploited in terms of their usefulness. Recent research demonstrates 

that optimization techniques work efficiently for data challenges and optimization 

processes (Olafsson, 2008; Sanders, 2014). 

Simulation processes also have an essential role in creating and assessing 

scenarios of real problems. In this case, it is possible to recreate more data and usability. 
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Machine Learning is also used extensively in the industry. It is a set of algorithms that 

have information about datasets and can generate information/rules from this data to 

construct inferences and predictions (Xanthopoulos et al., 2012). 

For example, one of the growing concerns with the energy crisis caused by 

environmental contamination and decreasing petroleum storages has lead governments 

and companies to build and implement sustainable projects to find alternative energy 

sources as the best option to achieve independence from fossil fuels. One result of this 

has been the diminishing environmental impact generated by their production and use. 

To reach this, it is necessary to understand and have a baseline of almost all the 

operations in an organization (Pirachican et al., 2009; Montoya et al., 2014; Blanco et al., 

2015). 

Therefore, the challenge is to implement efficient systems that support these 

technologies and inform communities about the impacts of their actions (Eccles et al., 

2012). The use of mathematical models has been crucial to understanding the possible 

scenarios and results for their use. 

Many companies follow their business analytics initiatives through their supply 

chain, where they focus on minimizing costs, optimizing scarce resources, and 

maximizing the profit. Also, by implementing techniques to improve and create products, 

processes, and business models, taking into account their impact on the environment and 

society (Canon et al., 2014).  

Goetschalckx et al., (2002) And Shapiro (2004) present a review of the technical 

literature for the optimization of supply networks and its multiple areas of application. The 
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mathematical optimization models have been applied to a series of process industries, 

including the fruit industry (Masini et al., 2009; Gutiérrez et al., 2007), food distribution 

(Ahumada and Villalobos, 2009; Rong et al., 2011), petrochemical industries, (Lababidi 

et al., 2004), pharmaceutical Industries (Papageorgiou et al., 2001), (Shah 2004) and the 

steel Industry (Gutiérrez et al., 2003) among others.  

Another successful area where analytics support the decision-making process is 

in the oil industry (Alfonso et al., 2007; Gutierrez et al., 2011). Walls (2004) states that to 

improve performance and the decision-making process, the managers need to be aligned 

with the project portfolio to know and apply risk-management techniques as well as 

improve their policies to determine how to use the optimization portfolio outcomes (Walls, 

2004).  

Neiro and Pinto (2004) proposed a general methodology for modeling an oil supply 

network by the connection of three basic models: A model for the supply of crude oil, a 

model for the operation of the refinery, and a model for the oleoducts. They used mixed 

integer nonlinear programming. Papageorgiou (2009) presents an interesting critical 

review of methodologies for decision-making at process industry supply chains, including 

the presence and effects of uncertainty and business/financial and sustainability aspects. 

In the energy industry, Bai et al., (2011), analyze the planning of biofuel refinery 

locations by incorporating the impact of traffic congestion into the routing and the delivery 

of raw material and the product in the biofuels supply chain. Kim et al., (2011a) include 

the selection of fuel conversion technologies, capabilities, biomass locations, and 

transport logistics when maximizing an objective function for a global benefit. 
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In Huang et al.,(2010), the authors developed a model, which integrates the spatial 

and temporal dimensions for the strategic planning of future bioethanol supply chain 

systems, minimizing the cost of the entire chain. Parker et al., (2010) developed a model 

that determines the optimal locations, types of vehicles and sizes of biorefineries while 

maximizing profits through the biofuels supply and demand chain from the site of 

production of raw materials to the fuel terminal. The resources considered include crops 

and residues sustainability. 

Recently in the journal Knowledge-Based Systems, the author Long Q, (2017), 

discusses a data-driven methodology for decision making in supply chains. It has into 

account data-granularity, business analytics, and the four basic dimensions for decisions 

in supply chains (Knowledge, time, information, and material flows). An experiment is 

done under the agent-based simulation paradigm. The next Figure represents his 

proposal.  

 

Figure 11: Data-Driven for SCM. Source: Long, 2017. 
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Martinsuo (2013) stated that in business, there are uncertainties and unforeseen 

events that add complexity to the project portfolio management. On the other hand, the 

updating practices and changes among their projects make day-to-day operations 

become challenges for the managers. In conclusion, Martinsuo states that the art of 

project portfolio management is like a negotiation or bargain to deal with multiple variables 

that could affect project development. 

2.4 Last-mile Execution Level in Transportation and Logistics. 

 

Urban distribution is responsible for 13% of the undesired congestion and 25% of 

urban emissions worldwide. It also accounts for 28% of total transportation costs (Roca-

Riu et al., 2012). Therefore, the industry, government, and academia seek to improve the 

performance of urban operations. However, urban distribution is a complex challenge 

given that it depends on multiple stakeholders that change delivery services 

(manufacturers and distributors) increase demand (consumers) and very environmental 

and traffic regulations (public sector) (Anand et al.,2012; Kim et al.,2015). Despite being 

a growing research field, there is a significant opportunity on understanding how (planned 

and unplanned) changes in city infrastructure (e.g., parking spaces and roadways), use 

of novel technologies, as well as the evolution of the urban logistics ecosystems,  drives 

high-performance strategies in urban distribution topics.  

For instance, the growing size of e-commerce, now representing business of 

US$97 billion (National Retail Federation, 2017), is re-scaling and changing supply chain 
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operations. Nowadays, last-mile services account for 53% of shipment costs due to a 

higher frequency of small, personalized orders. Consequently, the use of highly effective 

decision support systems is becoming more critical for all stakeholders. These systems 

must be able to address strategic and operational decisions for multiple stakeholders 

(Taniguchi et al., 2012, Macharis et al., 2014) through a set of additional, integral tools 

such as simulation, optimization, agent-based modeling, predictive tools, etc. These 

systems must also monitor and control operations by measuring their performance 

through multiple key performance indicators (e.g., costs, time). 

Building a generic system that integrates metrics, various decision levels, multiple 

stakeholders, and supplementary techniques is a huge challenge (Anand et al., 2012; 

Macharis et al., 2014). Furthermore, current proposals have focused on developed, 

mature environments that possess different characteristics for growing, developing 

contexts. Despite complex interactions and dynamic behaviors among various 

stakeholders are present in both cases, the evolution of the latter is more dependent on 

a set of features related to urbanization, socioeconomic changes, accessibility and 

retailing footprint (Mejía et al., 2017) and not just technologically driven as the former. 

These characteristics hinder or boost the performance of planning and execution of urban 

distribution strategies. For example, poor infrastructure adds more complexity to urban 

distribution due to the lack of alternative routes, inaccessibility to specific regions and 

increasing congestion to the most distant, densely populated areas (Blanco, 2013). There 

are just a handful of studies in developing countries that characterize urban logistics 

operations, but they do not address dynamic decision making. Also, there are no 

discussions regarding a platform composed of various complementary methodologies to 
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analyze, tailor urban distribution for these countries to keep profitable operations and 

improve performance (Joerss et al.,2016;) 

One of the primary growth drivers for last-mile activities is consumer behavior (Kim, 

2015). Consumer profiles have become more diverse and dependent on a large quantity 

of physical and internet-based retail channels. 

Furthermore, consumers seek more delivery, payment, and merchandising options 

to acquire their services and products. This increases the material flow in fragmented 

distributions to meet just-in-time shipments and avoid having stockouts to serve 

demanding consumers. 

On the other hand, cash and information flows must be synchronized to prevent 

wrong shipping orders from shippers (e.g., supplier, retailer) and returning them from 

small retailers and end consumers. These consumers are located in fast-growing 

metropolitan areas with poor infrastructure where companies perform millions of 

deliveries (Gutierrez et al., 2009, 2010a; Garza et al., 2011); therefore, using effective 

logistics strategies becomes a priority (Blanco and Fransoo, 2013).  Nano stores 

represent a huge part of this fragmented retailing landscape.  

A second driver that impacts efficiency in last-mile operations is related to driver 

decisions and expertise. Those components might shape value-added activities, react to 

customer requests, and overcome poor infrastructure. Therefore, driver behaviors 

influence logistics performance and help explain the gap between plans and real 

distribution operations (e.g., routes, schedules). Thus, including drivers’ knowledge into 

decision-making models and data-driven analytics will allow for synchronizing information 
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technologies with human experience to reach better time, service level, profit, etc. 

(Mahmassani, 2005).  

A third driver widely studied topic comes from geographic location and how it 

impacts the distribution performance. Methods that find the best routes to visit multiple 

users subject to distinct constraints such as capacity, fixed schedules, density and city 

topology have been widely documented in the vehicle routing problem (VRP) (Pillac et 

al.,2013) and in city logistics models (Kim et al.,2015; Taniguchi et al.,2012).  

The Heterogeneous vehicle routing problem with time windows is a class of the 

Vehicle Routing Problem (VRP) in which the capacity of the vehicles can be different 

(when is equal is called homogeneous fleet) and time windows are asking by the 

customers. There are many sources of research literature (theory and real-world 

solutions) on the VRP and its many classes; to point out some of them: Toth and Vigo. 

(2014), Cordeau et al. (2007), Golden et al. (2008), and Laporte (2009). 

Dynamic fleet and vehicle routing management is a promising avenue that has 

studied changing traffic, demand variants (Pillac et al., 2013). Recently, agent-based 

modeling integrated methodologies for various stakeholders (i.e., supplier, logistics 

operators, retailers, and city planners) in urban logistics (Anand et al., 2016), land use 

and transportation (Adnan et al., 2016).  

In the search for the best method to get close to the analysis and application of a 

systematic improvement to last-mile delivery, there is the exploring of the division of all 

people involved into those that can take decisions, and those who are participants or the 

actions of it are already pre-defined. For the first case, there are the urban consolidation 
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center operators, the carrier employees, and the shipping company employees. Isolating 

them, it becomes easier to apply further studies and verify what is possible to be done in 

terms of decision-making to improve the system (Van et al., 2016). 

The idea of pick-own-parcel stations, where customers are notified that their 

delivery arrived, and they can go and pick their packages have been presented some 

failures caused by the receivers themselves, such as not showing up after a few days. 

Although it would reduce the costs for the delivery companies (if they do not reduce their 

prices), it would not solve some other problems, as even more vehicles will be in the 

streets, creating even more traffic than using delivery trucks (Wanga et al., 2016). 

Together with it, there is an extensive list of approaches currently being applied in 

that system analysis. They might be demand or supply models – which are models in 

which the choices are either based on the agents given the transportation network or 

where the states of that transportation network can be reproduced, respectively - and 

demand-supply models, that includes computer simulation software modeling, especially 

agent-based simulation (ABS) (Basingab et al., 2017; Nagadi et al., 2018; Nuzzoloa et 

al., 2018). 

Other previous approaches include only the geographic positioning of the urban 

consolidation centers to reduce the distance of traveling by the delivery vehicles only. It 

does not get to the point to analyze traffic situations or a variety of things that directly 

impacts on the delivery system. Other methods apply probability and statistics to calculate 

shortest paths based on the client’s location, but they are aggregate the same issues as 

the other one (Van et al., 2016). 
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The focus on agent-based simulation is to define and uses a limited environment 

and creates behaviors and interactions based on probabilities inputted by the 

modeler/user (Nuzzoloa et al., 2018), and then use this to solve last-mile delivery logistics 

problems.  

On ABS, the agent can decide options that create the most efficient outcome, as 

well as understanding what is desirable and wanted by the simulation operator, therefore 

increasing the “focus” on walking towards an acceptable end goal. These decisions are 

most of the times limited by policies inserted by the user of the modeling software to 

create a system as close as possible to the real-world environment (Van et al., 2016). 

The inputs must fulfill a set of necessities that will feed the pre-analysis of the simulation. 

It includes all the relationships between agents, including how they interact with each 

other (Macal & North, 2005). The point is to assure that the interactions will be acceptable 

and will be performed to help the simulation. 

The growth in the distribution of goods in multimodal transportation planning always 

has been relevant for the industrial and economic growth of society. Specifically, for urban 

areas where the challenge to tackle the dynamics in these areas call for strategy 

development. The last-mile distribution uses the techniques and models for vehicle 

routing. Historical evolution of the solution approaches and trends are summarized in the 

following Figure 12. 
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Figure 12: Solution trends in vehicle routing problems (Adapted: Caceres et al. 2014). 

2.5 Literature review discussion 

 

Mathematical optimization and simulation models have widely studied each of 

traditional supply chain decision levels (strategic, tactical, and operational). However, 

most of the solution approach for the possible issues at each level, only focus on a single 

level isolated from others. In consequence, the methods for solving different problems in 

a supply chain are commonly applied sequentially. When a high-level issue is resolved, 

the outcome is transmitted to the other levels as a parameter. This solution approach is 

repeated for each level. Finally, the solutions are assembled to form a complete solution. 

In part, this is a common practice for the difficulties in the implementation stage (Chu et 

al., 2015).  
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On the other hand, the possible issues that can appear in one of the supply chain 

levels are related to each other. (Simchi-Levi et al., 2009). Data-driven approximations 

have been used to handle the integration of solutions. (Long, 2017).  

To address dynamic behavior and unstable conditions from logistics operations, 

hybrid techniques must be used to support the delivery process and adjust plans 

according to changes in critical factors according to a set of potential scenarios. Data 

analytics might be a first step to understand critic issues, build proper measurement 

systems, predict the evolution and lead stakeholders to reinvent their strategies, policies 

embracing technology and a data-driven culture (Hey et al., 2009; Brynjolfsson et al., 

2011).  

As described in the literature review, there has been an increase in research on 

the integration between execution and operative and tactical planning. Nowadays, these 

practices span mainly across in-process production industries. Different methodologies 

and perceived benefits of the integration are documented, despite the similar systematic 

challenges and characteristics faced in their respective complex and dynamic 

environments.  Generally, the studies that were further along with demonstrating the 

benefits of hierarchical integration have achieved it at both the strategical and 

organizational levels, which require feedback learning processes to learn from past 

behaviors, mistakes, and disturbances to deliver a better understanding of the decision 

process.   
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 Visual Analytics about the Literature Review 

A continuation of a short resume about some statistics in the literature review. To 

detect the number of journals for different analysis, a 0-1 matrix was built. The next Figure 

13 presents an example of the matrix. 

 

Figure 13: Example Matrix 0-1 for Journal classification. 
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The next Figure identifies the top five journals for publications. As a number one 

and with an essential difference versus the others is the journal: Computers & Chemical 

Engineering. This is due, most of the research is for processes in manufacturing. It is 

followed by the European Journal of Operations Research, the Industrial & Engineering 

Chemistry Research and the International Journal of Production Economics. 

 

Figure 14: Top 5 journals. 

Next Figure is a big picture of the journals where the literature review was collected. 

 

Figure 15: Names of Publication Journals. 

The following Figure depicts the techniques used for the solution; it should be 

noted the use of mathematical programming during all years. On the other hand, also, it 

is important to highlight the absence of artificial intelligence works between 2005 and 
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2012. The publications in 2005, probably were research made with 2-3 years previously. 

Almost a decade, where these techniques were not used in advertisements. However, 

since 2012, the number of books is increasing. In 2015 more variety of publications, 

where the use of the four approaches are reported. 

 

Figure 16: Solution method reported. 

About the execution process in supply chains, the next Figure represents the 

reported applications in scheduling, production planning, and transportation 

management.  

 

Figure 17: Type of application. 

Most of the applications are in scheduling and production, around 80%. The next Figure 

represents the application by percentage.  
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Figure 18: Percentage of Type of application. 

The next two Figures show the type of decision level. The most predominant are 

Tactical and Operative.  The execution level has small participation, around 10% against 

the operational with an approximate 25%. 

 

Figure 19: Decision Level in the supply chain. 
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Figure 20: Percentage Decision Level in the supply chain.

Finally, to sum up, the next Figure shows the number of papers per exciting topic 

and the following table is showing a table with the identified GAPS from the literature.  

 

Figure 21: Main Topics in the literature review. 
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2.6 Summary and Research Gap 

After the review, gaps were identified. Exact, heuristic and hierarchical algorithms 

have been studied and proposed to solve the delivery of goods, but a fast and reliable 

solution for real-world applications for organizations is still an inspiring task. The impact 

of dynamic conditions is significant for last-mile operations and forces most of the time, 

dispatchers to reschedule or adjust their decisions. Once the data is analyzed is possible 

to use it to make predictions about the behavior of the stakeholders; for this research, 

they are also called “agents.”  

A methodology which can do an integration of different decision levels, considering 

the dynamic complexities of the stakeholders and the dimensions of a real-world 

organization and learning from the experience has yet to be developed. Solutions still 

need to be researched for essential factors such as human behavior and the environment 

besides the common conditions from logistics operations. Predictive and prescriptive 

hybrid techniques must be designed to support the execution process and adjust plans 

to changes. Approaches show different methods but do not have into account the learning 

process from the stakeholders and the dynamism of the environment. With this gap, the 

research question was refined.  

 Potential Benefits of this Methodology 

The main potential benefit that is extracted from the previous analysis are: 

• Learning from the experience and simulations can bring more and better efficiencies 

for service in supply chains and specifically in last-mile operations. 
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• The methodology supports the design and analysis of key performance indicators.  

• Use of hybrid models to manage last-mile delivery operations in urban contexts and 

improve the execution phase in the supply chain. 

• Representation of stakeholders’ behavior involved in the delivery of goods. 

• The hierarchical methodology can bring a reduction of cost in the overall operation.   
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 RESEARCH METHODOLOGY 

3.1 Description of Research Methodology  

This research methodology aims to establish the necessary steps to address last-

mile delivery operations efficiently. The flow chart (Figure 22) describes the steps and 

actions followed in this research. 

 

Figure 22: High-Level Research Methodology. 
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 Research Identification and Gap Analysis 

The research started with the problem definition and preliminary questions on how 

decisions influence at each of the levels of a supply chain with emphasis on last-mile 

delivery. A literature review was performed. This was cover in Chapters 1 and 2.   

   After the review, gaps were identified. Deterministic models are, in general, not 

entirely appropriate for real-world applications. Exact, heuristic, and hierarchical 

algorithms have been studied and proposed to solve the delivery of goods, but a fast and 

reliable solution for real-world applications for organizations is still an inspiring task. The 

background research for this topic entailed both journals and personal experience in 

academia and corporations.  These have been allowed the interaction with stakeholders 

in the logistics and technological environments in addition to active attendance and 

participation at conferences, webinars, and workshops.  The subject matter expertise in 

supply chain operations helped shade the current state of the art and its main challenges. 

The theory provided the engineering/research skillset to define the main components of 

the proposed methodology.  

The impact of dynamic conditions is significant for last-mile operations and forces 

most of the time dispatchers to reschedule or adjust their decisions. Once the data is 

analyzed is possible to use it to make predictions about the behavior of the stakeholders; 

for this research, they are also called “agents.”  

A methodology with the architecture and tools able to do an integration of different 

decision levels, considering the dynamic complexities of the stakeholders and the 
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dimensions of a real-world organization and learning from the experience has yet to be 

developed. Solutions still need to be researched for essential factors such as human 

behavior and the environment besides the common unstable conditions from logistics 

operations. Predictive and normative hybrid techniques must be designed to support the 

execution process and adjust plans to changes. Approaches show different methods but 

do not have into account the learning process from the stakeholders and the dynamism 

of the environment. With this gap, the research question was refined. A continuation is 

described as the last-mile delivery methodology and its principals’ components. 

3.2 Last-mile Delivery Methodology   

Researches and industry managers have realized the need to improve the 

execution of daily transportation operations and noted how it had become a source of 

competitiveness growth and cost reduction. Routing planners struggle to accurately set 

and forecast delivery routes based on the day of the week, time, location, customer, and 

driver behavior. High traffic in urban areas, customers location, buyer regret, lack of 

nearby parking, elevators out of service, and many other operational issues, all add cost, 

time and troublesomeness to this critical activity. Given the challenges transportation, 

supply chain managers, and city planners face with managing data complexity and 

prediction techniques; some gaps have been exposing in this research.   

 Stakeholders analysis  

Traditionally the literature mentions four stakeholders for city logistics: shippers, 

freight carriers, administrators, and clients (Taniguchi et al. 2011). These stakeholders 
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have distinct behaviors to pursue different objectives. For instance, cost reduction is a 

common interest of profit maximizers like shippers, carriers, and money savers like 

consumers; while administrators are more aware of traffic congestion, accidents, and 

environmental problems. Table 3 presents a short description of each player in urban 

logistics with the respective goals, measurement indicators, and their characteristics in 

certainty and variability. 

Table 3: Stakeholders of last-mile delivery decisions 

 

 

Data Analysis

Stakeholder Description Objective/Goals Data Measurement Deterministic Probabilistic Static Dynamic

Better traffic Traffic regulations x x

Control  Environment CO2 emiss ions . x x

Infrastructure Investment Low/High emiss ion areas

Land Use Traffic congestion - flow x x

Road Safety Type of use (res identia l , bus iness ) x x

Truck Weight l imits  per zone x x

Additional  travel  time x

# of Accidentes x

Pol lution

Customer service Transportation Cost x x

Meet time windows Fuel  Consumption x x

Reduce costs Driver Infractions x x

% Rejections x x

Capacity Uti l i zation x x

Travel  times x x

Number and % Fleet Use x x

Customer service Capacity Uti l i zation x x

Rel iabi l i ty of transport Driver Infractions x x

No damage in products % Fleet Use x x

No delays  Service Cost

Increase safety % OTIF (On time-In ful l ) x x

% Rejections x x

Obtain what they look for. Frequency x x

Time, quanti ty and price Locations x x

time windows Time windows x x

Number of Returns x x

Meet the demand x x

Minimize traffic congestion 

and accidents . Some 

external i ties  l ike pol lution 

or noise

Literature 

Source

Taniguchi  et 

a l . 2012

Kin et a l . 

2017

Anad et a l . 

2012

Alho et a l . 

2017;  

Rathore et 

a l . 2016;  

Mahmassan

i . 2005.

Macharis  et 

a l . 2014

Manufacturers , 

wholesa lers , 

reta i lers

Workers , kids  

(School), eldery 

population, regular 

pedestrians .

Transporters , 

warehouse 

companies , 3PLs

Local , s tate and ci ty 

governments . 

Decis ion Makers

The customer is  

who buys  products  

from bus inesses , 

the consumer uses  

the bus iness  

products  (Can be a  

customer)

City 

Goverments

Inhabitants

Carriers

Shippers

Customer 

and 

Consumers

Certainty Variability 
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This analysis focus on quantitative metrics, such as time, quantity, performance, 

and rates. Once the performance system is created, and the interrelations are 

understood; the parameters can be used to make decisions for multiple stakeholders 

under the different circumstance and the respective levels. Consequently, the system 

should assess performance and compare solutions in real time to adjust strategies to 

meet goals and requirements. This capability would depend on the most likely scenarios 

to reduce delays, lost sales, costs, risk, and poorly planned resource allocation. Thus, 

near real-time decision making predictive tools under uncertain situations becomes a 

state-of-the-art tool to link forecasted performance with the execution of the operations. 

This is a complex problem with a variety of situations. For example, Table 4 shows 

anomalies that can occur during the execution of the route. There is a list of possible 

offline and online actions (Hentenryck et al. 2009).  Once one or more of these anomalies 

happen, the previous order must adjust depending on the conditions (signals of the 

environment).  

Table 4: Possible anomalies and actions in the distribution of goods in a city. 

 

 

Possible Anomaly/Disruption Action Off-Line Action On-Line. Rules Literature Sources

Previous Profile Demand per customer 

Hold the truck in the zone where the order 

are likely to arrive

Identify available cars in the zone.

Customer Cancel the order during the 

Day Previous Profile Demand per customer 

The customer is not in the delivery 

location
Reschedule for same day or different day

The customer don’t pay the delivery

Product rejection

Theft of merchandise

Vehicle accident Driver Profile

Via in construction(road closures) Alternative routes

Traffic Jam

New customer order arise during the 

day

Powell et al, 2005. 

Ichoua et al, 2006.     

Van et al, 2009.     Pillac 

et al, 2012. Fleischmann 

et al, 2014.                       

Identification of zones where customer are likely to 

order

Customer Profile

Re-Scheduling a Car in the zone

Rerouting 
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It is known that we must be able to measure a process to improve it (Drucker, 

2012). Data accessibility eases monitoring improvements but devising the right 

performance measurement system supports an effective decision-making process. 

Nevertheless, choosing the most suitable performance indicators is not trivial because 

they differ among stakeholders, processes, and even depending on the stage of the 

decision.  

Therefore, their configuration becomes essential to evaluate progress comparing 

a baseline case (i.e., reference level) with pre-defined objectives to various alternative 

scenarios. This also helps to track the improvements in current logistics operations and 

shape decisions under uncertain environments and diverse potential situations to 

guarantee better performance (Giaglis et al. 2004). 

 Simulation Environment  

 

A simulation software environment is used to represent the behavior of 

stakeholders and driver’s total delivery time, which is divided into two main components: 

uncertain service time at customer locations and uncertainty travel time on roads. 

Simulations have the potential to be used with the associated variables. The city also has 

different characteristics, depending on the zone. Travel times to go from one customer to 

another depends on the routes, the velocity, and the order of the visiting for each vehicle 

(Kim et al., 2016). 
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 Stakeholders in the Simulation Environment 

 

For this research, three main agents are studied and applied in the simulation: 

drivers, customers, and the city. 

3.2.3.1 Driver-Vehicles 

 

The vehicle agent is the agent of the driver. The velocity affects the travel time 

directly. Uncertain travel times are modeled as random variables (VanWoensel et al. 

2008) usually; the information is condensed to stochastic travel times per path between 

the nodes and represented by a probability distribution. Burr, Weibull, Gamma, lognormal 

are classic distributions used in this case (Susilawati et al. 2013; Gómez et al. 2015; Groß 

et al. 2015). These distributions show a positive skew meaning that values indicate the 

significant amount of the density being below the mean value and the tail with low 

probability. Another characteristic of the drivers is the same person who does the delivery; 

he/she must park the car, go walking until the address “knock the door” and deliver the 

product. This set of activities can be called “service activities” and has a related: service 

time. In the literature, it is common to find service time modeled with triangular or normally 

distributed (Errico et al. 2016). Also, it is essential to point out the influence of the 

customer in this service time (Souyris et al. 2013). 
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3.2.3.2 Customers 

The customers shopping behavior can change depending on the time of the year. 

Usually, companies detect two main seasons: valley and peak demands. The modeling 

of this is generally made through the analysis of historical data (Erera et al. 2009). During 

the season, the normal or uniform probability distribution is usually used to set up the 

number of orders per day (Secomandi, 2000). The geographical location where the 

demand showed up is modeled often through uniform distribution per zones and time of 

the year (Bertsimas et al., 1991). 

Examples of the type of customers in a city are mom and pop stores, 

supermarkets, residents (townhouses or buildings), etc. 

3.2.3.3 City 

Uncertainty environment in a city due to changes in travel times for roads 

infrastructure or weather conditions, parking availability are some of the factors that 

incorporate challenging decisions or policies to meet customer demands and time 

windows. Which directly affects the services levels and operational costs when policies 

need to be updated and adapted with the information received from the environment. 

Table 5 depicts what can affect the estimated time of arrival in a city considering certainty 

and variability in their occurrence.  
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Table 5: Characteristics that affect the estimated time of arrival of goods in a city. 

 

The quality of the data directly affects the effectiveness of the models where it is 

used to make decisions. At the same time the correct identification of variability in the 

data trough probability distributions, and aligned with changes on time, for example during 

peak or valley traffic times in a city, determine a more realistic approximation to the reality 

and the quality of the outputs in the models. 

 Metrics for the distribution operation  

Last-mile operations comprise a wide variety of logistics processes, but they are 

mainly linked to four main pillars: customer behavior, staff (driver) behavior, geographical 

issues, and congestion conditions. Metrics such as estimated time of arrival (ETA), cost 

to serve, service level, among other KPIs linked to logistics are closely related to 

Deterministic Probabilistic Static Dynamic

Day/Hour x x

Weather x x

Infrastructure x x

Density x x

Parking zone x x

Topology x x

Geography x x

Expertise x x

Performance x x

Time Windows x x

Locations x x

Building Specs. x x

Security x x

Delivery inst. x x

Traffic

Location

Driver

Customer 

Literature Source

Mahmassani, 2005

Alho et al. 2017; 

Velasquez et al. 2017

Toledo et al. 2007

Macharis et al. 2014

Certainty Variability 
Feature

KPI's Characteristics
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distribution procedures. Figure 23 highlights some characteristics of these indicators. 

There are two main groups: i) Travel issues that are affected by traffic conditions, location 

characteristics and vehicle driver performance (geographic and external non-controllable 

elements) (Montoya et al., 2009) and ii) service issues that influence mainly by consumer 

and driver behavior (human factors). 

 

Figure 23: KPIs for last-mile delivery operations. 

 Definition and development of steps for the last-mile methodology 

Many types of research have proposed different methods to handle the vehicle 

routing problem. The solutions are usually divided into three types: exact, heuristic, and 

hierarchical approaches. However, there is not a complete methodology to handle 

dynamic environments and stakeholder behaviors. 
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Techniques from descriptive statistics, machine learning techniques (prediction), 

and optimization methods (prescription) are used to reduce operational gaps in the 

execution process for the last-mile delivery operations.  

This proposed methodology has five main steps. Figure 24 shows every activity 

and how they are linked to each other.  

 

Figure 24: Last-mile Methodology description. 

The first step is the storage of historical data and data collection from the delivery 

operations. The second is data analysis and clustering. Third, the modeling process and 

their approaches to solving the routes. Then simulation models and experiments over the 

founded routes. Finally, step five, we propose learning procedures to capture the 

experience from past deliveries and the conditions of the agents and can handle last-mile 
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operations with efficiency. Figure 25 show the road map for each of the steps, linked with 

the main outcomes, methods and interrelationships. 

 

 

Figure 25: Last-Mile Methodology: methods map and interrelations 

3.2.5.1 Step 1: Historical and data collection. 

 

 It is essential to get data from the daily vehicle operation, like customers behavior 

(service time and locations), characteristics of the environment of the process (zone of 

the city, parking, infrastructure, population density, etc.) and of course all the associated 

costs and time parameters (probability distributions in velocity, parking and service time). 

These data are used as input in the proposed models.  
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Once all the execution has been made, performance indicators feed the 

databases, to improve the algorithms and decisions.  

3.2.5.2 Step 2: Data Analysis 

Transportation managers have been identifying the importance of having some 

sense of future demand and type of products to plan their resources. With this in mind, 

we propose to have clarity in the following aspects: the variety of customers, demand per 

type of customer, characteristics of zones in the city, and customer assignation for each 

vehicle. 

In this second step, data is analyzing by using data mining techniques to detect 

patterns and identify current significant variables. In this way, for example, customer 

profiles can be grouped. For last-mile operations is essential to create a geographical 

analysis to identify operation areas. Usually, the last-mile delivery process starts with 

cluster allocation. These clusters are defined based on the characteristics of the customer 

(demand, time window, etc.) and the availability of resources. This process identifies the 

areas and regions where requests are made with different characteristics, like the type of 

infrastructure, velocity during peak and valley times, and parking time. 

3.2.5.3  Step 3: Modeling Formulation 

 

The modeling formulation is designed to improve operations and set up potential 

actionable scenarios to respond immediately to changes (short term) and create a set of 
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strategies to react under diverse circumstances (medium term). For example, in a vehicle-

dispatching operation, all predictive models are based on elements from the drivers such 

as delivery locations, traffic conditions, possible routes, and behaviors/preferences.  

The decision-making part oversees the use of heuristics and optimization tools to 

define actions in operations.  A continuation of the general mathematical model, to 

support the plan for resources is described. 

The Heterogeneous vehicle routing problem with time windows is a class of the 

Vehicle Routing Problem (VRP) in which the capacity of the vehicles can be different 

(when is equal is called homogeneous fleet) and time windows are asking by the 

customers. There are many sources of research literature (theory and real-world 

solutions) on the VRP and its many classes; to point out some of them: Toth and Vigo. 

(2014), Cordeau et al. (2007), Golden et al. (2008), and Laporte (2009). The following 

model depicts similar equations to the ones proposed by the literature. 

This model allows a decision maker to define a vehicle routing to serve a set of 

nodes N that represent customers, from a depot {0}. Each link between a pair of nodes 

(i, j) represents an arc A. Based on these features, the vehicle routing problem (VRP) 

might be summarized in a graph G= (N, A). An example is shown in the next chapter to 

illustrate how the proposed model works in a hypothetical case based on real data. 

 This model allows a decision maker to define a different fleet size and vehicle 

routing to serve a set of customers. Symmetric costs for distances are assumed, and the 

costs are dependent on the vehicle type. Let G= (N, A) be a graph where N= {0} U {1, n} 
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U {n+1}. C= {1, n} is the set of customers and {0} and {n+1} represent the depot. K= {k1, 

K2…K} is the set of different vehicle types. 𝐴 ⊆ 𝑁𝑥𝑁 Are the possible edges between the 

set of nodes. Some edges that are excluded include (i, i),(i,0),(n+1,i) where 𝑖 ∈ 𝑁.  

Main assumptions of this model: 

• Time windows to serve the customers. 

• Limited amount of vehicles type. 

• Aggregate demand (no differentiation in products. It can be assuming weight and 

volume) 

• Average speed   

• All products are aggregated into a single category based on weight 

Index 

• 𝑖, 𝑗     𝑛𝑜𝑑𝑒𝑠/𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

• 𝐾       𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑘  

Parameters  

• capk     capacity vehicle type k (weight) 

• c(k)      operational costs of vehicle k, based on operational cost per hour 

• d(i)        demand node i (demand) 

• d (i, j)       distance between nodes (customers).  

• s(k)  average speed of vehicle k 

• tvj,k The vehicles k allowed in node j {1 is allowed, 0 Otherwise} 

• infwi    Lower limit for time window for customer i 
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• upwi   Upper limit for time window for customer i 

 

Variables 

• Z           objective function 

• Y(i,j,k)      product (weight) transported through the arch (i-j) in vehicle type k 

• X(i,j,k)     1 if the vehicle k travels the arc (i-j) and 0 if the vehicle k does not travel the 

arc (i-j) 

• VK(k)      quantity of vehicles type k 

• Q(i,j,k)      quantity of product transported from node i to node j in vehicle k 

• U           auxiliary variable which determines the order of the vehicle k visit node i, (* 

a   maximum quote is recommended, the upper limit (number of vehicles 

plus one))  

• E(n,k)   Instant when vehicle k enters into node i 

• S(n,k)   Instant when vehicle k goes out from node i 

 

Equations 

𝑍 = ∑ ∑ ∑ ((𝐶𝑘 ∗ (𝑆𝑘)−1
𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 ∗ 𝑋𝑖,𝑗,𝑘 ∗ 𝑑𝑖,𝑗) + ∑ 𝑉𝑘 ∗ 𝐹𝐶𝑂𝑆𝑇𝑘𝑘∈𝐾 ) ( 1 ) 

∑ ∑ 𝑋𝑖,𝑗,𝑘 = 1𝑗∈𝑁𝑘∈𝐾         ∀𝑖 ∈ 𝑁  ( 2 ) 
∑ 𝑋𝑖,𝑗,𝑘 =𝑖∈𝑁 ∑ 𝑋𝑗,𝑖,𝑘𝑖∈𝑁        ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 3 ) 

∑ ∑ 𝑌𝑖,𝑗,𝑘 −𝑘∈𝐾𝑖∈𝑁 ∑ ∑ 𝑌𝑗,𝑖,𝑘𝑘∈𝐾 = 𝐷𝑗        ∀𝑗 ∈ 𝑁𝑖∈𝑁  ( 4 ) 

∑ ∑ 𝑌𝑖0,𝑗,𝑘𝑘∈𝐾𝑗∈𝑁 =   ∑ 𝐷𝑖𝑖∈𝑁  ( 5 ) 



 

71 
 

∑ ∑ 𝑌𝑖,𝑖0,𝑘𝑖∈𝑁𝑘∈𝐾 =  0        ∀𝑖 ∈ 𝑵 ( 6 ) 

𝑌𝑖,𝑗,𝑘 ≤ 𝑋𝑖,𝑗,𝑘 ∗ 𝐶𝐴𝑃𝑘        ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 7 ) 

∑ 𝑋𝑖0,𝑗,𝑘𝑗∈𝑁  =  𝑉𝐾𝐾       ∀𝑘 ∈ 𝐾 ( 8 ) 

∑ 𝑋𝑖0,𝑗,𝑘𝑗∈𝑁  = ∑ 𝑋𝑖,𝑖0,𝑘𝑖∈𝑁         ∀𝑘 ∈ 𝐾 ( 9 ) 

𝑈𝑖,𝑘 − 𝑈𝑗,𝑘 + |𝑁| ∗ 𝑋𝑖,𝑗,𝑘 ≤ |𝑁| − 1 ( 10 ) 

𝑥𝑖,𝑗,𝑘 ≤ 𝑦𝑖,𝑗,𝑘 ∗ 𝑇𝑣𝑖,𝑗,𝑘 ( 11 ) 

𝑦𝑖,𝑗,𝑘 ≤ 𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝑗      ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 12 ) 

𝑒𝑗,𝑘 ≥ 𝑠𝑖,𝑘 + [
𝑑𝑖𝑠𝑡𝑖,𝑘

𝑎𝑆𝑝𝑒𝑒𝑑
] ∗ 𝑥𝑖,𝑗,𝑘 +  [𝑥𝑖,𝑗,𝑘 − 1] ∗ 𝑏𝑚   ∀𝑖, 𝑗, 𝑘 ∈ 𝐼𝐽𝐾 ( 13 ) 

𝑠𝑖,𝑘 = 𝑒𝑗,𝑘 + [(∑ 𝑦𝑗,𝑖,𝑘 − ∑ 𝑦𝑖,𝑗,𝑘𝑖,𝑗,𝑘∈𝐼𝐽𝐾𝑖,𝑗,𝑘∈𝐼𝐽𝐾 )/𝑙𝑟𝑎𝑡𝑒] ( 14 ) 

𝑒𝑖,𝑘 + 𝑑𝑒𝑣𝐸𝑛𝑡𝑖,𝑘 ≥ 𝑖𝑛𝑓𝑤𝑖 ∗ [∑ 𝑥𝑗,𝑖,𝑘 − 𝑏𝑚[1 − ∑ 𝑥𝑗,𝑖,𝑘𝑖,𝑗,𝑘∈𝐼𝐽𝐾 ]𝑖,𝑗,𝑘∈𝐼𝐽𝐾 ] ( 15 ) 

𝑠𝑖,𝑘 − 𝑑𝑒𝑣𝑆𝑎𝑙𝑖,𝑘 ≤ 𝑢𝑝𝑝𝑤𝑖 ∗ [∑ 𝑥𝑖,𝑗,𝑘 − 𝑏𝑚[1 − ∑ 𝑥𝑖𝑗,𝑘𝑖,𝑗,𝑘∈𝐼𝐽𝐾 ]𝑖,𝑗,𝑘∈𝐼𝐽𝐾 ] ( 16 ) 

𝑋𝑖,𝑗,𝑘 ∈ {0,1} ( 17 ) 

𝑌𝑖,𝑗,𝑘 ∈ 𝑅+ ( 18 )                                                                                    

 

 Equation (1), the objective function considers fixed and variable costs of the vehicles. 

The vehicle cost in $/hr is multiplied by the inverse of the speed, hrs mile, to yield a charge 

per mile. This multiplied by the distance, and Xi, j, k yield the cost for a specific route in 

vehicle k summing across all routes gives the total operational cost.  

Constraints (2) state that each customer is visited for one vehicle. Equation (3) 

ensures the vehicle of the same type arriving at a customer will also leave the customer 

(different kind of vehicle can go in the same arc). (4) Represents the movement of goods, 

considering that all customer demands must be satisfied. Equations (5) and (6) ensure 
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that the total quantity when leaving the depot is equal to the customer demands on the 

routes and that nothing is returned to the depot. Constraint (7) make sure that goods can 

travel from i to j only when there is a vehicle traveling from I to j, and that total load on arc 

(i, j) cannot exceed the capacity of the vehicle assigned to that edge. Constraint (8) 

calculates the total number of vehicles per type K (it is not completely necessary). 

Constraint (9) says that each vehicle that leaves the depot node i0, it must eventually 

return to the depot node. Constraint (10) eliminates sub cycles per vehicle. Constraint 

(11) ensures deliveries are made only when the vehicle is allowed to enter the destination 

node. Under certain conditions, depending on the infrastructure of cities, Equation 12 

says that the amount of product transported in vehicle k along path i-j, cannot exceed the 

maximum load allowed in the destination node j. In case the situation involves time 

windows equations 13 to 16 should be used and not the equation 10. Equation (13) 

determines the instant when vehicle k arrives at node k, Equation (14) determines the 

moment when vehicle k leaves node k. Equation (15) set the early time to enter node c 

for each truck that goes there. Equation (16) allows to set a delay time to leave node c 

for each vehicle that was there, and equations (17) and (18) are the binary and favorable 

conditions for the variables. 

Most of the approach solutions in the literature are heuristic or metaheuristic 

algorithms; good heuristics can provide the right answers in a reasonable time. For small 

instances, the integer programming formulation works well. For bigger instances, this 

model takes a long time to find optimal solutions. As we mentioned exact, heuristic and 
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hierarchical algorithms continue been proposed to bring fast and reliable solutions for 

real-world applications. 

To reduce the routing planning time for bigger instances a 3-parts approach 

heuristic is proposed: 

Part 1: Mixed Integer Programming model to identify the number of vehicles to use.  

Index 

• 𝑖, 𝑗     𝑛𝑜𝑑𝑒𝑠/𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 
• 𝐾       𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑘  

Parameters  

• wck       capacity vehicle type k (weight) 

• vck       capacity vehicle type k (volume) 

• wi        demand node i (weight) 

• vi       demand node i (volume) 

• di, j       distance between nodes (customers).  

• maxTwk   Upper limit for time window for vehicle k 

• tci      Total customer i service time  

• ck  Fixed cost of vehicle k 
Variables 

• Z           Objective function 

• Yk         1 if vehicle k is used 

• Xi,k       1 if the customer i is assigned to vehicle k  
 

Equations 

Min 𝑧 =  ∑ 𝑌𝑘 ∗ 𝑐𝑘𝑘  ( 19 ) 

Subject to: 

∑ 𝑤𝑖 ∗ 𝑋𝑖,𝑘 ≤ 𝑊𝐶𝐾        ∀𝑘𝑖  ( 20 ) 

∑ 𝑣𝑖 ∗ 𝑋𝑖,𝑘 ≤ 𝑉𝐶𝐾        ∀𝑘𝑖  ( 21 ) 

∑ 𝑋𝑖,𝑘 = 1        ∀𝑖𝑖  ( 22 ) 
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𝑋𝑖,𝑘 ≤ 𝑌𝑘           ∀𝑖, 𝑘 ( 23 ) 

∑  𝑖 𝑋𝑖,𝑘 ∗ 𝑡𝑐𝑖 ≤  𝑚𝑎𝑥𝑇𝑤k           ∀𝑘 ( 24 ) 

 𝑋𝑖,𝑗,𝑘 ∈ {0,1} ( 25 ) 

𝑌𝑖,𝑗,𝑘 ∈ 𝑅+ ( 26 ) 

 

Part 2: In the second part is necessary to allocate customers to vehicles. Clustering 

analysis aims to set clusters or groups. In logistics operations methods like K-means, K-

medoids and DBSCAN have been used to do clustering (Cömert, et al. 2017). This part 

consists of two main parts. Once we have the locations of the clients in the geographical 

area and the number of vehicles to be used, it is necessary to assign the clients to the 

vehicles. For this purpose, we first identify the location of "centroid" clients, that is, clients 

that will serve as a starting point in the different zones. This can be done with a 

clusterization method, k-means for example which help to identify the centroids which are 

apart from each other depending of distances. Then following phase, it to use a classic 

assignation model where customers have to be assigned to the founded centroids to meet 

the weight and volume restrictions. Figure 26a represents the first step, blue points are 

the "centroid". Figure 26b shows the assignment. 
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a b 

Figure 26: Customer Allocation to vehicles. 

In the third part is necessary to set up the sequence of the visiting for each of the 

customers and validated with the actual grid of the city (e.g. with google maps). For this 

we propose to use the formulation for the travel salesman problem for each of the 

vehicles.  

𝑀𝑖𝑛 ∑  𝑖,𝑗∈𝐴 𝑋𝑖,𝑗 ∗ 𝑑𝑖,𝑗 ( 27 ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑  𝑗 𝑋𝑖,𝑗 = 1 ∀𝑖 ( 28 ) 

∑  𝑖 𝑋𝑖,𝑗 = 1 ∀𝑗 ( 29 ) 

𝑈𝑖,𝑘 − 𝑈𝑗,𝑘 + |𝑁| ∗ 𝑋𝑖,𝑗,𝑘 ≤ |𝑁| − 1 ( 30 ) 

Figure 27 shows a summary of the general steps to find the routes: 



 

76 
 

 

Figure 27: Phases to find out the routes per vehicle. 

3.2.5.4 Step 4: Simulation and Experiments  

 

Once is clear each of the routes for each of the vehicles, the methodology 

proposes the use of simulation models to run experiments (parameter variation) and 

analyze the outputs to make better decisions about the real-world operation. Furthermore, 

due to the complexity of last-mile operations, this methodology also has into account the 

advantages of learning procedures. We are proposing the use of Discrete Event 

Simulation due to model (discrete) sequence of events in time agent-based simulation, to 

recreate behavior and interrelationships between stakeholders (agents) and system 

dynamics to recreate causality between entities in the system and to evaluate policy 

analysis and design. to extract decisions (policies) from the simulated system, combining 

the simulation modeling environment with reinforcement learning. 
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The simulation environment allows representing the different steps involved in the 

last-mile delivery operation. Figure 28 illustrates the decision process for the vehicles. 

Once the vehicle is loaded with goods, it follows the following actions: 

 

Figure 28: Last-mile delivery steps. 

3.2.5.5 Step 5: Learning 

Once the optimization models have been used to configure the resources 

(vehicles) and the routes have been defined and recreated in a simulation model, to check 

the assumptions in time, the last-mile operation becomes an execution problem. That is, 

the execution of the delivery translates into predicting and executing the best routes in 

the environment to provide an excellent service level. 

Decide the next 
customer to 

visit.

• Can be by an 
algorithm or 
randomly selected  
between the 
customers 

Parking and 
Unload

• Depends of the 
zone in the city

Go and

Reach the 
customer

Come back to 
the vehicle

Choose the 
next customer 

to visit 
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Define the best sequence of visiting customers is a crucial factor for service time. 

This is the classical problem called Milk Route or Traveling Salesman Problem (TSP) 

which involves the visiting of a set of customers, starting and finishing at the same place 

(generally a hub or depot), visiting each customer one time at a minimum cost. The most 

useful algorithms in mathematical programming to solve the TSP are based on 

decomposition methods (e.g., Branch and Cut, Column Generation), which indicates 

using solvers and high computational time for larger instances. As we saw, changes in 

the environment or customer behavior like new orders and cancellations are frequent in 

distribution logistics. Consequently, the first routes from the optimization models can 

change and should be modified  in a short time. Have algorithms that can handle these 

behaviors in a short time is a great advantage to improve the operation. 

Recent advances in the use of machine learning in logistics and supply chain 

problems (Rabelo et al. 2018), has demonstrated how neural networks and reinforcement 

learning approaches are good choices to handle the problem of the VRP (Bello, et al., 

2016; Nazari, et al., 2018) 

Our methodology proposes the use of a playground where the agents can learn in 

the simulation environment. As was shown in the previous section, conditions affect the 

time of the delivery. Different situations can be simulated in this playground to do trial and 

error and to learn from the mistakes and achievements. The research contributes by 

considering learning procedures to create an effective prediction and prescription tools to 

achieve last-mile delivery goals.  
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We are proposing the use of Reinforcement Learning with neural networks to 

capture the behavior of routes and the environment. Once these algorithms are trained, 

the velocity of the solution is very convenient for transportation managers, in contrast with 

classical optimization models or heuristics, that does not have into account the changes 

of conditions of the environment or customers mind, by learning from the experience. 

Figure 29 recreates a neural network, where the input data are the environmental 

conditions, and the output is the sequence of the customers to visit. To train the networks 

is used the recognized policy gradient approaches. 

 

 

Figure 29: Neural network representation. 

First, we define a neural network that can learn from optimal or best solutions in 

the environment. Usually, geometric metrics have been very successful in predicting the 

order of visiting, when, for example, a new customer arrives or cancel (Abdel, 2010). The 

output is the sequence that the driver must follow. 

 

Figure xx neural network 
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Secondly, we are proposing to use the principles of Reinforcement Learning (RL), 

which is an area of machine learning which use software agents to take actions in an 

environment to achieve a goal. The impact of the action in the environment is called a 

reward. The rewards are used to measure the performance of the agents (Sutton et al. 

2018).  Figure 30 depicts the interaction between the environment (real or simulated) with 

the agents, creating states, and rewards from the actions in a feedback loop. 

 

Figure 30: Interaction Agent-Environment. 

 The last-mile process involves agents (vehicles, customers) interacting with an 

environment (city, ocean, air); the interaction provides numerical reward signals (route 

time). The general goal is then, learn how to take actions (which customer to visit next) 

to maximize the reward (time service). 

The simulations can generate scenarios, creating situations not realized or 

experienced in the last-mile operations to be trained on. Once the decision maker has 

had into account different “emergent behaviors” the same simulation environment can be 

used to test the outputs of the learning algorithms (e.g., neural networks) and explore 

their capability to be used more confidently for the transportation managers. The objective 
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of the training experiments is to train an artificial neural network to be able to control the 

decisions to find a route. It will do this by learning policy (or its strategy for which action 

to choose) that best decide the path in geographical space. 

Once the initial routes are defined, either by any of the methods (exact, heuristic, 

and clustering) or by the trained neural network, it will be used to explore new routes and 

try to find best trajectories under a dynamic environment in terms of rewards. Then 

samples of such paths are collected to re-train initial policies and used them in the 

simulation environment. With this pre-processing sequence, the “agent: driver” set 

possible decisions, resulting in an efficient operation, identifying the rewards and feeding 

future choices. The general process is represented in Figure 31. 

 

Figure 31: Route improvement. 

Thanks to the simulation environment, it is possible to learn better routing policies 

from thousands of simulation experiments in many different conditions that reproduce 

behaviors analyzed in the real world. These measurements guide management decisions 

for the platform and support the decision making for various stakeholders by considering 

their experience and interactions to get mutual benefits. 
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We are proposing a learning process based on indicators (rewards). The system 

can “learn” from the best practices and follow a continuous learning process. Based on 

the experience of past deliveries and logistics operations, the system captures rewards 

and acquires those which improve the system.  

The simulation and the learning procedures support the dynamic, stochastic 

decision making by considering how distribution strategies are performing versus pre-

defined goals. Feedback loops help to adjust plans to react to deviations based on 

available resources and feeding data from self-learning processes.  

The methodology assumes to have traffic and customer patterns as data entry, 

using the location data collected from the GPS tracking technology and sensor in the 

streets. However, given that the schedule of a customer and the traffic can change, for 

unpredicted reasons is possible the existence of differences between the planned delivery 

routes and the execution. Thus, a set of distinct patterns for the estimation process and 

determination of scenarios can be used as an initial solution. They are predicting the last-

mile routing and their corresponding KPIs, given real-time information from sensors and 

customer service. The data is given to select supplementary scenarios that support 

decision making under diverse circumstances to improve various KPIs. 

3.2.5.5.1 Formalization of the Reinforcement Learning approach  

We can formalize the RL problem for last-mile operations under the view of a 

Markov Decision Processes (MDP). The MDP is the mathematical formulation of the RL 
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problem and satisfies the Markov property, which is that the current state completely 

characterizes the state of the environment. 

With the MDP is possible to represent the decision-making at different epochs or 

states, which the operation evolves stochastically (Powell, 2007). 

The Markov Decision Processes (MDP) is represented by tuples of elements which 

are: possible states, actions, and rewards, in consequence, a state, action pair create a 

function mapping from state action to obtain a reward. Also, the MDP is a transition 

probability distribution over the next states that are given to transition for the state, action 

pair. And finally, it has a gamma, a discount factor between 0 and 1, which is to set how 

much we value rewards soon versus later (Puterman, 1994). A continuation is a 

description of the last-mile delivery problem. 

 A set of state spaces {s1 ··· SN}: which contain the information to make routing 

decisions and each epoch k. It includes Vehicle location, Customer Location, time 

window. The next state is predicted given the current state and the decision (Action) to 

go to the subsequent request.  

 A set of actions {a1 ··· aM}: action should be selected and each decision epoch 

k.  This determines the next customer to serve or not. When the vehicle is in the route is 

possible to change the order in which it serves the customers. It depends on real-time 

information.  

 A set of rewards {r1 ··· rN} (one for each state). The reward is calculated as a 

contribution and comes from the calculation of the performance indicators. In RL is 
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expected to learn the best actions to obtain the best rewards to improve the total system. 

In the case of last-mile, the rewards can be calculated from distances or time of the routes 

(logistics performance indicators). 

  A transition probability function P is a Markovian transition model where P(xj | xi, 

k) represents the probability of going from state xi to state xj with action at 

( )P Prob Next  and using action k

ij j From i k= = =  

Therefore, the way the Markov Decision Process works is that at time step t=0, 
environment samples initial state S0 ~ P(s0 ) . Then, for t=0 until is done, the algorithm 
iterates in this loop (Figure 32):  

- Agent selects action at  

- Environment samples reward rt ~ R( . | st, at ) 

 - Environment samples next state st+1 ~ P (. | st, at )  

- Agent receives reward rt and next state st+1 

The agent keeps looping until the episode is over.  

 

 

Figure 32: State-Action Loop. 
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Based on these characteristics, it is possible to define policy π. This is a function 

from the states to the actions that specifies what action to take in each state (this can be 

either deterministic or stochastic). The objective now is to find an optimal policy π*, that 

maximizes (minimizes) the cumulative discounted reward.  

Policy: a policy π is a sequence of decisions. Π represents the set of all possible 

policies. The agent (vehicle) receives the “value” captured by the objective function to 

continue to the next customer (e.g. Lookahead, value function approximation policies).  

 Objective: the objective is to choose the best policies. It is defined as an action-

value function. For the objective function is necessary a discount factor gamma  

0 < ү < 1. 

We want to find an optimal policy that maximizes the sum of rewards. To do this, we 

maximize the expected sum of rewards.  

 

The application of Markov Decision Processes in logistics problems can be 

characterized by the curse of dimensionality, due to the number of possible state-spaces. 

There are many algorithms and methods which approximate the results that have been 

applied to handle the dimensionality issues, for example, Q-Learning and Policy 

Gradients. 
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Q-Learning 

When the “agent vehicle” chooses an action, gains feedback (good or bad) for that 

action and uses that feedback to update its record. In its history, the agent saves a Q-

factor for every state-action pair. The feedback consists of the immediate value gained or 

reward plus the cost of the next state. 

The cost or value for each state depends on the future rewards (feedback). The total 

amount is represented by 𝑄𝑡(𝑠𝑡, 𝑎𝑡)  of the actions taken in state t, is the sum of the 

immediate reward and the approximation of the value of the next state: 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝜆𝑚𝑎𝑥 𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1] 

The learning rate is represented by α, and λ is the discount factor (Watkins, 1992). 

These two parameters are used in the simulations (Figure 33). The better ones can be 

found with the help of neural networks or another kind of regression analysis. (Bertsekas 

et al., 1995). 

Below are the main assumptions for this system: 

o There is a central agent planner (vehicle) that has control of the path of the stochastic 

process.  

o The vehicles “agents” need to know: the state where it is in at any time, the possible 

actions to follow, the rewards (Indicators) associated with the actions and the 

consequential next state. 
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o It is expecting that solving an RL algorithm helps to find the policy (set of actions) that 

reaches as much reward as possible over the long run. 

 

Figure 33: Action by agent vehicle. 

The “agent” driver uses the reinforcement learning to update its knowledge, 

becomes smarter in the process, and then selects a better action. 

Rewards: The rewards R (S, x) of a decision x given state S are recording each 

time the vehicle do a delivery.  

After the simulation, distances/time between consumers are recorded, and the 

“best” minimum distances have good rewards. 

After many simulations, the agent detects what the best decisions are. An agent-

based model (ABM) can simulate the actions and interactions of agents to evaluate their 

effects on the system, the interaction between the model, the environment and the 

decision maker is represented in Figure 34. 
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Figure 34: Rewards learning by the system. 

To obtain possible routes, an action-value function is determined. This function 

depends on policy π. The learning process is based on repeated random sampling (Surto 

et al., 1998).  The function assigns a Q-value in the edges, which depends on the rewards 

received by the environmental signals. The action-value function of delivery vehicles 

based on the expected value 𝑸𝒕+𝟏(𝒔𝒕, 𝒂𝒕) represents the expected action-value of the 

vehicle (agent) when taking an action 𝒂𝒕 under the state 𝒔𝒕 and 𝜶 as the learning rate is 

(Figure 35): 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + min [ 𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1)] − 𝑄𝑡+1(𝑠𝑡, 𝑎𝑡)] 

Initialize Q    
Repeat (for each episode): 
 Initialize s 
 Repeat (for each step of the episode): 
 Choose an action a from state s using policy defined by the planner ( e.g., greedy) 
  Take action a, define the rewards r, and go to next state 
 Update value Q 
 Update the state s 
 Until state (node) s is the end 

Figure 35: Pseudo Algorithm Q Learning. 
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Q-Learning and Neural Networks 

For our methodology, we propose to use the use of Neural Networks and the 

Reinforcement Learning (RL) concept (Q-Learning) to solve the MDP (throughout policy 

function approximations). One of the main characteristics of the RL method is the use of 

rewards, the system learns what to do throughout time, and is capable of mapping 

situations into actions (i.e., customer demand behaviors, better routes depending 

environmental conditions) as to maximize the total reward signal (Figure 36). In this 

approach, a model is training to find near-optimal solutions to route vehicles by observing 

the reward signals and following feasibility rules (Nazari et al., 2018). 

 

Figure 36: Simulation and Learning process. 
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It is not reasonable to store every Q-factor separately. Then, it makes sense to 

store Q-factors for a given action within one neural network. When a Q-factor is needed, 

it is extracted from its NN. When a Q-value is to be updated, the new Q-value is used to 

update the neural network itself (Gosavi et al., 2002). The following Figure is the general 

scheme of how the simulation environment, the evaluation function, and the neural 

network interact. 

For any given action, Q (s, a) is a function of s, the state. In the case of 

reinforcement learning, every time the agent receives feedback, it is obtained a new piece 

of data that must be used to update some neural network. The Q value can be learning 

by parameterizing the Q function with a neural network (Figure 37). 

 

Figure 37: Q-learning and simulation model. 

Lately, authors are proposing the use of the neural network with the actor-critic 

mechanism (Nazari et al. 2018; Kool et al. 2018). The appealing of this machine learning 



 

91 
 

technique is in contrast of heuristics for VRP, where the complete distance matrix must 

recalculate this technique does not require an explicit distance matrix, and a feed-forward 

pass of the network update the paths based on the new instance. Once we have a 

solution, this one can be applied to our environment under dynamic conditions. 

The use Actor-Critic Methods, where: “Critic” estimates the value function, this is 

the “evaluation function,” and the “Actor” updates the policy distribution in the direction 

suggested by the Critic. (Sutton et al., 1999). The actor-critic can be described as the 

subtraction of Q value term with the V value. Instinctively, this means how much better it 

is to take a specific action compared to the average, general action at the given state. It 

is calling the advantage value:      

Using the relationship between the Q and the V from the Bellman optimality 

equation:   

So, it can be rewritten as:   

Then, one neural network for the V function (parameterized by v above). Finally, it 

can rewrite the update equation as the Actor Critic.: 

 

This solution adjusts the policies as a result of observations and reinforcing the 

right actions relative to the wrong actions. The rewards represent the desired goals, which 
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are calculated with our performance indicators. By maximizing these indicators, the 

algorithm will improve the system towards the goals. These indicators are continuously 

calculated due to the learning interaction of the different “agents” and the environment 

(the last-mile operations). The learning process is shown in Figure 38. 

 

Figure 38: Actor-critic architecture. 

The uncertainty came from the incorporation of customer demand uncertainty and 

the flow of information from customers and drivers. The main objective is to find the best 

actions for each state (policies) that accomplishes as much reward as possible.  

The way of the model works is at every time step produces the probability 

distribution over the customers to decide where to go next. Figure 39 is a snapshot of the 
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training process, the picture on the left shows the sequence (this is a small example for 

ten nodes) and the image on the right the correspondent probabilities, if the node is 

located in a lighter area, it means it prefers over other nodes.  

 

 

Figure 39: Probability matrix (based on Nazari et al.2018) 

Figure 40 illustrates how the learning process is conducted based on the rewards 

received for the performance indicators. In this situation, the anomaly can be a delay 

between two clients. This delay can be due to closed roads, infrastructure, etc. which is 

reflected in the distance or the time to go from one customer to another. 

In consequence, the best route visits the customer in the following order: [C4, C6, 

C10, and C7]. Once the route is executed (day 1 in the graph) and evaluated, the system 

highlights a delay between customers C6 and C10 throughout performance indicators 

(rewards). Once the system recognizes this delay is a “pattern” is expected to propose a 

new route, having into accounts that delay. The new planned route is then 
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[C4,C6,C10,C7] which is not the best one based on the geographical conditions but taking 

into account other features of the environment (such as a possible traffic jam or road 

closures between C6 AND C7) allows a more flexibility to accomplish all orders on time. 

 

 Proposed Route

C4 C6 C10 C7

Day n+1

Reward Assessment

Learning Process

C4 C6 C10 C7

C4 C6 C10 C7

C4 C6 C10 C7

Execution day 1.
 Delay between C6 to C10

C4 C6 C10 C7

Planned Route

Execution day 2.
 Delay between C6 to C10

Execution day n.
 Delay between C6 to C10

 

Figure 40: Learning process for delays in routes. 

The model represents a stochastic policy, and by applying a policy gradient 

algorithm, the trained model solves an arrangement of successive actions.  

3.3 Methodology Development and Validation 

Besides the literature review and the gap research identification, a set of interviews 

were conducted with logistics experts in the industry, academia, and government to 

understand the potential of the proposed methodology.  Based on the insight’s discovery 
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from the interviews and the research trends in supply chain management and specifically 

in last-mile operational conditions, we identify and build the case studies.  Finally, in this 

chapter, we present the expected conclusions, future research, and the case study 

validation checklist.  

 Experts insights 

A set of interviews were performed with experts from industry and academia from 

2014 to 2019. This acquired knowledge about industry and research necessities helped 

to narrow down the case studies and the validation checklist. Table 6 depicts the job 

position of the person, the sector, the type of primary business model (B2B, B2C), their 

main last-mile challenge, necessity, and primary fleet type (Homogeneous or 

Heterogeneous) to do the operation.  
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Table 6: Expert interviews, 2014-2019. 

 

As a conclusion of this interviews plus own experience, and research trends, two 

case studies are proposed to apply the methodology. 

 Last-mile Operational Conditions  

 

Conditions about weight and volume of products can be determinant in some 

industries, in the case of retail sectors due to the variety of goods these two conditions 

must be into account to assign products to the vehicles. Product is standardized, and the 
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priority is then determining the maximum quantity that can be transported in vehicles of 

different capacity. 

 

Figure 41: Standard package for products (beverage industry). 

 

Figure 42: Water package, all of the same size 

 

On the other hand, other kinds of industries transport a more uniform size of 

packaging for products, like beverage or supermarkets industries (Figure 41 and 42). 

Finally, the type of vehicles varies as well depending on the industry. Generally, 

for retail industries is common to have a heterogeneous fleet and dynamic demand 

(different customers every day). On the other hand, the Food & Beverage industry is 
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common to have a homogeneous fleet and the same customers frequently, like deliveries 

from manufacturers to mom and pop stores and supermarkets (Figure 43).  

In all cases, the main objective is to minimize costs and use the resources most 

efficiently. A variety of objectives functions can be set up for industries, like reduce costs, 

reduce delays, maximize utilities, and minimize CO2 emissions and so on. 

 

Figure 43: Delivery conditions. 

In summary, the most common cases in last-mile delivery are in the next table: 

Table 7: Cases classification. 

 

Depending on the combination of the conditions, and the type of customers 

(dynamic or fixed) table 8 point put some of the possible main learnings’ outcomes, from 

the methodology. 

Fleet Delivery Type of Industry Objective function Case 

Heterogeneus Split Maritime Minimize Fleet A

Heterogeneus Single Retail Minimize Fleet B1

Homogeneus Single 

Retail, Beverage, 

Supermarkets, 

Restaurants

Minimize Fleet B2
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Table 8: Learning from simulations. 

 

After the literature review and the knowledge acquired about the last-mile delivery 

business research gaps are summarized in table 9. 

Dynamic Cus. (B2C)  Fixed Cus. (B2B)

Zone Velocity Customer Service Time

Capacity Utilization Driver Behaviour

Main Learnings

Zone Parking Time
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Table 9: Literature Review Gaps Versus Research Methodology. 

 

 Case Studies 

Two case studies represent the main challenges faced by last-mile operations. The 

Table 10 depicts the “why” and “how” that should be followed for any situation or case 

study in general terms. 
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Table 10: Last-Mile Methodology Steps justification 

 

WHY HOW

Collection of the necessary 

information to set up mathematical, 

simulation, and machine learning 

models. Definition of key 

performance indicators.

Descriptive Statistics. Interviews. Time 

and motion studies. Expert Opinion. 

Literature Review

Identify the correct 

insights/parameters for the decision-

making tools: Optimization, 

Simulation, and, Machine Learning 

methods.

With forecasting, clustering, data mining, 

techniques. Among with probability 

distributions.

Identify the best combination of 

resources to meet the management 

objectives like the reduction of cost 

and high services levels.

Linear Programming. Mixed Integer 

Linear Programming. Nonlinear 

Programming. Heuristics and 

Metaheuristics.

Run experiments (parameter 

variation) and analyze the outputs to 

make better decisions about the real-

world operation.

Discrete Event Simulation. Systems 

Dynamics. Agent-Based Simulation.

Learn the best routes in the 

environment to provide an excellent 

execution and service level.

 Reinforcement Learning.

Output: Best routes definition for last-mile delivery

Step 3: Modeling Formulation

Data for the next step: Quantity of Cars, Routing Sequences, Optimal Amount 

of Resources.

Step 4: Simulation and Experiments 

Data for next step: Calibrated velocities in different zones of the city, number of 

customer per vehicle per zone, distances and time between zones and 

customers, calibrated parking and services time per type of customer.

Data for the next step: definition of clusters, demand tendencies, forecasting,

customer, and driver behavior profiles. Among with parking and service time

probability distributions.

Step 1: Historical and data collection

Data for the next step: Velocities in the different zones of the city, Service, and 

parking times. Industry Necessity. Research directions.

Step 2: Data Analysis

Step 5: Learning 
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These cases are presented in chapter 4, along with their analysis and results. For 

some industries the last-mile operations allow multiple vehicles to supply the demand of 

a single customer, for this reason, a split delivery case is analyzed for the maritime sector 

where is split delivery is a common practice, the second is a comprehensive case for 

home deliveries in a city, situations based in the industry necessities are analyzed. 

3.3.3.1 Case A: Maritime Logistics 

This case examines a Maritime Corporation's delivery of fuel to Western Alaska. 

More specifically, it is concerned with the specialized fleet of vessels that reaches the 

remote parts of Western Alaska as they become accessible during the summer months. 

In the process of fuel delivery, MR tankers hold fuel, where pocket tankers and lighter 

vessels collect a supply that they then deliver.  

3.3.3.2 Case B: Urban Logistics 

The proposed methodology is applied to create a digital twin for last-mile 

operations in a megacity, to support the delivery of goods and to generate tools which 

can help the near real-time decisions for dispatchers and transportations managers and 

allows the detection of potential issues and adjust last-mile operations depending on the 

circumstances. These decisions are taken under conditions and behavior patterns from 

drivers, customers, locations, and traffic. The digital twin aims to bring, the possibility to 

predict future scenarios and plan strategies for the most likely situations to the dispatchers 

of vehicles in a logistics company. Scenarios with heterogeneous (Case b1) and 

homogenous fleet are discussed (Case b2)  
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 Validation, Conclusions and Further Research 

From the case studies, we expect to bring state of the art analytic methodologies 

to detect and understand the different behaviors of last-mile delivery stakeholders and 

their dynamic interactions. Also, bring a method that can serve as a prediction and 

analytic tool to gain insights into current and future operations between the stakeholders 

and physical elements in the distribution process. With the learning procedures, we 

expect to bring a way of adjusting routes responding to possible anomalies, changes in 

customer schedules, or traffic flow. We aim to bring optimization modeling, combined with 

simulation and visualization technology for effective goods delivery. Our approach 

contributes to the scientific and practitioners’ community by considering learning 

processes to create effective, proactive distribution systems to achieve short and long-

term goals (Sutton et al. 1998). Making decisions about which route to select to arrive at 

a destination in the shortest time under dynamically traffic environment is a daily 

challenge for delivery drivers. The goal is to decide which customer to go next, under 

traffic conditions and environment status. The methodology is designed to set up efficient 

routes along with information about road traffic, the zone of the city, waiting time of the 

customer, among other indicators. (Kim et al., 2005).   

The case study for urban logistics is aiming to bring an efficient solution to set up 

routes to deliver orders in the city. This methodology is aiming to help transportation 

managers to support peak and valley delivery orders. In general, bring the way to define 

the correct combination of the type of vehicles that would be used and their quantity, 

together with the number of orders that each vehicle would carry to have an efficient 
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operation. Finally, and the essential part, to bring a simulation learning methodology to 

improve the processes. 

Also, we expect to set the up the conditions to further research to have better traffic 

predictions and services time through the analysis of the patterns from data collected from 

GPS tracking technology, sensors, and experiences from past delivery locations.  

Based on the literature review, interviews with industry experts and last logistics 

tendencies in last-mile delivery, we create the following checklist table to help us to 

validate the methodology: 

Table 11: Validation Criteria. 

 

  

Routing Models

Georeferencing of directions with coordinates

Find the best combination of vehicles of different capacity

Allocation of demand in vehicles according to its configuration capacity in weight and volume

Planning according to the result of the variables (weight and volume)

Validation of models

Accuracy between routing times in the simulation model and times in google maps

Learning from environment 

Accuracy in velocities in the different zones of the last mile geography zone
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 CASE STUDIES ANALYSIS AND RESULTS 

 

This chapter applies the last-mile delivery methodology described in chapter three 

to two case studies, based on real product delivery situations. The first case is in maritime 

logistics, which discusses the decision process to find the type of vessels and routes to 

deliver petroleum derivate from ships to villages. This case study is characterized to 

allowing split deliveries, where a customer can be attended for more than one vehicle. 

The objective is to minimize the total fleet satisfying clients’ demands. In this case, the 

methodology is focusing on the use of optimization and simulation techniques to handle 

the problem. The second case is in city logistics, analyzes the network of stakeholders 

during the city or urban distribution process. This case shows the potential benefits, 

especially in understudied metropolitan areas. Potential applications of this system will 

leverage growing technological trends (e.g., deep reinforcement learning for logistics and 

supply chain management, internet of things). 

4.1 Case Study A: Maritime Logistics 

This case examines a Maritime Corporation's delivery system of fuel in Western 

Alaska. More specifically, it is concerned with the definition of a specialized fleet of 

vessels that reaches the remote parts of Western Alaska as they become accessible 

during the summer months. In the process of fuel delivery, the hub “mother tankers (MR)” 

hold fuel, where pocket tankers and lighter vessels (smaller ships of different capacities) 

collect a supply that they then deliver.  



 

106 
 

The last-mile delivery in the distribution of petroleum and their derivate in maritime 

logistics appears when actors in the maritime supply chain have the responsibility of the 

transportation of these goods to the ports from a central tanker (mother tanker), localized 

some miles from the ports. This transportation is made, most of the times, with 

heterogeneous vessels that make deliveries to the customers. These vessels deliver the 

product due to the mother tanker cannot go directly to each of them because of the draft 

and the size of the ship. As depicted in Figure 44 In consequence, improvements in fleet 

utilization can translate into cost reductions (Agra et al., 2013). 

 

Figure 44: Last-mile operation in Maritime Logistics. 
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As the current fleet ages out, the organization was seeking to replace old vessels 

with new. For this reason, it is essential to determine the optimal mix of ships that would 

serve the company’s Alaskan customers at the lowest cost. 

The purpose of this case was to create an analytical decision tool that would 

determine the optimal configuration of vessels to meet seasonal demand at the lowest 

cost. This process would include a mathematical optimization model (solved in GAMS) 

and a simulation to validate the model (in SIMIO). Steps one to five of the methodology 

are used: data collection, data analysis, modeling, simulation, and learning. 

The case considers six main classes of vessels (each with different carrying 

capacity and costs) and four geographical regions in which to make deliveries (each 

serving a few villages with many customers in each). In the Measure phase, all data was 

provided by the maritime corporation. From this data, four key input variables were 

selected for the model: vessel capacity, vessel cost, village demand, and village location. 

Key output variables include an assignment of vessels to routes in an optimal 

configuration, the total number, and types of ships needed to make these deliveries, and 

the (minimized) total cost to acquire this specific fleet. Table 12 depict the justification for 

each of the steps. The completed design comprises two components: (1) a mathematical 

optimization model in the form of a mixed integer linear program and (2) a simulation 

model including villages as servers, and vessels as entities that travel and interact with 

the servers. In the verification phase, the completed mathematical model and simulation 

were confirmed to provide a reasonable recommendation of vessels and routes for 

seasonal deliveries (Goodhope Bay), at a lower cost than in prior seasons. 
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Table 12: Steps justification and description Case A 

 

 

WHY HOW

Data about villages: demands, 

location, and draft. Data about 

Vessel capacities in volume and 

weight. Fixed and Variable costs. 

Descriptive Statistics. Interviews. Time and motion 

studies. Expert Opinion. Literature Review. 

Geographical Information Systems.

Identify the correct 

insights/parameters  for the 

decision-making tools: 

Optimization, Simulation and, 

Machine Learning methods.

Forecasting techniques, clustering, data mining, 

probability distributions. 

Identify the best combination of 

resources to meet the 

management objectives like the 

reduction of cost and high 

services levels.

Mixed Integer Linear Programming. 

Run experiments (parameter 

variation in vessel velocities) and 

analyze the outputs to make 

better decisions about the real-

world operation. For this case 

the vessels are simulated as 

entities, rather than agents.

Discrete Event Simulation. For this step was used 

the Software SIMIO thanks to its capabilities in the 

simulation of maritime and port solutions and 

determine the sensitivity parameter analysis. Also, 

their 3D animation, and other tools promote 

communication and understanding across broad 

managers, technicians (decision-makers). 

(https://www.simio.com/applications/port-

simulation-software/)

Learn the best routes in the 

environment to provide an 

excellent execution and service 

level.

Reinforcement Learning.

CASE A: MARITIME LOGISTICS

Step 4: Simulation and Experiments 

Data for next step: Calibrated velocities in different ocean/villages zones, number of

villages per vessel, distances and time between zones villages, calibrated velocities

and unloading time per type of village (draft restrictions).

Step 5: Learning 

Output: Best routes definition for last-mile split delivery for villages

Step 1: Historical and data collection

Data for the next step: Vessel velocities in the different zones of the ocean. Capacity

in volume and weight of vessels. Draft characteristics for each of the villages. Service 

and unloading times. Fixed and variable costs. Industry Necessity. Research

directions.

Step 2: Data Analysis

Data for the next step: Group of villages to attend, demand tendencies, forecasting,

velocity probability distributions per ocean zone.

Step 3: Modeling Formulation

Data for the next step: Quantity of vessels, Routing Sequences, Optimal Amount of

Resources.
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This case was significant because it serves as an excellent approximation to the 

solutions of last-mile deliveries. We expect this model can help to streamline the last-mile 

operations decision-making: allowing for a better decision in reduced time 

 Step 1: Historical and Data Collection 

Several details complicate this process of fuel delivery. The timeframe available 

for delivery - the "season" - is determined by the time that access to ports is not blocked 

by ice in the surrounding sea. In general, the season for delivery operations is May-

October. In the earlier months, the southernmost part of the Western Alaska coast is 

served. As the season progresses and ice melts further north, villages further up along 

the coast become accessible for service. Another subtlety of the process is that demand 

occasionally exceeds capacity for certain villages. In this case, the fleet would make a 

delivery that partially satisfies their demand on its way up the coast, and later re-supply 

them on their way down the coast, when they are ready to accept more fuel. 

The different classes of vessels and their roles in fuel delivery are shown in Figure 

45. 
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Figure 45: High-level process map. 

MR Tankers have the largest capacity and primarily store fuel from which smaller 

vessels restock. These smaller vessels, including pocket tankers (which can themselves 

be used for fuel storage, as "floating warehouses"), and coastal lighter ships, make the 

deliveries. 

Several parameters associated with each type of vessels will be considered, 

including but not limited to type, capacity, draft depth, optimal speed, fixed costs, and 

operating costs. Parameters associated with each village are including, but not limited to, 

geographical location/zone, demand, and maximum draft depth. 

For illustrative purposes, this instance assumes seven customers/villages (Good 

Hope). The example below shows a snapshot of the data into the GAMS IDE (Figure 46). 

 

Figure 46: Distance Matrix. 

To develop this basic model, assumptions were made regarding factors of 

secondary importance; these assumptions are explained below: 
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• Rather than considering an entire market of individual vessels available for 

the company to purchase, six specific types of ships/vessels were used:  

o Coastal lighter vessel DBL 165 

o Coastal lighter vessel 180-1 

o Coastal lighter vessel DBL 289 

o Coastal lighter vessel Kays Pt 

o Pocket tanker Nordisle 

o MR tanker 

 Step 2: Data Analysis  

• The geographical scope of this project includes these regions in Western 

Alaska (and the villages therein): 

• Goodhope Bay (Figure 47). 
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Figure 47: Villages location in Alaska. 

For this case study, only the total volume of fuel offered will be considered 

disregarding the difference among them as the company delivers more than one type of 

fuel. 

• Delivery points upriver are excluded. In these cases, the model will stop 

making deliveries to tank farms at the mouth of the river (and exclude the vessels that 

solely operate along a river, from the tank farm to the villages and back). 

• Similarly, the occasional instance where a vessel must be deployed to make 

the final leg of delivery will not be considered. In general, this model will stop once the 

delivery is made by a lighter vessel (or pocket tanker).  

The organization provided both current and historical data (spanning the last five 

years). This step consisted mostly of studying the extensive data to determine what was 

useful for creating the model, what was extraneous, and what information was yet 

needed. The objective for the measure phase was to understand data requirements to 

start the mathematical modeling. 

A summary of the data is given below in Table 13. 
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Table 13 Refined data summary. 

Title Information Use 

Planning 

Schedule 

● Schedule of deliveries in 2017 
by day, vessel, and village 

• Validation of 
model output 

Village 

Restrictions 

● Deliveries to customers by 
name, zone, village, phase, 
month and week of delivery, 
volume, source, and time to 
pump 

● Total demand by village, types 
of vessels allowed at each 
village, maximum load, whether 
tide restricted 

● For five relevant classes of 
vessels: name, type, capacity, 
draft depth, optimal speed, cost 

• Input to 
model 

• Parameter for 
simulation 

Data 3-26 ● Log of deliveries to all 
customers, including vessel, 
zone, village, volume, price, 
delivery month and week, etc. 

● Log of the ship to ship transfers 

• Validation of 
model output 

Alaska Lighter 

Locations and 

Distance 

Chart by Zone 

● Distances between supply point 
and villages for each of four 
regions 

• Input to 
model 

• Parameter for 
simulation 

 

From this data, key performance input variables (KPIV) and key performance 

output variables (KPOV) were derived: 

• KPIV 

o Vessel fuel-holding capacities 
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o Vessel costs 

o Village locations 

o Village demands 

• KPOV 

o Vessel type used to make each delivery in season 

o Types of vessels in the fleet 

o Number of vessels (of each type) 

o Total fleet cost 

 Step 3: Modeling Formulation  

This model allows a decision maker to define a heterogeneous fleet size and 

vessel routing to serve a set of customers. Symmetric costs for distances are assumed 

and the costs are dependent on the vessel type. 

The model will take in the KPIVs, already provided in the data from the case study, 

and express the KPOVs. All the data examined in this project describes either vessels or 

villages. Two KPIVs report vessel information: maximum capacities to hold fuel for 

delivery, and fixed/operating costs. Two report village information: geographical locations, 

and demand levels. All four KPIVs will be used by the model to express a the KPOV of 

all the deliveries made in the season, and by which vessels, in matrix form. Once the 

model assigns a vessel to each delivery, the KPOVs total number of vessels by type will 

be expressed. Then, the KPOV total cost will be calculated. In general, the model will 
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seek to provide the minimum number of vessels needed to compose a fleet that will make 

all deliveries. 

The data did not require any extensive further transformation. Once it was 

determined what factors the model should consider, finding the data and entering it into 

the mixed integer linear model in a usable format was simple.  

 

The full set of data is not presented here. However, some essential information of 

deliveries is. 

Most deliveries are concentrated in July. The average operation in the planning 

period is between 6 and 15 by zone. A mother tanker can attend ten villages. Figure 48 

depicts the number in villages for a “summer” season, having its peak in July. 

 

Figure 48: Number of villages served per month. 

Primary Assumptions 
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• A limited number of different vessel types 

• MR tankers do not move; the model looks at a new “scene” once the MR is stationary 

again (treating the MR as a warehouse) 

• “Charter costs” provided and the bunkering costs will be input as operating expenses 

for comparison 

• Any vessel can travel anywhere—constraints to put restrictions on certain villages 

are currently drafted but not yet implemented in the model 

• Consider only the total volume of fuel being delivered (no distinction between different 

types) 

• Timeframe begins when vessels arrive in the “Alaskan Theater.” In general, the 

model will stop once delivery is made by lighter ship or pocket tanker: exclude 

delivery point’s upriver (stop at deliveries to tank farms at the mouth of the river) and 

exclude truck deliveries. 

Follow the notation and description of the equations in Chapter 3, section 3.2.4.3 for the 

modeling formulation; the following are the equations used for this case. Equation 32 

allows more than one vessel per node. 

𝑍 = ∑ ∑ ∑ ((𝐶𝑘 ∗ (𝑆𝑘)−1
𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 ∗ 𝑋𝑖,𝑗,𝑘 ∗ 𝑑𝑖,𝑗) + ∑ 𝑉𝑘 ∗ 𝐹𝐶𝑂𝑆𝑇𝑘𝑘∈𝐾 ) ( 31 ) 

∑ ∑ 𝑋𝑖,𝑗,𝑘 ≥ 1𝑗∈𝑁𝑘∈𝐾         ∀𝑖 ∈ 𝑁 ( 32 ) 

∑ 𝑋𝑖,𝑗,𝑘 =𝑖∈𝑁 ∑ 𝑋𝑗,𝑖,𝑘𝑖∈𝑁        ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 33 ) 

∑ ∑ 𝑌𝑖,𝑗,𝑘 −𝑘∈𝐾𝑖∈𝑁 ∑ ∑ 𝑌𝑗,𝑖,𝑘𝑘∈𝐾 = 𝐷𝑗        ∀𝑗 ∈ 𝑁𝑖∈𝑁  ( 34 ) 
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∑ ∑ 𝑌𝑖0,𝑗,𝑘𝑘∈𝐾𝑗∈𝑁 =   ∑ 𝐷𝑖𝑖∈𝑁  ( 35 ) 

∑ ∑ 𝑌𝑖,𝑖0,𝑘𝑖∈𝑁𝑘∈𝐾 =  0        ∀𝑖 ∈ 𝑵 ( 36 ) 

𝑌𝑖,𝑗,𝑘 ≤ 𝑋𝑖,𝑗,𝑘 ∗ 𝐶𝐴𝑃𝑘        ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 37 ) 

∑ 𝑋𝑖0,𝑗,𝑘𝑗∈𝑁  =  𝑉𝐾𝐾       ∀𝑘 ∈ 𝐾 ( 38 ) 

∑ 𝑋𝑖0,𝑗,𝑘𝑗∈𝑁  = ∑ 𝑋𝑖,𝑖0,𝑘𝑖∈𝑁         ∀𝑘 ∈ 𝐾 ( 39 ) 

𝑈𝑖,𝑘 − 𝑈𝑗,𝑘 + |𝑁| ∗ 𝑋𝑖,𝑗,𝑘 ≤ |𝑁| − 1 ( 40 ) 

𝑥𝑖,𝑗,𝑘 ≤ 𝑦𝑖,𝑗,𝑘 ∗ 𝑇𝑣𝑖,𝑗,𝑘 ( 41 ) 

𝑦𝑖,𝑗,𝑘 ≤ 𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝑗      ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 ( 42 ) 

𝑋𝑖,𝑗,𝑘 ∈ {0,1} ( 43 ) 

𝑌𝑖,𝑗,𝑘 ∈ 𝑅+ ( 44 ) 

 

The model output includes an assignment of paths for each vessel to take, in order, 

including to and from the MR tanker to refuel. It also consists of the total amount of vessels 

of each type and the total cost of chartering this fleet to make these deliveries. Figures 

49 and 50 shows the statistics of the model and the vessel assignation respectively. 
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Figure 49: Model Statistics. 

 

Figure 50: Binary variable Value. 

The routes are: 

• Vehicle 21: i0-12-i1-i8 

• Vehicle 22: i0-i5-i7-i6-i4-i3-i2-i8 

• Vehicle 23: i0-i1-i8 

• Vehicle 24: i0-i6-i5-i4-i3-i2-i8 

Fuel transported by arc (i-J), i8 is not in the table because it represents the mother 

tanker. Figures 51 and 52 represents the solution. 
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Figure 51: Routes solution schema. 

 

Figure 52: Amount of product in the arc i-j. 



 

120 
 

 Step 4: Simulation and Experiments  

A simulation was created in the software SIMIO (www.simio.com) for the primary 

purpose of verifying the mathematical model. The simulation contains servers and 

entities. Servers are fixed locations, such as villages, set at specific coordinates. Entities 

are individuals that visit servers— in this case; they are vessels. A server represents 

every village that receives fuel deliveries. Each server is accessible by a fixed path, but 

the travel time will vary depending on the speed of the vessel. Each server has a different 

capacity. Each server has different processing times depending on characteristics of the 

entity, such as how fast a vessel can unload fuel and time needed to reposition the vessel 

with a tug. Each entity’s features include top speed (loaded and ballast) and capacity. 

The reliability of the servers reflects whether a village is accessible or inaccessible at a 

particular time due to tides or weather. Simulation logic models the conditions under 

which certain vessels can visit specific nodes. This logic determines where a vessel goes 

and in what order the nodes are visited, based on the characteristics of both the vessels 

and the villages. 

Figure 53 shows a map of simulated paths, which includes the village's northwest 

of Goodhope Bay. It’s important to note that these paths are not to scale: their lengths 

and trajectories are exaggerated to be easily visible. The “background” simulation logic 

calculates travel time based on the real-life distance of each path from given data. 

http://www.simio.com/
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Figure 53: Simulation map of villages and routes in Goodhope Bay. 

The verification phase confirmed the accuracy of both the mathematical model and 

the simulation model of the company’s fleet. Because of the lack of reliability in much of 

the granular data, it was necessary to find a higher-level aggregate measure of validity in 

the models for verification. The method of verification determined was to compare the 
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aggregate cost requirements of the models against an estimate of the total aggregate 

cost from an actual season of fuel distribution. 

The final scope of the model included one portion of the entire delivery network—

Goodhope Bay—which simplified the task and encouraged localized accuracy. To 

compare the models against the real-life scenario, information such as actual fuel 

demand, actual distances between villages, vessel capabilities, and vessel costs were 

input into the model. The notion was that given the same information, the model should 

produce a comparable result to the total historical cost of operations. However, an 

important note is that the mathematical model provides the optimal values; for example, 

it supposes that vessels are always traveling at optimal speed. Though this is not realistic, 

it was determined appropriate due to the aim of the mathematical model to provide optimal 

results. Furthermore, such conclusions based on ideal travel times may be adjusted for 

sensitivity (e.g., multiplied by a factor of less than 100% efficiency) to more closely 

represent actual times and results. 

The models produced are easy to apply to each region of the fuel distribution 

network. By merely substituting the locations of each delivery point and using the 

historical data for that specific region, a new verification can be performed for each portion 

of the greater Alaskan delivery network. 

Given that some assumptions were made to create these models, a degree of 

variation is to be expected between the produced results and historical results. This 

preliminary model assumes efficient operations by using optimal speed (as explained 
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above) and leaving out some sources of error and uncertainty like inclement weather and 

equipment reliability, which are the possible disruptions in the operation. The result is a 

reasonable fleet configuration with a lower projected cost than the actual operational cost. 

Overall, the developed mathematical model was shown to be a successful tool for fulfilling 

the given task. 

The speed and capacity of these vessels, as well as the demand at and location 

of each village, are essential input variables to the model. Key output variables include 

an assignment of vessel used to make each delivery, the total type and number of vessels 

composing the heterogeneous fleet, and total cost to acquire the new fleet. The simulation 

verifies the mathematical model. The result was a reasonable fleet configuration with a 

lower projected cost than the actual operational cost. 

4.1.4.1 Lessons Learned 

Thanks to this case study: we realized that a methodology to attack the last-mile 

problem was necessary when larger instances are needed. Patterns of behavior are 

found in urban logistics in the last-mile operation. That is the justification for applying 

algorithms that learn the operations. The use of optimization and simulation models can 

be complemented with machine learning techniques. We consider the routing situation 

called split delivery vehicle routing problem (SVRP) where a village can be supplied by 

more than one vessel when its demand exceeds the vessel capacity. 
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 Step 5: Learning Procedures 

The methodology is proposing a playground where the agents learn in a simulation 

environment. In the case of maritime logistics, environmental conditions affect the time of 

the delivery (bad weather). Different circumstances were simulated to do trial and error 

tests and to learn from the assumptions and results. This part of the methodology is 

proposing to use the deep reinforcement learning explained in chapter three. 

For our purpose, geographical information and demand are used as an input to the 

network.  Once the algorithm is trained for the problem, the information is normalized to 

follow the network structure. Given these inputs like localization longitude and latitude, 

these are normalized and are given by values between [0,1]. The algorithm used for 

training the vehicles to find the shortest delivery path follows a deep reinforcement 

learning trained policy. This approach does not need to calculate the distance matrix each 

time that need to find the routes. It is calculated based on the rewards signals and the 

feasibility constraints in capacity in vehicles. Also, it is not required to retrain for every 

new situation. Figure 54 depicts the steps of how actor-critic works. 

 

Figure 54: Batch actor critic algorithm.  
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The training method for this experiment makes use of two networks. The first one 

is the actor-network used to predict the probability distribution over the next action at any 

given step, which reduces the problem of choosing a customer from a very specific area. 

The second network, the critic, provides an estimated reward for any problem instance 

which helps to take the best decision from the distribution pool of the actor-network 

(Figure 55). 

 

Figure 55: Actor and critic neuro network. 

On the contrary of the classical vehicle routing problem (in urban environments) 

where it is expected the demand can be served by one vehicle, due to complexities in 

traffic and resources, it is common in maritime logistics to allow the split delivery. 

In consequence, the constraint over just is allowed one vehicle per customer is 

relaxed in the “masking scheme” in the code. The relaxed masking allows split deliveries, 
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so that the solution can assign the demands of a given village into more than one route. 

It is important to highlight that it is not necessary to re-train the algorithm.  

To calculate the position of each customer in the square built, the map 

latitude/longitude is subtracted from the minimum of all latitudes/longitudes and divided 

by the difference between the maximum and the minimum of all, which will always give 

us a value between 0 and 1. Then the points can be rendered on a graph as is depicted 

in Figure 56. 

 

Figure 56: Playground for split delivery. 

For this model, The SVRP has two dynamic elements: the capacity of the vehicle 

and the demand of the customer. The following assumptions are used for this example: 

ships can visit any village, and one village can be visited for more than one vessel. 

The output of the test run provides a tour of the nodes to visit and a visualization 

of the trip. The training method for this experiment makes use of two networks, one the 

actor-network to predict the probability distribution over the next action at any given step 
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which reduces the problem of choosing a customer from a very specific area. The second 

network, the critic provides an estimated reward for any problem instance which helps to 

take the best decision from the distribution pool of the actor-network. Once the algorithm 

is trained it can solve the problem in an instant. In contrast with solutions that only use 

the mathematical model. For example, to find a solution for ten nodes with only 

optimization procedures, can take around 285 seconds and it is necessary to have a 

solver. Figure 57 depict the solution for ten nodes in an algebraic modeling software. 

 

Figure 57: Solution for 10 nodes in split delivery 

 

Using the learning procedure, we can find the following tours for each of the 

vehicles. 

 

Figure 58: Tours Split Delivery 
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4.2 Case Study B: Digital Twin for Last-Mile Operations in a Megacity 

 

The proposed methodology is applied to support the decision making of goods 

delivery in a city, and to support the near real-time decisions for dispatchers and 

transportation managers. These decisions are taken under conditions and behavioral 

patterns from drivers, customers, locations, and traffic congestion. The digital twin aims 

to predict future scenarios and plan strategies for the most likely situations to the 

dispatchers of vehicles in business which (e.g., retail, logistics companies, restaurants). 

This will help to determine and support the accurate calculation of performance indicators.   

The methodology is applied for the last-mile operations in one of the most difficult 

congested cities in the world: Bogota, Colombia. With a total area of 613 square miles, 

Bogota is the third-highest capital in South America with around 12 million inhabitants. It 

is characterized for the diversity in population density, regular road infrastructure, and 

diversity in population economic conditions. Data and terms of the problem are based in 

a real retail organization which operates in the city. This case discusses the main issues 

and provides guidelines and implications for the last-mile delivery problem. Optimization 

models are programmed in algebraic modeling systems software (e.g., Gurobi, GAMS) 

to identify the fleet and type of vehicles. Also, it assesses the dynamic and learning 

process of the solution using agent-based simulation. Table 14 depict the justification for 

each of the steps. 
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Table 14: Steps justification Case B 

 

WHY HOW

Data about customers’ demands, 

location, and type (nanostore, 

townhouse, or building). Data about 

Vehicles capacities in volume and 

weight. Fixed and Variable costs.

Descriptive Statistics. Interviews. Time 

and motion studies. Expert Opinion. 

Literature Review

Identify the correct 

insights/parameters for the decision-

making tools: Optimization, Simulation, 

and, Machine Learning methods.

Forecasting techniques, clustering, data 

mining, probability distributions

Identify the best combination of 

resources to meet the objectives on 

the reduction of cost and high services 

levels.

Linear Programming. Mixed Integer Linear 

Programming. Heuristics. 

Run experiments (parameter variation 

in Vehicles velocities, service times 

and diferent zones in the city) and 

analyze the outputs to make better 

decisions about the real-world 

operation.

Agent Base Simulation. Software Anylogic. 

The capabilities to linking maps and 

simulation was very useful for this case. 

The model build a transportation model 

with GIS maps. With Agent based the 

model focuses on the individual active 

components of a the system and their 

interrelations (vehicles, customers and 

city). https://www.anylogic.com/use-of-

simulation/agent-based-modeling/ 

Learn the best routes in the city to 

provide an excellent execution and 

service level.

Reinforcement Learning.

Step 3: Modeling Formulation

CASE B: URBAN LOGISTICS

Step 1: Historical and data collection

Data for the next step: Vehicles velocities in the different zones of the city. 

Capacity in volume and weight of Vehicles. Draft characteristics for each of the 

customers. Service and unloading times. Fixed and variable costs. Industry 

Necessity. Research directions.

Step 2: Data Analysis

Data for the next step: clusters, tendencies, forecasting, customer behavior

(profiles), driver behavior, parking and service time in city zones (districts) and

probability distributions for speed, parking and service time.

Data for the next step: Quantity of Cars, Routing Sequences, Optimal Amount of

Resources.

Step 4: Simulation and Experiments 

Data for next step: Calibrated velocities in different city/customers zones, number

of customers per Vehicles, distances and time between zones customers,

calibrated speeds, parking and service time per type of customer. Time of arrival

and departure per customer. Schedule per vehicle. 

Step 5: Learning 

Output: best routing sequence to do the delivery task to customers 
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 Step 1: Historical and data collection 

To have a sense about a retail operation for home delivery in Bogota, Table 15 

depicts the average numbers of daily customers. Around three weeks were analyzed for 

each demand type (peak and valley). 

Table 15: Average customer order per day in a Megacity. 

 
 

On the other hand, Table 16 shows the typical configuration of vehicles. 

Table 16: Type of vehicles for home delivery (1 retail store). 

 

The possible clients can place an order one or more days prior the delivery day. 

Moreover, the order can be associated with a time window or not.  

 Step 2: Data Analysis 

Megacities as Bogota are characterized by traffic congestions, slow speeds limits, 

longer trip times, pollution, and increased vehicular queueing. Along with their growth in 

urban areas of housing, retail stores, and regular roads, with little concern for urban 

Average per day:

DEMAND CUSTOMERS WEIGHT (Kg) VOLUME (m3)

PEAK 327 13103 71

VALLEY 200 6095 30

Total all days

DEMAND CUSTOMERS AVERAGE (day)

PEAK (13 days) 3125 327

VALLEY (11 days) 1487 200

Total 4612
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planning make more challenging the task of urban logistics. Figure 59 shows the 

differences in the density population between different zones in the city. 

 

Figure 59: Bogota City. Conditions of Urban Logistics in a Megacity. 

Bogota is divided into 20 districts (Figure 60). Each of these districts has its own 

rules and government budget for infrastructure, laws that influence road construction, 

parking conditions, among others. One thing in common is they can have different road 

infrastructure characteristics, as shown in Figure 61, which affects the speed of vehicles 

(Akbar et al. 2017).  
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Figure 60: Districts in Bogota. 

Table 17 shows this classification, subdivided the surface size, population, and 

density. Traveling times were retrieving using Google Maps, considering real traffic 

conditions. Each of the districts has a different density of habitants per square kilometer.  
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Table 17: Locality average velocity. 

 

 

Figure 61: Diversity in city infrastructure. 

Locality name Surface km² Population Density hab/km²

Average 

Velocity 

(km/h)

Kennedy 39 1,088,443 28,205 20

Bosa 24 673,077 28,126 23

Rafael Uribe Uribe 14 374,246 27,060 24

Engativá 36 887,080 24,723 18

Antonio Nariño 5 109,176 22,372 25

Barrios Unidos 12 243,465 20,459 22

Tunjuelito 10 199,430 20,124 20

Los Mártires 7 99,119 15,225 24

Puente Aranda 17 258,287 14,921 25

Suba 101 1,218,513 12,117 27

Fontibón 33 394,648 11,858 18

La Candelaria 2 24,088 11,693 21

Teusaquillo 14 153,025 10,784 21

San Cristóbal 49 404,697 8,243 29

Usaquén 65 501,999 7,686 21

Ciudad Bolívar 130 707,569 5,442 26

Chapinero 38 139,701 3,661 22

Santa Fe 45 110,048 2,436 29

Usme 215 457,302 2,126 26

Sumapaz 781 6,531 9 29
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To identify the maximum number of customers that each of the vehicles can visit 

in a day, an assumption for the optimization model was set up: the traffic time between 

customers is around 10 to 15 minutes and the service time is about 20 minutes (which 

include parking and the delivery of the product). With these conditions with a time window 

of 600 minutes, a maximum of 20 customers is set up to be visited during the day. Figure 

62 depicts the analysis. 

 

Figure 62: Finding the maximum quantity of customers per vehicle. 

 Step 3: Modeling Formulation  

Besides the districts in the city, clustering is used to assign vehicles to customers. 

In the case of Bogota city, there are some suburbs around the city. Where customers also 

ask for goods delivery. Figure 63 shows the first approach to do clusters, that customers 

that are outside the country are analyzed apart.  
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Figure 63: Bogota and suburbs demand clusters 

After this division is defined, it is necessary to plan the number of resources to 

serve the demand in the city. An optimization model is applied to define the number of 

vehicles of different characteristics and the routes to fulfill the demand of the customers.  

Phase 1: Mixed Integer Programming model to identify the number of vehicles to 

use (equations 19-26). 

Figures 64 and 65 depict the result of the model. Identifying the number of vehicles. 
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Figure 64: Vehicles to be used. 

 

Figure 65: Model statistics. 



 

137 
 

Phase 2: Allocate customers to vehicles. 

Once we know the type and quantity of vehicles, an assignation model serves to 

do the allocation of customers to each vehicle. For this is step os follow the algorithm K-

means, which outputs the cluster centers for the number of vehicles. The clustering uses 

the Euclidean distance.  Figure 66 shows the location of the customer in a cartesian plane. 

The color represents the assignation of the cluster. Figure 67a shows the initial nodes, 

which are known as the “centroids” described in Tabl8 15, to do the assignation. Figure 

67b shows the correspondent customer to each of the clusters for each of the “centroids”. 

 

Figure 66: Longitude and latitude customers in Bogota. 
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a 
b 

Figure 67: Customer allocation in vehicles. 

Table 18: Centroid allocation. 
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Once the vehicles are assigned to their customers, we use google maps to locate 

the customers in their longitude and latitude in the map (Figure 68).  

 

Figure 68: Vehicle allocation. 

Figure 69 identifies the capacity utilization in volume, weight, and time. Verifying 

the constraints for each of those. 
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Figure 69: Capacity utilization. 

Even the volume and weight have the unutilized capacity; the time window is full in almost 

all cases. Lastly is a tendency for industries to have smaller vehicles, due to the traffic 

conditions and their utilization.  Table 19 shows the capacity utilization. 

Table 19: Locality average velocity. 

 

VEHICLE TYPE % VOLUME %WEIGHT %TIME WINDOW (600min)

Turbo 2 (Ton) 1 37% 40% 100%

Turbo 2 (Ton) 10 42% 65% 100%

Turbo 2 (Ton) 11 28% 36% 100%

Turbo 2 (Ton) 12 43% 79% 100%

Turbo 2 (Ton) 13 34% 41% 100%

Turbo 2 (Ton) 14 37% 35% 100%

Turbo 2 (Ton) 2 58% 53% 100%

Turbo 2 (Ton) 3 49% 45% 100%

Turbo 2 (Ton) 4 59% 56% 100%

Turbo 2 (Ton) 5 53% 46% 100%

Turbo 2 (Ton) 6 49% 55% 100%

Turbo 2 (Ton) 7 40% 40% 100%

Turbo 2 (Ton) 8 37% 66% 95%

Turbo 2 (Ton) 9 42% 35% 100%

Turbo 3,5 (Ton) 1 30% 35% 95%

Turbo 3,5 (Ton) 2 35% 46% 90%

Turbo 3,5 (Ton) 3 53% 76% 100%
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Use the formulation for the travel salesman problem for each of the vehicles and 

the notation in chapter 3.  

𝑀𝑖𝑛 ∑  𝑖,𝑗∈𝐴 𝑋𝑖,𝑗 ∗ 𝑑𝑖,𝑗                                                                 (45) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑  𝑗 𝑋𝑖,𝑗 = 1 ∀𝑖                                                                           (46) 

∑  𝑖 𝑋𝑖,𝑗 = 1 ∀𝑗                                                                                                (47) 

𝑈𝑖,𝑘 − 𝑈𝑗,𝑘 + |𝑁| ∗ 𝑋𝑖,𝑗,𝑘 ≤ |𝑁| − 1                                                            (48) 

 

 A verification process is made to verify the model assumptions. The route meets 

the constraints in service and travel time (Figure 70) 

 

Figure 70: Google maps verification. 
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Table 20 has the routes in google maps, which were used to verify velocities, 

time, and routing directions.  

Table 20: District average velocity 

Vehicle The route in Google 
Maps. Link 

Average 
Velocity 
(km/h) Main Locality 

K04 https://bit.ly/2VnGe2e 19.29 Engativa  

K05 https://bit.ly/2VELunf 19.84 Engativa / Teusaquillo 

K06 https://bit.ly/2W4KGHk 23.83 Usaquen 

K07 https://bit.ly/2LGE5iB 17.17 Bosa 

K08 https://bit.ly/2VXGc5v 17.88 Chapinero / Usaquen 

K09 https://bit.ly/2W3eC6N 15.21 Chapinero / Barrios unidos 

K10 https://bit.ly/2Ynewob  21.10 Madrid / El Corzo / Facatativa 

K11 https://bit.ly/2Q4rpQX 18.20 Suba / Usaquen 

K12 https://bit.ly/30kC6Uv 19.89 Teusaquillo  

K13 https://bit.ly/2VxGKQ1 16.31 Suba / Engativa 

K14 https://bit.ly/2Q0Hl6U 26.79 Chia / Canelon / La Naveta 

K15 https://bit.ly/2JgUSH1 17.45 Suba 

K16 https://bit.ly/2YqItDS 17.17 Tunjuelito /Ciudad Bolivar 

K17 https://bit.ly/2YtnNep 20.18 Usme / San Cristobal 

K18 https://bit.ly/2Hh8wHC  18.29 Fontibon 

K19 https://bit.ly/2PYlNrB 19.81 Puente Artanda / Antonio Narino  

K20 https://bit.ly/2vYcfDz 19.29 Kenedy / Fontibon 

 Step 4: Simulation and Experiments  

Simulation assumptions and parameters to recreate the routes execution and the 

scheduling for each of the vehicles are: 

• Total service time: It is dependent on the parking time plus the delivery time. Varies 

depending on the type of customer (nanostore, townhouse or building). 

• Time window per day to do deliveries: 600min 

• Vehicle Velocity: It varies depending on the locality of the city (e.g., 30km/h for the 

https://bit.ly/2VnGe2e
https://bit.ly/2VELunf
https://bit.ly/2W4KGHk
https://bit.ly/2LGE5iB
https://bit.ly/2VXGc5v
https://bit.ly/2W3eC6N
https://bit.ly/2Ynewob
https://bit.ly/2Q4rpQX
https://bit.ly/30kC6Uv
https://bit.ly/2VxGKQ1
https://bit.ly/2Q0Hl6U
https://bit.ly/2JgUSH1
https://bit.ly/2YqItDS
https://bit.ly/2YtnNep
https://bit.ly/2Hh8wHC
https://bit.ly/2PYlNrB
https://bit.ly/2vYcfDz
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valley in the locality Engativa) 

The vehicles already have an “optimal” route, which was set up with the help of 

better knowledge of the customers, drivers, and the city grid. However, due to the 

variance in velocity and service times, it is necessary to simulate the solution. Localities 

were defined with “urban metrics” (Merchan et al., 2015) which have into account metrics 

such as density, land use, complexity, road network,and the clusters procedure.  

An agent-based model of last-mile delivery was built where each stakeholder is an 

agent, to help understand how the last-mile delivery task is executed under environmental 

city conditions. Since uncertainties in driver behavior, traffic, parking time include 

stochasticity, agent-based modeling is a useful tool for modeling last-mile simulations. 

First, we create a population of customers with their parameters. For this 

simulation, we are considering three types of customers: Town Houses, Buildings, and 

Nanostores (i.e., mom and pop stores).  
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Figure 71: Customer data. 

Figure 71 depicts the data for customers. Location in latitude and longitude, vehicle 

assigned, demand in weight and volume and their type. Table 21 is an example of the 

service time, depending on the kind of customer. 

Table 21: Time customers’ parameters. 

 

The agent driver is representing through a vehicle and is modeled through a state 

chart in Anylogic (www.anylogic.com). Figure 72 shows the state chart. 

Cust. type

service time mean 

(minutes)

service time 

std dev  

parking time 

mean (minutes)

parking time 

std dev  

Building 10 3 5 3

town_house 8 3 3 1

nanostore 11 3 4 1

default 10 3 4 2

Name Latitud Longitud Vehicle Sum of Weight Sum of Volumen type

N01 4.709352 -74.198120 K18 92.4 0.314 town_house

N02 4.703184 -74.215988 K20 6.5 0.162 nanostore

N03 4.710766 -74.232552 K10 76.2 0.285 town_house

N04 4.710766 -74.232552 K10 42.5 1.191 town_house

N05 4.728393 -74.220398 K10 54.03 0.221 town_house

N06 4.696234 -74.166496 K18 732 0.48 Building

N07 4.725585 -74.218353 K10 70.6 0.361 town_house

N08 4.738458 -74.253876 K10 106.195 0.343 Building

N09 4.713043 -74.066406 K04 32.2 0.088 town_house

N10 4.824690 -74.352470 K10 46.5 0.195 Building

N11 4.704219 -74.041473 K06 1312.67 0.708 town_house

http://www.anylogic.com/
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Figure 72: Vehicle state chart. 

A GIS (Geographic Information System) is utilized. To represent the change in 

velocity in the city due to the peak and valley hours, we set up schedules in the simulation 

model. For example, for peak hours (6:00h to 10:00h and 15:00h to 18:00h) the average 

velocity is between 14km/h to 18km/h, and 10:00h to 15:00h the average is 22km/h. Table 

22 depicts the velocity for each of localities in Bogota city. 

On a map, we place the customers, the routes from the optimization models, and 

regions (localities). Figure 73 shows two shaded areas (Engativa and Fontibon) each one 

with their respective characteristics (traffic velocity, parking time). 
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Table 22: Velocity in each locality. 

 

id Name normal speed peak speed

1 Usaquén 20.00 14.00

2 Chapinero 17.00 11.90

3 Santa Fe 19.89 13.92

4 San Cristóbal 25.00 17.50

5 Usme 25.00 17.50

6 Tunjuelito 25.00 17.50

7 Bosa 23.00 16.10

8 Kennedy 25.00 17.50

9 Fontibón 20.00 14.00

10 Engativá 25.00 17.50

11 Suba 25.00 17.50

12 Barrios Unidos 20.00 14.00

13 Teusaquillo 25.00 17.50

14 Los Mártires 19.81 13.87

15 Antonio Nariño 20.00 14.00

16 Puente Aranda 25.00 17.50

17 La Candelaria 19.89 13.92

18 Rafael Uribe Uribe 17.17 12.02

19 Ciudad Bolívar 17.17 12.02

20 Sumapaz 19.81 13.87
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Figure 73: Regions (Localities) in the city. 

Once all the steps are solved is possible to simulate the solution. Figure 74 depicts 

the animation of the delivery process for a day. Each of the colors means a different 

vehicle; the lines in red are the paths that are followed by each of the cars. With these 

paths, it is possible to know what the directions are for each of the vehicles to do the 

deliveries. 



 

148 
 

 

Figure 74: Home delivery simulation. 

Figure 75 is a screenshot of the main class in the simulator software, where are all 

the agents, parameters, functions, and variables. 
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Figure 75: Main class simulation. 

Figure 76 depicts the average velocity of vehicles in the city.  

 

Figure 76: Average speed of all vehicles in the city. 

The simulation helps to have clarity of the schedule for each of the vehicles under 

the simulated conditions (e.g., traffic, service times). For all customers, the schedule is 
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shown in Appendix 1. Table 23 depicts the time for vehicles in the district of Usaquen, 

showing the arrival and departure time and the service time (parking + delivery). 

Table 23: Sample vehicle indicators. 

 

Now we can check the total simulated time for each of the vehicles to verify if the 

assumption about the maximum number of customers per vehicle is accurate and to find 

out if some adjustments are necessary. The daily time window is from 8:00 to 18:00h. 

 

 

 

 

Vehicle Name Zone Name Customer ID Arrival Time Departure Time Service Time

K06 Usaquén 186 8:53:59 9:10:33 0:16

K06 Usaquén 161 9:15:04 9:29:11 0:14

K06 Usaquén 84 9:34:59 9:50:41 0:15

K06 Usaquén 88 9:54:16 10:14:22 0:20

K06 Usaquén 131 10:17:23 10:39:00 0:21

K06 Usaquén 29 10:43:30 10:57:30 0:14

K06 Usaquén 81 10:59:56 11:13:48 0:13

K06 Usaquén 237 11:15:57 11:26:44 0:10

K06 Usaquén 202 11:28:05 11:42:08 0:14

K06 Usaquén 42 11:45:31 12:04:01 0:18

K06 Usaquén 11 12:10:00 12:19:34 0:09

K06 Usaquén 282 12:26:54 12:45:15 0:18

K06 Usaquén 223 12:49:31 13:02:11 0:12

K06 Usaquén 229 13:04:02 13:19:25 0:15

K06 Usaquén 256 13:23:31 13:38:27 0:14

K06 Usaquén 334 13:40:49 13:54:59 0:14

K06 Usaquén 107 17:01:44 17:18:29 0:16

K06 Usaquén 271 17:33:29 17:48:05 0:14



 

151 
 

Table 24: Vehicle indicators. 

 

One of the significant advantages of the simulation process is to verify the 

assumptions in the optimization model. For example, after the analysis of these results, 

it is interesting to notice the time utilization percentages. Some transportation managers 

are minded leaving some time gap in case of incidentals events (accidents, unions) in the 

execution.  It is expected to improve the parameter utilization with the experience in the 

operation execution. To the extent that the actual operation is compared with the results 

of the optimization and simulation models, the parameters can be calibrated.  

Vehicle

Number of 

Customers

Average of 

Service Time 

(min)

Start Time 

(hr)

End Time 

(hr)

Total 

operation 

hous

Total 

operation 

min

% 

Utilization 

Time 

window Locality

K04 19 13.5 8:20 15:31 7:11 431.1 72% Engativa 

K05 20 15.5 8:14 15:00 6:45 405.8 68% Engativa / Teusaquillo

K06 20 12.3 8:13 17:48 9:34 574.2 96% Chapinero

K07 20 12.9 8:17 15:50 7:33 453.0 76% Bosa

K08 20 15.0 8:07 15:35 7:28 448.4 75% Chapinero / Usaquen

K09 20 13.2 8:16 15:32 7:15 436.0 73% Chapinero / Barrios unidos

K10 20 13.1 8:28 16:35 8:06 486.2 81% Madrid / El Corzo / Facatativa

K11 20 14.8 8:04 14:49 6:45 405.3 68% Suba / Usaquen

K12 20 15.0 8:10 15:49 7:38 459.0 76% Teusaquillo 

K13 20 14.7 8:17 15:42 7:24 444.2 74% Suba / Engativa

K14 19 13.9 8:18 16:19 8:01 481.2 80% Chia / Canelon / La Naveta

K15 18 12.9 8:44 15:42 6:58 418.0 70% Suba

K16 20 14.7 8:08 15:41 7:33 453.1 76% Tunjuelito /Ciudad Bolivar

K17 20 13.3 8:03 16:08 8:05 485.1 81% Usme / San Cristobal

K18 20 13.8 8:42 15:55 7:13 433.1 72% Fontibon

K19 20 13.0 8:07 15:43 7:35 455.9 76% Puente Artanda / Antonio Narino 

K20 20 14.4 8:07 16:43 8:36 516.0 86% Kenedy / Fontibon
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 Step 5: Learning 

The methodology is proposing a playground where the agents learn in a simulation 

environment. As it was shown in the previous section, environmental conditions affect the 

time of the delivery. Different circumstances were simulated to do trial and error tests and 

to learn from the assumptions and results. Once the decision maker has had into account 

different “emergent behaviors” the same simulation environment can be used to test the 

outputs of the learning algorithms and explore their capability to be used by transportation 

managers. This part of the methodology is proposing three machine learning techniques: 

reinforcement learning, neural networks, and deep reinforcement learning. 

The reinforcement learning approach is to recreate as an illustrative example with 

the shortest path route; for this, we will use a grid with nine nodes (that can represent 

neighborhoods in the city, or a specific type or nodes) and 18 edges representing the 

possible paths between nodes. The grid structure allows the vehicle (agent) to adjust the 

path to the road conditions (e.g., traffic density, velocity, and flow) and learn through the 

use of rewards what the best path is. The goal of the vehicle is to go from an origin node 

to a destination node. 

Then we train an artificial neural network to be able to control the decisions to find 

routes in the city. As it was explained, once the assignation of resources is made, the 

problem becomes finding more efficient customer visiting sequences.  It does this by 

learning a policy (i.e., actions) that decides the best route between one point to another 

or the sequence of visiting “nodes” in a geographical space based on the current status 
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of the environment. Deep reinforcement learning and its respective architecture can learn 

from simulations to support exploration and optimization. 

4.2.5.1 Reinforcement Learning 

Nodes and edges are superimposed in the grid (Figure 77). It is assumed that each 

node represents an aggregate demand for a zone in the city (Neighborhood) instead of a 

singular customer. In Bogota is calculated around 40,000 Nano stores. Most of the time, 

these Nano stores are very close to each other in the localities. With these characteristics 

make sense to create groups of demand and customers. The proposed algorithm uses 

reinforcement learning to find the next node to be visited, as discussed in chapter 3. This 

methodology helps to exploit the temporal structure of the problem in terms of current and 

future states, actions, and rewards. Therefore, on the way to find the route between two 

nodes for each state, the algorithm chooses the minimum future weight in the edges as 

a substitute of maximum future reward. Furthermore, with this methodology, it is possible 

to find multiple paths.   

During the execution process, travel time plays a vital role in delivery tasks, 

besides customer service and parking time. Therefore, it is essential to include 

information about the current situation (from traffic and weather information systems) to 

determine travel times during the operation. In consequence, the sequence can be 

updated with this information, identifying the best path between nodes or between an 

origin node (i.e., depot) and a destination node. 
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Table 25 depicts the traffic indicators to find the travel time for each edge.  The 

records represent hourly counts collected on one day for street segments. The traffic flow 

follows a normal distribution. These indicators are used to find out the travel time in the 

arcs of the network, described in the last row of the table. 

Table 25: Indicators for last-mile deliveries. 

 

 
 

Traffic speed, flow, and density are defined for a given period to mimic possible 

changes in traffic during the day to find the traffic time per edge. These times can change 

dynamically depending on the environment during the traffic simulation. We will find the 

route(s) to go from one node to another.  Figure 78 shows the same grid under different 

conditions. The calculations showed in Table 25, allows to derive the total travel time for 

each segment and the shortest route from node 1 to node 9 (Figure 78a). Figure 78b and 

78c are other scenarios where calculations on some segments changed, representing 

how possible anomalies can do variations between zones and their consequences in the 

travel times. 

 

 Indicator Units a1 -a2 a1 -a3 a1 -a4 a2 -a8 a3 -a4 a3 -a6 a4 -a5 a4 -a9 a5 -a3 a5 -a6 a5 -a7 a5 -a9 a6 -a2 a6 -a8 a7 -a6 a7 -a8 a7 -a9 a9 -a8

Route Longitude L km 14 10 5 8 8 5 3 15 4 3 6 11 7 12 8 7 6 4

#lanes Ln NA 2 2 3 2 2 1 1 3 2 1 2 3 3 1 1 1 2 2

Free Speed Uf (km/h) 45 60 60 45 45 60 60 45 45 60 60 45 45 60 60 45 45 45

Traffic Flow q vh/h 623 655 612 573 544 628 532 543 612 522 556 631 571 535 536 691 535 571

Traffic jam K Veh/Km/lane 28 22 20 25 24 21 18 24 27 17 19 28 25 18 18 31 24 25

Traffic density Kj Veh/Km/lane 55 44 41 51 48 42 35 48 54 35 37 56 51 36 36 61 48 51

Speed U (Km/h) 34 45 45 34 34 45 45 34 34 45 45 34 34 45 45 34 34 34

Total travel Time min 25 13 6 15 14 7 5 26 6 4 7 19 12 15 11 12 10 7
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a 

 
b 

 
c 

Figure 77: Grid representation with total travel time per edge different time slots. 

Conditions on routes can change (dynamic environment. With the information from 

the environment, the agent will try to avoid congested roads to find a lower time in the 

route. Figure 78 depicts changes values on routes 1-3, 1-4, 3-4, 3-5, and 5-9.  

Table 26 depicts the parameters used during the simulation and the RL algorithm, 

along with the number of possible routes and the ETA for each scenario. Figure 78 shows 

the grid with the routes. 

Table 26: Scenarios ETA. 

 
 

The algorithm adjusts the policies as a result of observations, reinforcing the good 

“actions,” which means shortest times, relative to the bad actions (longer time). The 

rewards represent the desired goals, which are calculated with performance indicators. 

By maximizing these indicators, the algorithm will improve the system towards the goals. 

Simulations/Days:

Learning Rate:

Epsilon

Grid Scenario a b c

Routes 1 2 1

CPU Time 0.015 0.015 0.015

ETA (min) 28 38 27

0.1

1000

0.7
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Route: 1-4-5-9 

a 

 
Route: 1-4-9 & 1-4-5-9 

b 

 
Route: 1-3-5-9  

c 

 

Figure 78: Scenario Routes. 

These indicators are continuously calculated due to the learning interaction of the 

different “agents” (Consumers, Drivers) and the environment (last-mile operations). The 

uncertainty came from the incorporation of customer demand uncertainty and the real-

time flow of information from customers and drivers.  

4.2.5.2 Neural Networks 

 

Neural networks are used to define routes of visiting for customers (Traveling 

Salesman Problem). The objective of this is to establish a tool that outcomes a good and 

quick solution when transportation companies face routing problems. Neural networks 

are used to learn from optimal solutions of the TSP.  

Given the coordinates of the customers, we defined a grid where customers are 

located. Slopes, angles, and hypotenuses created from their positions (Figure 79) are 

used to set up their locations.  
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Figure 79: Nodes in a grid with Cartesian coordinates. 

Different measures can be extracted from the grid, like coordinates (x,y), quadrant, 

slopes, angle hypotenuse, among others. The neural network was programmed in Python 

3.7. A neural network of five neurons (inputs), one hidden layers with five neurons and 

one neuron for the output layer was designed. The output neuron is a vector that 

represents the sequence of visit for customers.  An example of 20 vehicles is used to 

illustrate how neural networks work. Then test with 50, 70, and 100 nodes are discussed. 

To obtain the optimal solutions, we are using GAMS-CPLEX and equations 27-30 from 

chapter 3. Figure 80 are cardinal coordinates for 20 nodes. 

 

Figure 80: Coordinates of 20 nodes. 
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A grid is created to identify a central point, and from there, calculate the geometric 

inputs. It is necessary to calculate the distance matrix (Euclidian, Manhattan, 

Geographical). We are using Euclidian distances. Figure 81 is the snapshot of the input 

values. Each customer has five features. 

 

Figure 81: Inputs of the neural network. 

Once, the inputs are set, the neural network is ready to make the prediction. Figure 

82 are the values of the weights for each of the layers.  
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Figure 82: Weights of the Neural Network. 

The network is trained with optimal solutions that were generated by previous step 

three.. Figures 83 shows the optimal solution in Figure 83a and the Neural Network 

solution in Figure 83b for this example. 

 

 

a 

 

b 

 

Figure 83: Optimal and trained Neural Network tour  
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Now, this process is repeated with many instances and their optimal tour, to train the 

neural network. Once the neural network is prepared, the next step is to put any other 

instance to find the order. 

4.2.5.3 Deep Reinforcement Learning 

Delivery Nano stores are a common task in many cities. The transportation of 

goods is made from CPGs, soft-drinks, or breweries companies and is an everyday 

logistics task. Customer demands are related to events or market seasons in the year 

and are regularly considered to be delivered with a frequency to the same places. 

The purpose of this example is to demonstrate how these companies, restaurants, 

or supermarkets can make use of learning procedures to improve their planning delivery 

fleet and satisfy customer demands. In a city as Bogota, a car can deliver to around 50 

to100 mom and pop stores, due to the proximity between them, but a company can deliver 

to around 1500-2000 mom and pop stores 

We use deep reinforcement learning to handle problems where it is necessary to 

have quick and near-optimal solutions for the vehicle routing problem based on the 

environmental conditions. These algorithms are very convenient, where it is needed to 

handle many customers. As it was discussed in chapter 3, the algorithm learns from the 

environment. For our purpose, geographical information is used as an input to the network 

and demand distribution as dynamic information.  Once the algorithm is trained for the 

problem, the information is normalized to follow the network structure. Given these inputs 

like localization x and y (cardinal coordinates) are given by values between [0,1]. The 
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normalization algorithm starts by creating a square grid by calculating the maximum and 

minimum values for latitude and longitude. The difference between these two values gives 

the domain and range. The algorithm used for training the vehicles to find the shortest 

delivery path follows a deep reinforcement learning trained policy. This approach does 

not need to calculate the distance matrix each time that need to set the routes. It is 

calculated based on the rewards signals and the feasibility constraints in capacity in 

vehicles. Also, it is not required to retrain for every new situation. 

The points can be rendered on a graph as is depicted in Figure 84. 

 

Figure 84: Playground for VRP. 

For this model, The VRP has two dynamic elements: the capacity of the vehicle 

and the demand of the customer. The following assumptions are used for this example: 

the driver can visit any customer, to fully satisfy requirement (it can be modified for split 

deliveries). 



 

162 
 

The output of the test run provides a tour of the nodes to visit and a visualization 

of the trip. We took different snapshots at different parts of the training to provide better 

visualization of the learning process. The training method for this experiment makes use 

of two neural networks, one is the actor-network to predict the probability distribution over 

the next action at any given step which reduces the problem of choosing a customer from 

a very specific area. The second network, the critic, provides an estimated reward for any 

problem instance which helps to take the best decision from the distribution pool of the 

actor network. Figure 85 depicts the average rewards for each 100 runs over 10 

generations.  

 

Figure 85: Rewards in the training phase for 20 nodes. 

The first case represents a demand for 20 customers, and a vehicle with capacity 

of 700 ton. Figure 86 depicts de demand. 
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Figure 86: Demand 20 customers. 

Figures 87 and 89 illustrates 10 generations of training for a sample of 20 and 50 nodes 

respectively. Figures 88 and 90 display the best solution for each instance.  

 

Figure 87: Batch Generations 20 nodes. 
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The best solution is depicted in Figure 85. Two vehicles are needed for this demand. 

 

Figure 88: The Best solution. 

The sequence for this example is (N00 is the depot):  

 

 

 

A greedy policy was used to produce the routes. These solutions are not optimal. 

However, Figure 89 illustrates how well the policy model has understood the structure 

and is improving generation to generation. Of course, each of the solutions satisfies 

demands and propose the use of fewer vehicles. Then following is an instance with 50 

customers.  

N217 N320 N67 N331 N147 N284 N142 N17 N18 N16 N238 N215 N197 N60 N76 N321 N209 N28 N56 N00 N255 N00
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Figure 89: Batch Generations 50 nodes. 

 

 

Figure 90: The best solution. 
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The experiments were conducted on a PC Intel® Core™ i7-7700K CPU @ 

4.20GHz CPU 4 cores eight threads with a GeForce GTX 1060 6GB/PCIe/SSE2 graphics 

card and 16 GB RAM. Operating System Ubuntu 18.04.2 LTS. 

4.3 Analysis 

 

Improving operational efficiency is an opportunity for companies facing both 

commercial B2B and B2C delivery to compete against large logistics multinationals and 

to improve the customer levels service. The area of last-mile delivery planning has gained 

popularity because of customers expecting to receive fast and reliable service. Typical 

problems in vehicle routing are random customer requests and demands. Possible 

solutions for these issues are accounting for these random occurrences when operational 

planning or incorporate changes to the plans while vehicles are in their route. Changing 

while operating can yield a significant amount of information, but it may not reach optimum 

efficiency. The use of simulations can help successfully anticipate random problems that 

happen in vehicle routing to tackle them early on. Offline simulations can assist in 

optimizing the vehicle routing operations. 

Building a generic system that integrates metrics, various decision levels, multiple 

stakeholders, and supplementary techniques is a huge challenge (Anand et al. 2012; 

Macharis et al. 2014). Furthermore, current proposals have focused on developed, 

mature environments that possess different characteristics of growth, developing 

contexts. Despite complex interactions and dynamic behaviors among various 

stakeholders are present in both cases, the evolution of the latter is more dependent on 
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a set of features related to urbanization, socioeconomic changes, accessibility and 

retailing footprint (Mejia et al. 2017) and not just technologically driven as the former. 

These characteristics hinder or boost the performance of planning and execution of urban 

distribution strategies. (Prahalad 2005). There are just a handful of studies in developing 

countries that characterize urban logistics operations, but they do not address dynamic 

decision making. Also, there are no discussions regarding a methodology composed of 

various complementary methodologies to analyze, tailor urban distribution for these 

countries to keep profitable operations and improve performance (Schmidt, 2015; Joerss 

et al. 2016). Most of the studies in urban logistics discuss mathematical models related 

to the vehicle routing problem (VRP), location problems, inventory models, etc. Ritzinger 

et al. (2016) present an in-depth review of dynamic and stochastic VRPs without 

analyzing the difference between emerging economies. 

Predictive and prescriptive hybrid techniques must be used to support the delivery 

process and adjust plans according to changes in critical factors to set potential scenarios 

and address dynamic behavior and unstable conditions from logistics operations in urban 

environments. Data analytics might be a first step to understand critic issues, build proper 

measurement systems, predict the evolution and lead stakeholders to reinvent their 

strategies, policies embracing technology and a data-driven culture (Hey et al., 2009; 

Brynjolfsson et al., 2011). This methodology, together with techniques that improve 

logistics operations through optimization, agent-based modeling, among other methods 

can leverage a framework for urban freight transport in megacities (Kim et al. 2017; 

Velasquez et al. 2017).  
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The methodology makes use of stakeholder behavior patterns. Allowing a better 

decision-making process and modify routes ahead of time to increase the possibility of 

meeting the demand within the customer time window. Also, these patterns are combined 

with the knowledge of traffic conditions. Furthermore, it was possible to propose 

suboptimal policies for the Dynamic Vehicle Routing Problem DVRP, which is faced by 

many industries around the world. 
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 CONCLUSIONS AND FUTURE RESEARCH 

 

This research proposes a methodology that supports decision making for the 

execution of daily last-mile operations. This approach takes into consideration critical 

factors in the distribution environment, such as sociodemographic diversity, 

fragmentation, higher congestion factors, and dense areas. The methodology allows to 

plan any delivery task efficiently with optimization, simulation and machine learning 

models, supporting delivery processes and proactive, dynamic decision-making during 

the execution stage.  

This research proposed a new perspective to solve the last-mile delivery problems. 

Explicitly, it shows that optimization, simulation, and Deep Reinforcement Learning 

methods can be used to build last-mile distribution policies. The data generated by 

consumers, drivers, and traffic is an opportunity to incorporate that knowledge in the 

models. Simulations allowed the exploration of the execution in the delivery environment 

to improve decisions. These improved policies are then used to train the learning models 

further. 

5.1 Summary of Research and Conclusions 

 

A new methodology was developed to serve as a prediction and analytic tool to 

gain insights into current and future operations between the stakeholders and physical 

elements in the distribution process. Five main steps compose it. First, we proposed the 

management of data in having into account how to collect it and use it to improve 
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decisions. Second, is proposed to analyze this data with statistical tools. Third, a modeling 

phase where optimization models help to find the best solutions under assumptions and 

constraints of the environment. Four, is proposed the use of simulation techniques to 

recreate the results of the previous step and add more complexities to the models and 

calibrate the parameters used in the optimization models. We proposed optimization 

modeling, combined with simulation and visualization technology for effective goods 

delivery. Finally, in the fifth step is proposed to have learning procedures, where is created 

algorithms that can have into account the results of the optimization and simulation 

models and can learn the best practices and take decisions in a short time. With the 

learning procedures, was demonstrated a way of adjusting routes responding to possible 

anomalies in traffic flow. 

Our approach contributes to the scientific and practitioners’ community by 

considering learning processes to create effective, proactive last-mile distribution 

systems to achieve short and long-term goals. The designed methodology set up efficient 

routes along with information about road traffic, the zone of the city, waiting time of the 

customer, among other indicators.  

The methodology was applied in wo case studies. State of the art analytic 

techniques to detect and understand the different behaviors of last-mile delivery 

stakeholders and their dynamic interactions were used.  

The first case is in last-mile delivery in maritime logistics, where the main concern 

is the definition of a specialized fleet of vessels that reaches the remote parts of Western 
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Alaska as they become accessible during the summer months. This process included a 

mathematical optimization model that have into account split deliveries and 

heterogeneous fleet and a simulation model to recreate the proposed routes under 

different scenarios. Steps one to five of the methodology are used: data collection, data 

analysis, modeling, simulation, and learning. 

The second case study is in urban logistics, it serves to demonstrate an efficient 

solution to set up routes to deliver orders in a megacity. The methodology can help 

transportation managers to support peak and valley delivery orders. In general, the case 

discusses ways to define the correct combination of the type of vehicles that would be 

used and their quantity, together with the number of orders that each vehicle would carry 

to have an efficient operation. Finally, and the essential part, to bring a simulation learning 

methodology to improve the processes. 

The research set up the conditions for further research to have better traffic 

predictions and services time through the analysis of the patterns from data collected from 

Geographical Positions Systems (GPS), tracking technology, sensors, and experiences 

from past delivery locations. The methodology also has into account diverse, hybrid, and 

complementary techniques (e.g., optimization, machine learning, geographic information 

systems, statistical, dynamic, and stochastic methods) to understand logistics operations. 

Based on the literature review, interviews with industry experts and last logistics 

tendencies in last-mile delivery, we meet the requirements of the checklist in chapter 

three.  
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5.2 Research Contributions 

 

Potential applications of this system will leverage growing technological trends (e.g., 

deep reinforcement learning in logistics and supply chain management, virtual simulation, 

internet of things). One feature is the utilization of self-learning procedures to iteratively 

test and adjust the gaps between the expected and real performance in last-mile 

operations. The methodology to understand the behavior of a network of stakeholders 

during the complex last-mile distribution process, showing the potential benefits of this 

methodology, especially in maritime logistics and metropolitan areas. 

The last-mile delivery research community has been working on better practices to 

solve issues in operation using different kinds of techniques, from mathematical 

programming to heuristics. However, there was a lack of a unified framework to build a 

methodology, and a software architecting, where different approaches can be used in a 

synchronized form, which allows to researches and other interested people to see the 

connection between the methodologies and techniques. With this research, it was 

possible to bring advanced technologies in routing practices and algorithms to decrease 

operating cost and leverage the use of offline and online information, thanks to connected 

sensors (in vehicles or phones) to support decisions. 

The methodology iteratively tests and adjust gaps between expected (assumptions 

in the models) and real performance of distribution operations (key performance 
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indicators). This methodology takes advantage of learning procedures that self-adjust to 

meet the goals of the stakeholders in mutually beneficial situations.  

5.3 Directions for Future Research  

 

There are some identified directions for future research, such as: 

1. Parallel Distributed Processing to accelerate the speed of solutions: The 

decomposition of the problem, taking into consideration the response time and the 

clusters to be used, represents an important area of research. There are many 

parallel distributed schemes, and the research work has to include the respective 

selection. To improve the real-life elements and the size of instances and velocity 

of the solution, it is proposed to use distributed and parallel computing 

implementations. 

2. Learning of delivery/parking process and the velocity of vehicles as a function of 

the weather and events: Deep learning can contribute to providing the times of the 

delivery process based on the conditions of the client’s area with more detail. This 

research also is an approach to use more complex hybrid modeling and specifically 

deep reinforcement learning techniques in dynamic vehicle routing problem. It is 

proposed to explore other features of the environment and to include more 

information besides the demand, location, and service time. This aspect will 

improve the architecture of learning algorithms.  
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3. Bin packing problem: The delivery process can be complemented with the efficiency 

in the loading and unloading of products. Define an integrated solution packing-

distribution seems to be an interesting research topic. Define how to allocate the 

merchandise base on the routing, characteristics of the products (beyond weight 

and volume), and to potentially consider the size of the fleet. 

4. Tracking using IoT and the re-scheduling issue: Mobile computing, IoT, and GIS 

can provide information on the current positions of the vehicles. Therefore, re-

scheduling can be optimized. A big problem is when you have hundreds of 

thousands of clients that have to be monitored and synchronized with customer 

needs. 

5. Study of drivers’ behavior and how to model it: Drivers tend to follow their intuition, 

and sometimes they do not like to be commanded by a computerized system. It is 

essential to understand the human-machine interface and provide mechanisms for 

the interactions of decisions and insights from the drivers. 

6. Feedback from clients and drivers: One crucial point not considered in this research 

is the feedback from the drivers and the clients of the system. Social media and text 

mining can be used to improve the system. 

7. Balance Scorecard and Strategy Maps: From management practice, this research 

proposes the use of these key performance indicators to support other managerial 

tools like the Balance Score Card and Strategy Maps. Figure 91 depicts how a 

strategy map can be built from the outputs of this methodology and for each of its 
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perspectives, thanks to the reinforcement learning approach, the organization can 

detect the best policies in each decision. 

 

Figure 91: Strategy map based on reinforcement learning rewards. 
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 APPENDIX A: SCHEDULE FOR EACH CUSTOMER CASE B 

 

Vehicle 
Name Zone Name Customer ID 

Arrival 
Time 

Departure 
Time 

Service 
Time 

K04 Suba 100 8:20:40 8:34:19 0:13 

K04 Suba 9 8:47:39 8:57:51 0:10 

K04 Suba 90 9:06:46 9:25:19 0:18 

K04 Suba 281 9:36:55 9:52:35 0:15 

K04 Suba 179 10:01:18 10:25:34 0:24 

K04 Suba 211 10:34:34 10:53:23 0:18 

K04 Usaquén 234 11:02:02 11:13:52 0:11 

K04 Usaquén 236 11:18:58 11:36:29 0:17 

K04 Usaquén 159 11:40:26 11:53:12 0:12 

K04 Usaquén 129 11:56:23 12:09:51 0:13 

K04 Suba 224 12:13:59 12:30:17 0:16 

K04 out 257 12:38:26 12:49:25 0:11 

K04 Suba 267 12:58:35 13:10:36 0:12 

K04 Suba 266 13:12:59 13:33:32 0:20 

K04 Suba 279 13:41:25 13:55:34 0:14 

K04 Suba 280 13:55:49 14:15:26 0:19 

K04 Engativá 195 14:34:39 14:45:34 0:10 

K04 Engativá 173 14:52:57 15:12:07 0:19 

K04 Engativá 212 15:13:09 15:31:46 0:18 

K05 Engativá 60 8:14:17 8:33:28 0:19 

K05 Engativá 18 8:41:25 8:55:26 0:14 

K05 Engativá 17 8:55:37 9:17:06 0:21 

K05 Engativá 147 9:22:27 9:34:12 0:11 

K05 Engativá 331 9:51:58 10:06:14 0:14 

K05 Fontibón 67 10:11:30 10:26:21 0:14 

K05 out 320 10:26:35 10:41:32 0:14 

K05 Teusaquillo 217 10:50:38 11:11:16 0:20 

K05 Engativá 284 11:22:48 11:32:18 0:09 

K05 Barrios Unidos 209 11:39:10 11:52:01 0:12 

K05 Engativá 321 11:59:05 12:10:02 0:10 

K05 Engativá 238 12:11:02 12:24:34 0:13 

K05 Engativá 215 12:26:46 12:48:23 0:21 

K05 Engativá 142 12:53:12 13:12:46 0:19 
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K05 Engativá 16 13:14:45 13:27:20 0:12 

K05 Engativá 76 13:29:52 13:45:22 0:15 

K05 Engativá 197 13:48:08 13:59:33 0:11 

K05 Engativá 28 14:01:15 14:14:47 0:13 

K05 Engativá 56 14:20:10 14:37:43 0:17 

K05 Engativá 255 14:43:15 15:00:05 0:16 

K06 Suba 165 8:13:53 8:35:09 0:21 

K06 Usaquén 186 8:53:59 9:10:33 0:16 

K06 Usaquén 161 9:15:04 9:29:11 0:14 

K06 Usaquén 84 9:34:59 9:50:41 0:15 

K06 Usaquén 88 9:54:16 10:14:22 0:20 

K06 Usaquén 131 10:17:23 10:39:00 0:21 

K06 Usaquén 29 10:43:30 10:57:30 0:14 

K06 Usaquén 81 10:59:56 11:13:48 0:13 

K06 Usaquén 237 11:15:57 11:26:44 0:10 

K06 Usaquén 202 11:28:05 11:42:08 0:14 

K06 Usaquén 42 11:45:31 12:04:01 0:18 

K06 Usaquén 11 12:10:00 12:19:34 0:09 

K06 Usaquén 282 12:26:54 12:45:15 0:18 

K06 Usaquén 223 12:49:31 13:02:11 0:12 

K06 Usaquén 229 13:04:02 13:19:25 0:15 

K06 Usaquén 256 13:23:31 13:38:27 0:14 

K06 Usaquén 334 13:40:49 13:54:59 0:14 

K06 out 296 14:46:53 15:07:27 0:20 

K06 Usaquén 107 17:01:44 17:18:29 0:16 

K06 Usaquén 271 17:33:29 17:48:05 0:14 

K07 out 130 8:17:19 8:29:16 0:11 

K07 out 277 8:34:39 8:46:30 0:11 

K07 out 278 8:49:40 9:05:40 0:16 

K07 out 162 9:35:07 9:49:11 0:14 

K07 out 163 9:52:43 10:06:16 0:13 

K07 out 221 10:13:29 10:30:03 0:16 

K07 out 249 10:49:29 10:57:09 0:07 

K07 out 102 11:00:09 11:13:17 0:13 

K07 out 175 11:19:59 11:46:36 0:26 

K07 out 104 11:51:17 12:00:12 0:08 

K07 out 59 12:03:48 12:20:32 0:16 

K07 out 231 12:20:35 12:32:31 0:11 
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K07 out 51 12:35:45 12:50:33 0:14 

K07 Ciudad Bolívar 203 13:08:01 13:26:36 0:18 

K07 Kennedy 140 13:43:51 14:03:16 0:19 

K07 Kennedy 240 14:06:55 14:28:30 0:21 

K07 Kennedy 58 14:33:24 14:48:53 0:15 

K07 out 298 15:00:11 15:12:23 0:12 

K07 out 262 15:17:16 15:34:12 0:16 

K07 out 324 15:38:21 15:50:20 0:11 

K08 Usaquén 214 8:07:34 8:25:25 0:17 

K08 Usaquén 160 8:28:45 8:42:57 0:14 

K08 Usaquén 40 8:50:25 9:05:32 0:15 

K08 Usaquén 41 9:12:22 9:29:37 0:17 

K08 Usaquén 133 9:55:24 10:16:55 0:21 

K08 out 12 10:19:12 10:34:36 0:15 

K08 out 335 10:37:25 10:55:52 0:18 

K08 Usaquén 270 11:17:44 11:32:49 0:15 

K08 out 250 11:39:51 11:54:31 0:14 

K08 out 75 12:00:47 12:23:35 0:22 

K08 out 208 12:28:27 12:45:55 0:17 

K08 out 235 12:55:41 13:18:58 0:23 

K08 out 207 13:24:05 13:38:29 0:14 

K08 out 89 13:45:09 13:55:31 0:10 

K08 out 227 13:57:16 14:14:00 0:16 

K08 out 230 14:14:27 14:30:19 0:15 

K08 out 21 14:35:38 14:43:01 0:07 

K08 out 37 14:48:51 15:01:03 0:12 

K08 out 36 15:01:32 15:13:51 0:12 

K08 out 225 15:22:05 15:35:58 0:13 

K09 Barrios Unidos 136 8:16:54 8:31:19 0:14 

K09 Barrios Unidos 181 8:34:03 8:54:19 0:20 

K09 Teusaquillo 125 9:06:46 9:27:50 0:21 

K09 Barrios Unidos 305 9:32:47 9:44:41 0:11 

K09 Teusaquillo 15 9:50:12 10:05:08 0:14 

K09 Barrios Unidos 55 10:06:46 10:23:20 0:16 

K09 Barrios Unidos 323 10:28:16 10:51:57 0:23 

K09 Barrios Unidos 264 10:57:25 11:20:12 0:22 

K09 Barrios Unidos 265 11:22:03 11:41:04 0:19 

K09 out 302 11:43:24 11:55:43 0:12 
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K09 out 158 12:02:04 12:22:43 0:20 

K09 out 118 12:28:30 12:47:37 0:19 

K09 out 26 12:50:56 13:07:25 0:16 

K09 out 156 13:10:07 13:22:47 0:12 

K09 out 146 13:29:25 13:46:46 0:17 

K09 out 22 13:51:50 14:09:24 0:17 

K09 out 23 14:10:31 14:25:23 0:14 

K09 Barrios Unidos 169 14:30:30 14:46:37 0:16 

K09 out 85 14:54:32 15:08:09 0:13 

K09 out 261 15:16:39 15:32:52 0:16 

K10 out 5 8:28:46 8:44:50 0:16 

K10 out 7 8:48:18 9:01:39 0:13 

K10 out 285 9:10:51 9:31:32 0:20 

K10 out 254 9:43:47 9:59:09 0:15 

K10 out 127 10:08:14 10:28:16 0:20 

K10 out 328 10:35:07 10:55:49 0:20 

K10 out 3 11:01:17 11:17:15 0:15 

K10 out 4 11:19:43 11:25:29 0:05 

K10 out 139 11:38:15 11:51:35 0:13 

K10 out 304 12:00:05 12:16:01 0:15 

K10 out 253 12:17:42 12:38:09 0:20 

K10 out 289 12:42:18 13:10:53 0:28 

K10 out 306 13:13:30 13:25:33 0:12 

K10 out 8 13:27:27 13:46:06 0:18 

K10 out 300 13:51:54 14:02:33 0:10 

K10 out 274 14:06:23 14:19:34 0:13 

K10 out 74 14:27:18 14:42:23 0:15 

K10 out 205 14:43:59 15:02:45 0:18 

K10 out 77 15:49:16 16:02:17 0:13 

K10 out 10 16:19:10 16:35:00 0:15 

K11 Suba 268 8:04:06 8:16:32 0:12 

K11 Suba 97 8:18:13 8:39:08 0:20 

K11 Suba 330 8:41:49 8:54:12 0:12 

K11 Suba 182 9:03:28 9:17:04 0:13 

K11 Suba 20 9:21:05 9:48:11 0:27 

K11 Usaquén 191 10:05:52 10:18:27 0:12 

K11 Usaquén 138 10:23:40 10:37:53 0:14 

K11 Usaquén 95 10:40:51 10:56:21 0:15 



 

180 
 

K11 Usaquén 101 11:03:28 11:20:18 0:16 

K11 Usaquén 244 11:29:19 11:41:22 0:12 

K11 Usaquén 185 11:43:27 11:55:58 0:12 

K11 Usaquén 38 11:58:46 12:15:50 0:17 

K11 Usaquén 322 12:19:02 12:35:43 0:16 

K11 Usaquén 246 12:39:25 12:51:34 0:12 

K11 Suba 206 12:56:50 13:10:38 0:13 

K11 Suba 152 13:16:56 13:33:56 0:17 

K11 Suba 54 13:39:04 14:03:35 0:24 

K11 Suba 92 14:07:37 14:17:48 0:10 

K11 Suba 314 14:18:42 14:30:11 0:11 

K11 Suba 98 14:36:15 14:49:21 0:13 

K12 Teusaquillo 319 8:10:27 8:29:40 0:19 

K12 Puente Aranda 199 8:36:54 8:56:47 0:19 

K12 Puente Aranda 143 8:57:33 9:17:31 0:19 

K12 Teusaquillo 71 9:22:13 9:39:31 0:17 

K12 Los Mártires 86 9:57:23 10:13:38 0:16 

K12 Los Mártires 303 10:19:06 10:27:44 0:08 

K12 Santa Fe 14 10:38:40 10:57:47 0:19 

K12 Santa Fe 31 10:59:11 11:15:01 0:15 

K12 Santa Fe 30 11:16:16 11:36:32 0:20 

K12 Santa Fe 13 11:37:35 11:53:37 0:16 

K12 Los Mártires 53 12:05:11 12:23:11 0:18 

K12 Teusaquillo 313 12:28:32 12:58:38 0:30 

K12 Teusaquillo 96 13:03:35 13:16:46 0:13 

K12 Teusaquillo 204 13:18:17 13:37:06 0:18 

K12 Barrios Unidos 93 13:39:43 13:53:33 0:13 

K12 Barrios Unidos 94 13:53:37 14:13:14 0:19 

K12 Barrios Unidos 332 14:20:22 14:37:25 0:17 

K12 Teusaquillo 117 14:42:24 14:55:52 0:13 

K12 Teusaquillo 149 15:02:33 15:24:57 0:22 

K12 Teusaquillo 178 15:32:28 15:49:26 0:16 

K13 Suba 154 8:17:48 8:37:14 0:19 

K13 Suba 245 8:42:31 9:04:11 0:21 

K13 Suba 34 9:08:15 9:22:00 0:13 

K13 Suba 287 9:28:45 9:44:28 0:15 

K13 Suba 112 9:51:50 10:07:37 0:15 

K13 Suba 247 10:15:45 10:31:39 0:15 
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K13 Suba 201 10:36:59 10:50:30 0:13 

K13 Suba 176 10:54:25 11:05:11 0:10 

K13 Engativá 83 11:31:58 11:47:46 0:15 

K13 Engativá 141 11:54:03 12:06:43 0:12 

K13 Engativá 25 12:10:56 12:17:53 0:06 

K13 Engativá 272 12:20:36 12:42:29 0:21 

K13 Engativá 150 12:47:10 13:01:42 0:14 

K13 Engativá 124 13:05:23 13:29:34 0:24 

K13 Engativá 226 13:35:05 13:42:35 0:07 

K13 Engativá 33 13:48:41 14:09:03 0:20 

K13 Engativá 153 14:14:20 14:32:34 0:18 

K13 Engativá 32 14:34:51 14:50:17 0:15 

K13 Engativá 276 14:58:36 15:21:42 0:23 

K13 Engativá 39 15:26:13 15:42:00 0:15 

K14 out 45 8:18:43 8:32:29 0:13 

K14 out 47 8:43:33 8:52:40 0:09 

K14 out 91 8:54:30 9:04:42 0:10 

K14 out 43 9:13:40 9:25:58 0:12 

K14 out 99 9:30:56 9:45:25 0:14 

K14 out 49 9:48:41 10:07:28 0:18 

K14 out 317 10:07:46 10:24:06 0:16 

K14 out 336 10:27:15 10:43:49 0:16 

K14 out 193 10:50:56 11:06:17 0:15 

K14 out 48 11:16:42 11:36:34 0:19 

K14 out 46 11:52:00 12:07:09 0:15 

K14 out 192 12:11:07 12:29:40 0:18 

K14 out 135 12:31:15 12:56:06 0:24 

K14 out 44 12:57:33 13:09:43 0:12 

K14 out 137 13:12:01 13:23:46 0:11 

K14 out 50 13:44:57 13:54:24 0:09 

K14 out 148 14:07:25 14:13:06 0:05 

K14 out 120 14:22:19 14:42:32 0:20 

K14 out 190 16:07:22 16:19:55 0:12 

K15 out 126 8:44:02 8:59:27 0:15 

K15 out 290 8:59:41 9:18:21 0:18 

K15 out 325 9:19:25 9:43:15 0:23 

K15 Suba 299 9:48:51 10:02:45 0:13 

K15 Suba 318 10:26:16 10:41:23 0:15 
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K15 Suba 170 10:44:56 10:59:02 0:14 

K15 Suba 35 11:05:11 11:35:32 0:30 

K15 Suba 263 11:44:40 12:00:32 0:15 

K15 Suba 309 12:05:45 12:23:11 0:17 

K15 Suba 291 12:34:41 12:42:21 0:07 

K15 Suba 315 12:51:52 13:05:17 0:13 

K15 Suba 312 13:07:48 13:25:51 0:18 

K15 Suba 132 13:28:07 13:51:40 0:23 

K15 Suba 119 13:53:43 14:10:49 0:17 

K15 Suba 196 14:21:46 14:36:06 0:14 

K15 Suba 188 14:41:08 14:54:44 0:13 

K15 Suba 78 14:59:17 15:14:37 0:15 

K15 Suba 144 15:20:21 15:42:03 0:21 

K16 Kennedy 258 8:08:12 8:16:56 0:08 

K16 Puente Aranda 273 8:19:48 8:35:36 0:15 

K16 Kennedy 109 8:42:06 8:53:06 0:11 

K16 Kennedy 288 8:57:23 9:12:33 0:15 

K16 out 108 9:18:03 9:40:32 0:22 

K16 out 251 9:44:52 9:59:30 0:14 

K16 Antonio Nariño 114 10:03:37 10:20:33 0:16 

K16 Antonio Nariño 216 10:24:55 10:41:04 0:16 

K16 
Rafael Uribe 

Uribe 157 10:46:53 11:03:55 0:17 

K16 Tunjuelito 293 11:10:06 11:24:45 0:14 

K16 
Rafael Uribe 

Uribe 228 11:28:18 11:47:23 0:19 

K16 Tunjuelito 194 11:52:27 12:08:11 0:15 

K16 Bosa 311 12:11:44 12:24:51 0:13 

K16 Ciudad Bolívar 113 12:35:04 12:49:52 0:14 

K16 Ciudad Bolívar 187 13:03:34 13:22:47 0:19 

K16 Tunjuelito 105 13:30:13 13:50:09 0:19 

K16 Tunjuelito 294 13:59:08 14:12:42 0:13 

K16 Ciudad Bolívar 128 14:33:40 14:46:32 0:12 

K16 Kennedy 167 15:07:22 15:18:40 0:11 

K16 Kennedy 297 15:21:49 15:41:20 0:19 

K17 San Cristóbal 233 8:03:48 8:18:35 0:14 

K17 San Cristóbal 70 8:24:01 8:38:54 0:14 

K17 San Cristóbal 79 8:51:30 9:04:51 0:13 

K17 San Cristóbal 80 9:05:36 9:24:01 0:18 
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K17 Usme 73 9:43:08 9:56:31 0:13 

K17 Usme 116 9:58:09 10:09:48 0:11 

K17 Ciudad Bolívar 232 10:42:56 11:00:15 0:17 

K17 Usme 219 11:32:58 11:43:22 0:10 

K17 Usme 103 11:50:38 12:04:36 0:13 

K17 Usme 82 12:16:47 12:22:47 0:06 

K17 
Rafael Uribe 

Uribe 151 12:27:12 12:42:31 0:15 

K17 
Rafael Uribe 

Uribe 87 12:48:09 12:59:09 0:11 

K17 
Rafael Uribe 

Uribe 166 12:59:16 13:14:34 0:15 

K17 
Rafael Uribe 

Uribe 248 13:19:31 13:47:36 0:28 

K17 
Rafael Uribe 

Uribe 52 13:53:30 14:07:54 0:14 

K17 San Cristóbal 171 14:27:38 14:49:04 0:21 

K17 San Cristóbal 172 14:49:21 14:57:51 0:08 

K17 San Cristóbal 275 15:11:29 15:25:44 0:14 

K17 San Cristóbal 241 15:29:56 15:47:10 0:17 

K17 San Cristóbal 333 15:51:22 16:08:55 0:17 

K18 out 1 8:42:08 8:56:26 0:14 

K18 out 218 9:17:23 9:32:02 0:14 

K18 Fontibón 6 9:42:57 9:58:13 0:15 

K18 Fontibón 180 10:09:53 10:26:32 0:16 

K18 Fontibón 310 10:27:22 10:41:27 0:14 

K18 Fontibón 145 10:46:58 10:55:57 0:08 

K18 Fontibón 308 10:59:37 11:11:00 0:11 

K18 Fontibón 327 11:13:25 11:29:58 0:16 

K18 Fontibón 189 11:37:44 11:45:52 0:08 

K18 Engativá 66 11:53:00 12:09:48 0:16 

K18 Fontibón 134 12:15:28 12:29:38 0:14 

K18 Fontibón 210 12:35:54 12:50:49 0:14 

K18 Fontibón 174 12:53:13 13:12:16 0:19 

K18 Fontibón 295 13:17:30 13:32:49 0:15 

K18 Fontibón 220 13:35:24 13:48:20 0:12 

K18 Fontibón 72 13:50:17 14:07:37 0:17 

K18 Fontibón 222 14:09:47 14:26:22 0:16 

K18 Kennedy 19 14:34:55 14:55:43 0:20 

K18 Fontibón 183 15:05:15 15:23:40 0:18 
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K18 Fontibón 286 15:32:04 15:55:12 0:23 

K19 Puente Aranda 57 8:07:30 8:25:15 0:17 

K19 Los Mártires 292 8:37:22 8:54:00 0:16 

K19 Puente Aranda 301 9:06:48 9:19:06 0:12 

K19 Puente Aranda 164 9:21:39 9:39:18 0:17 

K19 Puente Aranda 213 9:41:10 9:58:58 0:17 

K19 Puente Aranda 168 9:59:21 10:18:51 0:19 

K19 Puente Aranda 259 10:20:29 10:33:40 0:13 

K19 Los Mártires 68 10:45:01 11:11:16 0:26 

K19 Antonio Nariño 200 11:17:12 11:40:06 0:22 

K19 Antonio Nariño 123 11:44:03 12:05:48 0:21 

K19 Antonio Nariño 177 12:11:50 12:27:01 0:15 

K19 Puente Aranda 184 12:33:03 12:46:25 0:13 

K19 Puente Aranda 115 12:50:42 13:06:40 0:15 

K19 Puente Aranda 111 13:08:30 13:20:41 0:12 

K19 Puente Aranda 110 13:23:42 13:44:37 0:20 

K19 Kennedy 69 13:48:52 13:59:31 0:10 

K19 Puente Aranda 155 14:13:32 14:30:43 0:17 

K19 Kennedy 243 14:38:26 14:58:34 0:20 

K19 Kennedy 106 15:01:12 15:19:48 0:18 

K19 Kennedy 252 15:23:35 15:43:21 0:19 

K20 Kennedy 24 8:07:10 8:27:20 0:20 

K20 Kennedy 269 8:33:36 8:55:30 0:21 

K20 Kennedy 64 9:04:01 9:19:32 0:15 

K20 Kennedy 62 9:20:33 9:35:57 0:15 

K20 Kennedy 63 9:45:20 10:04:52 0:19 

K20 Kennedy 242 10:08:36 10:21:23 0:12 

K20 Kennedy 326 10:27:50 10:39:44 0:11 

K20 Kennedy 121 10:45:31 10:58:55 0:13 

K20 Kennedy 260 11:00:53 11:15:42 0:14 

K20 Kennedy 239 11:23:24 11:36:02 0:12 

K20 Kennedy 316 11:43:46 12:01:14 0:17 

K20 Kennedy 27 12:10:10 12:22:46 0:12 

K20 Kennedy 122 12:31:39 12:49:18 0:17 

K20 Kennedy 198 12:56:24 13:10:04 0:13 

K20 Kennedy 65 13:17:26 13:31:05 0:13 

K20 Kennedy 283 13:34:02 13:56:12 0:22 

K20 Kennedy 61 14:05:02 14:20:44 0:15 
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K20 out 2 15:38:40 15:50:17 0:11 

K20 out 329 15:56:01 16:13:03 0:17 

K20 out 307 16:21:28 16:43:11 0:21 
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