Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber

1-1-2006

A. E. Siegman

Ying Chen
University of Central Florida

Vikas Sudesh
University of Central Florida

Martin C. Richardson
University of Central Florida

Michael Bass
University of Central Florida

See next page for additional authors

Find similar works at: https://stars.library.ucf.edu/facultybib2000

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Siegman, A. E.; Chen, Ying; Sudesh, Vikas; Richardson, Martin C.; Bass, Michael; Foy, Paul; Hawkins, Wade; and Ballato, John, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber" (2006). Faculty Bibliography 2000s. 6584.
https://stars.library.ucf.edu/facultybib2000/6584

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
Authors
A. E. Siegman, Ying Chen, Vikas Sudesh, Martin C. Richardson, Michael Bass, Paul Foy, Wade Hawkins, and John Ballato

This article is available at STARS: https://stars.library.ucf.edu/facultybib2000/6584
Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber

Cite as: Appl. Phys. Lett. 89, 251101 (2006); https://doi.org/10.1063/1.2405860
Submitted: 17 October 2006 . Accepted: 07 November 2006 . Published Online: 18 December 2006

A. E. Siegman, Ying Chen, Vikas Sudesh, Martin C. Richardson, Michael Bass, Paul Foy, Wade Hawkins, and John Ballato

ARTICLES YOU MAY BE INTERESTED IN

Transverse mode competition in index-antiguided waveguide lasers
Applied Physics Letters 107, 241111 (2015); https://doi.org/10.1063/1.4937802

Coupled-Wave Theory of Distributed Feedback Lasers
Journal of Applied Physics 43, 2327 (1972); https://doi.org/10.1063/1.1661499

Lateral-mode analysis of gain-guided and index-guided semiconductor-laser arrays
Journal of Applied Physics 58, 2922 (1985); https://doi.org/10.1063/1.335840
Conventional index-guided optical fibers generally have a larger index of refraction within the core region than in the surrounding cladding, and this condition is generally viewed as essential for guided-wave propagation within such a fiber. The alternative concept of “gain guiding” (GG), either in combination with or as a substitute for “index guiding,” has also long been known in other structures, such as gain-guided stripes in semiconductor diodes and complex Gaussian or parabolic ducts. The general case of a cylindrical guided stripes in semiconductor diodes and complex Gauss-long been known in other structures, such as gain-guided stripes in semiconductor diodes and complex Gaussian or parabolic ducts. The general case of a cylindrical

index step within the core region of such a fiber. The real and imaginary parts of this complex-valued index step can then be expressed in the dimensionless forms

$$\Delta N = (2\pi a/\lambda_0)^2 2n_0 \Delta n,$$

(1)

$$G = (2\pi a/\lambda_0)^2 (n_0\lambda_0/2\pi) g,$$

(2)

where $2a$ is the diameter of the fiber core, λ_0 is the free-space wavelength of the guided radiation, and n_0 is the background refractive index of the core and cladding. With these definitions the conventional fiber V parameter takes on the complex-valued form

$$\bar{V}^2 = \Delta N + jG.$$

(3)

Figure 1 then indicates the regions in the $(\Delta N, G)$ or complex \bar{V} plane in which confined guided-wave propagation in the fiber can occur. Modes having LP01 or LP11 character but with complex-valued Bessel function arguments occur everywhere in the regions above the two solid boundary lines in the diagram. Conventional index-guided propagation without gain occurs along the positive real axis, with LP01 mode propagation starting at the origin, joined by LP11 mode propagation beyond $\Delta N = 5.78.$ Purely gain-guided propagation, with Δn and $G = 0$, occurs along the vertical axis, with an LP01-like mode occurring for $G \geq 1.86$ and an LP11-like mode turning on at $G \geq 5.19.$

Of primary interest here is the region extending indefinitely to the left in the upper left quadrant of Fig. 1, in which the core index step is negative, i.e., Δn and $\Delta N < 0.$ The fiber is therefore index antiguiding (IAG) in this region, so that normal index-guided-wave propagation cannot occur. Figure 1 predicts, however, that if the parameter G becomes sufficiently positive, effective single-mode gain guiding can occur. The full analysis predicts that fibers falling in these propagation regions will support confined LP01- and LP11-like complex-Bessel-function propagating modes very similar to the index-guided modes in a conventional fiber, provided a sufficiently large gain coefficient g or a sufficiently large G value can be created in the core. Across this region such propagation turns on for values of G somewhat greater than ≈ 2.5 and then remains single mode, but with increasing core filling factors as shown by the dashed lines.

Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber

A. E. Siegman$^{a)}$

Ginzton Laboratory, Stanford University, Stanford, California 94305-8442

Ying Chen, Vikas Sudesh, Martin C. Richardson, and Michael Bass

CREOL, University of Central Florida, Orlando, Florida 32816-2700

Paul Foy, Wade Hawkins, and John Ballato

COMSET, Clemson University, Clemson, South Carolina 29625

(Received 17 October 2006; accepted 7 November 2006; published online 18 December 2006)

The authors report laser oscillation in what appears to be a single transverse mode with very large mode area in optical fibers having heavily Nd-doped 100 μm diameter cores with refractive index significantly lower in the core than in the surrounding cladding. Since fibers of this type cannot support conventional index-guided modes, their results appear to confirm a recent analysis which predicts gain-guided single-mode propagation in index antiguided fibers, provided the gain coefficient in the core exceeds a threshold value. Fibers of this type may be of significant interest for amplifiers and oscillators having large power outputs and/or small nonlinear pulse distortion.

in the figure, up to values of G two to three times larger.

The gain-guiding effect predicted here is quite weak, since a (fairly large) gain coefficient of $g=1\,\text{cm}^{-1}$ $=4\,\text{dB/cm}$ corresponds to an imaginary index of only $\sim10^{-5}$. Nonetheless, the prediction is that this effect can still provide single transverse mode operation over a wide range of parameters in fiber lasers with very large diameter cores, e.g., $2a\approx100\,\mu\text{m}$. This behavior moreover only depends weakly on the negative index parameter Δn across the entire region shown, indicating that thermal index changes (a recurring cause of difficulty in conventional fiber lasers) may have little deleterious effect in the IAG region.

We report in this letter recent experimental confirmation of this interesting type of GG+IAG fiber propagation, as demonstrated by the observation of apparently single transverse mode, purely gain-guided laser oscillation in a step-profile optical fiber with a $100\,\mu\text{m}$ diameter core in which the core index of refraction is $\approx0.35\%$ lower than the cladding index. Figure 2 shows the backlit end face of one of these fibers. This fiber was drawn at Clemson University from a “rod and tube” preform prepared by Kigre Incorporated using their Q100 laser glass, and the fiber laser experiments were carried out at CREOL. The index of refraction of the starting material as measured by Kigre at $590\,\text{nm}$ was 1.5734 in the undoped cladding region and was 1.5689, or $\approx0.35\%$ lower, for the 10% Nd-doped core. The core-to-cladding index difference at the operating wavelength of $1.06\,\mu\text{m}$ can be expected to be of comparable magnitude.

Our calculations indicate that sufficient gain should be produced to reach the threshold for gain guiding when a fiber of this type is excited with a few watts of pump power per centimeter or less. Fibers of this type should thus be entirely suitable for diode laser pumping, although the large anti-guiding core, the heavy doping, and in general the short length of such lasers may require some changes from conventional diode-pumped fiber laser designs. Suitable pump diodes for this purpose were, however, not immediately available to us. As a temporary substitute we turned therefore to flashlamp pumping (historically the technique used in the first fiber laser devices). A diffuse flashlamp pump cavity originally used to pump solid-state laser rods was modified to hold $12-15\,\text{cm}$ lengths of this fiber inside a capillary tube, with a contacted 100% mirror at one end of the fiber and a polished but uncoated face at the output end shown in Fig. 3. This arrangement means that a centimeter or two of the fiber was left unpumped or only partially pumped in the end segments where the capillary and fiber extended through the end walls of the pump cavity.

Figure 4 shows the output pulse energy from the output end of one such fiber as a function of flashlamp input energy. This plot demonstrates a clear-cut threshold for laser action at approximately $50\,\text{J}$ input and a linear increase in output beyond this point. Later experiments with improved fibers have shown threshold values as low as $33\,\text{J}$. Observations of the output spectrum from the fiber show that above threshold the spectrum is located at the center of the $1052\,\text{nm}$ gain line of the Nd ions and is a single peak to within the resolution limit of our spectrometer. Time-resolved measurements of the output signal show clear-cut relaxation oscillations at rates characteristic of Nd lasers. All of these observations are distinctive signatures of laser oscillation and are observed only when the 100% mirror on the back end of the fiber is aligned perpendicular to the fiber axis. Calibrating the optical pumping energy actually delivered to the fiber in this setup is not readily possible, but even a very rough geometrical estimate of the energy transfer from the lamp to the fiber suggests that these fibers may be lasing with quite significant efficiency with respect to the absorbed pump light.

Finally, Fig. 5 shows a typical beam profile of the output beam as observed $15\,\text{cm}$ from the output face of the fiber. Beam profiles measured at this and other distances display similarly clean, Gaussian-like, and apparently single-mode profiles in all cases. Of particular importance, we observe with no visible changes in the appearance of these beam profiles from threshold up to as much as 2.5 times threshold.

FIG. 2. (Color online) Photograph of the polished output face of an experimental Nd:phosphate fiber with a $250\,\mu\text{m}$ outer diameter and a $100\,\mu\text{m}$ diameter 10% Nd-doped core having an $\approx0.35\%$ lower index than in the cladding.

FIG. 3. Flashlamp pump cavity used for experimental tests. The pump cavity and the internal portion of the flashlamp are approximately $10\,\text{cm}$ in length; the distance between the tips of the flashlamp electrodes is approximately $85\,\text{mm}$.

FIG. 4. (Color online) Laser output energy vs flashlamp input energy for one of the fiber samples tested, showing a sharp laser threshold at a flashlamp input energy of $\approx50\,\text{J}$.
We interpret this as evidence for unusually good single transverse mode selection in this fiber. From an initial very rough measurement we can only confirm that the output beam has a value of M^2 / H^2, but we expect that an improved measurement may yield a value significantly closer to unity.

We believe that this GG+IAG type of fiber operation can very likely be extended to even larger core diameters with similar performance characteristics. If so, fiber lasers employing this type of propagation, combined with suitably designed diode laser pumping, appear very promising for large mode area diode-pumped fiber lasers having a wide range of stable single transverse mode operation. Fiber lasers of this type, operating either as amplifiers or oscillators, may become useful for generating large single-mode cw powers or for generation or amplification of ultrashort pulses with high peak powers and greatly reduced nonlinear pulse distortion effects.

This research was supported by DoD JTO MRI Contract No. W911NF-05-1-0517. The authors would like to thank Kigre, Inc., Hilton Head, South Carolina (http://www.kigre.com) for fabrication of the fiber preforms and Tim McComb and Viktor Diefenbach at CREOL for assistance with the experiments. One of the authors (A.E.S.) would also like to thank the Air Force Office of Scientific Research for support of earlier laser research.