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ABSTRACT 

In the context of pro-active traffic management, real-time safety evaluation is one of the most 

important components. Previous studies on real-time safety analysis mainly focused on freeways, 

seldom on arterials. With the advancement of sensing technologies and smart city initiative, more 

and more real-time traffic data sources are available on arterials, which enables us to evaluate the 

real-time crash risk on arterials. However, there exist substantial differences between arterials and 

freeways in terms of traffic flow characteristics, data availability, and even crash mechanism. 

Therefore, this study aims to deeply evaluate the real-time crash risk on arterials from multiple 

aspects by integrating all kinds of available data sources. First, Bayesian conditional logistic 

models (BCL) were developed to examine the relationship between crash occurrence on arterial 

segments and real-time traffic and signal timing characteristics by incorporating the Bluetooth, 

adaptive signal control, and weather data, which were extracted from four urban arterials in Central 

Florida. Second, real-time intersection-approach-level crash risk was investigated by considering 

the effects of real-time traffic, signal timing, and weather characteristics based on 23 signalized 

intersections in Orange County. Third, a deep learning algorithm for real-time crash risk prediction 

at signalized intersections was proposed based on Long Short-Term Memory (LSTM) and 

Synthetic Minority Over-Sampling Technique (SMOTE). Moreover, in-depth cycle-level real-

time crash risk at signalized intersections was explored based on high-resolution event-based data 

(i.e., Automated Traffic Signal Performance Measures (ATSPM)). All the possible real-time cycle-

level factors were considered, including traffic volume, signal timing, headway and occupancy, 

traffic variation between upstream and downstream detectors, shockwave characteristics, and 

weather conditions. Above all, comprehensive real-time safety evaluation algorithms were 
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developed for arterials, which would be key components for future real-time safety applications 

(e.g., real-time crash risk prediction and visualization system) in the context of pro-active traffic 

management.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Urban arterials play a critical role in the road network system as they provide the high-capacity 

network for travel within urban areas. Meanwhile, urban arterials are suffering from serious traffic 

safety issues. Take Florida as an example, over 51% of crashes have occurred on urban arterials 

in 2014. Substantial efforts have been made by previous researchers to reveal the relationship 

between crash frequency on urban arterials and all the possible contributing factors such as 

roadway geometric, traffic characteristics, etc. (El-Basyouny and Sayed, 2009; Gomes, 2013; 

Greibe, 2003; Wang et al., 2015b). However, these studies were conducted based on static and 

highly aggregated data (e.g., Annual Average Daily Traffic (AADT), annual crash frequency). 

These aggregated data limit the reliability of the study findings simply because they are averages 

and cannot reflect the real conditions at the time of crash occurrence.  

With the rapid development of traffic surveillance system and detection technologies, real-time 

traffic data are not only available on freeways and expressways but also on urban arterials 

(including road segments and intersections). During the past decade, an increasing number of 

studies have investigated the crash likelihood on freeways by using real-time traffic and weather 

data (Abdel-Aty et al., 2004; Abdel-Aty et al., 2012; Ahmed et al., 2012a; Lee et al., 2003; Oh et 

al., 2001; Xu et al., 2013a; Xu et al., 2013b; Yu and Abdel-Aty, 2014; Yu et al., 2014; Zheng et 

al., 2010). However, little research has been conducted on the real-time safety analysis of urban 

arterials (Mussone et al., 2017; Theofilatos, 2017; Theofilatos et al., 2017; Yuan et al., 2018a). 

Among those research, they are mainly focused on the road segments (Theofilatos, 2017; 

Theofilatos et al., 2017; Yuan et al., 2018a) rather than the signalized intersections (Mussone et 

al., 2017). 
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Theofilatos (2017) was the first to investigate crash likelihood and severity by exploiting real-time 

traffic and weather data collected from urban arterials. He found that both the variation in 

occupancy and logarithm of the coefficient of variation of flow are positively associated with crash 

occurrence. However, the traffic parameters were aggregated to 1-hour interval, which might be 

too large to capture the short-term traffic status prior to crash occurrence. In terms of signalized 

intersection, Mussone et al. (2017) examined the factors which may affect the crash severity level 

at intersections based on real-time traffic flow and environmental characteristics, and they found 

that the real-time traffic flow characteristics have a relevant role in the prediction of crash severity. 

However, they didn’t consider the crash likelihood at intersections, which means that the effects 

of real-time traffic flow and environmental characteristics on the crash likelihood at intersections 

are still unclear. Moreover, it is worth noting that the crash risk of urban arterials might be highly 

influenced by signal operation, which has never been examined in real-time safety analysis. 

In recent years, with the rapid development of connected vehicle technologies, it is feasible for us 

to implement highly efficient real-time proactive traffic management strategies on urban arterials, 

e.g., dynamic message sign to show the real-time crash risk for the downstream segments and 

intersections, and individual variable speed limit to provide driver with the optimal speed advisory 

through vehicle-to-infrastructure (V2I) communication. In this context, more efficient and reliable 

real-time crash risk predictive algorithms for arterials are required. 

 

1.2 Data Summary 

 In general, there are five types of data sources that were utilized in this study. 
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Figure 1-1: Available Data Sources 

1) Crash Data: Signal Four Analytics (S4A) provides detailed crash information, including 

crash time, coordinates, severity, type, weather condition, etc. 

2) Bluetooth Data: Bluetooth data provides the travel time and space-mean speed of the 

detected vehicle for each segment. Bluetooth detectors can only detect the vehicles 

equipped with Bluetooth device which is working at discoverable mode. 

The space-mean speed of each vehicle on a specific segment is calculated as the segment 

length divided by the travel time of each detected vehicle on the segment based on the 

detection data of two Bluetooth detectors located at the two contiguous intersections. 

3) Adaptive Signal Data: The adaptive signal control system at signalized intersection is 

operated based on the video detectors installed on the approaches, which can detect the 

real-time queue length, maximum waiting time, and traffic volume by movement. This 

Data Sources

Weather Data

1.Weather type

2. Hourly precipitation

3. Visibility

4. Relative humitity

Crash Data

1. Crash type

2. Crash severity

Bluetooth Data

1. Travel time

2. Space-mean speed

Adaptive Signal Data

1. Signal timing

2. Lane-specific volume

3. Maximum queue length

4. Maximum waiting time

ATSPM Data

1. Vehicle actuation

2. Signal timing

3. Traffic progression

4. Shockwave characteristics
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system archives the real-time signal phasing, queue length, waiting time, and 15-minute 

aggregated lane-specific traffic volume data. 

4) Automated Traffic Signal Performance Measures (ATSPM) Data: ATSPM data 

archives all kinds of event data generated by signal controllers and loop detectors installed 

at intersections in a very high resolution (0.1 second). Every event generated by signal 

controllers or loop detectors is recorded in sets of four bytes per event: two bytes for the 

timestamp of when the event occurred, one byte for event code type, and one byte for event 

parameter (for signifying detector numbers and phases). The event code is important for 

determining the type of reported activity, which could be phase initiation or termination, 

detection on/off, etc. Based on the ATSPM data, both signal timing and lane-specific 

vehicle count variables could be calculated. Also, the real-time shockwave characteristics 

could be estimated based on the detector activation and signal controller events. 

5) Weather Data: Weather data were collected from the National Climate Data Center 

(NCDC), which archives weather data from nationwide weather stations operated by the 

National Oceanic Atmospheric Administration (NOAA). In this study, four weather related 

variables (weather type, hourly precipitation, visibility, and relative humidity) were 

collected from the nearest airport weather station. 

 

1.3 Research Objectives 

The primary objective of this dissertation is to evaluate the real-time crash risk on arterials by 

incorporating all the available data sources. In this context, four specific objectives have been 

achieved in this study: 
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(1) Investigating the relationship between crash occurrence and real-time traffic, signal timing, 

and weather characteristics on arterial segments; 

(2) Identifying all the possible contributing factors for intersection approach-level real-time crash 

risk; 

(3) Improve the predictive performance of real-time crash risk prediction by utilizing advanced 

deep learning algorithms and oversampling method; 

(4) Modeling real-time crash risk at the cycle-level for signalized intersections with the 

consideration of shockwave characteristics. 

The first objective has been achieved in Chapter 3 by the following sub-tasks: 

a) The concept of real-time safety analysis on urban arterials by considering microscopic 

traffic and signal timing characteristics is demonstrated; 

b) Two kinds of new data sources (Bluetooth and adaptive signal control data) are introduced 

to real-time safety analysis; 

c) Bayesian random parameters logistic (BRPL) and Bayesian random parameters conditional 

logistic models (BRPCL) are developed to compare with the Bayesian conditional logistic 

model (BCL); 

d) The relationships between real-time crash occurrence and real-time traffic and signal 

characteristics on urban arterials are preliminarily revealed. 

The second objective has been achieved in Chapter 4 by the following sub-tasks: 

e) Examining the real-time crash risk at signalized intersections based on the disaggregated 

data from multiple sources; 
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f) Intersection and intersection-related crashes were collected and then divided into two types, 

i.e., within intersection crashes and intersection entrance crashes. Bayesian conditional 

logistic models were developed for these two kinds of crashes;  

g) Matched case-control design with a control-to-case ratio of 4:1 was employed to select the 

corresponding non-crash events for each crash event.  

The third objective has been achieved in Chapter 5 by the following sub-tasks: 

h) Predicting the real-time crash risk at signalized intersections by using multilayer LSTM 

recurrent neural network, which is designed for sequence modeling, and they can consider 

the time series characteristics automatically;  

i) Real-world unbalanced dataset was collected for every minute by incorporating real-time 

traffic, signal, and weather data. Also, both the approach-level and intersection-level 

geometric characteristics were included into the algorithm;  

j) To train the algorithm without losing any non-crash information, the synthetic minority 

over-sampling technique (SMOTE) was employed in this study to generate a balanced 

training dataset. In comparison, a traditional conditional logistic model was developed 

based on the matched case-control dataset with the control-to-case ratio of 10:1.  

The fourth objective has been achieved in Chapter 6 by the following sub-tasks: 

k) Identifying the exact signal cycle where every crash has occurred based on the high-

resolution event based ATSPM dataset;  

l) modeling real-time crash risk at the cycle-level for signalized intersections with the 

consideration of shockwave characteristics;  
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m) determining the best undersampling strategy while calibrating real-time crash risk 

prediction models for signalized intersections. 

 

1.4 Dissertation Organization 

The dissertation is organized as follows: Chapter 2 presents a thorough literature review, which 

includes aggregated arterial safety analysis, real-time crash risk analysis and vehicle/driver-level 

crash risk evaluation. Chapter 3 investigates the real-time crash risk on arterial segments by 

utilizing multiple data sources. Followed by chapter 4, where approach-level real-time crash risk 

was evaluated for signalized intersections. Chapter 5 proposes a deep learning algorithm for real-

time crash risk prediction at signalized intersections based on Long Short-Term Memory (LSTM) 

and Synthetic Minority Over-Sampling Technique (SMOTE). Chapter 6 reveals the relationship 

between real-time crash occurrences and cycle-level characteristics at signalized intersection 

approaches. Chapter 7 summarizes the overall dissertation and proposes a set of recommendations 

for future studies. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Aggregated Arterial Safety Analysis 

2.1.1 Arterial Segments 

A number of studies have explored the effects of various road geometric design and traffic 

characteristics on arterial safety based on aggregated data. As to road geometric design, high 

crash frequency was found to be associated with high intersection density (Bonneson and 

McCoy, 1997; El-Basyouny and Sayed, 2009; Wang and Yuan, 2017; Wang et al., 2016a; 

Wang et al., 2018) and access density (Bonneson and McCoy, 1997; Wang and Yuan, 2017; 

Wang et al., 2016a). The number of lanes was found to be positively correlated with crash 

occurrence (El-Basyouny and Sayed, 2009; Gomes, 2013; Wang et al., 2015b). In addition, an 

increased segment length (El-Basyouny and Sayed, 2009; Wang et al., 2015b) and decreased 

lane width (Yanmaz-Tuzel and Ozbay, 2010) tend to increase the crash frequency. 

In terms of traffic related contributing factors, traffic volume and travel speed have been found 

to be significantly associated with the crash frequency on arterials. Traffic volume (represented 

by AADT, hourly volume, etc.) has been widely demonstrated to be positively correlated with 

crash frequency (El-Basyouny and Sayed, 2009; Gomes, 2013; Wang et al., 2015b). While the 

safety effects of travel speed are not consistent among existing studies, many studies suggested 

that higher average speed tends to increase the crash frequency (Aarts and Van Schagen, 2006; 

Elvik, 2009; Nilsson, 2004; Taylor et al., 2002), as higher speed increases the drivers’ overall 
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stopping distance which may in turn increase the probability of crash occurrence (Wang et al., 

2013). However, some researchers found that the average speed is negatively associated with 

crash frequency (Baruya, 1998; Stuster, 2004).  

Moreover, Pei et al. (2012) evaluated the relationship between speed and crash risk with respect 

to distance and time exposure, they found that the correlation between speed and crash risk is 

positive when distance exposure (i.e., vehicle kilometers travelled) is considered, but negative 

when time exposure (i.e., vehicle hours travelled derived by multiplying traffic volume by 

average travel time) is used. Wang et al. (2015b) utilized the Floating Car Data (FCD) to 

calculate average speeds during peak and off-peak hours, and then developed crash prediction 

models for peak and off-peak separately. The model results indicated that average travel speed 

was not significantly related to crash frequency during the off-peak period, however, during 

the peak period, a significant positive relationship between average speed and crash frequency 

was demonstrated. More recently, Imprialou et al. (2016) proposed a new condition-based 

approach to aggregate the crashes according to the similarity of their pre-crash traffic and 

geometric conditions, and then compared it with the traditional segment-based aggregation 

approach. The results showed that average speed was significantly positively associated with 

crash occurrence in the condition-based model, while the relationship was found to be negative 

in the segment-based model. In conclusion, the inconsistent findings of the safety effects of 

travel speed might be caused by the inaccuracy of data aggregation, as the aggregated data 
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cannot represent the actual traffic circumstance when the crashes have occurred. At this point, 

more disaggregated real-time analysis should be conducted for urban arterials to figure out the 

underlying relationship between crash occurrence and traffic characteristics. 

2.1.2 Signalized Intersections 

Signalized intersection safety analysis has been a critical research topic during past decades. 

Substantial efforts have been made by previous researchers to reveal the relationship between 

crash frequency of signalized intersections and all the possible contributing factors such as 

roadway geometric, signal control, and traffic characteristics, etc. (Abdel-Aty and Wang, 2006; 

Chin and Quddus, 2003; Guo et al., 2010; Poch and Mannering, 1996; Wang et al., 2009; Wang 

et al., 2006). However, these studies were conducted based on static and highly aggregated data 

(e.g., Annual Average Daily Traffic (AADT), annual crash frequency). These aggregated data 

limit the reliability of the study findings simply because they are averages and cannot reflect 

the real conditions at the time of crash occurrence. 

More specifically, nearly all the traffic volume related variables were found to have significant 

positive effects on the crash frequency at signalized intersections, including total entering ADT 

(Abdel-Aty and Wang, 2006; Chin and Quddus, 2003; Guo et al., 2010; Poch and Mannering, 

1996), right-turn ADT (Chin and Quddus, 2003; Poch and Mannering, 1996), left-turn ADT 

(Poch and Mannering, 1996), total ADT on major road (Dong et al., 2014; Wang et al., 2009), 

total ADT on minor road (Dong et al., 2014; Wang et al., 2009), left-turn ADT on major road 
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(Guo et al., 2010), through ADT on minor road (Guo et al., 2010). However, Guo et al. (2010) 

found that the through ADT on major road and the left-turn ADT on minor road are 

significantly negatively associated with the crash frequency at signalized intersections. 

Moreover, Wang et al. (2009) investigated the relationship between LOS and safety at 

signalized intersections. They found that LOS D is a desirable level which is associated with 

less total crashes, rear-end and sideswipe crashes, as well as right-angle and left-turn crashes. 

Xie et al. (2013) investigated the safety effect of corridor-level travel speed, they found that 

the high-speed corridor may results in more crashes at the signalized intersections. Similarly, 

the speed limit of the corridor was found to be significantly positively correlated with the crash 

frequency of the signalized intersections (Abdel-Aty and Wang, 2006; Dong et al., 2014; Guo 

et al., 2010; Poch and Mannering, 1996; Wang et al., 2009). 

With respect to the geometric design, number of lanes, median width, and intersection sight 

distance et al. were found to have significant effects on the crash frequency of signalized 

intersections. More specifically, the number of lanes was found to be positively correlated with 

the crash frequency of signalized intersections (Abdel-Aty and Wang, 2006; Dong et al., 2014; 

Guo et al., 2010; Poch and Mannering, 1996). Median width and intersection sight distance 

was also found to have positive effect on the crash frequency(Chin and Quddus, 2003). 

Moreover, Abdel-Aty and Wang (2006) found that the existence of exclusive right-turn lanes 

could significantly decrease the crash frequency. 
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In terms of signal control characteristics, the adaptive signal control was found to have 

significant lower crash frequency than the pre-timed signal control (Chin and Quddus, 2003). 

The number of phases was found to be positively associated with the crash frequency of 

signalized intersections (Chin and Quddus, 2003; Poch and Mannering, 1996; Xie et al., 2013). 

The left-turn protection could significantly improve the safety performance of the signalized 

interaction (Abdel-Aty and Wang, 2006; Chin and Quddus, 2003; Poch and Mannering, 1996). 

However, Abdel-Aty and Wang (2006) found that the left-turn protection on minor roadway 

tends to increase the crash frequency of signalized intersection. Surprisingly, Guo et al. (2010) 

found that the coordinated intersections are more unsafe than the isolated ones. They explained 

it as the travel speed is higher for coordinated intersections because of the green wave, which 

may result in more crashes. 

2.2 Real-time Crash Risk Analysis 

Real-time crash risk analysis has been widely adopted to reveal crash occurrence precursors by 

investigating the differences in traffic conditions between crash and non-crash events. As crash 

risk analysis is a typical binary classification problem, the most commonly used methods are 

the matched case-control logistic models (Abdel-Aty and Pande, 2005; Abdel-Aty et al., 2004; 

Ahmed and Abdel-Aty, 2012; Xu et al., 2012; Zheng et al., 2010), Bayesian logistical models 

(Ahmed et al., 2012a; Shi and Abdel-Aty, 2015; Wang et al., 2017a; Wang et al., 2015a; Yu et 

al., 2014), Bayesian random effect logistic models (Shi and Abdel-Aty, 2015; Yu et al., 2016), 
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Bayesian random parameter logistic models (Shi and Abdel-Aty, 2015; Xu et al., 2014; Yu and 

Abdel-Aty, 2014; Yu et al., 2017). Besides, several approaches of data mining such as neural 

networks (Abdel-Aty and Pande, 2005; Abdel-Aty et al., 2008), support vector machines (Yu 

and Abdel-Aty, 2013; Yu and Abdel-Aty, 2014), and Bayesian networks (Hossain and 

Muromachi, 2012; Sun and Sun, 2015) were also applied to evaluate the real-time crash risk. 

In order to identify the crash-prone conditions, huge efforts have been made to investigate the 

relationship between real-time crash risk and various traffic parameters and weather-related 

variables. Generally, the average speed was found to be negatively correlated with crash 

likelihood (Abdel-Aty et al., 2012; Ahmed et al., 2012a, b; Ahmed and Abdel-Aty, 2012; Shi 

and Abdel-Aty, 2015; Xu et al., 2012; Yu et al., 2016). The speed variation in the form of speed 

standard deviation or coefficient of speed variation was found to have significant positive 

effects on crash occurrence (Abdel-Aty et al., 2004; Abdel-Aty et al., 2012; Ahmed et al., 

2012a, b; Ahmed and Abdel-Aty, 2012; Xu et al., 2012; Zheng et al., 2010). Intuitively, higher 

traffic volume contributes to higher crash risk (Roshandel et al., 2015). Moreover, several 

studies (Hossain and Muromachi, 2012; Shi and Abdel-Aty, 2015) reported that the congestion 

index is positively correlated with crash occurrence. With respect to weather related variables, 

adverse weather is usually associated with increased crash risk (Ahmed et al., 2012a; Xu et al., 

2013a). 
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In summary, all the above real-time safety analyses were focused on the freeways, while urban 

arterials have seldom been analyzed. Theofilatos (2017) was the first to investigate crash 

likelihood and severity by exploiting real-time traffic and weather data collected from urban 

arterials. He found that both the variation in occupancy and logarithm of the coefficient of 

variation of flow are positively associated with crash occurrence. However, the traffic 

parameters were aggregated to 1-hour interval, which might be too large to capture the short-

term traffic status prior to crash occurrence. Moreover, it is worth noting that the crash risk of 

urban arterials might be highly influenced by signal operation, while it has never been 

examined in real-time safety analysis. 

2.3 Vehicle/Driver-Level Crash Risk Evaluation 

Previous real-time crash risk predictions were conducted based on time and space, i.e., 

predicting the crash risk at a specific location during a specific time period. These predictions 

were mainly based on the real-time traffic characteristics, and there is no any driving 

behavior/vehicle kinematic characteristics were incorporated into those prediction. Therefore, 

the predicted high crash risk information cannot specify to vehicle/driver level. However, 

different drivers may have different response even toward the same traffic condition. For 

example, given the same dangerous traffic condition, if all the drivers are conservative/safe 

driver, there may not have any crash, the potential crash may always cause by the aggressive 

drivers. Therefore, more accurate warning information at vehicle/driver level might be more 
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helpful to alleviate the crash risk. Also, as the rapid development on V2I technology, it is 

possible for us to deliver more accurate information to a specific driver/vehicle in the future. 

Above all, a vehicle/driver level real-time crash risk prediction algorithm should be proposed 

to incorporate the real-time traffic and the antecedent vehicle kinematic characteristics (driving 

behavior) simultaneously.  

In recent years, there are many studies tried to evaluate driving behavior by using different 

indicators, e.g., acceleration, braking events, lateral acceleration, yaw rate, and speed profile 

etc. Jun et al. (2011) evaluated the differences in observed speed patterns between crash-

involved and crash-not-involved drivers through various potential speed metrics created from 

longitudinally-measured GPS speed data. They found that at most times, drivers who had crash 

experiences tended to drive at higher speeds than crash-not-involved drivers except in freeway 

travels during AM peak hours. Crash-involved drivers also showed higher tendencies of non-

compliance with the posted speed limit.  

Bagdadi (2013) developed a new method based on critical jerk to identify safety critical braking 

events during car driving based on 637 near crashes extracted from the VTTI naturalistic 

driving dataset, and then compared it with the longitudinal acceleration measure. The findings 

show that the critical jerk method performed approximately 1.6 times higher overall success 

rate than the longitudinal acceleration measure. In addition, a positive correlation was found 

between driver’s safety critical braking event and crash involvement. 
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Simons-Morton et al. (2013) defined a kinematic risky driving when they exceeded the 

following thresholds: longitudinal deceleration/hard braking ( ≤ −0.45g ), longitudinal 

acceleration/rapid starts ( ≥ 0.35g ), lateral negative/left turn ( ≤ −0.50g ) and lateral 

positive/right turn (≥ 0.50g) acceleration, and yaw rate (±6 degrees per second). They found 

that the kinematic risky driving was best characterized as two classes, a higher-risk and a lower-

risk class. 

Wang et al. (2015c) proposed a new measure, i.e., driving volatility score, which was defined 

as the percentage of time when the driver’s acceleration or vehicular jerk goes beyond the 

typical driving thresholds (acceleration or vehicular jerk bands). They found that younger 

drivers exhibit higher volatility in driving, and ten-year increase in driver age is associated with 

a decrease of 0.57 in volatility scores.  

Eboli et al. (2016) proposed a methodology for analyzing driving behavior by considering 

kinematic parameters such as speed and longitudinal and lateral accelerations as the elements 

that can best explain if driver adopts a safe driving or not. They proposed a theoretical domain 

to distinguish the safe driving and unsafe driving, and then validated by the real test data on a 

rural two-lane road in Southern Italy. 

Zhu et al. (2017) employed a Bayesian Network model to investigate the relationships between 

GPS driving observations, individual driving behavior, individual driving risks, and individual 

crash frequency. They incorporated the contextual features, such as road conditions 
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surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-

contextual data such as instantaneous driving speed and the acceleration/deceleration of a 

vehicle. The findings indicate that drivers who drive at a speed faster than others or much 

slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on 

freeways are more likely to be involved in crash events. 

 

2.4 Summary 

Substantial efforts have been made by previous researchers to reveal the relationship between 

crash frequency on urban arterials and all the possible contributing factors. However, these 

studies were conducted based on static and highly aggregated data, which may limit the 

reliability of the findings simply because they are averages and cannot reflect the real 

conditions at the time of crash occurrence. Also, most of the previous real-time studies have 

been applied to freeways and seldom to arterials. Those bare studies on the real-time safety 

analysis on urban arterials were based on one-hour aggregated traffic parameters prior to crash 

occurrence, which might not be truly “real-time” as the traffic flow are likely to differ within 

one hour. 

Moreover, there is no previous research that focused on real-time safety analysis at signalized 

intersections. The conflicting traffic movements at signalized intersection are temporally 
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separated by traffic signals, and signal timing plays a very important role in the intersection 

safety, especially when the adaptive signal control technology was widely adopted on major 

urban arterials. However, the safety effect of real-time signal status has never been considered, 

while improper signal timing may result in dangerous situation. Therefore, the relationship 

between real-time signal timing and intersection safety need to be further investigated. 

It is worth noting that the previous real-time crash risk prediction models were evaluated based 

on artificially balanced test data, while these evaluation results can hardly represent the 

prediction performance in real-world application. Also, no research has been conducted for 

real-time crash risk prediction by using LSTMs, which were proved to have very good 

performance on a large variety of time series sequence learning problems. However, real-time 

crash risk prediction is a typical time series related sequential prediction process, and the 

impacts of long-term and short-term traffic data might be quite different, which could be 

captured by LSTM efficiently. 

Furthermore, considering that the traffic flow at signalized intersections presents cyclical 

characteristics, which are temporally interrupted by signal timing. Therefore, the data 

preparation for real-time crash risk prediction at signalized intersections should be based on 

the signal cycle rather than a predefined fixed time interval (i.e., 5 minutes), and cycle-level 

real-time crash risk analysis should be conducted while considering the cyclical characteristics 

of the traffic flow at signalized intersections.
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CHAPTER 3: UTILIZING BLUETOOTH AND ADAPTIVE SIGNAL 

CONTROL DATA FOR URBAN ARTERIALS SAFETY ANALYSIS1 

3.1 Introduction 

Urban arterials play a critical role in the road network system as they provide the high-capacity 

network for travel within urban areas as well as the access to roadside activities. Meanwhile, 

urban arterials are suffering from serious traffic safety issues. Take Florida as an example, over 

51% of crashes occurred on urban arterials in 2014. Substantial efforts have been made by 

previous researchers to reveal the relationship between crash frequency on urban arterials and 

all the possible contributing factors such as roadway geometric, traffic characteristics, etc. (El-

Basyouny and Sayed, 2009; Gomes, 2013; Greibe, 2003; Wang et al., 2015b). However, these 

studies were conducted based on static and highly aggregated data (e.g., Annual Average Daily 

Traffic (AADT), annual crash frequency).  

Recently, an increasing number of studies investigated the crash likelihood on freeways by 

using real-time traffic and weather data (Abdel-Aty et al., 2004; Abdel-Aty et al., 2012; Ahmed 

et al., 2012a; Lee et al., 2003; Oh et al., 2001; Xu et al., 2013a; Xu et al., 2013b; Yu and Abdel-

Aty, 2014; Yu et al., 2014; Zheng et al., 2010). However, little research has been conducted on 

real-time safety analysis of urban arterials (Theofilatos, 2017; Theofilatos et al., 2017; Yuan 

and Abdel-Aty, 2018), although the real-time traffic and weather data are available on many 

                                                 
1 This chapter has been published in Transportation Research Part C (https://doi.org/10.1016/j.trc.2018.10.009) 
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major arterials. This might be due to the substantial difference in traffic flow characteristics, 

data availability, and even crash mechanism between urban arterials and freeways, thus it is 

inappropriate to simply transfer the same research framework from freeways to urban arterials. 

More specifically, the interrupted traffic flow on urban arterials is highly influenced by the 

traffic signals (Cai et al., 2014; Wang et al., 2017b), which is quite different from the 

uninterrupted flow on freeways. Therefore, the crash risk on urban arterials might be associated 

with not only real-time traffic flow characteristics but also real-time signal timing, which has 

not been considered in previous research (Theofilatos, 2017; Theofilatos et al., 2017). 

Moreover, those pioneering studies on the real-time safety analysis of urban arterials were 

based on one-hour aggregated traffic parameters prior to crash occurrence, which might not be 

truly “real-time” as the traffic flow are likely to differ within one hour. 

In terms of real-time traffic data, most of the previous studies were based on inductive loop 

detectors (ILDs) (Abdel-Aty et al., 2008; Abdel-Aty et al., 2012; Zheng et al., 2010). ILDs are 

the most commonly used sensors in traffic management, however, there are some inherent 

problems with it, such as high failure rates and difficulty with maintenance, especially for 

arterials. Recently, several studies tried to conduct real-time safety analysis for freeways based 

on the traffic data collected from nonintrusive detectors, such as automatic vehicle 

identification system (AVI) (Ahmed et al., 2012a, b; Ahmed and Abdel-Aty, 2012) and remote 

traffic microwave sensor (RTMS) (Ahmed and Abdel-Aty, 2013; Shi and Abdel-Aty, 2015). 
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AVI is used mainly for toll collection and travel time estimation while RTMS is mostly used 

for operation and incident management. The speed data collected from different detectors are 

quite different, AVI and Bluetooth detectors measure space mean speed, whereas RTMS and 

ILDs measure time mean speed. As to the data availability, AVI and RTMS are usually 

available on freeways, and the possible available real-time traffic data on urban arterials are 

ILDs, Bluetooth, and floating car data (FCD). To the best of our knowledge, there is no real-

time safety analysis has been carried out using traffic data from Bluetooth detectors. 

Above all, this study aims to investigate the relationship between crash occurrence on urban 

arterials and real-time traffic, signal timing, and weather characteristics by utilizing data from 

multiple sources, i.e., Bluetooth, weather, and adaptive signal control datasets. The main 

contributions of this chapter include: 

(1) The concept of real-time safety analysis on urban arterials by considering microscopic 

traffic and signal timing characteristics is demonstrated. 

(2) Two kinds of new data sources (Bluetooth and adaptive signal control data) are 

introduced to real-time safety analysis. 

(3) Bayesian random parameters logistic (BRPL) and Bayesian random parameters 

conditional logistic models (BRPCL) are developed to compare with the Bayesian 

conditional logistic model (BCL). 
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(4) The relationships between real-time crash occurrence and real-time traffic and signal 

characteristics on urban arterials are preliminarily revealed. 

 

3.2 Data Preparation  

The roads chosen are four urban arterials in Orlando, Florida, as shown in Figure 3-1. Initially, 

72 road segments in both directions were considered in this study, the road segment here 

mentioned is defined as the segment between adjacent intersections. A total of four datasets 

were used: (1) crash data from March, 2017 to December, 2017 provided by Signal Four 

Analytics (S4A); (2) travel speed data collected by 23 IterisVelocity Bluetooth detectors 

installed at 23 intersections; (3) signal timing and 15-minute interval traffic volume provided 

by 23 adaptive signal controllers; (4) weather characteristics collected by the nearest airport 

weather station.  
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(a) Sand Lake Road and Orange Blossom Trail 

 

(b) Apopka Vineland Road and SR 536 World Center Drive 

Figure 3-1: Selected Four Urban Arterials 
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S4A provides detailed crash information, including crash time, coordinates, severity, type, 

weather condition, etc. In terms of the crash time information, there are three kinds of time 

information for each crash, i.e. time of crash occurrence, time reported, and time dispatched. 

Only the time of crash occurrence was utilized in this study, and the difference between this 

crash time and the actual crash time is supposed to be within 5 minutes since there exist several 

efficient and accurate technologies for the police officer to identify the accurate time of crash 

occurrence, e.g. closed-circuit television cameras and mobile phones. 

First, all crashes occurred on the selected arterials from March 2017 to December 2017 were 

collected. After that, based on the attributes of “Type of Intersection” and “First Harmful Event 

Relation to Junction”, all the intersection and intersection-related crashes were excluded. 

Meanwhile, all the crashes that occurred under the influence of alcohol and drugs were 

excluded. After these filtering processes, a total of 523 crashes remained and these crashes 

were assigned to the corresponding road segments. 

Matched case-control design was employed in this study to explore the effects of traffic, signal, 

and weather-related variables while eliminating the effects of other confounding factors 

through the design of study. First, all the crash events were collected, and for each selected 

crash, several confounding factors, i.e., segment ID, time of day, and day of the week, were 

selected as matching factors. Therefore, a group of non-crash events could be identified by 

using these matching factors and then a specific number of non-crash events could be randomly 
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selected from this group of non-crash events for every crash (Figure 3-2). The number of non-

crash events m corresponding to a crash event is preferred to be fixed in the entire analysis. As 

stated in Hosmer Jr et al. (2013), the value of m was commonly chosen from one to five. In 

addition, Abdel-Aty et al. (2004) found that there is no significant difference when m changing 

from one to five. Therefore, the control-to-case ratio of 4:1 was adopted in this study, which is 

consistent with previous research (Abdel-Aty et al., 2008; Ahmed and Abdel-Aty, 2013; 

Ahmed et al., 2012b; Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; 

Yu et al., 2016; Zheng et al., 2010). Consequently, 4 non-crash events from the same road 

segment, time of day, and day of week were extracted for each crash event. Besides, these non-

crash events were extracted only when there are no crashes occurring within 3 hours before or 

after the non-crash event on the same road segment. 
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Figure 3-2: Illustration of Matched Case-Control Design 

Bluetooth data provides the travel time and space-mean speed of the detected vehicle for each 

segment. Bluetooth detectors can only detect the vehicles equipped with Bluetooth device and 

the device is working at discoverable mode. The space-mean speed of each vehicle on a specific 

segment is calculated as the segment length divided by the travel time of each detected vehicle 

on the segment based on the detection data of two Bluetooth detectors located at the two 

contiguous intersections (Gong et al., 2019b). The procedure of Bluetooth data collection is 
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illustrated in Figure 3-3. In order to mitigate the impact of signal delay, the vehicle-level travel 

speed data were filtered by the algorithm which only keeps the data sample within 75% of the 

interquartile range of the preceding 15 samples on the same segment, this filtering algorithm 

could filter out those biased samples which might be highly influenced by the signal delay. 

MAC ID: 123AB

07:01:05

MAC ID: 123AB

07:03:35
MAC ID: 123AB

07:07:05

Travel Time = 150 seconds

Speed = 34 mph

Travel Time = 170 seconds

Speed = 40 mph

1.42 mile 1.89 mile

Central Server

 

Figure 3-3: Illustration of Bluetooth Data Collection 

If there is no Bluetooth detector on one of the contiguous intersections (Figure 3-4), the travel 

speed on the segment will be decreased after including the intersection delay, thus, all the 

segments with missing Bluetooth detector on either contiguous intersection were deleted. 

Consequently, only 32 road segments were selected for data collection (Figure 3-1).  
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MAC ID: 123AB

07:01:05

MAC ID: 123AB

07:07:05

Travel Time = 350 seconds

Speed = 34 mph

1.42 mile 1.89 mile

Central Server

 

Figure 3-4: Illustration of Excluded Bluetooth Segment 

It is worth noting that the Bluetooth overall sampling rate is 6.05%, which is higher than the 

threshold suggested by the previous studies (Chen and Chien, 2000; Long Cheu et al., 2002b), 

which stated that a floating car sample of just 3% of the vehicle population is sufficient for a 

95% confidence level in travel time and speed estimates. The real-time travel speed data were 

extracted for a period of 20 minutes (divided into four 5-minute time slices) prior to crash 

occurrence. For example, if a crash occurred on segment-15 at 15:00, the corresponding travel 

speed data from 14:40 to 15:00 were extracted and named as time-slices 1, 2, 3, and 4. The 

distribution histogram of the 5-minute Bluetooth sample frequency is shown in Figure 3-5, if 

the number of vehicles that are detected within any time slice is lower than 2 (17.12%), then 

the corresponding crashes were excluded. Finally, a total of 273 crashes were used in the 

analysis. 
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Figure 3-5: Distribution of 5-minutes Bluetooth Sample Frequency 

The adaptive signal control system at a signalized intersection is operated based on the video 

detectors installed on the approaches, which can detect the real-time queue length, maximum 

waiting time, and traffic volume by movement. This system archives the real-time signal 

phasing, queue length, waiting time, and 15-minute aggregated traffic volume data. Since the 

right-turn vehicles are unprotected at the intersection, the traffic volume data only include the 

through and left-turn vehicles. As shown in Figure 3-2, the upstream volume of the segment 

consists of the through and left-turn traffic volume coming from the upstream intersection, 

while the downstream volume of the segment consists of the through and left-turn traffic 

volume approaching into the downstream intersection. Since the archived volume data are 

aggregated by 15 minutes, therefore, the traffic volume during 5-mintue interval was 

proportionally calculated based on the assumption that the traffic volume within 15-minute 

interval are evenly distributed. 
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The 5-minute through green ratio for the contiguous upstream and downstream intersections 

were collected for the period of 4 time slices prior to the reported crash time. Also, the 5-

minutes signal coordination between the contiguous upstream and downstream intersections 

was collected. As shown in Figure 3-6, the signal coordination is the total maximum bandwidth 

(“windows” of green for traveling platoons) between the upstream and downstream signals 

during the periods of each time-slice prior to the reported crash time. The ideal offset, which 

is calculated by the segment length divided by the corresponding speed limit, was adopted to 

represent the offset between the upstream and downstream intersections. 

 

Figure 3-6: Illustration of maximum bandwidth and signal coordination 

Two weather related variables (rainy weather indicator and visibility) were collected from the 

nearest airport weather station, which is located at the Orlando international airport (as shown 

in Figure 3-1). Since the weather data is not recorded continuously, once the weather condition 
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changes and reaches a preset threshold, a new record will be added to the archived data. 

Therefore, for each specific crash, based on the reported crash time, the closest weather record 

prior to the crash time has been extracted and used as the crash time weather condition, which 

is identical for four time slices.  

In order to validate the weather data collected by the airport weather station with the weather 

condition reported in the crash report. The weather type information of each crash event 

collected from two data sources was selected to conduct a cross table analysis. The weather 

type information reported in the crash report including clear (76.44%), cloudy (13.29%), and 

rain (10.27%), which were converted into a binary variable (rainy and normal) to compare with 

the rainy weather indicator collected by the airport weather station. The results indicated that 

the accuracy ((True positive + True negative)/Total sample size) of weather station is 92%. 

The final dataset includes 1365 observations (273 crash events and 1092 non-crash events), 

which were then divided into training (80%: 218 crash events) and validation (20%: 55 crash 

events) datasets. The summary statistics of the final dataset for all the traffic, signal, and 

weather-related variables are as shown in Table 3-1. 
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Table 3-1: Summary of Variables Descriptive Statistics (Crash and Non-crash Events) 

Variables 
Time 

Slice 
Description Mean 

Std 

dev. 
Min Max 

Crash_count - Number of crashes for each segment 9.10 7.50 1.00 29.00 

Avg_Speed 

1 

Average speed within 5-minute interval 

(mph) 

25.91 10.18 4.88 55.00 

2 26.07 10.01 4.00 56.00 

3 26.40 10.05 4.00 58.00 

4 26.21 9.84 4.33 59.33 

Std_Speed 

1 

Speed standard deviation within 5-

minute interval (mph) 

9.86 5.20 0.00 30.41 

2 10.06 5.02 0.00 31.01 

3 10.00 5.12 0.00 36.77 

4 10.11 5.22 0.00 28.54 

Up_Vol 

1 
Number of vehicles coming from the 

upstream intersection within 5-minute 

interval 

108.85 53.55 0.00 346.67 

2 109.00 53.81 0.00 346.67 

3 108.25 53.04 0.00 316.67 

4 107.87 54.54 0.00 491.33 

Down_Vol 

1 
Number of vehicles approaching into the 

downstream intersection within 5-minute 

interval 

123.28 56.81 0.00 869.33 

2 123.38 56.05 0.00 869.33 

3 122.85 56.54 0.00 869.33 

4 122.96 55.76 0.00 557.33 

Up_Vol_LT 

1 
Number of left turn vehicles coming 

from the upstream intersecting road 

segment within 5-minute interval 

(Figure 2) 

10.19 18.15 0.00 146.67 

2 10.14 18.00 0.00 134.93 

3 10.18 18.09 0.00 142.67 

4 10.11 17.80 0.00 142.67 

Down_Vol_L

T 

1 
Number of left turn vehicles 

approaching into the downstream 

intersection within 5-minute interval 

(Figure 2) 

16.12 14.76 0.00 118.33 

2 16.09 15.25 0.00 149.67 

3 16.14 15.59 0.00 149.67 

4 16.14 15.79 0.00 149.67 

Up_Green_Rat

io 

1 
The percentage of green time for 

through vehicle in the upstream 

intersection within 5-minute interval (%) 

47.87 18.32 4.00 100.00 

2 46.96 17.57 12.67 94.67 

3 47.11 18.14 8.33 100.00 

4 47.78 17.96 10.67 100.00 

Down_Green_

ratio 

1 
The percentage of green time for 

through vehicle in the downstream 

intersection within 5-minute interval (%) 

46.97 18.66 9.00 100.00 

2 47.11 18.76 7.67 93.67 

3 46.17 17.99 6.67 100.00 

4 46.76 18.85 7.67 92.33 

Signal_Coordi

nation 

1 

Total bandwidth divided by the upstream 

green time within 5-minute interval 

0.66 0.29 0.00 1.00 

2 0.65 0.29 0.00 1.00 

3 0.65 0.29 0.00 1.00 

4 0.65 0.29 0.00 1.00 

Rainy - 
Binary variable for rainy weather 

indicator (0 for normal and 1 for rainy) 
0.05 0.21 0.00 1.00 

Visibility - Visibility (mile) 9.79 1.09 1.00 10.00 
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3.3 Methodology 

As crash risk analysis is a typical binary classification problem (crash and non-crash), logistic 

regression model would be the most basic and preferable method. However, since the matched 

case control design was employed in this study to select the non-crash events rather than the 

random sample method, which means that the selected non-crash events and the corresponding 

crash event are within the same stratum. Therefore, conditional logistic regression, which is 

also known as matched-case control regression, should be more appropriate for this study, 

which is in line with previous research (Abdel-Aty and Pande, 2005; Abdel-Aty et al., 2004; 

Ahmed and Abdel-Aty, 2012; Xu et al., 2012; Zheng et al., 2010). In this study, four Bayesian 

conditional logistic models were developed for the four time slices separately.  

Furthermore, many previous research found that random parameters model performs much 

better than fixed parameters model (Shi and Abdel-Aty, 2015; Xu et al., 2014; Yu and Abdel-

Aty, 2014; Yu et al., 2017). Therefore, Bayesian random parameters logistic model and 

Bayesian random parameters conditional logistic model were also employed based on the best 

time slice dataset to compare with the Bayesian conditional logistic model. Bayesian approach, 

which treats the parameters as random variable and incorporates prior knowledge to estimate 

the posterior distribution of parameters, was adopted in this study. It was claimed that the 

Bayesian approach provided better fit and reduced uncertainty for parameter estimations than 

the frequentist approach (Ahmed et al., 2012b). 
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3.3.1 Bayesian Conditional Logistic Model 

Suppose that there are N strata with 1 crash (𝑦𝑖𝑗=1) and m non-crashes (𝑦𝑖𝑗=0) in stratum i, i=1, 

2, …, N and j=0,1,2, …, m. Let 𝑝𝑖𝑗 be the probability that the jth observation in the ith stratum 

is a crash. This crash probability could be expressed as: 

 𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) ( 3-1 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝑖 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + ⋯ + 𝛽𝑘𝑋𝐾𝑖𝑗 ( 3-2 ) 

Where 𝛼𝑖  denotes the effects of matching variables on crash likelihood for ith stratum; 

𝜷 = (𝛽1, 𝛽2, … , 𝛽𝐾) is the vector of regression coefficients for K independent variables, and all 

the 𝜷 coefficients are set up with non-informative priors as following normal distributions (0, 

1E-6); 𝑿𝒊𝒋 = (𝑋1𝑖𝑗, 𝑋2𝑖𝑗, … , 𝑋𝐾𝑖𝑗) is the vector of K independent variables. 

In order to take the stratification in the analysis of the observed data, the stratum-specific 

intercept 𝛼𝑖 is considered to be nuisance parameters. Suppose the observation 𝑦𝑖0 is a crash, 

and 𝑦𝑖𝑗 , 𝑗 = 1, 2, … , 𝑚  are non-crashes, then the conditional likelihood for the ith stratum 

would be expressed as (Hosmer Jr et al., 2013): 

 
𝑙𝑖(𝜷) =

exp (∑ 𝛽𝑘𝑋𝑘𝑖0
𝐾
𝑘=1 )

∑ exp (∑ 𝛽𝑘𝑋𝑘𝑖𝑗
𝐾
𝑘=1 )𝑚

𝑗=0

 
( 3-3 ) 

And the full conditional likelihood is the product of the 𝑙𝑖(𝜷) over N strata, 
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𝐿(𝜷) = ∏ 𝑙𝑖(𝜷)

𝑁

𝑖=1

 ( 3-4 ) 

Since the full conditional likelihood is independent of stratum-specific intercept 𝛼𝑖, thus Eq. 

( 3-2 ) cannot be used to estimate the crash probabilities. However, the estimated 𝜷 coefficients 

are the log-odd ratios of corresponding variables and can be used to approximate the relative 

risk of an event. Furthermore, the log-odds ratios can also be used to develop a prediction 

model under this matched case-control analysis. Suppose two observation vectors 𝑿𝒊𝟏 =

(𝑋1𝑖1, 𝑋2𝑖1, … , 𝑋𝐾𝑖1) and 𝑿𝒊𝟐 = (𝑋1𝑖2, 𝑋2𝑖2, … , 𝑋𝐾𝑖2) from the ith stratum, the odds ratio of 

crash occurrence caused by observation vector 𝑿𝒊𝟏 relative to observation vector 𝑿𝒊𝟐 could be 

calculated as: 

 𝑝𝑖1/(1 − 𝑝𝑖1)

𝑝𝑖2/(1 − 𝑝𝑖2)
= exp [∑ 𝛽𝑘(𝑋𝑘𝑖1

𝐾

𝑘=1

− 𝑋𝑘𝑖2)] ( 3-5 ) 

The right-hand side of Eq. ( 3-5 ) is independent of 𝛼𝑖 and can be calculated using the estimated 

𝜷  coefficients. Thus, the above relative odds ratio could be utilized for predicting crash 

occurrences by replacing 𝑿𝒊𝟐 with the vector of the independent variables in the ith stratum of 

non-crash events. One may use simple average of each variable for all non-crash observations 

within the stratum. Let 𝑿̅𝒊 = (𝑋̅1𝑖, 𝑋̅2𝑖, … , 𝑋̅𝐾𝑖) denote the vector of mean values of non-crash 

events of the k variables within the ith stratum. Then the odds ratio of a crash relative to the 

non-crash events in the ith stratum could be approximated by: 
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 𝑝𝑖1/(1 − 𝑝𝑖1)

𝑝𝑖̅/(1 − 𝑝𝑖̅)
= exp [∑ 𝛽𝑘(𝑋𝑘𝑖1

𝐾

𝑘=1

− 𝑋̅𝑘𝑖)] 
( 3-6 ) 

3.3.2 Bayesian Random Parameters Logistic Model 

Suppose the crash occurrence has the outcomes 𝑦𝑖=1 (crash event) and 𝑦𝑖=0 (non-crash event) 

with respective probability 𝑝𝑖 and 1-𝑝𝑖, i=1, 2,…, N(m+1). N and m represent the number of 

strata and the number of control events within each stratum, separately. N(m+1) indicates the 

total number of observations. The random parameters logistic regression can be expressed as 

follows: 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) ( 3-7 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0𝑖 + 𝛽1𝑖𝑋1𝑖 + 𝛽2𝑖𝑋2𝑖 + ⋯ + 𝛽𝐾𝑖𝑋𝐾𝑖 ( 3-8 ) 

 𝛽𝑘𝑖 = 𝛽𝑘 + 𝜑𝑘𝑖, 𝑘 = 0,1,2, … , 𝐾 ( 3-9 ) 

 𝜑𝑘𝑖~𝑁(0, 𝜎𝑘
2) ( 3-10 ) 

Where 𝛽0𝑖 is the random intercept for the ith observation; 𝜷𝒊 = (𝛽1𝑖, 𝛽2𝑖, … , 𝛽𝐾𝑖) is the vector 

of K random coefficients for the ith observation; 𝑿𝒊𝒋 = (𝑋1𝑖𝑗, 𝑋2𝑖𝑗, … , 𝑋𝐾𝑖𝑗) is the vector of K 

independent variables for the ith observation; 𝜑𝑘𝑖 is a randomly distributed term to account for 

the heterogeneity across observations; all the 𝛽𝑘 coefficients are set up with non-informative 

priors as following normal distributions (0, 1E-6), and all the 𝜎𝑘
2 are specified to be inverse-

gamma priors as 𝜎𝑏
2~Inverse − gamma(0.001,0.001). 
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3.3.3 Bayesian Random Parameters Conditional Logistic Model 

Suppose the crash occurrence has the outcomes 𝑦𝑖𝑗=1 (crash event) and 𝑦𝑖𝑗=0 (non-crash event) 

with respective probability 𝑝𝑖𝑗 and 1-𝑝𝑖𝑗. The definitions of i and j are the same with Eq. ( 3-1 ). 

The random parameters conditional logistic regression can be expressed as follows: 

 𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) ( 3-11 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝑖 + 𝛽1𝑖𝑋1𝑖𝑗 + 𝛽2𝑖𝑋2𝑖𝑗 + ⋯ + 𝛽𝐾𝑖𝑋𝐾𝑖𝑗 ( 3-12 ) 

 𝛽𝑘𝑖 = 𝛽𝑘 + 𝜑𝑘𝑖, 𝑘 = 0,1,2, … , 𝐾 ( 3-13 ) 

 𝜑𝑘𝑖~𝑁(0, 𝜎𝑘
2) ( 3-14 ) 

Where 𝛼𝑖 is the random intercept term for the ith stratum; 𝜷𝒊 = (𝛽1𝑖, 𝛽2𝑖, … , 𝛽𝐾𝑖) is the vector 

of K random coefficients for the ith stratum; 𝑿𝒊𝒋 = (𝑋1𝑖𝑗, 𝑋2𝑖𝑗, … , 𝑋𝐾𝑖𝑗) is the vector of K 

independent variables for the jth observation in the ith stratum; 𝜑𝑘𝑖 is a randomly distributed 

term to account for the heterogeneity across strata; The main difference between random 

parameters logistic model and random parameters conditional logistic model is that the 

estimation of random parameters logistic model is based on classical likelihood function while 

random parameters conditional logistic model is based on the stratified conditional likelihood 

function (as shown in Eq. ( 3-4 )). All the 𝛽𝑘 coefficients are also set up with non-informative 
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priors as following normal distributions (0, 1E-6), and all the 𝜎𝑘
2 are specified to be inverse-

gamma priors as 𝜎𝑏
2~Inverse − gamma(0.001,0.001). 

Bayesian Inference and Model Comparisons 

Bayesian inference was employed in this study. For each model, three chains of 20,000 

iterations were set up in WinBUGS (Lunn et al., 2000), the first 5,000 iterations were excluded 

as burn-in, the latter 15,000 stored iterations were set to estimate the posterior distribution. 

Convergence was evaluated using the built-in Brooks-Gelman-Rubin (BGR) diagnostic 

statistic (Brooks and Gelman, 1998). 

The Deviance Information Criterion (DIC) can be used to compare complex models by offering 

a Bayesian measure of model fitting and complexity (Spiegelhalter et al., 2002). DIC is defined 

as: 

 𝐷𝐼𝐶 = 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷 ( 3-15 ) 

Where 𝐷(𝜃) is the Bayesian deviance of the estimated parameter, and 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ is the posterior 

mean of 𝐷(𝜃). 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ can be viewed as a measure of model fit, while 𝑝𝐷 denotes the effective 

number of parameters and indicates the complexity of the models. Models with smaller DIC 

are preferred. Very roughly, difference of more than 10 might definitely rule out the model 

with the higher DIC (Spiegelhalter et al., 2003). 
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In terms of model goodness-of-fit, the AUC value which is the area under Receiver Operating 

Characteristic (ROC) curve was also adopted. The ROC curve illustrates the relationship 

between the true positive rate (sensitivity) and the false alarm rate (1–specificity) of model 

classification results based on a given threshold from 0 to 1. It is worth noting that the 

classification results of Bayesian random parameters logistic model are based on the predicted 

crash probabilities, which lie in the range of 0 to 1, while the classification result of Bayesian 

conditional logistic model and Bayesian random parameters conditional logistic model are 

based on the predicted odds ratio, which may be larger than 1. In order to be consistent with 

the other two models, all the odds ratios predicted by Bayesian conditional logistic model were 

divided by the maximum odds ratio to create adjusted odds ratios. Later, the adjusted odds 

ratios were used to create the classification result based on different threshold from 0 to 1. In 

this study, AUC values were calculated using R package pROC (Robin et al., 2011). 

 

3.4 Modeling Results 

This section discusses the modeling results of the Bayesian conditional logistic models based 

on four time slices datasets, followed by the model comparisons between Bayesian conditional 

logistic model, Bayesian random parameters logistic model, and Bayesian random parameters 

conditional logistic model based on the same dataset. 
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Four models based on 4 time-slice datasets are presented in Table 3-2. The model comparison 

results based on training and validation AUC values indicate that the slice 2 model (5-10 minute 

interval) performs the best, followed by the slice 1 (0-5 minute interval) model. However, based 

on slice 1 model, there would be no spare time to implement any proactive traffic management 

strategy to prevent the possible crash occurrence. Moreover, as Golob and Recker (Golob et 

al., 2004) mentioned that there may exist 2.5 min difference between the exact crash time and 

reported crash time, thus the slice 1 model was treated as a reference. On the other hand, slice 

2 model performs the best in terms of the number of significant variables. Finally, the slice 2 

model was selected to conduct further interpretation and model comparison. 
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Table 3-2: Model Results of Bayesian Conditional Logistic Regression Models based on Different Time Slices 

Parameter 

Slice 1 Slice 2 Slice 3 Slice 4 

Mean (95% BCI) Odds Ratio 
Mean (95% 

BCI) 
Odds Ratio 

Mean (95% 

BCI) 
Odds Ratio 

Mean (95% 

BCI) 
Odds Ratio 

Avg_speed 
-0.049 

(-0.071, -0.029) 

0.952  

(0.931, 0.971) 

-0.025 

(-0.048, -0.004) 

0.975  

(0.953, 0.996) 
- - - - 

Up_Vol_LT 
0.024 

(0.007, 0.044) 

1.024  

(1.007, 1.045) 

0.024 

(0.005, 0.044) 

1.024  

(1.005, 1.045) 

0.024 

(0.006, 0.045) 

1.024  

(1.006, 1.046) 

0.036 

(0.014, 0.06) 

1.037  

(1.014, 1.062) 

Down_GreenRatio - - 
-0.042 

(-0.075, -0.011) 

0.959  

(0.928, 0.989) 
- - - - 

Rainy 
0.551 

(0.02374, 1.065)* 

1.735  

(1.024, 2.901) 

0.667 

(0.055, 1.274) 

1.948  

(1.057, 3.575) 

0.682 

(0.037, 1.322) 

1.978  

(1.038, 3.751) 

0.72 

(0.078, 1.341) 

2.054  

(1.081, 3.823) 

Training AUC 0.6150 0.6210 0.5451 0.5507 

Validation AUC 0.6081 0.6169 0.5300 0.5476 

Note: Mean (95% BCI) values marked in bold are significant at the 0.05 level; Mean (95% BCI) values marked in bold and noted by * are significant at 

the 0.1 level.
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Based on the estimation results in the slice 2 model, four variables were found to be 

significantly associated with the crash occurrence on urban arterials: (1) the negative 

coefficient (-0.025) of average speed indicates that higher average speed tends to decrease the 

crash risk, which is consistent with other studies (Abdel-Aty et al., 2012; Ahmed et al., 2012a, 

b; Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; Yu et al., 2016). 

This could be explained as the traffic condition with higher average speed, which represents 

more smooth traffic flow, could have better safety performance. Similarly, congestion index 

was found to have positive effect on crash likelihood (Hossain and Muromachi, 2012; Shi and 

Abdel-Aty, 2015), which means that the congested traffic condition is expected to have higher 

crash risk. The odds ratio of 0.975 means that when other variables held constant, one-unit 

increase in the average speed would decrease the odds of crash occurrence by 2.5%; (2) the 

upstream left-turn volume from the intersecting road segment was found to be positively 

correlated with crash likelihood, which might be explained in that more vehicles from the 

intersecting road segment left turning into the subject segment may result in more lane change 

behavior, which may lead to more conflicts with through vehicles. The odds ratio of 1.024 

indicates that one-unit increase in upstream left-turn volume would lead to an increase of 2.4% 

in the odds of crash occurrence; (3) downstream green ratio was found to have negative effect 

on crash risk, and the odds ratio of 0.959 indicates that one percentage increase in downstream 

green ratio would decrease the odds of crash occurrence by 4.1%; (4) rainy indicator has a 

positive effect, the odds ratio of 1.948 means that the odds of crash occurrence under rainy 
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condition is 94.8% higher than normal conditions, which is in line with previous studies 

(Ahmed et al., 2012a).  

Furthermore, both Bayesian random parameters logistic model and Bayesian random 

parameters conditional logistic model were developed based on time slice 2 dataset. In order 

to improve the model performance of the Bayesian random parameters conditional logistic 

model, 15 (∑
4!

𝑖!(𝑛−𝑖)!

3
𝑖=0 ) combinations of fixed and random variables were developed to 

compare the model results, Table 3-3 shows the model performance of the 15 random 

parameter combinations. 

Table 3-3: Model Performance of Different Random Parameter Combinations 

Model Type Fixed Variables 
Training 

AUC 

Validation 

AUC 

4 random variables - 0.6217 0.6196 

3 random and 1 fixed 

variables 

Rainy 0.6211 0.6155 

Down_GreenRatio 0.6202 0.6126 

Up_Vol_LT 0.6216 0.6232 

Avg_speed 0.6208 0.6134 

2 random and 2 fixed 

variables 

Avg_speed & Rainy 0.6206 0.614 

Avg_speed & Up_Vol_LT 0.6208 0.6246 

Avg_speed & Down_GreenRatio 0.6209 0.6163 

Up_Vol_LT & Down_GreenRatio 0.622 0.6232 

Up_Vol_LT & Rainy 0.6215 0.6163 

Down_GreenRatio & Rainy 0.6208 0.6157 

1 random and 3 fixed 

variables 

Avg_speed & Up_Vol_LT & 

Down_GreenRatio 
0.6213 0.6164 

Avg_speed & Up_Vol_LT & Rainy 0.6216 0.6164 

Avg_speed & Down_GreenRatio & Rainy 0.6202 0.6119 

Up_Vol_LT & Down_GreenRatio & Rainy 0.6207 0.6158 
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Since all the modeling results of these 15 combinations will be too much to present, only the 

best model (i.e. fix “Up_Vol_LT” and “Down_GreenRatio”, while randomize the other two 

variables) was presented in Table 3-4. Both the AUC and DIC values indicate that the Bayesian 

random parameters conditional logistic model performs better than the Bayesian conditional 

logistic model, which verified that introducing random parameters could improve model 

performance. However, in the Bayesian random parameters logistic model, the upstream left-

turn volume and downstream green ratio are insignificant, and this model has the lowest AUC 

value and the highest DIC value among the three models, these indicate that without 

considering the stratified data structure of the matched case-control dataset may significantly 

deteriorate the model performance.  
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Table 3-4: Model Comparison Results based on Time Slice 2 

Parameter 

Bayesian conditional logistic regression 
Bayesian random parameters logistic 

model 

Bayesian random parameters conditional 

logistic model 

Mean (95% BCI) Hazard Ratio Mean (95% BCI) Hazard Ratio Mean (95% BCI) Hazard Ratio 

Intercept - - 
-1.514 

(-2.35, -0.607) 
- - - 

Standard deviation  - - 
0.074 

(0.021, 0.19) 
- - - 

Avg_speed 
-0.025 

(-0.048, -0.004) 

0.975  

(0.953, 0.996) 

-0.023 

(-0.041, -0.006) 

0.977  

(0.96, 0.994) 

-0.027 

(-0.051, -0.006) 

0.973  

(0.95, 0.994) 

Standard deviation  - - 
0.012 

(0.009, 0.017) 
- 

0.044 

(0.018, 0.091) 
- 

Up_Vol_LT 
0.024 

(0.005, 0.044) 

1.024  

(1.005, 1.045) 

0.009 

(-0.002, 0.021) 

1.009  

(0.998, 1.021) 

0.025 

(0.004, 0.047) 

1.025  

(1.004, 1.048) 

Standard deviation  - - 
0.017 

(0.012, 0.024) 
- - - 

Down_GreenRatio 
-0.042 

(-0.075, -0.011) 

0.959  

(0.928, 0.989) 

-0.007 

(-0.017, 0.003) 

0.993  

(0.983, 1.003) 

-0.045 

(-0.076, -0.013) 

0.956  

(0.927, 0.987) 

Standard deviation  - - 
0.009 

(0.007, 0.011) 
- - - 

Rainy 
0.667 

(0.055, 1.274) 

1.948  

(1.057, 3.575) 

0.797 

(0.102, 1.436) 

2.219  

(1.107, 4.204) 

0.591 

(0.082, 1.224)* 

1.806  

(1.085, 3.401) 

Standard deviation  - - 
0.070 

(0.021, 0.17) 
- 

0.283 

(0, 0.543) 
- 

DIC 682.290 1179.610 676.674 

Training AUC 0.6210 0.5748 0.6220 

Validation AUC 0.6169 0.5714 0.6232 

Note: Mean (95% BCI) values marked in bold are significant at the 0.05 level; Mean (95% BCI) values marked in bold and noted by * are significant at 

the 0.1 level; The value in italic are the standard deviation of the corresponding parameter distribution.
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3.5 Conclusion and Discussion 

This study investigated the crash risk on urban arterials based on real-time data from multiple 

sources, including travel speed provided by Bluetooth detectors, traffic volume and signal phasing 

extracted from adaptive signal controllers, and weather data collected by the airport weather station. 

Matched case-control design with a control-to-case ratio of 4:1 was applied to collect data for crash 

and non-crash events. Four Bayesian conditional logistic models were developed separately for 

four 5-minute interval datasets (20-minute window prior to the reported crash time). In terms of 

AUC values, the model estimation results indicated that slice 2 (5-10 minute) model performs the 

best, followed by the slice 1 (0-5 minute) model. Considering that the implementation of proactive 

traffic management strategy may need some time in advance to possible crash occurrence, and 

there may exists error between the reported and actual crash times (Golob et al., 2004), slice 1 

model was disregarded and slice 2 model was selected to conduct further analysis. 

The results of the slice 2 model indicate that the average speed, upstream left-turn volume, 

downstream green ratio, and rainy indicator are significantly associated with the crash risk on 

urban arterials. In general, these finding are consistent with previous studies, in which the average 

speed was found to have significant negative impact on crash occurrence (Abdel-Aty et al., 2012; 

Ahmed et al., 2012a, b; Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; 

Yu et al., 2016), while adverse weather (Ahmed et al., 2012a; Xu et al., 2013a) were found to be 

positively correlated with crash likelihood. In terms of the effect of traffic volume, only the 

upstream left-turn volume was found to have significant effect on crash likelihood, which indicates 

that more vehicles from the intersecting road segment left turning into the subject segment may 
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increase the crash risk on the segment. This is quite different from the findings on freeways, which 

showed that the total upstream volume has significant positive impact on crash occurrence (Shi 

and Abdel-Aty, 2015; Yu et al., 2017; Yu et al., 2016). 

It is worth noting that the downstream green ratio was found to be negatively associated with crash 

occurrence, this could be explained as the higher downstream green ratio could efficiently reduce 

the percentage of stop-and-go traffic, which may increase the safety performance. Surprisingly, 

the speed standard deviation is insignificant, this could be explained in that the average number of 

vehicles detected by the Bluetooth detector within 5-minute interval is about 6, which might be 

too small to capture the variation in speed. 

Compared with the previous research on the real-time safety analysis of urban arterials 

(Theofilatos, 2017), they found that the 1 hour variation in both occupancy and volume were 

significantly associated with crash likelihood, which is quite different from our study. This might 

be explained in that the 1 hour aggregated traffic parameters can hardly represent the actual short-

term traffic status such as speed and volume prior to crash occurrence, while it can capture the 

variation in traffic flow. This comparison implies that the traffic parameters should be aggregated 

based on more appropriate time interval, which can not only represent the short-term traffic status 

but also capture the variation in traffic flow characteristics.   

Furthermore, the Bayesian random parameters logistic and Bayesian random parameters 

conditional logistic models were developed and compared with the Bayesian conditional logistic 

model based on the time slice 2 dataset. The results indicate that the Bayesian random parameters 

logistic model which ignored the stratified structure of the matched-case-control dataset performs 

the worst, which verifies that the stratified structure of the matched-case-control dataset should be 
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considered in the modeling process. Moreover, the Bayesian random parameters conditional 

logistic model performs better than the Bayesian conditional logistic model, which demonstrates 

the advantage of random parameters model.  

From the application point of view, the outcome of this study could be implemented from several 

aspects. The most straightforward application is to apply this algorithm to develop an arterial real-

time crash risk prediction system. The real-time prediction results could be fed into the 

implementation of proactive traffic management strategies (e.g., variable speed limit), which can 

efficiently mitigate the crash risk in advance of the potential crash occurrence. Also, the real-time 

prediction results could be provided to drivers to assist with the route choice decisions. 

Furthermore, the real-time crash prediction results could be delivered to the drivers through 

connected-vehicle technology to provide crash risk warning information. In addition, the arterial 

real-time crash risk prediction system could be integrated with the real-time crash prediction on 

freeways. Therefore, an integrated arterial/freeway active traffic management strategy could be 

employed to proactively mitigate the safety of the road network. 

However, the validation AUC value of 0.6232 implies that the model is still not ready to be applied 

to the real-time crash risk prediction and active traffic management system. It is worth noting that 

this study could be considered as a pioneering but early stage investigation of real-time safety 

analysis on urban arterials and that its major contribution is to demonstrate the concept of applying 

Bluetooth and adaptive signal control data to predict real-time crash risk on urban arterials. Even 

though, the current estimation results could still provide some insights for traffic engineers to 

understand the relationship between crash risk and real-time traffic characteristics and weather 

conditions on arterials.  
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As this is the first attempt to investigate the real-time crash risk on urban arterials based on 5-

minute aggregated data, there are still plenty of room for further improvements: (1) in order to 

achieve more accurate vehicle-level travel time and speed, the vehicle delay at intersections should 

be excluded from the travel time. In this context, high-resolution vehicle trajectory data would be 

preferable rather than Bluetooth data. (2) The current study focused on the safety effect of the 

traffic and signal status during different 5-minute intervals prior to the crash occurrence. Therefore, 

the exact signal status at the time of crash occurrence has not been considered. More disaggregate 

analyses, e.g., 1-min level or even signal cycle level analysis, should be conducted when higher 

resolution data are available. (3) As the Bluetooth data only provide the speed of the segment, it 

cannot distinguish the lane specific travel speed. In the future, lateral speed difference should be 

considered when more microscopic data are available. (4) The signal timing characteristics were 

incorporated as several independent variables, which is relatively simple and superficial. More 

integrated analysis should be conducted to reveal the intrinsic relationship between signal timing 

and real-time crash risk on urban arterials. (5) This study only focused on the total crashes, while 

different crash types and crash severity could be considered in future research.  
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CHAPTER 4: APPROACH-LEVEL REAL-TIME CRASH RISK ANALYSIS FOR 

SIGNALIZED INTERSECTIONS2 

4.1 Introduction 

Intersections are among the most dangerous roadway facilities due to the complex traffic 

conflicting movements and frequent stop-and-go traffic. Take Florida as an example, nearly 26% 

of crashes happen at or influenced by intersections (including signalized and non-signalized) in 

2014. Moreover, signalized intersections are generally large intersections with higher traffic 

volume, therefore, the safety status of signalized intersection would be even more complicated. 

Safety analysis for signalized intersection has been a critical research topic during past decades. 

Substantial efforts have been made by previous researchers to reveal the relationship between crash 

frequency of signalized intersections and all the possible contributing factors such as roadway 

geometric, signal control, and traffic characteristics, etc. (Abdel-Aty and Wang, 2006; Cai et al., 

2018a; Cai et al., 2018b; Chin and Quddus, 2003; Guo et al., 2010; Lee et al., 2017; Liu et al., 

2018; Wang et al., 2009; Wang et al., 2006).  

More specifically, nearly all the traffic volume related variables were found to have significant 

positive effects on the crash frequency at signalized intersections, including total entering ADT 

(Abdel-Aty and Wang, 2006; Chin and Quddus, 2003; Guo et al., 2010; Poch and Mannering, 

1996), right-turn ADT (Chin and Quddus, 2003; Poch and Mannering, 1996), left-turn ADT (Poch 

and Mannering, 1996), total ADT on major road (Dong et al., 2014; Wang et al., 2009), total ADT 

on minor road (Dong et al., 2014; Wang et al., 2009), left-turn ADT on major road (Guo et al., 

2010), through ADT on minor road (Guo et al., 2010). However, Guo et al. (2010) found that the 

through ADT on major road and the left-turn ADT on minor road are significantly negatively 

                                                 
2 This chapter has been published in Accident Analysis & Prevention (https://doi.org/10.1016/j.aap.2018.07.031) 
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associated with the crash frequency at signalized intersections. Moreover, Wang et al. (2009) 

investigated the relationship between LOS and safety at signalized intersections. They found that 

LOS D is a desirable level which is associated with less total crashes, rear-end and sideswipe 

crashes, as well as right-angle and left-turn crashes. Xie et al. (2013) investigated the safety effect 

of corridor-level travel speed, they found that the high-speed corridor may results in more crashes 

at the signalized intersections. Similarly, the speed limit of the corridor was found to be 

significantly positively correlated with the crash frequency of the signalized intersections (Abdel-

Aty and Wang, 2006; Dong et al., 2014; Guo et al., 2010; Poch and Mannering, 1996; Wang et al., 

2009). 

With respect to the geometric design, number of lanes, median width, and intersection sight 

distance et al. were found to have significant effects on the crash frequency of signalized 

intersections. More specifically, the number of lanes was found to be positively correlated with 

the crash frequency of signalized intersections (Abdel-Aty and Wang, 2006; Dong et al., 2014; 

Guo et al., 2010; Poch and Mannering, 1996). Median width and intersection sight distance was 

also found to have positive effect on the crash frequency(Chin and Quddus, 2003). Moreover, 

Abdel-Aty and Wang (2006) found that the existence of exclusive right-turn lanes could 

significantly decrease the crash frequency. 

In terms of signal control characteristics, the adaptive signal control was found to have significant 

lower crash frequency than the pre-timed signal control (Chin and Quddus, 2003). The number of 

phases was found to be positively associated with the crash frequency of signalized intersections 

(Chin and Quddus, 2003; Poch and Mannering, 1996; Xie et al., 2013). The left-turn protection 

could significantly improve the safety performance of the signalized interaction (Abdel-Aty and 

Wang, 2006; Chin and Quddus, 2003; Poch and Mannering, 1996). However, Abdel-Aty and 
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Wang (2006) found that the left-turn protection on minor roadway tends to increase the crash 

frequency of signalized intersection. Surprisingly, Guo et al. (2010) found that the coordinated 

intersections are more unsafe than the isolated ones. They explained it as the travel speed is higher 

for coordinated intersections because of the green wave, which may result in more crashes. 

However, these studies were conducted based on static and highly aggregated data (e.g., Annual 

Average Daily Traffic (AADT), annual crash frequency). These aggregated data limit the 

reliability of the findings simply because they are averages and cannot reflect the real conditions 

at the time of crash occurrence. With the rapid development of traffic surveillance system and 

detection technologies, real-time traffic data are not only available on freeways and expressways 

but also on urban arterials (including road segments and intersections). During the past decade, an 

increasing number of studies have investigated the crash likelihood on freeways by using real-time 

traffic and weather data (Abdel-Aty et al., 2004; Abdel-Aty et al., 2012; Ahmed et al., 2012a; 

Basso et al., 2018; Lee et al., 2003; Oh et al., 2001; Theofilatos et al., 2018a; Xu et al., 2013a; Xu 

et al., 2013b; Yu and Abdel-Aty, 2014; Yu et al., 2014; Zheng et al., 2010). It is worth noting that 

Theofilatos et al. (2018a) investigated crash occurrence by utilizing real-time traffic data while 

considering that the number of crashes is very few, and they could be considered as rare events. In 

this context, they compared the model results of different crash to non-crash ratio (1:10 and full 

sample of non-crash events) by using two different statistical models (bias correction and firth 

model), respectively. It was found that the two methods have different advantages and 

disadvantages, and the choice of the most appropriate method depends on several criteria. Also, 

Basso et al. (2018) developed real-time crash prediction model for urban expressway based on the 

original unbalanced data, rather than artificially balanced data by using Synthetic Minority Over-
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sampling Technique (SMOTE). They claimed that their model performance is among the best in 

the literature. 

However, little research has been conducted on the real-time safety of urban arterials (Theofilatos, 

2017; Theofilatos et al., 2017; Yuan et al., 2018a), especially signalized intersections (Mussone et 

al., 2017). Mussone et al. (2017) examined the factors which may affect the crash severity level at 

intersection based on real-time traffic flow and environmental characteristics, and they found that 

the real-time traffic flow characteristics have a relevant role in predicting crash severity. However, 

they didn’t consider the crash likelihood at intersections, which means that the effects of real-time 

traffic flow and environmental characteristics on the crash likelihood at intersections are still 

unclear. 

Moreover, the conflicting traffic movements at signalized intersection are temporally separated by 

traffic signals. Therefore, signal timing plays a very important role in the intersection safety, 

especially when the adaptive signal control technology was widely adopted on major urban 

arterials. Adaptive signal control technology optimize signal timing plans in real-time, it was found 

to have significant effects in reducing stops and delays (Khattak et al., 2018a) and improving traffic 

safety (Chin and Quddus, 2003; Khattak et al., 2018b). However, the safety effect of real-time 

signal status has never been considered, while improper signal timing may result in dangerous 

situation. Therefore, the relationship between real-time signal timing and intersection safety need 

to be further investigated. 

On the other hand, with the rapid development of connected vehicle technologies in recent years, 

it is feasible for us to implement efficient proactive traffic management strategies at intersections, 

e.g., dynamic message sign (DMS) to show the real-time crash risk for the downstream 
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intersections, and vehicle-level optimal speed advisory through vehicle-to-infrastructure (V2I) 

communication (Yue et al., 2018). In this context, an efficient and reliable real-time crash risk 

predictive algorithm for intersections is required. However, traditional intersection safety analyses 

were usually conducted by modeling historical crash frequency with geometric, AADT, and static 

signal control characteristics, which ignore the impacts of real-time traffic environment (e.g., 

traffic and weather) when crashes occur.  

To the best of the authors’ knowledge, there have been no studies done on the real-time crash risk 

at signalized intersections. To bridge this gap, this study aims to investigate the relationship 

between crash likelihood at signalized intersections and real-time traffic, signal timing, and 

weather characteristics by utilizing data from multiple sources, i.e., Bluetooth, weather, and 

adaptive signal control datasets. 

4.2 Data Preparation 

There are 23 intersections chosen from four urban arterials in Orlando, Florida, as shown in Figure 

4-1. A total of four datasets were used: (1) crash data from March, 2017 to March, 2018 provided 

by Signal Four Analytics (S4A); (2) travel speed data collected by 23 IterisVelocity Bluetooth 

detectors installed at 23 intersections; (3) signal timing and 15-minute interval traffic volume 

provided by 23 adaptive signal controllers; (4) weather characteristics collected by the nearest 

airport weather station. 



 

55 

 

 

Figure 4-1: Layout of Selected Intersections 

S4A provides detailed crash information, including crash time, coordinates, severity, type, weather 

condition, etc. In terms of the crash time information, there are three kinds of time information for 

each crash, i.e. time of crash occurrence, time reported, and time dispatched. Only the time of crash 

occurrence was utilized in this study, and the difference between this recorded crash time and the 

actual crash time is supposed to be within 5 minutes since there exist several efficient and accurate 

technologies for the police officer to identify the accurate time of crash occurrence, e.g. closed-

circuit television cameras and mobile phones. 

First, all crashes occurred at intersection or influenced by intersection (within 250 feet of 

intersection) from March 2017 to March 2018 were collected. Second, all the single-vehicle 

crashes and the crashes under the influence of alcohol and drugs were excluded, since these kinds 
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of crashes are usually not attributed to the real-time traffic and signal characteristics which are the 

focus of this study. After that, a total of 803 crashes remained and these crashes were divided into 

three types based on their location, which are within intersection area, intersection entrance area, 

and intersection exit area, as shown in Figure 4-2. There are 446 (55.54%) crashes that had 

occurred within intersection, 264 (32.88%) crashes that had occurred in the intersection entrance 

area, and 93 (11.58%) crashes that had occurred in the intersection exit area. In terms of the sample 

size, only within intersection crashes and intersection entrance crashes were utilized in this study. 

 

Figure 4-2: Illustration of Three Types of Intersection Crash Location 

Before collecting the real-time traffic and signal timing variables for each crash, two preprocess 

steps were conducted: First, identify the at-fault vehicle travel direction for each crash based on 

the attribute of “Crash Type Direction”, and then rename the approach of at-fault vehicle as “A” 

approach; Second, retrieve the travel direction of the other three approaches based on the 
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nomenclature in Figure 4-3, and then rename them as “B”, “C”, and “D” approaches, respectively. 

After this preprocessing, all the relationship between crash location and intersection approaches 

were consistent, i.e., the travel approach of at-fault vehicle for all crashes were named as “A” 

approach and all the other corresponding approaches were named as “B”, “C”, and “D” approaches 

according to the nomenclature. For the within intersection crash and non-crash events, the real-

time traffic and signal timing data were collected from four approaches, while for the intersection 

entrance crash and non-crash events, only the data from “A” approach were collected.  

 

Figure 4-3: The Nomenclature of the Four Approach (“A”, “B”, “C”, and “D”) 

Matched case-control design was employed in this study to explore the effects of traffic, signal, 

and weather-related variables while eliminating the effects of other confounding factors through 
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the design of study. For each crash, four confounding factors, i.e., intersection ID, crash location 

type (within intersection or intersection entrance), time of day, and day of week, were selected as 

matching factors. Therefore, a group of non-crash events could be identified by using these 

matching factors and then a specific number of non-crash events could be randomly selected from 

this group of non-crash events for every crash event. The number of non-crash events m 

corresponding to a crash event is preferred to be fixed in the entire analysis. As stated in Hosmer 

Jr et al. (2013), the value of m was commonly chosen from one to five. Moreover, Abdel-Aty et 

al. (2004) found that there is no significant difference when m changing from one to five. Therefore, 

the control-to-case ratio of 4:1 was adopted in this study, which is consistent with previous studies 

(Abdel-Aty et al., 2008; Ahmed and Abdel-Aty, 2013; Ahmed et al., 2012b; Ahmed and Abdel-

Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; Yu et al., 2016; Zheng et al., 2010). 

Consequently, 4 non-crash events from the same intersection, crash location type, time of day, and 

day of week were randomly selected for each crash event. Figure 4-4 shows an example of the 

matched case control design for the within intersection crash event. Besides, the non-crash events 

were selected only when there are no crashes occurring within 3 hours before or after the non-

crash event on the same location. 
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Independent Variables 

(Time period: 18:11~ 18:31, 10/13/17)

 (Location: intersection I)

1. Upstream speed characteristics of "A" approach;

2. Movement-specific volume from four approaches;

3. Signal timing characteristics from four approaches;

4. Maximum queue length and waiting time from four 

approaches;

5. Weather information.

Crash Location

A

B

C

D

Crash Event at Intersection I

10/13/17 18:31

Independent Variables 

(Time period: 18:11~ 18:31, 10/20/17)

 (Location: intersection I)

1. Upstream speed characteristics of "A" approach;

2. Movement-specific volume from four approaches;

3. Signal timing characteristics from four approaches;

4. Maximum queue length and waiting time from four 

approaches;

5. Weather information.

A

B

C

D

Matched Non-Crash Event at Intersection I

10/20/17 18:31

 

Figure 4-4: Illustration of Matched Case-Control Design for the Within-Intersection 

Crashes 

The real-time traffic and signal timing data for both crash and non-crash events were extracted for 

a period of 20 minutes (divided into four 5-minute time slices) prior to crash occurrence. For 

example, if a crash event 𝑖 occurred within intersection at 15:00, the corresponding traffic and 

signal timing data from 14:40 to 15:00 were extracted and named as time slice 4, 3, 2, and 1, 

respectively. As shown in Figure 4-5, the traffic and signal timing data collection for different 

crash location are different. For the within-intersection crashes, all the traffic and signal timing 

variables from four approaches were collected. However, for the intersection entrance crashes, 

data were collected only from the “A” approach. 
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Figure 4-5: Schematic Figure of Crash Location and Data Collection 

Speed data were provided by the 23 IterisVelocity Bluetooth detectors, which measure the space-

mean speed of a specific segment, as shown in Figure 4-6. Bluetooth detectors can only detect the 

vehicles equipped with Bluetooth device which is working at discoverable mode. The space-mean 

speed of each vehicle on a specific segment is calculated as the segment length divided by the 

travel time of each detected vehicle on the segment based on the detection data of two Bluetooth 

detectors located at the two contiguous intersections. In this study, speed data, including average 

speed and speed standard deviation, were only collected for the segment of “A” approach, which 

represents the traveling segment of the at-fault vehicle. Moreover, since all the Bluetooth detectors 

are installed on the major arterials, therefore, only the major approaches were provided with the 

real-time traffic speed data. In this context, all the intersection entrance crashes included in the 

final datasets were occurred on the major approach, and all the at-fault vehicles of the within 

intersection crashes were coming from the major approach. 
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MAC ID: 123AB

07:01:05

MAC ID: 123AB

07:03:35
MAC ID: 123AB

07:07:05

Travel Time = 150 seconds

Speed = 34 mph

Travel Time = 170 seconds

Speed = 40 mph

1.42 mile 1.89 mile

Central Server

 

Figure 4-6: Illustration of Bluetooth Data Collection 

Adaptive signal controllers archive the real-time signal timing and lane-specific 15-minute 

aggregate traffic volume data. The lane-specific 15-minute aggregated traffic volume data are 

collected by the video detectors, which are installed for the adaptive signal controller to detect the 

real-time volume, queue length and waiting time. Since the right-turn vehicles are unprotected at 

the intersection, the traffic volume data only include the through and left-turn vehicles. The traffic 

volume for each time slice (5-minute) was calculated based on the assumption that the traffic 

volume within 15-minute interval are evenly distributed. Moreover, the variation in traffic flow 

across lanes in the form of overall average flow ratio (OAFR) were considered in this study. The 

OAFR was proposed by Lee et al. (2006) to represent a surrogate measure of the lane change 

frequency within all lanes. The OAFR is calculated as the geometric mean of the modified average 

flow ratio (AFR) of all lanes, while the modified AFR is calculated as the ratio of the average flow 

in the adjacent lanes (𝑖 − 1, 𝑖 + 1) to the average flow in the subject lane (𝑖), as shown in Eq. 

( 4-1 ).  
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𝐴𝐹𝑅𝑖(𝑡) =

𝑉𝑖−1(𝑡)

𝑉𝑖(𝑡)
×

𝑁𝐿𝑖−1,𝑖(𝑡)

𝑁𝐿𝑖−1,𝑖(𝑡) + 𝑁𝐿𝑖−1,𝑖−2(𝑡)

+
𝑉𝑖+1(𝑡)

𝑉𝑖(𝑡)
×

𝑁𝐿𝑖+1,𝑖(𝑡)

𝑁𝐿𝑖+1,𝑖(𝑡) + 𝑁𝐿𝑖+1,𝑖+2(𝑡)
 

( 4-1 ) 

Where 𝑉𝑖(𝑡) is average flow in the subject lane 𝑖 during time interval 𝑡; 𝑉𝑖−1(𝑡) and 𝑉𝑖+1(𝑡) are 

the average flow in the adjacent lanes 𝑖 − 1  and 𝑖 + 1 , respectively during time interval 𝑡 ; 

𝑁𝐿𝑖−1,𝑖(𝑡) is the number of lane changes from lane 𝑖 − 1 to lane 𝑖, if lane 𝑖 − 1 exists, during time 

interval 𝑡 ; Similarly, 𝑁𝐿𝑖−1,𝑖−2(𝑡) , 𝑁𝐿𝑖+1,𝑖(𝑡) , and 𝑁𝐿𝑖+1,𝑖+2(𝑡)  represent the number of lane 

changes from lane 𝑖 − 1 to 𝑖 − 2, 𝑖 + 1 to 𝑖, and 𝑖 + 1 to 𝑖 + 2 during time interval 𝑡, respectively. 

Because the fractions of the number of lane change from lane 𝑖 − 1 to lane 𝑖 and 𝑖 − 2, as well as 

the fractions from lane 𝑖 + 1 to lane 𝑖 and 𝑖 + 2, were unknown in this study, they were assumed 

to be equal, which is in line with Lee et al. (2006).  

It is worth noting that the OAFR calculated by Lee et al. (2006) as the geometric mean of the 

modified average flow ratio (AFR) of all lanes is only appropriate for the segment with lane 

number greater than 3. If the total lane number is 2, the calculated OAFR will always be 0.5 

( √
𝑉1(𝑡)

𝑉2(𝑡)
× 0.5 ×

𝑉2(𝑡)

𝑉1(𝑡)
× 0.5

2
), no matter with the real flow variation between these two lanes. 

Therefore, the OAFR in this study was calculated as the arithmetic mean of the modified AFR 

(
1

𝑛
∑ 𝐴𝐹𝑅𝑖(𝑡)𝑛

𝑖=1 ). 

Three weather related variables (weather type, visibility, and hourly precipitation) were collected 

from the nearest airport weather station, which is located at the Orlando international airport (as 

shown in Figure 4-1). Since the weather data is not recorded continuously, once the 

weather condition changes and reaches a preset threshold, a new record will be added to the 
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archived data. Therefore, for each specific crash, based on the reported crash time, the closest 

weather record prior to the crash time has been extracted and used as the crash time weather 

condition, which is identical for four time slices. A cross table was made to validate the weather 

type information extracted from weather station and the weather condition recorded in the crash 

report, results indicated that the consistency ((True positive + True negative)/Total sample size) 

between weather station and crash report is around 92%. Therefore, all the weather information 

for both crash and non-crash events were extracted from the airport weather station data. 

After the above data collection process, the final dataset for the within intersection area includes 

470 observations (94 crash events and 376 non-crash events), while the final dataset for the 

intersection entrance area includes 425 observations (85 crash events and 340 non-crash events). 

The summary statistics of within intersection and intersection entrance datasets are as shown in 

Table 4-1 and Table 4-2, separately. 

 

Table 4-1: Summary of Variables Descriptive Statistics for the Within Intersection Area 

(Crash and Non-crash Events) 

Variable 
Time 

Slice 
Decription 

Crash Events Non-Crash Events 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Avg_speed 

1 
Average speed on the upstream 

segment of "A" approach within 

5-minute interval (mph) 

25.69 (9.52) (5.00, 45.57) 26.94 (10.42) (4.75, 54.00) 

2 27.8 (10.32) (6.20, 51.67) 27.11 (10.29) (6.50, 56.00) 

3 27.43 (10.32) (5.00, 52.00) 27.04 (10.37) (6.42, 53.00) 

4 26.9 (10.33) (5.50, 54.00) 27.10 (10.27) (4.60, 54.75) 

Std_speed 

1 Speed standard deviation  on the 

upstream segment of "A" 

approach within 5-minute interval 

(mph) 

10.59 (4.70) (0.00, 20.92) 9.83 (5.15) (0.00, 27.58) 

2 9.39 (4.69) (0.71, 21.21) 10.15 (5.34) (0.00, 36.77) 

3 10.05 (5.09) (0.00, 23.33) 10.14 (5.49) (0.00, 36.06) 

4 10.62 (5.26) (0.00, 22.19) 10.12 (5.34) (0.00, 26.87) 

A_Vol_LT 

1 

Left turn volume of "A" approach 

within 5-minute interval (vehicle) 

24.84 (24.14) (0.00, 133.67) 22.26 (22.48) (0.00, 186.00) 

2 24.44 (21.93) (0.00, 125.67) 21.99 (20.96) (0.00, 186.00) 

3 23.94 (20.84) (0.00, 125.67) 21.77 (19.67) (0.00, 177.67) 

4 24.50 (25.00) (0.00, 192.00) 22.24 (21.48) (0.00, 177.67) 

A_Vol_Th 

1 

Through volume of "A" approach 

within 5-minute interval (vehicle) 

112.30 (50.86) (0.00, 298.33) 106.09 (54.43) (0.00, 481.33) 

2 113.73 (49.08) (0.00, 298.33) 106.24 (51.07) (0.00, 404.00) 

3 109.82 (48.26) (0.00, 259.33) 104.89 (50.61) (0.00, 369.80) 

4 113.65 (63.11) (0.00, 416.00) 105.79 (54.53) (0.00, 405.33) 

A_OAFR 

1 

Overall average flow ratio of "A" 

approach within 5-minute interval 

1.33 (1.22) (0.94, 11.29) 1.40 (2.25) (0.94, 38.88) 

2 1.48 (1.79) (0.95, 11.29) 1.56 (3.09) (0.94, 37.27) 

3 1.69 (3.26) (0.94, 29.42) 1.58 (2.7) (0.94, 30.28) 

4 1.75 (3.38) (0.94, 29.42) 1.54 (2.64) (0.94, 30.28) 
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Variable 
Time 

Slice 
Decription 

Crash Events Non-Crash Events 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

A_LT_GreenRatio 

1 
Ratio of left turn green time on 

"A" approach within 5-minute 

interval  

0.14 (0.07) (0.02, 0.35) 0.14 (0.08) (0.02, 0.45) 

2 0.14 (0.07) (0.03, 0.31) 0.14 (0.08) (0.02, 0.41) 

3 0.14 (0.07) (0.03, 0.36) 0.14 (0.07) (0.02, 0.36) 

4 0.14 (0.08) (0.02, 0.36) 0.14 (0.08) (0.01, 0.40) 

A_LT_Avg_Green 

1 
Average length of left turn green 

phase on "A" approach within 5-

minute interval (second) 

18.41 (9.49) (4.00, 46.00) 18.45 (9.74) (2.50, 50.00) 

2 18.82 (9.16) (6.40, 41.00) 18.86 (10.67) (2.00, 67.00) 

3 18.26 (10.05) (4.50, 57.00) 18.34 (9.61) (4.00, 61.00) 

4 17.74 (9.18) (3.50, 47.00) 18.55 (9.66) (2.00, 64.00) 

A_LT_Std_Green 

1 Standard deviation of the length of 

left turn green phase on "A" 

approach within 5-minute interval 

(second) 

5.90 (6.34) (0.00, 40.20) 5.90 (5.9) (0.00, 31.11) 

2 5.91 (5.64) (0.00, 36.77) 5.13 (5.24) (0.00, 34.65) 

3 6.52 (6.14) (0.00, 26.87) 6.69 (6.52) (0.00, 43.84) 

4 5.28 (4.71) (0.00, 21.21) 6.32 (5.62) (0.00, 31.11) 

A_LT_Avg_Queue 

1 
Average left turn queue length at 

the beginning of left turn green 

phase on "A" approach (vehicle) 

8.39 (6.54) (1.00, 33.33) 8.90 (7.40) (0.00, 47.00) 

2 8.56 (6.07) (0.75, 33.33) 8.74 (7.03) (0.00, 46.00) 

3 9.58 (7.84) (0.33, 40.00) 8.59 (6.70) (0.00, 45.00) 

4 9.03 (7.34) (0.00, 40.00) 9.10 (7.46) (0.00, 45.00) 

A_LT_Avg_Wait 

1 Average left turn maximum 

waiting time at the beginning of 

left turn green phase on "A" 

approach (vehicle) 

94.69 (45.35) (0.50, 167.50) 97.25 (48.07) (0.00, 266.00) 

2 95.16 (45.79) (0.50, 179.00) 97.96 (49.07) (0.00, 241.00) 

3 96.72 (51.78) (0.40, 279.00) 97.71 (49.14) (0.00, 246.5) 

4 98.59 (48.58) (2.50, 169.50) 95.96 (49.48) (0.00, 284.00) 

A_TH_GreenRatio 

1 
Ratio of through green time on 

"A" approach within 5-minute 

interval  

0.45 (0.16) (0.14, 0.86) 0.44 (0.16) (0.07, 0.88) 

2 0.44 (0.15) (0.15, 0.85) 0.44 (0.16) (0.06, 0.92) 

3 0.44 (0.16) (0.15, 0.85) 0.43 (0.16) (0.12, 0.84) 

4 0.43 (0.16) (0.11, 0.90) 0.43 (0.17) (0.08, 0.89) 

A_TH_Avg_Green 

1 
Average length of through green 

phase on "A" approach within 5-

minute interval (second) 

28.88 (17.99) (11.2, 105.00) 29.42 (19.58) (9.64, 128.00) 

2 28.66 (17.97) (9.05, 105.50) 29.47 (21.6) (7.00, 137.5) 

3 28.67 (19.75) (11.29, 105.50) 29.32 (20.65) (8.89, 122.00) 

4 28.11 (17.23) (8.00, 82.50) 29.09 (19.68) (9.33, 133.00) 

A_TH_Std_Green 

1 Standard deviation of the length of 

through green phase on "A" 

approach within 5-minute interval 

(second) 

18.26 (12.76) (0.00, 60.25) 18.78 (13.9) (0.00, 99.51) 

2 18.21 (11.60) (0.00, 51.04) 18.24 (13.27) (0.00, 89.8) 

3 18.12 (12.50) (0.00, 60.09) 18.19 (12.3) (0.00, 68.14) 

4 20.04 (14.57) (0.00, 64.55) 18.81 (15.05) (0.00, 164.05) 

A_TH_Avg_Queue 

1 
Average through queue length at 

the beginning of through green 

phase on "A" approach (vehicle) 

12.55 (8.97) (2.08, 40.00) 12.54 (8.84) (0.8, 54.00) 

2 11.94 (8.59) (2.00, 40.00) 12.77 (9.14) (0.00, 57.00) 

3 12.40 (8.84) (1.50, 40.00) 12.87 (9.13) (0.33, 57.00) 

4 12.09 (8.71) (2.00, 40.00) 12.82 (9.32) (1.27, 62.00) 

A_TH_Avg_Wait 

1 Average through maximum 

waiting time at the beginning of 

through green phase on "A" 

approach (vehicle) 

36.49 (25.78) (1.29, 135.50) 36.10 (27.68) (0.00, 142.00) 

2 35.48 (24.94) (1.67, 135.50) 36.21 (28.37) (0.00, 175) 

3 36.56 (24.12) (0.00, 135.50) 37.06 (28.17) (0.00, 192.5) 

4 36.41 (25.49) (4.2, 135.00) 37.27 (29.67) (0.00, 213.00) 

HourlyPrecip - Hourly precipitation (1/10 inch) 0.03 (0.10) (0.00, 0.70) 0.09 (0.65) (0.00, 8.00) 

Visibility - Visibility (mile) 9.86 (0.68) (5.00, 10.00) 9.64 (1.51) (0.00, 10.00) 

WeatherType - 
Weather type: 0 for normal and 1 

for adverse weather 
0.11 (0.31) (0.00, 1.00) 0.09 (0.28) (0.00, 1.00) 

Note: due to the limitation of table content, this table only list the “A” approach data. However, the within intersection 

dataset including the data from four approaches. 
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Table 4-2: Summary of Variables Descriptive Statistics for the Intersection Entrance Area 

(Crash and Non-crash Events) 

Variable 
Time 

Slice 
Decription 

Crash Events Non-Crash Events 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Avg_speed 

1 
Average speed on the upstream 

segment of "A" approach within 

5-minute interval (mph) 

25.61 (8.63) (7.75, 42.00) 26.77 (9.44) (5.33, 53.50) 

2 27.16 (9.66) (5, 45.17) 26.77 (9.24) (4.83, 56.50) 

3 27.24 (9.88) (4.75, 50.33) 27.35 (10.05) (5.17, 55.14) 

4 26.94 (8.82) (4.00, 47.67) 27.09 (10.11) (6.00, 57.50) 

Std_speed 

1 Speed standard deviation  on the 

upstream segment of "A" 

approach within 5-minute interval 

(mph) 

10.49 (4.96) (0.00, 25.36) 11.02 (5.06) (0.00, 28.28) 

2 11.28 (5.04) (0.53, 24.02) 11.03 (5.14) (0.58, 31.11) 

3 11.06 (4.9) (0.96, 24.75) 10.61 (4.81) (0.58, 25.46) 

4 11.72 (4.75) (0.00, 23.83) 10.86 (4.88) (0.00, 29.70) 

A_Vol_LT 

1 

Left turn volume of "A" approach 

within 5-minute interval (vehicle) 

16.46 (12.31) (0.00, 55.67) 18.30 (13.68) (0.00, 101.33) 

2 16.24 (12.00) (0.00, 55.67) 18.47 (13.81) (0.00, 101.33) 

3 16.14 (11.54) (0.00, 55.67) 18.09 (13.41) (0.00, 92.93) 

4 15.74 (10.36) (0.00, 46.00) 17.84 (13.08) (0.00, 80.33) 

A_Vol_Th 

1 

Through volume of "A" approach 

within 5-minute interval (vehicle) 

108.67 (64.00) (0.00, 343.33) 107.18 (62.64) (0.00, 614.33) 

2 108.49 (63.69) (0.00, 343.33) 107.28 (61.21) (0.00, 614.33) 

3 108.28 (64.13) (0.00, 309.53) 106.2 (55.34) (0.00, 360.00) 

4 108.1 (63.94) (0.00, 328.33) 105.98 (55.48) (0.00, 360.00) 

A_OAFR 

1 

Overall average flow ratio of "A" 

approach within 5-minute interval 

1.74 (3.23) (0.95, 21.56) 1.61 (3.26) (0.94, 36.04) 

2 1.94 (3.63) (0.95, 21.56) 1.64 (3.32) (0.94, 32.95) 

3 1.77 (3.07) (0.95, 21.56) 1.65 (3.3) (0.94, 32.95) 

4 1.51 (2.03) (0.95, 16.68) 1.65 (3.67) (0.95, 43.45) 

A_LT_GreenRatio 

1 
Ratio of left turn green time on 

"A" approach within 5-minute 

interval  

0.13 (0.07) (0.03, 0.33) 0.13 (0.06) (0.02, 0.36) 

2 0.12 (0.06) (0.03, 0.31) 0.12 (0.06) (0.02, 0.39) 

3 0.13 (0.07) (0.03, 0.36) 0.13 (0.07) (0.02, 0.37) 

4 0.12 (0.06) (0.00, 0.26) 0.13 (0.07) (0.01, 0.35) 

A_LT_Avg_Green 

1 
Average length of left turn green 

phase on "A" approach within 5-

minute interval (second) 

18.41 (9.44) (4.00, 44.50) 18.27 (9.42) (3.00, 68.00) 

2 15.88 (7.53) (5.00, 39.00) 17.46 (8.07) (4.50, 50.00) 

3 17.82 (9.58) (5.00, 60.00) 18.02 (8.75) (5.00, 48.50) 

4 16.39 (7.76) (1.00, 39.00) 18.21 (8.91) (3.00, 46.00) 

A_LT_Std_Green 

1 Standard deviation of the length of 

left turn green phase on "A" 

approach within 5-minute interval 

(second) 

4.17 (4.86) (0.00, 18.50) 4.92 (4.86) (0.00, 33.94) 

2 5.54 (5.02) (0.00, 23.52) 6.17 (6.40) (0.00, 31.82) 

3 5.61 (5.41) (0.00, 24.04) 5.47 (5.11) (0.00, 24.75) 

4 4.92 (4.90) (0.00, 23.33) 5.09 (5.10) (0.00, 22.63) 

A_LT_Avg_Queue 

1 
Average left turn queue length at 

the beginning of left turn green 

phase on "A" approach (vehicle) 

8.53 (6.03) (1.00, 31.00) 8.69 (6.51) (0.00, 37.00) 

2 7.92 (5.74) (0.33, 31.00) 8.73 (6.71) (0.00, 37.00) 

3 8.00 (6.30) (0.75, 35.00) 8.18 (6.23) (0.00, 37.50) 

4 7.81 (5.64) (1.00, 34.00) 8.09 (6.28) (0.00, 38.00) 

A_LT_Avg_Wait 

1 Average left turn maximum 

waiting time at the beginning of 

left turn green phase on "A" 

approach (vehicle) 

102.36 (45.84) (10.00, 178.00) 101.86 (46.77) (0.00, 291.00) 

2 95.15 (46.45) (4.67, 169.00) 103.11 (45.32) (0.00, 185.5) 

3 96.13 (45.44) (4.25, 188.00) 101.72 (42.78) (0.00, 202.00) 

4 97.65 (43.31) (5.50, 170.50) 100.31 (43.37) (0.00, 182.00) 

A_TH_GreenRatio 

1 
Ratio of through green time on 

"A" approach within 5-minute 

interval  

0.44 (0.17) (0.08, 0.84) 0.44 (0.18) (0.11, 0.89) 

2 0.43 (0.18) (0.12, 0.80) 0.44 (0.20) (0.08, 1.00) 

3 0.44 (0.19) (0.15, 0.83) 0.44 (0.19) (0.09, 0.93) 

4 0.45 (0.18) (0.08, 0.87) 0.45 (0.18) (0.11, 0.86) 

A_TH_Avg_Green 

1 
Average length of through green 

phase on "A" approach within 5-

minute interval (second) 

31.24 (22.11) (10.13, 126.00) 29.57 (19.91) (9.13, 134.00) 

2 30.71 (19.41) (12.00, 105.50) 31.07 (24.07) (7.00, 137.5) 

3 29.49 (21.13) (11.3, 123.00) 28.93 (17.72) (8.75, 132.00) 

4 29.32 (20.97) (9.29, 131.00) 30.28 (21.35) (10.00, 126.00) 

A_TH_Std_Green 

1 Standard deviation of the length of 

through green phase on "A" 

approach within 5-minute interval 

(second) 

21.76 (21.10) (0.00, 164.05) 21.04 (15.51) (0.00, 148.49) 

2 21.74 (14.01) (0.00, 63.52) 22.77 (21.03) (0.00, 183.14) 

3 18.84 (14.12) (0.00, 63.02) 20.30 (15.06) (0.00, 74.08) 

4 18.57 (13.67) (0.71, 58.29) 20.65 (15.73) (0.00, 128.69) 
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Variable 
Time 

Slice 
Decription 

Crash Events Non-Crash Events 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

A_TH_Avg_Queue 

1 
Average through queue length at 

the beginning of through green 

phase on "A" approach (vehicle) 

15.41 (10.82) (2.00, 72.00) 12.78 (9.77) (1.33, 99.00) 

2 14.84 (10.49) (0.00, 72.00) 12.83 (9.91) (1.33, 99.00) 

3 13.60 (10.38) (2.50, 74.50) 12.56 (9.87) (1.31, 99.00) 

4 13.08 (10.43) (1.45, 77.00) 12.61 (9.95) (1.43, 99.00) 

A_TH_Avg_Wait 

1 Average through maximum 

waiting time at the beginning of 

through green phase on "A" 

approach (vehicle) 

41.74 (31.75) (1.60, 155.00) 38.92 (29.42) (0.00, 140.00) 

2 44.37 (33.46) (0.00, 144.00) 39.10 (31.11) (0.00, 171.00) 

3 39 (32.30) (2.25, 143.00) 38.53 (30.57) (0.50, 156.00) 

4 37.38 (32.27) (0.33, 148.50) 38.03 (30.30) (0.00, 156.00) 

HourlyPrecip - Hourly precipitation (1/10 inch) 0.06 (0.41) (0.00, 3.70) 0.11 (0.71) (0.00, 6.90) 

Visibility - Visibility (mile) 9.76 (0.92) (5.00, 10.00) 9.62 (1.56) (0.00, 10.00) 

WeatherType - 
Weather type: 0 for normal and 1 

for adverse weather 
0.09 (0.29) (0.00, 1.00) 0.10 (0.30) (0.00, 1.00) 

 

In order to achieve a preliminary understanding about the difference between crash and non-crash 

events, the variable of average speed was selected as an example and the probability density 

distributions were presented in Figure 4-7 (within intersection) and Figure 4-8 (intersection 

entrance). Both Figure 4-7 and Figure 4-8 indicate that the distribution of average speed before 

crash events are more likely to be wide-spread than non-crash events, especially during the 5-10 

minute interval. This means that the traffic condition before crash event tends to be more diverse 

than non-crash events, which is consistent with Theofilatos et al. (2018a). 
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Figure 4-7: Distribution of the Average Speed between Crash and Non-Crash Events 

among Four Time Slices (Within Intersection). 

 

Figure 4-8: Distribution of the Average Speed between Crash and Non-Crash Events 

among Four Time Slices (Intersection Entrance). 

 

Since the intersection characteristics between different approaches are highly interactive, it is very 

likely that some of the independent variables are highly correlated. Therefore, two sample 

correlation matrix for within intersection and intersection entrance datasets, as shown in Figure 

4-9 and Figure 4-10, were generated to identify and exclude highly correlated variables. 
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Figure 4-9: Variable Correlation Plot of the Within Intersection Dataset (time-slice 1) 
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Figure 4-10: Variable Correlation Plot of the Intersection Entrance Dataset (time-slice 1) 

 

The threshold of 0.6 was utilized for the linear Pearson correlation analysis to identify the highly-

correlated variables, which is in line with previous research (Kobelo et al., 2008). Moreover, with 

respect to the nonlinear correlation, one of the mutual information based measures, maximal 

information coefficient (MIC) was also employed to identify the nonlinear association between 

two variables (Albanese et al., 2018). As suggested by Albanese et al. (2018), the threshold of MIC 

was chosen to be 0.7. Above all, the highly correlated pairs of variables were selected based on 

two criteria: the Pearson correlation coefficient is greater than 0.6 or the MIC is greater than 0.7.  
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Take the time slice 1 dataset for the within intersection crashes as an example, there are 57 

independent variables, which could result in 1596 (
57!

2!(57−2)!
) pairs of variables. The results of 

correlation analysis indicate that 45 pairs of highly correlated variables were identified and 

presented in Table 4-3.
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Table 4-3: The Highly Correlated Variables for the Within Intersection Dataset (Time Slice 1) 

Variables 
Pearson Correlation 

Coefficient 

Maximal Information 

Coefficient (MIC) 

A_LT_GreenRatio_0_5 A_LT_Avg_Green_0_5 0.736663 0.480014 

A_TH_GreenRatio_0_5 A_TH_Std_Green_0_5 0.610484 0.37036 

A_TH_GreenRatio_0_5 B_LT_Avg_Wait_0_5 -0.618134 0.433272 

A_TH_GreenRatio_0_5 C_TH_GreenRatio_0_5 0.718776 0.384575 

A_TH_GreenRatio_0_5 C_TH_Avg_Green_0_5 0.622481 0.312943 

A_TH_GreenRatio_0_5 D_LT_Avg_Wait_0_5 -0.60694 0.399255 

A_TH_GreenRatio_0_5 D_TH_GreenRatio_0_5 -0.607984 0.333878 

A_TH_Avg_Green_0_5 C_TH_GreenRatio_0_5 0.676753 0.398096 

A_TH_Avg_Green_0_5 C_TH_Avg_Green_0_5 0.705255 0.534972 

A_TH_Avg_Green_0_5 C_TH_Std_Green_0_5 0.673996 0.533665 

A_TH_Std_Green_0_5 C_TH_GreenRatio_0_5 0.65504 0.494755 

A_TH_Std_Green_0_5 C_TH_Avg_Green_0_5 0.608811 0.479297 

A_TH_Std_Green_0_5 C_TH_Std_Green_0_5 0.7133 0.538673 

A_TH_Avg_Queue_0_5 A_TH_Avg_Wait_0_5 0.6426 0.364688 

B_Vol_LT_0_5 B_LT_GreenRatio_0_5 0.581439 0.709964 

B_Vol_LT_0_5 B_LT_Avg_Green_0_5 0.617656 0.709964 

B_Vol_LT_0_5 B_LT_Avg_Queue_0_5 0.537864 0.743575 

B_Vol_LT_0_5 B_LT_Avg_Wait_0_5 0.443236 0.727099 

B_Vol_Th_0_5 D_LT_Avg_Wait_0_5 0.612108 0.421989 

B_LT_GreenRatio_0_5 B_LT_Avg_Green_0_5 0.887087 0.974562 

B_LT_GreenRatio_0_5 B_LT_Std_Green_0_5 0.692994 0.746113 

B_LT_GreenRatio_0_5 B_LT_Avg_Queue_0_5 0.629947 0.957971 

B_LT_GreenRatio_0_5 B_LT_Avg_Wait_0_5 0.596116 0.957971 

B_LT_Avg_Green_0_5 B_LT_Std_Green_0_5 0.553333 0.716639 

B_LT_Avg_Green_0_5 B_LT_Avg_Queue_0_5 0.632579 0.960151 

B_LT_Avg_Green_0_5 B_LT_Avg_Wait_0_5 0.752837 0.960151 

B_LT_Avg_Queue_0_5 B_LT_Avg_Wait_0_5 0.574885 0.976834 

B_LT_Avg_Queue_0_5 D_LT_Avg_Queue_0_5 0.325929 0.71544 

B_LT_Avg_Queue_0_5 D_LT_Avg_Wait_0_5 0.406182 0.71544 

B_LT_Avg_Wait_0_5 D_LT_Avg_Queue_0_5 0.400766 0.708458 

B_LT_Avg_Wait_0_5 D_LT_Avg_Wait_0_5 0.649914 0.669127 

B_TH_GreenRatio_0_5 D_TH_GreenRatio_0_5 0.831784 0.625065 

C_LT_GreenRatio_0_5 C_LT_Avg_Green_0_5 0.721476 0.557538 

C_TH_GreenRatio_0_5 C_TH_Std_Green_0_5 0.695453 0.432222 

D_Vol_LT_0_5 D_LT_GreenRatio_0_5 0.618642 0.837144 

D_Vol_LT_0_5 D_LT_Avg_Green_0_5 0.634303 0.838908 

D_Vol_LT_0_5 D_LT_Avg_Queue_0_5 0.68267 0.890338 

D_Vol_LT_0_5 D_LT_Avg_Wait_0_5 0.521591 0.887042 

D_LT_GreenRatio_0_5 D_LT_Avg_Green_0_5 0.821751 0.965754 

D_LT_GreenRatio_0_5 D_LT_Std_Green_0_5 0.69115 0.728799 

D_LT_GreenRatio_0_5 D_LT_Avg_Queue_0_5 0.657098 0.922204 

D_LT_GreenRatio_0_5 D_LT_Avg_Wait_0_5 0.601375 0.922204 

D_LT_Avg_Green_0_5 D_LT_Avg_Queue_0_5 0.567144 0.913977 

D_LT_Avg_Green_0_5 D_LT_Avg_Wait_0_5 0.788658 0.913977 

D_LT_Avg_Queue_0_5 D_LT_Avg_Wait_0_5 0.57161 0.975712 

 

With respect to those pairs of variables which have higher nonlinear correlation coefficients (MIC) 

but lower linear Pearson correlation coefficients (rows marked in grey in Table 4-3), a scatterplot 

matrix was generated to further illustrate the nonlinear association between those pairs of variables 
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(Figure 4-11). 

 

Figure 4-11: Scatterplot Matrix for those Variables which are Nonlinear Associated 
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4.3 Methodology 

Suppose that there are N strata with 1 crash (𝑦𝑖𝑗=1) and m non-crash cases (𝑦𝑖𝑗=0) in stratum i, 

i=1, 2, …, N. Let 𝑝𝑖𝑗 be the probability that the jth observation in the ith stratum is a crash; j=0, 1, 

2, …, m. This crash probability could be expressed as: 

 𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) ( 4-2 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝑖 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + ⋯ + 𝛽𝑘𝑋𝑘𝑖𝑗 ( 4-3 ) 

Where 𝛼𝑖 is the intercept term for the ith stratum; 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑘) is the vector of regression 

coefficients for k independent variables. 

In order to take the stratification in the analysis of the observed data, the stratum-specific intercept 

𝛼𝑖 is considered to be nuisance parameters, and the conditional likelihood for the ith stratum would 

be expressed as (Hosmer Jr et al., 2013): 

 
𝑙𝑖(𝜷) =

exp (∑ 𝛽𝑢𝑋𝑢𝑖0
𝑘
𝑢=1 )

∑ exp (∑ 𝛽𝑢𝑋𝑢𝑖𝑗
𝑘
𝑢=1 )𝑚

𝑗=0

 
( 4-4 ) 

And the full conditional likelihood is the product of the 𝑙𝑖(𝛽) over N strata, 

 

𝐿(𝜷) = ∏ 𝑙𝑖(𝜷)

𝑁

𝑖=1

 ( 4-5 ) 

Since the full conditional likelihood is independent of stratum-specific intercept 𝛼𝑖, thus Eq. ( 4-3 ) 

cannot be used to estimate the crash probabilities. However, the estimated 𝜷 coefficients are the 

log-odd ratios of corresponding variables and can be used to approximate the relative risk of an 

event. Furthermore, the log-odds ratios can also be used to develop a prediction model under this 

matched case-control analysis. Suppose two observation vectors 𝑿𝒊𝟏 = (𝑋1𝑖1, 𝑋2𝑖1, … , 𝑋𝐾𝑖1) and 
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𝑿𝒊𝟐 = (𝑋1𝑖2, 𝑋2𝑖2, … , 𝑋𝐾𝑖2)  from the ith strata, the odds ratio of crash occurrence caused by 

observation vector 𝑿𝒊𝟏 relative to observation vector 𝑿𝒊𝟐 could be calculated as: 

 𝑝𝑖1/(1 − 𝑝𝑖1)

𝑝𝑖2/(1 − 𝑝𝑖2)
= exp [∑ 𝛽𝑘(𝑋𝑘𝑖1

𝐾

𝑘=1

− 𝑋𝑘𝑖2)] ( 4-6 ) 

The right-hand side of Eq. ( 4-6 ) is independent of 𝛼𝑖 and can be calculated using the estimated 𝜷 

coefficients. Thus, the above relative odds ratio could be utilized for predicting crash occurrences 

by replacing 𝑿𝒊𝟐 with the vector of the independent variables in the ith stratum of non-crash events. 

One may use simple average of each variable for all non-crash observations within the stratum. 

Let 𝑿̅𝒊 = (𝑋̅1𝑖, 𝑋̅2𝑖, … , 𝑋̅𝐾𝑖) denote the vector of mean values of non-crash events of the k variables 

within the ith stratum. Then the odds ratio of a crash relative to the non-crash events in the ith 

stratum could be approximated by: 

 𝑝𝑖1/(1 − 𝑝𝑖1)

𝑝𝑖̅/(1 − 𝑝𝑖̅)
= exp [∑ 𝛽𝑘(𝑋𝑘𝑖1

𝐾

𝑘=1

− 𝑋̅𝑘𝑖)] ( 4-7 ) 

Full Bayesian inference was employed in this study. For each model, three chains of 20,000 

iterations were set up in WinBUGS (Lunn et al., 2000), the first 5,000 iterations were excluded as 

burn-in, the latter 15,000 stored iterations were set to estimate the posterior distribution. 

Convergence was evaluated using the built-in Brooks-Gelman-Rubin (BGR) diagnostic statistic 

(Brooks and Gelman, 1998). 

In terms of model goodness-of-fit, the AUC value which is the area under Receiver Operating 

Characteristic (ROC) curve was also adopted. The ROC curve illustrates the relationship between 

the true positive rate (sensitivity) and the false alarm rate (1–specificity) of model classification 

results based on a given threshold from 0 to 1. It is worth noting that the classification results of 
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Bayesian random parameters logistic model is based on the predicted crash probabilities, which 

lie in the range of 0 to 1, while the classification result of Bayesian conditional logistic model and 

Bayesian random parameters conditional logistic model are based on the predicted odds ratio, 

which may be larger than 1. In order to be consistent with the other two models, all the odds ratios 

predicted by Bayesian conditional logistic model were divided by the maximum odds ratio to 

create adjusted odds ratios. Later, the adjusted odds ratios were used to create the classification 

result based on different threshold from 0 to 1. In this study, AUC values were calculated using R 

package pROC (Robin et al., 2011). 

 

4.4 Model Results 

4.4.1 Within intersection crashes 

This section discusses the modeling results of the Bayesian conditional logistic models for the 

within intersection crashes based on the full dataset (four time slices) and different time slices 

datasets, respectively. Table 4-4 shows the results of within intersection model based on full 

dataset. In total, 14 variables were identified to be significant variables, including speed 

characteristics, signal timing, queue length, and waiting time related factors collected from 

different approaches and time slices.
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Table 4-4: Results of the Bayesian Conditional Logistic Model based on Full Dataset 

(Within Intersection). 

Variables 
Coefficient Estimation Odds Ratio 

Mean 95% BCI Mean 95% BCI 

Avg_speed_0_5 -0.038 (-0.07, -0.005)* 0.963 (0.932, 0.995)* 

Std_speed_0_5 0.066 (0.001, 0.131) 1.068 (1.001, 1.14) 

B_TH_Avg_Wait_0_5 0.013 (0.002, 0.024) 1.013 (1.002, 1.024) 

D_TH_Avg_Wait_0_5 0.016 (0.006, 0.026) 1.016 (1.006, 1.026) 

B_LT_Std_Green_5_10 -0.138 (-0.248, -0.04) 0.871 (0.78, 0.961) 

C_TH_Avg_Wait_5_10 0.017 (0.001, 0.032)* 1.017 (1.001, 1.033)* 

B_Vol_LT_10_15 0.029 (0.005, 0.054)* 1.029 (1.005, 1.055)* 

D_TH_Avg_Green_10_15 -0.059 (-0.103, -0.017) 0.943 (0.902, 0.983) 

A_LT_Avg_Green_15_20 -0.055 (-0.106, -0.006) 0.946 (0.899, 0.994) 

A_LT_Std_Green_15_20 -0.090 (-0.161, -0.019) 0.914 (0.851, 0.981) 

C_LT_Avg_Queue_15_20 -0.094 (-0.18, -0.013) 0.910 (0.835, 0.987) 

D_TH_GreenRatio_15_20 -0.088 (-0.175, -0.004) 0.916 (0.839, 0.996) 

D_TH_Std_Green_15_20 0.060 (0.004, 0.114) 1.062 (1.004, 1.121) 

D_TH_Avg_Queue_15_20 -0.067 (-0.13, -0.005) 0.935 (0.878, 0.995) 

AUC 0.7596 

Note: 95% BCI values marked in bold and noted by * indicate that these variables are significant at the 0.1 level, while other 

variables are significant at the 0.05 level. 

 

Considering that the traffic and signal characteristics during different time slice may have different 

relationship with the real-time crash risk. To investigate the differences between different time-

slice datasets, four separate time-slice models were developed based on four time slices, 

respectively. Table 4-5 shows the results of 4 time-slice models for the within intersection dataset. 

The model comparison results based on AUC values indicate that the slice 2 model performs the 
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best, followed by the slice 4 and slice 1 models. However, based on slice 1 model, there would be 

no spare time to implement any proactive traffic management strategy to prevent the possibility of 

crash occurrence. Moreover, as stated by Golob et al. (2004), there may exist 2.5 min difference 

between the exact crash time and reported crash time, thus the slice 1 model was treated as a 

reference. Finally, the slice 2 model was selected to conduct further interpretation.
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Table 4-5: Results of Bayesian Conditional Logistic Regression Models based on Different Time Slices (Within Intersection) 

Variables 

Slice 1 Slice 2 Slice 3 Slice 4 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Avg_speed 
-0.033  

(-0.063, -0.004)* 

0.968  

(0.939, 0.996)* 
- - - - - - 

Std_speed 
0.056  

(0.008, 0.101)* 

1.058  

(1.008, 1.106)* 
- - - - - - 

A_Vol_Th - - 
0.005  

(0.001, 0.011)* 

1.005  

(1.001, 1.011)* 
- - - - 

A_LT_Avg_Green - - - - - - 
-0.041  

(-0.08, -0.003)* 

0.96  

(0.923, 0.997)* 

A_LT_Std_Green - - - - - - 
-0.064  

(-0.131, -0.004) 

0.938  

(0.877, 0.996) 

B_Vol_LT 
0.034  

(0.009, 0.063) 

1.035  

(1.009, 1.065) 

0.039  

(0.011, 0.07) 

1.040  

(1.011, 1.073) 

0.031  

(0.005, 0.058) 

1.031  

(1.005, 1.06) 

0.036 

 (0.006, 0.066) 

1.037  

(1.006, 1.068) 

B_LT_Std_Green - - 
-0.106  

(-0.206, -0.017) 

0.899  

(0.814, 0.983) 
- - - - 

B_TH_Avg_Queue - - 
-0.046  

(-0.09, -0.005)* 

0.955  

(0.914, 0.995)* 
- - 

-0.052  

(-0.103, -0.008) 

0.949  

(0.902, 0.992) 

B_TH_Avg_Wait 
0.013  

(0.003, 0.022) 

1.013  

(1.003, 1.022) 
- - - - - - 

C_Vol_Th 
-0.006  

(-0.012, 0.000)* 

0.994  

(0.988, 1.000)* 
- - - - - - 

C_LT_Avg_Queue - - - - - - 
-0.076  

(-0.159, -0.003) 

0.927  

(0.853, 0.997) 

D_Vol_LT - - 
-0.036  

(-0.067, -0.004)* 

0.965  

(0.935, 0.996)* 
- - 

-0.039  

(-0.078, -0.004) 

0.962  

(0.925, 0.996) 

D_OAFR - - 
0.518  

(0.077, 0.978) 

1.679  

(1.08, 2.659) 
- - - - 

D_TH_GreenRatio - - - - - - 
-0.074  

(-0.145, -0.004) 

0.929  

(0.865, 0.996) 

D_TH_Avg_Green - - - - 
-0.057  

(-0.099, -0.019) 

0.945  

(0.906, 0.981) 
- - 

D_TH_Std_Green - - - - - - 
0.054  

(0.006, 0.103) 

1.055  

(1.006, 1.108) 

D_TH_Avg_Wait 
0.009  

(0.000, 0.017) 

1.009  

(1.000, 1.017) 

-0.011  

(-0.02, -0.002) 

0.989  

(0.98, 0.998) 

0.011 

 (0.001, 0.021) 

1.011  

(1.001, 1.021) 
- - 

AUC 0.6759 0.6927 0.6337 0.6858 

Note: Mean (95% BCI) values marked in bold are significant at the 0.05 level; Mean (95% BCI) values marked in bold and noted by * are significant at the 0.1 level.
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It is worth noting that the speed related variables were only found to be significant in slice 1 model, 

which might be explained as that the speed characteristics on the upstream segment only have 

short-term impacts on the within intersection crash occurrence, and relatively, these within 

intersection crashes are more likely to be influenced by the signal timing and traffic volume related 

variables. Based on the estimation results of slice 2 model, seven variables were found to be 

significantly associated with the crash risk within intersection area: (1) the positive coefficient 

(0.005) of “A_Vol_Th” indicates that higher through volume from “A” approach tends to increase 

the crash risk, which is consistent with previous aggregated intersection studies (Abdel-Aty and 

Wang, 2006; Chin and Quddus, 2003; Guo et al., 2010; Poch and Mannering, 1996) that higher 

exposure may results in more crashes. The odds ratio of 1.005 means that when other variables 

held constant, one-unit increase in the through volume from “A” approach would increase the odds 

of crash occurrence by 0.5%; (2) similarly, the left turn volume from “B” approach (B_Vol_LT) 

was also found to be positively correlated with the odds of crash occurrence. This could be 

explained in that higher left turn volume from “B” approach may results in more conflicts between 

the through vehicles from “A” approach and the left turn vehicle from “B” approach. The odds 

ratio of 1.04 means that when other variables held constant, one-unit increase in the left turn 

volume from “B” approach would increase the odds of crash occurrence by 4%; (3) 

“B_LT_Std_Green” was found to be negatively associated with the odds of crash occurrence 

within intersection, which means that higher standard deviation of the length of left turn phase on 

“B” approach could improve the safety performance of intersection. The possible reason is that 

when the left turn volume from “B” approach, as well as other variables held constant, the higher 

variation in the length of left turn phase on “B” approach indicates higher adaptability of the left 

turn phase, which indeed increase the safety performance of intersection; (4) “B_TH_Avg_Queue” 
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was found to have negative effect on the crash risk within intersection, which could be explained 

as that higher queue length on the through lanes of “B” approach may represent that more signal 

priority has been given to the “A” approach, which may reduce the exposed conflicting traffic flow 

between through vehicles from “A” and “B” approaches; (5) the negative coefficient (-0.036) of 

“D_Vol_LT” indicates that higher left turn volume from “D” approach tends to reduce the crash 

risk within intersection. The possible reason might be that more left turn vehicle from “D” 

approach may raise the awareness of those drivers from the “A” approach, which will therefore 

reduce the odds of crash occurrence. This is similar to the findings by Guo et al. (2010), which 

indicates that the left-turn ADT on minor road are significantly negatively associated with the 

crash frequency at signalized intersections; (6) higher “D_OAFR” tends to increase the odds of 

crash occurrence, which demonstrates that higher variation in traffic flow across through lanes on 

“D” approach tends to increase the crash risk within intersection. This could be potentially 

explained by that higher variation in traffic flow across through lanes on “D” approach may results 

in many lane change behavior occurring within the intersection, which will increase the complexity 

of traffic flow within intersection, as well as the odds of crash occurrence within intersection; (7) 

“D_TH_Avg_Wait” was found to be negatively correlated with the odds of crash occurrence 

within the intersection. This might be explained by that a longer waiting time on “D” approach 

indicates higher signal priority was given to the “A” approach, which will indeed reduce the 

exposed conflicting traffic flows between the through vehicles from “A” and “D” approaches. 
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4.4.2 Intersection entrance crashes 

Similar to the within intersection crashes, a full model was first developed for the intersection 

entrance crashes based on four time slices. Table 4-6 shows the results of intersection entrance 

model based on full dataset. In total, 7 variables were identified to be significant variables, 

including speed characteristics, signal timing, queue length, and waiting time related factors 

collected from different time slices. 

Table 4-6: Results of the Bayesian Conditional Logistic Model based on Full Dataset 

(Intersection Entrance). 

Variables 
Coefficient Estimation Odds Ratio 

Mean 95% BCI Mean 95% BCI 

A_TH_Avg_Queue_0_5 0.054 (0.018, 0.094) 1.055 (1.018, 1.099) 

A_LT_Avg_Green_5_10 -0.056 (-0.107, -0.006) 0.946 (0.899, 0.994) 

A_LT_Avg_Queue_5_10 -0.065 (-0.128, -0.007)* 0.937 (0.88, 0.993)* 

A_TH_Avg_Wait_5_10 0.014 (0.000, 0.028) 1.014 (1.000, 1.028) 

Avg_speed_10_15 -0.046 (-0.078, -0.017) 0.955 (0.925, 0.983) 

A_TH_Avg_Green_15_20 -0.037 (-0.069, -0.009) 0.964 (0.933, 0.991) 

A_LT_GreenRatio_15_20 -0.084 (-0.167, -0.003) 0.919 (0.846, 0.997) 

AUC 0.728 

Note: 95% BCI values marked in bold and noted by * indicate that these variables are significant at the 0.1 level, while other 

variables are significant at the 0.05 level. 

 

In addition to the full model, four separate time-slice models were developed for the intersection 

entrance crashes based on four time slices, respectively. Table 4-7 shows the results of 4 time-slice 

models for the intersection entrance dataset. The model comparison results based on AUC values 

indicate that the slice 2 model performs the best, followed by the slice 4 and slice 1 models, which 
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is in line with the within intersection models. The possible reason why the slice 4 model also 

performs very well might be that the traffic environment in the intersection entrance area is simpler 

than the within intersection area, therefore, the crash risk in the intersection entrance area tends to 

be more stable over time than the within intersection area. However, there may exist some 

uncertainty because of the insufficient sample size, which will afterwards influence the 

performance of different time-slice model. It is worth noting that the sign of the significant 

variables is consistent in all slices. Therefore, all the 7 significant variables among four time-slice 

models will be investigated for the intersection entrance dataset.
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Table 4-7: Results of Bayesian Conditional Logistic Regression Models based on Different Time Slices (Intersection Entrance) 

Variables 

Slice 1 Slice 2  Slice 3 Slice 4 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Mean  

(95% BCI) 

Odds Ratio  

(95% BCI) 

Avg_speed 
-0.050  

(-0.077, -0.024) 

0.951  

(0.926, 0.976) 

-0.041  

(-0.072, -0.012) 

0.96  

(0.931, 0.988) 

-0.038  

(-0.066, -0.01) 

0.963  

(0.936, 0.99) 

-0.037  

(-0.068, -0.006) 

0.964  

(0.934, 0.994) 

A_Vol_LT 
-0.048  

(-0.086, -0.013) 

0.953  

(0.918, 0.987) 

-0.037  

(-0.07, -0.005)* 

0.964  

(0.932, 0.995)* 

-0.046  

(-0.086, -0.01) 

0.955  

(0.918, 0.99) 

-0.047  

(-0.091, -0.009) 

0.954  

(0.913, 0.991) 

A_LT_Avg_Green - - - - - - 
-0.050  

(-0.096, -0.003) 

0.951 

 (0.908, 0.997) 

A_LT_Avg_Wait - - 
-0.013  

(-0.022, -0.003) 

0.987  

(0.978, 0.997) 
- - - - 

A_TH_GreenRatio - - 
-0.040  

(-0.081, -0.002) 

0.961  

(0.922, 0.998) 
- - - - 

A_TH_Std_Green - - - - 
-0.035  

(-0.075, 0) 

0.966  

(0.928, 1) 

-0.041  

(-0.077, -0.007) 

0.960  

(0.926, 0.993) 

A_TH_Avg_Queue 
0.030  

(0.001, 0.061)* 

1.030  

(1.001, 1.063)* 
- - - - - - 

AUC 0.6679 0.6770 0.6466 0.6767 

Note: Mean (95% BCI) values marked in bold are significant at the 0.05 level; Mean (95% BCI) values marked in bold and noted by * are significant at the 0.1 level. 
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In total, seven variables from the “A” approach were found to be significantly correlated with the 

crash occurrence in the intersection entrance area: (1) the coefficients of average speed are 

consistent to be negative among four time-slice models, which means that lower average speed 

tends to increase the odds of crash occurrence in the intersection entrance area, which is consistent 

with previous studies (Abdel-Aty et al., 2012; Ahmed et al., 2012a, b; Ahmed and Abdel-Aty, 

2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; Yu et al., 2016; Yuan et al., 2018a). This could 

be explained by that the lower average speed, i.e., congested condition, are more likely to have 

higher crash risk than uncongested condition; (2) the left turn volume was found to have significant 

negative effect on the odds of crash occurrence, which means that higher left turn volume may 

results in lower crash risk. The possible reason might be that driver intending to turn left approach 

the intersection more carefully and with lower speeds. Thus higher left turn volume may increase 

the driver awareness when approaching the entering approach, which may improve the safety 

performance; (3) the average length of left turn green phase was found to be negatively correlated 

with the odds of crash occurrence, which means that when the left turn volume, as well as other 

variables held constant, longer left turn green time could decrease the odds of crash occurrence; 

(4) the negative coefficient of the left turn average waiting time demonstrates that the longer 

waiting time for the left turn vehicles may results in better safety performance. The possible reason 

might be that the longer waiting time for the left turn vehicles, the less exposure may exist between 

left turn and through vehicles, which may reduce the crash risk; (5) similarly, the green ratio, as 

well as the standard deviation of the green time of the through phase were found to have negative 

effect on the odds of crash occurrence, which indicate that longer and more adaptive green phase 

for the through vehicles could significantly improve the safety performance of the intersection 

entrance area. It may be reasoned that longer and more adaptive green phase for the through 
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vehicles could significantly decrease the frequency of stop-and-go traffic, which will therefore 

decrease the potential conflicts. Similarly, Lee et al. (2013) found that the implementation of 

cooperative vehicle intersection control algorithm, which optimize the vehicle trajectory to reduce 

the stop-and-go frequency, can reduce the number of rear-end crash events by 30-87% for different 

volume condition; (6) the positive coefficient of average queue on the through lanes indicates that 

longer queue on the through lanes may increase the odds of crash occurrence. 

 

4.5 Discussion and Conclusion  

This research examined the real-time crash risk at signalized intersections based on the 

disaggregated data from multiple sources, including travel speed collected by Bluetooth detectors, 

lane-specific traffic volume and signal timing data from adaptive signal controllers, and weather 

data collected by airport weather station. The intersection and intersection-related crashes were 

collected and then divided into three types, i.e., within intersection crashes, intersection entrance 

crashes, and intersection exit crashes. In terms of the sample size, only the within intersection 

crashes and intersection entrance crashes were considered and then modeled separately. Matched 

case-control design with a control-to-case ratio of 4:1 was employed to select the corresponding 

non-crash events for each crash event, and three confounding factors, i.e., location, time of day, 

and day of the week, were selected as matching factors. Afterwards, all the traffic, signal timing, 

and weather characteristics during 20-minute window prior to the crash or non-crash events were 

collected and divided into four 5-minute slices, i.e., 0-5 minute, 5-10 minute, 10-15 minute, and 

15-20 minute. Later, Bayesian conditional logistic models were developed for within intersection 

crashes and intersection entrance crashes, respectively.  
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For the within intersection crashes, the results of the full model (based on four time-slice datasets) 

indicate that 14 variables are significantly associated with the real-time crash risk, including speed 

characteristics, signal timing, queue length, and waiting time related factors collected from 

different approaches and time slices. The AUC value of the full model is 0.7596, which is much 

higher than the time-slice models. This comparison result reveals that incorporating all time slices 

variables could significantly improve the model performance. With respect to the four time-slice 

models, the model results show that the slice 2 model performs much better than the other modes 

in terms of the AUC value, which means that the characteristics during 5-10 minutes prior to the 

crash event have more power in the real-time crash risk prediction than the other time intervals. 

Among the slice 2 model, three volume related variables, i.e., the through volume from “A” 

approach (at-fault vehicle traveling approach), the left turn volume from “B” approach (near-side 

crossing approach), and the OAFR from “D” approach (far-side crossing approach), were found 

to have significant positive effects on the odds of crash occurrence, which is consistent with 

previous aggregated studies(Abdel-Aty and Wang, 2006; Chin and Quddus, 2003; Guo et al., 2010; 

Wang et al., 2016b; Xie et al., 2013). However, the left turn volume from “D” approach was found 

to have negative effect on the crash risk, this may be reasoned that more left turn vehicle from “D” 

approach may raise the awareness of those drivers from “A” approach, which will therefore reduce 

the crash risk. 

Moreover, the standard deviation of the length of left turn green phase of “B” approach, the average 

queue length of the through vehicles on “B” approach, and the average waiting time of the through 

vehicles on “D” approach were found to be negatively associated with the odds of crash occurrence. 

These findings imply that the increased adaptability for the left turn signal timing of “B” approach 

(higher “B_LT_Std_Green”) and increased priority for “A” approach (higher “B_TH_Avg_Queue” 
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and “D_TH_Avg_Wait”) could significantly decrease the odds of crash occurrence caused by the 

vehicles from “A” approach. It is worth noting that the speed-related variables were only found to 

be significant in the slice 1 model. This might be because the potential conflicting movements 

within intersection area are quite dynamic, and the speed characteristics on the upstream segment 

may only have short-term impacts on the within intersection crash occurrence. 

With respect to the intersection entrance crashes, since all the involving vehicles in the intersection 

entrance crash are traveling on the same approach with the at-fault vehicle, only the characteristics 

of “A” approach were included in the models. The full model performs much better than the four 

time-slice models in terms of the AUC value, which is in line with the within intersection models. 

Among the four time-slice models, the slice 2 model performs the best, which is slightly better 

than the slice 4 and slice 1 models. The possible reason why the slice 4 model also performs very 

well might be that the traffic environment in the intersection entrance area is more simple than the 

within intersection area, therefore, the crash risk in the intersection entrance area tends to be more 

stable over time than the within intersection area, and the insufficient sample size may also results 

in some uncertainty among the four time-slice models. Therefore, the significant variables in four 

time-slice models were investigated. Average speed was found to have significant negative effect 

on the odds of crash occurrence, which is consistent with previous studies (Abdel-Aty et al., 2012; 

Ahmed et al., 2012a, b; Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; 

Yu et al., 2016; Yuan et al., 2018a). The left turn volume was surprisingly found to be negatively 

correlated with the odds of crash occurrence, which might be explained as the higher left turn 

volume may increase the driver awareness when approaching the entering approach, which may 

improve the safety performance. Moreover, three signal timing variables, i.e., A_LT_Avg_Green, 

A_TH_GreenRatio, and A_TH_Std_Green, were found to have significant negative effects on the 
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odds of crash occurrence. These findings imply that longer average green time for the left turn 

phase, higher green ratio for the through phase, and higher adaptability for the through green phase 

can significantly improve the safety performance in the intersection entrance area. Besides, the 

average queue length on the through lanes was found to have positive effect on the odds of crash 

occurrence, which indicates that longer queue on the through lanes may significantly increase the 

crash risk. 

It is worth noting that all the weather-related variables are insignificant in both within intersection 

models and intersection entrance models. This might be explained by that the weather-related 

variables are more likely to have effects on high-speed segment or free-flow facilities, while the 

signalized intersections are usually operated at low speed and they are highly interrupted by the 

traffic signals, therefore, the weather-related variables may not have significant effects on the crash 

occurrence at signalized intersections. Above all, the model results provide a lot of insights on the 

relationship between the crash risk at signalized intersection and the real-time traffic and signal 

timing characteristics. For example, the results related to signal timing variables imply that higher 

adaptability for both left turn and through phases, longer average green time for the left turn phase, 

and higher green ratio for the through phase could significantly improve the safety performance of 

signalized intersections. These findings might be incorporated into the adaptive signal control 

algorithm to better accommodate the real-time safety and efficiency requirements (Gong et al., 

2019a). 

Overall, this study succeeds in verifying the feasibility of real-time safety analysis for signalized 

intersections. However, there are still some limitations for the current study. For example, only 23 

signalized intersections on three corridors were considered, which may result in some bias in the 

data collection even though the matched case-control design was utilized. Also, different 
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geometric characteristics may also have significant effects on real-time crash risk, which has 

already been demonstrated by Ahmed et al. (2012a). However, the geometric effects were 

controlled in this study by using matched case-control design. Above all, further investigation 

would be beneficial to improve the generalization of the model results, which may start from the 

following aspects: increase the sample size by collecting data from large-scale signalized 

intersections which may also have various geometric characteristics and try to use unbalanced 

dataset which is more realistic than the artificially balanced data. It is also worth noting that the 

vulnerable users (pedestrians, motorcyclists) related crashes were not considered in the current 

stage, although signalized intersections are typical dangerous hotspots for the vulnerable road users. 

Therefore, it would be meaningful to investigate the relationship between vulnerable-user-related-

crash occurrence and real-time traffic and signal characteristics.  
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CHAPTER 5: REAL-TIME CRASH RISK PREDICTION USING LONG 

SHORT-TERM MEMORY RECURRENT NEURAL NETWORK3 

5.1 Introduction 

Intersections are well-known high crash risk locations because of the variety of road user’s 

behaviors and interaction. According to Fatality Analysis Reporting System (FARS) database, 

nearly 25% fatal crashes that occurred in United State in 2016 are intersection-related crashes. 

This serious traffic safety issue at intersections has been a critical research topic during past 

decades. However, previous safety studies for intersections mainly focused on static and 

aggregated analysis, which was limited by the data availability. These analyses were only able 

to identify some general influence factors, e.g., AADT, speed limit, geometric design, etc. At 

the same time, many researchers and organizations had calibrated and developed safety 

performance functions for different states and intersection types, which could be applied to 

predict annual crash frequency to better support safety evaluation and long-term management.  

More recently, with the help of widely deployed traffic detectors along arterials and 

intersections, real-time traffic data are collected and updated in very short time period (e.g., 1 

minute, 20 seconds, or even per individual vehicle). In this context, some researchers started 

to investigate the crash likelihood on urban arterials by using real-time traffic data (Theofilatos, 

2017; Theofilatos et al., 2017; Yuan et al., 2018b). However, seldom research has been 

                                                 
3 This chapter has been published in Transportation Research Record: Journal of the Transportation Research 

Board (https://doi.org/10.1177/0361198119840611) 
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conducted at signalized intersections (Yuan and Abdel-Aty, 2018). It is worth noting that the 

real-time crash risk prediction at signalized intersections is much more complicated than 

arterial segments, which could be explained by the conflicting movements, turning movements, 

and interrupted traffic flow temporally separated by signal control. These differences could 

result in that the prediction algorithm should consider huge number of influence factors, 

including the signal timing, volume, and speed characteristics for different movements. 

These pioneering research studies mainly focused on the analyses between real-time crash risk 

and possible influence factors. As we are approaching connected and automated vehicles soon, 

which will enable more advanced and pro-active management strategies to be deployed at 

intersections to prevent crash occurrence in real time. Prior to the implementation of safety 

management strategies, more robust and reliable real-time crash risk prediction algorithms are 

needed to accurately predict the real-time crash risk at intersections. 

Crash risk prediction is a typical binary classification problem, i.e., crash or non-crash. In the 

real world, non-crash events are much more common than crash events, and the crash events 

should be considered as very rare events. Therefore, this kind of imbalanced crash and non-

crash event dataset can hardly be directly utilized to develop models. In general, there are two 

kinds of sampling methods could be applied to address this imbalanced issue: (1) under-

sampling method aims to reduce the sample size of non-crash events to generate a relatively 
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balanced dataset; (2) while over-sampling method tends to increase the sample size of crash 

events by using various resampling methods to create a balanced dataset.  

However, previous research mostly applied the under-sampling methods to balance the dataset, 

which may lose some important information for non-crash events. Among those research 

studies, matched case-control design was extensively deployed in previous studies: (1) within 

stratum-matched non-crash data (Abdel-Aty et al., 2004; Abdel-Aty et al., 2012). While over-

sampling methods have seldom been utilized to predict real-time crash risk, Basso et al. (Basso 

et al., 2018) attempted to use synthetic minority over-sampling technique (SMOTE) on the 

training dataset to calibrate the prediction algorithms on one freeway segment, and then 

evaluated them based on a real-world imbalanced dataset. Their comparison results showed 

that the algorithms with SMOTE balanced dataset have better prediction performance than the 

other algorithms, which is consistent with the previous imbalanced classification studies in 

other fields (Chawla et al., 2002). It is worth noting that the previous real-time crash risk 

prediction models were evaluated based on artificially balanced test data, while these 

evaluation results can hardly represent the prediction performance in real-world application. 

To the best of the authors’ knowledge, only Basso et al. (Basso et al., 2018) evaluated their 

models based on the original unbalanced dataset (where crashes are quite rare events). They 

claimed that their model could predict 67.89% of the crashes with a false positive rate of 20.94 

for one freeway segment, which is among the best in the literature. 
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In terms of the methodology, there are generally two categories of modelling methods that are 

employed in real-time crash risk prediction studies: statistical analyses and machine learning 

approaches. Statistical methods include matched case-control logistic models (Abdel-Aty and 

Pande, 2005; Abdel-Aty et al., 2004; Ahmed and Abdel-Aty, 2012; Xu et al., 2012; Zheng et 

al., 2010), Bayesian logistical models (Ahmed et al., 2012a; Shi and Abdel-Aty, 2015; Wang 

et al., 2017a; Wang et al., 2015a; Yu et al., 2014), Bayesian random effect logistic models (Shi 

and Abdel-Aty, 2015; Yu et al., 2016), Bayesian random parameter logistic models (Shi and 

Abdel-Aty, 2015; Xu et al., 2014; Yu and Abdel-Aty, 2014; Yu et al., 2017). Machine-learning 

based methods include neural networks (Abdel-Aty and Pande, 2005; Abdel-Aty et al., 2008), 

support vector machines (Yu and Abdel-Aty, 2013; Yu and Abdel-Aty, 2014), and Bayesian 

networks (Hossain and Muromachi, 2012; Sun and Sun, 2015). With the rapid development of 

artificial intelligence and deep learning technologies, there are more and more advanced 

algorithms, for example, Recurrent Neural Networks (RNNs) have been proved to be very 

powerful in sequence learning (Chung et al., 2014), which might be more appropriate to predict 

the real-time crash risk by considering time series characteristics.  

Recurrent Neural Networks (RNNs) are a class of artificial neural networks, which were 

developed in the 1980s. RNNs are distinguished from Feed-Forward Neural Networks by 

incorporating feedback to previous layers. Because of their internal memory, RNNs can 

remember important information about the input they received. Therefore, RNNs have been 
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widely employed in many fields to conduct sequential data analysis and prediction, including 

language model (Mikolov et al., 2010), speech recognition (Graves et al., 2013), machine 

translation (Kalchbrenner and Blunsom, 2013), etc. However, the traditional short-term RNNs 

usually take too much time or do not work well at all, especially when the time lag is long, 

which may result in exploding or vanishing gradients. Therefore, Hochreiter and Schmidhuber 

(1997) proposed a novel recurrent network architecture in conjunction with an appropriate 

gradient-based learning algorithm, which is long short-term memory (LSTM) RNNs. LSTMs 

have gating mechanism to store the relevant information for future predictions, which are 

explicitly designed to avoid long-term dependency problem, therefore they were proved to have 

very good performance on a large variety of sequence learning problems, for example, 

handwriting sequence generation, sequential trajectory learning, language modeling, speech 

recognition, visual recognition, etc. 

With respect to transportation field, many studies have been conducted by using RNN or LSTM, 

which mainly focus on driving behavior identification (Wijnands et al., 2018), travel demand 

prediction (Xu et al., 2017), and roadway traffic speed or travel time prediction (Ma et al., 

2015). Ma et al. (2015) applied LSTM to predict travel speed based on the data collected by 

traffic microwave detectors in Beijing, they found that LSTM achieved the best prediction 

performance in terms of both accuracy and stability among several prevailing parametric and 

nonparametric algorithms. Xu et al. (2017) proposed an LSTM-based sequence learning model 
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to predict future taxi requests in each area of New York City based on the recent demand and 

other relevant information, they also found that the LSTM algorithm outperforms other 

prediction methods, such as feed-forward neural network. Wijnands et al. (2018) tried to 

identify changes in individual driving behavior by using LSTM based on the individual’s 

acceleration and deceleration pattern.  

To the best of the authors’ knowledge, no research has been conducted for real-time crash risk 

prediction by using LSTM. However, real-time crash risk prediction is a typical time series 

related sequential prediction process, and the impacts of long-term and short-term traffic data 

might be quite different, which could be captured by LSTM efficiently. Therefore, LSTM 

would be a better solution for real-time crash risk prediction. In summary, this study aims to 

bridge the following two research gaps for real-time crash risk prediction: (1) first, develop a 

real-time crash risk prediction algorithm for signalized intersections by using LSTM RNN; (2) 

second, collect real-world full sample data from 44 intersections, and then compare the 

prediction performance between proposed LSTM RNN algorithm based on SMOTE over-

sampled dataset and conditional logistic models based on within-stratum matched case-control 

dataset. The whole framework of this chapter is shown in Figure 5-1. 
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Figure 5-1: Framework of the Study 

 

5.2 Data Preparation  

In total, 44 signalized intersections were chosen from Oviedo, Florida, as shown in Figure 5-2. 

A total of five datasets were utilized: (1) crash data from January 2017 to April 2018 provided 

by Signal Four Analytics (S4A); (2) travel speed data collected by 44 BlueTOAD detectors 

installed at 44 intersections; (3) signal timing data provided by Automated Traffic Signal 

Performance Measures (ATSPM) database; (4) loop detector data were also provided by 

ATSPM database; (5) weather characteristics collected by the nearest airport weather station. 
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Figure 5-2: Selected Intersections 

Signal four analytics (S4A) system provides detailed crash information, including crash time, 

location, severity, type, weather condition, etc. First, all crashes occurred at intersections or 

influenced by intersections (within 250 feet of intersections) from January 2017 to April 2018 

were collected. Second, 16 (2.35%) crashes under the influence of alcohol and drugs were 

excluded, since these kinds of crashes are usually not attributed to real-time traffic and signal 

characteristics which are the focus of this study. Since the percentage of alcohol and drug 

related crashes is very low, therefore, it is assumed that this process would not result in bias 

estimation. After data preprocessing, 665 crashes were collected and divided into three types 

based on their location, namely, within intersection areas, intersection entrance areas, and 



 

98 

 

intersection exit areas, which were defined in our previous research (Yuan and Abdel-Aty, 

2018). 335 (50.37%) crashes occurred within intersection areas, 230 (34.59%) crashes occurred 

in intersection entrance areas, and 90 (13.53%) crashes occurred in intersection exit areas. As 

shown in the previous study (Yuan and Abdel-Aty, 2018), crash occurrences within 

intersection areas are more likely to be predicted, therefore, only within-intersection crashes 

were selected as an example to prove the concept of this study. 

In this study, all the within intersection crashes were associated to the travelling approach of 

the at-fault vehicle, which is consistent with Yuan and Abdel-Aty (2018). It is worth noting 

that all the intersection approaches were renamed as “A”, “B”, “C”, and “D” for each crash and 

non-crash event based on the relative-direction nomenclature proposed by Yuan and Abdel-

Aty (Yuan and Abdel-Aty, 2018), which aims to keep all the characteristics from different 

approaches comparable. For example, the impacts of southbound real-time traffic volume on 

southbound crash occurrences should be different from that of eastbound crash occurrences 

due to the different conflict patterns. Therefore, all the data collection from different 

approaches were based on relative direction. More specifically, the “A” approach indicates the 

approach where the crash or non-crash event occurred at, and the “B” approach indicates the 

left-side approach of the “A” approach. Similarly, the “C” and “D” approaches follow a 

clockwise sequence (please refer to Yuan and Abdel-Aty (Yuan and Abdel-Aty, 2018) for 

details). 
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Speed data are provided by 44 BlueTOAD® detectors which measure the individual vehicular 

speed on a specific segment, as shown in Figure 5-3. Bluetooth detectors can only detect the 

vehicles equipped with Bluetooth devices which are working on discoverable mode. The 

individual vehicular speed on a specific segment is calculated as the segment length divided by 

the travel time of each detected vehicle on the segment based on the detection data of two 

Bluetooth detectors located at two intersections. In this study, the Bluetooth penetration rate is 

3.69%, which is higher than the threshold suggested by the previous studies (Chen and Chien, 

2000; Long Cheu et al., 2002a). Also, the validity of Bluetooth detectors for measuring 

individual vehicular speed on urban arterials has been proved by our previous research (Yuan 

and Abdel-Aty, 2018; Yuan et al., 2018b). In this study, speed data (including average speed 

and speed standard deviation) were only collected for the segment of “A” approach, which 

represents the approach where crashes occurred, or at-fault vehicles traveled.  

MAC ID: 123AB

07:01:05

MAC ID: 123AB

07:03:35
MAC ID: 123AB

07:07:05

Travel Time = 150 seconds

Speed = 34 mph

Travel Time = 170 seconds

Speed = 40 mph

1.42 mile 1.89 mile

Central Server

 

Figure 5-3: Illustration of Bluetooth Data Collection (Yuan et al., 2018b) 
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Signal timing and lane-specific vehicle count data are archived by the Automated Traffic Signal 

Performance Measure (ATSPM) database, which is recorded in the highest time resolution of 

controllers (0.1 seconds). All events generated by signal controllers are recorded in sets of four 

bytes per event: one byte for event code type, one byte for event parameter (for signifying 

detector numbers and phases), and two bytes for timestamp of when the event occurred. The 

event code is important for determining the type of reported activity, which could be phase 

initiation or termination, detection on/off, etc. In this study, there are three lane-specific 

volume-related variables and three signal timing related variables collected for every phase and 

then aggregated in 5 minutes with 1-minute updating increments. All the required information 

for the six measures is shown in Table 5-1. 

Table 5-1: Required Data Elements for Selected ATSPM Measures. 

Variable Description Required Event Code 

Total Volume 
Number of vehicles detected on a specific 

lane during given time period. 

82. Detector On 

Arrive on Green (AOG) 
Number of vehicles detected on a specific 

lane while the intersection is green. 

1. Phase Green 

82. Detector On 

Arrive on Yellow (AOY) 
Number of vehicles detected on a specific 

lane while the intersection is yellow. 

8. Phase Yellow 

82. Detector On 

Green Ratio 
Ratio between phase green duration and 

given time period. 

1. Phase Green 

 

Average Green Time 
The average value of all the green phase 

duration during given time period. 

Standard Deviation of 

Green Time 

The standard deviation of all the green phase 

duration during given time period. 
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Three weather related variables (weather type, visibility, and hourly precipitation) were 

collected from the nearest airport weather station (as shown in Figure 5-2). Since weather data 

are not recorded continuously, once weather condition changes and reaches a preset threshold, 

a new record will be added to the archived data. For every crash and non-crash event, the 

closest weather record prior to the crash time was extracted. It is worth noting that all the study 

locations are within 20 miles of the selected airport weather location, which is valid according 

to the previous research (Chung et al., 2018). 

Since this study aims to provide 5-minute crash risk prediction (i.e., crash risk during next 5-

10 minutes), while updating every minute. Therefore, it will generate an observation every 

minute for every intersection approach. Originally, there are 39,441,600 (83 approaches*11 

months *30 days *24 hours*60 minutes) observations. With respect to crash events, all the 

observations whose prediction time periods include historical crash occurrences would be 

labeled as crash events. Meanwhile, all the observations within 3 hours after crash occurrences 

were excluded to eliminate the influence of crash events. For every observation, all the real-

time traffic, signal, and weather characteristics were extracted for the period from 0 to 30 

minutes (divided into six 5-minute time slices) prior to the observation time. For example, if 

an observation 𝑖 at 18:26, the corresponding traffic and signal timing data from 17:56 to 18:26 

were extracted and named as time slice 6, 5, 4, 3, 2, and 1, respectively. 
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After data matching and cleaning, there are 8,463,751 observations (499 crash events and 

8,463,252 non-crash events) for within intersection area. The crash to non-crash ratio is 

1:16,960, where the crash events are rare events. The full dataset was divided into training 

dataset (70%) and test dataset (30%). It is worth noting that two sampling methods were applied 

on the training dataset, while the test dataset was still the original imbalanced data with 150 

crash events and 2,539,130 non-crash events. Given the real-world full sample data, two kinds 

of sampling methods (within stratum matched case-control and SMOTE) were employed on 

the training dataset and then evaluated based on the original test dataset. Therefore, a 

comprehensive comparison on the prediction performance could be conducted between 

traditional real-time crash risk prediction based on under-sampling methods and the proposed 

real-time crash risk prediction based on over-sampling method. 

In terms of the within stratum matched case-control sampling method, four confounding factors, 

i.e., intersection ID, approach ID, time of day, and day of week, were controlled as matching 

factors. Therefore, all the corresponding non-crash events could be identified by using these 

matching factors and then a specific number of non-crash events would be randomly selected 

from the group of non-crash events for every crash event. Abdel-Aty et al. (Abdel-Aty et al., 

2004) found that there is no significant difference when the control-to-case ratio changing from 

one to five. Among the previous research, 4:1 is the most commonly used control-to-case ratio 

(Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Xu et al., 2012; Yu et al., 2018; Yu 
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et al., 2016; Zheng et al., 2010). Other than that, 10:1 (Wang et al., 2015a) and 20:1 (Xu et al., 

2013a) had also been applied by few researchers. Since the full sample data have already been 

collected in this study, it is more appropriate to use high control-to-case ratio, which is closer 

to the real condition and they can capture more information. However, highly imbalanced 

dataset may decrease the performance of traditional logistic model. Therefore, 10:1 was chosen 

in this study to compare with the other sampling methods. Consequently, 10 non-crash events 

from the same intersection, approach, time of day, and day of week were randomly selected for 

each crash event. For some crash events, there is no any matched non-crash events and some 

crash events may have less than 10 non-crash events dues to data missing issue. Finally, 3215 

non-crash events and 349 crash events were collected as the matched case-control dataset. 

With respect to the over-sampling method, the SMOTE was employed to create synthetic 

examples of the minority class (i.e., crash events) to achieve an equal number of samples with 

the majority class. These synthetic examples were randomly introduced among the minority 

class and along the line segments joining any of the k minority class nearest neighbors. In this 

study, k was set to be 5, which is consistent with Chawla et al. (2002).  

In summary, three datasets were generated, i.e., two training datasets and one test dataset. Since 

all the variables are too many to be shown, therefore, Table 5-2 only shows the summary 

statistics in the full sample dataset for the characteristics during time slice 1 on the “A” 

approach. 
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Table 5-2: Summary of Variables Descriptive Statistics (Crash and Non-Crash Cases) 

Type Variable Description 
Crash Event Non-Crash Event 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Traffic 

data 

Avg_speed 
Average speed on the upstream 

segment  

34.44 

(10.28) 
(4.00, 76.9) 

32.13 

(10.28) 
(5.83, 60.00) 

Std_speed 
Speed standard deviation on the 

upstream segment  
5.22 (5.22) (0.00, 59.75) 5.45 (4.67) (0.00, 29.66) 

TH_Volume Through volume of "A" approach  
86.71 

(51.86) 

(0.00, 

754.00) 

104.46 

(53.73) 

(0.00, 

315.00) 

LT_Volume Left turn volume of "A" approach  
7.85 (8.95) 

(0.00, 

101.00) 
9.77 (9.76) (0.00, 70.00) 

TH_AOG 
Number of through vehicles arrived 

on green 
64.38 (46.3) 

(0.00, 

435.00) 

78.73 

(49.91) 

(0.00, 

297.00) 

LT_AOG 
Number of left turn vehicles arrived 

at intersection on green 
4.13 (6.71) (0.00, 89.00) 5.49 (7.91) (0.00, 65.00) 

TH_AOY 
Number of through vehicles arrived 

on yellow 
2.44 (2.81) (0.00, 61.00) 3.00 (3.44) (0.00, 30.00) 

LT_AOY 
Number of left turn vehicles arrived 

on yellow 
0.65 (1.29) (0.00, 27.00) 1.03 (1.72) (0.00, 11.00) 

TH_Volume_OA

FR 

Overall average flow ratio among 

all the through lanes  
1.13 (0.57) (0.94, 51.00) 1.21 (1.46) (0.94, 17.02) 

TH_AOG_OAF

R 

Overall average flow ratio among 

all the through lanes  
1.10 (0.42) (0.94, 41.01) 1.15 (1.11) (0.94, 13.22) 

TH_AOY_OAF

R 

Overall average flow ratio among 

all the through lanes  
1.15 (0.25) (0.94, 6.15) 1.16 (0.27) (0.94, 2.60) 

Signal 

Timing 

TH_Green_Ratio 
Ratio of through green time within 

5-minute interval  
0.47 (0.19) (0.00, 1.00) 0.46 (0.17) (0.04, 0.91) 

LT_Green_Ratio 
Ratio of left turn green time within 

5-minute interval  
0.08 (0.07) (0.00, 1.00) 

0.09 (0.07) 
(0.00, 0.52) 

TH_Avg_green 
Average length of through green 

phase within 5-minute interval 

299.74 

186.29) 

(0.00, 

2754.00) 

79.27 

(40.58) 

(0.00, 

360.00) 

LT_Avg_green 
Average length of left turn green 

phase within 5-minute interval 

159.49 

346.39) 

(0.00, 

624.00) 
14.78 (9.75) (0.00, 57.00) 

TH_Std_green 

Standard deviation of the length of 

through green phase within 5-

minute interval  

136.02 

(12.15) 

(0.00, 

194.62) 
6.16 (11.77) 

(0.00, 

139.30) 

LT_Std_green 

Standard deviation of the length of 

left turn green phase within 5-

minute interval  

148.63 

(24.09) 

(0.00, 

441.99) 
1.43 (2.60) (0.00, 21.92) 

Weather 

data 

Weather_type 
Weather type: 0 for normal and 1 

for adverse weather. 
0.06 (0.25) (0.00, 1.00) 0.06 (0.23) (0.00, 1.00) 

Visibility Visibility (mile). 9.80 (1.16) (0.00, 10.00) 9.83 (0.96) (3.00, 10.00) 

Precipitation Hourly precipitation (inch). 0.00 (0.03) (0.00, 1.48) 0.00 (0.03) (0.00, 0.32) 

Humidity Percentage (%) 
59.63 

(19.77) 

(14.00, 

100.00) 

58.55 

(20.07) 
(14.80, 100) 

Geomet

ry 

App_throu Number of through lanes 2.48 (0.69) (1.00, 4.00) 2.62 (0.66) (1.00, 4.00) 

App_right 
Number of exclusive right-turn 

lanes 
0.57 (0.53) (0.00, 2.00) 0.56 (0.51) (0.00, 2.00) 

App_left Number of left lanes 1.36 (0.52) (0.00, 2.00) 1.43 (0.52) (0.00, 2.00) 

App_lim Speed limit 42.26 (5.01) 
(30.00, 

55.00) 
42.03 (4.16) 

(30.00, 

55.00) 

App_mn_mj Minor or Major (0 or 1) 0.90 (0.30) (0.00, 1.00) 0.91 (0.28) (0.00, 1.00) 

Leg_3_or_4 3-legged vs 4-legged (0 or 1) 0.94 (0.23) (0.00, 1.00) 0.97 (0.18) (0.00, 1.00) 



 

105 

 

Type Variable Description 
Crash Event Non-Crash Event 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Left_protected Left turn protected 0.51 (0.5) (0.00, 1.00) 0.51 (0.50) (0.00, 1.00) 

Inter_size 
Intersection size (Total lane 

number) 
15.56 (4.31) (7.00, 24.00) 16.64 (4.55) (7.00, 24.00) 

N_left_maj 
Number of left-turn lanes on major 

road 
2.70 (0.9) (1.00, 4.00) 2.87 (0.93) (1.00, 4.00) 

N_left_min 
Number of left-turn lanes on minor 

road 
2.57 (1.22) (0.00, 4.00) 2.77 (1.20) (0.00, 4.00) 

N_righ_maj 
Number of exclusive right-turn 

lanes on major road 
0.98 (0.74) (0.00, 2.00) 0.98 (0.79) (0.00, 2.00) 

N_righ_min 
Number of exclusive right-turn 

lanes on minor road 
1.37 (0.62) (0.00, 2.00) 1.49 (0.59) (0.00, 2.00) 

Sp_lim_maj Speed limit on major road 42.69 (4.83) 
(30.00, 

55.00) 
42.47 (3.95) 

(35.00, 

55.00) 

Sp_lim_min Speed limit on minor road 35.22 (5.96) 
(25.00, 

45.00) 
35.99 (6.37) 

(25.00, 

45.00) 

 

5.3 Methodology 

To calibrate real-time crash prediction models based on the two kinds of training datasets, two 

different methodologies were employed, respectively. More specifically, conditional logistic 

model was developed based on the match case-control dataset and LSTM was calibrated based on 

the SMOTE oversampled dataset. At the end, these two kinds of real-time crash prediction 

algorithms were compared based on the same unbalanced test dataset. Detailed explanation of 

these two models are as shown in the following sections. 

5.3.1 Long Short-Term Memory Recurrent Neural Network 

The LSTM addresses the long-term dependency problem by introducing a memory cell which is 

able to preserve state over long periods of time (Hochreiter and Schmidhuber, 1997). A multilayer 

LSTM was developed to predict the crash risk during next 5-10 minutes based on sequence inputs. 

As shown in Figure 5-4, six input vectors for six time slices are mapped to a probability vector at 

the output layer for identification. The hidden state of the LSTM unit in the first LSTM layer is 
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used as input to the LSTM unit in the second LSTM layer in the same time step (Graves et al., 

2013). 

 

X1 X2 X3 X4 X5 X6

y

Time slice 6 Time slice 1

1st LSTM layer

2st LSTM layer

Input layer

Output layer

 

Figure 5-4: Illustration of the LSTM Architecture 

A standard LSTM unit contains an input gate 𝑖𝑡, a forget gate 𝑓𝑡, an output gate 𝑂𝑡, a memory cell 

𝐶𝑡, and a hidden state ℎ𝑡. The values of gating vectors 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are in [0, 1]. The LSTM unit 

at each time step is illustrated in Figure 5-5. 
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Figure 5-5: Illustration of LSTM Unit (Graves et al., 2013) 

The LSTM generates a mapping from an input sequence vectors 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6) 

to an output probability vector by calculating the network unit activations using the following 

equations, iterated from 𝑡 = 1 to 6: 

 𝒊𝒕 = 𝛔(𝑾𝒊𝒙𝑿𝒕 + 𝑾𝒊𝒉𝒉𝒕−𝟏 + 𝑾𝒊𝒄𝒄𝒕−𝟏 + 𝒃𝒊) ( 5-1 ) 

 𝑓𝑡 = σ(𝑊𝑓𝑥𝑋𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) ( 5-2 ) 

 𝑜𝑡 = σ(𝑊𝑜𝑥𝑋𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑐𝑐𝑡 + 𝑏𝑜) ( 5-3 ) 

 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑋𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) ( 5-4 ) 

 ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) ( 5-5 ) 

 𝑦𝑡 = 𝑊𝑦ℎℎ𝑡−1 + 𝑏𝑦 ( 5-6 ) 

where 𝑊 represent weight matrices, for example, 𝑊𝑖𝑥 denotes the weight matrix from the input 

gate to the input, σ is the logistic sigmoid function, and ⨀ indicates elementwise product of the 

vectors. The forget gate 𝑓𝑡 controls the extent to which the previous step memory cell is forgotten, 

the input gate 𝑖𝑡 determines how much to update for each unit, and the output gate 𝑜𝑡 controls the 
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exposure of the internal memory state. Since the value of all the gating variables vary for each 

time step, therefore, the model could learn how to represent information over multiple time steps. 

 

5.3.2 Conditional Logistic Model 

Suppose that there are N strata, where one crash (𝑦𝑖𝑗=1) and m non-crash cases (𝑦𝑖𝑗=0) in stratum 

i, i=1, 2, …, N. Let 𝑝𝑖𝑗 be the probability that the jth observation in the ith stratum is a crash; j=0, 

1, 2, …, m. This crash probability could be expressed as: 

 𝒚𝒊𝒋~𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊(𝒑𝒊𝒋) ( 5-7 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝑖 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + ⋯ + 𝛽𝑘𝑋𝑘𝑖𝑗 ( 5-8 ) 

Where 𝛼𝑖 is the intercept term for the ith stratum; 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑘) is the vector of regression 

coefficients for k independent variables; 𝑿𝒊𝒋 = (𝑋1𝑖𝑗, 𝑋2𝑖𝑗, … , 𝑋𝑘𝑖𝑗) is the vector of k independent 

variables. 

In order to consider stratification in the analysis of the observed data, the stratum-specific intercept 

𝛼𝑖 is considered to be nuisance parameter, and the conditional likelihood for the ith stratum would 

be expressed as (Hosmer Jr et al., 2013): 

 
𝒍𝒊(𝜷) =

𝐞𝐱𝐩 (∑ 𝜷𝒖𝑿𝒖𝒊𝟎
𝒌
𝒖=𝟏 )

∑ 𝐞𝐱𝐩 (∑ 𝜷𝒖𝑿𝒖𝒊𝒋
𝒌
𝒖=𝟏 )𝒎

𝒋=𝟎

 ( 5-9 ) 

 

And the full conditional likelihood is the product of the 𝑙𝑖(𝛽) over N strata, 



 

109 

 

 

𝑳(𝜷) = ∏ 𝒍𝒊(𝜷)

𝑵

𝒊=𝟏

 ( 5-10 ) 

Since the full conditional likelihood is independent of stratum-specific intercept 𝛼𝑖, thus Equation 

8 cannot be used to estimate the crash probabilities. However, the 𝜷 coefficients can be estimated 

by Eq. ( 5-10 ). These estimates are the log-odds ratios of corresponding variables and can be used 

to approximate the relative risk of a crash. Furthermore, the log-odds ratios can also be used to 

develop a prediction model under this matched case-control analysis. Suppose two observation 

vectors 𝑿𝒊𝟏 = (𝑋1𝑖1, 𝑋2𝑖1, … , 𝑋𝑘𝑖1)  and 𝑿𝒊𝟐 = (𝑋1𝑖2, 𝑋2𝑖2, … , 𝑋𝑘𝑖2) from the ith strata, the odds 

ratio of crash occurrence caused by observation vector 𝑿𝒊𝟏 relative to observation vector 𝑿𝒊𝟐 could 

be calculated as: 

 𝒑𝒊𝟏/(𝟏 − 𝒑𝒊𝟏)

𝒑𝒊𝟐/(𝟏 − 𝒑𝒊𝟐)
= 𝐞𝐱𝐩 [∑ 𝜷𝒖(𝑿𝒖𝒊𝟏

𝒌

𝒖=𝟏

− 𝑿𝒖𝒊𝟐)] ( 5-11 ) 

The right side of Equation 11 is independent of 𝛼𝑖 and can be calculated using the estimated 𝜷 

coefficients. Thus, the above relative odds ratio may be utilized for predicting crash occurrences 

by replacing 𝑿𝒊𝟐 with the vector of the independent variables in the ith stratum of non-crash cases. 

One may use simple average of all non-crash observations within the stratum for each variable. 

Let 𝑿̅𝒊 = (𝑋̅1𝑖, 𝑋̅2𝑖, … , 𝑋̅𝑘𝑖) denotes the vector of mean values of non-crash cases of the k variables 

within the ith stratum. Then the odds ratio of a crash relative to the non-crash cases in the ith 

stratum could be approximated by: 

 𝒑𝒊𝟏/(𝟏 − 𝒑𝒊𝟏)

𝒑𝒊̅/(𝟏 − 𝒑𝒊̅)
= 𝐞𝐱𝐩 [∑ 𝜷𝒖(𝑿𝒖𝒊𝟏

𝒌

𝒖=𝟏

− 𝑿̅𝒖𝒊)] ( 5-12 ) 
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5.3.3 Performance Metrics 

In terms of model performance, AUC, which is the area under Receiver Operating Characteristic 

(ROC) curve was adopted. The ROC curve illustrates the relationship between true positive rate 

(sensitivity) and false alarm rate (1–specificity) for a given threshold from 0 to 1. It is worth noting 

that the classification results of binary logistic model are based on the predicted crash probabilities, 

which lie in the range of 0 to 1, while the classification result of conditional logistic model are 

based on the predicted odds ratio over the average condition of the matched non-crash events at 

the same location, which may be larger than 1. To be consistent with the other model, all the odds 

ratios predicted by conditional logistic model were scaled by using min-max normalization. Later, 

the normalized odds ratios were used to generate the classification result based on different 

threshold from 0 to 1.  

To calculate specific values for sensitivity and false alarm rate, the threshold needs to be 

determined. In this study, the threshold value was chosen as the point where sensitivity equals to 

specificity. Based on this determined threshold, both sensitivity and false alarm rate were 

calculated for every model.  

5.4 Result Analysis and Comparison 

For every time-slice dataset, there are 84 variables from four intersection approaches. However, 

these variables from different intersection approaches and time slices might be highly correlated. 

Therefore, both Pearson linear correlation analysis and maximal information coefficient (MIC) 

nonlinear correlation analysis were conducted to identify the highly correlated variables. In terms 

of the threshold, 0.6 was utilized for the linear Pearson correlation analysis, while 0.65 was applied 

for the MIC value, which is suggested by Albanese et al. (2018). Finally, the highly correlated 
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pairs of variables were selected based on two criteria: the Pearson correlation coefficient is greater 

than 0.6 or the MIC is greater than 0.65. 

Based on the correlation analysis results, variable selection procedure were conducted by 

incorporating the results of highly correlated variables and the variable importance (decrease in 

Gini impurity index) which was generated by using random forest (RF) algorithm (Ahmed and 

Abdel-Aty, 2012). For example, if two variables were identified to be highly correlated, then the 

less important variable would be excluded from the next step. Based on the selected variables, 

conditional logistic model was developed based on the filtered variables. Table 5-3 shows the final 

model results, since the major objective of this study is prediction rather than association analysis, 

the significance threshold of p-value was relaxed to 0.2 which indicates that all the variables with 

p-value smaller than 0.2 were included in the final model to ensure all the possible contributing 

factors were included.
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Table 5-3: Model Results of Conditional Logistic Regression 

Variable Coefficient S.E. P-value Odds Ratio (S.D.) 

Avg_speed_slice2 -0.013 0.010 0.198 0.988 (1.01) 

A_TH_AOY_slice2 0.052 0.025 0.037* 1.053 (1.025) 

A_TH_AOY_slice4 0.087 0.027 0.001* 1.091 (1.027) 

A_TH_AOG_OAFR_slice6 0.280 0.087 0.001* 1.324 (1.091) 

A_LT_AOY_slice1 0.180 0.053 0.001* 1.197 (1.054) 

A_LT_AOY_slice2 -0.317 0.067 0.000* 0.728 (1.069) 

A_LT_AOY_slice3 -0.307 0.070 0.000* 0.736 (1.072) 

A_TH_Avg_green_slice2 0.004 0.002 0.045* 1.004 (1.002) 

A_LT_Std_green_slice3 0.040 0.021 0.064** 1.04 (1.022) 

B_TH_AOY_slice4 -0.082 0.052 0.116 0.921 (1.053) 

B_TH_AOY_slice6 0.074 0.044 0.091** 1.077 (1.045) 

B_TH_AOG_OAFR_slice1 0.165 0.102 0.108 1.179 (1.108) 

B_TH_AOG_OAFR_slice3 -0.368 0.154 0.017* 0.692 (1.166) 

B_TH_AOG_OAFR_slice5 0.170 0.110 0.121 1.185 (1.116) 

B_TH_Green_Ratio_slice3 -3.097 1.331 0.020* 0.045 (3.787) 

B_LT_Green_Ratio_slice1 4.735 1.387 0.001* 113.833 (4.001) 

B_LT_Std_green_slice4 -0.057 0.029 0.047* 0.945 (1.029) 

D_TH_AOY_slice3 -0.121 0.050 0.015* 0.886 (1.051) 

D_TH_AOY_slice4 -0.079 0.049 0.108 0.924 (1.05) 

D_TH_AOY_slice6 -0.086 0.047 0.067** 0.917 (1.048) 

D_TH_AOG_OAFR_slice2 -0.334 0.209 0.110 0.716 (1.233) 

D_TH_AOG_OAFR_slice4 0.394 0.109 0.000* 1.483 (1.116) 

D_TH_AOG_OAFR_slice5 0.505 0.131 0.000* 1.657 (1.14) 

D_TH_AOG_OAFR_slice6 0.195 0.136 0.152 1.215 (1.146) 

Note: the p value noted by * indicate that these variables are significant at the 0.05 level, while the value 

noted by ** indicate that these variables are significant at the 0.1 level. 

 

It is worth noting that several AOY and AOG related variables were found to be significantly 

associated with real-time crash risk, especially for the “A” approach. These findings indicate that 

more through vehicles arrive on yellow may significantly increase the crash risk, which could be 

explained by the impacts of intersection dilemma zone. The above model estimation results were 

then applied on the unbalanced test dataset (150 crash events and 2,539,130 non-crash events). 
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Figure 5-6 shows the ROC curve of the model prediction performance, the area under ROC curve 

is 0.61, which is lower than the previous research (Yuan and Abdel-Aty, 2018). This could be 

mainly attributed to the test dataset, where the real-world unbalanced dataset might be much 

difficult to achieve high sensitivity and keep low false alarm rate. However, the evaluation based 

on unbalanced dataset is very meaningful, which could represent the prediction performance in 

real world. The threshold for prediction were determined based on the condition where sensitivity 

(i.e., true positive rate) equals to specificity (i.e., true negative rate), which is consistent with 

previous research (Ahmed and Abdel-Aty, 2013; Xu et al., 2013b). 

 

Figure 5-6: The ROC Curve and Threshold Determination of Conditional Logistic model  

 

With respect to the multilayer LSTM, since the input of LSTM requires that the shape of the input 

vector for each time step to be the same, the variables in any time slice should be included into 

every time slice. For example, A_TH_AOG_OAFR is only significant from time slice 6 dataset, 

while this variable should be included into every time slice. Therefore, for every time slice, 13 

variables from the above model results, together with all the 14 geometric variables were collected 

as the input of LSTM since we do not control the geometric location.  
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The LSTM algorithm was implemented based on TensorFlowTM 1.11 using the NVIDIA GTX 

1080 Ti 11G GPU. Adam optimizer (Kingma and Ba, 2014) was utilized as the optimization 

algorithm. To prevent overfitting, the dropout (Srivastava et al., 2014) strategy with the probability 

of 0.5 was applied in our experiment. Three hyper-parameters, i.e., learning rate, training epoch, 

and mini-batch size, were tuned to achieve the best prediction performance. The training time for 

each run is around 2 hours. Table 5-4 presents all the parameters in the training phase of the LSTM. 

Table 5-4: Parameters for LSTM 

Parameter Range Result 

Learning rate (0.0001, 0.001, 0.005, 0.01) 0.01 

Training epoch (50, 100, 150, 200) 100 

Mini-batch size (100,000, 150,000, 200,000, 250,000) 150,000 

 

Figure 5-7 shows the sensitivity and false alarm rate during the final training procedure, which 

indicate that there is no significant overfitting issue appeared in our final model. 

 

Figure 5-7: Training and Validation Metrics of the Final Model 

As shown in Figure 5-8, the AUC value of LSTM is close to the conditional logistic model, while 

the ROC curve of LSTM is a little bit different from the conditional logistic model. The ROC 



 

115 

 

curve of LSTM tends to be close to the upper left corner, which indicates that the LSTM algorithm 

are slightly more powerful to predict the crash occurrence. Figure 5-8 also shows the determination 

of the classification threshold, where the intersecting point of sensitivity and specificity curve are 

very close to 1, which means that the algorithm will predict the crash occurrence only when the 

predicted crash risk is high. 

 

Figure 5-8: The ROC Curve and Threshold Determination of LSTM 

 

Based on the determined threshold values, the sensitivity and false alarm rate of the final prediction 

were calculated for both conditional logistic model and LSTM. As can be seen from Figure 5-9, 

the prediction sensitivity is around 7% higher than the conditional logistic model, accompany with 

around 7% lower false alarm rate.  
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Figure 5-9: Model Comparison Results 

 

From the application point of view, the best prediction sensitivity of 60.67% with 39.33% false 

alarm rate is still not good enough for practical deployment. However, these prediction algorithms 

were evaluated based on the unbalanced dataset, which could represent the practical performance, 

while the previous research evaluated based on artificially balanced dataset cannot guarantee their 

performance in real world situations. Moreover, the model comparison results showed the 

promising potential of deep learning algorithms over the conditional logistic model. More 

specifically, the conditional logistic model based on matched case-control dataset has been widely 

used by previous researchers on real-time crash risk analysis, which is quite maturing and robust. 

Nevertheless, the LSTM algorithms have only been used during recent years, especially for the 

sequence learning. There are still many potential future improvements and modifications could be 

done to improve the prediction performance. For example, only two LSTM layers were utilized in 

this study, while more LSTM layers could be included to build a deeper LSTM. 
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5.5 Conclusion and Discussion 

This study tried to predict the real-time crash risk at signalized intersections by using multilayer 

LSTM recurrent neural network, which is designed for sequence modeling, and they can consider 

the time series characteristics automatically. First, a real-world unbalanced dataset was collected 

for every minute by incorporating real-time traffic, signal, and weather data. Also, both the 

approach-level and intersection-level geometric characteristics were included into the algorithm. 

To train the algorithm without losing any non-crash information, the synthetic minority over-

sampling technique (SMOTE) was employed in this study to generate a balanced training dataset. 

In comparison, a traditional conditional logistic model was developed based on the matched case-

control dataset with the control-to-case ratio of 10:1.  

The prediction results showed that the LSTM with SMOTE could predicts 60.67% of the 

intersection crashes with a false alarm rate of 39.33%, which is better than the conditional logistic 

model (i.e., sensitivity: 56.72% and false alarm rate: 43.28%). This comparison results succeed in 

verifying the feasibility of applying LSTM in real-time crash risk prediction. Since this study is 

the first attempt in predicting real-time crash risk by using LSTM, therefore, the feasibility proof 

of the of LSTM with SMOTE is the major objective of this study. 

With respect to the prediction performance, there are three possible reasons which may results in 

this relative low sensitivity. First, this study was tested on actual imbalanced data rather than the 

artificially balanced data. Second, the signalized intersections are much more complicated than 

freeway segments, therefore the crash occurrence at signalized intersections might be attributed to 

many other factors which were not captured by our algorithm. For example, there are many driving 
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behavior related factors, e.g., drowsy driving and distracted driving. Third, this study aims to 

predict the real-time crash risk during next 5-10 minutes based on the current data, which might 

be not long enough to be accurately predicted, if we increase it up to 5-15 minutes, or 5-20 minutes, 

they may have better prediction results, and the long prediction period might be more appropriate 

for proactive traffic management. 

In summary, this study succeeds in verifying the feasibility of real-time crash risk prediction at 

signalized intersections by using LSTM recurrent neural network together with SMOTE over-

sampling method. The results of this study could be utilized to predict real-time crash risk at 

signalized intersections in advance, which could assist operators to implement various pro-active 

traffic management strategies to reduce the risk in real-time. However, there are still some 

limitations for the current study. For example, there are several modified RNN structures which 

might be used in the future to improve the prediction performance. Even for the LSTM itself, there 

are several ways to improve the model performance, e.g., more LSTM layers, parameter 

regularization could reduce the over-fitting problem. For the resampling methods, there are many 

other ensemble sampling methods which can be used to generate balanced dataset, e.g., adaptive 

boosting and gradient tree boosting. In addition, crash occurrences have been widely proved to be 

highly influenced by drivers’ characteristics and their driving behavior before crash occurrence, 

while these driver factors were not considered in this study. With the help of real-time driving 

behavior data, which could be enabled by connected vehicle technologies (Ekram and Rahman, 

2018; Rahman and Abdel-Aty, 2018; Rahman et al., 2019; Rahman et al., 2018; Wu et al., 2019), 

more microscopic driver-level crash risk could be predicted in real-time. 
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CHAPTER 6: MODELING REAL-TIME CYCLE-LEVEL CRASH RISK AT 

SIGNALIZED INTERSECTIONS BASED ON HIGH-RESOLUTION EVENT-

BASED DATA 

6.1 Introduction 

Signalized intersections serve a variety of road users to sequence right-of-way between 

intersecting streams of users. Due to the complex conflicting movements and frequently 

changing signals, signalized intersections are identified as typical high-risk locations. In the 

United States, nearly 27% (9047 fatalities) of all traffic fatalities are caused by intersection and 

intersection-related crashes in 2017 according to the data extracted from the Fatality Analysis 

and Reporting System (FARS). Given the serious traffic safety situation, investigating crash 

precursors for signalized intersections has been a critical research topic during past decades. 

Previous intersection safety studies mainly focused on modeling the relationships between 

annual crash frequency and static contributing factors, such as annual average daily traffic 

(AADT), traffic control, geometric design, etc. However, those static and yearly aggregated 

studies cannot capture the impacts of the real-time variation in traffic, weather, signal control 

characteristics, which might lead to misunderstanding of potential crash precursors. Also, with 

the advance of sensing technologies and smart city initiative, more and more real-time traffic 

data are available on arterials, which could be utilized to assist real-time pro-active traffic 

management. 
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As a prerequisite component for pro-active traffic safety management, real-time crash risk 

evaluation has gained a lot of attention from all over the world. However, previous research 

mainly focused on freeways, seldom on signalized intersections. Yuan and Abdel-Aty (2018) 

investigated the relationships between intersection approach-level crash risk and real-time 

traffic, signal timing, and weather characteristics based on 23 signalized intersections in Central 

Florida. More recently, Yuan et al. (2019) employed Long-Short Term Memory (LSTM) 

algorithm to predict real-time crash risk at signalized intersections based on Synthetic Minority 

Over-Sampling Technique (SMOTE), where they achieved better performance than traditional 

models. However, the previous two studies were conducted based on 5-min time intervals, 

which is inconsistent with the cyclical characteristics of the traffic flow at signalized 

intersections. Specifically, if the cycle length of a signalized intersection is 2 minutes, thus the 

5-min time interval includes two complete cycles and one half-cycle. The data for the 

incomplete half-cycle might be collected during green phase, red phase or even both green and 

red phases. This uncertainty in data preparation may lead to biased model estimation results.  

On the other hand, cycle-level traffic characteristics were proved to have significant impacts on 

intersection safety. For example, Essa and Sayed (2018b) developed cycle-level safety 

performance functions for signalized intersections based on automated traffic conflict analysis 

and they found that cycle-level traffic variables (e.g., maximum queue length, shockwave 

characteristics, and platoon ratio) are significantly correlated with the frequency of conflicts. 
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Similar findings were also been reached in their another study (Essa and Sayed, 2018a). 

However, these studies were conducted based on video-based conflict analyses, which has 

several limitations. For example, it’s hard to collect and process long-period video data to get 

enough traffic conflict data. Also, the intrinsic relationship between traffic conflicts and crash 

occurrences is still quite obscure. Above all, cycle-level real-time crash risk analysis should be 

conducted while considering the cyclical characteristics of the traffic flow at signalized 

intersections.  

In this context, the first step is to identify the exact signal cycle for every crash, which plays an 

important role in the identification of crash precursors. As the cycle lengths are usually 2-3 

minutes, which may require that the precision of the reported crash time should be less than 1 

minute. However, after carefully check the distribution of minutes of the reported crash times 

in four different crash databases, Imprialou and Quddus (2017) found that a disproportionate 

number of crashes have been reported at times when the minute indication ended with zero or 

five. Also, many of previous real-time safety studies utilized the traffic data several minutes 

(typically 5 minutes) prior to the reported crash time (Shi and Abdel-Aty, 2015; Wang et al., 

2019a; Xu et al., 2013a; Yu et al., 2018). In order to determine the actual time of crashes, Lee 

et al. (2003) employed the shockwave theory which assumes that the time that the shockwave 

arrived at the crash location is assumed to be the actual crash time. While this method can only 

be used for uninterrupted roadway facilities (e.g., freeway) where the shockwave propagation 
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only appears during incidents. For signalized intersections, shockwave propagation could 

appear on both crash and normal conditions, which indicates that the identification of the actual 

times of intersection crashes might not be appropriate to use shockwave theory. In this study, 

with the help of high-resolution event-based Automated Traffic Signal Performance Measures 

(ATSPM) data on intersection approaches, the exact cycle of every crash occurrence could be 

verified based on the identification of abnormal detections. 

As we all know, crash occurrences are usually considered as rare events due to the extreme high 

imbalance ratio between non-crash and crash cases (Basso et al., 2018; Theofilatos et al., 2018b; 

Yuan et al., 2019). However, traditional statistical models, such as logistic regression, can 

sharply underestimate the probability of rare events (King and Zeng, 2001). Therefore, 

undersampling strategies, which aim to balance the class distribution by eliminating samples 

from the majority class, have been widely employed in previous studies while modeling the 

probability of crash occurrences. Among them, the matched case-control design is the most 

popular undersampling strategy used in the field of real-time crash risk analysis (Abdel-Aty et 

al., 2004; Wang et al., 2019a; Yu et al., 2018). As stated by Theofilatos et al. (2018b), the choice 

of statistical method depends heavily on the sampling strategy. In order to evaluate the impact 

of undersampling strategies, two kinds of undersampling strategies (matched case-control and 

random undersampling) were employed in this study, while conditional logistic regression and 
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regular binary logistic regression were developed respectively for two kinds of balanced 

datasets. 

Above all, this study aims to bridge the following research gaps: (1) determine the exact signal 

cycle where every crash occurred based on the high-resolution event-based ATSPM dataset; (2) 

model real-time crash risk at cycle-level for signalized intersections with the consideration of 

shockwave characteristics; (3) determine the best undersampling strategy while calibrating real-

time crash risk prediction models for signalized intersections. 

 

6.2 Data Preparation 

Since all the ATSPM loop detectors are installed in the intersection approach areas, thus the 

ATSPM data are only capable to verify the exact crash time for those crashes occurred in the 

intersection approach areas. In total, 42 intersection approaches from 28 intersections were 

selected from Seminole County, Florida, as shown in Figure 6-1. A total of three datasets were 

collected in this study: (1) crash data from January 2017 to December 2018 provided by Signal 

Four Analytics (S4A); (2) high-resolution event-based signal timing and vehicle detection data 

during the same time period provided by Automated Traffic Signal Performance Measures 

(ATSPM) database; (3) weather characteristics collected by the nearest Local Climatological 

Data (LCD) station, which were archived by NOAA. 
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Figure 6-1: Selected Intersections. 

 

6.2.1 Signal Timing and Vehicle Detection 

For the selected 42 intersection approaches, a total of 210 loop detectors are installed on the 

through lanes. In order to analyze the traffic variation within intersection approach area, two 

sets of detector locations (henceforth referred to as front detectors and back detectors, 

respectively) were considered for all the selected intersection approaches. As the detector 

availability are different among intersection approaches, there exist three kinds of detector 

configurations for the selected approaches (configuration 1: 3 intersection approaches; 
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configuration 2: 6 intersection approaches; configuration 3: 33 intersection approaches), as 

shown in Figure 6-2. 

Configuration 3 (170 ft, 330 ft)Configuration 2 (0 ft, 330 ft)Configuration 1 (0 ft, 170 ft)

170 ft

330 ft 330 ft

170 ft

Front

Back

Front

Back

Front

Back

 

Figure 6-2: Detector Configurations on Intersection Approach. 

 

Signal timing and lane-specific vehicle count data are calculated from the Automated Traffic 

Signal Performance Measure (ATSPM) database, which is recorded in the highest time 

resolution of controllers (0.1 seconds). Every event generated by signal controllers or loop 

detectors is recorded in sets of four bytes per event: two bytes for the timestamp of when the 

event occurred, one byte for event code type, and one byte for event parameter (for signifying 

detector numbers and phases). The event code is important for determining the type of reported 

activity, which could be phase initiation or termination, detection on/off, etc. Table 6-1 shows 

the sample set of events generated by a signal controller and 16 loop detectors at the intersection 

of US17-92 & 25th St.
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Table 6-1: Sample Data Collected at the Intersection (US17-92 & 25th St). 

Sample Raw Data 
Description 

Timestamp Event Code Event Parameter 

2018/12/1 00:00:09.1 1 6 Phase 6 Begin Green 

2018/12/1 00:00:09.1 1 2 Phase 2 Begin Green 

2018/12/1 00:00:37.4 82 9 Detector 9 On 

2018/12/1 00:00:39.0 81 9 Detector 9 Off 

2018/12/1 00:00:41.5 82 14 Detector 14 On 

2018/12/1 00:00:42.2 81 14 Detector 14 Off 

2018/12/1 00:00:50.2 82 10 Detector 10 On 

2018/12/1 00:00:50.5 81 10 Detector 10 Off 

2018/12/1 00:00:50.5 82 9 Detector 9 On 

2018/12/1 00:00:51.3 82 13 Detector 13 On 

2018/12/1 00:00:51.4 81 13 Detector 13 Off 

2018/12/1 00:00:59.5 81 9 Detector 9 Off 

2018/12/1 00:01:08.2 82 13 Detector 13 On 

2018/12/1 00:01:08.3 81 13 Detector 13 Off 

2018/12/1 00:01:09.2 82 14 Detector 14 On 

2018/12/1 00:01:10.4 82 10 Detector 10 On 

2018/12/1 00:01:10.4 81 14 Detector 14 Off 

2018/12/1 00:01:10.7 81 10 Detector 10 Off 

2018/12/1 00:01:32.9 82 13 Detector 13 On 

2018/12/1 00:01:33.0 81 13 Detector 13 Off 

2018/12/1 00:01:36.0 82 10 Detector 10 On 

2018/12/1 00:01:36.4 81 10 Detector 10 Off 

2018/12/1 00:01:43.5 82 13 Detector 13 On 

2018/12/1 00:01:43.7 81 13 Detector 13 Off 

2018/12/1 00:01:50.8 7 6 Phase 6 Green Termination 

2018/12/1 00:01:50.8 8 2 Phase 2 Begin Yellow Clearance 

2018/12/1 00:01:50.8 8 6 Phase 6 Begin Yellow Clearance 

2018/12/1 00:01:50.8 7 2 Phase 2 Green Termination 

2018/12/1 00:01:53.9 82 13 Detector 13 On 

2018/12/1 00:01:54.0 81 13 Detector 13 Off 

2018/12/1 00:01:55.6 9 6 Phase 6 End Yellow Clearance 

2018/12/1 00:01:55.6 9 2 Phase 2 End Yellow Clearance 

2018/12/1 00:01:55.6 10 2 Phase 2 Begin Red Clearance 

2018/12/1 00:01:55.6 10 6 Phase 6 Begin Red Clearance 

 

Based on the high-resolution event based ATSPM data, several signal timing and vehicle 

detection related metrics could be inferred. For example, the time difference between the start 

and the end of a signal event represent the phase duration, the time interval between “detector 

on” and “detector off” indicates the detector occupancy time, and the time interval between 

“detector off” and “detector on” denotes the vehicle gap. In this study, all the variables were 
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aggregated at cycle-level, which means that every variable will be generated for every signal 

cycle (i.e., the time interval between the start of red phase and the end of yellow phase). 

For traffic volume characteristics, various types of overall average flow ratio (OAFR) were 

collected in addition to the basic cycle volume to consider the variation in traffic flow across 

lanes. For further details about the calculation of OAFR, please refer to Yuan and Abdel-Aty 

(2018). In addition, real-time traffic progression measures were also collected, including 

percent of green (POG), percent on yellow (POY), arrival on green ratio (AOGR), arrival on 

yellow ratio (AOYR), and platoon ratio (PR). 

 
𝑮𝑹𝒊 =  

𝒕𝒈,𝒊

𝑪𝒊
 ( 6-1 ) 

 
𝑃𝑂𝐺𝑖 =  

𝑉𝑔,𝑖

𝑉𝑐,𝑖
 ( 6-2 ) 

 
𝑃𝑂𝑌𝑖 =  

𝑉𝑦,𝑖

𝑉𝑐,𝑖
 ( 6-3 ) 

 
𝐴𝑂𝐺𝑅𝑖 =  

𝑃𝑂𝐺𝑖

𝑡𝑔,𝑖
=

𝑉𝑔,𝑖

𝑉𝑐,𝑖
/𝑡𝑔,𝑖 ( 6-4 ) 

 
𝐴𝑂𝑌𝑅𝑖 =  

𝑃𝑂𝑌𝑖

𝑡𝑦,𝑖
=  

𝑉𝑦,𝑖

𝑉𝑐,𝑖
/𝑡𝑦,𝑖 ( 6-5 ) 

 
𝑃𝑅𝑖 =  

𝑃𝑂𝐺𝑖

𝐺𝑅𝑖
= (

𝑉𝑔,𝑖

𝑉𝑐,𝑖
)/(

𝑡𝑔,𝑖

𝐶𝑖
) ( 6-6 ) 

Where 𝑡𝒈,𝒊 is the duration of the green phase during the ith cycle;  𝑡𝑦,𝑖 is the duration of the 

yellow phase during the ith cycle; 𝑪𝒊 is the cycle length of the ith cycle; 𝑽𝒈,𝒊 represents the 
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number of vehicles arriving on green during the ith cycle; 𝑽𝒄,𝒊 is the total volume during the ith 

cycle; 𝑉𝑦,𝑖 represents the number of vehicles arriving on yellow during the ith cycle.  

Moreover, different kinds of headway and occupancy related variables were collected based on 

the vehicle detector actuation events. Meanwhile, the traffic variation between front detectors 

and back detectors were also collected to represent the traffic variation within the intersection 

approach areas. Table 6-2 summarizes the required information for every cycle-level variable. 
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Table 6-2: Required Data Elements for Selected ATSPM Measures. 

Type Variables Description 
Required Event 

Code 

Traffic 

Volume 

Cycle_Volume Through volume per intersection approach per cycle 
1. Phase Begin 

Green 

8. Phase Begin 

Yellow Clearance 

10. Phase Begin 

Red Clearance 

82. Detector On 

OAFR_Back_Cycle Overall average flow ratio among back detectors per cycle 

OAFR_Back_Green 
Overall average flow ratio among back detectors during 

green phase per cycle 

OAFR_Back_Red 
Overall average flow ratio among back detectors during 

red phase per cycle 

OAFR_Front_Green 
Overall average flow ratio among front detectors during 

green phase per cycle 

Signal 

Timing 

Cycle_Len Cycle length (s) 
1. Phase Begin 

Green 

8. Phase Begin 

Yellow Clearance 

10. Phase Begin 

Red Clearance 

Green_Ratio Percentage of the length of green time per cycle 

Traffic 

Progression 

POG_Back Percentage of arrival on green of back detectors 

1. Phase Begin 

Green 

8. Phase Begin 

Yellow Clearance 

10. Phase Begin 

Red Clearance 

82. Detector On 

POY_Back Percentage of arrival on yellow of back detectors 

POR_Back Percentage of arrival on red of back detectors 

AOGR_Back Arrival on green ratio of back detectors 

AOYR_Back Arrival on yellow ratio of back detectors 

AORR_Back Arrival on red ratio of back detectors 

Platoon_Ratio Platoon ratio 

Headway 

and 

Occupancy 

AVG_Occupancy_Back_Gre

en 

Average occupancy of back detectors during green phase 

(s) 

1. Phase Begin 

Green 

8. Phase Begin 

Yellow Clearance 

10. Phase Begin 

Red Clearance 

81. Detector Off 

82. Detector On 

STD_Occupancy_Back_Gre

en 

Standard deviation of occupancy of back detectors during 

green phase (s) 

AVG_Headway_Back_Gree

n 
Average headway of back detectors during green phase (s) 

STD_Headway_Back_Green 
Standard deviation of headway of back detectors during 

green phase (s) 

AVG_Occupancy_Back_Red Average occupancy of back detectors during red phase (s) 

STD_Occupancy_Back_Red 
Standard deviation of occupancy of back detectors during 

red phase (s) 

AVG_Headway_Back_Red Average headway of back detectors during red phase (s) 

STD_Headway_Back_Red 
Standard deviation of headway of back detectors during 

red phase (s) 

AVG_Occupancy_Front_Gre

en 

Average occupancy of front detectors during green phase 

(s) 

STD_Occupancy_Front_Gre

en 

Standard deviation of occupancy of front detectors during 

green phase (s) 

AVG_Headway_Front_Gree

n 
Average headway of front detectors during green phase (s) 

STD_Headway_Front_Green 
Standard deviation of headway of front detectors during 

green phase (s) 

Traffic 

Variation 

Diff_OAFR_Green 
Difference in the OAFR during green phase between front 

detectors and back detectors 

Diff_AVG_Occupancy_Gree

n 

Difference in the average occupancy during green phase 

between front detectors and back detectors (s) 

Diff_STD_Occupancy_Gree

n 

Difference in the standard deviation of occupancy during 

green phase between front detectors and back detectors (s) 

Diff_AVG_Headway_Green 
Difference in the average headway during green phase 

between front detectors and back detectors (s) 

Diff_STD_Headway_Green 
Difference in the standard deviation of headway during 

green phase between front detectors and back detectors (s) 
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6.2.2 Shockwave Characteristics 

Given the high-resolution event-based ATSPM data, all the shockwave characteristics could be 

estimated in real-time by applying shockwave theory (Liu et al., 2009; Wu and Liu, 2014). In 

this study, the maximum queue length, queuing shockwave speed, and shockwave area were 

calculated based on the high-resolution data collected by back detectors. Figure 6-3 shows a 

typical traffic shockwave at an intersection, where Lmax indicates the maximum queue length, 

V1 represents the queuing shockwave speed, S is the shockwave area.  

A B C
Back Detector

Lmax V1
S

S: Shockwave Area

V1: Queuing Shockwave Speed

V2: Discharge Shockwave Speed

V3: Departure Shockwave Speed

Lmax: Maximum Queue Length

V2 V3

Ld

Time (s)

Distance (ft)

TA TB TC

 

Figure 6-3: Illustration of Traffic Shockwave at an Intersection. 

As demonstrated by Liu et al. (2009), if point A exists (i.e., queuing shockwave (V1) propagates 

beyond the location of the back detectors), the back detectors would be occupied by a long time 

until TB when B point appears (i.e., discharge shockwave (V2) propagates to the location of the 
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detector). Also, the C point where the end of the queue passes the detector could be identified 

as the time when the traffic flow at the detector changes from saturated discharging flow to 

normal arrival flow. Therefore, the three shockwave characteristics (i.e., queuing shockwave 

speed (𝑉1
𝑖), maximum queue length (𝐿𝑚𝑎𝑥

𝑖 ), and shockwave area (𝑆𝑖)) could be calculated: 

 
𝑽𝟏

𝒊 =  
𝟎 − 𝑸𝒂

𝒊

𝒌𝒋 − 𝒌𝒂
𝒊
 ( 6-7 ) 

 
𝑉2

𝑖 =  
𝐿𝑑

𝑇𝐵
𝑖 − 𝑇𝑔

𝑖
 ( 6-8 ) 

 
𝑉3

𝑖 =  
𝑄𝑚 − 𝑄𝑎

𝑖

𝑘𝑚 − 𝑘𝑎
𝑖

 ( 6-9 ) 

 
𝐿𝑚𝑎𝑥

𝑖 =  𝐿𝑑 +
(𝑇𝐶

𝑖 − 𝑇𝐵
𝑖 )

(
1

𝑉2
𝑖 +

1

𝑉3
𝑖)

 
( 6-10 ) 

 
𝑆𝑖 =

(𝑡𝑟,𝑖 × 𝐿𝑚𝑎𝑥
𝑖 )

2
 ( 6-11 ) 

Where 𝑄𝑎
𝑖  and 𝑘𝑎

𝑖  are the average arrival flow rate and density during the ith cycle; 𝑘𝑗 indicates 

the jammed density; 𝑉2
𝑖  and 𝑉3

𝑖  represent the speed of discharge shockwave and departure 

shockwave. 𝐿𝑑 represents the distance between stop bar and back detectors; 𝑇𝐵
𝑖  is the time when 

the discharge shockwave propagates to the location of the detector during the ith cycle; 𝑇𝑔
𝑖 is 

the time when the green phase starts during the ith cycle; 𝑄𝑚 and 𝑘𝑚 represent the saturated 

flow rate and density; 𝑇𝐶
𝑖  represents the time when the end of the queue passes the detector; 𝑇𝐵

𝑖  

is the time when the discharge shockwave propagates to the location of the detector; 𝑡𝑟,𝑖 is the 

duration of the red phase during the ith cycle. 
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In addition, if point A does not exist, i.e., the maximum queue length is less than 𝐿𝑑 , the 

maximum queue length could be estimated based on the simple input-output method (Liu et al., 

2009). For more details about the identification procedures of points A, B, C, please refer to 

Liu et al. (2009). Table 6-3 summarizes the required information for the three shockwave 

related variables. 

Table 6-3: Required Data Elements for Shockwave Characteristics. 

Variables Description Required Event Code 

Max_Queue_Length Maximum queue length (mile) 
1. Phase Begin Green 

10. Phase Begin Red Clearance 

81. Detector Off 

82. Detector On 

Shock_Wave_Area Shockwave area (mile.s) 

Queuing_Shockwave_Spd Queuing shockwave speed (ft/s) 

 

Figure 6-4 shows a one-day sample of shockwave characteristics for the intersection of US17-

92 & 25th St on 05/03/2017. Among the figure, the light blue line indicates the maximum queue 

length, the light green line represents the absolute queuing shockwave speed, and the red bar 

indicates the actual crash. This figure clearly shows that the crash occurred during the time 

period with longer queue length and higher absolute queuing shockwave speed. 
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Figure 6-4: Shockwave Characteristics Data for an Intersection (US17-92 & 25th St) on 

05/03/2017. 

6.2.3 Weather 

Three weather-related variables (weather type, visibility, and hourly precipitation) were 

collected from the nearest LCD airport weather station (as shown in Figure 6-1). As weather 

data are not recorded continuously, once weather condition changes and reaches a preset 

threshold, a new record will be added to the archived data. For every cycle, the closest weather 

record prior to the begin of every cycle was extracted. Table 6-4 shows the detailed description 

of weather data. 

Table 6-4: Description of Weather Data. 

Variables Description 

Visibility Visibility (mile) 

Weather_Types Weather type: 0 for normal and 1 for adverse weather. 

Precipitation Hourly precipitation (inch). 
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6.2.4 Crash Data and Corresponding Signal Cycle 

Signal four analytics (S4A) system provides detailed crash information, including crash time, 

location, severity, type, etc. First, 362 crashes occurred within the selected intersection 

approaches (from stop bar to 250 feet upstream) from January 2017 to December 2018 were 

collected. It is worth noting that the left-turn phases of the selected intersections are served with 

the combination of lead-lead sequence, lag-lag sequence, and lead-lag sequence, which results 

in huge complexity in the interaction between the left-turn and through movements. 

Consequently, only the through movement related variables and the corresponding crashes were 

considered in this study as an instance to verify the feasibility of cycle-level real-time safety 

analysis. After excluding all the crashes occurred on the left turning lanes, as well as the crashes 

without corresponding traffic data, there are 252 crashes remaining in the final dataset. Among 

them, 190 (75.40%) crashes are rear-end crashes, 41 (16.27%) crashes are sideswipe crashes, 

and 21 (8.33%) crashes are other types of crashes. 

In order to determine the actual signal cycle of crash occurrence, the corresponding high-

resolution vehicle detection and signal timing data during the time interval starts from 15 

minutes before the recorded crash time to 15 minutes after the reported crash time were 

extracted for every crash and then plotted to identify the potential abnormal detections, which 

is consistent with the previous research (Wang et al., 2019b). As shown in Figure 6-5, two kinds 

of abnormal detections were considered to verify the reported crash time. 
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Figure 6-5: Determination of the Actual Time of Crash. 

 

Figure 6-6 shows the examples of two kinds of abnormal detections, i.e., abnormal high 

occupancy on green phase, and abnormal missing vehicle detection. The light blue bars in the 

middle of the x-axis indicate the reported crash time, the y-axis represents the occupancy of 

every vehicle detection, every black dot indicates every detected vehicle, and the black arrows 

point at the abnormal detections. In the first crash example, the reported crash time is 17:45:00, 

while the time of the abnormal detection with extremely high occupancy (350 seconds) on green 

phase is 17:40:27. Therefore, the reported time of this crash was modified to be 17:40:27. In 

the second crash example, the reported crash time is 15:40:00, while the time of the abnormal 

detection with unusual missing detection is 15:33:36. Therefore, the reported time of this crash 

was modified to be 15:33:36. 
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Figure 6-6: Examples of Abnormal Events. 

Above all, 80 (32%) crashes were identified with abnormal detection and the reported crash 

times were modified to be the corresponding time of abnormal detections. Figure 6-7 shows the 

distribution of the time difference between reported crash time and modified crash time for the 

80 identified crashes. The average time difference for those crashes which were identified with 

abnormal detections is 133 seconds, which is in line with previous research (Imprialou and 

Quddus, 2017). 
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Figure 6-7: Distribution of the Time Difference between Reported Crash Time and 

Modified Crash Time. 

All the abovementioned traffic and weather-related variables were prepared at the cycle-level. 

Based on the modified crash time, the corresponding cycle for every crash could be identified. 

In order to consider the effect of time dependency and then model the impact of the traffic status 

during preceding cycles on the risk of the crash cycle, five cycles prior to the crash cycle were 

considered to develop five models, respectively. Different labelling strategies were employed 

for different cycle models, as shown in Figure 6-8. For example, for the cycle-1 model, only 

the first cycle prior to the crash cycle was labeled as “1” (crash event), and the crash cycles and 

all the cycles within two hours after the crash cycles were excluded to eliminate the influence 

of crash occurrence on traffic condition. 
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Figure 6-8: Illustration of Data Labelling for Every Consecutive Time Series Data 

In summary, the final dataset includes 12,291,308 cycles, where 252 of them are crash events 

and 12,291,056 cycles are non-crash events. Table 6-5 shows the descriptive statistics of 

collected variables for both crash and non-crash events.

1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+m

Cycles

   

Labels

Cycle-1 Model   0                0          0           0          0          0          0          1

 0                0          0           0          0          0          1

 0                0          0           0          0          1

           0                0          0           0         1

           0                0          0           1

Cycle-2 Model

Cycle-3 Model

Cycle-4 Model

Cycle-5 Model Cycle

Excluded Cycle

Crash

   

2 Hours
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Table 6-5: Descriptive Statistics of Collected Variables (Crash and Non-Crash Events). 

Type Variables 

Crash Event Non-Crash Event 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Traffic Volume 

Cycle_Volume 62.421 (38.294) (0, 173) 25.85 (29.323) (0, 332) 

OAFR_Cycle_Back 1.07 (0.176) (0.943, 2.184) 1.123 (0.26) (0.943, 4.465) 

OAFR_Green_Back 1.073 (0.173) (0.944, 2.19) 1.123 (0.259) (0.943, 4.283) 

OAFR_Red_Back 1.18 (0.412) (0.944, 4.803) 1.124 (0.246) (0.943, 4.803) 

OAFR_Green_Front 1.38 (1.608) (0.944, 13.683) 1.193 (0.579) (0.943, 13.683) 

Signal Timing 

Cycle_Len 165.338 (47.035) (36.5, 399.8) 123.44 (71.188) (15.1, 994.9) 

Green_Ratio 0.473 (0.139) (0, 0.896) 0.532 (0.184) (0, 1) 

POG_Back 0.624 (0.213) (0, 1) 0.609 (0.305) (0, 1) 

POY_Back 0.038 (0.051) (0, 0.333) 0.05 (0.136) (0, 1) 

POR_Back 0.338 (0.212) (0, 1) 0.341 (0.295) (0, 1) 

AOGR_Back 0.851 (0.323) (0, 2.353) 1.121 (1.042) (0, 14.925) 

AOYR_Back 0.757 (0.931) (0, 6.803) 0.925 (2.574) (0, 37.037) 

AORR_Back 0.501 (0.562) (0, 6.135) 0.922 (1.203) (0, 14.354) 

Platoon_Ratio 134.773 (40.833) (0, 274.91) 114.128 (57.886) (0, 671.519) 

Headway and 

Occupancy 

Avg_Occupancy_Green_Back 0.751 (5.305) (0.1, 84.013) 0.3 (0.521) (0.1, 84.013) 

Std_Occupancy_Green_Back 1.202 (13.806) (0, 219.103) 0.135 (0.395) (0, 219.103) 

Avg_Headway_Green_Back 10.637 (17.938) (1.64, 155.7) 42.29 (75.625) (0.2, 1066.1) 

Std_Headway_Green_Back 11.708 (23.684) (0.212, 266.296) 29.296 (48.461) (0, 687.873) 

Avg_Occupancy_Red_Back 0.616 (2.473) (0.1, 36.85) 0.428 (1.729) (0.1, 47.3) 

Std_Occupancy_Red_Back 0.246 (0.602) (0, 7.038) 0.123 (0.36) (0, 9.509) 

Avg_Headway_Red_Back 16.304 (19.176) (2.173, 186.867) 45.003 (73.769) (1.1, 1065.1) 

Std_Headway_Red_Back 15.305 (29.911) (0.424, 439.739) 28.24 (42.585) (0, 586.121) 

Avg_Occupancy_Green_Front 0.873 (0.869) (0.29, 7.1) 0.587 (0.571) (0.1, 18.25) 

Std_Occupancy_Green_Front 1.318 (10.427) (0, 164.968) 0.297 (0.505) (0, 164.968) 

Avg_Headway_Green_Front 10.285 (21.251) (1.643, 205.2) 45.159 (82.189) (0.4, 1330.2) 

Std_Headway_Green_Front 10.858 (23.184) (0.523, 264.882) 30.147 (50.481) (0, 728.886) 
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Type Variables 

Crash Event Non-Crash Event 

Mean (Std) (Min, Max) Mean (Std) (Min, Max) 

Traffic Variation 

Diff_OAFR_Green 0.392 (1.584) (0, 12.536) 0.161 (0.547) (0, 12.536) 

Diff_Avg_Occupancy_Green 0.509 (0.578) (0, 6) 0.321 (0.354) (0, 6) 

Diff_Std_Occupancy_Green 0.458 (0.866) (0, 9.591) 0.24 (0.457) (0, 9.591) 

Diff_ Avg _Headway_Green 3.601 (13.379) (0, 196.935) 11.082 (37.458) (0, 646.425) 

Diff_Std_Headway_Green 4.555 (8.809) (0, 121.21) 7.153 (19.221) (0, 290.762) 

Shockwave 

Characteristics 

Max_Queue_Length 0.065 (0.05) (0, 0.297) 0.026 (0.033) (0, 0.384) 

Shock_Wave_Area 2.959 (2.824) (0, 20.384) 0.942 (1.55) (0, 20.384) 

Queuing_Shockwave_Spd -4.2 (4.938) (-59.041, -0.188) -2.271 (2.381) (-59.041, -0.016) 

Weather 

Visibility 9.822 (0.822) (2.75, 10) 9.758 (1.031) (0.125, 10) 

Weather_Type 0.115 (0.32) (0, 1) 0.075 (0.263) (0, 1) 

Precipitation 0.004 (0.016) (0, 0.14) 0.002 (0.011) (0, 0.185) 

 

6.3 Methodology 

Figure 6-9 shows the framework of model development. First, the original imbalanced dataset 

(imbalance ratio: 1: 48,954) was split into training dataset and test dataset based on time sequence, 

where the data before 9/16/2018 were selected as training dataset (200 crash events and 9,829,994 

non-crash events) and the remaining data were selected as test dataset (52 crash events and 

2,460,803 non-crash events). Second, two kinds of undersampling strategies (i.e., matched case-

control and random undersampling) were employed on the training dataset to generate balanced 

datasets to calibrate the statistical models. For the matched case-control strategy, four factors, i.e., 

intersection ID, approach ID, hour of day, and day of week, were controlled as matching factors. 

Therefore, all the corresponding non-crash events for every crash event could be identified by 

using these matching factors and then a specific number of non-crash events would be randomly 

selected from the group of non-crash events. According to previous studies, 4:1 is the most 
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commonly used control-to-case ratio (Ahmed and Abdel-Aty, 2012; Shi and Abdel-Aty, 2015; Yu 

et al., 2018; Yu et al., 2016; Zheng et al., 2010). Therefore, 4 non-crash events were selected for 

every crash event, and the final matched case-control dataset includes 252 crash events and 1008 

non-crash events. For the random undersampling strategy, the same crash to non-crash ratio was 

utilized, and 1008 non-crash events were randomly selected from 1,324,453 non-crash events in 

the training dataset. At last, all the models were evaluated based on the same imbalanced raw 

dataset. 

Real world imbalanced data 

(1:48,954)

Within stratum 

matched case-

control (1: 4)

Random sampling 

(1: 4)

Conditional Logistic

Binary Logistic

Model evaluation
Test data (20%: after 

9/16/2018)

Training data (80%: 

before 9/16/2018)

 

Figure 6-9: Framework of Model Development. 

 

6.3.1 Conditional Logistic Model 

Suppose there are one crash case (𝑦𝑖0=1) and m non-crash cases (𝑦𝑖𝑗=0) in stratum i, i=1, 2, …, N 

and j=1, 2, …, m. 𝑝𝑖𝑗 is the probability that the jth observation in the ith stratum is a crash. This 

crash probability could be expressed as: 



 

142 

 

 𝒚𝒊𝒋~𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊(𝒑𝒊𝒋) ( 6-12 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝑖 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + ⋯ + 𝛽𝑘𝑋𝑘𝑖𝑗 ( 6-13 ) 

Where 𝛼𝑖 is the intercept term for the ith stratum; 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑘) is the vector of regression 

coefficients for k independent variables; 𝑿𝒊𝒋 = (𝑋1𝑖𝑗, 𝑋2𝑖𝑗, … , 𝑋𝑘𝑖𝑗) is the vector of k independent 

variables. 

To consider the stratification in the observed data, the stratum-specific intercept 𝛼𝑖 is considered 

to be nuisance parameter, and the conditional likelihood for the ith stratum would be expressed as 

(Hosmer Jr et al., 2013): 

 
𝒍𝒊(𝜷) =

𝐞𝐱𝐩 (∑ 𝜷𝒖𝑿𝒖𝒊𝟎
𝒌
𝒖=𝟏 )

∑ 𝐞𝐱𝐩 (∑ 𝜷𝒖𝑿𝒖𝒊𝒋
𝒌
𝒖=𝟏 )𝒎

𝒋=𝟎

 ( 6-14 ) 

 

And the full conditional likelihood is the product of the 𝑙𝑖(𝜷) over N strata, 

 

𝑳(𝜷) = ∏ 𝒍𝒊(𝜷)

𝑵

𝒊=𝟏

 ( 6-15 ) 

Since the full conditional likelihood is independent of stratum-specific intercept 𝛼𝑖, thus Eq. 13 

cannot be used to estimate the crash probabilities. However, the 𝜷 coefficients can be estimated 

by Eq. ( 6-15 ). These estimates represent the logarithm of the odds ratios of corresponding 

variables and can be used to approximate the relative risk of a crash. Furthermore, the log-odds-

ratios can also be used to develop a prediction model under this matched case-control analysis. 

Suppose two observation vectors 𝑿𝒊𝟏 = (𝑋1𝑖1, 𝑋2𝑖1, … , 𝑋𝑘𝑖1) and 𝑿𝒊𝟐 = (𝑋1𝑖2, 𝑋2𝑖2, … , 𝑋𝑘𝑖2) from 

the ith strata, the odds ratio of crash occurrence caused by observation vector 𝑿𝒊𝟏  relative to 

observation vector 𝑿𝒊𝟐 could be calculated as: 
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 𝒑𝒊𝟏/(𝟏 − 𝒑𝒊𝟏)

𝒑𝒊𝟐/(𝟏 − 𝒑𝒊𝟐)
= 𝐞𝐱𝐩 [∑ 𝜷𝒖(𝑿𝒖𝒊𝟏

𝒌

𝒖=𝟏

− 𝑿𝒖𝒊𝟐)] ( 6-16 ) 

The right side of Eq. ( 6-16 ) is independent of 𝛼𝑖 and can be calculated using the estimated 𝜷 

coefficients. Thus, the above odds ratio could be utilized for predicting crash occurrences by 

replacing 𝑿𝒊𝟐 with the vector of the independent variables in the ith stratum of non-crash cases. 

One may use the simple average of all non-crash observations within the stratum for each variable. 

Let 𝑿̅𝒊 = (𝑋̅1𝑖, 𝑋̅2𝑖, … , 𝑋̅𝑘𝑖) denotes the vector of mean values of non-crash cases of the k variables 

within the ith stratum. Then the odds ratio of a crash relative to the non-crash cases in the ith 

stratum could be approximated by: 

 𝒑𝒊𝟏/(𝟏 − 𝒑𝒊𝟏)

𝒑𝒊̅/(𝟏 − 𝒑𝒊̅)
= 𝐞𝐱𝐩 [∑ 𝜷𝒖(𝑿𝒖𝒊𝟏

𝒌

𝒖=𝟏

− 𝑿̅𝒖𝒊)] ( 6-17 ) 

 

6.3.2 Binary Logistic Model 

Suppose the crash occurrence has the outcomes 𝑦𝑖=1 (crash event) and 𝑦𝑖=0 (non-crash event) 

with the respective probabilities of 𝑝𝑖 and 1-𝑝𝑖, i=1, 2, …, M. M represents the total number of 

samples, which equals to N(m+1) in this study. The binary logistic regression can be expressed as 

follows: 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) ( 6-18 ) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝐾𝑋𝐾𝑖 ( 6-19 ) 
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Where 𝛽0  is the intercept;  𝜷 = (𝛽1, 𝛽2, … , 𝛽𝐾)  is the vector of coefficients for K 

independent variables; 𝑿𝒊 = (𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝐾𝑖) is the vector of K independent variables for the ith 

observation. 

6.4 Result analysis 

6.4.1 Effect Analysis 

In order to consider the effect of time dependency, five cycles prior to the crash cycle were 

considered to develop five models, respectively. Table 6-6 shows the estimation results of the 

conditional logistic model, which was developed based on the data prepared by using matched 

case-control design. The model comparison results based on the test AUC values indicate that the 

cycle-1 model performs much better than the other four models, which means that the closest 

signal cycle plays the most important role in the real-time crash risk of the current signal cycle.  

Table 6-6: Estimation Results of Conditional Logistic Model. 

Variables 
Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 

Mean (P-value) Mean (P-value) Mean (P-value) Mean (P-value) Mean (P-value) 

Cycle_Volume 0.01 (0.095) * - - - - 

OAFR_Green_Front - - - - 0.418 (0.045) ** 

OAFR_Red_Back 0.719 (0.009) ** - - - - 

OAFR_Cycle_Back - 1.303 (0.021) ** - - - 

AOYR_back - - - 0.126 (0.097) * - 

Std_Headway_Red_Back - - 0.008 (0.059) * 0.008 (0.096) * - 

Avg_Occupancy_Green_Front - 0.824 (<0.001) ** - 0.323 (0.029) ** 0.329 (0.052) * 

Std_Occupancy_Green_Front - - 0.276 (0.009) ** - - 

Diff_OAFR_Green 0.531 (0.011) ** - 0.713 (0.026) ** - - 

Diff_Avg_Occupancy_Green 0.827 (<0.001) ** - - - - 

Diff_Avg_Headway_Green - -0.019 (0.098) * - - - 

Max_Queue_Length - - 3.655 (0.073) * 5.209 (0.013) ** 4.672 (0.048) ** 

Shock_Wave_Area 0.142 (0.004) ** - - - - 

AUC 0.8046 0.6005 0.6597 0.6902 0.7239 

Note: The cells noted by ** are significant at the 0.05 level; The cells noted by * are significant at the 0.1 level.  
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Overall, 13 variables are found to be significant across all the cycle models, which could be 

classified as five types, i.e., traffic volume, signal timing, headway and occupancy, traffic variation, 

and shockwave characteristics. (1) Four traffic-volume-related variables (Cycle_Volume, 

OAFR_Green_Front, OAFR_Red_Back, and OAFR_Cycle_Back) are found to be positively 

associated with the real-time crash risk, which means that higher cycle volume and overall average 

flow ratio across lanes could significantly increase the crash likelihood. (2) The signal-timing-

related variable, i.e., AOYR_back is proved to have significant positive effect on crash risk, which 

means that given the same yellow time, more vehicles arrive on yellow could significantly increase 

the crash likelihood. (3) Three headway-and-occupancy-related variables 

(Avg_Occupancy_Green_Front, Std_Occupancy_Green_Front, and Std_Headway_Red_Back) 

are also found to be positively correlated with crash occurrences, which reveals that more 

congested and fluctuating traffic condition could result in high crash risk. (4) Three traffic-

variation-related variables (Diff_OAFR_Green, Diff_Avg_Occupancy_Green, and 

Diff_Avg_Headway_Green) are found to be significantly associated with crash likelihood. The 

higher differences in the OAFR and average occupancy during green time between the front and 

back set of detectors tend to result in higher crash occurrence. However, the higher difference 

between the average green headway of the front and back set of detectors is proved to be associated 

with lower crash risk. The possible reason might be that the difference in OAFR and average 

occupancy are associated with traffic congestion and turbulence between the front and back set of 

detectors, therefore, higher traffic variation tends to result in higher crash likelihood. However, the 

difference in average headway represents the vehicle arrival pattern where the higher difference in 

average headway means that sparser vehicle arrival, which could lead to lower crash risk. (5) Two 
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shockwave-related variables are recognized to be positively associated with real-time crash risk, 

which is consistent with previous conflict-based research (Essa and Sayed, 2018a, b).  

As suggested by Yuan and Abdel-Aty (2018), the model based on combined time series data may 

have better performance. Table 6-7 shows the estimation results of the model with combined cycles. 

Since the variables from different signal cycles are highly correlated, the final model only includes 

7 variables after excluding highly correlated and insignificant variables. The performance of the 

combined model is slightly better than the best cycle model (Cycle-1), however, this improvement 

is almost negligible which means that the addition of two variables from preceding cycles cannot 

improve the model performance. 

Table 6-7: Estimation Results of Conditional Logistic Model (Combined Cycles). 

Variables 
Coefficient Estimation 

Mean Std. Error P-value 

Cycle_Volume_1 0.012 0.006 0.054 

OAFR_Red_Back_1 0.755 0.289 0.009 

Diff_OAFR_Green_1 0.524 0.217 0.016 

Diff_Avg_Occupancy_Green_1 0.712 0.231 0.002 

Shock_Wave_Area_1 0.144 0.051 0.004 

Avg_Occupancy_Green_Front_2 0.632 0.213 0.003 

OAFR_Green_Back_3 0.661 0.334 0.048 

AUC 0.8094 

 

To analyze the importance ranking among the variables in the cycle-combined conditional logistic 

model, an appropriate feature importance measure needs to be selected. Generally, there are two 

standard random forest feature importance measures, i.e., Gini feature importance and permutation 

feature importance. As demonstrated in Strobl et al. (2007), Gini feature importance measure is 

not reliable in situations where potential predictor variables vary in their scale of measurement or 

their number of categories while permutation feature importance measures are almost unbiased 
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and more reliable than the Gini feature importance measure. Moreover, Janitza et al. (2013) found 

that the AUC-based permutation feature importance measure outperforms the standard 

permutation feature importance measure for imbalanced dataset where the standard permutation 

feature importance measure loses its ability to discriminate between associated predictors and 

predictors not associated with the response for increasing class imbalance. Above all, the AUC-

based permutation feature importance measure was employed in this study.  

Figure 6-10 illustrates the AUC-based permutation feature importance ranking for the cycle-

combined conditional logistic model. Among the seven significant factors, the shockwave area 

during cycle 1 is the most important factor which indicates that the total vehicle delay of all the 

vehicles during cycle 1 plays the most important role in resulting crash occurrence during the next 

cycle. Moreover, it’s worth noting that the total volume during cycle 1 is the least important factor 

which is almost expected because the hour of day and day of week were controlled in the matched 

case-control design. Therefore, the actual effect of total volume can hardly be captured.  
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Figure 6-10: Permutation Feature Importance Plot for the Conditional Logistic Model 

(Matched Case-Control).  

 

To compare the difference between two kinds of undersampling strategies (i.e., matched case-

control design and random undersampling) given the same raw imbalanced dataset, two logistic 

models were developed, respectively. Table 6-8 shows the estimation results of the binary logistic 

model, which was developed based on the random undersampled dataset. The model comparison 

results based on the test AUC values reveal that the cycle-3 model performs the best while the 

cycle-5 model performs the worst. Moreover, every binary logistic model in Table 6-8 outperforms 

the best conditional logistic model. This could be potentially explained by that the random 

undersampling method is able to capture the effects of many factors which are controlled in the 

matched case-control design. For example, the cycle volume, cycle length, green ratio, and 

queuing shockwave speed might be controlled in the matched case-control design, while they are 

very significant and important variables in the design of random undersampling. 
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Table 6-8: Estimation Results of Binary Logistic Model. 

Variables 
Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 

Mean (P-value) Mean (P-value) Mean (P-value) Mean (P-value) Mean (P-value) 

Intercept -3.072 (<0.001) ** -1.147 (<0.001) ** -2.068 (<0.001) ** -2.03 (<0.001) ** -1.673 (<0.001) ** 

Cycle_Volume 0.021 (<0.001) ** 0.023 (<0.001) ** 0.02 (<0.001) ** 0.022 (<0.001) ** 0.02 (<0.001) ** 

OAFR_Red_Back 0.752 (0.003) ** - - - - 

Cycle_Len 0.005 (0.021) ** - 0.005 (0.024) ** 0.005 (0.014) ** 0.005 (0.006) ** 

Green_Ratio -2.54 (<0.001) ** -2.958 (<0.001) ** -2.777 (<0.001) ** -3.339 (<0.001) ** -3.325 (<0.001) ** 

Avg_Headway_Green_Back - -0.011 (0.038) ** -0.009 (0.059) * - - 

Avg_Headway_Green_Front -0.01 (0.062) * - - - -0.013 (0.013) ** 

Std_Headway_Red_Back - - 0.005 (0.088) * - 0.006 (0.037) ** 

Avg_Occupancy_Green_Front 0.419 (0.005) ** - - - - 

Std_Occupancy_Green_Front - 0.348 (0.005) ** 0.623 (<0.001) ** - 0.435 (0.002) ** 

Std_Occupancy_Green_Back - - 0.446 (0.024) ** 0.401 (0.026) ** - 

Diff_Avg_Occupancy_Green 0.422 (0.039) ** - - 0.468 (0.076) * - 

Queuing_Shockwave_Spd -0.091 (0.008) ** -0.115 (0.002) ** -0.084 (0.013) ** -0.117 (<0.001) ** -0.127 (<0.001) ** 

AUC 0.8421 0.862 0.8853 0.8811 0.8348 

Note: The cells noted by ** are significant at the 0.05 level; The cells noted by * are significant at the 0.1 level. 

 

 In total, there are 12 significant variables among the five binary logistic models. (1) Two 

volume-related variables (Cycle_Volume and OAFR_Red_Back) are found to have positive 

effects on crash occurrence. Higher cycle volume and OAFR could result are proved to be crash-

prone conditions. (2) Two signal-timing-related variables (Cycle_Len and Green_Ratio) are found 

to be significantly associated with cycle-level crash risk, which implies that longer cycle length 

and lower green ratio could significantly increase the crash likelihood. The possible reason might 

be that the longer cycle length and lower green ratio may result in longer waiting time for those 

vehicles who arrive on red, which could significantly increase the crash risk (Yuan and Abdel-Aty, 

2018). (3) Six headway-and-occupancy-related variables (Avg_Headway_Green_Back, 

Avg_Headway_Green_Front, Std_Headway_Red_Back, Avg_Occupancy_Green_Front, 

Std_Occupancy_Green_Front, Std_Occupancy_Green_Back) are found to be significant. The 
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average headways during green time from both front and back sets of detectors are uncovered to 

be negatively correlated with crash occurrence while the standard deviation of headway is proved 

to have positive effect on crash likelihood. These findings reveal that sparser and more uniform 

vehicle arrivals could significantly decrease the crash risk. In terms of occupancy, both the average 

and standard deviation of occupancy are found to be positively associated with crash occurrences, 

which in turn verified the findings from headway-related variables that more congested and 

volatile traffic flow may result in higher crash risk. (4) The traffic-variation-related variable 

(Diff_Avg_Occupancy_Green) is recognized to be positively correlated with crash occurrences, 

which could also be explained by that the higher traffic volatility could significantly increase the 

crash likelihood. This finding is in line with previous research on the safety effect of traffic 

volatility (Wali et al., 2018). (5) The Queuing_Shockwave_Spd is found to be negatively 

correlated with crash occurrences, which means that higher queuing shockwave speed may lead to 

lower crash risk. It is worth noting that the queuing shockwave speed is always negative, and the 

higher value of queuing shockwave speed stands for the lower absolute value of queuing 

shockwave speed. Therefore, slow absolute queuing shockwave speed appears to be associated 

with lower crash likelihood. 

 Meanwhile, the combined model was also developed for the random undersampled dataset. 

Table 6-9 presents the estimation results of the binary logistic model with combined cycles. The 

model performance is almost at the same level as the best cycle model in Table 6-8. In total, 10 

variables from four cycles are found to be significant. Generally, the logical signs of all the 

variables are consistent with the aforementioned models.  
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Table 6-9: Estimation Results of Binary Logistic Model (Combined Cycles). 

Variables 
Coefficient Estimation 

Mean Std. Error P-value 

(Intercept) -3.373 0.555 <0.001** 

Cycle_Volume_1 0.021 0.003 <0.001** 

Diff_Avg_Occupancy_Green_1 0.651 0.224 0.004** 

OAFR_Red_Back_1 0.841 0.263 0.001** 

Green_Ratio_2 -2.29 0.677 0.001** 

Std_Occupancy_Green_Front_3 0.568 0.177 0.001** 

Std_Occupancy_Green_Back_3 0.551 0.214 0.01** 

Queuing_Shockwave_Spd_3 -0.062 0.035 0.076* 

Cycle_Len_3 0.003 0.002 0.095* 

Avg_Headway_Red_Back_4 -0.009 0.005 0.086* 

Shock_Wave_Area_4 0.114 0.055 0.039** 

AUC 0.886 

Note: The cells noted by ** are significant at the 0.05 level; The cells noted by * are significant at the 0.1 level. 

 

 Figure 6-11 shows the AUC-based permutation feature importance ranking for the cycle-

combined binary logistic model. It can be clearly observed that the shockwave area is the most 

important feature, which is consistent with the conditional logistic model. In the binary logistic 

model, however, the factor of shockwave area was collected from cycle 4 while the factor of 

shockwave area in the conditional logistic model was collected from cycle 1. The possible reason 

for the difference in cycles might be that the random undersampling method does not control the 

effects of time of day and day of week, and effects of factors over time is much more dispersed 

than the matched case-control method which has been verified by the difference between the AUCs 

of different cycle models. Another notable finding is that the cycle volume is the second most 

important factor in the binary logistic model while it is the least important factor in the conditional 

logistic model, which might be the most important reason why the binary logistic models 

outperform the conditional logistic models. 
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Figure 6-11: Permutation Feature Importance Plot for the Binary Logistic Model (Random 

Undersampling). 

 

6.4.2 Classification Evaluation 

Receiver operating characteristic (ROC) curve is widely used to illustrate the diagnostic ability of 

a binary classifier system as its discrimination threshold is varied. It is created by plotting the true 

positive rate (TPR) against the false positive rate (FPR) at various threshold settings. Figure 6-12 

shows the ROC curves for the final conditional logistic model and binary logistic model. As 

indicated in the figure, the area under ROC curve of the binary logistic model is 0.886, which is 

much higher than that of the conditional logistic model. 
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Figure 6-12: Receiver Operating Characteristics Curve. 

To evaluate the model performance in terms of the specific sensitivity and false positive rate, the 

cut-off threshold needs to be determined. In this study, the cut-off threshold was determined as the 

optimal point where sensitivity and specificity curves cross (Shi and Abdel-Aty, 2015; Yuan et al., 

2019). Table 6-10 shows the prediction outcomes, sensitivities, and false positive rates for the two 

models on the test dataset. The sensitivity of the binary logistic model is much higher than the 

conditional logistic model where the binary logistic model successfully predicted 43 crashes while 

the conditional logistic model only successfully predicted 38 crashes over the total 52 crashes. 

Table 6-10: Model Classification Results on Test Dataset 

Observed 

Predicted 

Conditional Logistic Binary Logistic 

Non-Crash Event Crash Event Non-Crash Event Crash Event 

Non-Crash Event 1,798,294 662,509 2,016,496 444,307 

Crash Event 14 38 9 43 

Sensitivity 0.731 0.827 

False Positive Rate 0.269 0.181 

 



 

154 

 

In terms of the impacts of crash characteristics on model prediction performance, Table 6-11 shows 

the model prediction performance among different crash types, crash severities, light conditions, 

and time periods. More specifically, the prediction sensitivity of sideswipe crashes is much higher 

than the rear-end crashes in both models, and the strength of binary logistic model mainly relies 

on rear-end crashes where the binary logistic model can predict four more rear-end crashes than 

the conditional logistic model. In terms of crash severity, property damage only (PDO) crashes are 

more likely to be predicted than injury crashes according to both models. Moreover, the model 

prediction performance for daylight crashes is much higher than dusk and dark-lighted conditions, 

the binary logistic model can even predict more than 90% daylight crashes. With respect to time 

periods, both models perform better during peak condition than that during non-peak condition. It 

is worth noting that the superiority of the binary logistic model over the conditional logistic model 

during non-peak condition is more significant than that during peak condition. This could be 

attributed to the fact that the binary logistic model based on random undersampled dataset could 

capture the effects of traffic exposure-related factors in addition to the intrinsic traffic fluctuation, 

while those exposure factors can hardly be considered by the conditional logistic model as they 

are mainly controlled as confounding factors. In addition, traffic exposure is supposed to have a 

more important role in the crash risk during non-peak condition than that during peak condition .  
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Table 6-11: Comparison between the Model Performance for Different Types of Crashes 

Observed Test Crash Events 

Conditional Logistic Binary Logistic 

Predicted 
Sensitivity 

Predicted 
Sensitivity 

0 1 0 1 

Crash Type 

Rear-End 12 29 0.707 8 33 0.805 

Sideswipe 1 8 0.889 1 8 0.889 

Right Turn 1 0 0.000 0 1 1.000 

Other 0 1 1.000 0 1 1.000 

Crash Severity 
Injury 3 7 0.700 2 8 0.800 

Property Damage Only (PDO) 11 31 0.738 7 35 0.833 

Light 

Condition  

Daylight 10 31 0.756 4 37 0.902 

Dusk 1 1 0.500 1 1 0.500 

Dark - Lighted 3 5 0.625 4 4 0.500 

Dark - Not Lighted 0 1 1.000 0 1 1.000 

Peak/Non-

Peak 

Peak 4 15 0.789 3 16 0.842 

Non-Peak 10 23 0.697 6 27 0.818 

 

6.5 Conclusion and Discussion 

This study aims to reveal the relationships between real-time crash occurrences and cycle-level 

characteristics at signalized intersection approaches. 42 intersection approaches in Seminole 

County were selected and the high-resolution ATSPM database was utilized to collect real-time 

cycle-level signal timing, lane-specific volume, headway, and occupancy related variables. 

Moreover, cycle-level shockwave characteristics, including maximum queue length, shock wave 

area, and queuing shockwave speed, were also collected from ATSPM database. Prior to the 

modeling process, the actual times of crash events were determined based on abnormal vehicle 

detections from ATSPM data. To consider the effect of time dependency, five preceding cycles 
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were considered to examine their relationships with the crash occurrences during the current cycle. 

In terms of the model framework, the imbalanced raw data (ratio of crash cycle to non-crash cycle 

is 1: 48,954) were collected for nearly two years and then split into approximately 80% training 

data (before 9/16/2018) and 20% test data (after 9/16/2018). For the training dataset, both matched 

case-control and random undersampling techniques were employed, and conditional logistic and 

binary logistic models were calibrated respectively to investigate the difference between various 

undersampling techniques as well as the corresponding statistical models. 

Model results reveal that the binary logistic model based on the random undersampled dataset 

performs much better than the conditional logistic model based on the matched case-control dataset. 

This could be attributed to that the binary logistic model based on the random undersampled 

dataset is able to capture the effects of traffic exposure-related factors in addition to the intrinsic 

traffic fluctuation, while those exposure factors can hardly be considered by the conditional 

logistic model as they are mainly controlled as confounding factors. This has also been verified 

through the permutation feature importance figures (Figure 6-10 and Figure 6-11) where the cycle 

volume is the second most important variable in the binary logistic model while it is the least 

important variable in the conditional logistic model. 

In terms of the time dependency, among the five conditional logistic cycle models, there is a 

significant trend that the closest preceding cycle (cycle 1) outperforms the other cycle models. 

However, for the five binary logistic cycle models, there are no significant differences between 

different cycles, which could be explained by the difference between two undersampling strategies. 

More specifically, the matched case-control design mainly aims to capture the effects of intrinsic 

traffic fluctuation rather than the controlled factors which are also very important factors. 

Therefore, the matched case-control design could better capture the differences between the five 
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preceding cycles. On the other hand, the random undersampling method aims to model all the 

potential contributing factors, including both traffic exposure and intrinsic fluctuation 

characteristics. However, those exposure factors (e.g., cycle volume) are very likely to be similar 

among five consecutive cycles, which might lead to similar model performance among five cycle 

models.  

Overall, there are five groups of variables (i.e., traffic volume, signal timing, headway and 

occupancy, traffic variation, and shockwave characteristics) found be significantly associated with 

the cycle-level crash risk at signalized intersections. (1) Higher cycle volume and overall average 

flow ratio across lanes could significantly increase the crash likelihood at signalized intersections, 

which is in line with previous studies (Essa and Sayed, 2018a, b). (2) Longer cycle length, higher 

arrivals on yellow ratio, and lower green ratio tend to increase the crash risk, which is also 

consistent with our previous research (Yuan and Abdel-Aty, 2018; Yuan et al., 2019). (3) More 

congested (higher average occupancy and lower average headway) and fluctuating (higher 

standard deviation of vehicle occupancy and headway) traffic flow is more likely to be crash-prone 

conditions. (4) Higher traffic volatility across approach sections could significantly increase the 

crash likelihood, which is similar to the aggregated intersection safety research (Kamrani et al., 

2018). (5) Three shockwave-related variables are found to have significant effects on the cycle-

level crash risk. Longer maximum queue length, larger shockwave area, and higher absolute 

queuing shockwave speed are proved to be crash-prone conditions, which consistent with previous 

conflict-based research (Essa and Sayed, 2018a, b). 

With respect to the model classification performance on the test dataset, the model results indicate 

that the prediction sensitivity of sideswipe crashes is much higher than the rear-end crashes. Also, 

PDO crashes, as well as those crashes occurred during daylight and peak conditions are more likely 
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to be predicted. In terms of model comparison, it is worth noting that the binary logistic model is 

found to have superior performance on rear-end crashes, as well as those crashes happened during 

non-peak and daylight conditions, while the conditional logistic model performs better on those 

crashes occurred during the dark-lighted condition. These findings inspire us that ensembled 

classifiers could be considered in the future to achieve better prediction performance. 

Above all, this is the first attempt to investigate the cycle-level crash risk at signalized intersections 

based on high-resolution event-based data. Even though the model performance is very promising, 

there are still some limitations and possible improvements could be made in the future. (1) Only 

five preceding signal cycles and the crash to non-crash ratio of 1:4 are considered in this study. 

More cycles and various crash to non-crash ratios could be considered, or event sensitivity analyses 

could be conducted in the future. (2) While estimating the shockwave characteristics, there is an 

assumption that the breakpoint C could be identified. However, there might exist oversaturation 

conditions, e.g., extreme congestion where the intersection is blocked by the downstream queue, 

therefore, the breakpoint C cannot be identified. (3) It is also worth pointing out that the spatial 

relationships between upstream and downstream intersections have not been considered in this 

study, which might be very important in improving the model prediction performance. In this 

context, more advanced spatial-temporal modeling techniques, e.g., Conv_LSTM (convolutional 

long short-term memory), could be employed in future research. 
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CHAPTER 7: CONCLUSIONS 

7.1 Summary 

This dissertation aims to investigate the relationship between the real-time crash risk on arterials 

and all the possible contributing factors, and then improve the model prediction performance by 

employing deep learning algorithms, sampling techniques, and high-resolution data. More 

specifically, the main objectives of this dissertation are to (1) reveal the relationship between real-

time crash occurrence and real-time traffic and signal characteristics on arterials, (2) investigate 

the effects of real-time traffic, signal timing, and weather characteristics on intersection approach-

level crash likelihood, (3) develop a real-time crash risk prediction algorithm for signalized 

intersections by integrating LSTM and oversampling techniques, (4) predict real-time crash risk 

at the cycle-level for signalized intersections with the consideration of shockwave characteristics 

based on high-resolution data. 

In Chapter 3, this study investigated the crash risk on urban arterials based on real-time data from 

multiple sources, including travel speed provided by Bluetooth detectors, traffic volume and signal 

timing extracted from adaptive signal controllers, and weather data collected by the airport weather 

station. Matched case-control design with a control-to-case ratio of 4:1 was applied to collect data 

for crash and non-crash events. Four BCL models were developed separately for four 5-minute 

interval datasets (20-minute window prior to the reported crash time). In terms of AUC values, the 

model estimation results indicated that slice 2 (5-10 minute) model performs the best, followed by 

the slice 1 (0-5 minute) model. It revealed that the average speed, upstream left-turn volume, 

downstream green ratio, and rainy indicator were found to have significant effects on crash 

occurrence. Furthermore, Bayesian random parameters conditional logistic model (BRPCL) 

outperformed Bayesian random parameters logistic (BRPL) and Bayesian conditional logistic 
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models (BCL) in terms of the area under the receiver operating characteristics curve (AUC) and 

Deviance Information Criterion (DIC) values. 

In Chapter 4, this research examined the real-time crash risk at signalized intersections based on 

the disaggregated data from multiple sources, including travel speed collected by Bluetooth 

detectors, lane-specific traffic volume and signal timing data from adaptive signal controllers, and 

weather data collected by airport weather station. The intersection and intersection-related crashes 

were collected and then divided into three types, i.e., within intersection crashes, intersection 

entrance crashes, and intersection exit crashes. In terms of the sample size, only the within 

intersection crashes and intersection entrance crashes were considered and then modeled 

separately. Matched case-control design with a control-to-case ratio of 4:1 was employed to select 

the corresponding non-crash events for each crash event. Afterwards, all the traffic, signal timing, 

and weather characteristics during 20-minute window prior to the crash or non-crash events were 

collected and divided into four 5-minute slices. Later, Bayesian conditional logistic models were 

developed for within intersection crashes and intersection entrance crashes, respectively.  

In Chapter 5, this study predicted the real-time crash risk at signalized intersections by using 

multilayer LSTM recurrent neural network, which is designed for sequence modeling, and they 

can consider the time series characteristics automatically. First, a real-world unbalanced dataset 

was collected for every minute by incorporating real-time traffic, signal, and weather data. Also, 

both the approach-level and intersection-level geometric characteristics were included into the 

algorithm. To train the algorithm without losing any non-crash information, the synthetic minority 

over-sampling technique (SMOTE) was employed in this study to generate a balanced training 

dataset. In comparison, a traditional conditional logistic model was developed based on the 

matched case-control dataset with the control-to-case ratio of 10:1. The prediction results showed 
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that the LSTM with SMOTE could predicts 60.67% of the intersection crashes with a false alarm 

rate of 39.33%, which is better than the conditional logistic model (i.e., sensitivity: 56.72% and 

false alarm rate: 43.28%). This comparison results succeed in verifying the feasibility of applying 

LSTM in real-time crash risk prediction. Since this study is the first attempt in predicting real-time 

crash risk by using LSTM, therefore, the feasibility proof of the of LSTM with SMOTE is the 

major objective of this study. 

In Chapter 6, this study aims to reveal the relationship between real-time crash occurrences and 

cycle-level characteristics at signalized intersection approaches. Forty-two intersection approaches 

in Seminole County were selected and the high-resolution ATSPM database was utilized to 

calculate real-time cycle-level signal timing, lane-specific volume, headway, and occupancy 

related variables. Moreover, cycle-level shockwave characteristics, including maximum queue 

length, shock wave area, and queuing shockwave speed, were also estimated from ATSPM 

database. Prior to the modeling process, the actual times of crash events were determined based 

on abnormal vehicle detections from ATSPM data. To consider the effect of time dependency, five 

preceding cycles were considered to examine their relationships with the crash occurrences during 

the current cycle. In terms of the model framework, the imbalanced raw data (ratio of crash cycle 

to non-crash cycle is 1: 48,954) were collected for nearly two years and then split into 

approximately 80% training data (before 9/16/2018) and 20% test data (after 9/16/2018). For the 

training dataset, both matched case-control and random undersampling techniques were employed, 

and conditional logistic and binary logistic models were calibrated respectively to investigate the 

difference between various undersampling techniques as well as the corresponding statistical 

models. Model results reveal that the binary logistic model based on the random undersampled 

dataset performs much better than the conditional logistic model based on the matched case-control 
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dataset. This could be attributed to that the binary logistic model based on the random 

undersampled dataset is able to capture the effects of traffic exposure-related factors in addition to 

the intrinsic traffic fluctuation, while those exposure factors can hardly be considered by the 

conditional logistic model as they are more likely to be controlled when we are controlling the 

confounding factors (i.e., intersection approach, hour of day, and day of week). 

 

7.2 Implications 

Chapter 3 presents multiple algorithms on predicting the real-time crash risk on arterial segments. 

The outcome of this study might be implemented on urban arterials from several aspects. The most 

straightforward application is to apply this algorithm to develop an arterial real-time crash risk 

prediction system. The real-time prediction results could be fed into the implementation of 

proactive traffic management strategies (e.g., variable speed limit or queue warning), which can 

efficiently mitigate the crash risk in advance of the potential crash occurrence. Also, the real-time 

prediction results could be provided to drivers to assist with the route choice decisions. 

Furthermore, the real-time crash prediction results could be delivered to the drivers through 

connected-vehicle technology to provide crash risk warning information (Yue et al., 2018). In 

addition, the arterial real-time crash risk prediction system could be integrated with the real-time 

crash prediction on freeways. Therefore, an integrated arterial/freeway active traffic management 

strategy could be employed to proactively mitigate the safety of the road network. 

Chapter 4 developed Bayesian conditional logistic models for within intersection crashes and 

intersection entrance crashes.  For the within intersection models, the model results showed that 

the through volume from “A” approach (the traveling approach of at-fault vehicle), the left turn 
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volume from “B” approach (near-side crossing approach), and the overall average flow ratio 

(OAFR) from “D” approach (far-side crossing approach), were found to have significant positive 

effects on the odds of crash occurrence. Moreover, the increased adaptability for the left turn signal 

timing of “B” approach and more priority for “A” approach could significantly decrease the odds 

of crash occurrence. For the intersection entrance models, average speed was found to have 

significant negative effect on the odds of crash occurrence. The longer average green time and 

longer average waiting time for the left turn phase, higher green ratio for the through phase, and 

higher adaptability for the through phase can significantly improve the safety performance of 

intersection entrance area. In addition, the average queue length on the through lanes was found to 

have positive effect on the odds of crash occurrence. 

Chapter 5 succeeded in verifying the feasibility of real-time crash risk prediction at signalized 

intersections by using LSTM recurrent neural network together with SMOTE over-sampling 

method. The results of this study could be utilized to predict real-time crash risk at signalized 

intersections in advance, which could assist operators to implement various pro-active traffic 

management strategies to reduce the risk in real-time (for example using adaptive signal control). 

Chapter 6 unveiled that the binary logistic model based on the random undersampled dataset 

performs much better than the conditional logistic model based on the matched case-control dataset. 

Among the model results, there are five groups of variables (i.e., traffic volume, signal timing, 

headway and occupancy, traffic variation, and shockwave characteristics) found be significantly 

associated with the cycle-level crash risk at signalized intersections. Higher cycle volume and 

overall average flow ratio across lanes could significantly increase the crash likelihood at 

signalized intersections. Also, longer cycle length, higher arrivals on yellow ratio, and lower green 

ratio tend to increase the crash risk. More congested (higher average occupancy and lower average 
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headway) and fluctuating (higher standard deviation of vehicle occupancy and headway) traffic 

flow is more likely to be crash-prone conditions. Higher traffic volatility across approach sections 

could significantly increase the crash likelihood. Longer maximum queue length, larger 

shockwave area, and higher absolute queuing shockwave speed are proved to be crash-prone 

conditions. These findings inspire us that proactive traffic management strategies, e.g., adaptive 

signal control, could be implemented to alleviate the real-time crash risk at signalized intersections.
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