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ABSTRACT

Extremal combinatorics is one of the central branches of discrete mathematics and has experienced

an impressive growth during the last few decades. It deals with the problem of determining or

estimating the maximum or minimum possible size of a combinatorial structure which satisfies

certain requirements. In this dissertation, we focus on studying the minimum number of edges

of certain co-critical graphs. Given an integer r ≥ 1 and graphs G, H1, . . . , Hr, we write

G → (H1, . . . , Hr) if every r-coloring of the edges of G contains a monochromatic copy of

Hi in color i for some i ∈ {1, . . . , r}. A non-complete graph G is (H1, . . . , Hr)-co-critical if

G 9 (H1, . . . , Hr), but G + uv → (H1, . . . , Hr) for every pair of non-adjacent vertices u, v

in G. Motivated in part by Hanson and Toft’s conjecture from 1987, we study the minimum

number of edges over all (Kt, Tk)-co-critical graphs on n vertices, where Tk denotes the family of

all trees on k vertices. We apply graph bootstrap percolation on a not necessarily Kt-saturated

graph to prove that for all t ≥ 4 and k ≥ max{6, t}, there exists a constant c(t, k) such

that, for all n ≥ (t − 1)(k − 1) + 1, if G is a (Kt, Tk)-co-critical graph on n vertices, then

e(G) ≥
(
4t−9
2

+ 1
2

⌈
k
2

⌉)
n − c(t, k). We then show that this is asymptotically best possible for all

sufficiently large n when t ∈ {4, 5} and k ≥ 6. The method we developed may shed some light on

solving Hanson and Toft’s conjecture, which is wide open.

We also study Ramsey numbers of even cycles and paths under Gallai colorings, where a Gallai

coloring is a coloring of the edges of a complete graph without rainbow triangles, and a Gallai

k-coloring is a Gallai coloring that uses at most k colors. Given an integer k ≥ 1 and graphs

H1, . . . , Hk, the Gallai-Ramsey number GR(H1, . . . , Hk) is the least integer n such that every

Gallai k-coloring of the complete graph Kn contains a monochromatic copy of Hi in color i for

some i ∈ {1, . . . , k}. We completely determine the exact values of GR(H1, . . . , Hk) for all k ≥ 2

when each Hi is a path or an even cycle on at most 13 vertices.
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CHAPTER 1: INTRODUCTION

Extremal combinatorics is one of the central branches of discrete mathematics and has experienced

an impressive growth during the last few decades. It deals with the problem of determining or

estimating the maximum or minimum possible size of a combinatorial structure which satisfies

certain requirements. In this dissertation, we focus on studying two Ramsey-related problems.

1.1 Basic Definitions

Following the conventions set out in [81], a graph G is a triple consisting of a vertex set V (G), an

edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct)

called it endvertices or ends, written as G = (V (G), E(G)) or G = (V,E). See Figure 1.1 for an

example of graph. The order of a graph G, written |G|, is the number of vertices in G. The size

of a graph G, written e(G), is the number of edges in G. Graphs are finite, infinite, countable and

so on according to their order. A loop is an edge whose ends are both the same vertex. Multiple

edges are distinct edges which share the same two ends. A graph is simple if it contains no loops

or multiple edges. All graphs considered in this dissertation are finite and simple. We use the

convention “A :=” to mean that A is defined to be the right-hand side of the relation.

Figure 1.1: A graph on V = {1, . . . , 7} with edge set E = {12, 15, 25, 34, 57}

Let G = (V,E). If an edge e ∈ E has ends x, y ∈ V , we usually write e = xy and say that x
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and y are incident with e in G, and that x and y are adjacent or neighbors in G. If two vertices are

not adjacent to each other in G, then we say that they are non-adjacent. The set of neighbours of a

vertex v in G is denoted by NG(v), or briefly by N(v). The degree dG(v) = d(v) of a vertex v is

equal to the number of neighbours of v. The number δ(G) := min{d(v) : v ∈ V } is the minimum

degree of G, the number ∆(G) := max{d(v) : v ∈ V } is its maximum degree. The complement

G of G is the graph with vertex set V and edge set {uv : u, v ∈ V and uv 6∈ E}. See Figure 1.2

for an example of this definition. Given disjoint sets A,B ⊆ V , we say that A is complete to B

if for every a ∈ A and every b ∈ B, ab ∈ E, and A is anti-complete to B if for every a ∈ A and

every b ∈ B, ab /∈ E.

Figure 1.2: A graph G and its complement G

Figure 1.3: A graph G with subgraphs G′ and G′′: G′ is an induced subgraph, but G′′ is not

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. Following the conventions of [25], if V ′ ⊆ V

and E ′ ⊆ E, then G′ is a subgraph of G, written as G′ ⊆ G. Less formally, we say that G contains

G′. If G′ ⊆ G and G′ 6= G, then G′ is a proper subgraph of G. If G′ ⊆ G and G′ contains all the

edges xy ∈ E with x, y ∈ V ′, then G′ is an induced subgraph of G; we say that V ′ induces G′ in

G, and write G′ = G[V ′]. See Figure 1.3 for examples of these definitions. If U ⊆ V is any set of
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vertices, G[U ] is the subgraph of G obtained from G by deleting all vertices in V \U . If W is any

subset of V , we write G\W for G[V \W ]. In other words, G\W is obtained from G by deleting

all the vertices in W and their incident edges. If W = {v} is a singleton, we write G\v rather than

G\{v}. For a subset F of E, we write G\F = (V,E\F ) and G + F = (V,E ∪ F ); as above,

G\{e} and G+ {e} are abbreviated to G\e and G+ e.

Let G and H be two vertex disjoint graphs. The join G+H is the graph having vertex set V (G)∪

V (H) and edge set E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}. The union G ∪H is the graph

having vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H). Given two isomorphic graphs G and

H , we may (with a slight but common abuse of notation) write G = H . For an integer t ≥ 1 and a

graph H , we define tH to be the union of t disjoint copies of H .

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph is a set of

pairwise nonadjacent vertices. The greatest integer r such that Kr ⊆ G is the clique number ω(G)

of G, and the greatest integer r such that Kr ⊆ G is the independence number α(G) of G. For any

graph G, α(G) = ω(G) and ω(G) = α(G).

Let us now describe some frequently used graphs. If all the vertices of G are pairwise adjacent,

then G is complete. A complete graph on n vertices is a Kn; a K3 is called a triangle. A path

P is an alternating sequence of all distinct vertices and edges, v1, e1, v2, . . . , vk−1, ek−1, vk, which

begins and ends with vertices. We often refer to a path by the natural sequence of its vertices,

writing, say P := v1v2 . . . vk. The graph C := P + v1vk is called a cycle. As with paths, we

often denote a cycle by its (cyclic) sequence of vertices; the above cycle C might be written as

v1 . . . vk−1v1. A graph G is called connected if it is non-empty and there exists a path between any

two of its vertices in G. A connected graph with no cycles is called a tree. A vertex of degree 1

in a tree is call a leaf of the tree. A tree on k + 1 vertices with k leaves is defined as a star, and

is denoted by K1,k or Sk. We use Pn, Cn and Tn to denote the path, cycle and tree on n vertices,
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respectively. A graph G is k-partite if V (G) is the union of k independent sets called partite sets of

G. We say G is bipartite when k = 2. If the k independent sets of a k-partite graph G are complete

to each other, then G is called a complete k-partite graph. Note that Pn, C2n and Tn are bipartite

graphs, and K1,k is a complete bipartite graph. Examples of some of these graphs are depicted in

Figure 1.4.

(a) (b) (c) (d)

Figure 1.4: The path P5, the cycle C5, the complete graph K5, and the star K1,5

For any positive integer k, we write [k] for the set {1, 2, . . . , k}. A k-coloring of a graph G =

(V,E) is a map c : V → [k]. If c(v) 6= c(w) whenever v and w are adjacent, then c is said to be

a proper coloring. The chromatic number of a graph G, written χ(G), is the minimum number of

colors needed in a proper coloring of G. A k-edge-coloring of a graph G = (V,E) or a k-coloring

of edge set E of G is a map σ : E → [k]. Similarly, if σ(e) 6= σ(f) for any adjacent edges e and f ,

then σ is said to be a proper edge coloring. A subset of vertices assigned to the same color under

c is called a color class of c, and similarly a subset of edges assigned to the same color under σ is

called a color class of σ. Every color class of a proper coloring or a proper edge coloring forms an

independent set. Note that a proper k-coloring is nothing but a vertex partition into k independent

sets, and a proper k-edge-coloring is an edge partition into k independent sets. Let H ⊆ G and σ

be a k-edge-coloring of G. We say that G contains a monochromatic copy of H if all the edges of

H have the same color under σ.
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1.2 Pigeonhole Principle

In this section, we list an important, but elementary, combinatorial principle that can be

used to solve a variety of interesting problems, often with surprising conclusions. This

principle is commonly called the pigeonhole principle, the Dirichlet drawer principle, and the

shoeboxprinciple. The first formalization of the idea is believed to have been made by Peter Gustav

Lejeune Dirichlet in 1834 under the name Schubfachprinzip (German). Formulated as a principle

about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then

at least one pigeonhole will be occupied by more than one pigeons.

Theorem 1.2.1 (Pigeonhole principle (Simple form), Herstein [58]) If n + 1 (or more) objects

are distributed into n boxes, then at least one box contains two or more of the objects.

Theorem 1.2.2 (Pigeonhole principle (Strong form), Brualdi [11]) Let q1, . . . , qn be positive

integers. If q1 + q2 + · · · + qn − n + 1 (or more) objects are distributed into n boxes, then either

the first box contains at least q1 objects, or the second box contains at least q2 objects, . . . , or the

nth box contains at least qn objects.

The simple form of the pigeonhole principle can be obtained from the strong form by taking q1 =

· · · = qn = 2. Then q1 + q2 + · · ·+ qn − n+ 1 = n+ 1.

1.3 Ramsey Numbers of Graphs

Given an integer k ≥ 1 and graphs G,H1, . . . , Hk, we write G → (H1, . . . , Hk) if every k-

coloring of E(G) contains a monochromatic copy of Hi in color i for some i ∈ [k]. If G has no

monochromatic copy of Hi in color i for any i ∈ [k] under some k-coloring σ of E(G), then we

write G 9 (H1, . . . , Hk), and say that σ is a critical k-coloring of G with respect to H1, . . . , Hk;
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when k = 2, we simply say critical-coloring. The classical Ramsey number R(H1, . . . , Hk) is the

minimum positive integer n such that Kn → (H1, . . . , Hk). If H = H1 = · · · = Hk, we simply

write Rk(H) to denote the k-color Ramsey number of H .

Figure 1.5: K5 9 (K3, K3)

From Figure 1.5, we see that K5 9 (K3, K3). Note that the {red, blue}-coloring of K5 depicted

in Figure 1.5 is the unique critical-coloring of K5, so R2(K3) ≥ 6. Actually R2(K3) = 6 and is

not difficult to prove. The task of proving R2(K3) ≤ 6 was the second problem in Part I of the

William Lowell Putnam Mathematical Competition held in March 1953 [13].

Ramsey theory stems from a deceptively simple problem, i.e., a problem that is very easy to state

and that seems easy to solve, but turns out to be very difficult. In its general form, the problem is

to determine the smallest integer r = R(Km, Kn), such that at any party of r people, we can find

m mutual acquaintances (each one knows all m − 1 others) or n mutual strangers (each one does

not know any of the n − 1 others). For small values of m and n the problem is easy. It is trivial

that R(K1, Kn) = R(Km, K1) = 1, and almost trivial that R(K2, Kn) = n and R(Km, K2) = m.

The field is named for Frank P. Ramsey who proved its first result [72] in 1929. This paper [72]

was published in 1930. Since then, the field has exploded.

Theorem 1.3.1 (Ramsey [72]) For all k ≥ 1 and any given graphs H1, . . . , Hk, there exists a

n ∈ N such that Kn → (H1, . . . , Hk).

Ramsey theory is a profound and important generalization of the Pigeonhole Principle. It studies
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conditions when a combinatorial object contains necessarily some smaller given objects. The role

of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory.

The core idea of Ramsey theory is that complete disorder is impossible. Determining Rk(Kt), or

even R2(Kt), is one of the main open problems in Ramsey theory. However, computing Ramsey

numbers is notoriously difficult.

Paul Erdős had a tremendous impact on the area of Ramsey theory. His contribution started

with determining the Ramsey number R(Km, Kn). Ramsey [72] provided an upper bound of

R2(Kt) which is R2(Kt) ≤ 22t−3. In 1947, Erdős [30] proved a lower bound of R2(Kt) which

is R2(Kt) > 2t/2. The interesting feature of Erdős’s proof is that he never presented a specific

coloring. He simply proved that choosing a coloring at random almost always works. This was

one of the first occurence of the probabilistic method in combinatorics. While there have been

several improvements on these bounds (see for example [20] and [78]), the constant factors in the

above exponents remain the same.

For 2-color Ramsey numbers of complete graphs, Greenwood and Gleason [49] established the

initial values R(K3, K4) = 9, R(K3, K5) = 14 and R2(K4) = 18 in 1955. Kéry [61]

obtained R(K3, K6) = 18 in 1964, and Graver and Yackel [48] proved that R(K3, K7) = 23

in 1968. The determination of other classical Ramsey numbers required the use of computers.

Grinstead and Roberts [48] found that R(K3, K9) = 36 in 1982; Mckay and Zhang [68] computed

R(K3, K8) = 28 in 1992; Mckay and Radziszowski [67] determined R(K4, K5) = 25 in 1995.

Perhaps surprisingly, even the exact value of R2(K5) remains unknown. The best known lower

bound of R2(K5) was provided by Exoo [34] in 1989, shown to be 43. More recently, Angeltveit

and McKay [3] proved that R2(K5) ≤ 48. For multiple colors, the only known nontrivial classical

Ramsey number of complete graphs is R3(K3), which is 17, as shown by Greenwood and Gleason

[49]. 2-color Ramsey numbers of certain graphs are completely determined. We list some of the

results below which will be used in this dissertation.
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Theorem 1.3.2 (Chartrand, Schuster [16]) R2(C4) = 6 and R2(C6) = 8.

Theorem 1.3.3 (Faudree, Schelp [38]; Rosta [74] independtly)

R(Cm, Cn) =


2n− 1 for 3 ≤ m ≤ n, m odd, (m,n) 6= (3, 3),

n− 1 +m/2 for 4 ≤ m ≤ n, m and n even, (m,n) 6= (4, 4),

max{n− 1 +m/2, 2m− 1} for 4 ≤ m < n,m even and n odd.

Theorem 1.3.4 (Faudree, Lawrence, Parsons, Schelp [37])

R(Cm, Pn) =



2n− 1 for 3 ≤ m ≤ n, m odd,

n− 1 +m/2 for 4 ≤ m ≤ n, m even,

max{m− 1 + bn/2c, 2n− 1} for 2 ≤ n ≤ m, m odd,

m− 1 + bn/2c for 2 ≤ n ≤ m, m even.

Theorem 1.3.5 (Gerencsér, Gyárfás [46]) For all integers n,m satisfying n ≥ m ≥ 2,

R(Pm, Pn) = n+ bm/2c − 1.

Theorem 1.3.6 (Chvátal [19]) For all integers n,m ≥ 2, R(Km, Tn) = (m− 1)(n− 1) + 1.

Determining the Ramsey number Rk(Cn) is one of the earliest and well-known problems. For

3-color Ramsey numbers of even cycles, a lower bound R3(C2n) ≥ 4n for all n ≥ 2 follows from

a construction by Dzido, Nowik and Szuca [28]. In 2005, Dzido [27] posed the Triple Even Cycle

Conjecture in his Ph.D. thesis.

Conjecture 1.3.7 (Triple Even Cycle, Dzido [27]) R3(C2n) = 4n for all integers n ≥ 3.

Benevides and Skokan [5] proved Conjecture 1.3.7 is true for sufficiently large n. For small value

8



of n, only R3(C4) , R3(C6) and R3(C8) are known. For 3-color Ramsey numbers of odd cycles,

we begin with the well know conjecture by Bondy and Erdős [7].

Conjecture 1.3.8 (Bondy, Erdős [7]) Rk(C2n+1) = n · 2k + 1 for all n ≥ 2 and k ≥ 3.

When k = 3, Conjecture 1.3.8 is also known as Triple Odd Cycle Conjecture. Łuczak [66]

employed the regularity method to prove thatR3(C2n+1) = 8n+o(n), as n→∞, and so the Triple

Odd Cycle Conjecture holds asymptotically. Jenssen and Skokan [59] proved the Conjecture 1.3.8

holds for all fixed k and all n sufficiently large by using Łuczak’s regularity method. However,

Day and Johnson [24] recently proved Theorem 1.3.9 below which implies that Conjecture 1.3.8

is false when n is small with respect to k. For small value of n, only R3(C3), R3(C5) and R3(C7)

have been determined.

Theorem 1.3.9 (Day, Johnson [24]) For all integers n there exists a constant ε = ε(n) > 0 such

that, for all k sufficiently large, Rk(C2n+1) > 2n · (2 + ε)k−1.

For more detailed information on Ramsey numbers, and open problems on this topic, the readers

are referred to the dynamic survey of Radziszowski [71]. For more information on Ramsey-related

topics can be found in a very recent informative survey due to Conlon, Fox and Sudakov [21].

1.4 Co-critical Graphs

Given an integer k ≥ 1 and graphs H1, . . . , Hk, a non-complete graph G is (H1, . . . , Hk)-

co-critical if G 9 (H1, . . . , Hk), but G + e → (H1, . . . , Hk) for every e in G. This is a

generalization to graphs whose edges are k-colored and saturated with respect to monochromatic

subgraphs. Following Galluccio, Siminovits and Simonyi [45], the complete graphs in the

definition of (H1, . . . , Hk)-co-critical graphs are excluded, else every complete graph on fewer than

9



R(H1, . . . , Hk) vertices is (H1, . . . , Hk)-co-critical. It is worth noting that every (H1, . . . , Hk)-co-

critical graph has at least R(H1, . . . , Hk) many vertices.

For example, K−6 is (K3, K3)-co-critical, where K−6 denotes the graph obtained from K6 by

deleting exactly one edge. The {red, blue}-coloring of K−6 depicted in Figure 1.6 below is a

critical-coloring of K−6 with respect to K3, K3, so K−6 9 (K3, K3). However, we get a K6 by

adding the missing edge of K−6 and K6 → (K3, K3).

Figure 1.6: K−6 9 (K3, K3)

The notion of co-critical graphs was initiated by Nešetřil [70] in 1986 when he asked the following

question regarding (K3, K3)-co-critical graphs:

“Are there an infinite number of minimal co-critical graphs, i.e., co-critical graphs

which lose this property when any vertex is deleted? Is K−6 the only one? ”

Galluccio, Siminovits and Simonyi [45] answered this question in the positive by constructing

infinite many minimal (K3, K3)-co-critical graphs without containing K5 as a subgraph and

extended the notation (K3, K3)-co-critical to (H1, . . . , Hk)-co-critical. They [45] also mentioned

that it’s easy to construct (K3, K3)-co-critical graphs with a linear number of edges, so one should

ask for constructing “almost regular” co-critical graphs with low maximum degree. In [45], they

proved the existence of (K3, K3)-co-critical graphs with maximal degree O(n3/4 log n) by using a

random graph construction. Szabó [79] then constructed infinite many (K3, K3)-co-critical graphs
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with maximal degree O(n3/4). It remains unknown whether there are infinitely many strongly

minimal co-critical graphs, where an (H1, . . . , Hk)-co-critical graph is strongly minimal co-critical

if it contains no proper subgraph which is also (H1, . . . , Hk)-co-critical. This is one of the most

intriguing open problems proposed by Galluccio, Siminovits and Simonyi in [45]. One interesting

observation made in [45] is that if G is (H1, . . . , Hk)-co-critical, then χ(G) ≥ R(H1, . . . , Hk).

They also made some observations on the minimum degree of (K3, K3)-co-critical graphs and

maximum number of possible edges of (H1, . . . , Hk)-co-critical graphs.

Hanson and Toft [56] in 1987 also studied the minimum and maximum number of edges over

all (H1, . . . , Hk)-co-critical graphs on n vertices when H1, . . . , Hk are complete graphs, under the

name of strongly (|H1|, . . . , |Hk|)-saturated graphs. Recently, this topic has been studied under the

name of Rmin(H1, . . . , Hk)-saturated graphs [17, 39, 73]. A graph G is (H1, . . . , Hk)-Ramsey-

minimal if G → (H1, . . . , Hk), but for any proper subgraph G′ of G, G′ 9 (H1, . . . , Hk). We

defineRmin(H1, . . . , Hk) to be the family of all (H1, . . . , Hk)-Ramsey-minimal graphs. A graphG

isRmin(H1, . . . , Hk)-saturated if no element ofRmin(H1, . . . , Hk) is a subgraph of G, but for any

edge e inG, some element ofRmin(H1, . . . , Hk) is a subgraph ofG+e. It can be easily checked that

a non-complete graph is (H1, . . . , Hk)-co-critical if and only if it is Rmin(H1, . . . , Hk)-saturated.

From now on, we shall use the notion of (H1, . . . , Hk)-co-critical other than Rmin(H1, . . . , Hk)-

saturated, as the former is much simpler and straightforward.

Let r := R(Kt1 , . . . , Ktk) be the classical Ramsey number for Kt1 , . . . , Ktk . Hanson and Toft [56]

proved that every (Kt1 , . . . , Ktk)-co-critical on n vertices has at most e(Tr−1,n) edges and this

bound is best possible, where Tr−1,n denotes the complete (r − 1)-partite graphs on n ≥ r − 1

vertices whose partition sets differ in size by at most one. We will often refer to this graph as the

Turán graph [80]. Note that Tr−1,n contains no Kr.

In the same paper [56], Hanson and Toft also observed that for all n ≥ r, the graph H := Kr−2 +

11



Kn−r+2 is (Kt1 , . . . , Ktk)-co-critical. To obtain a critical k-coloring of H , fix a critical k-coloring

σ of the edges of complete graph Kr−1, then duplicate any vertex of the complete graph Kr−1

with n − r + 1 times together with the edge colors (see Figure 1.7). One can see that H has no

monochromatic copy of Kki in color i for any i ∈ [t] under the edge coloring depicted in Figure

1.7. Note that for any edge e in H , H + e contains a monochromatic copy of Kr. By the definition

of R(Kt1 , . . . , Ktk), H + e→ (Kt1 , . . . , Ktk). They further made the following conjecture that no

(Kt1 , . . . , Ktk)-co-critical graph on n vertices can have fewer than e(Kr−2 +Kn−r+2) edges.

Figure 1.7: Kr−2 +Kn−r+2 9 (Kt1 , . . . , Ktk)

Conjecture 1.4.1 (Hanson, Toft [56]) Let G be a (Kt1 , . . . , Ktk)-co-critical graph on n vertices

and r = R(Kt1 , . . . , Ktk). Then

e(G) ≥ (r − 2)(n− r + 2) +

(
r − 2

2

)
.

This bound is best possible for every n.

Conjecture 1.4.1 remains wide open, except that the first nontrivial case, (K3, K3)-co-critical

graphs, has been settled in [17] for n ≥ 56.

Theorem 1.4.2 (Chen, Ferrara, Gould, Magnant, Schmitt [17]) If G is a (K3, K3)-co-critical

graph on n ≥ 56 vertices, then e(G) ≥ 4n− 10. This bound is sharp for every n ≥ 56.
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Chen et al. also considered the minimum number of edges over all (K3, P3)-co-critical graphs on

n vertices in [17]. Later, Ferrara, Kim and Yeager [39] determined the minimum number of edges

over all (m1K2, . . . ,mtK2)-co-critical graphs on n vertices.

Theorem 1.4.3 (Chen, Ferrara, Gould, Magnant, Schmitt [17]) If G is a (K3, P3)-co-critical

graph on n ≥ 11 vertices, then e(G) ≥ b5n
2
c − 5. This bound is sharp for every n ≥ 11.

Theorem 1.4.4 (Ferrara, Kim, Yeager [39]) For integers m1, . . . ,mt ≥ 1 and n > 3(m1 + · · ·+

mt − t), if G is a (m1K2, . . . ,mtK2)-co-critical graph on n vertices, then e(G) ≥ 3(m1 + · · · +

mt − t). This bound is sharp for every n > 3(m1 + · · ·+mt − t).

Motivated by Conjecture 1.4.1, we study the following problem. Let Tk denote the family of

all trees on k vertices. For all t, k ≥ 3, we write G → (Kt, Tk) if for every 2-coloring τ :

E(G) → {red, blue}, G has either a red Kt or a blue tree Tk ∈ Tk. A non-complete graph G is

(Kt, Tk)-co-critical if G 9 (Kt, Tk), but G + e → (Kt, Tk) for all e in G. By a classic result of

Chvátal [19], R(Kt, Tk) = (t− 1)(k− 1) + 1. Hence, every (Kt, Tk)-co-critical graph has at least

R(Kt, Tk) = (t − 1)(k − 1) + 1 many vertices. Following the observation made in both [45] and

[56], every (Kt, Tk)-co-critical graph on n vertices has at most e(TR(Kt,Tk)−1,n) edges. Recently,

Rolek and Song [73] studied the minimum number of edges over all (K3, Tk)-co-critical graphs on

n vertices for all k ≥ 4.

Theorem 1.4.5 (Rolek, Song [73]) Let n, k ∈ N.

(i) Every (K3, T4)-co-critical graph on n ≥ 18 vertices has at least b5n/2c edges. This bound

is sharp for every n ≥ 18 (see Figure 1.8).

(ii) For all k ≥ 5, if G is (K3, Tk)-co-critical on n ≥ 2k + (dk/2e + 1)dk/2e − 2 vertices, then

e(G) ≥
(
3
2

+ 1
2

⌈
k
2

⌉)
n−c(k), where c(k) =

(
1
2

⌈
k
2

⌉
+ 3

2

)
k−2. This bound is asymptotically

best possible (see Figure 1.9).
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Figure 1.8: Two (K3, T4)-co-critical graphs with a unique critical-coloring

Figure 1.9: A (K3, Tk)-co-critical graph with a unique critical-coloring

Davenport and Song [22] considered the number of edges of (K3, K1,k)-co-critical graphs on n

vertices for all k ≥ 3.

Theorem 1.4.6 (Davenport, Song [22]) Let n, k ∈ N.

(i) Every (K3, K1,3)-co-critical graph on n ≥ 13 vertices has at least 3n− 4 edges. This bound

is sharp for every n ≥ 13.

(ii) For all k ≥ 4, there exists a constant c(k), ifG is a (K3, K1,k)-co-critical graph on n ≥ 4k+2

vertices, then e(G) ≥ (3
2

+ k
2
)n− c(k). This bound is asymptotically best possible.
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We continue to study the size of (Kt, Tk)-co-critical graphs for all t ≥ 4 and k ≥ 3. We first

establish a number of important properties of such graphs in the hope that the method we develop

here may shed some light on attacking Conjecture 1.4.1. The proof of Theorem 1.4.7 is given in

Section 2.1.

Theorem 1.4.7 For all t, k ∈ N with t ≥ 3 and k ≥ 3, let G be a (Kt, Tk)-co-critical graph on n

vertices. Among all critical-colorings of G, let τ : E(G)→ {red, blue} be a critical-coloring of G

with |Er| maximum. Let D1, . . . , Dp be all components of Gb. Let H := G\(
⋃
i∈[p]E(G[V (Di)])).

Then the following hold.

(a) ∆(Gr) ≤ n− 2 and δ(Gr) ≥ 2(t− 2).

(b) For all i, j ∈ [p] with i 6= j, if there exist u ∈ V (Di) and v ∈ V (Dj) such that uv /∈ E(H),

then H[NH(u) ∩NH(v)] contains a Kt−2 subgraph.

(c) For every uv ∈ E(H), if v is contained in all Kt−2 subgraphs of H[NH(u)] and {v} = V (Dj)

for some j ∈ [p], then |Di| = k − 1 for all Di with u /∈ Di and Di\NH(u) 6= ∅, where i ∈ [p].

(d) If δ(H) ≤ 2t − 5 and k ≥ t, then for any vertex u ∈ V (H) with dH(u) = δ(H), no edge of

H[NH(u)] is contained in all Kt−2 subgraphs of H[NH(u)].

(e) k ≥ 2t− 1− δ(H). Moreover, δ(H) ≥ t− 1, with equality when t = 4.

(f) If k ≥ t ≥ 5, then δ(H) ≥ t + min{3, t − 4} or there exists an edge uv ∈ E(H) such that

dH(u) = δ(H) and v is complete to NH(u)\v in H .

(g)
p∑
i=1

e(G[V (Di)]) >

(
1

2

⌈
k

2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1)).

(h) H is connected.

(i) For every q ∈ N with q ≥ t − 1, there exists a constant c(q, k) such that, if δ(H) ≥ q, then

e(H) ≥ qn− c(q, k).
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Theorem 1.4.7(i) above is crucial in the proof of Theorem 1.4.8 and Theorem 1.4.9. Following

Day [23], we apply the q-neighbour bootstrap percolation on a not necessarily Kt-saturated graph,

to prove Theorem 1.4.7(i), but with more involved rules. Proof of Theorem 1.4.8 is given in

Section 2.2 and proof of Theorem 1.4.9 is given in Section 2.3.

Theorem 1.4.8 Let t, k ∈ N with t ≥ 4 and k ≥ max{6, t}. There exists a constant `(t, k) such

that, for all n ∈ N with n ≥ (t− 1)(k − 1) + 1, if G is a (Kt, Tk)-co-critical graph on n vertices,

then

e(G) ≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− `(t, k).

When t is small, the linear bound given in Theorem 1.4.8 actually holds for more values of k. This

is proved in Theorem 1.4.9 below.

Theorem 1.4.9 Let t, k ∈ N with t ∈ {4, 5, 6, 7} and k ≥ max{3, 4t−14}. There exists a constant

c(t, k) such that, for all n ∈ N with n ≥ (t− 1)(k− 1) + 1, if G is a (Kt, Tk)-co-critical graph on

n vertices, then

e(G) ≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(t, k).

We then prove in Section 2.4 that the linear bound given in Theorem 1.4.9 is asymptotically best

possible when t ∈ {4, 5} and k ≥ 3t− 9.

Theorem 1.4.10 For each t ∈ {4, 5}, all k ≥ 3 and n ≥ (2t− 3)(k− 1) + dk/2edk/2e− 1, there

exists a (Kt, Tk)-co-critical graph G on n vertices such that

e(G) ≤
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n+ C(t, k)

where C(t, k) = 1
2
(t2 + t−5)k2− (2t2 + 2t−11)k− (t−2)(t−19)

2
− 1

2

⌈
k
2

⌉ (
(2t− 3)(k − 1)−

⌈
k
2

⌉)
.
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With the support of Theorem 1.4.5 and Theorem 1.4.10, we believe that the linear bound given in

Theorem 1.4.8 is asymptotically best possible for all t ≥ 4 and k ≥ 3.

1.5 Saturated Graphs

Given a family of graphsF , a graph isF-free if it does not contain any graph F ⊆ F as a subgraph.

We simply say a graph is F -free when F = F . A graph G is F-saturated if G contains no member

of F as a subgraph but for every edge e ∈ E(G), there exists F ∈ F such that G+ e contains F as

a subgraph. The saturation number of F , written sat(n,F), is the minimum number of edges over

all F-saturated graphs with n vertices. When F = F , we simply use F -saturated and sat(n, F ),

respectively. Note that the maximum number of edges over all F-saturated graphs on n vertices,

denoted by ex(n,F), has been investigated extensively.

In 1964, Erdős, Hajnal and Moon [32] initiated the study of saturation number of Kp. Since then,

saturation numbers have received considerable attention.

Theorem 1.5.1 (Erdős, Hajnal, Moon [32]) If 2 ≤ p ≤ n, then sat(n,Kp) = (p − 2)(n − p +

2) +
(
p−2
2

)
=
(
n
2

)
−
(
n−p+2

2

)
and Kp−2 + Kn−p+2 is the only Kp-saturated graph with n vertices

and sat(n,Kp) edges.

In 1986, Kászonyi and Tuza [60] found the best known general upper bound for sat(n,F) by

showing that there exists a constant c = c(F ) such that sat(n,F) < cn. This means, in most

cases, the order of magnitude of sat(n,F) is n, while the order of magnitude of ex(n,F) is n2. In

the same paper [60], they also pointed out that, among graphs on p vertices, sat(n, F ) is maximal

if F = Kp, despite the fact that sat(n,F) does not satisfy some simple monotonic properties. For

every p, the extremal example for Theorem 1.5.1 contains a vertex of degree n− 1 (such a vertex

is called a conical vertex). Hajnal [54] asked the following question and proved Theorem 1.5.2.
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“Let 2 ≤ k ≤ n be integers. What is the minimal number of edges of the Kp-saturated

graph on n vertices which do not contain conical vertices? ”

Theorem 1.5.2 (Hajnal [54]) Let t, n ∈ N. Let G be a Kp-saturated graph on n vertices. Then

either ∆(G) = n− 1 or δ(G) ≥ 2(p− 2).

Some results of the above question for the case p = 3 can be found in [33] and [43]. The case

p ≥ 4 was considered by Alon, Erdős, Holzman, and Krivelevichin [1].

Theorem 1.5.3 (Alon, Erdős, Holzman, Krivelevich [1]) Let G be a K4-saturated graph on n

vertices.

(i) If ∆(G) = n− 2, then e(G) ≥ 4n− 13 for n ≥ 7.

(ii) If ∆(G) = n− 3, then e(G) ≥ 4n− 14 for n ≥ 7.

A similar problem was considered by Duffus and Hanson [26]. They asked that what is the

minimum number of edges in a Kp-saturated graph on n vertices with minimum degree δ. They

proved the following result.

Theorem 1.5.4 (Duffus, Hanson [26]) Let G be a K3-saturated graph on n vertices.

(i) If δ(G) = 2, then e(G) ≥ 2n− 5 for n ≥ 5.

(ii) If δ(G) = 3, then e(G) ≥ 3n − 15 for n ≥ 10. This bound is best possible, and if e(G) =

3n− 15, then G has a subgraph isomorphic to the Petersen graph.

Rolek and Song [73] proved a stronger version of Theorem 1.5.4 by providing a structural

characterizing of K3-saturated graph with minimum degree at most 2.
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Theorem 1.5.5 (Rolek, Song [73]) Let G be a K3-saturated graph with n vertices and δ(G) = δ.

(i) If δ = 1, then G = K1,n−1.

(ii) If δ = 2, then G = J , where the graph J is depicted in Figure 1.10. Moreover, J = K2,n−2

when B = C = ∅.

(iii) If δ ≥ 3, then 2e(G) ≥ max{(δ+1)n−δ2−1, (δ+2)n−δ(δ+t)−2}, where t := min{d(v) : v

is adjacent to a vertex of degree δ in G}.

Figure 1.10: The graph J

Alon, Erdős, Holzman, and Krivelevich [1] showed that anyK4-saturated graph on n ≥ 11 vertices

with minimum degree 4 has at least 4n − 19 edges. This has recently been generalized by Bosse,

Song, and Zhang [10].

Theorem 1.5.6 (Bosse, Song, Zhang [10]) LetG be aKp-saturated graph on n ≥ p ≥ 3 vertices.

(i) If δ(G) = p− 2, then G = Kp−2 +Kn−p+2, and e(G) = (p− 2)n−
(
p−1
2

)
.

(ii) If δ(G) = p − 1, then G = Kp−3 + Jn−p+3, where Jn−p+3 is isomorphic to J which is

depicted in Figure 1.10. Therefore, e(G) ≥ (p − 1)n −
(
p
2

)
− 2, with equality only when

min{|B|, |C|} = 1.
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(iii) If δ(G) = p and n ≥ p+ 7, then e(G) ≥ pn−
(
p+1
2

)
− 9. The lower bound is sharp for all p.

Theorem 1.5.7 below is a result of Day [23] on Kt-saturated graphs with prescribed minimum

degree and it confirms a conjecture of Bollobás [6] when t = 3. It is worth noting that Day

applied the r-neighbour bootstrap percolation on a Kt-saturated graph to prove Theorem 1.5.7,

where graph bootstrap percolation was introduced in [15].

Theorem 1.5.7 (Day [23]) Let q ∈ N. There exists a constant c = c(q) such that, for all 3 ≤ t ∈ N

and all n ∈ N, if G is a Kt-saturated graph on n vertices with δ(G) ≥ q, then e(G) ≥ qn− c.

For more detailed information on the intensive studies on saturated graphs, the readers are referred

to the dynamic survey of J. R. Faudree, R. J. Faudree and Schmitt [35].

1.6 Gallai-Ramsey Numbers of Graphs

A Gallai coloring is an edge-coloring of a complete graph without rainbow triangles (that is, a

triangle with all its edges colored differently). Gallai colorings naturally arise in several areas

including: information theory [63]; the study of partially ordered sets, as in Gallai’s original

paper [44] (his result was restated in [53] in the terminology of graphs); and the study of

perfect graphs [14]. There are now a variety of papers which consider Ramsey-type problems

in Gallai colorings (see, e.g., [18, 41, 51, 52, 55, 12, 8, 9]). These works mainly focus on finding

various monochromatic subgraphs in such colorings. More information on this topic can be found

in [40, 42].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer k ≥ 1 and

graphs H1, . . . , Hk, the Gallai-Ramsey number GR(H1, . . . , Hk) is the least integer n such that

every Gallai k-coloring of Kn contains a monochromatic copy of Hi in color i for some i ∈ [k].
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When H = H1 = · · · = Hk, we simply write GRk(H). Clearly, GRk(H) ≤ Rk(H) for all k ≥ 1

and GR(H1, H2) = R(H1, H2). In 2010, Gyárfás, Sárközy, Sebő and Selkow [52] proved the

general behavior of GRk(H).

Theorem 1.6.1 (Gyárfás, Sárközy, Sebő, Selkow [52]) Let H be a fixed graph with no isolated

vertices and let k ≥ 1 be an integer. Then GRk(H) is exponential in k if H is not bipartite, linear

in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

The lower bound for the case when H is not bipartite comes from the following inductive

construction. Certainly there exists a small graph in one color containing no H . Suppose there

exists Gk using k colors which contains no monochromatic copy of H . Then let Gk+1 be two

copies of Gk with all possible edges in between using the new color. The graph Gk+1 also contains

no monochromatic copy of H . For the lower bound when H is bipartite, the construction involves

adding vertices to the graph with all edges in a single color. It turns out that for some graphs H

(e.g., when H = C3), GRk(H) behaves nicely, while the order of magnitude of Rk(H) seems

hopelessly difficult to determine. It is worth noting that finding exact values of GRk(H) is far

from trivial, even when |H| is small. Gallai [44] showed an important structural result on Gallai

colorings of complete graphs.

Theorem 1.6.2 (Gallai [44]) For any Gallai coloring c of a complete graphGwith |G| ≥ 2, V (G)

can be partitioned into nonempty sets V1, . . . , Vp with p > 1 so that at most two colors are used on

the edges in E(G)\(E(G[V1]) ∪ · · · ∪E(G[Vp])) and only one color is used on the edges between

any fixed pair (Vi, Vj) under c.

The partition given in Theorem 1.6.2 is a Gallai partition of the complete graph G under c. Given

a Gallai partition V1, . . . , Vp of the complete graph G under c, let vi ∈ Vi for all i ∈ [p] and

let R := G[{v1, . . . , vp}]. Then R is the reduced graph of G corresponding to the given Gallai
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partition under c. Clearly,R is isomorphic toKp. By Theorem 1.6.2, all the edges inR are colored

by at most two colors under c. One can see that any monochromatic copy of H in R under c will

result in a monochromatic copy ofH inG under c. It is not surprising that Gallai-Ramsey numbers

GRk(H) are closely related to the classical Ramsey numbers R2(H). Recently, Fox, Grinshpun

and Pach [40] posed the following conjecture on GRk(H) when H is a complete graph.

Conjecture 1.6.3 (Fox, Grinshpun, Pach [40]) For all t ≥ 3 and k ≥ 1,

GRk(Kt) =


(R2(Kt)− 1)k/2 + 1 if k is even

(t− 1)(R2(Kt)− 1)(k−1)/2 + 1 if k is odd.

Recall that if n < Rk(K3), then there is a k-coloring c of the edges of Kn such that edges of every

triangle in Kn are colored by at least two colors under c. A question of T. A. Brown (see [18])

asked:

“What is the largest number f(k) of vertices of a complete graph can have such that

it is possible to k-color its edges so that edges of every triangle are colored by exactly

two colors? ”

Chung and Graham [18] answered this question in 1983.

Theorem 1.6.4 (Chung, Graham [18]) For all k ≥ 1,

f(k) =


5k/2 if k is even

2 · 5(k−1)/2 if k is odd.

Clearly, GRk(K3) = f(k) + 1. By Theorem 1.6.4, Conjecture 1.6.3 holds for t = 3. The proof of
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Theorem 1.6.4 does not rely on Theorem 1.6.2. A simpler proof of this case using Theorem 1.6.2

can be found in [52]. The next open case, when t = 4, was recently settled in [65]. The case t = 5

was announced by Magnant and Schiermeyer in [69], and they observed that if R2(K5) = 43, then

Conjecture 1.6.3 fails for K5.

Theorem 1.6.5 (Liu, Magnant, Saito, Schiermeyer, Shi [65]) For all k ≥ 1,

GRk(K4) =


17k/2 + 1 if k is even

17(k−1)/2(t− 1) + 1 if k is odd.

Motivated by Conjecture 1.6.3, Gallai-Ramsey numbers of cycles and paths have also been studied,

as well as general upper bounds for GRk(Pn) and GRk(Cn) that were first studied in [36, 41] and

later improved in [55]. Gregory [50] proved in his thesis that GRk(C8) = 3k + 5, but the proof

was incomplete. We list some known results below.

Theorem 1.6.6 (Faudree, Gould, Jacobson, Magnant [36]) For all k ≥ 1,

GRk(C4) = k + 4 and GRk(Pn) =

⌊
n− 2

2

⌋
k +

⌈n
2

⌉
+ 1 for n ∈ {3, 4, 5, 6}.

Theorem 1.6.7 (Fujita, Magnant [41]) For all k ≥ 1,

GRk(C5) = 2k+1 + 1 and GRk(C6) = 2k + 4.

Theorem 1.6.8 (Hall, Magnant, Ozeki, Tsugaki [55]) For all n ≥ 3 and k ≥ 1,

GRk(C2n) ≤ (n− 1)k + 3n and GRk(Pn) ≤
⌊
n− 2

2

⌋
k + 3

⌊n
2

⌋
.

Theorem 1.6.9 (Bruce, Song [12]) For all k ≥ 1, GRk(C7) = 3 · 2k + 1.
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Theorem 1.6.10 (Bosse, Song [8]) For all k ≥ 1,

GRk(C9) = 4 · 2k + 1 and GRk(C11) = 5 · 2k + 1.

Theorem 1.6.11 (Bosse, Song, Zhang [9]) For all k ≥ 1,

GRk(C13) = 6 · 2k + 1 and GRk(C15) = 7 · 2k + 1.

Very recently, F. Zhang, Song and Chen [83] completely determined the Gallai-Ramsey numbers

of all cycles.

Theorem 1.6.12 (F. Zhang, Song, Chen [83]) For n ≥ 2 and all k ≥ 1,

GRk(C2n+1) = n · 2k + 1 and GRk(C2n) = (n− 1)k + n+ 1.

We study the Gallai-Ramsey numbers of even cycles and paths. For all n ≥ 3 and k ≥ 2, let

Gn−1 ∈ {C2n, P2n+1}, Gi := P2i+3 for all i ∈ {0, 1, . . . , n − 2}, and ij ∈ {0, 1, . . . , n − 1} for

all j ∈ [k]. We want to determine the exact values of GR(Gi1 , Gi2 , . . . , Gik). By reordering colors

if necessary, we assume that i1 ≥ i2 ≥ · · · ≥ ik. The construction for establishing a lower bound

for GR(Gi1 , Gi2 , . . . , Gik) for all n ≥ 3 and k ≥ 2 is similar to the construction given by Erdős,

Faudree, Rousseau and Schelp in 1976 (see Section 2 in [31]) for classical Ramsey numbers of

even cycles and paths. We recall their construction in the proof of Proposition 1.6.13 which is

given in Section 3.1.

Proposition 1.6.13 For all n ≥ 3 and k ≥ 2,

GR(Gi1 , Gi2 , . . . , Gik) ≥ |Gi1 |+
k∑
j=2

ij,
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where n− 1 ≥ i1 ≥ · · · ≥ ik ≥ 0.

Song [76] recently conjectured that the lower bound established in Proposition 1.6.13 is also the

desired upper bound for GR(Gi1 , Gi2 , . . . , Gik) for all n ≥ 3 and k ≥ 1. We state it below.

Conjecture 1.6.14 (Song [76]) For all n ≥ 3 and k ≥ 2,

GR(Gi1 , Gi2 , . . . , Gik) = |Gi1|+
k∑
j=2

ij,

where n− 1 ≥ i1 ≥ · · · ≥ ik ≥ 0.

Clearly, GRk(C2n) ≥ GRk(P2n) and GRk(C2n) ≥ GRk(Mn), where Mn denotes a set of n

edges such that no two edges share the same vertex. It is worth noting that by letting i1 = · · · =

ik = n − 1 and Gi1 = C2n, the construction given in the proof of Proposition 1.6.13 yields that

(n−1)k+n+1 ≤ GRk(P2n) and (n−1)k+n+1 ≤ GRk(Mn)for all n ≥ 3 and k ≥ 1. The truth

of Conjecture 1.6.14 implies that GRk(C2n) = GRk(P2n) = GRk(Mn) = (n − 1)k + n + 1 for

all n ≥ 3 and k ≥ 1 and GRk(P2n+1) = (n− 1)k+ n+ 2 for all n ≥ 1 and k ≥ 1. As observed in

[55], to completely solve Conjecture 1.6.14, one only needs to consider the case Gn−1 = C2n. We

prove this in Proposition 1.6.15. The proof of Proposition 1.6.15 is similar to the proof of Theorem

7 given in [55]. We include a proof in Section 3.1 for completeness.

Proposition 1.6.15 For all n ≥ 3 and k ≥ 2, if Conjecture 1.6.14 holds for Gn−1 = C2n, then it

also holds for Gn−1 = P2n+1.

We prove the Conjecture 1.6.14 is true for n ∈ {3, 4} and all k ≥ 2 in Section 3.2 and is true for

n ∈ {5, 6} and all k ≥ 2 in Section 3.3.

Theorem 1.6.16 For n ∈ {3, 4} and all k ≥ 2, let Gi = P2i+3 for all i ∈ {0, 1, . . . , n − 2},

25



Gn−1 = C2n, and ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k] with i1 ≥ i2 ≥ · · · ≥ ik. Then

GR(Gi1 , Gi2 , . . . , Gik) = |Gi1|+
k∑
j=2

ij.

Theorem 1.6.17 For n ∈ {5, 6} and all k ≥ 2, let Gi = P2i+3 for all i ∈ {0, 1, . . . , n − 2},

Gn−1 = C2n, and ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k] with i1 ≥ · · · ≥ ik. Then

GR(Gi1 , . . . , Gik) = |Gi1|+
k∑
j=2

ij.

Theorem 1.6.16 and Theorem 1.6.17 strengthen the results listed in Theorem 1.6.6 and

Theorem 1.6.7. Our proof relies only on Theorem 1.6.2 and Ramsey numbers R(H1, H2), where

H1, H2 ∈ {C12, C10, C8, C6, P11, P9, P7, P5, P3}. Theorem 1.6.16 and Theorem 1.6.17, together

with Proposition 1.6.15, implies that GRk(C2n) = GRk(P2n) = GRk(Mn) = (n − 1)k + n + 1

for n ∈ {3, 4, 5, 6} and all k ≥ 1, and GRk(P2n+1) = (n− 1)k + n+ 2 for n ∈ [6] and all k ≥ 1.

Hence, Theorem 1.6.16 yields a new and simpler proof of the known results on Gallai-Ramsey

numbers of C8, C6 and Pn with n ≤ 7. As mentioned earlier, the proof of GRk(C8) = 3k + 5

given in [50] was incomplete. In our completely new strategy, we developed an extremely useful

recoloring method (in the proof of Claim 6 which we believe will assist in solving other cases. Note

that the method we developed here for even cycles and paths is very different from the method for

odd cycles developed in [12, 8, 9].

26



CHAPTER 2: ON THE SIZE OF (Kt, Tk)-CO-CRITICAL GRAPHS

2.1 Structural Properties of (Kt, Tk)-co-critical Graphs

In this section, we establish a number of important properties of (Kt, Tk)-co-critical graphs in the

hope that the method we develop here may shed some light on attacking Conjecture 1.4.1.

We need to introduce more notation. For a graph G, let τ : E(G) → {red, blue} be a 2-edge-

coloring of G and let Er and Eb be the color classes of the coloring τ . We use Gr and Gb to

denote the spanning subgraphs of G with edge sets Er and Eb, respectively. We define τ to be a

critical-coloring of G if G has neither a red Kt nor a blue Tk ∈ Tk, that is, if Gr is Kt-free and Gb

is Tk-free. For every v ∈ V (G), we use dr(v) and Nr(v) to denote the degree and neighborhood

of v in Gr, respectively. Similarly, we define db(v) and Nb(v) to be the degree and neighborhood

of v in Gb, respectively. One can see that if G is (Kt, Tk)-co-critical, then G admits at least one

critical-coloring but G+ e admits no critical-coloring for every edge e in G.

We first prove a lemma which will be used in the proofs of Theorem 1.4.7, Theorem 1.4.8, Theorem

1.4.9 and Theorem 1.4.10.

Lemma 2.1.1 For all t, k ∈ N with t ≥ 3 and k ≥ 3, let G be a (Kt, Tk)-co-critical graph on n

vertices. Let τ : E(G)→ {red, blue} be a critical-coloring of G. Then the following hold.

(a) For every component D of Gb, |D| ≤ k − 1 and G[V (D)] = K|D|.

(b) If D1, . . . , Dq are the components of Gb with |Di| < k/2 for all i ∈ [q], then V (D1), . . . ,

V (Dq) are complete to each other in Gr, and so q ≤ t− 1.

Proof. To prove (a), let D be a component of Gb. Since Gb is Tk-free, we see that |D| ≤ k − 1.

27



Suppose next that G[V (D)] 6= K|D|. Let u, v ∈ V (D) be such that uv 6∈ E(G). We obtain a

critical-coloring of G+ uv from τ by coloring the edge uv blue, a contradiction.

To prove (b), let D1, · · · , Dq be the components of Gb with |Di| < k/2 for all i ∈ [q]. Since G

is (Kt, Tk)-co-critical, we see that G + e admits no critical-coloring for every edge e in G. Let

i, j ∈ [q] with i 6= j. We next show that V (Di) is complete to V (Dj) in Gr. Suppose that there

exist vertices u ∈ V (Di) and v ∈ V (Dj) such that uv 6∈ Er. Then uv 6∈ E(G) and so we obtain

a critical-coloring of G+ uv from τ by coloring the edge uv blue, a contradiction. Thus V (Di) is

complete to V (Dj) in Gr for all i, j ∈ [q] with i 6= j. Since τ is a critical-coloring, it follows that

Gr is Kt-free and so q ≤ t− 1.

We are now ready to prove Theorem 1.4.7.

Proof. Let G, τ , D1, . . . , Dp and H be given as in the statement. Then n ≥ (t − 1)(k − 1) + 1.

By Lemma 2.1.1(a), |Di| ≤ k − 1 for all i ∈ [p]. Hence, Gb has at least t components because

|Gb| = n ≥ (t− 1)(k− 1) + 1. We first prove Theorem 1.4.7(a). By the choice of τ , Gr is Kt-free

but Gr + e contains a copy of Kt for every e ∈ E(Gr). Hence Gr is Kt-saturated. Suppose there

exists a vertex x ∈ V (G) such that dr(x) = n − 1. Note that Gr\x is Kt−1-free because Gr is

Kt-free. SinceG 6= Kn, there must exist u,w ∈ Nr(x) such that uw 6∈ E(G). By Lemma 2.1.1(a),

u,w belong to different components of Gb. But then we obtain a critical-coloring of G+ uw from

τ by first coloring the edge uw red, and then recoloring xu blue and all edges incident with u in

Gb red, a contradiction. This proves that ∆(Gr) ≤ n − 2. Since Gr is Kt-saturated, by Theorem

1.5.2, δ(Gr) ≥ 2(t− 2).

To prove Theorem 1.4.7(b), let u ∈ V (Di) and v ∈ V (Dj) be such that uv /∈ E(H), where i 6= j.

Suppose H[NH(u) ∩NH(v)] is Kt−2-free. Since |D`| ≤ k − 1 for all ` ∈ [p], we obtain a critical-

coloring of G + uv from τ by first coloring the edge uv red, and then recoloring all red edges in
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G[V (D`)] blue for all ` ∈ [p], a contradiction. Therefore, H[NH(u) ∩ NH(v)] contains a Kt−2

subgraph. This proves Theorem 1.4.7(b).

To prove Theorem 1.4.7(c), let uv ∈ E(H) be such that v is contained in all Kt−2 subgraphs of

H[NH(u)] and {v} = V (Dj) for some j ∈ [p]. We may assume that u ∈ V (Dp) and {v} =

V (Dp−1). Note that H[NH(u)]\v is Kt−2-free. Suppose there exists an ` ∈ [p − 2] such that

D`\NH(u) 6= ∅ but |D`| ≤ k − 2. Let w ∈ V (D`)\NH(u). Then wv ∈ Er, else we obtain a

critical-coloring of G + wv from τ by coloring the edge wv blue. Since H[NH(u)]\v is Kt−2-

free, we then obtain a critical-coloring of G + uw from τ by coloring the edge uw red, and then

recoloringwv blue and all red edges incident with u inG[V (Dp)] blue, a contradiction. This proves

Theorem 1.4.7(c).

To prove Theorem 1.4.7(d,e), let u ∈ V (H) with dH(u) = δ(H). We may assume that u ∈ V (Dp).

By Theorem 1.4.7(b), dH(u) ≥ t−2. LetNH(u) := {u1, . . . , uδ(H)}. By Theorem 1.4.7(b) applied

to u and any vertex in V (H)\(V (Dp)∪NH(u)), we see thatH[NH(u)] must have aKt−2 subgraph.

We may assume that H[{u1, . . . , ut−2}] = Kt−2. Then we may further assume that ui ∈ V (Dp−i)

for all i ∈ [t− 2]. Let v ∈ V (H)\(V (Dp) ∪NH(u)).

To proceed to prove Theorem 1.4.7(d), assume dH(u) ≤ 2t − 5 and k ≥ t. Suppose H[NH(u)]

has an edge, say u1u2, that is contained in all Kt−2 subgraphs of H[NH(u)]. Then both

H[NH(u)]\u1 and H[NH(u)]\u2 are Kt−2-free. By Theorem 1.4.7(b) applied to u and any vertex

in V (H)\(V (Dp) ∪NH(u)), V (H)\(V (Dp) ∪NH(u)) must be complete to {u1, u2} in H . Then

V (Dp−1) ∪ V (Dp−2) ⊆ NH(u)\{u3, . . . , ut−2}. Thus |V (Dp−1) ∪ V (Dp−2)| = δ(H)− (t− 4) ≤

t − 1 ≤ k − 1, because δ(H) ≤ 2t − 5 and t ≤ k. Then we obtain a critical-coloring of G + uv

from τ by first coloring the edge uv red, and then recoloring u1u2 blue and all red edges incident

with u in G[V (Dp)] blue, a contradiction. This proves Theorem 1.4.7(d).
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To proceed to prove Theorem 1.4.7(e), note that |Nr(u) ∩ V (Dp)| = |Nr(u)| − dH(u). By

Theorem 1.4.7(a), |Nr(u)| ≥ 2t−4. SinceDp is a component ofGb, we see thatNb(u)∩V (Dp) 6=

∅. It follows that |V (Dp)| = |{u}|+|Nb(u)∩V (Dp)|+|Nr(u)∩V (Dp)| ≥ 1+1+(2t−4)−dH(u) =

2t − 2 − dH(u). By Lemma 2.1.1(a), 2t − 2 − dH(u) ≤ |V (Dp)| ≤ k − 1, which yields

k ≥ 2t − 1 − dH(u). Suppose next that δ(H) = t − 2 < 2t − 5. Then k ≥ t + 1. But then

H[{u1, . . . , ut−2}] is the only Kt−2 subgraph of H[NH(u)], contrary to Theorem 1.4.7(d). Thus

δ(H) ≥ t − 1. Finally, suppose that t ≥ 5 but δ(H) = t − 1. Since Gr is Kt-free, we see

that Gr[{u, u1, . . . , ut−1}] 6= Kt. We may assume that ut−1ut−2 /∈ E(Gr). By Theorem 1.4.7(b)

applied to u and any vertex in V (H)\(V (Dp)∪NH(u)), V (H)\(V (Dp)∪NH(u)) must be complete

to {u1, . . . , ut−3} in H . This implies that V (Dp−1)∪V (Dp−2) ⊆ {u1, u2, ut−1}. Then we obtain a

critical-coloring of G+ uv from τ by first coloring the edge uv red, and then recoloring u1u2 blue

and all red edges incident with u in G[V (Dp)] blue, a contradiction. This proves that δ(H) ≥ t if

t ≥ 5. This proves Theorem 1.4.7(e).

To proceed to prove Theorem 1.4.7(f), let k ≥ t ≥ 5. By Theorem 1.4.7(e), δ(H) ≥ t − 1.

Suppose δ(H) ≤ t + min{2, t − 5} ≤ 2t − 5 and for every u ∈ V (H) with dH(u) = δ(H),

no vertex v ∈ NH(u) is complete to NH(u)\v in H . Then for any x ∈ A := {u1, . . . , ut−2},

xy /∈ E(H) for some y ∈ B := {ut−1, . . . , uδ(H)}. By Theorem 1.4.7(d), H[NH(u)] must contain

at least three different Kt−2 subgraphs. Then |B| ≥ 2 and so δ(H) ≥ t. Let K 6= H[A] be

another Kt−2 subgraph of H[NH(u)] and let b := |V (K) ∩ B|. Then 1 ≤ b ≤ |B| − 1. Note

that 2 ≤ |B| = δ(H) − |A| ≤ 4 because t ≤ δ(H) ≤ t + min{2, t − 5}. We may assume

that K = H[{u1, . . . , ut−2−b, ut−1, . . . , ut−2+b}]. Since H is Kt-free and no vertex v ∈ NH(u) is

complete to NH(u)\v in H , we see that

(∗) every vertex in {ut−1, . . . , ut−2+b} has a non-neighbor in {ut−1−b, . . . , ut−2} in H; and every

vertex in {u1, . . . , ut−2−b} has a non-neighbor in B\{ut−1, . . . , ut−2+b} in H .
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Let K ′ 6= H[A], K be another Kt−2 subgraph of H[NH(u)]. We next claim that |B| = 4. Suppose

|B| ≤ 3. Then b ≤ 2 and δ(H) ≤ t + 1. Suppose b = 2. Then K = H[{u1, . . . , ut−4, ut−1, ut}],

B = {ut−1, ut, ut+1} and t ≥ 6. Moreover, ut+1 is anti-complete to {u1, . . . , ut−4} in H .

By (∗), we may assume that ut−3ut−1, ut−2ut /∈ E(H). But then every Kt−2 subgraph of

H[NH(u)] contains the edge u1u2, contrary to Theorem 1.4.7(d). This proves that b = 1.

Then K = H[{u1, . . . , ut−3, ut−1}]. By the arbitrary choice of K, |V (K ′) ∩ B| = 1, and

so ut−1 6∈ V (K ′). We may assume that u1, . . . , ut−4, ut ∈ V (K ′). Then every vertex in

{u1, . . . , ut−4} has a non-neighbor inB\{ut−1, ut}. ThusB = {ut−1, ut, ut+1} and t ≥ 6. But then

ut+1 is anti-complete to {u1, . . . , ut−4} in H , and thus H[A], K,K ′ are the only Kt−2 subgraphs

of H[NH(u)], each containing the edge u1u2, contrary to Theorem 1.4.7(d). This proves that

|B| = 4, as claimed. Then B = {ut−1, ut, ut+1, ut+2}, t ≥ 7 and δ(H) = t + 2. If b = 3,

then K = H[{u1, . . . , ut−5, ut−1, ut, ut+1}]. Moreover, ut+2 is anti-complete to {u1, . . . , ut−5}

in H . Since H is Kt-free, no two vertices in {ut−1, ut, ut+1} have two common neighbors in

{ut−4, ut−3, ut−2} in H . By (∗), we may then assume that ut−4ut−1, ut−3ut, ut−2ut+1 /∈ E(H).

But then every Kt−2 subgraph of H[NH(u)] contains the edge u1u2, contrary to Theorem 1.4.7(d).

This proves that b ≤ 2. Suppose next that b = 2. Then K = H[{u1, . . . , ut−4, ut−1, ut}]. By (∗),

we may assume that ut−3ut−1, ut−2ut /∈ E(H). By the arbitrary choice of K, |V (K ′) ∩ B| ≤ 2,

and so {ut−1, ut} * V (K ′). By (∗), NH(ut+1) ∩NH(ut+2) ∩ A ⊆ {ut−3, ut−2}. We may assume

that |{u1, . . . , ut−4}\NH(ut+1)| ≥ d(t− 4)/2e. Then |NH(ut+1) ∩A| ≤ b(t− 4)/2c+ 2 < t− 3,

|NH(ut+1) ∩ NH(uj) ∩ A| ≤ b(t − 4)/2c + 1 < t − 4 for j ∈ {t − 1, t}. Thus ut+1 6∈

V (K ′). Then ut+2 ∈ V (K ′), else every Kt−2 subgraph of H[NH(u)] contains {u1, . . . , ut−4},

contrary to Theorem 1.4.7(d). We may assume that u1, . . . , ut−5, ut+2 ∈ V (K ′). Then either

ut+2ut−1 6∈ E(H) or ut+2ut 6∈ E(H), else K ′′ = H[{u1, . . . , ut−5, ut−1, ut, ut+2}] is a Kt−2

subgraph of H[NH(u)] with |V (K ′′) ∩ B| = 3. But then every Kt−2 subgraph of H[NH(u)]

contains the edge u1u2 because t − 5 ≥ 2, contrary to Theorem 1.4.7(d). This proves that

b = 1. Then K = H[{u1, . . . , ut−3, ut−1}]. By the arbitrary choice of K, |V (K ′) ∩ B| = 1
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and V (K ′) ∩ B 6= V (K) ∩ B. We may assume that u1, . . . , ut−4, ut ∈ V (K ′). Then u1u2 is

contained in all of H[A], K,K ′. By Theorem 1.4.7(d), there must exist a fourth Kt−2 subgraph of

H[NH(u)], say K ′′. Similarly, |V (K ′′) ∩ B| = 1 by the arbitrary choice of K. We may assume

that u1, . . . , ut−5, ut+1 ∈ V (K ′′). But then ut+2 is anti-complete to {u1, . . . , ut−5} in H , and

thus H[A], K,K ′, K ′′ are the only Kt−2 subgraphs of H[NH(u)], each containing the edge u1u2,

contrary to Theorem 1.4.7(d). This proves Theorem 1.4.7(f).

We next prove Theorem 1.4.7(g). By Lemma 2.1.1(a,b), |Di| ≤ k − 1, G[V (Di)] = K|Di| for

all i ∈ [p], and at most t − 1 of the Di’s have less than k/2 vertices. Let r be the remainder of

n− (t− 1)(dk/2e − 1) when divided by dk/2e, and let s ≥ 0 be an integer such that

n− (t− 1)(dk/2e − 1) = sdk/2e+ r(dk/2e+ 1).

It is straightforward to see that
∑p

i=1 e(G[V (Di)]) is minimized when: t−1 of the components, say

D1, . . . , Dt−1 are such that |D1|, . . . , |Dt−1| < k/2; r of the components, say Dt, · · · , Dr+t−1 are

such that |Dt| = · · · = |Dr+t−1| = dk/2e + 1; and s of the components, say Dr+t, · · · , Dr+s+t−1

are such that |Dr+t| = · · · = |Dr+s+t−1| = dk/2e. Using the facts that sdk/2e + r(dk/2e + 1) =

n− (t− 1)(dk/2e − 1) and r ≤ dk/2e − 1, it follows that

p∑
i=1

e(G[V (Di)]) > s

(
dk/2e

2

)
+ r

(
dk/2e+ 1

2

)
=
s

2

⌈
k

2

⌉(⌈
k

2

⌉
− 1

)
+
r

2

⌈
k

2

⌉(⌈
k

2

⌉
+ 1

)
=

(
1

2

⌈
k

2

⌉
− 1

2

)(
s

⌈
k

2

⌉
+ r

(⌈
k

2

⌉
+ 1

))
+
r

2

(⌈
k

2

⌉
+ 1

)
≥
(

1

2

⌈
k

2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1)).

This proves Theorem 1.4.7(g).
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To prove Theorem 1.4.7(h), suppose that H is disconnected. Let x, y ∈ V (H) be such that x and

y are in different components of H . By Theorem 1.4.7(b), {x, y} ⊆ Di for some i ∈ [p], and there

must exist a vertex w ∈ Dj such that xw 6∈ E(H) and yw ∈ E(H), where j ∈ [p] with j 6= i. By

Theorem 1.4.7(b), x and w have at least t− 2 common neighbors in H . But then x and y must be

in the same component of H , a contradiction. This proves Theorem 1.4.7(h).

It remains to prove Theorem 1.4.7(i). By Theorem 1.4.7(h), H is connected. Let q ∈ N with

q ≥ t − 1. Assume δ(H) ≥ q. Following Day [23], we next apply the q-neighbour bootstrap

percolation on H . Note that H is not necessarily Kt-saturated. Given a set S ⊆ V (H) and any

vertex v ∈ V (H), let NS(v) := NH(v) ∩ S and dS(v) := |NS(v)|. Let R ⊆ V (H) be any

nonempty set. Let R0 := R and for i ≥ 1, let

Ri := Ri−1 ∪ {v ∈ V (H) : dRi−1(v) ≥ q}.

Let R :=
⋃
i≥0R

i, the closure of R under the q-neighbor bootstrap percolation on H . Then

e(H[R]) ≥ q(|R| − |R|),

because every vertex in Ri\Ri−1 is adjacent to at least q vertices in Ri−1. Let Y (R) := V (H)\R.

Finally, for any v ∈ V (H), let

ω
R

(v) := dR(v) + dY (R)(v)/2.

We call ω
R

(v) the weight of v (with respect to R). Then

eH(R, Y (R)) + e(H[Y (R)]) =
∑

v∈Y (R)

ω
R

(v).

Within Y (R), we define B(R) to be the set {v ∈ Y (R) : ω
R

(v) < q}, which we call the set of bad

vertices. We next show that there exists a constant c1(q, k) and a nonempty set R ⊆ V (H) with

|R| ≤ c1(q, k) such that B(R) = ∅.
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Assume B(R) 6= ∅ for our initial R. Our goal is to move a small number of vertices into R so that

the remaining vertices in B(R) have strictly larger weight. To achieve this, let

UR := {U ⊆ R : U = NR(v) for some v ∈ B(R)}.

Note that for every vertex v ∈ B(R), dR(v) ≤ q − 1. Thus

|UR| ≤ 1 + |R|+
(
|R|
2

)
+ · · ·+

(
|R|
q − 1

)
.

Let UR := {U1, U2, . . . , U|UR|} and let ui ∈ B(R) with NR(ui) = Ui for all i ∈ {1, 2, . . . , |UR|}.

Then dR(ui) < q, and so dY (R)(ui) ≥ 1 because dH(ui) ≥ q. Let xi ∈ Y (R) such that

uixi ∈ E(H) for all i ∈ {1, . . . , |UR|}, and let X(R) := {x1, x2, . . . , x|UR|}. By the choice of

UR and u1, u2, . . . , u|UR| , for every vertex v ∈ B(R), we see that NR(v) = NR(ui) for some

i ∈ {1, 2, . . . , |UR|}. Finally, let

S(R) := {v ∈ B(R) : NR(v) = NR(ui) and {v, xi} ⊆ Dj for some i ∈ {1, . . . , |UR|} and j ∈ [p]}.

We next show that Algorithm 1 below yields a nonempty set R ⊆ V (H) with B(R) = ∅.

Algorithm 1: Building a nonempty set R ⊆ V (H) with B(R) = ∅
Data: H := G\(

⋃
i∈[p]E(G[V (Di)])) is a spanning subgraph of Gr with δ(H) ≥ q

Result: A nonempty set R ⊆ V (H) with B(R) = ∅

1 Set R to be a set containing an arbitrary vertex in H;

2 while B(R) 6= ∅ do

3 Set R to be R ∪X(R) ∪ S(R) ∪
⋃|UR|
j=1 NR(xj);

4 end

Let Ri be the set R obtained in the i-th iteration of Line 2 when running Algorithm 1. Then
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for all i ≥ 1, Ri−1 ⊆ Ri, Ri−1 ⊆ Ri, Y (Ri) ⊆ Y (Ri−1) and B(Ri) ⊆ B(Ri−1). To see why

ω
Ri

(v) > ω
Ri−1

(v) for all v ∈ B(Ri), we next introduce a control function on V (H), because

dealing with ω
R

(v) directly is difficult. Let φ
R

(v) :=
∑

x∈NH(v) fR
(x) for all v ∈ V (H), where for

all x ∈ V (H),

f
R

(x) =


1, if x ∈ R,

1/2, if x ∈ R\R,

dR(x)/(2q), if x ∈ Y (R).

It is worth noting that φ
R

(v) ≤ ω
R

(v) for every vertex v ∈ V (H), because dY (R)(x) ≥ 1 and

dR(x) ≤ q − 1 for all x ∈ Y (R). Similarly, for all i ≥ 1, f
Ri−1

(x) ≤ f
Ri

(x) for every x ∈ V (H),

because Y (Ri) ⊆ Y (Ri−1). We next claim that

(∗) for all i ≥ 1 and every v ∈ B(Ri), φ
Ri

(v) ≥ φ
Ri−1

(v) + 1/(2q).

Proof. Let i ≥ 1 and v ∈ B(Ri). Then v ∈ B(Ri−1), since B(Ri) ⊆ B(Ri−1). Let URi−1
,

{u1, . . . , u|URi−1
|} ⊆ B(Ri−1), and {x1, . . . , x|URi−1

|} ⊆ Y (Ri−1) be defined accordingly for

Ri−1. Then NRi−1
(v) = NRi−1

(uj) for some j ∈ {1, 2, . . . , |URi−1
|}. To prove φ

Ri
(v) ≥

φ
Ri−1

(v) + 1/(2q), it suffices to show that f
Ri

(x) ≥ f
Ri−1

(x) + 1/(2q) for some x ∈ NH(v). Since

{x1, . . . , x|URi−1
|} ⊆ Y (Ri−1) ∩ Ri, we see that f

Ri−1
(x) = d

Ri−1
(x)/(2q) ≤ (q − 1)/(2q) =

1/2 − 1/(2q), and f
Ri

(x) = 1 > f
Ri−1

(x) + 1/(2q) for all x ∈ {x1, . . . , x|URi−1
|}. We

may assume that vxj 6∈ E(H) for all j ∈ {1, . . . , |URi−1
|}, otherwise we are done. Since

v ∈ B(Ri), by the choice of xj and S(Ri−1), we see that {v, xj} * V (D`) for all ` ∈ [p].

By Theorem 1.4.7(b) applied to v and xj , H[NH(v)∩NH(xj)] has a Kt−2 subgraph. Let W be the

vertex set of such a Kt−2 subgraph. It follows that W * Ri−1, else Gr[W ∪ {uj, xj}] = Kt, since

NRi−1
(v) = NRi−1

(uj) and ujxj ∈ E(H). Let x ∈ W\Ri−1.
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If x ∈ Ri−1\Ri−1, then f
Ri−1

(x) = 1/2 and f
Ri

(x) = 1, and so f
Ri

(x) ≥ f
Ri−1

(x) + 1/(2q), as

desired. If x ∈ Y (Ri−1), then either x ∈ Ri or x ∈ Y (Ri). In both cases, we have f
Ri−1

(x) =

dRi−1
(x)/(2q) ≤ 1/2− 1/(2q). If x ∈ Ri, then f

Ri
(x) ≥ 1/2 and so f

Ri
(x) ≥ f

Ri−1
(x) + 1/(2q).

Finally, if x ∈ Y (Ri), then dRi
(x) ≥ dRi−1

(x) + 1 because xj ∈ Ri\Ri−1 and Ri−1 ⊆ Ri. Hence,

f
Ri

(x) = d
Ri

(x)/(2q) ≥ (d
Ri−1

(x) + 1)/(2q) = f
Ri−1

(x) + 1/(2q).

In all cases, we have shown that there exists some vertex x ∈ NH(v) such that f
Ri

(x) ≥ f
Ri−1

(x)+

1/(2q). Hence, φ
Ri

(v) ≥ φ
Ri−1

(v) + 1/(2q) for all i ≥ 1 and v ∈ B(Ri).

By (∗), Algorithm 1 stops after m ≤ 2q2 iterations of Line 2. Hence Rm ⊆ V (H) with Rm 6= ∅

but B(Rm) = ∅. For all i ≥ 0,

|Ri+1| = |Ri|+ |X(Ri)|+ |S(Ri)|+ |
|URi
|⋃

j=1

NRi
(xj)|

≤ |Ri|+ |URi
|+ (k − 2)|URi

|+ (q − 1)|URi
|

= |Ri|+ (k + q − 2)|URi
|

≤ |Ri|+ (k + q − 2)

(
1 + |Ri|+

(
|Ri|

2

)
+ · · ·+

(
|Ri|
q − 1

))
,

which only depends on q and k. It follows that by Algorithm 1, there exists a constant c1(q, k)

and a non-empty set R ⊆ V (H) with |R| ≤ c1(q, k) such that B(R) = ∅. Then ω
R

(v) ≥ q for all

v ∈ Y (R) and so

eH(R, Y (R)) + e(H[Y (R)]) =
∑

v∈Y (R)

ω
R

(v) ≥ q|Y (R)|.

Therefore,

e(H) = e(H[R]) + eH(R, Y (R)) + e(H[Y (R)])

≥ q(|R| − |R|) + q|Y (R)|
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≥ q(|R| − c1(q, k)) + q|Y (R)|

= q(n− c1(q, k))

= qn− c(q, k)

where c(q, k) = qc1(q, k). This proves Theorem 1.4.7(i).

This completes the proof of Theorem 1.4.7.

We end this section with a useful corollary which will be applied in the proof of Theorem 1.4.9.

Corollary 2.1.2 Let t, k,G, τ,D1, . . . , Dp, H be given as in the statement of Theorem 1.4.7.

(a) There exists a constant c1(t, k) such that if δ(H) ≥ 2t− 4, then

e(G) ≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c1(t, k).

(b) For every t ≥ 5, k ≥ 4t − 14 and n ≥ (t − 1)(k − 1) + 1, there exists a constant c2(t, k)

such that, if there exists an edge uv ∈ E(H) with dH(u) = δ(H) such that v is contained in

all Kt−2 subgraphs of H[NH(u)] and {v} = V (Dj) for some j ∈ [p], then

e(G) ≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c2(t, k).

(c) There exists a constant c3(t, k) such that if t ≥ 6 and k ≥ 4t− 14 and n ≥ (t− 1)(k− 1) + 1,

then

e(G) ≥
(

2t+ min{5, 3(t− 5)}
2

+
1

2

⌈
k

2

⌉)
n− c3(t, k).

Proof. To prove Corollary 2.1.2(a), assume δ(H) ≥ 2t−4. By Theorem 1.4.7(i) applied to H and
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q = 2t − 4, there exists a constant c(2t − 4, k) such that e(H) ≥ (2t − 4)n − c(2t − 4, k). This,

together with Theorem 1.4.7(g), yields that

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ (2t− 4)n− c(2t− 4, k) +

(
1

2

⌈
k

2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1))

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(2t− 4, k)− 1

2
(t− 1)(dk/2e − 1)2

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c1(t, k),

as desired, where c1(t, k) = c(2t− 4, k) + 1
2
(t− 1)(dk/2e − 1)2. This proves Corollary 2.1.2(a).

We next prove Corollary 2.1.2(b). Assume t ≥ 5, k ≥ 4t − 14 and n ≥ (t − 1)(k − 1) + 1. Let

uv ∈ E(H) with dH(u) = δ(H) such that NH(u)\v is Kt−2-free and {v} = V (Dj) for some

j ∈ [p]. We may assume that u ∈ V (Dp) and {v} = V (Dp−1). By Corollary 2.1.2(a), we may

assume that dH(u) ≤ 2t − 5. Since t ≥ 5, by Theorem 1.4.7(e), δ(H) ≥ t. By Theorem 1.4.7(i)

applied to H and q = t, there exists a constant c(t, k) such that e(H) ≥ tn − c(t, k). Since

n ≥ (t − 1)(k − 1) + 1 and |V (Di)| ≤ k − 1 for all i ∈ [p] with i 6= p − 1, we see that p ≥ t. If

p = t, then n = (t− 1)(k − 1) + 1 and |V (Di)| = k − 1 for i ∈ [p] with i 6= p− 1. In this case,

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ (tn− c(t, k)) + (p− 1)(k − 1)(k − 2)/2

= (tn− c(t, k)) + (n− 1)(k − 2)/2

= (t− 1 + k/2)n− c(t, k)− (k − 2)/2

≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− `1(t, k)
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for all k ≥ 4t− 14, as desired, where `1(t, k) = c(t, k) + (k − 2)/2.

Next assume p ≥ t+1. Since k ≥ 2(2t−7), by Lemma 2.1.1(b), there are at most t−1 many Di’s

satisfying u /∈ V (Di) and Di\NH(u) = ∅. We may assume that for all i ∈ [p − t], D1, . . . , Dp−t

are such that u /∈ V (Di) and Di\NH(u) 6= ∅. By Theorem 1.4.7(c), |Di| = k−1 for all i ∈ [p− t].

Thus
p∑
i=1

e(G[V (Di)]) ≥ (p− t)(k − 1)(k − 2)/2.

Note that n ≤ (p − 1)(k − 1) + 1 because {v} = V (Dp−1) and |Di| ≤ k − 1 for all i ∈ [p] with

i 6= p− 1. Therefore,

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ (tn− c(t, k)) + (p− t)(k − 1)(k − 2)/2

≥ (tn− c(t, k)) +
1

2

(
n− 1

k − 1
− t+ 1

)
(k − 1)(k − 2)

= (t− 1 + k/2)n− c(t, k)− (k − 2)(tk − t− k + 2)/2

≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(t, k)− [(t− 1)k2 − (3t− 4)k + 2t− 4]/2

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− `2(t, k)

for all k ≥ 4t− 14, as desired, where `2(t, k) = c(t, k) + [(t− 1)k2 − (3t− 4)k + 2t− 4]/2. Let

c2(t, k) := max{`1(t, k), `2(t, k)}. This proves Corollary 2.1.2(b).

Finally, we prove Corollary 2.1.2(c). Assume t ≥ 6, k ≥ 4t−14 and n ≥ (t−1)(k−1)+1. Then by

Theorem 1.4.7(f), δ(H) ≥ t+min{3, t−4} or there exists an edge uv ∈ E(H) such that dH(u) =

δ(H) and v is complete to NH(u)\v in H . Assume first that there exists an edge uv ∈ E(H) such

that dH(u) = δ(H) and v is complete to NH(u)\v in H . Then v is contained in all Kt−2 subgraphs

of H[NH(u)], because H is Kt-free. We may assume that u ∈ V (Dp). By Theorem 1.4.7(b)
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applied to u and any vertex in V (H)\(V (Dp)∪NH(u)), V (H)\(V (Dp)∪NH(u)) must be complete

to v in H . Thus {v} = V (D`) for some ` ∈ [p− 1]. By Corollary 2.1.2(b), there exists a constant

c2(t, k) such that

e(G) ≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c2(t, k)

≥
(

2t+ min{5, 3(t− 5)}
2

+
1

2

⌈
k

2

⌉)
n− c2(t, k),

for all t ≥ 6, as desired.

Assume next that δ(H) ≥ t + min{3, t − 4}. By Theorem 1.4.7(i) applied to H and q = t +

min{3, t− 4}, there exists a constant c(q, k) such that e(H) ≥ (t+ min{3, t− 4})n− c(q, k). By

Theorem 1.4.7(g), we have

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥


8n− c(q, k) +

(
1
2

⌈
k
2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1)) if t = 6

(t+ 3)n− c(q, k) +
(
1
2

⌈
k
2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1)) if t ≥ 7

=


(
15
2

+ 1
2

⌈
k
2

⌉)
n− c(q, k)− 1

2
(t− 1)(dk/2e − 1)2 if t = 6(

2t+5
2

+ 1
2

⌈
k
2

⌉)
n− c(q, k)− 1

2
(t− 1)(dk/2e − 1)2 if t ≥ 7.

This proves Corollary 2.1.2(c) and thus completes the proof of Corollary 2.1.2.
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2.2 Proof of Theorem 1.4.8

We begin this section with a useful lemma, which may be of independent interest. It is worth noting

that Lemma 2.2.2 is stronger than Theorem 2.2.1 when α(G) > |G|/2. We include a proof here

for completeness and the proof of Lemma 2.2.2 is due to Hehui Wu, which is completely different

from the one of Hajnal [54].

Theorem 2.2.1 (Hajnal [54]) LetG be a graph and let F be the family of all maximum stable sets

of G. Then ∣∣∣∣∣⋂
S∈F

S

∣∣∣∣∣+

∣∣∣∣∣⋃
S∈F

S

∣∣∣∣∣ ≥ 2α(G).

Lemma 2.2.2 Let G be a graph with α(G) > |G|/2 and let F be the family of all maximum stable

sets of G. Then ∣∣∣∣∣⋂
S∈F

S

∣∣∣∣∣ ≥ δ(G) + 2α(G)− |G| ≥ δ(G) + 1.

Moreover, if
⋂
S∈F S = {u}, then α(G) = (|G|+ 1)/2 and u is an isolated vertex in G.

Proof. Let X ∈ F and Y := V (G)\X . Then |X| = α(G) > |G|/2, and so |X| > |Y |. Let

H := G[X, Y ] be the bipartite subgraph of G with V (H) = X ∪ Y and E(H) = {xy ∈ E(G) :

x ∈ X, y ∈ Y }. Let T be a maximum stable set of H and let X1 := X\T , Y1 := Y ∩ T and

Y2 := Y \T . Then |Y1| + |X\X1| = |T | ≥ |X| = |X1| + |X\X1| > |Y | = |Y1| + |Y2|, which

implies that |X1| ≤ |Y1| and |X\X1| > |Y2|. We next show that H ′ := G[X\X1, Y2] contains a

matching that saturates Y2. For any S ⊆ Y2, we have |NH′(S)| ≥ |S|, else T ′ := (T\NH′(S)) ∪ S

is a stable set of H with |T ′| > |T |, a contradiction. By Hall’s Theorem, there exists a matching,

say M , of H ′ that saturates Y2. Let X2 := V (M) ∩X and X3 := X\(X1 ∪X2). Then

|X3| = |X| − |X1| − |X2| ≥ |X| − |Y | = 2α(G)− |G| > 0,
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because |X1| ≤ |Y1|, |X2| = |Y2| and α(G) > |G|/2. Note that X1 ∪ Y1 is anti-complete to

X\X1 in H . By the choice of T , α(H[X1 ∪ Y1]) ≤ |X1|. Moreover, α(H[X2 ∪ Y2]) ≤ |X2|

because M is a perfect matching of G[X2, Y2]. Then for any S ∈ F , |S ∩ (X1 ∪ Y1)| ≤ |X1| and

|S ∩ (X2 ∪ Y2)| ≤ |X2|. Therefore, |X3| ≥ |S ∩X3| = |S| − |S ∩ (X1 ∪ Y1)| − |S ∩ (X2 ∪ Y2)| ≥

|X| − |X1| − |X2| = |X3|. It follows that |S ∩X3| = |X3|. Then X3 ⊆ S. Hence, X3 ⊆
⋂
S∈F S

by the arbitrary choice of S.

Next, suppose there exists a vertex u ∈ X3 with dG(u) = d > 0. Let NG(u) := {v1, . . . , vd}. Then

{v1, . . . , vd} ⊆ Y2. Let u1, . . . , ud ∈ X2 be such that uivi ∈ E(M) for all i ∈ [d]. For each i ∈ [d],

let M i := (M\uivi) ∪ {uvi}, X i
2 := V (M i) ∩ X and X i

3 := X\(X1 ∪ X i
2). Then ui ∈ X i

3 and

M i is a perfect matching of G[X i
2, Y2]. By the arbitrary choice of M , ui ∈

⋂
S∈F S. Therefore,

|
⋂
S∈F S| ≥ |{u1, . . . , ud} ∪ X3| ≥ d + (2α(G) − |G|) ≥ δ(G) + 2α(G) − |G| ≥ δ(G) + 1, as

desired.

Finally, if
⋂
S∈F S = {u}, then 1 = |

⋂
S∈F S| ≥ d + 2α(G) − |G|. It follows that d = 0 and

α(G) = (|G|+ 1)/2, because 2α(G)− |G| > 0. This completes the proof of Lemma 2.2.2.

We are now ready to prove Theorem 1.4.8.

Proof of Theorem 1.4.8: Let G be a (Kt, Tk)-co-critical graph on n vertices, where t ≥ 4 and

k ≥ max{6, t}. Then n ≥ (t− 1)(k− 1) + 1 and G admits a critical-coloring. Among all critical-

colorings of G, let τ : E(G) → {red, blue} be a critical-coloring of G with |Er| maximum. By

the choice of τ , Gr is Kt-saturated and Gb is Tk-free. By Theorem 1.4.7(a), δ(Gr) ≥ 2t − 4. Let

D1, · · · , Dp be all components of Gb. By Lemma 2.1.1(a), |Di| ≤ k − 1 for all i ∈ [p]. Then

(t− 1)(k − 1) + 1 ≤ n ≤ p(k − 1). This implies that p ≥ t. Let H := G\(
⋃
i∈[p]E(G[V (Di)])).
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Then H is a spanning subgraph of Gr. Clearly, H is Kt-free.

Assume first that δ(H) ≥ 2t − 4. By Theorem 1.4.7(i) applied to H and q = 2t − 4, there

exists a constant c(2t − 4, k) such that e(H) ≥ (2t − 4)n − c(2t − 4, k). This, together with

Theorem 1.4.7(g), yields that

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ (2t− 4)n− c(2t− 4, k) +

(
1

2

⌈
k

2

⌉
− 1

2

)
(n− (t− 1)(dk/2e − 1))

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(2t− 4, k)− 1

2
(t− 1)(dk/2e − 1)2

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c1(t, k),

as desired, where c1(t, k) = c(2t− 4, k) + 1
2
(t− 1)(dk/2e − 1)2.

Assume next that δ(H) ≤ 2t − 5. Note that k ≥ max{6, t} ≥ t for all t ≥ 4. Let u ∈ V (H)

with dH(u) = δ(H). We may assume that u ∈ V (Dp). Let NH(u) = {u1, . . . , uδ(H)}. By

Theorem 1.4.7(b) applied to u and any vertex in V (H)\(V (Dp) ∪NH(u)), we see that H[NH(u)]

must have aKt−2 subgraph. We may assume thatH[{u1, . . . , ut−2}] = Kt−2. Then we may further

assume that ui ∈ V (Dp−i) for all i ∈ [t−2]. Note thatH[NH(u)] isKt−1-free and ω(H[NH(u)]) =

t−2 > |NH(u)|/2. LetF be the family of allKt−2 subgraphs ofH[NH(u)]. By Theorem 1.4.7(d),

|
⋂
A∈F A| ≤ 1. By Lemma 2.2.2 applied to the complement ofH[NH(u)], we have |

⋂
A∈F A| = 1.

We may assume that
⋂
A∈F A = {u1}. By Lemma 2.2.2 again, |NH(u)| = 2t − 5, u1 is complete

to NH(u)\u1 in H and u1 is contained in all Kt−2 subgraphs of H[NH(u)]. Then H[NH(u)]\u1

is Kt−2-free. By Theorem 1.4.7(b) applied to u and any vertex in V (H)\(V (Dp) ∪ NH(u)),

V (H)\(V (Dp) ∪ NH(u)) must be complete to u1 in H . Thus {u1} = V (Dp−1). By Theorem

1.4.7(i) applied to H and q = 2t − 5, there exists a constant c(2t − 5, k) such that e(H) ≥
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(2t − 5)n − c(2t − 5, k). Since n ≥ (t − 1)(k − 1) + 1 and |V (Di)| ≤ k − 1 for all i ∈ [p] with

i 6= p− 1, we see that p ≥ t. If p = t, then n = (t− 1)(k− 1) + 1 and |V (Di)| = k− 1 for i ∈ [p]

with i 6= p− 1. In this case,

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ ((2t− 5)n− c(2t− 5, k)) + (p− 1)(k − 1)(k − 2)/2

= ((2t− 5)n− c(2t− 5, k)) + (n− 1)(k − 2)/2

= (2t− 6 + k/2)n− c(2t− 5, k)− (k − 2)/2

≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c2(t, k)

for all k ≥ 6, as desired, where c2(t, k) = c(2t− 5, k) + (k − 2)/2.

Next assume p ≥ t + 1. Since k ≥ t, |NH(u)| ≤ 2t − 5, and Gr is Kt-free, by Lemma 2.1.1(b),

there are at most t− 1 many Di’s satisfying u /∈ V (Di) and Di\NH(u) = ∅. We may assume that

for all i ∈ [p−t],D1, . . . , Dp−t are such that u /∈ V (Di) andDi\NH(u) 6= ∅. By Theorem 1.4.7(c),

|Di| = k − 1 for all i ∈ [p− t]. Thus

p∑
i=1

e(G[V (Di)]) ≥ (p− t)(k − 1)(k − 2)/2.

Note that n ≤ (p− 1)(k − 1) + 1 because {u1} = V (Dp−1) and |Di| ≤ k − 1 for all i ∈ [p] with

i 6= p− 1. Therefore,

e(G) = e(H) +

p∑
i=1

e(G[V (Di)])

≥ ((2t− 5)n− c(2t− 5, k)) + (p− t)(k − 1)(k − 2)/2

≥ ((2t− 5)n− c(2t− 5, k)) +
1

2

(
n− 1

k − 1
− t+ 1

)
(k − 1)(k − 2)
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= (2t− 6 + k/2)n− c(2t− 5, k)− (k − 2)(tk − t− k + 2)/2

≥
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(2t− 5, k)− [(t− 1)k2 − (3t− 4)k + 2t− 4]/2

=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c3(t, k)

for all k ≥ 6, as desired, where c3(t, k) = c(2t− 5, k) + [(t− 1)k2 − (3t− 4)k + 2t− 4]/2.

Let `(t, k) := max{c1(t, k), c2(t, k), c3(t, k)}. This completes the proof of Theorem 1.4.8.

2.3 Proof of Theorem 1.4.9

Let G be a (Kt, Tk)-co-critical graph on n ≥ (t − 1)(k − 1) + 1 vertices, where t ∈ {4, 5, 6, 7}

and k ≥ max{3, 4t − 14}. Then G admits a critical-coloring. Among all critical-colorings of G,

let τ : E(G) → {red, blue} be a critical-coloring of G with |Er| maximum. By the choice of τ ,

Gr is Kt-saturated and Gb is Tk-free. By Theorem 1.4.7(a), δ(Gr) ≥ 2t − 4. Let D1, · · · , Dp be

all components of Gb. By Lemma 2.1.1(a), |Di| ≤ k− 1 for all i ∈ [p]. Then (t− 1)(k− 1) + 1 ≤

n ≤ p(k − 1). This implies that p ≥ t. Let H := G\(
⋃
i∈[p]E(G[V (Di)])). Then H is a spanning

subgraph ofGr. Since k ≥ max{3, 4t−14}, by Corollary 2.1.2(c), we may assume that t ∈ {4, 5}.

By Corollary 2.1.2(a), we may further assume that δ(H) ≤ 2t − 5. Then by Theorem 1.4.7(e),

k ≥ 4. Thus k ≥ t. By Theorem 1.4.7(e, f), δ(H) = 2t− 5 because t ∈ {4, 5} and δ(H) ≤ 2t− 5.

Let u ∈ V (H) with dH(u) = δ(H). We may assume that u ∈ V (Dp). Let NH(u) =

{u1, . . . , u2t−5}. By Theorem 1.4.7(b) applied to u and any vertex in V (H)\(V (Dp)∪NH(u)), we

see that H[NH(u)] must have a Kt−2 subgraph. We may assume that H[{u1, . . . , ut−2}] = Kt−2.

Then we may further assume that ui ∈ V (Dp−i) for all i ∈ [t − 2]. Since δ(H) = 2t − 5

and k ≥ t, by Theorem 1.4.7(d), no edge of H[NH(u)] is contained in all Kt−2 subgraphs of
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H[NH(u)]. Therefore, H[NH(u)] contains two different copies of Kt−2 subgraphs other than

H[{u1, . . . , ut−2}]. Since H is Kt-free, H[NH(u)] has no Kt−1 subgraph. It follows that there

exists a vertex, say u2 ∈ {u1, . . . , ut−2}, such that u2 is complete to NH(u)\u2 in H . Then

u2 is contained in all Kt−2 subgraphs of H[NH(u)] and so H[NH(u)]\u2 is Kt−2-free. By

Theorem 1.4.7(b) applied to u and any vertex in V (H)\(V (Dp) ∪ NH(u)), V (H)\(V (Dp) ∪

NH(u)) must be complete to u2 in H . Thus {u2} = V (Dp−2). Then p ≥ t + 1 because

n ≥ (t− 1)(k − 1) + 2 and |V (Di)| ≤ k − 1 for all i ∈ [p] with i 6= p− 2.

Assume first that t = 5 and k ≥ 6 = 4t − 14. By Corollary 2.1.2(b), we obtain the desired lower

bound for e(G). We next consider the case t = 4 and k ≥ 4. In this case, H[{u1, u2, u3}] = P3

with {u2} = V (Dp−2) and u1u3 /∈ E(H). We next show that u3 /∈ V (Dp−1). Suppose u3 ∈

V (Dp−1). Then {u1, u3} = V (Dp−1) because |NH(u)∩NH(w)| ≥ 2 for anyw ∈ V (H)\(V (Dp)∪

{u1, u2, u3}). Then u1u3 ∈ Eb and we obtain a critical-coloring of G+ uv from τ by first coloring

the edge uv red, and then recoloring u1u2, u2u3 blue and all red edges incident with u in G[V (Dp)]

blue, a contradiction. This proves that u3 6∈ V (Dp−1). We may assume that u3 ∈ V (Dp−3). For

each ` ∈ {1, 3}, by Theorem 1.4.7(b) applied to u and any vertex in V (Dp−(4−`))\u4−`, u` must be

complete to V (Dp−(4−`))\u4−` in H . Note that p ≥ t+ 1 = 5. For all i ∈ [p− 4], let

V 1
i := {w ∈ V (Di) | NH(w) ∩NH(u) = {u1, u2}},

V 2
i := {w ∈ V (Di) | NH(w) ∩NH(u) = {u1, u2, u3}},

V 3
i := {w ∈ V (Di) | NH(w) ∩NH(u) = {u2, u3}}.

Let A :=
⋃
i∈[p−4] V

1
i ∪ V 2

i and B :=
⋃
i∈[p−4] V

3
i ∪ V 2

i . Since Gr is K4-free, we see that neither

G[A] nor G[B] has red edges. This implies that for all i ∈ [p− 4], both V 1
i ∪ V 2

i and V 3
i ∪ V 2

i are

blue cliques in Di. We claim that

(†) for all i ∈ [p− 4], if V 1
i 6= ∅ and V 3

i 6= ∅, then V 2
i 6= ∅.
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Proof. Suppose there exists an i ∈ [p − 4], say i = 1, such that V 1
1 6= ∅ and V 3

1 6= ∅ but V 2
1 = ∅.

Then V 1
1 ∪ V 3

1 = V (D1). Let x ∈ V 1
1 and y ∈ V 3

1 . Since V 1
1 is anti-complete to (A ∪ {u3})\V 1

1

in Gr, and V 3
1 is anti-complete to (B ∪ {u1})\V 3

1 in Gr, we see that NH(x) ∩ NH(y) ⊆ {u2} ∪

(V (Dp)\u). But then we obtain a critical-coloring of G+ ux from τ by first coloring the edge ux

red, and then recoloring u2x blue, and all red edges in G[V (Dp)] blue, and all blue edges between

V 1
1 and V 3

1 red, a contradiction.

Let i ∈ [p−4]. By Theorem 1.4.7(c) applied to the edge uu2, |V (Di)| = k−1. Since V 1
i ∪V 2

i and

V 3
i ∪V 2

i are blue cliques inDi, by (†), e(Gb[V (Di)]) is minimized when |V 2
i | = 1, ||V 1

i |−|V 3
i || ≤ 1.

Note that n ≤ (p− 1)(k − 1) + 1 because {u2} = V (Dp−2) and |Di| ≤ k − 1 for all i 6= p− 2. It

follows that

|Eb| >
p−4∑
i=1

e(Gb[V (Di)])

=

p−4∑
i=1

[
e(Gb[V

1
i ]) + e(Gb[V

3
i ]) + eGb

(V 2
i , V

1
i ∪ V 3

i ])
]

≥
{

1

2

⌈
k − 2

2

⌉(⌈
k − 2

2

⌉
− 1

)
+

1

2

⌊
k − 2

2

⌋(⌊
k − 2

2

⌋
− 1

)
+ k − 2

}
(p− 4)

≥

{
1

2

⌈
k − 2

2

⌉2
+

1

2

⌊
k − 2

2

⌋2
+
k − 2

2

}(
n− 1

k − 1
− 3

)
≥
(

1

2

⌈
k

2

⌉
− 1

2

)
n− (3k2 − 5k + 2)/4.

Note that Gr is K4-saturated and δ(Gr) ≥ 4. By Theorem 1.5.7, there exists a constant c such that

|Er| ≥ 4n− c. Therefore,

e(G) = |Er|+ |Eb| ≥
(

7

2
+

1

2

⌈
k

2

⌉)
n− (3k2 − 5k + 2)/4− c, as desired.
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This completes the proof of Theorem 1.4.9.

2.4 Proof of Theorem 1.4.10

Let t ∈ {4, 5}, k ≥ 3 and n ≥ (2t − 3)(k − 1) + dk/2edk/2e − 1. We will construct a (Kt, Tk)-

co-critical graph on n vertices which yields the desired upper bound in Theorem 1.4.10.

Let r, s be the remainder and quotient of n − (2t − 3)(k − 1) when divided by dk/2e, and let

A := Kk−1. For each i ∈ [t−2], letBi := Kk−2 and Ci := Kk−2. LetH1 be obtained from disjoint

copies of A,B1, . . . , Bt−2, C1, . . . , Ct−2 by joining every vertex in Bi to all vertices in A∪Ci∪Bj

for each i ∈ [t−2] and all j ∈ [t−2] with j 6= i. LetH2 := (s−r)Kdk/2e∪rKdk/2e+1 when k ≥ 4,

and H2 := sK2 ∪ rK1 when k = 3. Finally, let G be the graph obtained from H := H1 ∪ H2

by adding 2t − 4 new vertices x1, . . . , xt−2, y1, . . . , yt−2, and then, for each i ∈ [t − 2], joining:

xi to every vertex in V (H) and all xj; and yi to every vertex in V (H) \ V (A) and all xj , where

j ∈ [t− 2] with j 6= i. The construction of G when t = 4 and k ≥ 4 is depicted in Figure 2.1, and

the construction of G when t = 5 and k ≥ 4 is depicted in Figure 2.2.

Figure 2.1: A (K4, Tk)-co-critical graph for all k ≥ 4
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Figure 2.2: A (K5, Tk)-co-critical graph for all k ≥ 4

Let σ : E(G) → {red, blue} be defined as follows: all edges in A,B1, . . . , Bt−2, C1, . . . , Ct−2

and H2 are colored blue; for every i ∈ [t − 2], all edges between xi and Bi are colored blue and

all edges between yi and Ci are colored blue; the remaining edges of G are all colored red. Note

that the {red, blue}-coloring of G depicted in Figure 2.1 (resp. Figure 2.2) is σ when t = 4 (resp.

t = 5) and k ≥ 4. Clearly, σ is a critical-coloring of G. We next show that σ is the unique

critical-coloring of G up to symmetry.

Let X := {x1, . . . , xt−2} and Y := {y1, . . . , yt−2}. Let τ : E(G) → {red, blue} be an arbitrary

critical-coloring of G. It suffices to show that τ = σ upon to symmetry. Let Gτ
r and Gτ

b be Gr

and Gb under the coloring τ , respectively. Note that G[V (A) ∪ V (B1) ∪ · · · ∪ V (Bt−2) ∪ X] =

K(t−1)(k−1). By Lemma 2.1.1(a) and the fact thatGτ
r isKt-free,Gτ

b [V (A)∪V (B1)∪· · ·∪V (Bt−2)∪

X] has exactly t− 1 components, say D1, . . . , Dt−1, such that V (Di) is complete to V (Dj) in Gτ
r

for all i, j ∈ [t − 1] with i 6= j. Then each Di is isomorphic to Kk−1 in Gτ
b for all i ∈ [t − 1].

Since every vertex in V (A)∪V (B1)∪ · · · ∪V (Bt−2)∪X belongs to a blue Kk−1 in Gτ
b , it follows
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that: for each i ∈ [t− 2], yi is complete to V (B1) ∪ · · · ∪ V (Bt−2) ∪ (X\xi) in Gτ
r ; and V (Ci) is

complete to V (Bi) ∪X in Gτ
r . We next prove three claims.

Claim 1. A = Di for some i ∈ [t− 1].

Proof. Suppose A 6= Di for all i ∈ [t− 1]. Then for each i ∈ [t− 1], (V (B1) ∪ · · · ∪ V (Bt−2)) ∩

V (Di) 6= ∅. Let di ∈ (V (B1) ∪ · · · ∪ V (Bt−2)) ∩ V (Di) for all i ∈ [t− 1]. Then d1, . . . , dt−1 are

pairwise distinct, and Gτ
r [{d1, . . . , dt−1}] = Kt−1. But then Gτ

r [{d1, . . . , dt−1, y1}] = Kt, because

y1 is complete to V (B1)∪ · · · ∪V (Bt−2) in Gτ
r , a contradiction. This proves that A = Di for some

i ∈ [t− 1].

By Claim 1, we may assume thatA = Dt−1. Then V (A) is complete to V (B1)∪· · ·∪V (Bt−2)∪X

in Gτ
r . For each i ∈ [t− 2], since Gτ

b is Tk-free, there must exist a vertex ci ∈ V (Ci) such that ci is

adjacent to at most one vertex of Y in Gτ
b . Then ci is adjacent to at least t− 3 vertices of Y in Gτ

r .

We next show that

Claim 2. For each i ∈ [t− 2], |X ∩ V (Di)| = 1.

Proof. Suppose |X ∩ V (Di)| 6= 1 for some i ∈ [t − 2]. Since |X| = t − 2, we may assume that

|X ∩ V (D1)| ≥ 2 and X ∩ V (Dt−2) = ∅. We may further assume that x1, x2 ∈ V (D1). Then

x1x2 ∈ Eb. Since X ∩V (Dt−2) = ∅ and for all i ∈ [t− 2], |V (Bi)| = k− 2 < k− 1 = |V (Dt−2)|,

we may assume that V (Bi)∩V (Dt−2) 6= ∅ for i ∈ [2]. Let b1 ∈ V (B1)∩V (Dt−2). We may assume

that c1yi ∈ Er for some i ∈ [2], because c1 is adjacent to at least t−3 vertices of Y in Gτ
r . If t = 4,

then Gτ
r [{b1, c1, yi, x3−i}] = K4, a contradiction. Thus t = 5. We claim that V (B1) ∩ V (D2) = ∅

and V (B2) ∩ V (D2) = ∅. Suppose, say V (B1) ∩ V (D2) 6= ∅. Let b2 ∈ V (B1) ∩ V (D2). Then

Gτ
r [{b1, b2, c1, yi, x3−i}] = K5, a contradiction. Thus V (B1)∩V (D2) = ∅ and V (B2)∩V (D2) = ∅.

Then V (D2) = V (B3) ∪ {x3}. But then Gτ
r [{b1, c1, yi, x3−i, x3}] = K5, a contradiction.
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Claim 3. For each i ∈ [t− 2], V (Bi) ⊆ V (Dj) for some j ∈ [t− 2].

Proof. Suppose there exists an i ∈ [t−2] such that V (Bi) * V (Dj) for every j ∈ [t−2]. We may

assume i = 1. Since V (B1) ⊆ V (D1)∪· · ·∪V (Dt−2), we see that k−2 = |B1| ≥ 2. Thus k ≥ 4.

We claim that V (B1) ∩ V (Dj) = ∅ for some j ∈ [t − 2]. Suppose V (B1) ∩ V (Dj) 6= ∅ for all

j ∈ [t− 2]. Let dj ∈ V (B1) ∩ V (Dj) for all j ∈ [t− 2]. But then Gτ
r [{d1, . . . , dt−2, c1, y`}] = Kt,

where c1y` ∈ Er for some ` ∈ [t − 2], a contradiction. Thus V (B1) ∩ V (Dj) = ∅ for some

j ∈ [t − 2], as claimed. We may assume that V (B1) ∩ V (Dt−2) = ∅. Since V (B1) * V (Dj)

for every j ∈ [t − 2], it follows that t = 5, V (B1) ⊆ V (D1) ∪ V (D2), and V (B1) ∩ V (D1) 6= ∅

and V (B1) ∩ V (D2) 6= ∅. Let d1 ∈ V (B1) ∩ V (D1) and d2 ∈ V (B1) ∩ V (D2). By Claim 2, let

xi ∈ X∩V (D3). ThenGτ
r [{d1, d2, xi, c1, yj}] = K5, where c1yj ∈ Er for some j ∈ [3] with j 6= i,

a contradiction.

By Claim 2 and Claim 3, V (Bi) ∪ V (Bj) * D` for any i 6= j ∈ [t − 2] and all ` ∈ [t − 2]. By

symmetry, we may assume that V (Bi) ⊆ V (Di) for all i ∈ [t− 2]. Then V (Bi) ∪ {xj} = V (Di)

for some j ∈ [t − 2] since |V (Di)| = |V (Bi)| + 1 and V (B1) ∪ · · · ∪ V (Bt−2) ∪X = V (D1) ∪

· · · ∪ V (Dt−2). By symmetry, we may assume that V (Bi) ∪ {xi} = V (Di) for all i ∈ [t − 2]. It

follows that for all i, j ∈ [t − 2] with i 6= j, Bi is complete to Bj in Gτ
r , xi is complete to X\xi

and Bj in Gτ
r , yi is complete to Ci in Gτ

b , yi is complete to Cj ∪ (X\xi) in Gτ
r , xi is complete to

Bi in Gτ
b , {xi, yi} is complete to H2 in Gτ

r , all edges in A,B1, . . . , Bt−2, C1, . . . , Ct−2 and H2 are

colored blue under τ . This proves that τ = σ and thus σ is the unique critical-coloring of G upon

to symmetry. It can be easily checked that adding any edge e ∈ E(G) to G creates a red Kt if e is

colored red, and a blue Tk if e is colored blue. Hence, G is (Kt, Tk)-co-critical.

Note that eG(X ∪ Y, V (G)\(X ∪ Y )) = (t− 2)(n− (2t− 4)) + (t− 2)(n− (2t− 4 + k − 1)) =

(t−2)(2n−4t−k+9); e(G[X∪Y ]) =
(
t−2
2

)
+(t−2)(t−3); eG(V (B1)∪· · ·∪V (Bt−2), V (C1)∪
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· · · ∪ V (Ct−2)) = (t − 2)(k − 2)2; e(G[V (C1) ∪ · · · ∪ V (Ct−2)]) = (t − 2)
(
k−2
2

)
; e(G[V (A) ∪

V (B1)∪· · ·∪V (Bt−2)]) =
(
(t−2)(k−2)+k−1

2

)
. Using the facts that sdk/2e+r = n− (2t−3)(k−1)

and r ≤ dk/2e − 1, we see that

e(G) = (t− 2)(2n− 4t− k + 9) +

(
t− 2

2

)
+ (t− 2)(t− 3) + (t− 2)(k − 2)2

+ (t− 2)

(
k − 2

2

)
+

(
(t− 2)(k − 2) + k − 1

2

)
+ (s− r)

(
dk/2e

2

)
+ r

(
dk/2e+ 1

2

)
= (2t− 4)n− (t− 2)k − 1

2
(t− 2)(5t− 9)

+ (k − 2)
(
(t− 2)(k − 2) + (t− 2)(k − 3)/2 + (t− 1)(tk − k − 2t+ 3)/2

)
+
s− r

2

⌈
k

2

⌉(⌈
k

2

⌉
− 1

)
+
r

2

⌈
k

2

⌉(⌈
k

2

⌉
+ 1

)
= (2t− 4)n− (t− 2)k − 1

2

(
t− 2)(5t− 9) +

1

2
(k − 2)((t2 + t− 5)k − 2t2 − 2t+ 11

)
+

1

2

(⌈
k

2

⌉
− 1

)(
s

⌈
k

2

⌉
+ r

)
+
r

2

(⌈
k

2

⌉
+ 1

)
≤ (2t− 4)n+

1

2

(
(t2 + t− 5)k2 − (4t2 + 6t− 25)k − t2 + 23t− 40

)
+

1

2

(⌈
k

2

⌉
− 1

)
(n− (2t− 3)(k − 1)) +

1

2

(⌈
k

2

⌉
− 1

)(⌈
k

2

⌉
+ 1

)
=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n+

1

2
(t2 + t− 5)k2 − (2t2 + 2t− 11)k

− (t− 2)(t− 19)

2
− 1

2

⌈
k

2

⌉(
(2t− 3)(k − 1)−

⌈
k

2

⌉)
=

(
4t− 9

2
+

1

2

⌈
k

2

⌉)
n+ C(t, k),

where C(t, k) = 1
2
(t2 + t−5)k2− (2t2 + 2t−11)k− (t−2)(t−19)

2
− 1

2

⌈
k
2

⌉ (
(2t− 3)(k − 1)−

⌈
k
2

⌉)
.

This completes the proof of Theorem 1.4.10.
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CHAPTER 3: GALLAI-RAMSEY NUMBERS OF EVEN CYCLES AND

PATHS

3.1 Proofs of Proposition 1.6.13 and Proposition 1.6.15

For all n ≥ 3 and k ≥ 1, let Gn−1 ∈ {C2n, P2n+1}, Gi := P2i+3 for all i ∈ {0, 1, . . . , n − 2},

and ij ∈ {0, 1, . . . , n − 1} for all j ∈ [k]. We want to determine the exact values of

GR(Gi1 , Gi2 , . . . , Gik). By reordering colors if necessary, we assume that i1 ≥ i2 ≥ · · · ≥ ik.

Let n∗ := n when Gi1 6= P2n+1 and n∗ := n + 1 when Gi1 = P2n+1. The construction for

establishing a lower bound for GR(Gi1 , Gi2 , . . . , Gik) for all n ≥ 3 and k ≥ 1 is similar to the

construction given by Erdős, Faudree, Rousseau and Schelp in 1976 (see Section 2 in [31]) for

classical Ramsey numbers of even cycles and paths. We recall their construction in the proof of

Proposition 1.6.13 below (see Figure 3.1).

Figure 3.1: A lower bound construction for GR(Gi1 , Gi2 , . . . , Gik)

Proof of Proposition 1.6.13: By Theorems 1.3.3, 1.3.4 and 1.3.5, the statement is true when k = 2.

So we may assume that k ≥ 3. To show that GR(Gi1 , . . . , Gik) ≥ |Gi1 | +
∑k

j=2 ij , we recall the

construction given in [31]. Let G be a complete graph on (|Gi1| − 1) +
∑k

j=2 ij vertices. Let
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V1, . . . , Vk be a partition of V (G) such that |V1| = |Gi1| − 1 and |Vj| = ij for all j ∈ {2, 3, . . . , k}.

Let c be a k-edge-coloring of G by first coloring all the edges of G[Vj] by color j for all j ∈ [k],

and then coloring all the edges between Vj+1 and
⋃j
`=1 V` by color j + 1 for all j ∈ [k − 1]. Then

G contains neither a rainbow triangle nor a monochromatic copy of Gij in color j for all j ∈ [k]

under c. Hence, GR(Gi1 , . . . , Gik) ≥ |G|+ 1 = |Gi1 |+
∑k

j=2 ij , as desired.

Proof of Proposition 1.6.15: By the assumed truth of Conjecture 1.6.14 for Gn−1 = C2n, we may

assume that Gi1 = P2n+1. Then i1 = n− 1. We may further assume that n− 1 = i1 = · · · = it >

it+1 ≥ · · · ≥ ik, where t ∈ [k]. By Proposition 1.6.13, GR(Gi1 , . . . , Gik) ≥ (2n+ 1) +
∑k

j=2 ij =

2+n+t(n−1)+
∑k

j=t+1 ij . We next show thatGR(Gi1 , . . . , Gik) ≤ 2+n+t(n−1)+
∑k

j=t+1 ij .

Let G be a complete graph on 2 + n + t(n − 1) +
∑k

j=t+1 ij vertices and let c : E(G) → [k]

be any Gallai coloring of G. Suppose G does not contain a monochromatic copy of Gij

in color j for all j ∈ [k]. By the assumed truth of Conjecture 1.6.14 for Gn−1 = C2n,

GR(C2n, . . . , C2n, Git+1 , . . . , Gik) = 2n+(t−1)(n−1)+
∑k

j=t+1 ij = 1+n+t(n−1)+
∑k

j=t+1 ij .

Thus G must contain a monochromatic copy of H := C2n in some color ` ∈ [t] under c. We may

assume that ` = 1. Then for every vertex u ∈ V (G)\V (H), all the edges between u and V (H)

must be colored by exactly one color j for some j ∈ {2, . . . , k}, because G contains neither a

rainbow triangle nor a monochromatic copy of P2n+1 in color 1 under c. Thus, V (G)\V (H) can

be partitioned into V2, V3, . . . , Vk such that all the edges between Vj and V (H) are colored by

color j for all j ∈ {2, . . . , k}. It follows that for all j ∈ {2, . . . , k}, |Vj| ≤ ij , because G does not

contain a monochromatic copy ofGij in color j. But then |G| = |H|+
∑k

j=2 |Vj| ≤ 2n+
∑k

j=2 ij =

1 + n+ t(n− 1) +
∑k

j=t+1 ij , contrary to |G| = 2 + n+ t(n− 1) +
∑k

j=t+1 ij .
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3.2 Proof of Theorem 1.6.16

In this section, we prove Theorem 1.6.16 which shows that Conjecture 1.6.14 is true for n ∈ {3, 4}

and all k ≥ 2.

Proof. Let n ∈ {3, 4} and k ≥ 2. By Proposition 1.6.13, it suffices to show that

GR(Gi1 , . . . , Gik) ≤ |Gi1|+
∑k

j=2 ij .

By Theorem 1.3.3, Theorem 1.3.4 and Theorem 1.3.5, GR(Gi1 , Gi2) = R(Gi1 , Gi2) = |Gi1|+ i2.

We may assume that k ≥ 3. Let N := |Gi1|+
∑k

j=2 ij . Since GRk(P3) = 3, we may assume that

i1 ≥ 1 and so N ≥ 2i1 + 3 ≥ 5. Let G be a complete graph on N vertices and let c : E(G)→ [k]

be any Gallai coloring of G such that all the edges of G are colored by at least three colors under c.

We next show that G contains a monochromatic copy of Gij in color j for some j ∈ [k]. Suppose

G contains no monochromatic copy of Gij in color j for any j ∈ [k] under c. Such a Gallai k-

coloring c is called a bad coloring. Among all complete graphs on N vertices with a bad coloring,

we choose G with N minimum.

Consider a Gallai partition of G with parts A1, . . . , Ap, where p ≥ 2. We may assume that |A1| ≥

· · · ≥ |Ap| ≥ 1. Let R be the reduced graph of G with vertices a1, . . . , ap, where ai ∈ Ai for

all i ∈ [p]. By Theorem 1.6.2, we may assume that every edge of R is colored either red or blue.

Since all the edges of G are colored by at least three colors under c, we see that R 6= G and so

|A1| ≥ 2. By abusing the notation, we use ib to denote ij when the color j is blue. Similarly, we

use ir (resp. ig) to denote ij when the color j is red (resp. green). Let

Ar := {aj ∈ {a2, . . . , ap} | aja1 is colored red inR} and

Ab := {ai ∈ {a2, . . . , ap} | aia1 is colored blue inR}.
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LetR :=
⋃
aj∈Ar

Aj andB :=
⋃
ai∈Ab

Ai. Then |A1|+ |R|+ |B| = |G| = N and max{|B|, |R|} 6=

0 because p ≥ 2. Thus G contains a blue P3 between B and A1 or a red P3 between R and A1, and

so max{ib, ir} ≥ 1. We next prove several claims.

Claim 1. Let r ∈ [k] and let s1, . . . , sr be nonnegative integers with s1 + · · · + sr ≥ 1. If

ij1 ≥ s1, . . . , ijr ≥ sr for colors j1, j2, . . . , jr ∈ [k], then for any S ⊆ V (G) with |S| ≥ N − (s1 +

· · ·+ sr), G[S] must contain a monochromatic copy of Gi∗jq
in color jq for some jq ∈ {j1, . . . , jr},

where i∗jq = ijq − sq.

Proof. Let i∗j1 := ij1 − s1, . . . , i
∗
jr := ijr − sr, and i∗j := ij for all j ∈ [k]\{j1, . . . , jr}. Let

i∗` := max{i∗j : j ∈ [k]}. Then i∗` ≤ i1. Let N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then N∗ ≥ 3 and

N∗ ≤ N − (s1 + · · ·+ sr) < N because s1 + · · ·+ sr ≥ 1. Since |S| ≥ N − (s1 + · · ·+ sr) ≥ N∗

and G[S] does not have a monochromatic copy of Gij in color j for all j ∈ [k]\{j1, . . . , jr} under

c, by minimality of N , G[S] must contain a monochromatic copy of Gi∗jq
in color jq for some

jq ∈ {j1, . . . , jr}.

Claim 2. |A1| ≤ n−1 and soG does not contain a monochromatic copy of a graph on |A1|+1 ≤ n

vertices in any color m ∈ [k] that is neither red nor blue.

Proof. Suppose |A1| ≥ n. We first claim that ib ≥ |B| and ir ≥ |R|. Suppose ib ≤ |B| − 1

or ir ≤ |R| − 1. Then we obtain a blue Gib using the edges between B and A1 or a red Gir

using the edges between R and A1, a contradiction. Thus ib ≥ |B| and ir ≥ |R|, as claimed. Let

i∗b := ib − |B| and i∗r := ir − |R|. Since |A1| = N − |B| − |R|, by Claim 1 applied to ib ≥ |B|,

ir ≥ |R| and A1, G[A1] must have a blue Gi∗b
or a red Gi∗r , say the latter. Then ir > i∗r . Thus
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|R| > 0 and Gi∗r is a red path on 2i∗r + 3 vertices. Note that

|A1| = |Gi1|+
k∑
j=2

ij − |B| − |R|

≥


|Gir |+ ib − |B| − |R| if ir ≥ ib

|Gib|+ ir − |B| − |R| if ir < ib,

≥


|Gir |+ i∗b − |R| if ir ≥ ib

2ib + 2 + ir − |B| − |R| ≥ i∗b + (2ir + 3)− |R| if ir < ib,

≥ |Gir | − |R|.

Then

|A1| − |Gi∗r | ≥ |Gir | − |Gi∗r | − |R|

=


(3 + 2ir)− (3 + 2i∗r)− |R| = |R| if ir ≤ n− 2

(2 + 2ir)− (3 + 2i∗r)− |R| = |R| − 1 if ir = n− 1.

But thenG[A1∪R] contains a redGir using the edges of theGi∗r and the edges betweenA1\V (Gi∗r)

and R, a contradiction. This proves that |A1| ≤ n−1. Next, let m ∈ [k] be any color that is neither

red nor blue. Suppose G contains a monochromatic copy of a graph, say J , on |A1|+ 1 vertices in

color m. Then V (J) ⊆ A` for some ` ∈ [p]. But then |A`| ≥ |A1|+ 1, contrary to |A1| ≥ |A`|.

For two disjoint sets U,W ⊆ V (G), we say U is blue-complete (resp. red-complete) to W if all

the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is

blue-complete (resp. red-complete) to W when U = {u}.

Claim 3. min{|B|, |R|} ≥ 1, p ≥ 3 and B is neither red- nor blue-complete to R under c.
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Proof. Suppose B = ∅ or R = ∅. By symmetry, we may assume that R = ∅. Then B 6= ∅ and so

ib ≥ 1. By Claim 2, |A1| ≤ n− 1 ≤ 3 because n ∈ {3, 4}. Then |A1| ≤ ib + 2. If ib ≤ |A1| − 1,

then ib ≤ n− 2 by Claim 2. Thus Gib is a blue path on 2ib + 3 and so

|B| = N − |A1| ≥ |Gib| − |A1| =


ib + 1 if |A1| = ib + 2

ib + 2 if |A1| = ib + 1.

But then we obtain a blue Gib using the edges between B and A1. Thus ib ≥ |A1|. Let i∗b :=

ib − |A1|. By Claim 1 applied to ib ≥ |A1| and B, G[B] must have a blue Gi∗b
. Since

|B| − |Gi∗b
| ≥ |Gib| − |Gi∗b

| − |A1| =


(3 + 2ib)− (3 + 2i∗b)− |A1| = |A1| if ib ≤ n− 2

(2 + 2ib)− (3 + 2i∗b)− |A1| = |A1| − 1 if ib = n− 1,

we see that G contains a blue Gib using the edges of the Gi∗b
and the edges between B\V (Gi∗b

)

and A1, a contradiction. Hence R 6= ∅ and so p ≥ 3 for any Gallai partition of G. It follows that

B is neither red- nor blue-complete to R, otherwise {B,R ∪ A1} or {B ∪ A1, R} yields a Gallai

partition of G with only two parts.

Claim 4. Let m ∈ [k] be a color that is neither red nor blue. Then im ≤ 1. In particular, if im = 1,

then n = 4 and G contains a monochromatic copy of P3 in color m under c.

Proof. By Claim 2,G contains no monochromatic copy of Pn in colorm under c. Suppose im ≥ 1.

Let i∗m := im−1. By Claim 1 applied to im ≥ 1 and V (G), G must have a monochromatic copy of

Gi∗m in color m under c. Since n ∈ {3, 4} and G contains no monochromatic copy of Pn in color

m, we see that n = 4 and i∗m = 0. Thus im = 1 and G contains a monochromatic copy of P3 in

color m under c.
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By Claim 3, B 6= ∅ and R 6= ∅. Since |A1| ≥ 2, we see that G has a blue P3 using edges

between B and A1, and a red P3 using edges between R and A1. Thus ib ≥ 1 and ir ≥ 1. Then

|Gi1| ≥ 5 and so N = |Gi1| +
∑k

j=2 ij ≥ 6. By Claim 2, |A1| ≤ n − 1. If |B| = |R| = 1,

then N = |A1| + |B| + |R| ≤ n + 1 ≤ 5, a contradiction. Thus |B| ≥ 2 or |R| ≥ 2. Since

B is neither red- nor blue-complete to R, we see that G contains either a blue P5 or a red P5.

Thus i1 ≥ max{ib, ir} ≥ 2 ≥ n − 2 because n ∈ {3, 4}. By Claim 4, we may assume that

{ib, ir} = {i1, i2}. Then

|Gi1| =


2i1 + 2 = 1 + n+ i1 if i1 = n− 1

2i1 + 3 = 1 + n+ i1 if i1 = n− 2.

Therefore N = |Gi1|+
∑k

j=2 ij = 1 + n+
∑k

j=1 ij ≥ 1 + n+ ib + ir.

Claim 5. |B| ≤ n− 1 or |R| ≤ n− 1.

Proof. Suppose |B| ≥ n and |R| ≥ n. Let H = (B,R) be the complete bipartite graph obtained

fromG[B∪R] by deleting all the edges with both ends inB or both ends inR. ThenH has no blue

P2n−3 with both ends in B, else, we obtain a blue C2n because |A1| ≥ 2. Similarly, H has no red

P2n−3 with both ends inR. For every vertex v ∈ B∪R, let db(v) := |{u : uv is colored blue in H}|

and dr(v) := |{u : uv is colored red in H}|. Let x1, . . . , xn ∈ B, y1, . . . , yn ∈ R and a1, a∗1 ∈ A1

be all distinct. We next claim that dr(v) ≤ n−2 for all v ∈ B. Suppose, say, dr(x1) ≥ n−1. Then

n = 4 because H has no red P2n−3 with both ends in R. We may assume that x1 is red-complete

to {y1, y2, y3}. Since H has no red P5 with both ends in R, we see that for all i ∈ {2, 3, 4} and

every W ⊆ {y1, y2, y3} with |W | = 2, no xi is red-complete to W . We may further assume

that x2y1, x2y2, x3y1 are colored blue. Then x4y2 must be colored red, else, H has a blue P5 with

vertices x3, y1, x2, y2, x4 in order. Thus x4y1, x4y3 are colored blue. But then H has a blue P5 with
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vertices x2, y2, x3, y1, x4 in order (when x3y2 is colored blue) or vertices x2, y1, x3, y3, x4 in order

(when x3y3 is colored blue), a contradiction. Thus dr(v) ≤ n− 2 for all v ∈ B. Similarly, db(u) ≤

n−2 for all u ∈ R. Then |B||R| = |E(H)| =
∑

v∈B dr(v)+
∑

u∈R db(u) ≤ (n−2)|B|+(n−2)|R|.

Using inequality of arithmetic and geometric means, we obtain that n = 4, |B| = |R| = 4 and

dr(v) = db(v) = 2 for each v ∈ B ∪R. Thus the set of all the blue edges in H induces a 2-regular

spanning subgraph of H . Since H has no blue C8, we see that H must contain two vertex-disjoint

copies of blue C4. We may assume that y1 is blue-complete to {x1, x2} and y2 is blue-complete

to {x3, x4}. But then G contains a blue C8 with vertices a1, x1, y1, x2, a∗1, x3, y2, x4 in order, a

contradiction.

Claim 6. |A1| = 3 and n = 4.

Proof. By Claim 2, |A1| ≤ n − 1 ≤ 3 because n ∈ {3, 4}. Note that |A1| = 3 only when

n = 4. Suppose |A1| = 2. By Claim 2, G has no monochromatic copy of P3 in color j for any

j ∈ {3, . . . , k} under c. By Claim 4, i3 = · · · = ik = 0 and soN = 1+n+
∑k

j=1 ij = 1+n+ib+ir.

We may assume that A1, . . . , At are all the parts of order two in the Gallai partition A1, . . . , Ap of

G, where t ∈ [p]. Let Ai := {ai, bi} for all i ∈ [t]. By reordering if necessary, each of A1, . . . , At

can be chosen as the largest part in the Gallai partition A1, . . . , Ap of G. For all i ∈ [t], let

Aib := {aj ∈ V (R) | ajai is colored blue inR} and

Air := {aj ∈ V (R) | ajai is colored red inR}.

LetBi :=
⋃
aj∈Ai

b
Aj andRi :=

⋃
aj∈Ai

r
Aj . Then |Bi|+ |Ri| = N−|A1| = n+ib+ir−1 ≥ n+2,

because max{ib, ir} ≥ 2 and min{ib, ir} ≥ 1. Since each of A1, . . . , At †can be chosen as the

largest part in the Gallai partitionA1, . . . , Ap ofG, † by Claim 5, either |Bi| ≤ n−1 or |Ri| ≤ n−1

for all i ∈ [t]. We claim that |Bi| 6= |Ri| for all i ∈ [t]. Suppose |Bi| = |Ri| for some i ∈ [t]. By

Claim 5, n+ 2 ≤ |Bi|+ |Ri| ≤ 2(n− 1) ≤ 6. It follows that |Bi| = |Ri| = 3 and n = 4. Thus G
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has a blue P5 between Bi and Ai and a red P5 between Ri and Ai. It follows that min{ib, ir} ≥ 2.

But then |Bi| + |Ri| = n + ib + ir − 1 ≥ 7, a contradiction. This proves that |Bi| 6= |Ri| for all

i ∈ [t]. Let

EB := {aibi | i ∈ [t] and |Ri| < |Bi|} and ER := {aibi | i ∈ [t] and |Ri| > |Bi|}.

We next apply the recoloring method. Let c∗ be an edge-coloring of G obtained from c by

recoloring all the edges in EB blue and all the edges in ER red. Then every edge of G is colored

either red or blue under c∗. Since |G| = 1 + n + ib + ir ≥ R(Gib , Gir) by Theorem 1.3.3,

Theorem 1.3.4 and Theorem 1.3.5, we see that G must contain a blue Gib or a red Gir under c∗.

By symmetry, we may assume that G has a blue H := Gib under c∗. Then H contains no edges of

ER but must contain at least one edge of EB, else, we obtain a blue Gib in G under c. We choose

H so that |E(H) ∩ EB| is minimal. We may further assume that a1b1 ∈ E(H). By the choice of

c∗, |R1| ≤ n − 1 and |R1| < |B1|. Then |B1| ≥ 2 and so G has a blue P5 under c because B1 is

not red-complete to R1. Thus ib ≥ 2. Let W := V (G)\V (H).

We next claim that ib = n − 1. Suppose 2 ≤ ib ≤ n − 2. Then n = 4, ib = 2, H = P7 and

|G| = 1 + n + ib + ir = 7 + ir. Thus |W | = ir. Let x1, . . . , x7 be the vertices of H in order.

By symmetry, we may assume that x`x`+1 = a1b1 for some ` ∈ [3]. Then W ∪ {x7} must be

red-complete to {a1, b1} under c, else, say a vertex u ∈ W ∪ {x7}, is blue-complete to {a1, b1}

under c, then we obtain a blue H ′ := P7 under c∗ with vertices x1, . . . , x`, u, x`+1, . . . , x6 in order

such that |E(H ′) ∩ EB| < |E(H) ∩ EB|, contrary to the choice of H . Thus W ∪ {x7} ⊆ R1 and

so |R1| ≥ |W ∪ {x7}| = ir + 1 ≥ 2. Note that G contains a red P5 under c because |R1| ≥ 2

and R1 is not blue-complete to B1. Thus ir ≥ 2. Then 3 ≤ ir + 1 ≤ |R1| ≤ 3, which implies

that ir = 2 and R1 = W ∪{x7}. Thus {a1, b1} is blue-complete to V (H)\{x`, x`+1, x7}. But then

we obtain a blue H ′ := P7 under c∗ with vertices x1, . . . , x`, x`+2, x`+1, x`+3, . . . , x7 in order such
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that |E(H ′) ∩ EB| < |E(H) ∩ EB|, a contradiction. This proves that ib = n− 1.

Since ib = n−1, we see that H = C2n. Then |G| = 1+n+ ib+ ir = 2n+ ir and so |W | = ir. Let

a1, x1, . . . , x2n−2, b1 be the vertices of H in order and let W = V (G)\V (H) := {w1, . . . , wir}.

Then x1b1 and a1x2n−2 are colored blue under c because {a1, b1} = A1. Suppose {xj, xj+1} is

blue-complete to {a1, b1} under c for some j ∈ [2n − 3]. Then G has a blue H ′ := C2n under

c∗ with vertices a1, x1, . . . , xj, b1, x2n−2, . . . , xj+1 in order such that |E(H ′) ∩ EB| < |E(H) ∩

EB|, contrary to the choice of H . Thus, for all j ∈ [2n − 3], {xj, xj+1} is not blue-complete

to {a1, b1}. Since {x1, x2n−2} is blue-complete to {a1, b1} under c, we see that x2, x2n−3 ∈ R1

and then |R1 ∩ {x2, . . . , x2n−3}| = |R1| = n − 1. Thus R1 = {x2, x3} when n = 3. By

symmetry, we may assume that R1 = {x2, x3, x5} when n = 4. Then W ⊆ B1. Thus R1

is red-complete to {a1, b1} and W is blue-complete to {a1, b1} under c. It follows that for any

wj ∈ W and xm ∈ R1, {xm, wj} 6= Ai for all i ∈ [t]. Then x2 must be red-complete to W

under c, else, say x2w1 is colored blue under c, then we obtain a blue H ′ := C2n under c∗ with

vertices a1, x1, x2, w1, b1, x4 (when n = 3) and vertices a1, x1, x2, w1, b1, x4, x5, x6 (when n = 4)

in order such that |E(H ′) ∩ EB| < |E(H) ∩ EB|, a contradiction. Similarly, x3 is red-complete

to W under c, else, say x3w1 is colored blue under c, then we obtain a blue H ′ := C2n under

c∗ with vertices b1, x4, x3, w1, a1, x1 (when n = 3) and vertices b1, x6, x5, x4, x3, w1, a1, x1 (when

n = 4) in order such that |E(H ′) ∩ EB| < |E(H) ∩ EB|, a contradiction. Thus {x2, x3} is red-

complete to W under c. Then for any wj ∈ W , {x1, wj} 6= Ai for all i ∈ [t] since x2x1 is colored

blue and x2 is red-complete to W under c. If x1wj is colored blue under c for some wj ∈ W ,

then we obtain a blue H ′ := C2n under c∗ with vertices a1, wj, x1, . . . , x2n−2 in order such that

|E(H ′) ∩ EB| < |E(H) ∩ EB|, a contradiction. Thus {x1, x2, x3} is red-complete to W under c.

Then |W | = ir ≥ 2 because G contains a red P5 under c with vertices x1, w1, x2, a1, x3 in order.

But then we obtain a red C2n under c with vertices a1, x2, w1, x1, w2, x3 in order (when n = 3) and

a1, x2, w1, x1, w2, x3, b1, x5 in order (when n = 4), a contradiction.
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By Claim 6, |A1| = 3 and n = 4. Then |B ∪ R| = N − |A1| ≥ 2 + ib + ir ≥ 5 because

max{ib, ir} ≥ 2 and min{ib, ir} ≥ 1. By symmetry, we may assume that |B| ≥ |R|. Then

|B| ≥ 3 and so G has a blue P7 because |A1| = 3 and B is not red-complete to R. Thus ib = 3.

By Claim 5, |R| ≤ 3. Then ir ≥ |R|, else, we obtain a red Gir because |A1| = 3 and R is not blue-

complete to B. Then |B| ≥ 2 + ib + ir − |R| ≥ 5. Thus G[B ∪ R] has no blue P3 with both ends

in B, else, we obtain a blue C8 because |A1| = 3 and |B| ≥ 5. Let i∗b := 0 and i∗r := ir − |R| ≤ 2.

By Claim 1 applied to ib = |A1|, ir ≥ |R| and B, G[B] must contain a red P2i∗r+3 with vertices,

say x1, . . . , x2i∗r+3, in order. Let R := {y1, . . . , y|R|}. Then no yj ∈ R is blue-complete to any

W ⊆ B with |W | = 2, in particular, when W = {x1, x2i∗r+3}, because G[B ∪ R] has no blue P3

with both ends in B. We may assume that x1y1 is colored red. Note that G[R ∪A1] has a red P2|R|

with y1 as an end. Then G[{x1, . . . , x2i∗r+3} ∪R ∪ A1] has a red P2ir+3. It follows that ir = 3. Let

a∗1 ∈ A1\{a1}.

Suppose first that x2i∗r+3 is blue-complete to R = {y1, . . . , y|R|}. Since G[B ∪ R] has no

blue P3 with both ends in B, we see that {x2i∗r+3} = A` for some ` ∈ [p], B\{x2i∗r+3}

is red-complete to {y1, . . . , y|R|}, and x2i∗r+3 is adjacent to at most one vertex, say w ∈

B, such that wx2i∗r+3 is colored blue. Thus x2i∗r+3 is red-complete to B\{w, x2i∗r+3}. Let

w∗ ∈ B\{x1, x2, x3, w}. Since B\{x2i∗r+3} is red-complete to {y1, . . . , y|R|}, we see that

{x1, . . . , x2i∗r+2} is red-complete to {y1, . . . , y|R|}. If w /∈ {x2, . . . , x2i∗r+1}, then we obtain a red

C8 with vertices y1, x1, x2, x7, x3, . . . , x6 (when i∗r = 2), vertices a1, y1, x1, x2, x5, x3, x4, y2 (when

i∗r = 1), and vertices a1, y1, x2, x3, w∗, y2, a∗1, y3 (when i∗r = 0) in order, a contradiction. Thus

w ∈ {x2, . . . , x2i∗r+1}. Then i∗r ≥ 1 and x1x2i∗r+1 is colored red. But then we obtain a red C8 with

vertices y1, x2, x3, x4, x5, x6, x7, x1 (when i∗r = 2) and vertices a1, y1, x2, x3, x4, x5, x1, y2 (when

i∗r = 1) in order, a contradiction. This proves that x2i∗r+3 is not blue-complete to R. Then |R| ≥ 2,

else, |R| = 1, i∗r = 2 and x7y1 is colored red, which yields a red C8 with vertices y1, x1, . . . , x7 in

order, a contradiction. Thus i∗r ≤ 1. Next, suppose x2i∗r+3 is not blue-complete to {y2, . . . , y|R|},
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say x2i∗r+3y2 is colored red. By assumption, x1y1 is red. We then obtain a red C8 with vertices

a1, y1, x1, . . . , x5, y2 (when i∗r = 1) and vertices a1, y1, x1, x2, x3, y2, a∗1, y3 (when i∗r = 0) in order,

a contradiction. Thus x2i∗r+3 is blue-complete to {y2, . . . , y|R|} and so x2i∗r+3y1 is colored red. By

symmetry of x1 and x2i∗r+3, x1 must be blue-complete to {y2, . . . , y|R|}. But then G[B ∪ R] has a

blue P3 with vertices x1, y2, x2i∗r+3 in order, a contradiction.

This completes the proof of Theorem 1.6.16.

3.3 Proof of Theorem 1.6.17

In this section, we continue to establish more evidence for Conjecture 1.6.14. We prove

Theorem 1.6.17 which shows that Conjecture 1.6.14 holds for n ∈ {5, 6} and all k ≥ 2.

Proof. Let n ∈ {5, 6} and k ≥ 2. By Proposition 1.6.13, it suffices to show that it suffices to show

that GR(Gi1 , . . . , Gik) ≤ |Gi1 |+
∑k

j=2 ij .

By Theorem 1.6.16 and Proposition 1.6.15, we may assume that i1 = n−1. Then |Gi1|+
∑k

j=2 ij =

n+ 1 +
∑k

j=1 ij . By Theorem 1.3.3 and Theorem 1.3.4, GR(Gi1 , Gi2) = R(Gi1 , Gi2) = 1 + n+

i1 + i2. We may assume that k ≥ 3. LetN := |Gi1|+
∑k

j=2 ij . ThenN ≥ 2n. LetG be a complete

graph on N vertices and let c : E(G) → [k] be any Gallai coloring of G such that all the edges

of G are colored by at least three colors under c. We next show that G contains a monochromatic

copy of Gij in color j for some j ∈ [k]. Suppose G contains no monochromatic copy of Gij in

color j for any j ∈ [k] under c. Such a Gallai k-coloring c is called a critical-coloring. Among all

complete graphs on N vertices with a critical-coloring, we choose G with N minimum.

Consider a Gallai-partition of G with parts A1, . . . , Ap, where p ≥ 2. We may assume that |A1| ≥
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· · · ≥ |Ap| ≥ 1. Let R be the reduced graph of G with vertices a1, . . . , ap, where ai ∈ Ai for

all i ∈ [p]. By Theorem 1.6.2, we may assume that the edges of R are colored either red or blue.

Since all the edges of G are colored by at least three colors under c, we see that R 6= G and so

|A1| ≥ 2. By abusing the notation, we use ib to denote ij when the color j is blue. Similarly, we

use ir (resp. ig) to denote ij when the color j is red (resp. green). Let

Ab := {ai ∈ {a2, . . . , ap} | aia1 is colored blue inR} and

Ar := {aj ∈ {a2, . . . , ap} | aja1 is colored red inR}.

Then |Ab| + |Ar| = p − 1. Let B :=
⋃
ai∈Ab

Ai and R :=
⋃
aj∈Ar

Aj . Then max{|B|, |R|} 6= 0

because p ≥ 2. Thus G contains a blue P3 between B and A1 or a red P3 between R and A1, and

so max{ib, ir} ≥ 1. We next prove several claims.

Claim 7. Let r ∈ [k] and let s1, . . . , sr be nonnegative integers with s1 + · · · + sr ≥ 1. If ij1 ≥

s1, . . . , ijr ≥ sr for colors j1, . . . , jr ∈ [k], then for any S ⊆ V (G) with |S| ≥ |G|−(s1+ · · ·+sr),

G[S] must contain a monochromatic copy of Gi∗jq
in color jq for some jq ∈ {j1, . . . , jr}, where

i∗jq = ijq − sq.

Proof. Let i∗j1 := ij1 − s1, . . . , i
∗
jr := ijr − sr, and i∗j := ij for all j ∈ [k]\{j1, . . . , jr}. Let

i∗` := max{i∗j : j ∈ [k]}. Then i∗` ≤ i1. Let N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then N∗ ≥ 3 and

N∗ ≤ N − (s1 + · · ·+ sr) < N because s1 + · · ·+ sr ≥ 1. Since |S| ≥ N − (s1 + · · ·+ sr) ≥ N∗

and G[S] does not have a monochromatic copy of Gij in color j for all j ∈ [k]\{j1, . . . , jr} under

c, by minimality of N , G[S] must contain a monochromatic copy of Gi∗jq
in color jq for some

jq ∈ {j1, . . . , jr}.

Claim 8. |A1| ≤ n−1 and soG does not contain a monochromatic copy of a graph on |A1|+1 ≤ n

vertices in color m, where m ∈ [k] is a color that is neither red nor blue.
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Proof. Suppose |A1| ≥ n. We first claim that ib ≥ |B| and ir ≥ |R|. Suppose ib ≤ |B| − 1

or ir ≤ |R| − 1. Then we obtain a blue Gib using the edges between B and A1 or a red Gir

using the edges between R and A1, a contradiction. Thus ib ≥ |B| and ir ≥ |R|, as claimed. Let

i∗b := ib − |B| and i∗r := ir − |R|. Since |A1| = N − |B| − |R|, by Claim 7 applied to ib ≥ |B|,

ir ≥ |R| and A1, G[A1] must have a blue Gi∗b
or a red Gi∗r , say the latter. Then ir > i∗r . Thus

|R| > 0 and Gi∗r is a red path on 2i∗r + 3 vertices. Note that

|A1| = |Gi1|+
k∑
j=2

ij − |B| − |R|

≥


|Gir |+ ib − |B| − |R| if ir ≥ ib

|Gib|+ ir − |B| − |R| if ir < ib,

≥


|Gir |+ i∗b − |R| if ir ≥ ib

2ib + 2 + ir − |B| − |R| ≥ i∗b + (2ir + 3)− |R| if ir < ib,

≥ |Gir | − |R|.

Then

|A1| − |Gi∗r | ≥ |Gir | − |Gi∗r | − |R|

=


(3 + 2ir)− (3 + 2i∗r)− |R| = |R| if ir ≤ n− 2

(2 + 2ir)− (3 + 2i∗r)− |R| = |R| − 1 if ir = n− 1.

But thenG[A1∪R] contains a redGir using the edges of theGi∗r and the edges betweenA1\V (Gi∗r)

and R, a contradiction. This proves that |A1| ≤ n−1. Next, let m ∈ [k] be any color that is neither

red nor blue. Suppose G contains a monochromatic copy of a graph, say J , on |A1|+ 1 vertices in

color m. Then V (J) ⊆ A` for some ` ∈ [p]. But then |A`| ≥ |A1|+ 1, contrary to |A1| ≥ |A`|.
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For two disjoint sets U,W ⊆ V (G), we say U is blue-complete (resp. red-complete) to W if all

the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is

blue-complete (resp. red-complete) to W when U = {u}.

Claim 9. min{|B|, |R|} ≥ 1, p ≥ 3, and B is neither red- nor blue-complete to R under c.

Proof. Suppose B = ∅ or R = ∅. By symmetry, we may assume that R = ∅. Then B 6= ∅ and so

ib ≥ 1. By Claim 8, |A1| ≤ n−1. Thus |B| = |G|− |A1| = N−|A1| ≥ n+1+ ib−|A1| ≥ ib+2.

If ib ≤ |A1| − 1, then ib ≤ n − 2 by Claim 8. But then we obtain a blue Gib using the edges

between B and A1. Thus ib ≥ |A1|. Let i∗b = ib − |A1|. By Claim 7 applied to ib ≥ |A1| and B,

G[B] must have a blue Gi∗b
. Since

|B| − |Gi∗b
| ≥ |Gib| − |Gi∗b

| − |A1| =


(3 + 2ib)− (3 + 2i∗b)− |A1| = |A1| if ib ≤ n− 2

(2 + 2ib)− (3 + 2i∗b)− |A1| = |A1| − 1 if ib = n− 1,

we see that G contains a blue Gib using the edges of the Gi∗b
and the edges between B\V (Gi∗b

)

and A1, a contradiction. Hence R 6= ∅ and so p ≥ 3 for any Gallai-partition of G. It follows

that B is neither red- nor blue-complete to R, otherwise {B ∪ A1, R} or {B,R ∪ A1} yields a

Gallai-partition of G with only two parts.

Claim 10. Let m ∈ [k] be the color that is neither red nor blue. Then im ≤ n− 4. In particular, if

im ≥ 1, then G contains a monochromatic copy of P2im+1 in color m under c.

Proof. By Claim 8, |A1| ≤ n − 1 and G contains no monochromatic copy of P|A1|+1 in color m

under c. Suppose im ≥ 1. Let i∗m := im − 1. By Claim 7 applied to im ≥ 1 and V (G), G must

have a monochromatic copy of Gi∗m in color m under c. Since n ∈ {5, 6}, |A1| ≤ n − 1 and G
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contains no monochromatic copy of P|A1|+1 in color m, we see that i∗m ≤ n− 5. Thus im ≤ n− 4

and G contains a monochromatic copy of P2im+1 in color m under c if im ≥ 1.

By Claim 9, B 6= ∅ and R 6= ∅. Since |A1| ≥ 2, we see that G has a blue P3 using edges between

B and A1, and a red P3 using edges between R and A1. Thus ib ≥ 1 and ir ≥ 1. By Claim 10,

max{ib, ir} = i1 = n − 1. Then N = 1 + n +
∑k

i=1 ij ≥ 1 + n + ib + ir ≥ 2n + 1. For the

remainder of the proof of Theorem 1.6.17, we choose p ≥ 3 to be as large as possible.

Claim 11. If |A1| ≥ n− 3, then |B| ≤ n− 1 or |R| ≤ n− 1.

Proof. Suppose |A1| ≥ n − 3 but |B| ≥ n and |R| ≥ n. By symmetry, we may assume that

|B| ≥ |R| ≥ n. Let B := {x1, x2, . . . , x|B|} and R := {y1, y2, . . . , y|R|}. Let H := (B,R) be the

complete bipartite graph obtained from G[B ∪ R] by deleting all the edges with both ends in B

or in R. Then H has no blue P7 with both ends in B and no red P7 with both ends in R, else we

obtain a blue C2n or a red C2n because |A1| ≥ n− 3. We next show that H has no red K3,3.

Suppose H has a red K3,3. We may assume that H[{x1, x2, x3, y1, y2, y3}] is a red K3,3 under

c. Since H has no red P7 with both ends in R, {y4, . . . , y|R|} must be blue-complete to

{x1, x2, x3}. Thus H[{x1, x2, x3, y4, y5}] has a blue P5 with both ends in {x1, x2, x3} and

H[{x1, x2, x3, y1, y2, y3}] has a red P5 with both ends in {y1, y2, y3}. If |A1| ≥ n − 2 or

min{ib, ir} ≤ n − 2, then we obtain a blue Gib or a red Gir , a contradiction. It follows that

|A1| = n − 3 and ib = ir = n − 1. Thus |B ∪ R| ≥ 1 + n + ib + ir − |A1| = 2n + 2. If

|R| ≥ 6, then {y4, y5, y6} must be red-complete to {x4, x5, x6}, else H has a blue P7 with both

ends in B. But then we obtain a red C2n in G. Thus |R| = 5, n = 5, and so |B| ≥ 7. Let

a1, a
∗
1 ∈ A1. For each j ∈ {4, 5, 6, 7} and every W ⊆ {x1, x2, x3} with |W | = 2, no xj is red-

complete to W under c, else, say, x4 is red-complete to {x1, x2}, then we obtain a red C10 with
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vertices a1, y1, x1, x4, x2, y2, x3, y3, a∗1, y4 in order, a contradiction. We may assume that x4x1, x5x2

are colored blue. But then we obtain a blue C10 with vertices a1, x4, x1, y4, x3, y5, x2, x5, a∗1, x6 in

order, a contradiction. This proves that H has no red K3,3.

Let X := {x1, x2, . . . , x5} and Y := {y1, y2, . . . , y5}. Let Hb and Hr be the spanning subgraphs

of H[X ∪ Y ] induced by all the blue edges and red edges of H[X ∪ Y ] under c, respectively. By

the Pigeonhole Principle, there exist at least three vertices, say x1, x2, x3, in X such that either

dHb
(xi) ≥ 3 for all i ∈ [3] or dHr(xi) ≥ 3 for all i ∈ [3]. Suppose dHr(xi) ≥ 3 for all i ∈ [3].

We may assume that x1 is red-complete to {y1, y2, y3}. Since |Y | = 5 and H has no red P7

with both ends in R, we see that NHr(x1) = NHr(x2) = NHr(x3) = {y1, y2, y3}. But then

H[{x1, x2, x3, y1, y2, y3}] is a red K3,3, contrary to H has no red K3,3. Thus dHb
(xi) ≥ 3 for

all i ∈ [3]. Since |Y | = 5, we see that any two of x1, x2, x3 have a common neighbor in Hb.

Furthermore, two of x1, x2, x3, say x1, x2, have at least two common neighbors in Hb. It can be

easily checked that H has a blue P5 with ends in {x1, x2, x3}, and there exist three vertices, say

y1, y2, y3, in Y such that yixi is blue for all i ∈ [3] and {x4, . . . , x|B|} is red-complete to {y1, y2, y3}.

Then H has a blue P5 with both ends in {x1, x2, x3} and a red P5 with both ends in {y1, y2, y3}. If

|A1| ≥ n − 2 or min{ib, ir} ≤ n − 2, then we obtain a blue Gib or a red Gir , a contradiction. It

follows that |A1| = n− 3 and ib = ir = n− 1. Thus |B ∪R| ≥ 1 + n+ ib + ir − |A1| = 2n+ 2.

Then |B| ≥ n+ 1 and so H[{x4, x5, x6, y1, y2, y3}] is a red K3,3, contrary to the fact that H has no

red K3,3.

Claim 12. |A1| ≥ 3.

Proof. Suppose |A1| = 2. Then G has no monochromatic copy of P3 in color j for any j ∈

{3, . . . , k} under c. By Claim 10, i3 = · · · = ik = 0. We may assume that |A1| = · · · = |At| = 2

and |At+1| = · · · = |Ap| = 1 for some integer t satisfying p ≥ t ≥ 1. Let Ai = {ai, bi} for
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all i ∈ [t]. By reordering if necessary, each of A1, . . . , At can be chosen as the largest part in the

Gallai-partition A1, A2, . . . , Ap of G. For all i ∈ [t], let

Aib := {aj ∈ V (R) | ajai is colored blue inR} and

Air := {aj ∈ V (R) | ajai is colored red inR}.

LetBi :=
⋃
aj∈Ai

b
Aj andRi :=

⋃
aj∈Ai

r
Aj . Then |Bi|+|Ri| = 1+n+ib+ir = 2n−2+min{ib, ir}.

Let

EB := {aibi | i ∈ [t] and |Ri| < |Bi|},

ER := {aibi | i ∈ [t] and |Bi| < |Ri|},

EQ := {aibi | i ∈ [t] and |Bi| = |Ri|}.

Let c∗ be obtained from c by recoloring all the edges in EB blue, all the edges in ER red and

all the edges in EQ either red or blue. Then all the edges of G are colored red or blue under c∗.

Since |G| = n + 1 + ib + ir = R(Gib , Gir) by Theorem 1.3.3 and Theorem 1.3.4, we see that G

must contain a blue Gib or a red Gir under c∗. By symmetry, we may assume that G has a blue

H := Gib . Then H contains no edges of ER but must contain at least one edge of EB ∪ EQ, else

we obtain a blue Gib in G under c. We choose H so that |E(H)∩ (EB ∪EQ)| is minimal. We may

further assume that a1b1 ∈ E(H). Since |B1|+ |R1| = 2n− 2 + min{ib, ir}, by the choice of c∗,

|B1| ≥ n − 1 ≥ 4 and |R1| ≤ n − 1 + bmin{ib,ir}
2
c ≤ 7. So ib ≥ 2. By Claim 11, |R1| ≤ 4 when

n = 5. Let W := V (G)\V (H).

We next claim that ib = n−1. Suppose ib ≤ n−2. ThenH = P2ib+3, ir = n−1, |G| = 2n+ib and

|W | = 2n− 3− ib ≥ n− 1. Let x1, x2, . . . , x2ib+3 be the vertices of H in order. We may assume

that x`x`+1 = a1b1 for some ` ∈ [2ib + 2]. If a vertex w ∈ W is blue-complete to {a1, b1}, then

we obtain a blue H ′ := Gib under c∗ with vertices x1, . . . , x`, w, x`+1, . . . , x2ib+2 in order (when
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` 6= 2ib + 2) or x1, x2, . . . , x2ib+2, w in order (when ` = 2ib + 2) such that |E(H ′)∩ (EB ∪EQ)| <

|E(H)∩(EB∪EQ)|, contrary to the choice ofH . Thus no vertex inW is blue-complete to {a1, b1}

under c and so W must be red-complete to {a1, b1} under c. This proves that W ⊆ R1. We next

claim that ` = 1 or ` = 2ib + 2. Suppose ` ∈ {2, . . . , 2ib + 1}. Then {x1, x2ib+3} must be red-

complete to {a1, b1}, else, we obtain a blue H ′ := Gib with vertices x`, . . . , x1, x`+1, . . . , x2ib+3 or

x1, . . . , x`, x2ib+3, x`+1, . . . , x2ib+2 in order under c∗ such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩

(EB ∪ EQ)|. Thus {x1, x2ib+3} ⊆ R1 and so W ∪ {x1, x2ib+3} is red-complete to {a1, b1}. If

n = 5, then 4 ≥ |R1| ≥ |W ∪ {x1, x2ib+3}| ≥ 6, a contradiction. Thus n = 6 and 7 ≥ |R1| ≥

|W ∪ {x1, x2ib+3}| ≥ 7. It follows that R1 ∩ V (H) = {x1, x2ib+3} and thus either {x`−2, x`−1}

or {x`+2, x`+3} is blue-complete to {a1, b1}. In either case, we obtain a blue H ′ := Gib under c∗

such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|, a contradiction. This proves that ` = 1

or ` = 2ib + 2. By symmetry, we may assume that ` = 1. Then x1x3 is colored blue under c

because A1 = {a1, b1}. Similarly, for all j ∈ {3, . . . , 2ib + 2}, {xj, xj+1} is not blue-complete

to {a1, b1}, else we obtain a blue H ′ := Gib with vertices x1, xj, . . . , x2, xj+1, . . . , x2ib+3 in order

under c∗ such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|. It follows that x4 ∈ R1 and so

|R1∩{x4, . . . , x2ib+3}| ≥ ib. Then |R1| ≥ |W |+|R1∩{x4, . . . , x2ib+3}| ≥ 2n−3, so 4 ≥ |R1| ≥ 7

(when n = 5) or 7 ≥ |R1| ≥ 9 (when n = 6), a contradiction. This proves that ib = n− 1.

Since ib = n − 1, we see that H = C2n. Then |G| = 2n + ir and so |W | = ir. Let

a1, x1, . . . , x2n−2, b1 be the vertices of H in order and let W := {w1, . . . , wir}. Then x1b1 and

a1x2n−2 are colored blue under c because A1 = {a1, b1}. Suppose {xj, xj+1} is blue-complete to

{a1, b1} for some j ∈ [2n − 3]. We then obtain a blue H ′ := C2n with vertices a1, x1, . . . , xj, b1,

x2n−2, . . . , xj+1 in order under c∗ such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|,

contrary to the choice of H . Thus, for all j ∈ [2n − 3], {xj, xj+1} is not blue-complete to

{a1, b1}. Since {x1, x2n−2} is blue-complete to {a1, b1} under c, we see that x2, x2n−3 ∈ R1, and

so 4 ≥ |R1∩V (H)| ≥ 4 (when n = 5) and 5+b ir
2
c ≥ |R1∩V (H)| ≥ 5 (when n = 6). Thus, when
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n = 5, we have R1 = {x2, x4, x5, x7} or R1 = {x2, x4, x6, x7}, as depicted in Figure 3.2(a) and

Figure 3.2(b); when n = 6, we have R1 ∩ V (H) = {x2, x9} ∪ {xj : j ∈ J}, where J ∈ {{4, 6, 8},

{4, 6, 7}, {3, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}, {4, 6, 7, 8}, {3, 5, 7, 8}, {3, 5, 6, 8}, {3, 4, 5, 6, 7},

{3, 4, 5, 6, 8}, {3, 4, 5, 7, 8}}.

(a) (b)

Figure 3.2: Two cases of R1 when ib = 4 and n = 5

Since |R1| ≥ n − 1 and R1 is red-complete to {a1, b1} under c, we see that ir ≥ 2. Let W ′ :=

W\R1 ⊂ B1. It follows that |W ′| = ir − |R1\V (H)| ≥ d ir
2
e ≥ 1. We may assume W ′ =

{w1, . . . , w|W ′|}. We claim that E(H)∩ (EB∪EQ) = {a1b1}. Suppose, say a2b2 ∈ E(H)∩ (EB∪

EQ). Since {x1, x2} 6= Ai and {x2n−3, x2n−2} 6= Ai for all i ∈ [t], we may assume that a2 = xj and

b2 = xj+1 for some j ∈ {2, . . . , 2n− 4}. Then xj−1xj+1 and xjxj+2 are colored blue under c. But

then we obtain a blue H ′ := C2n under c∗ with vertices a1, x1, . . . , xj−1, xj+1, . . . , x2n−2, b1, w1 in

order such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|, contrary to the choice of H . Thus

E(H) ∩ (EB ∪ EQ) = {a1b1}, as claimed.

(∗) Let w ∈ W ′. For j ∈ {1, 2n− 2}, if {xj, w} 6= Ai for all i ∈ [t], then xjw is colored red. For

j ∈ {2, . . . , 2n − 3}, if {xj, w} 6= Ai for all i ∈ [t] and xj−2 or xj+2 ∈ B1, then xjw is colored

red.

Proof. Suppose there are some j ∈ [2n − 2] such that {xj, w} 6= Ai for all i ∈ [t], and xj−2 or
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xj+2 ∈ B1 if j ∈ {2, . . . , 2n − 3}, but xjw is colored blue. Then we obtain a blue C2n under

c with vertices a1, w, x1, . . . , x2n−2 (when j = 1) or a1, x1, . . . , x2n−2, w (when j = 2n − 2) in

order if j ∈ {1, 2n − 2}, and with vertices b1, x2n−2, x2n−3, · · · , xj+2, a1, w, xj, · · · , x1 in order

(when xj+2 ∈ B1) or a1, x1, · · · , xj−2, b1, w, xj, · · · , x2n−2 in order (when xj−2 ∈ B1) if j ∈

{2, . . . , 2n− 3}, a contradiction.

(∗∗) For j ∈ [2n− 4], xjxj+2 is colored red if {xj, xj+2} 6= Ai for all i ∈ [t].

Proof. Suppose xjxj+2 is colored blue for some j ∈ [2n − 4]. Then we obtain a blue C2n with

vertices a1, x1, . . . , xj, xj+2, . . . , x2n−2, b1, w in order, a contradiction, where w ∈ W ′.

First if n = 5, then W ′ = W . Let (α, β) ∈ {(5, 7), (7, 6)}. Suppose R1 = {x2, x4, xα, xβ}.

Since {xα−1, wj} 6= Ai and {xα, wj} 6= Ai for all wj ∈ W and i ∈ [t], xα+1, xα−2 ∈ B1,

by (∗), {xα−1, xα} must be red-complete to W under c. Then for any wj ∈ W , {xα−2, wj} 6=

Ai and {xα+1, wj} 6= Ai for all i ∈ [t] since xα−1xα−2 and xαxα+1 are colored blue

under c. Thus {xα−2, xα+1} is red-complete to W by (∗). So {xα−2, xα−1, xα, xα+1} is red-

complete to W under c. But then we obtain a red P9 under c (when ir ≤ 3) with vertices

x2, a1, xα−1, b1, xα, w1, xα−2, w2, xα+1 in order or a red C10 under c (when ir = 4) with vertices

a1, x2, b1, xα−1, w1, xα−2, w2, xα+1, w3, xα in order, a contradiction. This proves that n = 6. By

(∗), we may assume x1 is red-complete to W ′\w1 and x10 is red-complete to W ′\w|W ′| because

|A1| = 2.

Case 1. |R1 ∩ V (H)| = 5. Let (α, β) ∈ {(9, 8), (7, 9)}. Suppose R1 = {x2, x4, x6, xα, xβ}.

Since {xα−1, wj} 6= Ai and {xα, wj} 6= Ai for all wj ∈ W ′ and i ∈ [t], xα+1, xα−2 ∈ B1,

{xα−1, xα} must be red-complete to W ′ under c by (∗). Then for any wj ∈ W ′, {xα−2, wj} 6= Ai

and {xα+1, wj} 6= Ai for all i ∈ [t] since xα−1xα−2 and xαxα+1 are colored blue under c. Thus
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{xα−2, xα+1} is red-complete to W ′ by (∗). So {xα−2, xα−1, xα, xα+1} is red-complete to W ′

under c. We see that G has a red P7 with vertices xα−1, w1, xα, a1, x2, b1, x4 in order, and so ir ≥ 3

and |W ′| ≥ 2. Moreover, xα−1xα+1 and xα−2xα are colored red by (∗∗). Then G has a red P11

with vertices x1, w2, xα−1, xα+1, w1, xα−2, xα, a1, x2, b1, x4 in order under c. Thus ir = 5 and so

|W ′| ≥ 3. Since |A1| = 2 and xα−6 ∈ B1, by (∗), we may assume xα−4 is red-complete to W ′\w2.

But then we obtain a red C12 with vertices a1, xα, xα−2, w1, xα−4, w3, x1, w2, xα+1, xα−1, b1, x2 in

order under c, a contradiction.

Case 2. |R1 ∩ V (H)| = 6, then ir ≥ 3 and |W ′| ≥ 3. Let (α, β, γ) ∈

{(5, 2, 4), (4, 7, 5)}. Suppose R1 ∩ V (H) = {x2, x3, xα, x6, x7, x9}. Since {xβ, wj} 6= Ai,

{x3, wj} 6= Ai and {x6, wj} 6= Ai for all wj ∈ W ′ and i ∈ [t], by (∗), {xβ, x3, x6}

must be red-complete to W ′ under c. By (∗∗), xγ is red-complete to {xγ−2, xγ+2}. But

then we obtain a red C12 under c with vertices a1, x2, x4, x6, w1, x10, w2, x1, w3, x3, b1, x5

(when α = 5) or a1, x3, x5, x7, w1, x10, w2, x1, w3, x6, b1, x4 (when α = 4) in order, a

contradiction. Let (α, β, γ, δ) ∈ {(3, 8, 5, 6), (3, 5, 7, 8), (4, 6, 8, 2)}. Suppose R1 ∩ V (H) =

V (H)\{a1, b1, x1, x10, xα, xβ}. Since {xγ, w} 6= Ai and {xδ, w} 6= Ai for all w ∈ W ′

and i ∈ [t], {xγ, xδ} must be red-complete to W ′ under c by (∗). Moreover, xγxγ−2 and

xδxδ+2 are colored red by (∗∗). Since |A1| = 2, there exists at least one of x1, x10, xα, xβ

is red-complete to {w1, w2, w3} by (∗). So we may assume xα is red-complete to W ′\w2

and xβ is red-complete to {w1, w2, w3}. But then we obtain a red C12 with vertices

a1, xγ, xγ−2, w1, x10, w2, x1, w3, xδ+2, xδ, b1, x7 in order if (α, β, γ, δ) ∈ {(3, 8, 5, 6), (4, 6, 8, 2)}

and a1, x7, x5, w1, x3, w3, x1, w2, x10, x8, b1, x6 in order if (α, β, γ, δ) = (3, 5, 7, 8), a contradiction.

Finally if R1 ∩ V (H) = {x2, x3, x5, x6, x8, x9}. By (∗), R1 ∩ V (H) is red-complete to W ′. Then

G has a red P11 with vertices x2, a1, x3, b1, x5, w1, x6, w2, x8, w3, x9 in order. Thus ir = 5 and so

|W ′| ≥ 4. But then we obtain a red C12 with vertices a1, x2, w1, x3, w2, x5, w3, x6, w4, x8, b1, x9 in

order, a contradiction.
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Case 3. |R1∩V (H)| = 7, then ir ≥ 4 and |W ′| = |W | = ir. Let (α, β) ∈ {(6, 5), (7, 4)}. Suppose

R1 ∩ V (H)={x2, x3, x4, x5, xα, x8, x9}. Since {x3, wj} 6= Ai, {xβ, wj} 6= Ai and {x8, wj} 6=

Ai for all i ∈ [t] and any wj ∈ W ′, {x3, xβ, x8} must be red-complete to W ′ under c by (∗).

But then we obtain a red C12 with vertices a1, x3, w1, x10, w2, x1, w3, xβ, w4, x8, b1, x2 in order,

a contradiction. Finally if R1 ∩ V (H) = {x2, x3, x4, x5, x6, x7, x9}. Since {x3, wj} 6= Ai and

{x6, wj} 6= Ai for all i ∈ [t] and any wj ∈ W ′, {x3, x6} must be red-complete to W ′ under

c by (∗). We may assume x8 is red-complete to W ′\w2 by (∗). But then we obtain a red C12

with vertices a1, x3, w1, x10, w2, x1, w3, x8, w4, x6, b1, x2 in order, a contradiction. This proves that

|A1| ≥ 3.

Claim 13. For any Ai with 3 ≤ |Ai| ≤ 4, G[Ai] has a monochromatic copy of P3 in some color

m ∈ [k] other than red and blue.

Proof. Suppose there exists a part Ai with 3 ≤ |Ai| ≤ 4 but G[Ai] has no monochromatic copy of

P3 in any color m ∈ [k] other than red and blue. We may assume i = 1. Since GRk(P3) = 3, we

see that G[A1] must contain a red or blue P3, say blue. We may assume ai, bi, ci are the vertices

of the blue P3 in order. Then |A1| = 4, else {b1}, {a1, c1}, A2, . . . , Ap is a Gallai partition of

G with p + 1 parts. Let z1 ∈ A1\{a1, b1, c1, }. Then z1 is not blue-complete to {a1, c1}, else

{a1, c1}, {b1, z1}, A2, . . . , Ap is a Gallai partition of G with p + 1 parts. Moreover, b1z1 is not

colored blue, else {b1}, {a1, c1, z1}, A2, . . . , Ap is a Gallai partition of G with p + 1 parts. If

b1z1 is colored red, then a1z1 and c1z1 are colored either red or blue because G has no rainbow

triangle. Similarly, z1 is not red-complete to {a1, c1}, else {z1}, {a1, b1, c1}, A2, . . . , Ap is a Gallai

partition of G with p + 1 parts. Thus, by symmetry, we may assume a1z1 is colored blue and c1z1

is colored red, and so a1c1 is colored blue or red because G has no rainbow triangle. But then

{a1}, {b1}, {c1}, {z1}, A2, . . . , Ap is a Gallai partition of G with p+ 3 parts, a contradiction. Thus

b1z1 is colored neither red nor blue. But then a1z1 and c1z1 must be colored blue because G[A1]
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has neither rainbow triangle nor monochromatic P3 in any color m ∈ [k] other than red and blue,

a contradiction.

For the remainder of the proof of Theorem 1.6.17, we assume that |B| ≥ |R| . By Claim 11,

|R| ≤ n − 1. Let {ai, bi, ci} ⊆ Ai if |Ai| ≥ 3 for any i ∈ [p]. Let B := {x1, . . . , x|B|} and

R := {y1, . . . , y|R|}. We next show that

Claim 14. ir ≥ |R|.

Proof. Suppose ir ≤ |R| − 1 ≤ n − 2. Then ib = n − 1, ir ≥ 3, |A1| ≤ 4, else we obtain a

red Gir because R is not blue-complete to B and |A1| ≥ 3. Moreover, there exist two edges, say

x1y1, x2y2, that are colored red, else we obtain a blue C2n. Then G[A1∪R∪{x1, x2}] has a red P9,

it follows that n = 6, ir = 4 and |R| = 5. By Claim 13, G[A1] has a monochromatic, say green,

copy of P3. By Claim 10, ig = 1. Then |A1∪B| = |G|− |R| ≥ 7 + ib + ir + ig−|R| = 12, and so

G[B] has no blueGib−|A1|, else we obtain a blueC12. Let i∗b := ib−|A1| ≤ 2, i∗r := ir−|R|+2 = 1,

i∗j := ij ≤ 2 for all color j ∈ [k] other than red and blue. Let i∗` := max{i∗j : j ∈ [k]} and let

N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Observe that |B| ≥ N∗. By minimality of N , G[B] has a red P5

with vertices, say x1, . . . , x5, in order. Because there is a red P7 with both ends inR by using edges

betweenA1 andR, we see thatR is blue-complete to {x1, x2, x4, x5}, elseG[A1∪R∪{x1, . . . , x5}]

has a red P11. But then we obtain a blue C12 with vertices a1, x1, y1, x2, y2, x4, y3, x5, b1, x3, c1, x6

in order, a contradiction.

Claim 15. ib > |A1| and so |A1| ≤ n− 2.

Proof. Suppose ib ≤ |A1|. If ib ≤ |A1| − 1, then ib ≤ n− 2 by Claim 2 and so ir = n− 1. Thus

|B| ≥ 2+ ib because |B|+ |R| = |G|− |A1| ≥ n+1+ ib+(ir−|A1|) ≥ 3+2ib. But then G has a
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blue Gib using edges between A1 and B, a contradiction. Thus ib = |A1|. By Claim 11 and Claim

14, |R| ≤ n−1 and ir ≥ |R|. Observe that |B| ≥ 1 +n+ ir−|R| ≥ 1 +n. Then G[B∪R] has no

blue P3 with both ends in B, else we obtain a blue Gib in G. Let i∗b := ib−|A1| = 0, i∗r := ir−|R|,

and i∗j := ij ≤ n − 4 for all color j ∈ [k] other than blue and red. Let i∗` := max{i∗j : j ∈ [k]}

and N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then 3 < N∗ < N . Suppose first that |R| ≥ 2. Since B

is not red-complete to R, we may assume that y1x is colored blue for some x ∈ B. Note that

i∗r ≤ n− 3 and |B\x| = N − |A1| − |R| − 1 ≥ N∗. By minimality of N , G[B\x] must have a red

P2i∗r+3 with vertices, say x1, . . . , xq, in order, where q = 2i∗r + 3. Since G[B ∪R] contains no blue

P3 with both ends in B and xy1 is colored blue, we see that y1 must be red-complete to B\x and

y2 is not blue-complete to {x1, xq}. We may assume that xqy2 is colored red in G. Then n = 6,

ir = |R| = 5 and ib = |A1| = 3, else we obtain a red Gir using vertices in V (P2i∗r+3)∪R∪A1. Let

x′ ∈ B\{x, x1, x2, x3}. Then {x, x′} * Ai and {x, x1} * Ai for all i ∈ [p] because yx is colored

blue and yx′, yx1 are colored red, and so xx′ and xx1 are colored red, else G[A1 ∪ B ∪ {y1}]

has a blue P9. But then we obtain a red C12 with vertices a1, y1, x′, x, x1, x2, x3, y2, b1, y3, c1, y4 in

order, a contradiction. Thus |R| = 1. By Claim 7 applied to ib = |A1|, ir ≥ |R| and B, G[B]

must have a red P2ir+1 with vertices, say x1, x2, . . . , x2ir+1, in order. Since G[B ∪ R] contains no

blue P3 with both ends in B, we may assume that y1x1 is colored red under c. Then ir = n − 1,

else we obtain a red Gir , a contradiction. Moreover, y1x2n−1 must be colored blue, else G has

a red C2n with vertices y1, x1, . . . , x2n−1 in order. Thus y1 is red-complete to {x1, . . . , x2n−2},

and so {xj, x2n−1} * Ai for all i ∈ [p] and j ∈ [2n − 2]. So x2n−1xi must be colored red for

some i ∈ [2n − 3] because G[B] has no blue P3. But then we obtain a red C2n with vertices

y1, x1, . . . , xi, x2n−1, x2n−2, . . . , xi+1 in order, a contradiction. This proves that ib > |A1|, and so

|A1| ≤ n− 2.

By Claim 12 and Claim 15, 3 ≤ |A1| ≤ n − 2. Then by Claim 13, G[A1] has a monochromatic,

say green, copy of P3. By Claim 10, ig = 1.
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Claim 16. If |A1| = 3, then |A2| = 3, |A3| ≤ 2, and ij = 0 for all color j ∈ [k]\[3].

Proof. Assume |A1| = 3. To prove |A2| = 3, we show that G[B ∪ R] has a green P3. Suppose

G[B ∪ R] has no green P3. By Claim 15, ib ≥ |A1| + 1 = 4. Let i∗g := 0 and i∗j := ij for all

j ∈ [k] other than green. Let i∗` := max{i∗j : j ∈ [k]} and N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then

N∗ = N − 1 and |G\a1| = N − 1 = N∗. But then G\a1 has no monochromatic copy of Gi∗j
in

color j for all j ∈ [k], contrary to the minimality of N . Thus G[B ∪ R] has a green P3 and so

|A2| = 3.

Suppose |A3| = 3. For all i ∈ [3], let

Aib := {aj ∈ V (R) | ajai is colored blue inR} and

Air := {aj ∈ V (R) | ajai is colored red inR}.

Let Bi :=
⋃
aj∈Ai

b
Aj and Ri :=

⋃
aj∈Ai

r
Aj . Since each of A1, A2, A3 can be chosen as the largest

part in the Gallai-partition A1, A2, . . . , Ap of G, by Claim 11, either |Bi| ≤ 5 or |Ri| ≤ 5 for

all i ∈ [3]. Without loss of generality, we may assume that A2 is blue-complete to A1 ∪ A3.

Let X := V (G)\(A1 ∪ A2 ∪ A3) = {v1, . . . , v|X|}. Then |X| ≥ 1 + n + ib + ir + ig − 9 =

2n − 8 + min{ib, ir}. Suppose |X ∩ B1| ≥ 2. We may assume v1, v2 ∈ X ∩ B1. Then

G has a blue C10 with vertices a1, v1, b1, v2, c1, a2, a3, b2, b3, c2 in order and a blue P11 with

vertices a1, v1, b1, v2, c1, a2, a3, b2, b3, c2, c3 in order, and so n = 6 and ib = 5. Moreover,

X\{v1, v2} ⊆ R3, else, say v3 is blue-complete to A3, then we obtain a blue C12 under c with

vertices a1, v1, b1, v2, c1, a2, a3, v3, b3, b2, c3, c2 in order. Thus |R3| ≥ |X\{v1, v2}| ≥ 2 + ir,

and so ir ≥ 3, else G has a red Gir using the edges between A3 and R3. Then there exist

at least two vertices in X\{v1, v2}, say v3, v4, such that {v3, v4} is blue-complete to A1, else

G[A1 ∪ A3 ∪ (X\{v1, v2})] contains a red Gir . Thus |B1| ≥ |A2 ∪ {v1, . . . , v4}| = 7 and

so |R1| ≤ 5. Moreover, {v1, v2} ⊂ R3, else, say v1 is blue-complete to A3, we then obtain a
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blue C12 under c with vertices a1, v3, b1, v4, c1, a2, a3, v1, b3, b2, c3, c2 in order. Then X ⊆ R3 and

|R3| ≥ |X| ≥ 4 + ir ≥ 7, and so |B3| ≤ 5 and A1 is red-complete to A3. Furthermore, G[B1\A2]

has no blue P3, else, say v1, v2, v3 is such a blue P3 in order, we obtain a blue C12 with vertices

a1, v1, v2, v3, b1, v4, c1, a2, a3, b2, b3, c2 in order. Therefore for any U ⊆ B1\A2 with |U | ≥ 4, G[U ]

contains a red P3 because |A1| = 3 and GRk(P3) = 3. Since |R1| ≤ 5 and A3 ⊆ R1, we may

assume v1, . . . , v|X|−2 ∈ B1\A2. Then G[{v1, . . . , v4}] must contain a red P3 with vertices, say

v1, v2, v3, in order. We claim thatX ⊂ B1. Suppose v|X| ∈ R1. Then v|X| is red-complete toA1 and

soG has a red P11 with vertices c1, v|X|, a1, a3, b1, b3, v1, v2, v3, c3, v4 in order, it follows that ir = 5.

Thus |X| ≥ 9, and G[{v4, . . . , v7}] has a red P3 with vertices, say v4, v5, v6, in order. But then

we obtain a red C12 with vertices a1, v|X|, b1, a3, v1, v2, v3, b3, v4, v5, v6, c3 in order, a contradiction.

Thus X ⊂ B1 as claimed. Since |X| ≥ 7, G[{v4, . . . , v7}] contains a red P3 with vertices, say

v4, v5, v6, in order. Then G has a red P11 with vertices a1, a3, b1, b3, v1, v2, v3, c3, v4, v5, v6 in order,

and so ir = 5, |X| ≥ 9. Suppose G[{v4, . . . , v9}] has no red P5. Then G[{v4, . . . , v9}] has at

most one part with order three, say A4, and we may assume G[A4] has a monochromatic P3 in

some color m other than red and blue if |A4| = 3 by Claim 13. Let i∗r := 1, i∗m := 1, i∗j := 0

for all color j ∈ [k]\{m} other than red. Let N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j) − i∗r] = 6 < N . Then

G[{v4, . . . , v9}] has no monochromatic copy of Gi∗j
in any color j ∈ [k], which contradicts to the

minimality of N . Thus G[{v4, . . . , v9}] has a red P5 with vertices, say v4, . . . , v8, in order. But

then we obtain a red C12 with vertices a3, v1, v2, v3, b3, v4, . . . , v8, c3, v9 in order, a contradiction.

Therefore, |X ∩B1| ≤ 1. By symmetry, |X ∩B3| ≤ 1. Let w ∈ X ∩B1 and w′ ∈ X ∩B3. Then

A1 ∪ A3 is red-complete to X\{w,w′}. It follows that n = 5 and |X ∩ B1| = |X ∩ B3| = 1,

else G[A1 ∪ A3 ∪ (X\{w,w′})] has a red Gir because |X| ≥ 2n − 8 + min{ib, ir} and ib ≥ 4, a

contradiction. But then we obtain a blue C10 with vertices a2, a1, w, b1, b2, a3, w′, b3, c2, c3 in order,

a contradiction. This proves that |A3| ≤ 2, and then both G[A1] and G[A2] have a green P3, so

ij = 0 for all color j ∈ [k] other than red, blue and green by Claim 10.
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Claim 17. If ib = |A1|+ 1, then |R| ≤ 2.

Proof. Suppose ib = |A1| + 1 but |R| ≥ 3. By Claim 14, ir ≥ |R|, it follows that |B| ≥

1 + n + ib + ir + ig − |A1| − |R| ≥ 3 + n. Thus G[B ∪ R] has no blue P5 with both ends in

B, else we obtain a blue Gib . Let i∗b := ib − |A1| = 1, i∗r := ir − |R| + 1 (when n = 5) or

i∗r := max{ir − |R| + 1, 2} (when n = 6), i∗j := ij for all j ∈ [k] other than red and blue. Let

i∗` := max{i∗j : j ∈ [k]} and N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then 3 < N < N∗. Observe that

|B| ≥ N∗. By minimality of N , G[B] has a red Gi∗r with vertices, say x1, . . . , xq, in order, where

q = 2i∗r + 3. If R is blue-complete to {x1, xq}, then R is red-complete to B\{x1, xq} because

G[B ∪R] has no blue P5 with both ends in B. But then G[A1 ∪R∪ {x2, . . . , xq−1}] has a red Gir ,

a contradiction. Thus R is not blue-complete to {x1, xq}, and so we may assume y1x1 is colored

red. Then ir = n − 1 and R\{y1} is blue-complete to {xq−2, xq}, else G[A1 ∪ R ∪ {x1, . . . , xq}]

has a red Gir . So R\{y1} is red-complete to B\{xq−2, xq} because G[B ∪R] has no blue P5 with

both ends in B. But then G[A1 ∪R ∪ {x2, . . . , xq−1}] has a red Gir , a contradiction.

Claim 18. ib = n− 1.

Proof. Suppose ib ≤ n − 2. Then ir = 5. By Claim 12 and Claim 15, |A1| ≥ 3 and ib > |A1|, it

follows that n = 6, ib = 4 and |A1| = 3. By Claim 16, |A2| = 3, |A3| ≤ 2, ij = 0 for all color

j ∈ [k]\[3]. By Claim 17, |R| ≤ 2 and soA2 ⊂ B. It follows that |B| = 7+ib+ir+ig−|A1∪R| =

14− |R| ≥ 12. Then G[B ∪R] has no blue P5 with both ends in B, else G has a blue P11 because

|A1| = 3. Thus there exists a set W such that (B ∪ R)\(A2 ∪W ) is red-complete to A2, where

W ⊂ (B ∪ R)\A2 with |W | ≤ 1. Let i∗b := ib − |A1| = 1, i∗r := 2, i∗j := 0 for all j ∈ [k]

other than red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j) − i∗r] = 8. Then N∗ < N . Observe that

|B\(A2 ∪W )| = 11− |R| − |W | ≥ N∗. By minimality of N , G[B\(A2 ∪W )] must contain a red

Gi∗r = P7. But then G[(B ∪R)\W ] has a red C12, a contradiction. Thus ib = n− 1.
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Claim 19. |A1| = n− 2.

Proof. By Claim 15, |A1| ≤ n− 2. Suppose |A1| ≤ n− 3. By Claim 12, n = 6 and |A1| = 3. By

Claim 18, ib = 5. By Claim 16, |A2| = 3, |A3| ≤ 2 and ij = 0 for all color j ∈ [k]\[3]. By Claim

14, ir ≥ |R|. Then |B| = 7 + ib + ir + ig − |A1| − |R| ≥ 10, and so G[B ∪R] has neither blue P7

nor blue P5 ∪ P3 with all ends in B else we obtain a blue C12.

Suppose |R| ≤ 2. Then A2 ⊂ B and there exists a set W ⊂ (B ∪ R)\A2 with |W | ≤ 3 such that

W is blue-complete toA2 and (B∪R)\(A2∪W ) is red-complete toA2. Since |B\(A2∪W )| ≥ 4,

we see that there is a red P7 using edges between A2 and B\(A2∪W ), so ir ≥ 3 and ir−|R| ≥ 1.

Let i∗b := 2 (when |B ∩W | ≤ 1) or i∗b := 0 (when |B ∩W | ≥ 2), i∗r := min{ir − |R| − 1, 2},

i∗j := 0 for all color j ∈ [k] other than red and blue. Let i∗` := max{i∗j : j ∈ [k]} andN∗ := |Gi∗`
|+

[(
∑k

j=1 i
∗
j)− i∗` ] = 3+max{i∗b , i∗r}+ i∗b + i∗r . Observe that |B\(A2∪W )| = 7+ ir−|R∪W | ≥ N∗.

By minimality of N , G[B\(A2 ∪W )] has a red Gi∗r because G[B] has neither blue P7 nor blue

P5∪P3 and |A3| ≤ 2. But thenG[(B∪R)\W ] has a redGir because |(B∪R)\W | ≥ 7+ir ≥ |Gir |

and A2 is red-complete to (B ∪ R)\(A2 ∪W ), a contradiction. Therefore, 3 ≤ |R| ≤ 5 and so

ir ≥ 3.

We claim that ir = 5. Suppose 3 ≤ ir ≤ 4. Let i∗b := 2, i∗r := 2, i∗j := ij for all color j ∈ [k] other

than red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j)− i∗r] = 10. Observe that |B| ≥ 10 = N∗. Since

G[B] has no blue P7, by minimality of N , G[B] has a red P7 with vertices, say x1, . . . , x7, in order.

Then R is blue-complete to {x1, . . . , x7}\x4, else G[A1 ∪ R ∪ {x1, . . . , x7}] has a red Gir . But

then G[B ∪ R] has a blue P7 with vertices x1, y1, x2, y2, x3, y3, x5 in order, a contradiction. Thus

ir = 5 and so |G| = 18, |B| = 15− |R|.

If |R| = 3. First suppose A2 ⊆ R. Since R is not red-complete to B, we may assume that A2 is

blue-complete to x1. Let i∗b := 2, i∗r := 3, i∗j := 0 for all color j ∈ [k] other than red and blue,
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and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j) − i∗r] = 11. Observe that |B\x1| = 11 = N∗. By minimality

of N , G[B\x1] has a red P9 with vertices, say x2, . . . , x10, in order. We claim that A2 is blue-

complete to {x2, x10}, else, say x2 is red-complete to A2. Then A2 is blue-complete to {x8, x10},

elseG[A1∪A2∪{x2, . . . , x10}] has a red C12. ThusA2 is red-complete toB\{x1, x8, x10} because

G[B ∪ R] has no blue P7 with both ends in B. But then we obtain a red C12 with vertices

a1, a2, x3, . . . , x9, b2, b1, c2 in order, a contradiction. Thus, A2 is blue-complete to {x1, x2, x10},

and so A2 is red-complete to B\{x1, x2, x10} because G[B ∪ R] has no blue P7 with both ends in

B. But then we obtain a red C12 with vertices a1, a2, x3, . . . , x9, b2, b1, c2 in order, a contradiction.

This proves that A2 ⊂ B. Then there exists a set W ⊂ (B ∪ R)\A2 with |W ∩ B| ≤ 3 such

that W is blue-complete to A2 and (B ∪ R)\(A2 ∪W ) is red-complete to A2. Then |W | ≤ 3 and

|W ∩B| ≤ 3 or |W | = 4 and |W ∩B| = 1 because G[B ∪R] has no blue P7 with both ends in B.

Let

i∗b := 2− |W |, i∗r := 2 when |W | ∈ {0, 1},

i∗b := 0, i∗r := 2 when |W | ≥ 2 and |W ∩B| ≤ 2,

i∗b := 0, i∗r := 1 when |W | = |W ∩B| = 3,

i∗j := 0 for all color j ∈ [k] other than red and blue, andN∗ := |Gi∗r |+[(
∑k

j=1 i
∗
j)−i∗r] = 3+2i∗r+i

∗
b .

Observe that |B\(A2 ∪W )| ≥ N∗. By minimality of N , G[B\(A2 ∪W )] has a red Gi∗r because

G[B ∪ R] has neither blue P7 nor blue P5 ∪ P3 with all ends in B and |A3| ≤ 2. If |W | ≤ 3

and |W ∩ B| ≤ 2, then G[(B ∪ R)\W ] has a red C12 because |(B ∪ R)\W | ≥ 12 and A2 is

red-complete to (B ∪R)\(A2 ∪W ). Thus |W | = |W ∩B| = 3 or |W | = 4 and |W ∩B| = 1. For

the former case, G[B\(A2 ∪W )] has a red P5 with vertices, say x1, . . . , x5, in order. Let W :=

{w1, w2, w3} ⊂ B. Then A2 is blue-complete to W and red-complete to {x1, . . . , x5}, and so W

is red-complete to {x1, . . . , x5} because G[B] has no blue P7. But then we obtain a red C12 with

vertices a2, x1, w1, x2, w2, x3, w3, x4, b2, x5, c2, x6 in order, where x6 ∈ B\(A2∪W∪{x1, . . . , x5}),
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a contradiction. For the latter case, G[B\(A2 ∪W )] has a red P7 with vertices, say x1, . . . , x7, in

order. Let W ∩ B := {w}. Then w is red-complete to {x1, . . . , x7} because G[B] has no blue

P7. But then we obtain a red C12 with vertices a2, x1, w, x2, . . . , x6, b2, x7, c2, x8 in order, where

x8 ∈ B\(A2 ∪ W ∪ {x1, . . . , x7}), a contradiction. This proves that |R| ∈ {4, 5}. First we

claim that G[E(B,R)] has no blue P5 with both ends in B. Suppose there is a blue H := P5

with vertices, say x1, y1, x2, y2, x3, in order. Then G[(B ∪ R)\V (H)] has no blue P3 with both

ends in B. Let i∗b := 0, i∗r := ir − |R| + 1, i∗j := ij for all color j ∈ [k] other than red and

blue. Let i∗` := max{i∗j : j ∈ [k]} and N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ] = 6 + 2(ir − |R|).

Observe that |B\{x1, x2, x3}| = 7 + ir − |R| ≥ N∗ since |R| ∈ {4, 5}. By minimality of N ,

G[B\{x1, x2, x3}] has a red Gi∗r with vertices, say x4, . . . , xq, in order, where q = 2i∗r + 6. Then

y3 is not blue-complete to {x4, xq} because G[(B ∪ R)\V (H)] has no blue P3 with both ends

in B. We may assume x4y3 is colored red. Then R\{y1, y2, y3} is blue-complete to x8, else

we obtain a red C12 with vertices a1, y3, x4, . . . , x8, y4, b1, y1, c1, y2 in order, a contradiction. Since

G[(B∪R)\V (H)] has no blue P3 with both ends inB, we see thatR\{y1, y2, y3} is red-complete to

{x4, . . . , xq}\{x8}. But then we obtain a red C12 with vertices a1, y3, x4, . . . , x10, y4, b1, y1 (when

|R| = 4), or a1, y3, x4, x5, x6, y4, x7, y5, b1, y1, c1, y2 (when |R| = 5) in order, a contradiction.

Thus, G[E(B,R)] has no blue P5 with both ends in B. Let i∗b := 2, i∗r := 2, i∗j := ij for all

color j ∈ [k] other than red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j) − i∗r] = 10. Observe that

|B| ≥ 10 = N∗. By minimality ofN , G[B] has a red P7 with vertices, say x1, . . . , x7, in order. We

claim that x1 is blue-complete to R. Suppose x1y1 is colored red. Then R\y1 is blue-complete to

{x5, x7}, else G[A1 ∪ R ∪ {x1, . . . , x7}] has a red C12. Thus R\y1 is red-complete to B\{x5, x7}

because G[E(B,R)] has no blue P5 with both ends in B. But then we obtain a red C12 with

vertices a1, y2, x2, . . . , x6, y3, b1, y4, c1, y1 in order, a contradiction. Therefore, x1 is blue-complete

to R. By symmetry, x7 is blue-complete to R. Then R is red-complete to B\{x1, x7} because

G[E(B,R)] has no blue P5 with both ends in B. But then we obtain a red C12 with vertices

a1, y2, x2, . . . , x6, y3, b1, y4, c1, y1 in order, a contradiction. This proves that |A1| = n− 2.
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By Claim 18, Claim 19 and Claim 14, ib = n− 1, |A1| = n− 2, ir ≥ |R|. By Claim 17, |R| ≤ 2.

Then |B| ≥ 3 + n+ ir − |R| ≥ 3 + n, and so G[B ∪R] has no blue P5 with both ends in B.

Claim 20. ir = n− 1.

Proof. Suppose ir ≤ n − 2. By Claim 9, B is not blue-complete to R. Let x ∈ B and y ∈ R

such that xy is colored red. Let i∗b := ib − |A1| = 1 and i∗r := ir − |R| ≤ n − 3, i∗j :=

ij ≤ n − 4 for all color j ∈ [k] other than red and blue. Let i∗` := max{i∗j : j ∈ [k]} and

N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then 3 < N∗ < N and |B\x| = N − |A1| − |R| − 1 ≥ N∗.

By minimality of N , G[B\x] must have a red P2i∗r+3 with vertices, say x1, x2, . . . , x2i∗r+3, in order.

Then {x1, x2i∗r+3} must be blue-complete to {x, y} and xx2 must be colored blue under c, else we

obtain a red P2ir+3 using vertices in V (P2i∗r+3)∪{x, y} or in V (P2i∗r+3\x1)∪{x, y}∪A1. But then

G[B ∪R] has a blue P5 with vertices x2, x, x1, y, x2i∗r+3 in order, a contradiction.

Let A1 := {a1, b1, c1} (when n = 5) or A1 := {a1, b1, c1, z1} (when n = 6). By Claim 13,

G[A1] has a monochromatic, say green, copy of P3. By Claim 10, ig = 1. We next show that

|A2| ≥ 3. Suppose |A2| ≤ 2. Then by Claim 16, |A1| = 4 and so n = 6. Let i∗b := ib − |A1|,

i∗r := ir − |R| + 1, i∗g := ig − 1 = 0 and i∗j := ij for all j ∈ [k] other than red, blue and green.

Let i∗` := max{i∗j : j ∈ [k]} and N∗ := |Gi∗`
| + [(

∑k
j=1 i

∗
j) − i∗` ]. Then 3 < N∗ < N and

|B| = |G| − |A1| − |R| = N∗. By minimality of N , G[B] must contain a red Gi∗r . It follows

that |R| = 2 and Gi∗r = P11. Let x1, x2, . . . , x11 be the vertices of the red P11 in order. If R is

blue-complete to {x1, x11}, then R is red-complete to B\{x1, x11} because G[B ∪ R] has no blue

P5 with both ends in B. But then G has a red C12 with vertices a1, y1, x2, . . . , x10, y2 in order, a

contradiction. Thus, R is not blue-complete to {x1, x11} and we may assume x1y1 is colored red.

Then x11y1 and x9y2 are colored blue, else G[{x1, . . . , x11} ∪ R ∪ A1] has a red C12. If x11y2

is colored red, then x1y2 and x3y1 are colored blue by the same reasoning. But then we obtain
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a blue C12 with vertices a1, x1, y2, x9, b1, x3, y1, x11, c1, x2, z1, x4 in order, a contradiction. Thus

x11y2 is colored blue. Then y1 is red-complete to B\{x9, x11}, else, say y1w is colored blue with

w ∈ B\{x9, x11}, then G[B ∪ R] has a blue P5 with vertices w, y1, x11, y2, x9 in order. It follows

that {x11, w} * Aj for all j ∈ [q], where w ∈ B\{x9, x11}. Moreover, x2y2 is colored blue, else

G has a red C12 with vertices a1, y2, x2, . . . , x10, y1 in order, a contradiction. Thus, G[B\{x2, x9}]

has no blue P3, else G[A1 ∪ B ∪ {y2}] has a blue C12. Therefore, xix11 is colored red for some

i ∈ {3, . . . , 7}. But then we obtain a red C12 with vertices y1, x1, . . . , xi, x11, x10, . . . , xi+1 in

order, a contradiction. Thus 3 ≤ |A2| ≤ n− 2 and A2 ⊂ B because |R| ≤ 2.

SinceG[B∪R] has no blue P5 with both ends inB, there exists at most one vertex, say w ∈ B∪R,

such that (B ∪ R)\(A2 ∪ {w}) is red-complete to A2. Suppose 3 ≤ |A3| ≤ n − 2. Then n = 6

by Claim 16, A3 ⊆ B and A3 must be red-complete to A2. Since G[B ∪ R] has no blue P5 with

both ends in B, there exists at most one vertex, say w′ ∈ B ∪R, such that (B ∪R)\(A3 ∪ {w′}) is

red-complete to A3. But then G[(B ∪ R)\{w,w′}] has a red C12, a contradiction. Thus |A3| ≤ 2

and so G[B\A2] has no monochromatic copy of P3 in color j for all j ∈ [k] other than red and

blue. Let i∗b := 1, i∗r := n − 1 − |A2|, and i∗j := 0 for all colors j ∈ [k] other than red and blue.

Let N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j) − i∗r] = 2i∗r + 3 + i∗b = 2n + 2 − 2|A2|. Then 3 < N∗ < N and

|B\(A2 ∪ {w})| ≥ 2n + 1− |R| − |A2| ≥ N∗. By minimality of N , G[B\(A2 ∪ {w})] has a red

Gi∗r . But then G[(B ∪R)\{w}] has a red C2n, a contradiction.

This completes the proof of Theorem 1.6.17.
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CHAPTER 4: FUTURE WORK

In this chapter, we discuss possible extensions of our work in this dissertation, as well as other

topics of interest.

4.1 More Open Problems on Co-critical Graphs

As we see that Conjecture 1.4.1 remains wide open, except that the first nontrivial case, so we

are also interesting in the next open case (K3, K4)-co-critical. By considering the construction of

K4-saturated graphs and making use of the result of Theorem 1.5.7, hopefully we can obtain an

asymptotic edge bound for (K3, K4)-co-critical graphs.

Galluccio, Siminovits and Simonyi proposed several interesting open problems in [45] which are

listed below. Gn below denotes a graph on n vertices.

1. Are there infinitely many strongly minimal co-critical graphs?

2. Can one get a construction of a (K3, K3)-co-critical graph Gn without K4?

3. Is it true that for every (K3, K3)-co-critical graph Gn adding any new edge we get a K5? Or at

least a K4?

4. Assume that a (K3, K3)-co-critical graph Gn contains a K5. Does this imply that Gn contains

also a K−6 ?

5. Is it always true that duplicating a vertex of a co-critical graph we get a co-critical graph?

86



4.2 Rainbow Saturation Numbers of Graphs

We are also interested in saturation numbers of edge-colored graphs that are as far being

monochromatic as possible. This problem was proposed by Barrus, Ferrara, Vandenbussche, and

Wenger in [4]. Given a graph F , an edge coloring of F is called rainbow if every edge of F is

colored differently. Note that it is not necessary to specify the set of colors that may be used in

a rainbow-colored copy of F . Given a graph G and a t-edge-coloring τ of G, where t ≥ e(F ).

We say (G, τ) is rainbow (F, t)-saturated if G contains no rainbow copy of F under τ , but for

any edge e ∈ E(G) and any color i ∈ [t], the addition of e to G in color i creates a rainbow

copy of F . τ is called an F -threshold coloring if (G, τ) is rainbow (F, t)-saturated. The t-rainbow

saturation number of F , denoted by rsatt(n, F ), is the minimum number of edges in a rainbow

(F, t)-saturated graph with n vertices. Barrus et al., in [4], proved the following results.

Theorem 4.2.1 (Barrus, Ferrara, Vandenbussche, Wenger [4]) For every integer k ≥ 3 and

t ≥
(
k
2

)
, for all sufficiently large n, there exist two positive constants c1, c2 such that c1 n logn

log logn
≤

rsatt(n,Kk) ≤ c2n log n.

Theorem 4.2.2 (Barrus, Ferrara, Vandenbussche, Wenger [4])

(i) If t ≥ k ≥ 2 and n ≥ (k + 1)(k − 1)/t, then rsatt(n,K1,k) = Θ(n2).

(ii) For all k ≥ 4, rsatt(n, Pk) ≥ n− 1.

(iii) For t ≥ 8, rsatt(n, P4) = n− 1.

(iv) If T is a tree with at least four vertices that is not a star, then

rsatt(n, T ) ≤
⌈

n

k − 1

⌉(
k − 1

2

)
.

87



In the same paper, Barrus et al. conjectured that rsatt(n,Kk) = Θ(n log n). This conjecture

was verified by Girão et al. in [47] and Korándi in [62] independently. Recently, Shi et al. [75]

improved the upper bound of rsatt(n, Pk) to
⌈
n
k

⌉ (
k−2
2

)
+ 4 for k ≥ 5 and t ≥ 2k − 5. Motivated

by these results, we are interested in the bound of rsatt(n, Tk), where Tk is the family of all trees

on k vertices.

4.3 Antimagic Labeling of Graphs

Given a graph G with m edges. An antimagic labeling of a graph G is a bijection from E(G)

to {1, 2, ...,m} such that for any distinct vertices u and v, the sum of labels on edges incident

to u differs from that for edges incident to v. A graph G is antimagic if it has an antimagic

labeling. Hartsfield and Ringel [57] introduced antigamic labelings in 1990 and made the following

conjecture.

Conjecture 4.3.1 (Hartsfield, Ringel [57]) Every connected graph, but K2, is antimagic.

The most significant progress on this problem is a result of Alon, Kaplan, Lev, Roditty, and Yuster

[2] stated below.

Theorem 4.3.2 (Alon, Kaplan, Lev, Roditty, Yuster [2]) There exists an absolute constant C

such that every graph on n vertices with minimum degree at least C log n is antimagic.

Theorem 4.3.3 (Alon, Kaplan, Lev, Roditty, Yuster [2]) If G has n ≥ 4 vertices and ∆(G) ≥

n− 2, then G is antimagic.

Eccles [29] recently improved Theorem 4.3.2 by showing that there exists an absolute constant c0

such that if G is a graph with average degree at least c0, and G contains no isolated edge and at
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most one isolated vertex, then G is antimagic. In 2012, Yilma [82] proved the following result

which improved Theorem 4.3.3.

Theorem 4.3.4 (Yilma [82]) If G is connected, has n ≥ 9 vertices, and ∆(G) ≥ n− 3, then G is

antimagic.

Theorem 4.3.5 (Yilma [82]) IfG is a graph on n vertices, ∆(G) = d(x) = n−k, where k ≤ n/3,

and there exists y ∈ V (G) such that N(x) ∪N(y) = V (G), then G is antimagic.

As noted in [2], it is still an open problem to decide whether connected graphs with ∆(G) ≥ n−k

and n > n0(k) are antimagic, for any fixed k ≥ 4. We are interested in showing Conjecture 4.3.1

is true for every graph G with ∆(G) = n− 4 and improving Theorem 4.3.5.
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Ser. B 15 (1973) 94–120.

[75] Y. Shi, Z. Taoqiu, A note on rainbow saturation number of paths. arXiv:1902.05222.

[76] Z-X. Song, J. Zhang, A conjecture on Gallai-Ramsey numbers of even cycles and paths.

arXiv:1803.07963.

[77] Z-X. Song, J. Zhang, On the size of (Kt, Tk)-co-critical graphs. arXiv:1904.07825.

[78] J. Spencer, Ramsey’s theorem-a new lower bound, J. Combin. Theory Ser. A 18 (1975) 108–

115.
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