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Voigt spectral profiles in two-photon resonance fluorescence

Moorad Alexanian*
Department of Physics and Physical Oceanography, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA

Subir K. Bose†

Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
�Received 6 June 2007; published 5 November 2007�

A recent work on two-photon fluorescence is extended by considering the pump field to be a coherent state,
which represents a laser field operating well above threshold. The dynamical conditions are investigated under
which the two-photon spectrum gives rise, in addition to a Lorentzian line shape at the pump frequency, to two
Voigt spectral sideband profiles. Additional conditions are found under which the Voigt profile behaves like
either a Gaussian or a Lorentzian line shape.

DOI: 10.1103/PhysRevA.76.055401 PACS number�s�: 42.50.Hz, 32.80.Wr

Two-photon fluorescence has been found to have signifi-
cant advantages over single-photon fluorescence in biologi-
cal and medical applications �1�. Recently, we presented a
theory of two-photon resonance fluorescence in which
atomic excitation is by simultaneous absorption of two pump
photons, followed by fluorescence emission of two fluores-
cent photons �2�. The atom-pump field system is treated in
the “dressed atom” picture �3�. Resonance fluorescence
arises from transitions among the dressed states of the atom.
In this paper, we consider the case when the optical field is a
coherent state, such as might be produced by an ideal laser,
and show that the results shown in Figs. 1–3 of Ref. �2� for
the numerical values considered actually give rise to Gauss-
ian sidebands and not Lorentzian sidebands as incorrectly
stated there.

The rate of production of the average number of fluores-
cent photons for arbitrary initial states of the atom and pump
field is given in its most general form by Eq. �27� of Ref. �2�.
This spectrum consists of four peaks: two Lorentzians at
�k= �̂1�N−2� and �k= �̂3�N−2�, and two non-Lorentzians at
�k= �̂e�N−2� and �k= �̂i�N−2�. Details are in Ref. �2�. To
simplify, we consider large eigenvalues of the operator N
such that N�N± j, where j is a small integer. For such cases,
the rate of production of fluorescent photons becomes
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The spontaneous decay constant of the dressed states is given
by �, which would be the damping in a naive perturbation
approach. However, the actual effective dampings of the
transitions are given by � and �i. The projection operators
into the ��n

±� states are �̄11=�n=0

 ��n

+���n
+� and �̄33

=�n=0

 ��n

−���n
−�, respectively.

Evaluation of the spectrum given by �1� requires the val-
ues of terms like �f�N��̄11� and �f�N��̄33�, where f�N� is a
function of the operator N. The averaging in Eq. �1� is to be
taken over the initial, disentangled atom-pump field state.
Before the atoms enter the region of the pump field, the
atoms could be in the ground state. Alternatively, the atoms
could be prepared in a suitable superposition of the ground
and the excited states. The pump field can be in a Fock state,
the eigenstate �n� of the photon number operator with n pho-
tons. Or the pump field could be a laser radiation field, which
can be considered as a coherent state ���. The statistical na-
ture of the driving field has an influence on atomic resonance
fluorescence �4�

If the atom is in the ground state �1� and the pump field is
in the Fock state �n�, then

�f�N��̄11� = cos2�n−2f�n� and �f�N��̄33� = sin2�n−2f�n� .

�3�

Accordingly, the atom-pump field system is ���= �1�
� �n� and so the spectrum �1� reduces to the following:
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The inelastic spectrum consists of three Lorentzians peaks,
the central peak at �k=� and symmetric sidebands at �k
=�±, which depend on the number of pump photons n, i.e.,
the intensity of the pump field. This case has been discussed
in Ref. �2� and the results of Figs. 1–3 there actually are
correct for n=200 and not n̄=200 as indicated there, where n̄

is the average number of photons in the pump field.
We now analyze the case where the initial atoms are in the

ground state �1� and the pump field is in a coherent state ���.
A coherent state, a good representation of an ideal intense
laser radiation, is represented by ���=�n=0


 �e−n̄/2�n /
n!� �n�,
where ���2 is the average number n̄ of pump photons. The
initial state of the atom-radiation system is then
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The rate of production of fluorescent photons is given by
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where Pn, the Poisson probability distribution, is Pn
=e−n̄n̄n /n!.

For large n, the Poisson distribution can be well ap-
proximated by a Gaussian distribution and so Pn

�e−�n−n̄�2/2n̄ /
2�n̄. The sum over the photon number states
in Eq. �6� can, therefore, be replaced by an integral. These
approximations allow for an analytic expression of the spec-
trum in terms of known functions. The first two terms of Eq.
�6� give rise to a convolution of a Gaussian and a Lorentzian,
i.e., the Voigt profile �5�. The third term is a pure Lorentzian
centered at �k=�, resulting from the large-n limit consid-
ered by us, in which case �̂i�n�→�, which is independent of
n. Mechanisms like Doppler and collision or pressure line
broadenings give rise to the Voigt shape �6�. Numerical ex-
amples for Voigt line shapes can also be found in Ref. �6�.
Therefore,
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In the integral �8�, the variable of integration is y=n− n̄ and
the dominant contributions to the convolution comes from
the region of n near n̄.

Note that the Voigt profile V�x± ;
n̄ , �̄�=Re���z�� /
2�n̄,

where w�z�=e−z2
erfc�−iz�, erfcz is the complementary error

function �5�, and z= �x±+ i�̄� / �
2�̄�.
The full width at half maximum �FWHM� of the Voigt

profile is determined by the corresponding Gaussian and
Lorentzian FWHM, fG and fL, respectively. A reasonable ap-
proximation �7�, accurate to 0.02%, for the Voigt profile
FWHM is given by

fV � 0.5346fL + 
0.2166fL
2 + fG

2 . �11�

The exact expression for fV in terms of fL and fG has been
obtained recently �8�.

Therefore, the FWHM of the resonance fluorescence �7�
in the variables x± is given approximately by
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x±
� 1.0692�̄ + 
0.8664�̄2 + 8�ln2�n̄ , �12�

since fL=2�̄ and fG=2
2�ln2�n̄. The corresponding FWHM
of the resonance fluorescence spectrum in the variable 2�k is
given, with the aid of �10�, by
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determines whether the Voigt profiles in �7� reduce to a
Lorentzian or Gaussian form. Therefore, from �8� one ob-
tains that
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The spacing between the centers of the Lorentzians in �6� is
given by 
�2�k�=2�̂�n+1�−2�̂�n�=� / �̄, while the number
of levels in the width of the Gaussian is given by the stan-
dard deviation 2
n̄. Accordingly, the inequality
2
n̄�� / �̄��2� corresponds to a Lorentzian shape in the

Voigt spectral form, while 2
n̄�� / �̄��2� corresponds to a
Gaussian. These criteria are in accordance with �15� and
�16�, respectively.

Therefore, for �̄ /
n̄�1, the inelastic part of the fluores-
cence spectrum �7� consists of three Lorentzians; the central
peak at 2�k=2� with FWHM of 2�i and two sidebands at
2�k=2�̂±�n̄� with FWHM of 2�, respectively. However, for

�̄ /
n̄�1, the inelastic term in �7� consists of a Lorentzian
central peak at 2�k=2� with FWHM of 2�i and two
Gaussian sidebands at 2�k=2�̂±�n̄� with FWHM of

�� / �̄�
8�ln2�n̄, respectively. The atomic parameters used in
Fig. 1 of Ref. �2�, for instance, together with n̄=200 give for
the ratio �̄ /
n̄�1.0�10−3. Therefore, the sidebands of the
spectrum for these values of the atomic parameters and n̄
=200 would actually give rise to Gaussians, rather than
Lorentzians, located at 2�k−2�� ±1.4�107 s−1 as before
but with a Gaussian FWHM of approximately 1.2�106 s−1

rather than a Lorentzian FWHM of 2�=3�=1.0�103 s−1.
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