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ABSTRACT 

Cytolethal distending toxin (CDT) is a virulence factor produced by many Gram-negative bacteria, 

including Haemophilus ducreyi. This fastidious pathogen is the causative agent of genital cancroid. 

CDT is a heterotrimeric toxin with an AB2 structure consisting of a cell-binding “B” domain (CdtA 

+ CdtC) and a catalytic “A” domain (CdtB) that has DNase activity. This toxin assembles in the 

bacterial periplasm that lacks ATP and is secreted into the extracellular environment. After cell 

binding, CDT is internalized by endocytosis and travels through the endosomes and Golgi before 

arriving in the endoplasmic reticulum (ER). CdtA is lost from the holotoxin before reaching the 

Golgi, and CdtB separates from CdtC in the ER. CdtB is then transported into the nucleus, inducing 

cell cycle arrest and apoptosis. Using disassembly of the AB5 pertussis toxin as a model, we 

explore that ATP, which is present in the ER lumen but not in the endosomes or Golgi, will cause 

dissociation of the CdtB/CdtC heterodimer. We have cloned and purified the three individual 

subunits of the H. ducreyi CDT. When combined, the subunits form a lethal holotoxin. Examining 

the individual toxin subunits, only CdtB binds with ATP but does not function as an ATPase. 

CdtB’s binding to ATP also does not cause global changes to its secondary structure. After 

isolating the CdtB/CdtC heterodimer, we have shown the addition of ATP causes CdtC to 

dissociate from CdtB. The work presented in this Thesis provides a molecular basis for why the 

CdtB/CdtC heterodimer disassembles after reaching the ER and confirms the novel two-stage 

disassembly mechanism for CDT, a first in the AB toxin field. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

Cytolethal distending toxin (CDT) is a virulence factor produced by many Gram-negative 

pathogens including Haemophilus ducreyi, Escherichia coli, Campylobacter jejuni, and 

Aggregatibacter actinomycetemcomitans [1]. This thesis focuses on the CDT produced by H. 

ducreyi, a fastidious Gram-negative coccobacillus linked to a sexual transmitted infection (STI) 

prevalent in Africa known as genital chancroid [2-4]. CDT contributes to the infectious process by 

inducing apoptosis in lymphocytes, thus allowing bacterial persistence at the site of infection by 

inhibiting an adaptive immune response [5, 6].  

Structure 

CDT is part of the AB toxin family, which includes a large group of bacterial toxins that share a 

common structural organization comprised of a catalytic A subunit and a cell binding B subunit. 

CDT is a heterotrimeric AB2 genotoxin with one catalytic protein (CdtB) and two cell-binding 

proteins (CdtA and CdtC) (Fig. 1). It is encoded by the cdt operon contained in the bacterial 

genome, with cdtB located between cdtA and cdtC [7]. The genes in an operon are labeled 

alphabetically in the order they are transcribed, explaining why the catalytic A protein is identified 

as the CdtB subunit. After translation, the holotoxin spontaneously assembles in the neutral pH 

environment of the bacterial periplasm and is secreted into the extracellular space. Unlike most 

other AB toxins, CDT does not have disulfide linkages to maintain holotoxin structure [7]. 

Noncovalent protein-protein interactions are sufficient to assemble and maintain a stable CDT 

holotoxin [7].  
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Figure 1: Ribbon diagram of CDT holotoxin. 

CDT is a heterotrimeric AB2 toxin. CdtA (blue) and CdtC (red) make up the cell binding “B” 

domain. CdtB (green) is the catalytic “A” domain. The N-terminal region of CdtC is seen blocking 

the active site of the DNase I domain in CdtB, requiring toxin disassembly to activate the latent 

DNase activity of CdtB. PDB 1SR4 [7, 8] 
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Function 

CdtA and CdtC make up the cell binding “B” domain that binds to lipid rafts, specific regions with 

high cholesterol in the plasma membrane [9, 10]. Both subunits also contain lectin motifs that are 

similar to the cell-binding subunit of ricin, another AB toxin [11]. Lectin motifs recognize specific 

glycan modifications present on proteins and lipids, but the exact configuration of sugar residues 

on CDT surface receptors has not yet been identified for HdCDT [12]. Lipid rafts are required for 

intoxication while the lectin binding interactions only play an accessory role [9, 10, 12]. 

 

CdtB is the catalytic A subunit that contains structural similarities to the DNase I endonuclease 

family [7]. Like DNase I, CdtB can cause double-stranded DNA breaks [13, 14]. This triggers a 

DNA repair response mediated by ataxia-telangiectasia mutated (ATM), a kinase that 

phosphorylates the H2AX histone. This modification recruits the MRN complex to repair DNA 

either by homologous recombination or non-homologous end joining repair [10, 15]. During this 

process, the cell cycle will be arrested during G1 or G2 phase [16]. Cellular expansion is still active 

during this arrest, leading to a distended phenotype. If DNA repair is successful, the cell will 

resume through the cell cycle. Failure will induce apoptosis. 

Trafficking 

In order for CdtB to reach the DNA, it must travel from the extracellular space to the nucleus [6, 

17]. This pathway involves several steps, including (i) CDT holotoxin binding to the host plasma 

membrane binding; (ii) internalization in a clathrin- and dynamin-dependent manner; (iii) vesicle 

transport passing through the early and late endosomes before reaching the Golgi apparatus; and 

(iv) retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER). After 
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reaching the ER, only CdtB is transported into the nucleus where it causes double-stranded breaks 

in the host DNA [10, 13, 18-21].  

Two-Stage Disassembly 

Although all three Cdt subunits are required for cellular intoxication, CdtC blocks CdtB active site, 

so disassembly is required to cause DNA damage after reaching the nucleus [18, 22, 23]. Confocal 

microscopy did not detect an intracellular pool of CdtA, which suggested CdtA is left on the cell 

surface while the CdtB/CdtC heterodimer is internalized [24]. However, this negative result does 

not eliminate the possibility of CdtA internalization and/or recycling. For example, CdtA could 

dissociate from CdtB/CdtC in the endosomes after holotoxin internalization and then return to the 

surface. Only CdtB and CdtC arrive at the Golgi apparatus after passing through the endosomes, 

as demonstrated by the sulfation of recombinant CdtB and CdtC but not CdtA [10, 25, 26]. 

Sulfation is a protein modification specific to the Golgi apparatus, so the lack of CdtA sulfation 

indicates that CdtA disassociated from the CdtB/CdtC heterodimer before their arrival to the Golgi 

[25, 26]. Whether CdtA dissociation from CdtB/CdtC occurs at the cell surface or in the 

endosomes, there is a consensus that CdtA is lost early in the transport pathway. This is the first 

stage of CDT disassembly. CdtB and CdtC are further transported to the ER demonstrated by 

confocal microscopy [24]. However, only CdtB delivery to the ER was confirmed by N-

glycosylation, the attachment of glycans to asparagine amino acids that occurs in the ER. N-

glycosylation was not tested with CdtC. [10, 27]. Since CdtB alone is transported to the nucleus, 

the intracellular transport of CDT involves a novel two-stage disassembly process as summarized 

in Figure 2. 
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Figure 2: Intracellular transport and disassembly of CDT. 

CDT undergoes retrograde transport passing through the endosomes and Golgi apparatus before 

arriving in the ER. CdtA dissociates from the CdtB/CdtC heterodimer before reaching the Golgi 

apparatus [25]. Only CdtB moves from the ER lumen into the nucleus. Adapted from [28]. 
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CHAPTER 2: THESIS AIM AND RATIONALE 

Thesis aim: Elucidate the molecular mechanism for CdtB/CdtC disassembly. 

There are many CDT studies detailing its possible binding receptors, intracellular trafficking route, 

and cellular response mechanisms after intoxication. Yet the molecular mechanism by which CDT 

disassembles before ER translocation has not been addressed. After the crystal structure of HdCDT 

was solved in 2004, computer modeling showed that the N-terminal tail of CdtC is blocking the 

DNA binding site of CdtB. Thus, CdtB must separate from CdtC for DNase activity [7, 29]. The 

goal of this thesis is to detail the mechanism of how CdtB and CdtC dissociate while in the 

heterodimer conformation during intracellular transport. 

 

Most AB toxins contain a disulfide bond that is necessary to maintain their structure and requires 

chaperone intervention for disassembly [30-32]. Pertussis toxin (PT), similar to CDT, is an ER-

translocating AB toxin held together by noncovalent protein-protein interactions rather than a 

disulfide bond (Fig. 3) [33]. After transport into the ER, the catalytic S1 subunit of PT (PTS1) is 

released from its B pentamer (PTB) in an ATP-induced, chaperone-independent manner [34-36]. 

Disassembly results from ATP entering into the pore of the ring-like PTB pentamer, causing a 

conformational change that weakens the association between PTS1 and the PTB pentamer [35]. 

Using the disassembly of PT as a model, we hypothesize that ATP will induce the disassembly of 

the CdtB/CdtC heterodimer. ATP is not present in the bacterial periplasm, endosomes, or Golgi 

apparatus, but it is present in the ER [26, 37, 38]. ATP could thus act as a molecular sensor to 

activate CdtB/CdtC disassembly at the CdtB translocation site [37].  
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Previously, it has been shown by surface plasmon resonance (SPR) [39, 40] that CdtC will 

dissociate from the CdtB in the presence of ATP (Fig. 4). After CdtB was appended to the SPR 

slide, CdtC was injected into the profusion buffer and formed a stable complex with CdtB. 

Disassembly did not occur after a drop in pH, a characteristic in the endosomes [38]. Instead, 

disassembly occurred after the addition of ATP. The loss of CdtC and retention of CdtB was 

verified by the addition of subunit-specific polyclonal antibodies (Fig. 4). The CdtB/CdtC 

heterodimer will not encounter ATP until it reaches the ER. Thus, after delivering CdtB to the ER, 

CdtC will be released after which CdtB is then transported into the nucleus. Further 

characterization of this mechanism is presented here; this work provides a molecular basis for a 

key, but poorly understood event during CDT intoxication. 
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Figure 3: The ribbon diagram of pertussis toxin. 

Pertussis toxin is an AB5 toxin comprised of PTB and PTS1. The pentameric cell-binding B 

domain (blue) is made up of five proteins: S2, S3, S4 (two copies), and S5. PTS1 is the A 

catalytic domain (red). PDB 1PRT [33] 
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Figure 4: ATP disassembly of the CdtB/CdtC heterodimer detailed by SPR. 

At 0 sec, CdtC was perfused over an SPR slide previously bound with CdtB. The buffer was 

changed to pH 5.2 at 180 sec (asterisk). At 350 sec, the pH was raised to 7.4 and 200 µM ATP was 

added to the buffer (plus sign). Anti-CdtC, then anti-CdtB antibodies were added at the indicated 

times. CdtC dissociated from CdtB with the addition of ATP, while CdtB remained bound to the 

SPR slide. This experiment was performed by Dr. Mike Taylor and John Clore. 

  



10 

 

Significance and implication 

The CDT produced by H. ducreyi has been shown to induce apoptosis in B-lymphocytes, T- 

lymphocytes, and immature dendritic cells - all key cells in the adaptive immune response [5, 41, 

42]. Currently, there are no studies focused on CDT’s disassembly. Host-toxin interactions 

involving CDT have mainly focused on identifying the cell-binding event, intracellular transport 

route, or cellular response mechanisms. CDT is the first AB toxin that has two stages of 

disassembly, but the mechanism and rationale for this two-stage event are unknown. 

Understanding this disassembly mechanism can provide additional information that could 

establish alternative treatment methods for CDT-producing bacterial infections. Preventing 

disassembly of CDT may prevent CdtB from generating DNA damage. This, in turn, could inhibit 

the effect seen in adaptive immune cells that restricts the humoral response and could thereby 

provide an alternative to antibiotic treatments. 
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CHAPTER 3: MATERIALS AND METHODS 

CDT toxin subunits 

 Dr. Tersea Frisan (Karolinska Institutet; Stockholm, Sweden) generously gifted cdtA, cdtB, 

and cdtC coding sequences that were inserted into the bacterial expression vector pGEX3T3. 

 Insertion of the cdt coding sequences into the pET-28(a) bacterial expression vector was 

previously done by Dr. Lucia Cilenti. 

Additional cloning of Cdt subunits 

Glycerol stocks of Escherichia coli strain DH5α carrying pET-28(a) plasmids encoding for CdtA, 

CdtB, or CdtC were streaked onto sterile lysogeny broth (LB) agar plates containing 50 µg/mL of 

kanamycin and 0.02% glucose [43]. Individual colonies were selected and inoculated in 5 mL of 

sterile LB containing 50 µg/mL kanamycin and 0.02% glucose. Plasmid DNA was harvested using 

Macherey-Nagel’s (Bethlehem, PA) Nucleospin Plasmid kit. Using ‘Round-the-horn [44] site-

directed mutagenesis, plasmids were amplified using the Thermo Scientific™ (Waltham, MA) 

Phusion Site-Directed Mutagenesis Kit. The primers used are detailed in Table 1. After ligation, 

DNA was transformed into DH5α cells using a one-step transformation method [45]. After 

recovery for 1 h at 37°C with shaking in 1 mL of LB, the cells were pelleted at 5000 × g for 5 min, 

resuspended in 100 µL of LB, and plated onto LB agar plates containing 50 µg/mL of kanamycin 

and 0.02% glucose. Multiple colonies were selected and grown individually overnight in 6 mL of 

LB containing 50 µg/mL of kanamycin and 0.02% glucose. Glycerol stocks of DH5α cells were 

generated by combining 900 µL of the individual cultures with 900 µL of PBS (pH 7.4) containing 

50% glycerol and stored at -80°C. Plasmid DNA was harvested from the remaining inoculum and 
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sent for sequencing. After verification of the deletion, the plasmid DNA was transformed into E. 

coli strain BL21(DE3)pLysS using the transformation method above and plated on LB agar plates 

containing only 50 µg/mL of kanamycin. Glycerol stocks for the individual subunits were 

generated as described above and kept at -80°C. The addition of glucose with DH5α cells was to 

increase bacterial growth, in turn increasing potential DNA recovery yield of the low-copy pET-

28(a) plasmid. For BL21(DE3)pLysS growth, glucose was absent in order to  prevent bacterial 

stress incurred by the diauxic transition to LB media metabolism that would inhibit protein 

production. 

 



13 

 

 

Table 1: Primers used for subcloning cdt sequences  

Primer Name Primer sequence 5´ – 3´ 

CdtA forward ATGCATCATCATCATCATCACTGTTCATCAAATCAACGAATGAATGAC 

CdtB forward ATGCATCATCATCATCATCACAACTTGAGTGACTTCAAAGTAGCAAC 

CdtC forward ATGCATCATCATCATCATCACAGTCATGCAGAATCAAATCCTGATCCG 

pET-28(a) reverse GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGC 

 

List of DNA primers used for ‘Round-the-horn site-directed mutagenesis of cdt coding sequences. All sequences were contained in 

the pET-28(a) bacterial expression vector with a N-terminal hexahistidine sequence. Each plasmid contained a linker region between 

the N-terminal hexahistidine tag and subunit coding sequence. The forward primers were used to amplify the subunit coding 

sequence with the incorporation of a hexahistidine tag, while the reverse was used to amplify the vector. The pET-28(a) reverse 

primer served as the reverse primer for each reaction. 
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Protein purification 

E. coli strain BL21(DE3)pLysS carrying a pET-28(a) plasmid containing the correct subunit 

sequence was streaked onto LB agar plates containing 50 µg/mL of kanamycin from glycerol 

stocks. An individual colony was incubated overnight in 5 mL of LB containing 50 µg/mL 

kanamycin, then expanded into 1 L of LB at the same antibiotic concentration. After reaching an 

O.D.600 between 0.4 to 0.6, the culture was induced with 1 mL of 1 M IPTG and incubated for an 

additional 4 to 6 h. Induced cultures were then pelleted by centrifugation, spinning at 6,000 × g 

for 20 min. Pellets were resuspended in 20 mM Tris (pH 7.5) with 25 mM NaCl and pelleted again 

to remove any remaining LB media. Pellets were stored at -80°C until protein extraction.  

 

Bacterial cells were lysed using B-PER II (ThermoScientific; Waltham, MA) containing 100 

µg/mL lysozyme (reconstituted in 1 mL of 20 mM Tris pH 7.4 with 150 mM NaCl), shaking at 

150 rpm for 20 min at 37°C, followed by centrifugation at 12,000 × g for 30 min. Since neither of 

the subunits are solubly expressed in viable quantities, the supernatant was discarded, and the 

insoluble pellet was solubilized with rocking at 4°C for 2 h in 50 mM Tris (pH 8.0) containing 300 

mM NaCl and 8 M urea. The now-soluble protein solution was added to a 2 mL bed volume 

TALON Cobalt Metal Affinity Resin (Takara Bio; Mountain View, CA) for 2 h, allowing for 

efficient His-tag binding. The slurry was spun down at 500 × g for 5 min. The supernatant was 

collected and labeled as “Did Not Bind”. The TALON beads were then resuspended in 15 mL of 

50 mM Tris (pH 7.0) with 600 mM NaCl and 8 M urea, gently rocked for 15 min and transferred 

into a gravity column. The flow through was collected and labeled as “Wash 1”. The TALON 

beads were further washed with three column volumes of 50 mM Tris (pH 7.0) with 300 mM 
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NaCl, 8 M urea, and 10 mM imidazole. The collected flow-through was labeled as “Wash 2”. 

Proteins were then eluted in an increasing imidazole gradient, starting at 20 mM and finishing at 

300 mM, in 20 mM Tris (pH 7.0). Fractions were visualized via 15% Tris-glycine SDS-PAGE gel 

and Coomassie stain. Fractions selected based on purity were then dialyzed against 20 mM HEPES 

buffer (pH 7.4), with decreasing urea concentrations starting at 6 M and transitioning in a stepwise 

fashion from 6 M for 2 h, 4 M overnight, 2 M for 2 h, down to 0 M, repeating the 0 M step 3 times 

at 1 h each, all at 4°C. Protein concentrations were calculated by BCA assay (Thermoscientific; 

Waltham, MA) according to manufacturer’s instructions. All subunits were stored at 4°C for 

further use.  

Western blot visualization  

All samples were first resolved using a 15% Tris-glycine SDS-PAGE gel. After electrophoresis, 

the stacking portion of the gel was removed and the resolving portion was equilibrated in transfer 

buffer, allowing time for SDS to diffuse out, thus enhancing protein transfer. The PDVF membrane 

was first activated by submersion in 100% methanol for 10 seconds and then equilibrated in Toubin 

transfer buffer (Bio-Rad; Hercules, CA) for 15 min. Samples were transferred onto the PVDF 

membrane using Bio-Rad Turbo-blot Transfer Machine using the Bio-Rad defined settings specific 

for mini gel transfers of standard molecular weight proteins. The membrane was removed and 

washed 3 times for 15 min with Tris-buffered saline containing 0.1% Tween-20 (TBS-T). The 

membrane was then blocked with 4% milk in TBS-T for 30 min and washed with TBS-T. The 

rabbit sera containing the subunit-specific antibodies (New England peptide; Gardner, MA) were 

diluted 1:10,000 in TBS-T containing 4% milk and applied to the membrane overnight, rocking at 

4°C. The membrane was washed with TBS-T, and an HRP-conjugated IgG goat anti-rabbit 
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secondary antibody (Jackson Immunoresearch; West Grove, PA) diluted 1:20,000 in TBS-T 

containing 4% milk was applied to the membrane for 30 min with rocking at room temperature. 

The membrane was washed and visualized by chemiluminescence using ECL solution adapted 

from [45]. 

Size exclusion chromatography  

1 mg each of CdtB and CdtC were combined for 24 h in 5 mL of 20 mM Tris (pH 7.4) containing 

150 mM NaCl, gently rocking at 4°C. This was then concentrated to <500 µL using a Vivaspin™ 

concentrator (GE Healthcare; Chicago, IL) with a 1 kDa MWCO. The concentrated sample was 

separated by size exclusion chromatography (SEC) using Sephadex® G-75 resin (GE Healthcare) 

at a flow rate of 1 mL/min, measuring the absorbance at 280 nm. Key fractions were combined 

and concentrated after identification by SDS-PAGE and Coomassie stain. 

ATP agarose pull-down assay 

100 µL of ATP-conjugated agarose beads (Sigma; St. Louis, MO) was added to a 1.7 mL 

microcentrifuge tube. Beads were pelleted at 2,000 × g for 3 min and washed twice with 1 mL 

PBS to remove any preservatives and broken beads. The remaining beads were blocked with 1 mL 

of PBS containing 0.1% bovine serum albumin for 30 min at 37°C and then washed twice with 

PBS. 250 ng of a toxin subunit was added to the beads in 1 mL total volume for a 30 min, 37°C 

incubation. The beads were pelleted at 2,000 × g for 3 min, the supernatant was collected, and the 

beads were washed twice with PBS. 100 µL of sample buffer was added to the beads, which were 

then boiled for 10 min. The collected supernatant was lyophilized before resuspension in 100 µL 

of sample buffer and boiled. 20 µL of the bead sample and 5 µL of the supernatant sample was 
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resolved via SDS-PAGE and visualized by Western blot. Unconjugated or GTP-conjugated 

agarose beads (Sigma) were used in an identical manner. For the competition assays, 250 ng of 

CdtB was pre-treated with 10 mM ATP or GTP for 30 min at 37°C. An identical procedure was 

used for pull-downs with 250 ng of a CdtB/CdtC heterodimer that was previously after isolated by 

SEC. 

ATPase assay 

HrpA and the individual Cdt subunits were used in a modified regenerative ATPase assay, adapted 

from [46, 47]. A 20x master mix (20 mM NADH, 150 mM phosphoenolpyruvate, and ~10 U/mL 

of pyruvate kinase/lactate dehydrogenase mixture (Sigma)) was combined in 25 mM HEPES-Tris 

with 100 mM K+-glutamate, 12 mM magnesium acetate, 0.05% octyl glucose neopentyl glycol, 

and 14 mM β-mercaptoethanol (pH 7.6). 2x assay mixes were prepared in assay buffer 

supplemented with 200 µM ATP or 200 µM GTP. 30 µL of the assay mix and 30 µL of protein 

(final concentration at 100 nM for HrpA or 500 nM for each individual Cdt subunits) were 

combined; 50 µL was then transferred into a 96-well plate. The oxidation of NADH was recorded 

every minute over 90 min, measuring the absorbance at 340 nm. After subtracting the measurement 

of a reaction mixture absent of protein, a slope was generated by taking the linear regression of 

accumulated measurements and converted to µM of ATP turnover per mol of enzyme per min 

using Prism 8 (GraphPad; San Diego, CA). Blank subtraction and unit conversion was carried out 

using Microsoft Excel (Microsoft; Redmond, Wa). 
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Cellular viability assay 

Wildtype and TZM cells lacking protein disulfide isomerase (PDI) were cultured in Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 5% fetal bovine serum and antibiotic-

antimycotic until reaching 80% confluency in a 10 cm dish [48]. Cells were lifted using 1 mL of 

Gibco™ (ThermoScientific) Trypsin-EDTA and diluted 1:20 into a 96-well plate until reaching 

80% confluency overnight. Cells were washed twice and then incubated with various combinations 

of Cdt subunits overnight at 37°C in serum-free media. Before addition to the cells, the Cdt subunit 

combinations were assembled overnight at 4°C with each subunit at concentration of 1 µg/mL.  

Cells were then washed twice to remove unbound toxin and incubated in toxin-free, serum-

containing media for another 48 h. As a control for cell death, a set of unintoxicated cells were 

incubated with 10% DMSO in DMEM for 20 min. All cells were washed twice before viability 

was determined using an MTS assay according to the manufacturer’s protocol (Promega; Madison, 

WI).  

Circular Dichroism (CD) 

CdtB at 1 mg/mL was dialyzed three times against 1 L of 20 mM phosphate buffer (pH 7.4) for 2 

h per exchange. Spectral measurements using 150 µg of dialyzed CdtB in 200 µL volume with a 

1 mm pathlength quartz cuvette were averaged after 5 scans, using the accumulation feature of the 

JASCO (Tokyo, Japan) spectral analysis software. As a reference, a blank spectral measurement 

was generated with filter-sterilized phosphate buffer (pH 7.4). The spectrum of the blank was then 

subtracted from the spectrum of CdtB alone or CdtB with 500 µM ATP. All spectral scans were 

taken using a JASCO J-1100 Circular Dichroism Spectropolarimeter between the 260-200 nm 



19 

 

region at a scanning speed of 10 nm/min with a data pitch of 0.1 nm and a digital integration time 

(D.I.T.) of 4 sec. 
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CHAPTER 4: RESULTS 

Isolation of the CdtB/CdtC complex using functionally pure subunits  

After initial purification of the available Cdt subunits, there was an unexpected increase in 

individual subunit kDa size for each subunit compared to the size of the native subunits without 

signal sequences. DNA sequencing revealed there was a 24 amino acid linker present between the 

N-terminal hexahistidine tag and protein sequence for each subunit. This was subsequently 

removed by ‘Round-the-horn site-directed mutagenesis. After sequences of the re-cloned Cdt 

subunits were verified correct and absent of mutation, the individual recombinant subunits were 

re-purified. The average yield of purified CdtA, CdtB and CdtC per 1 L of bacterial culture was 

4.5, 6, and 6.4 mg, respectively. A representative SDS-PAGE gel of the purified subunits is shown 

in Fig. 5A. Polyclonal antibodies were previously generated against the individual subunits 

containing the N-terminal extension using a for-fee service (New England Peptide; Gardner, MA). 

Those antibodies are specific for their cognate subunit, without cross-reactivity to the other two 

native subunits (Fig. 5B).  

 

Functionality of the refolded subunits was verified by MTS assay and SEC. Assembly into a 

functional holotoxin with the individual subunits was observed in vivo by measuring cellular 

viability using an MTS assay. Various combinations of Cdt subunits were incubated with wildtype 

and PDI-deficient TZM cells. Consistent with the known toxicity of CDT, only exposure to CDT 

holotoxin resulted in a decrease in cellular viability (Fig. 6) [49]. This demonstrated that each of 

the recombinant subunits was refolded correctly and could spontaneously assemble into a 
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functional holotoxin. This also shows that PDI is not required for disassembly for a cytotoxic effect 

compared to other AB toxins that contain disulfide linkages [32]. 

 

After confirming CdtA, CdtB, and CdtC spontaneously assembled into a functional holotoxin, the 

CdtB/CdtC heterodimer was then isolated. CdtB and CdtC were combined overnight, followed by 

SEC using Sephadex® G-75 resin to separate the CdtB/CdtC heterodimer from the unassembled 

CdtB and CdtC subunits. There were two peaks present in the SEC absorbance (Fig. 7A). Samples 

from the collected fractions were resolved by SDS-PAGE and visualized by Coomassie stain (Fig. 

7B). Fractions 20-23 were collected due to equal band intensities for CdtB and CdtC that represent 

the heterodimer eluting off the column. Fractions 11-19 that make up the first peak were not 

collected due to dimers of CdtB and dimers of CdtC present when visualized by Western blot (data 

not shown).  
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Figure 5: Purification of individual Cdt subunits and antibody specificity.   

(A) CdtA, CdtB and CdtC were purified by affinity chromatography using TALON cobalt resin. 

After protein refolding, 2 µg of each subunit was resolved using a 15% Tris-glycine SDS-PAGE 

gel and visualized by Coomassie stain. (B) The individual subunits at the indicated amounts were 

resolved by 15% Tris-glycine SDS-PAGE gel and detected by Western blot with anti-CdtA, anti-

CdtB, or anti-CdtC polyclonal antibodies. 
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Figure 6: Cellular viability measured by MTS after CDT intoxication. 

Wildtype and PDI-deficient TZM cells were incubated overnight with various combinations of 

Cdt subunits that were allowed to first assemble overnight. Cellular viability was measured by 

MTS assay after 72 h from the initial toxin exposure. For a positive control, both cell types were 

also incubated with 10% DMSO for 20 min.  
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Figure 7: Isolation of CdtB/CdtC heterodimer by SEC. 

(A) 1 mg each of CdtB and CdtC were combined, incubated overnight at 4 °C, and separated using 

Sephadex G-75 resin at a flow rate of 1 mL/min. Protein elutions were measured by absorbance at 

280 nm (A. U.). (B) Fractions 4-28 were collected and visualized by 15% Tris-glycine SDS-PAGE 

gel and Coomassie stain. Fractions are labeled to their corresponding lane.  
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CdtB binds to ATP but is not an ATPase 

After functionality was demonstrated, we investigated if CdtA, CdtB, or CdtC can bind to ATP. 

250 ng of CdtA, CdtB, or CdtC were incubated individually with ATP-conjugated or GTP-

conjugated agarose beads for 30 min at 37°C. The beads were washed to remove unbound subunits, 

resuspended in sample buffer, boiled, and then visualized by Western blot. Only CdtB was 

detectable in the pellet after incubation (Fig. 8A). These results demonstrated that CdtB is the only 

subunit that binds to ATP. CdtB bound to GTP as well, whereas CdtA and CdtC did not (Fig. 8A). 

ATP binding was eliminated by pre-treating CdtB with 10 mM of soluble ATP for 30 min before 

the addition to the beads (Fig. 8B). Furthermore, CdtB was not detected in association with 

unconjugated agarose beads. This verifies that CdtB was binding to ATP.  

 

Since CdtB can bind to ATP, we determined whether this subunit functions as an ATPase. Using 

a regenerative GTPase assay modified for ATPase activity, 100 µM ATP along with either 500 

nM of CdtA, CdtB, or CdtC were combined and indirectly measured for ATP hydrolysis. After 

subtracting the natural decay of ATP, a rate of µM of ATP being regenerated (ADP being 

converted back to ATP), per mol of subunit in solution, per min was calculated from the average 

of 3 reactions. No subunit exhibited ATPase function (Fig. 9), indicating that ATP hydrolysis does 

not induce disassembly. This also shows that CdtA and CdtC were not released from the ATP-

agarose beads due to ATP hydrolysis, which strengthened our interpretation of the ATP pulldown 

assay. The RNA helicase, HrpA, was used a positive control. A similar assay determined that none 

of the Cdt subunits exhibited GTPase activity. 
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Figure 8: Only CdtB is able to bind ATP and GTP.  

(A) 250 ng of CdtA, CdtB, or CdtC were incubated with ATP-conjugated (lane 2) or GTP-

conjugated (lane 3) agarose beads for 30 min. The beads were then pelleted, washed, and 

resuspended in 100 µL of sample buffer. 20 ng of pure individual subunit (lane 1) was used as a 

loading control for the Western blot. (B) 250 ng of CdtB was incubated with ATP-conjugated 

agarose beads (lane 1) or unconjugated agarose beads (lane 2) for 30 min. 250 ng of CdtB was 

pretreated with 10 mM of soluble ATP (lane 3) or 10 mM soluble GTP (lane 4) for 30 minutes, 

then incubated with ATP-conjugated agarose beads for 30 min and visualized in the same manner 

as (A).  
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Figure 9: No Cdt subunit functions as an ATPase. 

100 nM HrpA, 500 nM of CdtA, CdtB, or CdtC were measured for ATPase activity using a 

regenerative assay containing 100 µM ATP. The graph represents the combined average of 3 

reactions with standard deviation included. 
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ATP induced the disassembly of CdtB/CdtC but did not alter CdtB’s overall structure 

After identifying that only CdtB is binding to ATP, we wanted to verify that CdtC was not blocking 

the ATP binding site in the CdtB/CdtC heterodimer. 250 ng of the CdtB/CdtC heterodimer was 

incubated for 30 min at 37 °C with ATP-conjugated agarose beads. Both the supernatant and the 

beads were probed by Western blot. CdtB was detected in both the pellet and supernatant samples. 

Surprisingly, CdtC was only detected in the supernatant (Fig. 10A), indicating (i) CdtC does not 

block the ATP-binding site in CdtB and (ii) CdtC dissociated from CdtB bound to ATP-conjugated 

agarose beads. The use of GTP-conjugated agarose beads generated similar results as ATP-

conjugated agarose beads (Fig. 10B). Thus, binding of either ATP or GTP to CdtB will cause the 

release of CdtC. 

 

To better understand ATP’s role in the CdtB/CdtC disassembly mechanism, we investigated if 

ATP causes a structural change that is inducing dissociation. Using CD, far-UV spectral scans of 

CdtB’s overall secondary structure were generated with and without ATP. There is one minima 

present around 210 nm with both conditions. This distinct spectral characteristic is associated with 

a protein’s secondary structure having a higher percentage of beta sheet structure than alpha helical 

structure. This is true for CdtB as verified by the holotoxin crystal structure [7]. After the addition 

of ATP, no major changes are distinguished when comparing the two CdtB spectra, indicating that 

ATP does not change the overall secondary structure of CdtB (Fig. 11). This suggests that the 

disassembly of CdtB/CdtC may be caused by a mechanism other than a structure change in CdtB. 
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Figure 10: ATP-induced disassembly of the CdtB/CdtC heterodimer by ATP-conjugated 

agarose beads. 

250 ng of the CdtB/CdtC heterodimer isolated by SEC was incubated with ATP-conjugated 

agarose beads for 30 min. The supernatant was collected and lyophilized, while the beads (pellet) 

were washed, and then both were resuspended sample buffer. All samples were resolved by 15% 

Tris-glycine SDS-PAGE gel and visualized by Western blot. 
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Figure 11: ATP does not alter the overall secondary structure of CdtB. 

The far-UV spectra of CdtB at 100 µg/mL with 500 µM ATP (dotted line) or without ATP (solid 

line) in 20 mM phosphate buffer (pH 7.4) are presented. One of the experiments is shown, with 

each spectrum representing the average of five scans after buffer subtraction.  
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CHAPTER 5: DISCUSSION 

Here we have presented evidence that ATP plays a critical role in the novel two-stage disassembly 

of CDT. Although the CDT holotoxin binds to the cell surface, CdtA dissociates before reaching 

the Golgi apparatus [21]. This is the first stage of disassembly. The loss of CdtC, presumably in 

the ER, represents the second stage of disassembly [10]. CdtC dissociation for CdtB activity is 

required since the DNase I active site is blocked by the N-terminal tail of CdtC [7, 11, 29]. 

 

Currently, there are many studies on CDT including the identification of the surface receptor, the 

intracellular trafficking route, and the cellular response mechanisms to the DNA damage caused 

by CDT [6, 19, 21]. There are currently no studies that detail the molecular basis for disassembly 

of CDT. Previously, it has been shown that PT disassembles in the ER after ATP binds to the PTB 

pentamer [34-36]. Preliminary results generated from the Teter lab indicated that the addition of 

ATP will also cause the disassembly of the CdtB/CdtC heterodimer. After purification of the 

functional individual Cdt subunits and isolation of the CdtB/CdtC heterodimer, we demonstrated 

that ATP induces CdtB/CdtC disassembly by binding to CdtB. However, ATP binding did not 

cause an overall change to the secondary structure of CdtB. Furthermore, CdtB did not hydrolyze 

ATP. The use of the GTP generated similar results, demonstrating that this mechanism is not 

specific to only ATP. This likely represents a nucleotide-binding site present in CdtB, and further 

testing using CTP and TTP is needed to confirm this. 

 

It is currently understood that assembly of the CDT holotoxin is 100% efficient [50, 51]. Since 

there are no monomers detected from the SEC profile, this would serve as a confirmation and could 
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be validated by performing SEC after assembling the CdtB/CdtC heterodimer with one subunit at 

an excess. The use of native-PAGE electrophoresis would confirm that the CdtB/CdtC heterodimer 

is isolated, validating the ATP- and GTP-conjugated agarose results. This method could serve as 

an alternative to modeling disassembly as well.  

 

Future studies using crystallography with CdtB and ATP are needed to (i) identify the location of 

CdtB’s ATP-binding pocket, and (ii) any subtle structural changes not detectable by CD. The 

location of the ATP-binding pocket could potentially be in the groove between CdtB and CdtC. In 

this scenario, ATP would be functioning as a competitive inhibitor for CdtB that acts as a wedge 

separating the two subunits. Alternatively, ATP’s interaction with CdtB could perhaps be 

functioning as an allosteric regulator altering the intrachain interactions in CdtB as ATP binds, 

inducing CdtC dissociation. Additional experimentation with the CDT holotoxin will address if 

CdtA has an inhibitory effect on the ATP-induced disassembly CdtB/CdtC heterodimer. This could 

be caused by CdtA blocking the ATP-binding pocket, or as an alternative, CdtA could be 

stabilizing the protein-protein interaction between CdtA and CdtC. A mutagenesis study that 

introduces point mutations into the active site of the ATP-binding pocket will further identify the 

amino acids that are required to induce the disassembly of the CdtB/CdtC heterodimer. 

 

The CD method of measuring changes to secondary structure of CdtB is not without limitation due 

to ATP absorbing light in the far UV region [52]. Attempts to increase the ATP concentration 

higher than what were described here produced spectra with unacceptable signal to noise ratios. 

However, the concentration of ATP might not be high enough to induce a conformational change 

to be seen by conventional biophysical approaches. Furthermore, the lack of an overall structural 
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change in CdtB with ATP using CD does not rule out possible changes to local structure at the 

tested concentration of 200 µM ATP. While the predominant beta sheet structure remained 

unchanged, there may be unfolding and refolding of partial alpha helical structures. These changes 

could possibly be distinguished by a change in protease sensitivity that was previously used to 

demonstrate CdtB’s thermal stability [53]. This would be confirmed by crystallography with CdtB 

and ATP.  

 

We have shown here that CDT is the second AB toxin that appears to use an ATP-induced 

disassembly mechanism as a part of its overall two-stage disassembly process. This mechanism 

may act as a molecular sensor upon ATP binding to CdtB that causes the disassembly of the 

CdtB/CdtC heterodimer that is triggered by the initial interaction of ATP after toxin delivery to 

the ER. 
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