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ABSTRACT

Computing systems have seen tremendous growth over the past few decades in their capabilities,

efficiency and deployment use cases. This growth has been driven by progress in lithography tech-

niques, improvement in synthesis tools, architectures and power management. However, there is a

growing disparity between computing power and the demands on modern computing systems. The

standard Von-Neuman architecture has separate data storage and data processing locations. There-

fore, it suffers from a memory-processor communication bottleneck, which is commonly referred

to as the ‘memory wall’. The relatively slower progress in memory technology compared with pro-

cessing units has continued to exacerbate the memory wall problem. As feature sizes in the CMOS

logic family reduce further, quantum tunneling effects are becoming more prominent. Simulta-

neously, chip transistor density is already so high that all transistors cannot be powered up at the

same time without violating temperature constraints, a phenomenon characterized as dark-silicon.

Coupled with this, there is also an increase in leakage currents with smaller feature sizes, resulting

in a breakdown of ‘Dennard’s’ scaling. All these challenges cannot be met without fundamental

changes in current computing paradigms. One viable solution is in-memory computing, where

computing and storage are performed alongside each other. A number of emerging memory fab-

rics such as ReRAMS, STT-RAMs and PCM RAMs are capable of performing logic in-memory.

ReRAMs possess high storage density, have extremely low power consumption and a low cost of

fabrication. These advantages are due to the simple nature of its basic constituting elements which

allow nano-scale fabrication. We use flow-based computing on ReRAM crossbars for computing

that exploits natural sneak paths in those crossbars.

Another concurrent development in computing is the maturation of domains that are error resilient

while being highly data and power intensive. These include machine learning, pattern recogni-

tion, computer vision, image processing and networking etc. This shift in the nature of computing
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workloads has given weight to the idea of “approximate computing”, in which device efficiency

is improved by sacrificing tolerable amounts of accuracy in computation. We present a mathe-

matically rigorous foundation for the synthesis of approximate logic and its mapping to ReRAM

crossbars using search based and graphical methods.
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CHAPTER 1: INTRODUCTION

A steady miniaturization of CMOS transistors over the last few decades has spear-headed the

growth in computing power and pervasiveness of microelectronic devices. CMOS process tech-

nology has successfully overcome several hurdles in its course to achieve the current capability

of fabricating transistors with the width of a few nanometers. We are now at a stage where the

fundamental laws of quantum physics dictate an end to CMOS scaling in its current form. There

is significant focus on developing other technologies and computing principles that can cater to

the fast growing demand of more efficient computing in the post-Moore-era. One such area of

focus is the discovery of new materials and devices for transistor designs that are not limited by

quantum tunneling effects [5], [6]. New paradigms such as quantum transistors and spintronics are

also being explored as computing devices [7].

In addition to device level improvements, there are advances in computing architectures. The

aim of new architectures is to minimize memory latency, chip size and energy consumption. One

way to overcome memory latency is to perform computation in-memory or ’near-memory’ [8].

In recent years, there has been an explosion in the number of devices that gather, process and

communicate data with each other. This has given way to the era of ‘Internet of Things’ (IoT).

More and more smart devices continue to join the ‘IoT’ network, with the projected number be-

ing 50 billion in 2020 [9]. Most devices that lie on the periphery of an ‘IoT’ network perform

sensing and initial data processing. These devices are known as edge devices. Common comput-

ing tasks performed on these edge devices include image processing, natural language processing

or general machine learning which involve application specific algorithms. Therefore, a strong

wave of interest in Application Specific Integrated Circuits (ASICs) has been regenerated in the

hardware and ASIC IP communities [10]. In our work, we focus on implementing kernels used

in image processing and computer vision. There are numerous edge devices that require some
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image and video processing on-device. They perform on-device computation before transmitting

or storing the output of such computation. The resulting data usually requires less storage space

and network resources. On-device computation also reduces latency in time-critical applications.

Such image and video processing edge devices include smart cameras, mobile phones, security

systems and vehicle-mounted cameras. For all of these devices, low energy consumption and a

small die size are critical requirements. Therefore, nanoscale fabrics and devices are viable candi-

dates for such applications [11]. Nanoscale “memristive” devices provide a desirable set of traits

for smart cameras and other edge computing devices as they bring together non-volatile storage

and fast switching dynamics on the same device. Memristive crossbars have been shown to be a

viable platform for re-configurable computing. Because of the extremely simple nature of their

basic constituting element, memristive circuits naturally have the advantages of being extremely

efficient with regards to area and power metrics as opposed to CMOS devices. Two-dimensional

arrays or crossbars of nanoscale memristors have been used to implement arithmetic and logical

circuits using flow-based computing [12], [13]. In this approach, Boolean variables are mapped

onto individual memristors, and the Boolean function is evaluated by injecting a current into the

crossbar at an input nano-wire while the current at an output nano-wire determines the evaluation

of the function for a certain valuation of the Boolean variables.

Approximate computing refers to the idea that some computation can be bypassed if it results in

very little loss in accuracy and large gains in other metrics such as area reduction, speed or energy

consumption. Computer vision and machine learning algorithms are generally computationally

intensive. Hence, a lot of research goes into approximate computing of image and video processing

algorithms. As we will show in later sections, our design for approximate edge detection yields

very large gains in area and power saving while giving up a small amount of accuracy. Additionally,

using the flow-based computing paradigm has the added advantage that the image is loaded directly

onto a nanoscale memristor crossbar, facilitating the possibility of an in-memory or near-memory
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computing architecture. Note that, such kernels form the basis for more complicated algorithms in

computer vision pipelines and are therefore present in almost all applications.
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CHAPTER 2: BACKGROUND

2.1 ReRAMs

Predominantly used memory devices are DRAM, SRAM and Flash memory. DRAM construction

is based on transistors and capacitors while SRAMs use latches and transistors. Based on their

design and properties, DRAMs are typically used for main memory while SRAMs are used as

caches. SRAMs are more expensive but have smaller size and power consumption. Both of these

memories are volatile and they need a voltage source to maintain their state. DRAMs suffer from

leakage current, hence they need periodic refresh and have higher power consumption. Flash

memories are non-volatile but have slower read/write times and smaller storage density. These are

typically used for disk storage. Another form of flash memory is called 3D-NAND or VNAND.

This has much higher storage density and is a viable candidate for replacing SRAM and DRAMs

as non-volatile fast response system memories and caches. Other recent types of memories that

are being developed include PCM, MRAM and ReRAMs. Phase change RAMs and ReRAMs

both function by altering the nature of the underlying material instead of by storing and detecting

charge. PCM stands for Phase Change Memory. It is non-volatile memory with fast read times

and is suitable as system memory or disk storage with much higher durability and persistance than

flash memory. A electrical current is applied to change PCM cells from an amorphous to crystalline

structure, allowing you to store 0s and 1s in either state while the application of low voltage can

read the data back. Because the state of the material is used to store information, multiple states of

the same bit can be used to store more than 1 bit in PCM ram cells.

Magnetic RAMs use electron spin states to encode information in its cells. MRAMs also have the

advantage of being non-volatile but also have faster access times than Flash memory and smaller

power consumption making them viable for replacing DRAM and SRAMs in cache and system
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memories. STT-RAMs are a popular form of MRAMs. MRAMs generally have high stability and

resistance to errors due to external conditions such as radiation or temperature.

Similar to PCM and MRAMs, Resistive Random Access Memory (ReRAM) is one of a new gener-

ation of memory devices that seek to overcome the limitations of traditional SRAMs and DRAMs.

The compact nature and efficiency advantages of ReRAMs stem chiefly from the extremely simple

nature of it’s construction. The basic structure of a ReRAM is a three layer construction of top and

bottom conductive layers which sandwich a switching medium that forms a conductive filament

between the top and bottom layers depending on the current flow/voltage application across them.

This is known as the resistance switching effect. An illustration is shown in Figure 2.1 [14]. Be-

cause of this simple construction, ReRAM devices fabrication process is uncomplicated and can

yield small process nodes and the resultant devices possess very fast switching speeds and low

power consumption and small device area. It is due to these reasons that they are considered to be

among the beyond CMOS devices. The resistance switching effect has been extensively studied in

metal-oxide-metal fabrics such as SiOx,Al2O3,Ta2O5,ZrO2,andTiO2 [15]. Because of the nature

of the I-V curve that we see in ReRAMs, this behavior is often described as memristive behaviour

and the terms ReRAMs and memristive crossbars are used interchangeably. In this work, we focus

on ReRAMs as switching devices only.
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Figure 2.1: Formation of a filament in a Re-RAM cell that controls state of the cell.

Traditional ReRAM architecture is a crosspoint of top and bottom electrodes connected by resistive

switching elements that can be created either using a 1 diode 1 resistor configuration (1D1R) or a

1 transistor 1 resistor configuration (1T1R). A number of systems have been developed to perform

in-memory computing on ReRAMs or other memory devices [16–19]. These systems divide the

memory device into separate sections for storage and processing along with additional circuitry

that may be needed for computation in some techniques. In this thesis, we focus only on the

computation part and assume a system for writing data into the computation part exists.

2.2 Approximate computing

Approximate computing refers to the idea that a computing processes can be allowed to provide

incorrect results that are close enough to the desired output to be acceptable. In exchange for this

loss of accuracy, the process gains in terms of power consumption, time or space efficiency. Ap-

proximate computing has been studied from many different perspectives such as difficulty of exact
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computation, saving device size, limiting power consumption and making the overall computation

quicker. The choice of approximation technique depends on the nature of the task and whether it

can afford to sacrifice some amount of accuracy or not. It was studied in mathematics and geometry

theory for estimating complex functions. For such functions, exact computation may be compli-

cated or time-consuming. The goal of approximating results is to approach acceptable correctness

for most calculations with much smaller computation overhead. In more recent times, specifically

since the arrival of computing, approximation has been introduced into a number of avenues in

computing. One of the motivations has been to increase time efficiency for time-critical appli-

cations where slight loss of accuracy does not hinder user-experience such as in communication,

audio-visual processing, and encoding etc. Approximate computing has achieved much greater

significance in the last decade because of the emergence of a number of computing domains that

are error-tolerant.
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CHAPTER 3: LITERATURE REVIEW

In 1971, Leon Chua postulated the existence of a fourth fundamental circuit element that connects

charge and flux, which he called the memory resistor or ‘memristor’ [20]. In 2008, Strukov et.

al. showed that memristive behavior exists naturally in nanoscale devices [21]. Now, novel ar-

chitectures and computing approaches [13], [22], [23] are seeking to exploit the unique properties

of such devices. The behavior of a memristor is essentially that of a nanoscale variable resistor

with non-volatile memory. This device can be used both as a Boolean resistive switch or an analog

device with programmable resistance. The natural non-volatile behavior of a memristor makes it

an ideal electronic model for a synapse. Therefore, neuromorphic computing infrastructures lever-

age memristive fabrics as layers of neural networks [24], [25]. However, research is still ongoing

into accurate analog tuning in memristors [26], [27]. Although analog memristive chips are avail-

able, at present they are not considered viable for commercial applications. At the same time,

memristive devices have been shown to be useful for general purpose computing by using them as

bi-stable devices. Nanoscale Crossbars with memristive switching devices at the junctions can be

used as nanoscale memory systems with efficient energy consumption [28]. ReRAMs have gener-

ated a lot of interest as high density compact memories [29], [30]. They have also been used for

in-memory computing of basic logic functions [31], [32]. In a Programmable Logic-in-Memory

(PLiM) computer [33], a crossbar array is used to implement majority and complement operators.

The MIG-based compiler proposed in [34] allows the transformation of computer code into a se-

quence of majority operations that can be implemented on a PLiM. Bhattacharjee et al. [35] present

a parallel architecture for in-memory computation on crossbars.

A typical computing stack has several levels at which approximation can be leveraged to improve

efficiency. We discuss circuit level approximations only. Nepal et al. have synthesized approxi-

mate circuits by perturbing synthesis tree (AST) of behavioral description of circuits [36]. Suhail et
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al. have proposed approximate logic synthesis using Boolean matrix factorization [37]. Schlatcher

et al. have proposed gate level pruning to build approximate circuits [38]. They have operated

on synthesized circuits by removing gates and setting their outputs to constants (High or Low).

Zdenek et al. have used Cartesian Genetic Programming (CGP) to design circuits within given

hardware resources [39]. Soeken et al. have proposed approximate BDD minimization (ABM)

for synthesizing approximate circuits. Given a circuit, they iteratively apply different approxi-

mation operators on its BDD and see if they lead to compact approximation within acceptable

error bound [40]. The main theme of their technique is replacing cuts of a node (subgraphs in

AIG) while making sure each modification keeps overall error below threshold. Chandrasekharan

et al. have proposed And-Inverter Graphs (AIGs) rewriting for automated synthesis of approxi-

mate circuits [41]. Venkatamani et al. have proposed an automated synthesis technique (SALSA),

they identify approximate don’t care (ADC) conditions and treat them as Actual don’t care condi-

tions [42]. The same authors in their work titled ‘SASIMI’ search for highly co-related signals and

signal pairs in the synthesized circuits and replace one with the other while removing logic behind

the replaced signal [43]. Ranjan et al. have proposed similar idea to sequential circuits and called

it ASLAN [44]. Shin et al. have minimized total number of literals by complementing min-term

in the original Boolean function [45]. Rehman et al. have synthesized approximate multipliers by

optimizing behavioral representation [46]. Miao et al. have used network optimization to iden-

tify external don’t care conditions (EXDCs) that maximally approaches the target function under

given error constraints [47]. While Zou et al. use dynamic programming to find near-optimal

approximations for circuits [48].

Approximating Boolean Functions. Approximation theory is a well established topic. Approx-

imation is necessitated by either problem complexity or limited resource availability. Mehta et

al. [49] present a framework on the approximation of generalized Decision Trees. A study on ap-

proximation bounds for DNFs was presented by O’Donnell et al. [50]. In [51] Boolean functions
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are ε-approximated using small depth circuits. Ordered BDDs have been predominantly used for

learning unknown functions using sampled executions [52]. The existing literature on reducing

known functions using BDDs is limited to specific functions or theoretical studies of complexity

and error bounds [53]. Herein, we limit our scope to the approximation of Boolean functions only.
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CHAPTER 4: SNEAK PATH BASED IN-MEMORY COMPUTING

A ReRAM device consists of small crossbar components that have resistive switches at the cross-

bar junctions. A memristor is essentially a variable resistance device and ReRAMs can also be

implemented with memristive elements. In the rest of this thesis, memristive device and resistive

switching device are used interchangeably, since for the purpose of this work a memristor may

be used a bi-stable device with either a HIGH or LOW resistance. The crossbar structure allows

simultaneous data storage and processing. In the flow-based processing scheme, the state of in-

dividual memristors stores inputs in binary form. The horizontal and vertical crossbar wires are

conductive. Modeling each wire as a node, an n×m crossbar can be considered to be a bi-partite

graph with n+m nodes and nm memristive connections between the nodes. Crossbar circuits

suffer from the phenomenon of sneak-paths which occur when current is able to flow through un-

intended paths resulting in incorrect logic. This problem is compounded with an increase in size

of a crossbar [54]. Although this is an inherent problem for ReRAM based memory storage, we

exploit this property to perform in-memory computing. The principle of our sneak-path based

computing is to manage sneak-paths between the input and output nanowires such that the cur-

rent injected into the input nanowire flows out of the output nanowire only if the target function

is true. Consequently, such sneak-path based computing is also known as flow-based in-memory

computing [55] [56] [57] [58]. In the context of crossbars, flow-based in-memory computing and

sneak-path-based in-memory computing are synonymous. The task of designing crossbars for

sneak-path-based or flow-based in-memory computing is defined [56] as follows:

Definition 1 (Sneak-Paths based Synthesis of Crossbars) Let f : {0,1}k→{0,1} be a Boolean

function with k inputs I = {b1,b2,b3 . . .bk}, the objective is to map these k inputs or their com-

plements on crossbar memristors such that the following two conditions are fulfilled for any input
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x ∈ {0,1}k

• If f (x) = 1, then there exists a sneak-path between the input and the output nanowires.

• If f (x) = 0, then there is no sneak-path between the input and the output nanowires.

¬A ¬B

A B C D

RsVs

Figure 4.1: Switch based circuit for computing the Boolean formula f = ¬A¬B+ABCD using the

flow of electric current.

¬A A

B C

¬B D

Vs

Rs

Figure 4.2: Crossbar for sneak-path based or flow-based in-memory computing of f , blue and red

lines highlight the sneak-paths responsible for computing f .
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In all our designs, we maintain the convention that the input is at the bottom nanowire, and the

output current is sensed at the top nanowire. In Figure 4 we display the additional circuitry needed

for sending output currents. Input current is driven by a the voltage source Vs, while a sense resistor

Rs generates a voltage across it if an output current flows into the topmost nanowire.

When the function is true, low resistance of sneak-paths allow a significant amount of current to

flow out of the topmost nanowire, resulting in significant voltage drop across the sense resistor Rs.

When the target function is f alse, very little current flows out of the topmost nanowire, resulting

in significantly smaller voltage drop across Rs.
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CHAPTER 5: SEARCH BASED DESIGN SYNTHESIS

In order to synthesize approximate designs using flow-based computing in our work, we present

two broad approaches. The first is to search for designs by modeling the search space and us-

ing a simulated annealing solution in a constrained search environment. In the second approach,

we model Boolean functions as graphs and use graphical manipulation techniques to synthesize

approximate solutions.

For the search-based design synthesis, our target applications are limited to basic image processing

kernels in smart cameras.

5.1 Kernel Description

We exploit nanoscale memristor crossbars for implementing an approximate version of a compute

kernel using flow-based computing. We focus on an edge detection kernel which is a basic image

processing function. It is used as a pre-processing step or a preliminary feature for more complex

feature computation from visual data. It is pertinent to mention here that our approach is gener-

alized and can theoretically work for other image processing compute kernels as well. To detect

edges in an image, each pixel in an image is compared to it’s neighboring pixel(s). This compar-

ison is usually performed along both axes separately. An edge is deemed to exist in the image at

a pixel’s location, if the difference in intensity values between itself and it’s neighbor(s) is larger

than a pre-determined threshold. We use κ to denote the edge detection kernel that we want to

implement on a memristive cross-bar. The simplest edge-detection kernel can be mathematically
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expressed as follows:

κ(A,B) = (A−B)> τ, (5.1)

where A denotes a single pixel and B is it’s neighboring pixel along either the x or y axis. Values for

Grey-scale pixels are typically represented by 8-bits. Pixel value for a pixel A is calculated using

it’s 8 constituent bits as ∑
7
i=0 2iai, where ai is the ith bit in pixel A. Pixel value for B is similarly

calculated. Our kernel κ therefore, has 16 input Boolean variables (each bit of a pixel is one input

Boolean variable) and a single Boolean output. τ is a pre-determined threshold value. In most real

world applications, a threshold value is tuned using training data or chosen based on the nature of

the application. In our experiments, we set it to 50. Note that the value for this parameter has no

effect on the applicability of our frame work. If we change the threshold, it will simply change the

truth value that is used to evaluate whether or not the current output of the crossbar is correct.

5.2 Crossbar Representation

We denote a crossbar as an n×m matrix M on which we aim to implement a simple 2 pixel edge

detection kernel. Each element of M denotes the memristor connecting the horizontal and vertical

nano-wires at it’s indices. We want to be able to map each of our 16 Boolean input variables and

their complement values onto the cross-bar. We also want to retain the ability to set a memristor

value to a constant of 0 or 1. We do this using the following scheme: each element of the matrix

can have a value ranging from 0 to 33. 0 denotes a memristor that is always turned off. 33 denotes

a memristor that is always turned on. Values between 1 and 8 denote bits 0 to 7 of the first input

pixel. Values between 9 and 16 denote bits 0 to 7 of the second pixel. Values between 17 and 24

denote complement bit values for bits 0 to 7 for the first pixel. Values between 25 and 32 denote
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complement bit values for bits 0 to 7 for the second pixel. The goal of our design is to map the

Boolean variables onto the cross-bar in such a way that for a certain input combination of A and

B, a current flows from the input nano-wire to the output nano-wire if and only if, κ(A,B) also

evaluates to 1.

5.3 Simulated Annealing

Existing attempts at finding a mapping of the input Boolean variables onto the cross-bar memristors

include [59], [60]. These frameworks convert a compute kernel to a Binary Decision Diagram

which is then mapped onto a cross-bar. This mapping leads to an exact solution. However, the

memory and time costs for these methods, as well as the final design size grow prohibitively large

as the number of Boolean variables in the compute kernel increases. We choose a relatively small

cross-bar size and seek to implement an approximate version of the compute kernel on this smaller

cross-bar.

Algorithm 1 Search for crossbar design for edge detection.
1: procedure SEARCH-XBAR(M,φ ,κ,ζ ,N)
2: M←M0, T ← T0, ε ← ∞, l← 0
3: while ε > 0∧ l < lmax do
4: M′← ∆(M,φ)
5: ε ′← EVAL-XBAR(M′,ζ ,N)
6: X ←U(0,1)
7: if exp((logε− logε ′)/T )> X then
8: M←M′

9: ε ← ε ′

10: l← l +1
11: T ← T ·α
12: return M

Since we restrict ourselves to small cross-bar sizes, this allows us to search over the space of all

possible designs. We make use of a constrained simulated annealing framework to find an optimal
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Algorithm 2 Evaluation of goodness of a cross-bar design.
1: function EVAL-XBAR(M′,ζ ,N)
2: ε ← 0
3: for 1≤ i≤ N do
4: p∼ ζ

5: q∼ ζ

6: χ ← COMP-XBAR(M′,(p,q))
7: χ́ ← κ(p,q)
8: if χ 6= χ́ then
9: ε ← ε +1

10: return ε

solution. The constraint here is that the final solution needs to be sparse otherwise, the cross-bar

will have too many paths linking the input and output nano-wires; hence, the design will yield a

high number of false-positives. We enforce this constraint in the way we perturb the cross-bar at

each iteration of the simulated annealing search. In each perturbation we modify some memristor

mappings but also force an equal number of memristors to map to 0, hence ensuring that the total

number of mapped memristors and therefore paths for current flow remain low. Our search frame

work is described in Algorithm 1. The ∆ function in our algorithm computes a perturbation for

the design in each iteration. The perturbation rate φ , indicates how many elements of the matrix

M should be changed. To evaluate the goodness of a candidate solution, we generate N pairs of

pixel values. Each pixel value is independently sampled from a distribution of pixel intensities ζ

learned from the BSD500 dataset [1]. We map each pair onto the current design and compare the

simulated output with the exact output for κ . This evaluation function is described in Algorithm

2. The simulation of a cross-bar for a certain set of input variables can be done either using actual

device models or by modeling the memristor connections as binary switches in a programming

language based simulator. This process is described in Algorithm 3.

When performing the search for a design, we use a programming language based implementa-

tion of the cross-bar. However, once a design is found, we verify it using SPICE simulations as
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Algorithm 3 Simulation procedure for crossbar matrix M given pixels A,B.
1: variable definitions
2: M, Crossbar matrix
3: A,B, Pixel values
4: H,V, Status of horizontal and vertical wires in M
5: end variable definitions
6: function COMP-XBAR(M′,(A,B))
7: Map elements of M (5.2)
8: Inject current at H1
9: Simulate circuit

10: if Hm has current then
11: return 1
12: else
13: return 0

described in subsequent sections.

5.3.1 Results with search based Framework

For our design, we have used a cross-bar size of 15 rows and 15 columns (n = m). Other sizes can

also be used based on the nature of the kernel, which we plan to explore in future work. Our design

for edge detection involving two pixels is shown in Figure 5.5. All the black colored memristors

are always turned OFF while the green memristors are always turned ON. The blue memristors in

the design are labeled by one of the 8 bits of the two pixels whose value (or its negation) should be

loaded onto the memristor. In our simulated annealing, we set the initial temperature T0 to 0.001

and α to 0.99.
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Figure 5.1: Output of our crossbar design on all possible pixel pair values.

Since our kernel takes in 2, 8-bit pixels, it is possible to map the outputs from our design on all
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possible inputs. In Figure 5.1, we show a 256× 256 matrix. The x-axis shows values for one

input pixel while the y-axis shows the values for the other input pixel. At each index (x, y) we

show the result of our design. A dark pixel in this map denotes a low or ’0’ while a light pixel

denotes a high or ’1’ output. We have superimposed the map of our designs output with the

exact or desired output. The purple region denotes pixels that should be light while the maroon

region denotes pixels that should be dark. We can see that our approximate circuit’s result closely

follows the boundary between the two regions. We observe a staircase pattern around the ideal

line, which is because of the inherently digital nature of our design. We can consider these errors

as approximation or quantization errors in a digital circuit.

We tested our design on the Berkeley Segmentation Dataset (BSD500) [1]. This dataset contains

a total of 500 images. For our experiments, we convert all images to grey scale as our crossbar

designs are for single-channel images. The edge detection kernel is applied along the y-axis for

this analysis. We get the error percentage on each image in the dataset. For each pixel in an image,

we determine whether our method correctly identified an edge there by comparing it with an exact

implementation. The results for all pixels in an image are then accumulated to get a single score

for an image. The results of this analysis over all images are shown in Table 5.1.
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Figure 5.2: Evaluation of our crossbar design of Figure 5.5 on sample images of the BSD500

dataset.
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Table 5.1: The error rate (%) in edge detection for our crossbar model on the BSD500 dataset [1].

Mean Error Max Error Min Error

0.7 % 5.3 % 0.002 %

Some sample results from our crossbar design for edge detection are shown in Figure 5.2. We

can see that the overall error rate of our method is extremely low, while edges obtained from the

images are also visually meaningful.
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(a) Input image (b) Result using the OpenCV library

(c) Result using code emulation (d) Result using SPICE simulation

Figure 5.3: A comparison of our approximate edge detection using code-based emulation (c),

SPICE simulation (d) and ground truth edge detection (b) on a sample image (a). For all three

methods, the kernel used is [1, -1] applied along the x-axis

We have also simulated our crossbar design on HSPICE for figure 5.3a’s coins image containing

300× 246 pixels. For simulation, we assumed ROFF
RON

= 104, RON = 100Ω, Rout = 224Ω and V =
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1000mV . We have simulated our design on each horizontally adjacent pair of pixels of figure

5.3a. Figure 5.4 shows the histogram of the voltage values at the output for all simulated pairs of

pixels. The x-axis represents the voltage across the output resistor Rout , where the width of each

bin is 3.3nV . The y-axis is the normalized frequency of voltage values at the output. The blue

bars denote Low outputs corresponding to absence of edge. The red bars denote High outputs

indicating successful detection of an edge. As shown in the graph, the output voltage was always

less than 21 mV in the absence of an edge. When the simulated pair was located on an edge, the

the output voltage was always greater than 156mV . The High and Low outputs were separated by

a gap of 135mV ; ensuring a perfect match between the HSPICE simulation and python emulation

of the crossbar. Figure 5.3 shows a side-by-side comparison of edge detection results on a sample

image obtained using the ‘OpenCV’ library [61], code emulation and SPICE simulation. It can

be visually seen that emulation and simulation results are exactly the same whereas the ‘OpenCV’

result differs very slightly from our results. Our approximate methods are able to pick up all

dominant edges, and show false positives on very few scattered pixels. Edge detection usually

serves as the first level of features for more complicated vision algorithms down the line. Such

algorithms are quite often robust from small perturbations such as the noise that we observe in our

results.
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Figure 5.4: Histograms of HPSICE outputs for the coin image of Figure 5.3d. The x-axis represents

the output voltage across Rout , while the y-axis denotes normalized frequency of the corresponding

voltage values. The blue bars denote Low outputs, while red bars denote High outputs. This shows

a clear separation between voltages observed for High and Low outputs.
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A straightforward exact implementation of κ on a nanoscale crossbar requires the implementation

of an 8-bit subtractor and comparator circuit. As discussed earlier, the generation of an exact design

using existing methods such as [60], [59], [62] for such a large kernel is not trivial due to memory

constraints and time cost. We were unable to generate the exact design using [60] on a standard

quad-core machine. The closest result to our kernel κ is in [62] where they generate the design for

a 4-bit subtractor using RGB values. Each output bit requires it’s own cross-bar with the average

size per bit being roughly 88×45. We were able to generate an approximate implementation of a

kernel with similar size and complexity in a 15×15 crossbar, which represents a 94% gain in area

savings.
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Figure 5.5: Our 15×15 crossbar design for approximate edge detection



One of the challenges still faced in computing and storage on memristive devices, is low error

resilience. This is due to the presence of variation in the programmed resistance value of a mem-

ristor. To test the robustness of our design to resistance variation, we also tested our design in

SPICE by artificially adding noise to our programmed resistance values of the memristors in their

ON and OFF states. We increased the noise from 0% upto 16% of the resistance value and found

that the gap between the output voltage was reduced only by a few µV . The flow-based computing

paradigm makes use of sneak path currents to perform a computation. The combined resistance

of all elements in a path from the input to the output nano-wire contribute to the final current,

therefore the effect of error in any one element is negligible.
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CHAPTER 6: GRAPH BASED SYNTHESIS

Our second approach to design synthesis is by graphical modeling. We use a Binary Decision

Diagram representation for Boolean functions. We first provide an introduction to BDDs and then

go into more details on the framework.

6.1 Binary Decision Diagrams

A BDD is a directed acyclic graph G(V,E) used for compact encoding of Boolean functions [63].

A BDD has one root node, several intermediate nodes, and two terminal nodes (labelled as 0

and 1). Each node of a BDD represents a Boolean function. In that, the root node represents

the original function, the terminal node-1 represents true, the terminal node-0 represents f alse,

and non-terminal nodes represent functions derived from their predecessors through Shannon’s

expansion f (x) =¬bi fbi=0+bi fbi=1. Each edge of a BDD is labelled by an input Boolean variable

or its complement. Let G f (V,E) be a BDD representing the Boolean function f . Then by definition

of a BDD, there exists a path between the root node and the terminal node-1 whenever its associated

function f is true. Conversely, the root node is connected with the terminal node-0 whenever f is

f alse.

6.2 FBDD Based Design Synthesis

Although Reduced Ordered BDDs (ROBDDs) are a more popular representation of BDDs due to

their faster synthesis times [64], we use Free BDDs (FBDDs) in this work. Our rationale for this

choice follows the fact that FBDDs allow variables to appear in any order on paths between the root

node and the terminal nodes. The flexibility in variable orderings makes FBDDs more compact
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than ROBDDs that are required to maintain a global variable ordering along all paths between

the root and the terminal nodes. Section 6.2.1 explains our approach of synthesizing approximate

FBDDs that represent the target function f with the desired accuracy and uses them for automated

synthesis of approximate crossbars.

6.2.1 Design Overview

In this section, we discuss our novel approach for synthesizing approximate FBDDs under re-

laxed equality constraints. Towards that, we first explain the construction of approximate FBDDs

followed by the description of the overall synthesis process employing these approximate FBDDs.

Approximate FBDDs. Each branch node in a BDD represents sub-functions of it’s root node.

These sub-functions may or not be disjoint. We first describe how to compare two sub-functions be-

fore outlining how we use their approximation measures to synthesize BDDs that represent approx-

imate versions of the original. A Boolean function f : {0,1}n→ {0,1} is said to ε-approximate,

another function g : {0,1}n→ {0,1} if the functions agree on at-least (1− ε)2n inputs. This can

also be expressed as:

Pr
x
[ f (x) 6= g(x)]< ε, (6.1)

where, x is a random variable drawn from the uniform distribution {0,1}n. In order to be able to

estimate how well two nodes in a BDD graph approximate one another, we extend the definition

of ε-approximation for Boolean functions with the same input sets, to the case where the two

functions are defined over unequal sets of input variables. More formally, assume a function f :

{0,1}p→{0,1}, where each Boolean input variable is drawn from the set Y . The second function

is defined as g : {0,1}q→{0,1}, where each Boolean input variable is drawn from the set Z. Let,

Y 6= Z, while |Y |= p may or not be equal to |Z|= q. Additionally, let us define S =Y ∪Z. Now, f

is said to ε-approximate g if:
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Pr
w
[ f ′(w) 6= g′(w)]< ε, (6.2)

where f ′,g′ are modified versions of f ,g, that take input from the set S. The random variable w can

be decomposed into (y, y’) or decomposed into (z, z’), where y is sampled from the set Y , z from

set Z and y’, z’ are sampled from sets ‘S−Y ’ and ‘S− Z’ respectively. The modified functions

f ′,g′ can be evaluated as follows:

f ′(y,y’) = f (y)| f (y’),

g′(z,z’) = g(z)|g(z’).
(6.3)

Since f ,g are not defined over the respective input variables from the sets S−Y , S−Z, hence those

terms always evaluate to false and can be ignored. y’,z’ essentially serve as don’t care conditions

for f ′,g′ respectively.

Using the above result, we can compare any two sub-functions or nodes in our BDDs. To evaluate

the degree of divergence between two nodes, f and g, we essentially need to estimate the number

of input combinations over which they differ, where the input permutations have to be over the

union set S of the input sets Y and Z for f ,g respectively. As defined earlier, w is the random

variable consisting of Boolean variables taken from S. We can determine if the two nodes have the

same behavior at sample x of w as Π( f ,g,x) = f ′(x)⊕g′(x) (⊕ denotes the XOR operator). The

overall divergence between f ,g is then calculated as:

h = ∑
x∈dom(w)

Π( f ,g,x), (6.4)

The two Boolean functions are approximately equal if h is less than a pre-defined threshold ε .
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f ≈ g iff h < ε, (6.5)

where h is the fraction of true bits in the output of Π, and ε is real number less than 1. For example

if ε = 0.05, then f and g will be considered equal if their outputs differ for less than 5% of values.

An important point to notice is that the notion of approximate equality in equation 6.5 does not

require f and g to be defined on the same set of variables. It is still applicable even when f and

g are composed of different sets of variables. This is an important point because the nodes being

merge may not represent functions defined on the same set of variables. Here three corner cases

are of interest, (1) f and g represent same Boolean formulae, then Π would always evaluate to

f alse for all inputs (h = 0), (2) f and g are complement of each other, then Π would be always be

true (tautology), and h would be 1. (3) f and g are composed of entirely different sets of variables,

i.e, Y ∩Z =∅, then h would evaluate to 0.5.

We have employed the above proposed approximate equality for the merge operation in BDD

creation. In our synthesis, two nodes are considered functionally equivalent in the approximate

sense if h( f ,g) is less than a predefined threshold (ε). When ε is non-zero, it is obvious that

more nodes will qualify to be merged together, leading to a more compact Approximate FBDD

(AFBDD) at the cost of some error. By simply changing the threshold ε , we can trade-off AFBDD

size and accuracy. It is important to mention that apart from representing the original function in

approximate sense, AFBDD is semantically similar to any other FBDD, it has one root node, each

node has functional significance, each node has two outgoing edges and all paths end on either of

the two terminal nodes (0,1).
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Figure 6.1: Flowchart depicting the steps of our Approximate FBDD based crossbar Synthesis.

Synthesis Framework Figure 6.1 shows our synthesis framework for generating the approximate

crossbar of an arbitrary Boolean function f (x) where our goal is to meet a certain accuracy speci-

fication for the crossbar. First, we simplify the disjunctive normal form (DNF) of f (x). Next, we

construct the approximate FBDD of this function as outlined in section (6.2.1) with a low initial

threshold for equivalence T (where T = 1− ε). This FBDD represents f (x) in an approximate

sense. We check if this FBDD represents the original function f (x) with an accuracy that meets

our desired specification. If it does not, we decrease the tolerance threshold T and reconstruct the

approximate FBDD. This process is iterated till we obtain an FBDD with the desired accuracy.
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Figure 6.2: (a) Approximate FBDD for the newtag benchmark (b) Pruned Bipartite Approximate FBDD for the newtag bench-
mark (c) Approximate crossbar for in-memory computing of the newtag benchmark. Four (out of eight) sneak-paths (black, red,
green, and blue) are highlighted. They are activated when (D¬F), (DF¬A¬E), (¬DA), (¬D¬AC) respectively are true.



Figure 6.2a shows an FBDD for representing the newtag benchmark (MCNC [3]). This FBDD

represents the original function with ≈ 99% accuracy. Next, we modify the FBDD for crossbar

mapping. To this end, we first prune the FBDD by removing the terminal node-0 and all the edges

connected with it. We remove terminal node-0 since the terminal node-1 is sufficient for flow based

computing. Next, we make the pruned FBDD bipartite because a crossbar itself has a bipartite

structure, i.e. no horizontal wire has a direct memristive path to another horizontal wire. The same

is the case for vertical wires. We make our FBDD bipartite by inserting dummy nodes in cycles

that have an odd number of edges. Removal of all odd length-ed cycles from a graph makes it

bipartite. Figure 6.2b shows the pruned bipartite FBDD for the newtag function. In this figure, the

grey node represents a dummy node which removes odd length-ed cycles. We can then translate

the pruned bipartite FBDD to a crossbar design. We set the root node to the bottom nanowire.

Nodes that are at even-numbered distances from the root are set to horizontal nanowires, and those

that are at odd-numbered distances from the root are set to vertical nanowires. This completes

the synthesis process. Figure 6.2c shows the crossbar obtained after mapping the pruned bipartite

graph of Figure 6.2b onto the crossbar. This crossbar contains 8 sneak-paths between the bottom

and the topmost nanowires. We highlight 4 sneak-paths using black, blue, red, and green lines.

The black sneak-path is activated when the expression D¬F is true. Similarly red, green, and blue

sneak-paths are activated for DF¬A¬E, ¬DA, ¬D¬AC respectively.
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Table 6.1: Comparison of Exact and Approximate Crossbars for RevLib [2] and MCNC [3] Bench-

marks

Benchmarks Exact FBDDs AFBDD Size AFBDD Acc Area Reduction

ex1_150 6 by 5 6 by 5 100% 0 %

ex2_151 9 by 6 7 by 5 90.6% 35.2%

ex3_152 6 by 6 3 by 4 93.8% 66.6 %

majority_176 8 by 6 6 by 5 96.9% 37.5%

sf_232 6 by 6 5 by 5 93.8% 30.6 %

cm152a_130 5 by 8 4 by 6 93.8% 40%

sym6_63 11 by 13 9 by 11 96.9% 30.7%

9sym6 39 by 39 29 by 21 92.2% 59.9%

life_175 21 by 21 16 by 15 94.3% 45.6 %

max46 68 by 64 44 by 45 89% 54.5 %

newill 12 by 12 8 by 9 98% 50%

newtag 7 by 8 4 by 5 99.2% 64.3 %

6.2.2 Experiments and Evaluation

We use our framework to generate approximate designs for various RevLib, MCNC benchmarks

and basic image processing kernels [2, 3]. Our approach produces crossbars that are up to 80%

more succinct, while maintaining ≈90% accuracy. Table 6.1 summarizes the performance of our

approach on RevLib and MCNC benchmarks. While no direct comparison is available for approx-

imation techniques for crossbar computing, we see that compared with general circuit approxima-
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tion techniques, for a 5% approximation, we see on average a 43% reduction in area as opposed to

5.9% from [42] and 30.25% from [37]. We also synthesize crossbars for a commonly used image

processing application, edge detection. Our edge detection kernel is expressed as |p1− p2| > τ ,

where ‘p1’ and ‘p2’ are adjacent pixels, while τ is the detection threshold. Table 6.2 compares the

sizes of exact and approximate designs for different thresholds. Our best result saves 80% area

while maintaining 96% accuracy. Figure 6.4 shows the results from an HSPICE simulation of one

of our designs for an edge detector computing ‘|p1− p2|> 32’. The size of this crossbar is 28×29

and represents the original function with an accuracy of 91.6%. Memristors with ROFF
RON

as high

as 107 have been reported in recent literature [65]. We assume a ROFF
RON

= 104. We use Vs = 1V ,

Rs = 65Ω, and RON = 50Ω. The X-axis plots all input combinations obtained by concatenation

of input operands, while the Y-axis plots corresponding voltage across the sense resistor Rs. The

green bars denote ‘High’ outputs, while blue bars denote ‘Low’ outputs. During simulation, the

maximum voltage for Low output (VOL) was 43mV , while the minimum voltage for High output

(VOH) was 87mV , thus resulting in a noise margin of 44mV , which is sufficiently high to safely

detect the presence of a sneak path. Figure 6.3 compares the output of an approximate design with

the equivalent exact design for the ‘cameraman’ image. The two results are visually similar, show-

ing that the approximate result is suitable for real world use-cases in error-tolerant applications

while yielding significant increase in efficiency.
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(a) Input image (b) Exact result (c) Approximate result

Figure 6.3: Performance of our approximate edge detector design on the “camera man" image

compared with an exact design.
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Figure 6.4: Hspice simulation of 28×29 crossbar for 8-bit edge detector( τ = 32). Here the X-axis

shows the decimal value from concatenation of two pixels, the Y-axis denotes the voltage at the

sense resistor. The Low ( f alse) and High (true) outputs are shown by blue bars and green bars

respectively.
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Table 6.2: Comparison of Exact and Approximate designs of crossbars for edge detection kernels

(|p1− p2|> τ)

Threshold Exact Approx. Accuracy Area

designs designs improvement

τ = 32 79 by 81 28 by 29 91.6% 87.3%

τ = 64 121 by 123 73 by 73 97.4% 64.2%

τ = 80 133 by 123 51 by 47 97.1% 85.3%

τ = 96 113 by 115 66 by 65 94.8% 66.9%

Our results on improving area efficiency of these crossbars, validate the effectiveness of our ap-

proach. Next we use the Reduced Ordered BDD representation (ROBDD) for our synthesis.

6.3 Progressive Approximation

The sub-functions represented by branch nodes in a BDD representation depend on the variable

ordering chosen for the FBDD. In order to explore further possibilities for node mergers, in our

second approach, we try random variable orderings to find a better approximations. We do this

incrementally starting from a small ε gradually increasing in each iteration until an approximation

is found that reduces the size of the resultant crossbar while still meeting the design specification.

We then start with the AFBDD obtained and repeat the same process to find a second AFBDD

that is smaller than the AFBDD found after the first stage, and so on. We repeatedly cascade these

AFBDDs until we find an AFBDD that meets a given accuracy specification or the maximum set

iterations are reached. Finally we add a final cascade of an FBDD representation with the proposed
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size of circuit based ordering without adding any further approximation to ensure the final ordering

results in as compact a graph as possible.

We evaluate our proposed methods on a number of large benchmarks given in Table 6.3. We can

see that for almost all benchmarks we are able to obtain large area savings while retaining very

high accuracy. The ‘progressive’ synthesis is generally able to achieve better results owing to the

randomized variable ordering used during the search process which results in more node mergers

during the AFBDD creation.

With this method, we generate several designs for edge detection with different thresholds (τ) to

obtain their area-error graphs which are plotted in Figure 6.5. We can see that designs that maintain

very high accuracy (close to 97%) are able to reduce the crossbar sizes by up to 80%. Since edge-

detection is error-resilient, the added noise does not significantly change the final output of any

algorithms that use extracted edges from an image. Figure 6.6 illustrates that edge detection output

remains meaningful for close to 10% error and degrades significantly at error levels close to 25%.

Table 6.2 shows crossbar sizes for some of our synthesized designs.
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Table 6.3: Single Step and Progressive AFBDD-based Synthesis

Exact designs Approximate designs

Single step Progressive

Benchmark Size Size Accuracy Improvement Size Accuracy Improvement

Mult b5 49 by 50 36 by 41 99.2% 39.7% 36 by 38 99.6% 44.16%

Mult b6 39 by 38 27 by 26 94.5% 52.6% 25 by 25 92.2% 57.8%

Mult b7 22 by 24 19 by 22 99.2% 20.83% 16 by 20 96.9% 39.39%

Mult b8 10 by 11 6 by 8 94.1% 56.36% 9 by 9 96.5% 26.36%

majority_176 8 by 6 6 by 5 96.9% 37.5% 4 by 5 96.9% 58.33%

max46 68 by 64 44 by 45 88.3% 54.5% 24 by 23 91.4% 87.31%

newill 12 by 12 8 by 9 98% 50% 2 by 1 94.5% 98.6%

newtag 7 by 8 4 by 5 99.2% 64.3% 3 by 3 97.7% 83.9%

sf_232 6 by 6 5 by 5 93.8% 30.5% 6 by 6 100% 0%

sym6_63 16 by 19 9 by 11 96.9% 30.7% 7 by 9 90.6% 55.9%

cm152_a_130 8 by 5 4 by 6 93.8% 40% 6 by 11 100% -65%
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Figure 6.5: Plot of Crossbar area vs Error for edge detector with different values of threshold (τ).
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(a) Input Image (b) Exact result (c) Error: 3%

(d) Error: 6% (e) Error: 8% (f) Error: 9%

(g) Error: 11% (h) Error: 26% (i) Error: 34%

Figure 6.6: Performance of our approximate edge detectors (for threshold, τ = 32) with varying

error levels, on the "coins" image compared with an exact design.

43



44

A

E

F

B

10

(a)

A

E

F

B

1

(b)

A
E F ¬F

0 1 B

Vs

Rs

(c)

Figure 6.7: Different stages of A-ROBDD based synthesis. (a) A-ROBDD representing the MSB of a 4-bit multiplier. (b)
Pruned-bipartite A-ROBDD, grey node is dummy node (c) Final design obtained after mapping pruned-bipartite A-ROBDD on
a crossbar. Our approximate design is implemented on a 3×3 crossbar, while the exact design needs a 7×9 crossbar [56]



6.4 ROBDD Based Design Synthesis

We also use the more commonly used ROBDD representation of Boolean functions to synthe-

size our approximate designs. The overall design process is very similar to that used for FBDDs

with the exception of the variable ordering in the BDD representation. Figure 6.8 shows the out-

line of our design process using ROBDD representation. We first construct the exact ROBDD

for a target function f (x). Step-2 is the approximation of ROBDDs using our threshold (T) based

approximate-equality. We have elaborated the details of this step in section 6.4.1. If the accuracy of

an approximate ROBDD is less than 90%, we reduce the threshold (T) of the approximate-equality

and go back to Step-2. This process is repeated until the desired accuracy is achieved, which we

have set at 90%. Once the desired accuracy is achieved, we prune A-ROBDD and make it bipartite.

Pruning removes extraneous terminal-0 and all the edges connected with it. Such pruning does not

cause any loss of functionality/accuracy. The requirement for being bipartite arises because the

underlying graph of a crossbar is bipartite, where no two rows (or two columns) are connected

with each other. Since a bipartite graph has no odd-length cycles, we make our A-ROBDD bi-

partite by inserting dummy nodes in odd-length cycles. Fig. 6.7a and 6.7b show the approximate

ROBDD and its pruned bipartite version for the MSB of a 4-bit multiplier. Finally, we map the

bipartite A-ROBDD onto a crossbar, which is a trivial process. The root node is mapped on the

bottom nanowire, nodes which are at even numbered distance from the root are mapped onto hor-

izontal nanowires, and nodes with odd-numbered distance from the root are mapped onto vertical

nanowires. Fig. 6.7c shows the approximate crossbar for the MSB of the 4-bit multiplier, where

blue and red lines highlight the sneak paths. This approximate design is implemented on a 3× 3

crossbar, while the exact design needs a 7× 9 crossbar [56]. Our A-ROBDD based approximate

design is 85% more compact with 94% accuracy.
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Figure 6.8: Flow diagram of our Approx-ROBDD based synthesis.

6.4.1 Design Overview

By definition, an ROBDD is already reduced to the point that no two nodes of an ROBDD represent

the same function. In this work, we reduce an ROBDD further by merging nodes which are func-

tionally similar under pre-specified constraint (T). To implement this concept, we first compute

functional representation ( fi) of each ROBDD node (ni) from the exact ROBDD graph. Then for

each node pair (ni, n j); we merge ni with n j if their functional representations satisfy our threshold

based approximate-equality. This process is repeated until no two nodes can be merged any more.

When a node ni is merged with node n j, all incoming edges of ni are directed towards n j. At the

end of the merge operation, all parent-less nodes are removed, which makes the resultant ROBDD

more compact than the exact counterpart. We express our threshold based approximate-equality

more formally as follows.

Let f1 and f2 be functional representations of BDD nodes n1 and n2 respectively. Let us assume for

now that both f1 and f2 have same set of variables V = {v1,v2,v3 . . .vk}. Let T f1 and T f2 represent
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the outputs of truth tables of f1 and f2 respectively. Let H12 = T f1⊕T f2 be XOR of T f1 and T f2 ,

then the number of 1s in H12 (hamming distance) is a linear measure of disparity between f1 and

f2. Fortunately, we can measure this disparity/Hamming distance without building the complete

truth table. The hamming-function fH12 corresponding to H12 can be computed directly from f1

and f2 as follows,

fH12 = XOR( f1, f2) = ¬ f1 f2 + f1¬ f2

we use the simplified form of fH12 for computing normalized Hamming distance (h). For approxi-

mate synthesis, we treat f1 and f2 approximately-equal if their corresponding normalized hamming

distance (h) is less than a predefined threshold T .

f1 ≈ f2 s.t. h < T

where 0 < T < 1 is approximation threshold. We can change T to trade overall-accuracy with

size of the synthesized crossbars. Despite its simplicity, XOR is extremely effective for measuring

disparity between f1 and f2. Besides circumventing the need to build truth tables, XOR operation

works equally well even when f1 and f2 are not composed of the same set of variables. Finally,

the linear nature of hamming distance makes it ideal for tuning to accuracy-size trade-off.

6.4.2 Experiments and Evaluations

We have synthesized approximate crossbars for RevLib benchmarks [2], and edge-detectors for

multimedia images. We have maintained accuracy above 90% for all circuits. Table 6.4 compares

the sizes of our approximate crossbars with ROBDD based exact designs for a variety of functions.

In this table, the first seven functions are from RevLib benchmark suite, and the last three are edge

detectors with detection-thresholds of 32, 48 and 64. Our approach has successfully reduced the

47



area requirement for RevLib benchmarks by ≈ 60%, and edge-detectors by ≈ 80%. Previously,

Khokhar et al. had used simulated annealing for approximate synthesis of uni-directional edge de-

tector ‘(p1− p2)> 50’ [66]. They synthesized this function on a 15×15 crossbar. In comparison,

our approach synthesizes the same function on a 7×9 crossbar with≈ 96.42 % accuracy, resulting

in area improvement of 72% [66]. The compactness of approximate designs varies depending upon

functions, e.g t481 benchmark has lent itself to only 10.6% improvement while ‘|p1− p2| > 32’

edge detector is compressed by ≈80%. As is clear from the table, approximate computing is most

effective for edge-detectors.

We have also simulated our designs on HSPICE. For simulation, our designs use Vs = 1V , Rs =

200Ω. Instead of using fixed values of RON and ROFF , we have modeled them as Normal distri-

butions (N ) centered at 50 and 500k Ω respectively, such that RON = 50×N (1,σ2)Ω, ROFF =

50×104×N (1,σ2)Ω, where σ = 0.16. For our simulations, ROFF
RON
≈ 104. Fig. 6.9 plots the volt-

age of the topmost nanowire (output voltage) of 14× 15 crossbar for approximating ryy6 bench-

mark. Here, the X-axis displays the decimal value of the input [x15 : x0], the Y-axis denotes the

output voltage. The red and blue bars correspond to High and Low outputs respectively. The

minimum voltage for High output ‘min(VOH)’ is consistently greater than 160 mV and the maxi-

mum voltage for Low output ‘max(VOL)’ is consistently less than 40mV . The voltage-differential

= min(VOH)−max(VOL) = 120mV is three times of max(VOL), which is sufficient for error free

distinction of Low and High outputs. For display, the outputs in Fig. 6.9 are selected at a sampling

rate of 50. To keep the range of output-voltage consistent across different crossbars with different

memristive technologies, we recommend using Rs =
k
4RON , where k is the number of input bits in

the target function f (x).
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Figure 6.9: HSPICE simulation of 14×15 crossbar for ryy6 benchmark under memristor settings

of RON = 50×N (1,0.16)Ω and ROFF = 500×N (1,0.16)kΩ.
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Table 6.4: Comparison of Exact and Approximate Crossbars for different Revlib benchmarks [2].

Exact ROBDDs

Benchmark Size Accuracy Area Reduction

newill 14 by 12 9 by 6 95.3% 67.8%

max46 58 by 55 43 by 39 97.1% 47.4%

sym9_71 18 by 17 15 by 13 93.4% 36.2%

sym10_207 20 by 20 16 by 16 95.4% 36.0%

ryy6 25 by 23 14 by 15 94.6% 63.4%

t481 28 by 26 26 by 25 92.7% 10.7%

sym6_63 9 by 9 8 by 7 90.6% 30.8%

|p1− p2|> 32 55 by 50 24 by 22 95.7% 80.8%

|p1− p2|> 48 52 by 59 26 by 37 97.1% 68.6%

|p1− p2|> 64 17 by 29 15 by 19 91.8% 42.2%

6.4.3 Brightness Scaling

We have synthesized approximate crossbars for brightness scaling and tested them on gray-scale

images. The same design can be used for scaling the brightness of RGB-images by applying it

on each color channel separately. Brightness scaling kernel multiplies this intensity by a constant

factor α and checks if it has saturated. Let I be the intensity of a pixel in the ith row and jth column,
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then the functionality of brightness scaling can be stated as follows,

s(α, I) =


αI if αI ≤ 255

255 if αI > 255

The output of scaling-kernel ‘s(α, I)’ is also an 8-bit pixel. Since our approach synthesizes circuits

for Boolean formulae, we first express the scaling kernel in the form of 8-bit Boolean formulae,

one formula for each bit. Next we synthesize approximate crossbars for each of them. Area of

scaling kernel is the sum of total area of individual circuits. Fig. 6.10 shows the performance

of our scaling kernel on the ‘bear’ image. Fig. 6.10b shows the image after brightness scaling

with our circuit. For comparison, Fig. 6.10c shows brightness scaling performed by the exact

design, while Fig. 6.10d is the difference between the outputs of exact and approximate designs.

Our circuit for brightness scaling had area of 1191 while the exact circuit needs 2230. As is clear

from Figures 6.10b-6.10d, despite being 46.6% more compact, our approximate design generates

a result that has almost imperceptible differences from an exact result.
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(a) Input image (b) Approx. Brightness Scaling

(c) Exact Brightness Scaling (d) Difference b/w (b) and (c)

Figure 6.10: Performance of our approximate circuit for brightness scaling. (a) is the original

image, (b) shows the result of 60% scaling with our approximate kernel, (c) is image after 60%

scaling with exact kernel, (d) is the difference between the two results. Our approximate design

was 46% more compact than the exact counterpart

6.4.4 Comparison with FBDD based Approximation

We now compare the performance of our FBDD and ROBDD based approximation results. These

are given in Table:
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Table 6.5: AFBDD vs AROBDD side-by-side comparison

FBDD AFBDD AFBDD ROBDD AROBDD AROBDD

Benchmark Size Size Accuracy Gain Size Size Accuracy Gain

newill 12 by 12 8 by 9 98% 50% 14 by 12 9 by 6 95.3% 67.8%

max46 68 by 64 44 by 45 88.3% 54.5% 58 by 55 43 by 39 97.1% 47.4%

sym6_63 16 by 19 9 by 11 96.9% 30.7% 9 by 9 8 by 7 90.6% 30.8%

mult6 39 by 38 27 by 26 94.5% 52.56% 27 by 28 19 by 20 91.02% 49.7%

mult7 22 by 24 19 by 22 99.2% 20.83% 17 by 20 13 by 14 91.02% 46.5%

|p1− p2|> 32 79 by 81 37 by 39 96.9% 77.4% 55 by 50 24 by 22 95.7% 80.8%

|p1− p2|> 64 121 by 123 73 by 73 97.4% 64.2% 17 by 29 15 by 19 91.8% 42.2%

majority_176 8 by 6 6 by 5 96.9% 37.5% 6 by 5 4 by 3 94% 60%

Initial experimentation on FBDD based design synthesis for flow-based RERAM computing showed

that FBDDs produced better results than ROBDDs on multiplier circuits. However this result

shows that on other benchmarks including image processing benchmarks, ROBDD based synthe-

sis performs better. More study is needed on characterization of benchmarks to understand which

benchmarks should have smaller designs using ROBDDs vs FBDDs. The intuitive understanding

is that because of the higher representative power of FBDDs due to unrestricted variable ordering

between paths, these should give smaller designs.

6.5 Generalized Circuit Synthesis using A-ROBDDs

Our graph based synthesis methods are not specific to RERAM technology. In fact the approxima-

tion applies to any Boolean function and therefore any circuit technology. We show this by also

generating results on other standard technologies. Our framework for standard cell library based

synthesis is as follows: Given a Boolean function f , we first find a global variable ordering using
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Dynamic weight heuristic (DWH). Then we specify an initial merge threshold ε (set to an arbitrary

high value) and construct an approximate ROBDD using relaxed equality. This A-ROBDD repre-

sents the original function f in the approximate sense. If the accuracy of our approximate ROBDD

does not meet our required specification, we decrease the Threshold ε in steps (say 10%) and re-

synthesize approximate ROBDD under new constraint. This process is repeated until we get an

A-ROBDD with the required accuracy. This process is shown in Fig. 6.11. Once an approximate

ROBDD is synthesized, we convert it into PLA format and load it into Berkeley’s ABC Environ-

ment [67]. We use structural hashing to convert our approximate logic to AIG format. And SAT

sweep over the AIG to get the functionally reduced form of the AIG that will yield the smallest

circuit design. We then synthesize our circuits using two different standard design cell libraries,

‘stdcell.lib’ and ‘mcnc.genlib’.

Figure 6.11: Flowchart depicting the steps for synthesizing approximate circuits using ROBDDs.
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(a) Gray Scale Image (b) Exact |p1− p2|> 48

(c) Approximate (d) Diff of Exact & Approx.

Figure 6.12: Comparison of our exact and approximate edge detection kernel on cameraman-

image (a) is the original image. (b) shows result of approximate edge-detection kernel for τ = 48.

(c) is the edge detection for exact edge-detection kernel. (d) is the difference between exact and

approximate kernels. (e) is the overall error locations. Our design of approximate edge-detector is

28% more compact as compared to exact designs for only a 4% loss in accuracy
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6.5.1 Experiments and Evaluations

We have tested our approach on various elementary image processing kernels and RevLib bench-

marks [2, 3]. As shown in tables 6.7 and 6.8, our approach has reduced the size of disjunctive-

normal-form (DNF) by upto 90% while corresponding circuits were ≈53% more compact. The

DNF-size is defined as the total number of AND-gates and OR-gates in the DNF representation of

a Boolean function. It is important to mention that DNF-size is technology independent metric,

while circuit area depends upon several factors such as choice of gates, their sizes and mapping

technology. We have used stdcell.lib and mcnc.genlib to calculate the area of our circuits. Next

we describe how we have used our approach to synthesize compact circuits for edge-detection

and brightness-scaling kernels before moving onto general purpose benchmarks. We use the same

kernels for edge detection and brightness-scaling as described in previous sections.

The formula for our complete edge response and thresholding kernel is given as:

κτ(A,B) =
7

∑
i=0

2iai−
7

∑
i=0

2ibi > τ (6.6)

We represent equation 6.6 in disjunctive-normal-form (DNF) and synthesize its approximate cir-

cuits using our framework. Fig. 6.12 compares the result of exact edge-detector with approximate

edge-detector for τ = 48. Fig. 6.16 shows the regions of false positives and false negatives for

this kernel. We have also designed edge detection kernels with τ = 16,32,48,64,80,96,112,128.

Overall, we are able to maintain accuracy between 90 to 98% while reducing DNF sizes by upto

90% and the circuit sizes upto 53%. The complete results are shown in Table 6.7. We show some

additional results for edge detection in Figure 6.17.

We also implement an approximate circuit for brightness scaling kernel. In this case, the kernel

takes in a pixel and also outputs a pixel (8 Boolean variables) after a multiplication and a saturation
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operation. The saturation operation is necessary because the output pixel cannot exceed 255 as the

answer must be represented in 8 bits hence any values larger than 255 are set to 255. We implement

the saturation operation using the ‘min’ operator. The scaling kernel can be expressed as:

U = min{αA,255} (6.7)

Here, A is the input pixel, U is the output pixel and α is the scaling factor. Since our framework

needs input functions in Boolean representation, we first represent each of the 8 output-bits in

the form of Boolean formulae. In the next step, we create their approximations by synthesizing

approximate ROBDDs and convert them into circuit representations using ABC tool. Area of

brightness scaling kernel is the cumulative area of individual circuits. Overall, our approach has

reduced the area of brightness scaling kernel by 30%. Fig. 6.13 compares the performance of

brightness-scaling for α = 1.6, using exact and approximate circuits on the standard Lena image.

The difference between exact and approximately scaled images is shown in figure 6.13d.
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(a) Gray Scale Image (b) Approx. Brightness Scaling

(c) Exact Brightness Scaling (d) Diff of Exact & Approx.

Figure 6.13: Performance of approximate design of brightness-scaling circuit on the ’Lena im-

age’ (a) is the original greyscale image. (b) is the Lena image after 60% brightness scaling with

our approximate circuit (c) is the image after 60% scaling with exact circuit (d) is the difference

between images produced by exact and approximate scaling. Our brightness-scaling circuit was

synthesized is 30% more compact for a slight loss in accuracy.
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Benchmarks. Besides edge detection and brightness scaling, we have tested our approach on other

benchmarks as well. The experimental setup was the same as described earlier. We first create

approximation of original function by synthesizing approximate ROBDDs, then we use ABC for

converting it into functionally reduced AIG which is eventually mapped as circuit using gates from

stdcell.lib and mcnc.genlib.

As shown in table 6.8, besides reducing the DNF size by upto 50%, our approach has reduced

the circuit area of these benchmarks by upto 40% at the cost of a small drop in accuracy. Among

these benchmarks, the ryy6 presents an interesting case. Although, our approach has reduced its

DNF size by more than 5 times, it does not translate into area savings for approximate circuit

on stdcell.lib or mncn.genlib. Upon deeper analysis, we find that the ryy6 circuit was mapped

on higher fan-in gates (such as aoi21, oai21 and nand4 etc), while the approximate circuit relied

heavily on 2-input nand2 gates which are generally preferred for technology mapping. When we

synthesized ryy6 using nand, nor and inverter gates only, the approximate circuit was 22% more

compact than its exact counterpart.

Comparisons. Since our graph-based approximation framework is based on BDD based exact

synthesis [68], I include some comparisons for that framework with other exact synthesis methods

in this thesis. Table 6.6 shows a comparison of our approach with that of Xie et al. [4]. The

‘area’ in this comparison represents the number of memristors needed in the design. This includes

both used and unused memristors. We can see that our approach is generally more area efficient.

The computing method of IMPLY [69] uses memristive circuits for computation, however it is not

directly applicable for cross-bar structures or in-memory computing. The MAGIC framework [70]

can be implemented both as a memristive circuit or on cross-bars, however it presents additional

challenges of sneak-paths and multiple micro-operations for each kernel increasing the computing

time. For a more detailed discussion on exact synthesis, I refer the reader to the thesis of Hassen

[71].
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Table 6.6: Comparison of crossbar sizes with Xie et al. [4]

Benchmark FBLC OFBLC Our

[4] [4] Method

2-bit Adder 432 432 42

4-bit Adder 3948 3948 528

2-bit Mult 208 192 52

4-bit Mult 5280 4384 5260

For Approximation, we compare our method against several existing approximation tools and

methods. A number of approximation methods are technology specific and cannot be applied on

general circuit synthesis as our method can. We still compare the efficiency gain against them us-

ing area reduction and DNF size. In SALSA [42], the authors report an average area improvement

of 5.9% for several benchmarks when they are approximated to 95% accuracy. In our experiments

we report an average improvements in area of 33.89% and 34.33% for stdcell.lib and mcnc.genlib

standard libraries and 64.98% reduction in DNF size for an average accuracy of 94% over our

benchmarks. These results are also better than the area gain of 16.1% from [42] for an average ac-

curacy of 75%. In BLASYS, Hashemi et. al [37], report an area improvement of 30.25% for 95%

accuracy. However, this method only reports on multi-output kernels and synthesize circuits with

common parts for various output bits. Hence the final improvement has an advantage as our cur-

rent synthesis does not yet leverage common circuitry for multi-output kernels. Note that the above

methods are general approximation methods, while previous methods were technology specific re-

sults for ReRAMs. Those results had a 42.9% improvement in area for a 95% accuracy. Note that

the implementation for flow-based computing on ReRAMs results in nearly quadratic growth with
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respect to function size and therefore a small approximation results in large area gains. Despite

this our result for DNF size reduction is comparable with their results.

Table 6.7: Comparison of Exact and Approximate Circuits for Edge Detection Kernels

Exact Circuits Approximate Circuits

Area using Area using Improvement on

Detection Threshold (τ) stdcell.lib mcnc.genlib DNF size stdcell.lib mcnc.genlib DNF size stdcell.lib mcnc.genlib DNF Size Accuracy

16 274 191 1011 131 90 285 52.2% 52.9% 71.8% 95.1%

32 305 205 2189 141 100 246 53.8% 51.2% 88.8% 95.7%

48 253 188 2463 183 135 571 27.7% 28.2% 76.8% 96.8%

64 189 140 3323 105 79 271 44.4% 43.5% 91.8% 92.8%

80 207 165 3167 149 108 883 28.0% 34.5% 72.1% 92.2%

96 203 147 2879 143 107 579 29.6% 27.2% 79.9% 93.7%

112 236 161 2639 139 98 595 41.1% 39.1% 77.4% 97.2%

128 171 133 2299 106 82 347 38.0% 38.3% 84.9% 98.1%

Table 6.8: Comparison of Exact and Approximate Circuits for RevLib [2] and MCNC [3] Bench-

marks

Exact Circuits Approximate Circuits

Area using Area using Improvement on

Benchmark stdcell.lib mcnc.genlib DNF size stdcell.lib mcnc.genlib DNF size stdcell.lib mcnc.genlib DNF Size Accuracy

life_175 222 155 671 171 127 348 22.9% 18.1% 48.1% 90.6%

max46 432 324 394 271 194 254 37.3% 40.1% 35.5% 88.3%

sym10_207 271 191 1259 166 121 769 40% 36% 38.9% 95.4%

sym6_63 74 54 59 34 30 25 54% 44% 57.6% 90.6%

9sym 172 134 503 140 97 479 18.6% 27.6% 4.7% 92.2%

ryy6 33 28 623 37 28 115 -13.12% 0% 81.5% 94.61%

Approximation Analysis. In Figure 6.14 we study the error patterns from our approximate designs

for the edge detection kernel. This figure is for the particular edge detection kernel for threshold set
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to 16. X and Y axes represent one input pixel respectively. In the ideal scenario (exact computa-

tion), the result of the kernel should be 0 (or f alse) within a narrow band along the diagonal of the

256× 256 map, and 1 (true) everywhere outside this band. However in our approximate execution,

we get errors on some pairs of pixel values. We indicate false positives with red and false negatives

with blue. For an exact design, there would be no colored pixels in this map. We can see that there

are a lot of erroneous outputs along the edges of the narrow band (which represent boundaries

between true and f alse regions). This means that a lot of the approximation was done using the

lower significance bits. However errors in other parts of the map indicate that our approximation

does not simply use precision scaling but also finds other sub-functions within the original kernel

that can be substituted. We see a similar pattern in the error map for the edge detection kernel with

threshold set to 32 while in the case of edge detection for threshold 48, fewer errors can be found

away from the diagonal. This corresponds with a smaller gain in synthesized circuit size for this

kernel as shown in Table 6.7 which suggests that simple precision scaling yields smaller gains than

when our method is able to find solutions that also use functional approximation.
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Figure 6.14: Locations of erroneous outputs for the Edge detection kernel ‘|p1− p2|> 16’. X and

Y axes represent the first and second pixel. For our approximate design, red squares correspond to

f alse positives and blue squares correspond to f alse negatives. For an exact design, there should

be no colored pixels.
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Figure 6.15: Locations of erroneous outputs for the Edge detection kernel ‘|p1− p2| > 32’. The

axes and color representations are the same as for Fig. 6.14
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Figure 6.16: Locations of erroneous outputs for the Edge detection kernel ‘|p1− p2| > 48’. The

axes and color representations are the same as for Fig. 6.14. Fig. 6.12 shows the performance of

this kernel on cameraman image
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Figure 6.17: Results for edge detection kernel. Top row shows original images, middle rows show

exact edge detection results and bottom row shows approximate edge detection results.
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CHAPTER 7: CONCLUSION

In this thesis, we have synthesized logic circuits on compact nanoscale ReRAM crossbars for

the in-memory computing of Boolean functions. We have proposed and demonstrated two broad

approaches for this purpose. A search based framework models the device as a matrix that is

optimized over a large search space using constrained simulated annealing. We demonstrate the

effectiveness of this method by generating designs for a basic image processing kernel, called edge

detection. The design is simulated on SPICE and applied to real images. The target application is

surveillance cameras for this work and therefore results are restricted to image processing kernels.

Image processing is an example of a modern computing workload that is tolerant to small amounts

of error while being highly data intensive. It is therefore an ideal candidate for approximation of

computation to obtain better device efficiency.

In our second framework we propose to model Boolean functions as Binary Decision Diagrams.

We then present a mathematically sound framework to approximate Boolean functions by manip-

ulating BDDs. We do this on FBDD as well as ROBDD representations which are mapped to

RERAMs. We also show that the same approximation can also be mapped to other technologies.

We synthesize circuits that execute both the exact and approximate versions of Boolean functions.

To demonstrate the effectiveness of our approaches for approximating logic functions, we also

present a case study of the real world application of edge-detection and other image processing

kernels such as image scaling and filtering.
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7.1 Future Work

In our first framework, we search for a design using a constrained simulated annealing process. We

find that the search process is sensitive to parameters such as sparsity, crossbar size and annealing

temperature. It is worthwhile exploring other search algorithms for this optimization problem.

Additionally, it can be explored how search for two designs may be done in tandem. If two kernels

are similar, the design for one kernel may start as the initial design in the search for the second

design. Keeping the difference between the two designs can also reduce storage size by getting

better compression ratios.

For our second framework, we see that ROBDD based synthesis performs better than FBDD based

synthesis for some kernels. The characterization of kernels is an interesting problem. If we can

determine characteristics in a kernel that suggest that one of ROBDDs or FBDDs should be used

for its design synthesis, it can provide valuable insight for future system design.

One of the most rapidly growing workloads in computer science is deep learning. The basic deep

learning kernel is convolution. For both our frameworks, it is possible to extend the results to

convolution as a first step towards larger deep learning systems. The challenges in this regard are

related to computing power during the synthesis process which may be alleviated by more efficient

libraries. Therefore, We plan to extend this work, first towards basic deep learning kernels such as

convolution, and then to consolidated deep learning architectures and networks.
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