
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2000s Faculty Bibliography 

1-1-2007 

A bayesian approach to estimation and testing in time-course A bayesian approach to estimation and testing in time-course 

microarray experiments microarray experiments 

Claudia Angelini 

Daniela De Canditiis 

Margherita Mutarelli 

Marianna Pensky 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2000 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Angelini, Claudia; Canditiis, Daniela De; Mutarelli, Margherita; and Pensky, Marianna, "A bayesian approach to 
estimation and testing in time-course microarray experiments" (2007). Faculty Bibliography 2000s. 6834. 
https://stars.library.ucf.edu/facultybib2000/6834 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/6834?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F6834&utm_medium=PDF&utm_campaign=PDFCoverPages


Volume 6, Issue 1 2007 Article 24

Statistical Applications in Genetics
and Molecular Biology

A Bayesian Approach to Estimation and
Testing in Time-course Microarray

Experiments

Claudia Angelini, Istituto per le Applicazioni del Calcolo
Daniela De Canditiis, Istituto per le Applicazioni del

Calcolo
Margherita Mutarelli, Lab. Bioinformatica, ISA-CNR; Dip.

Patol. Gen., Seconda Universitµa di Napoli, Italy
Marianna Pensky, University of Central Florida

Recommended Citation:
Angelini, Claudia; De Canditiis, Daniela; Mutarelli, Margherita; and Pensky, Marianna (2007)
"A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments,"
Statistical Applications in Genetics and Molecular Biology: Vol. 6: Iss. 1, Article 24.
DOI: 10.2202/1544-6115.1299

Brought to you by | University of Central Florida - UCF
Authenticated

Download Date | 8/13/19 3:32 PM



A Bayesian Approach to Estimation and
Testing in Time-course Microarray

Experiments
Claudia Angelini, Daniela De Canditiis, Margherita Mutarelli, and Marianna

Pensky

Abstract

The objective of the present paper is to develop a truly functional Bayesian method
specifically designed for time series microarray data. The method allows one to identify
differentially expressed genes in a time-course microarray experiment, to rank them and to
estimate their expression profiles. Each gene expression profile is modeled as an expansion over
some orthonormal basis, where the coefficients and the number of basis functions are estimated
from the data. The proposed procedure deals successfully with various technical difficulties that
arise in typical microarray experiments such as a small number of observations, non-uniform
sampling intervals and missing or replicated data. The procedure allows one to account for various
types of errors and offers a good compromise between nonparametric techniques and techniques
based on normality assumptions. In addition, all evaluations are performed using analytic
expressions, so the entire procedure requires very small computational effort. The procedure is
studied using both simulated and real data, and is compared with competitive recent approaches.
Finally, the procedure is applied to a case study of a human breast cancer cell line stimulated with
estrogen. We succeeded in finding new significant genes that were not marked in an earlier work
on the same dataset.
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Claudia Angelini would like to thank Marianna Pensky for the warm hospitality while visiting
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Erratum 
 
       Page 2, paragraph 1, lines 8-10, which reads: 
''Recent papers of Park et al. (2003), Conesa et al. (2006), Di Camillo et al. (2005) 
and the Limma package by Smyth (2005) have similar approaches"  
 
    Should read:  
''Recent papers of Park et al. (2003), Di Camillo et al. (2005) and the Limma 
package by Smyth (2005) have similar approaches" 
 
       Page 2, paragraph 3, lines 19-23, which reads: 
 ''An increasing interest in studying the dynamic regulation of gene expression led 
to new developments in the area of analysis of time-course microarray 
experiments, see e.g. de Hoon et al. (2002), Bar-Joseph et al. (2003), Bar-Joseph 
(2004), and more recent approaches by Storey et al. (2005) and Tai and Speed 
(2006)" 
 
    Should read: 
 ''An increasing interest in studying the dynamic regulation of gene expression led 
to new developments in the area of analysis of time-course microarray 
experiments, see e.g., de Hoon et al. (2002), Bar-Joseph et al. (2003), Bar-Joseph 
(2004), and more recent approaches by Storey et al. (2005), Conesa et al. (2006) 
and Tai and Speed (2006)" 
 
Page 8, case 1 of formula (6) has to be read:   
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1 Introduction

Gene expression levels in a given cell can be influenced by different factors,
namely pharmacological or medical treatments. The response to a given
stimulus is usually different for different genes and may depend on time. One
of the goals of modern molecular biology is the high-throughput identification
of genes associated with a particular treatment or biological process of interest.
The recently developed technology of microarrays allows one to simultaneously
monitor the expression levels of thousands of genes. Although microarray
experiments can be designed to study different factors of interest, in this
paper, for simplicity, we consider experiments involving comparisons between
two biological conditions (for example, control and treatment) made over the
course of time.

In what follows, we consider data consisting of measurements of differences
in the expression levels between “treated” and “control” samples of N genes
at n time points in the interval [0, T ]. The objective is first to identify the
genes that respond to the treatment and then to estimate the type of response.
This experimental setup can be easily realized by the direct hybridization of
two samples on cDNA microarrays and then repetition of the hybridization
process at different time points after the treatment.

In general, the problem can be formulated as follows. Consider data
consisting of the records on N genes. The record on each gene is taken at
n time points t(j), j = 1, .., n, and for a gene i at a time point t(j) there are
k

(j)
i records available, making the total number of records for gene i to be

Mi =

n∑

j=1

k
(j)
i . (1)

Each record can be modeled as a noisy measurement of a function si(t) at
a time point t(j). The number of time points is relatively small (n ≈ 10)

and very few replications are available at each time point (k
(j)
i = 0, 1, . . . K

where K = 1, 2 or 3) while the number of genes is very large (N ≈ 10, 000).
The objective of the analysis is to identify and estimate the curves that are
different from the identical zero (i.e., significant). Subsequently, the curves
may undergo some kind of clustering in order to group genes on the basis of
their type of response to the treatment.

Currently, the statistical literature mostly addresses static microarray
experiments, see e.g. Efron et al. (2001), Lonnstedt and Speed (2002), Dudoit
et al. (2002), Kerr et al. (2002), Ishwaran and Rao (2003), among many
others. Although time-series microarray experiments have lately appeared in

1
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literature, there is still a shortage of statistical methods that are designed
specifically for time-course experiments. For example, SAM version 3.0
software package (originally proposed by Tusher et al. (2001) and later
described in Storey et al. (2003)) was adapted to handle time-course data
by considering the time points as different groups. In a similar manner,
the ANOVA approach by Kerr et al. (2000) and Wu et al. (2003) was
applied to time-course experiments by treating the time variable as a particular
experimental factor. Recent papers of Park et al. (2003), Conesa et al. (2006),
Di Camillo et al. (2005) and the Limma package by Smyth (2005) have similar
approaches. The above methods have the shortcoming of applying statistical
techniques designed for static data to time-course data, so that the results
are invariant under permutation of the time points. The biological temporal
structure of data is ignored.

On the other hand, typical microarray experiments present some technical
difficulties such as small number of observations (the time series are usually
very short and hence asymptotic methods cannot be used), non-uniform
sampling intervals and missing or multiple data, that make them unsuitable
to classical time-series and signal processing algorithms.

An increasing interest in studying the dynamic regulation of gene
expression led to new developments in the area of analysis of time-course
microarray experiments, see e.g. de Hoon et al. (2002), Bar-Joseph et al.
(2003), Bar-Joseph (2004), and more recent approaches by Storey et al. (2005)
and Tai and Speed (2006).

The goal of the present paper is to develop a statistical methodology
specifically designed for time-course microarray data with a new, fully Bayesian
approach. The method treats records as functional data, thus preserving
temporal structure and taking into account the temporal nature of the data.
Another advantage is that the number of records Mi for each gene is not
required to be equal for all genes, thus avoiding the tiresome problem of missing
data. Moreover, no adjustment is necessary even if records for each gene are
taken at different time points.

Since the response curve for each gene is relatively simple and only a
few measurements for each gene are available, each si(t) curve is globally
estimated by expanding it over an orthogonal basis (Legendre polynomials
or Fourier). Therefore, each function is described by a vector of coefficients.
This is, in fact, similar to Storey et al. (2005), where each of the response
curves is expanded over the polynomial or B-spline basis with the coefficients
estimated by the least squares procedure and the number of basis functions
used in these expansions is the same for all genes. By contrast, we propose a
Bayesian approach for the simultaneous estimation of response curves as well

2
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as for testing their significance and ranking them accordingly. As a result, the
technique is more uniform and flexible than that of Storey et al. (2005): it
allows a different number of basis functions for each curve (which improves
the fits), it does not require one to pre-determine the most significant genes
to select the dimension of the fit and avoids a somewhat ad-hoc evaluation
of the p-values. Also, our method can accommodate various types of error
distributions, namely, all scale mixtures of a normal distribution (e.g., normal,
Student T and double-exponential) as well as any additional prior information.
By avoiding a non-parametric treatment of errors in the model as in Storey
et al. (2005), we avoid resampling methods, which may be rather formidable
to a practitioner. In fact, all the formulae used in Bayesian computations are
explicit and easy to implement.

The Tai and Speed (2006) algorithm is also based on the Bayesian
paradigm, although our methodology is very different from theirs. Tai and
Speed (2006) apply Bayesian techniques directly to the vectors of observations.
For this reason, analysis can be performed only if the same number of
replicates is present at any time point and the results of analysis are completely
independent of time measurements. Also, unlike Storey et al. (2005) and the
present paper, Tai and Speed (2006) only rank the genes without providing
the cut off point to determine which genes are significant.

The method closest to ours is the Bayesian clustering technique of Heard
et al. (2006), where the gene profiles are also represented by expansions over a
certain basis and the normal-inverse gamma prior is imposed on the unknown
coefficients. The number of clusters as well as cluster membership are as well
treated as random variables leading to a fully Bayesian model, as in our paper.
However, the goal of Heard et al. (2006) is different from ours, and they do
not address many of the issues that we treat in depth (replications, different
time points for different genes, etc.). Nevertheless, the philosophical similarity
between the two approaches makes the technique of Heard et al. (2006) an
attractive and natural choice for subsequent clustering of the curves that are
found to be significant by our algorithm.

In what follows, we consider data sets containing measurements of the
differences in the expression levels between the “treated” and the “control”
samples of N genes at n time points in the interval [0, T ]. This is the so-called
“one sample” problem, in contrast to the situation where the expression levels
of the “treated” and the “control” samples are recorded separately. If the
design points for both samples coincide (as it is required in Tai and Speed
(2006)), then our technique can be easily extended to the “two sample” case
by calculating the differences of observations. Potentially our technique can
be extended to the case when design points of the “treated” and the “control”

3
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samples are completely different. However, this will be a topic for future
research.

Although in the present paper we refer to time-course microarray
experiments, the method can be applied to any experimental design with a
quantitative factor. For example, by replacing the time variable with a dose
variable, one can apply our technique to dose-response studies (provided the
number of different doses is relatively large).

The rest of the paper is organized as follows. In Section 2 we describe
the hierarchical Bayesian model. Sections 2.2 and 2.3 describe modeling the
gene expression profiles and errors. Section 2.4 explains how to estimate the
gene-dependent parameters. Section 2.5 describes hypothesis testing while
Section 2.6 outlines the procedure for estimating the gene profiles. To complete
the methodology, Section 2.7 provides the techniques for estimating global
parameters. Finally, Section 2.8 summarizes the complete algorithm. In
Section 3 the performance of the proposed method is evaluated using simulated
and real data and then compared with the recent competitive methods of
Storey et al. (2005) and Tai and Speed (2006). Section 4 concludes the paper
and the Appendix contains the derivation of the formulae in Section 2.

2 Statistical modeling, estimation and testing

of gene expression profiles

2.1 The data structure

The experiment that motivated the proposed methodology consisted of a series
of two-color cDNA microarrays where the control (untreated) sample was
compared with treated samples after various time intervals upon treatment.
The expression value of each microarray was the result of a competitive
hybridization. The mRNA samples were reverse-transcripted into cDNA,
one sample was labeled with a green (Cy3) and the other with a red (Cy5)
fluorescent dye, then they were mixed and applied to the microarray. After the
cDNA had hybridized, the microarray image was captured using a scanner and
the intensities in the two channels were measured. For each spot, the relative
expression value is measured as the log2 red to green fluorescence intensity
ratio. The data are assumed to be already pre-processed to remove systematic
sources of variation. For a detailed discussion of the normalization procedures
for microarray data we refer the reader to e.g. Yang et al. (2002), Cui et al.
(2002), McLachlan et al. (2004) or Wit and McClure (2004).

The measurements are taken at n different time points in [0, T ] where

4
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the sampling grid t(1), t(2), . . . , t(n) is not necessarily uniformly spaced. For
each array, the measurements consist of N normalized log2-ratios zj,k

i , where
i = 1, . . . , N, is the gene number, index j corresponds to the time point t(j)

and k = 1, . . . , k
(j)
i , k

(j)
i ≥ 1, accommodates for possible technical replicates at

time t(j). Note that usually, by the structure of the experimental design, k
(j)
i

are independent of i, i.e. k
(j)
i ≡ k(j) and M =

∑
k(j). However, since some

observations may be missing due to technical errors in the experiment, we let
k

(j)
i to depend on i.

For each gene i, we assume that evolution in time of its relative expression
is governed by a function si(t) and each of the measurements involves some
measurement error, i.e.

zj,k
i = si(t

(j)) + ζj,k
i , i = 1, . . . , N, j = 1, . . . , n, k = 1, . . . , k

(j)
i . (2)

The measurement errors ζj,k
i are assumed to be i.i.d. with zero mean and finite

variance. The function si(t) represents the temporal differential expression
level of gene i over the interval [0, T ] and it is the quantity of interest. In
particular, si(t) ≡ 0 means that gene i is not affected by the treatment while
si(t) 6≡ 0 indicates that gene i changes its biological response due to the
treatment. In this case, the value of si(t) is a measure of the effect induced
by the stimulus, hence its estimation is of great interest to investigate the
underlying biology. Therefore, the objective of the analysis is to identify the
genes for which the hypothesis si(t) ≡ 0 can be rejected (those genes are called
significant) and to estimate their expression profiles si(t).

2.2 Modeling the gene expression profiles

Each function si(t) is globally estimated, since the measurements are available
only at a few time points. Specifically, we expand each function over some
standard orthonormal basis on [0, T ]

si(t) =
Li∑

l=0

c
(l)
i φl(t) (3)

and characterize each of them by the vector of its coefficients ci. In the
present paper we use Legendre polynomials or Fourier basis suitably rescaled
and normalized in [0, T ], but other choices are possible. Due to the fact
that functions si(t) model a biological system, these functions are continuous,
although discontinuities in the first derivatives are allowed. The values of the
coefficients c

(l)
i and the degrees of the polynomials Li are estimated from the

observations via a Bayesian approach.

5
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We assume that the genes are conditionally independent, so that
combination of (2) and (3) yields

zi = Dici + ζ i (4)

where zi = (z1,1
i . . . z1,k1

i , · · · , zn,1
i , . . . zn,kn

i )T ∈ RMi is the column vector
of all measurements for gene i (see (1)), ci = (c0

i , . . . , c
Li
i )T ∈ RLi+1 is

the column vector of the coefficients of si(t) in the chosen basis, ζi =
(ζ1,1

i , . . . , ζ1,k1
i , · · · , ζn,1

i , . . . , ζn,kn

i )T ∈ RMi is the column vector of random
errors and Di is the Mi × (Li + 1) block design matrix the j-row of which
is the block vector [φ0(tj) φ1(tj) . . . φLi(tj)] replicated ki

j times.
The proposed model is fully Bayesian, since we treat all parameters either

as random variables or as nuisance parameters, thus recovered from data.
We assume that given σ2, the vector of errors ζi is normally distributed
ζi | σ2 ∼ N (0, σ2IMi), hence

zi | Li, ci, σ
2 ∼ N (Dici, σ

2IMi).

On the unknown parameters we elicit the following priors:

Li ∼ Pois∗(λ,Lmax), Poisson with parameter λ truncated at Lmax ;
ci | Li, σ

2 ∼ π0δ(0, . . . , 0) + (1 − π0)N (0, σ2τ 2
i Q

−1
i ).

We choose the truncated Poisson distribution Pois∗(λ,Lmax) to model the
number of terms in the expansion (3), because polynomials of very low order
may not adequately represent functions si(t), while large values of Li lead to
higher variances. Parameter λ is proportional to the average degree of the
polynomial and Lmax refers to the maximal possible degree. The values of
both parameters are treated as known constants. In the simulation study for
n = 11, we chose λ = 9 and Lmax = 6, approximatively corresponding to a
prior degree of three of the polynomials in (3). In general, λ and Lmax should
be chosen considering the number of available time points and the nature of
the problem. Anyway, simulations show that the results of estimation and
testing are quite robust with respect to the choice of λ and Lmax.

The prior distribution on the vectors of coefficients ci is chosen to be the
mixture of a point weight at zero and a multivariate normal density with the
covariance matrix σ2τ 2

i Q
−1
i . This choice reflects the fact that some of the

curves are identical zeros and that positive and negative coefficients c
(l)
i are

equally likely for the others. Parameter π0 is the prior probability of the
treatment not affecting a gene and it is a global parameter estimated from
the data. Matrix Qi is a diagonal matrix that accounts for the decay of the

6
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coefficients in the chosen basis. If functions si(t) are νi times continuously

differentiable, then coefficients c
(l)
i have polynomial decays c

(l)
i ∼ (l + 1)−νi in

both Legendre and Fourier bases, which corresponds to Qll
i = (l + 1)2νi . The

choice of the gene-dependent parameter νi is difficult, especially considering
that the amount of data is usually insufficient for a reliable estimation.
However, our extensive simulations show that the method’s performance is
practically independent of the choice of νi, thus we choose a single global
parameter ν in our further analysis. Note that if no assumption about
smoothness is made, then ν = 0 and Qi = I.

2.3 Modeling the errors

The scale of coefficients ci can be different for different genes (the more the
gene is affected by the treatment, the larger the value of τi). We model this
by scaling the covariance matrix for the i-th gene by σ2τ 2

i . Parameters τi are
estimated from observations and parameter σ2 is assumed to be a random
variable

σ2 ∼ ρ(σ2).

The latter choice allows one to account for possibly non-Gaussian errors
(quite common in microarray experiments), without sacrificing closed form
expressions for estimators and test statistics. In particular, among the possible
choices, we consider three types of priors ρ(·):

case 1: ρ(σ2) = δ(σ2 −σ2
0), the point mass at σ2

0. The marginal distribution
of the error is normal.

case 2: ρ(σ2) = IG(γ, b), the Inverse Gamma distribution. The marginal
distribution of the error is Student T .

case 3: ρ(σ2) = cµσ
Mi−1e−σ2µ/2. The marginal distribution of the error is

double exponential.

The global hyperparameters, π0 and the ρ(σ2) specific parameters (σ2
0 for

case 1, γ and b for case 2 and µ for case 3), are estimated from data.
Possible strategies how to do this are discussed in Section 2.7. Once
the hyperparameters are estimated, a Bayesian analysis is carried out by
combining the prior information and the sample information into the posterior
distribution.

7
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2.4 Estimation of gene dependent parameters

If the global parameters of the model were known, one could proceed to a
gene-by-gene analysis of coefficients ci, i = 1, · · · , N . In this section, we
only provide the final formulae, referring the reader to the Appendix for the
calculation details. To deal with different choices of ρ(σ2) we introduce a
function

F (A,B) =

∫ ∞

0

σ−Ae−B/2σ2

ρ(σ2)dσ2 (5)

that can be explicitly calculated in the three cases discussed above as:

F (Mi, B) =





σ̂Mie−B/2σ̂2
in case 1,

Γ(
Mi
2

+γ)

Γ(γ)
b−

Mi
2 (1 + B

2b
)−(

Mi
2

+γ) in case 2,

cµ

√
2π/µ e−

√
Bµ in case 3.

(6)

We also denote

gλ(Li) =

[
Lmax∑

l=0

(l!)−1λle−λ

]−1

(Li!)
−1λLie−λ, Li = 0, . . . , Lmax,(7)

Hi(zi) = zT
i zi − zT

i Di(D
T
i Di + τ−2

i Qi)
−1DT

i zi, (8)

V (zi, Li,Mi) = |τ 2
i D

T
i Di + Qi|−1/2 [(Li + 1)!]ν F (Mi,Hi(zi)). (9)

Here gλ(Li) is the pdf of the truncated Poisson distribution. In the following,
we suppress dependence on λ, τi and ν and the marginal density of zi is of the
form

p(zi) = (2π)−Mi/2

[
π0F (Mi, z

T
i zi) + (1 − π0)

Lmax∑

Li=0

gλ(Li) V (zi, Li,Mi)

]
. (10)

Expression (10) contains a gene-dependent parameter τi estimated by τ̂i =
arg maxτi p(zi). The posterior pdf of the degree Li given data zi is calculated
as

p(Li|zi) = (2π)−Mi/2gλ(Li)
[
π0F (Mi, z

T
i zi) + (1 − π0)V (zi, Li,Mi)

]/
p(zi).

(11)

For each gene i, we estimate Li either by maximizing the posterior pdf (11)
(MAP principle) or by using its posterior mean. After τi and Li are estimated,
we replace them with τ̂i and L̂i in all the subsequent calculations.

8
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Hence, the posterior pdf of ci given zi and L̂i becomes

p(ci|zi, L̂i) = [(2π)
Mi
2 p(zi|L̂i)]

−1 [ π0F (Mi, (zi −Dici)
T (zi − Dici))δ(0)+

(1−π0)[(L̂i+1)!]ν

(2πτ̂2
i )(L̂i+1)/2

F (Mi + L̂i + 1, (zi −Dici)
T (zi − Dici) + τ̂−2

i cT
i Qici) ]

(12)

where (2π)
Mi
2 p(zi|L̂i) = π0F (Mi, z

T
i zi) + (1 − π0)V (zi, Li,Mi) and 0 =

(0, · · · , 0).

2.5 Identifying the significant genes

Our main goal is now to test the hypotheses H0i : ci = 0 versus H1i : ci 6= 0
for i = 1, . . . , N . For this purpose, we introduce the Bayes factors BFi, the
quotient between the posterior odds ratio and the prior odds ratio (see e.g.
Berger (1985))

BFi =

√
|Qi + τ̂ 2

i D
T
i Di|

[(L̂i + 1)!]ν
F (Mi, z

T
i zi)

F (Mi,Hi(zi))
. (13)

Then the posterior probability that ci = 0 can be expressed as

p(ci = 0|zi, L̂i) = π0

/[
π0 + (1 − π0)(BFi)

−1
]
. (14)

Note that, although Bayes factors BFi can be used for independent testing of
the null hypotheses H0i, i = 1, . . . , N , the classical Bayesian approach does
not account for the multiplicity of comparisons. Nevertheless, when N is large
as in microarray experiments, the problem of multiplicity cannot be ignored.
To take into account multiplicity and control the familywise error, we apply
the Bayesian multiple testing procedure of Abramovich and Angelini (2006).
A simple hierarchical prior model is obtained by imposing a prior distribution
π(r) > 0, r = 0, 1, 2, · · · , on the number r of alternative hypotheses (the
number of significant genes in our case). Afterwards, a decision is made by
finding the most likely configuration of null and alternative hypotheses.

Of particular interest in the microarray context are the “sparse” priors π(r)
that force E(r) to be relatively small with respect to N . They allow to model
the prior belief that usually a relatively small number on the total of genes are
differentially expressed. The number of true alternatives r can be estimated
by the global maximum of the posterior likelihood or by the step-up or the
step-down procedure (see Abramovich and Angelini (2006)). In this paper, we
use the step-up procedure implemented as follows. Bayes factors are ordered
so that BF(1) ≤ BF(2) ≤ . . . ≤ BF(N) and the corresponding hypotheses are

9
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re-indexed. After that, one starts from the most plausible null hypothesis
BF(N) and continues accepting the null hypotheses as long as

BF(i) >
i

N − i + 1

π(i)

π(i− 1)
. (15)

All the remaining hypotheses are rejected and the corresponding genes are
called significant. In a similar manner, one can also implement the step-down
procedure. Note that if the prior π(i) in (15) is Binomial with parameter α,
then both the step-down and step-up procedures provide the same answer as
the global maximization procedure.

For the prior π(r) in (15) one can choose, for example, a Binomial B(N,α)
prior, a truncated Poisson Poiss∗(α,N) prior or any other “sparse” pdf
suggested by the biological knowledge. We observe that the smaller the
parameter α is, the more sparse the prior π(r) is and the fewer genes are
chosen a-priori as differentially expressed. For example, if π(r) = B(N,α),
then (15) becomes

BF(i) > α/(1 − α),

showing clearly that smaller α will imply a stronger control of the multiplicity.
A similar reasoning applies to Poiss∗(α,N) prior as well. In principle α can
be estimated from data. For simplicity, in our simulations we use the Binomial
prior with α = 1 − π̂0.

Remark 1. The use of the Bayesian multiple testing procedure of
Abramovich and Angelini (2006) allows one to identify significant genes, to
rank them and to estimate their expression profiles all in one unified Bayesian
paradigm. However, one can use only parts of the above proposed method
to select the significant genes or to estimate the expression profile of genes
selected using another procedure.

Remark 2. A more accurate evaluation of Bayes factors would be based
on averaging over Li and calculating p(ci = 0|zi) instead of p(ci = 0|zi, L̂i)
in (14). However, it would lead to a significant increase in the amount
of computations and this is the reason why we replace the true values Li

with the estimators L̂i. In any case, replacing the more reliable average
between the models with a plug-in estimator obtained upon maximization
of the posterior likelihood is an accepted procedure in Bayesian computations
(see e.g. Chipman et al. (2001) or Burnham and Anderson (2002)).
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ˆ

2.6 Estimation of gene expression profiles

Finally, we estimate the coefficients ci for the significant genes using the
posterior expectation over (12)

ci =
(1 − π0)/π0

BFi + (1 − π0)/π0

(
DT

i Di + Qi/τ̂
2
i

)−1
DT

i zi,

ˆ

and, from (3), the estimator of si(t) is

si(t) =

{ ∑L̂i

l=0 ĉ
(l)
i φl(t) if H0 is rejected,

0 if H0 is accepted.
(16)

2.7 Estimation of global parameters

To complete the theory, we need to address the problem of estimating the
global parameters of the model: the common parameter π0 and the case-
specific parameters σ2

0 (for case 1), γ and b (for case 2) or µ (for case 3).
Several options are available in literature to accomplish this task, see for

example Efron et al. (2001), Ishwaran and Rao (2003), Storey and Tibshirani
(2003), Pounds and Cheng (2004), Pawitan et al. (2005). In this section, we
describe the methods we used in simulation and in real data analysis. However,
we note that a different set of methods can be applied without changing the
main algorithm.

First we observe that, according to our model, some genes may have missing
observations, since a few values may be filtered out during preprocessing.
Estimation of the global parameters is then based only on the Nc genes for
which the complete set of M observations is available. Therefore, we have M
arrays with Nc observations at each time point t(j), j = 1, . . . ,M . Note that
here we are using a one-index enumeration of time points, so in case multiple
observations are made at the same time, then t(j) = t(j+1) = t(j+2) . . ..

For each array of observations at a time point t(j), the standard deviation
σ(j) is estimated by the sample standard deviation σ̂(j) using the sparsity
assumption (the majority of array components are zeros). If normality of
the data can be justified, the sample variance can be replaced by a more
robust estimator like MAD. Note that if a sufficiently large number of arrays
is available, then one can also use a gene specific estimator of σ or an unbiased
pooled estimator. The estimator σ̂2 is obtained by averaging of (σ̂(j))2,
j = 1, . . . ,M .

Given σ̂, we estimate the global parameter π0 by averaging over the
arrays the proportion of data points which fall below the universal threshold
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σ̂
√

2 log Nc (following Donoho (1992)). Note that this method tends to
overestimate π0 when the error is normally distributed. However, this is
no longer true when the error distribution has heavier tails, a very common
condition in real data. Alternatively, π0 can be estimated using the empirical
Bayes approach of Johnstone and Silverman (2004), whose set up is in
concordance with ours. In this case, we obtain an estimator of π0 for each
array and average the results.

The set of estimators σ̂(j), j = 1, . . . ,M , is subsequently treated as the
sample of values of σ and is used for estimating parameters of ρ(σ2). If the prior
model chosen is the case 1, σ2

0 is estimated by σ̂2. In case 2, hyper-parameters γ
and b can be estimated by using the MLE (note that if (σ̂(j))2 ∼ IG(γ, b), then
(σ̂(j))−2 ∼ Gamma(γ, b)). An alternative procedure is to fix one of the two
parameters, γ or b, and then estimate the other one by matching the mean of
IG(γ, b) with σ̂2. Similarly, in case 3, µ can be estimated by µ̂ = (Mi − 1)/σ̂2,
so that the mean of the prior distribution ρ(σ2) is centered at σ̂2.

2.8 Algorithm

In this Section we describe the algorithm for automatic identification and
estimation of the gene expression profiles in a time-course microarray
experiment. We again point out that the input data in (4) should be pre-
processed and normalized to remove systematic sources of variation.

The algorithm can be performed by carrying out the following steps:

1. A preliminary step is to fix prior parameters λ, Lmax and ν.

2. Estimate global parameters: σ2 and π0, and additional case-specific
hyper-parameters σ2

0 (for case 1), γ and b (for case 2) or µ (for case
3).

3. For each gene i, estimate the gene specific parameter τi by maximizing
the marginal pdf of the data (10). Subsequently, plug in π̂0, σ̂2, γ̂, b̂ or
µ̂ instead of π0, σ2

0, γ, b or µ when required.

4. For each gene i, estimate the most appropriate degree Li as the mean or
the mode of the posterior pdf (11).

5. For each gene i, conditionally on L̂i, compute Bayes Factor BFi using
formula (13).

6. Perform Bayesian multiple testing procedure for controlling the
multiplicity error and rank the genes according to the ordered Bayes
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factors. For this purpose, order Bayes factors so that BF(1) ≤ BF(2) ≤
. . . ≤ BF(N), and re-index the corresponding hypotheses. After that,
start from the most plausible null hypothesis BF(N) and continue
accepting the null hypotheses as long as (15) is true. After that, reject
all the remaining hypotheses. All genes corresponding to the rejected
hypotheses are declared significant.

The choices of the prior π(r) in (15) are discussed in Section 2.5.

7. Estimate the gene expression profiles by ŝi(t) defined in (16).

3 Evaluations and comparisons

In this section we evaluate the methodology proposed above using simulated
and real data sets. We also carry out its comparison with the recent
competitive methods by Storey et al. (2005) and Tai and Speed (2006).

3.1 Simulations

To investigate the performance of the proposed method, we carried out
a simulation study. We generated data according to the model (4) with
N = 8000, n = 11, kj

i = 2 for all j = 1, . . . , 11 except k2,5,7
i = 3 to mimic the

structure of the real data set described in the next section. We also used the
same time points as in the real data set. We randomly chose 600 “significant”
curves, simulating their profiles according to (3). The other 7400 curves were
set to identical zero. This scenario corresponds to the situation when 7.5 % of
the total number of genes are “differentially expressed”. For each significant
curve, we first sampled the degree of the polynomial Ltrue

i from a discrete
uniform distribution in [1, Lmax]. We avoided polynomials of degree zero since
a nonzero constant signal is questionable from a biological point of view. In
simulations we selected Lmax = 6.

After that, we randomly sampled ci from N (0, σ2τ 2
i Q

−1
i ) where we chose

σ = 0.27, calculated from the real data set. Matrix Qi is set to Qi =
diag(12νi , 22νi, ..., Li

2νi) where νi ∼ U([0, 1]) and τ 2
i was sampled uniformly

in order to produce the signal-to-noise ratio (SNR) in the interval [2, 6],
mimicking both weak and strong signals. The choice of the sampling interval
[0, 1] for the parameter νi was motivated by the belief that biological responses
to the treatment may depend on the particular gene and that the profiles are
continuous or at most differentiable. Note that in the estimation algorithm we
chose a common prior parameter ν. However, our method could be modified
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to allow gene dependent νi, thus paying a price of heavier calculations without
much gain in precision.

We performed simulations with three kinds of i.i.d. noise: normal N(0, σ2)
and Student T with 5 or 3 degrees of freedom, respectively noted T (5) and
T (3). Student noise was rescaled to have the same variance σ2 of the normal
case. In addition, very large values (with a threshold of 5) were filtered out and
substituted with “missing values”, mimicking real data preprocessing where
unrealiable values are eliminated. The number of missing values per gene did
not exceed 5, and at most 8% of the profiles were affected.

For each noise distribution, the simulations were repeated with 30 randomly
generated sets of profiles si. In order to make the results comparable and
independent of the particular choice of functions si, the same sets of functions
were used with all three noise scenarios. For each set of profiles, the experiment
was replicated with 10 different noise realizations. The data were processed
using the methods proposed in cases-1-2-3, and the results were averaged.

Simulations were carried out with various choices of the parameters λ,Lmax

and ν and the results were robust with respect to these choices. For this reason,
Tables 1 and 2 present the results only with Lmax = 6, λ = 9 (corresponding to
an expected degree of about 3) and ν = 0 or ν = 1, respectively. Tables 1 and 2
report the average number of rejected hypotheses (genes declared differentially
expressed) (reje), the average number of the correctly rejected hypotheses
(corr), the False Discovery Rate (FDR), computed as the average proportion
of the falsely rejected hypotheses over the total number of rejected hypotheses,
and the False Negative Rate (FNR), computed as the average proportion of
the significant curves which were not detected over the total number of curves
declared nonsignificant. Results in the two cases are comparable, although a
slightly higher number of curves is usually detected with ν = 1. Simulations
show good performance of the procedure in the case of the normal and the
T(5) noise, and acceptable performance in the case of heavy-tailed T(3) noise.
In addition, the results are robust not only in the number of detected genes but
also in their ranking: the ranks of the top 200-300 significant genes assigned
by the different methods vary at most by a few positions. Moreover, in the
normal and T(5) cases the highly ranked false positives only appear after the
first 450 and 400 positions respectively, while in the T(3) case there are almost
no false positives among the first 300 genes declared significant.

Simulations reported in the paper used the MAP procedure to estimate
the gene-wise degree Li, although there was no remarkable difference when
the same degree was estimated using the posterior mean. Estimation of the
hyper-parameters was carried out as described in Section 2.7. In particular,
σ was estimated by the sample standard deviation averaged over the arrays.
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Table 1: Simulated results for the case Lmax = 6, λ = 9, ν = 0.

N noise T (5) noise T (3) noise
reje corr FDR FNR reje corr FDR FNR reje corr FDR FNR

case-1 488.8 488.8 .00001 .0148 505.0 491.9 .0260 .0144 575.1 502.1 .1270 .0132
case-2-I 483.3 483.3 .00005 .0155 497.4 488.0 .0188 .0149 572.1 504.5 .1182 .0129
case-2-II 485.0 485.0 .00002 .0153 500.7 488.8 .0237 .0148 578.4 501.8 .1325 .0132
case-3 474.6 474.5 .00003 .0167 502.7 481.8 .0416 .0158 621.7 501.3 .1937 .0134

Table 2: Simulated results for the case Lmax = 6, λ = 9, ν = 1.

N noise T (5) noise T (3) noise
reje corr FDR FNR reje corr FDR FNR reje corr FDR FNR

case-1 502.3 502.3 .00004 .0130 514.2 504.7 .0185 .0127 574.3 515.8 .1018 .0113
case-2-I 499.1 499.0 .00011 .0135 511.2 503.7 .0155 .0129 582.4 519.4 .1082 .0109
case-2-II 499.9 499.9 .00004 .0133 513.1 503.1 .0195 .0129 587.6 516.5 .1210 .0113
case-3 491.4 491.4 .00008 .0145 517.6 497.6 .0385 .0137 634.5 516.9 .1854 .0113

In case-2, various strategies to select γ and b were tested, but the tables only
report case-2-I (where we fixed γ = 15 and selected b to make the mean of
the prior IG distribution coincide with the estimated σ̂2) and case-2-II (where
simultaneous estimation of γ and b was performed by the MLE). Note that
although the two cases provide different estimates of γ and b, there was very
little difference in the detection of significant genes. However, case-2-I may
be preferred by an experienced user who wants to use a tuning parameter to
slightly adjust the number of selected genes.

The quality of the selection was also evaluated in terms of functional
errors in estimating the response curves. In Table 3 we show several types
of functional errors associated with our decision, namely

errA = ||si − ŝi||22
/
||si||22

ˆ

is the relative L2 error averaged over the functions si correctly declared
significant and estimated by ŝi;

errB = ||si||22

is the absolute L2 error averaged over false positive functions for which si = 0
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Table 3: Average relative estimation error (errA); Average false positive error
(errB); Average false negative error (errC). Results are obtained with Lmax = 6,
λ = 9, ν = 0.

N noise T (5) noise T (3) noise
errA errB errC errA errB errC errA errB errC

case-1 .07905 .00086 .46856 .08828 .63378 .45311 .10035 .83435 .43564
case-2-I .07792 .00235 .49161 .07898 .29420 .47501 .08428 .32265 .44137
case-2-II .07799 .00087 .48094 .08162 .45795 .46422 .09078 .51321 .43956
case-3 .07590 .00141 .51823 .08126 .26061 .49212 .08821 .32450 .45070

but si is incorrectly declared significant and estimated with ŝi; finally,

errC = ||si||22

is the absolute L2 error averaged over false negative functions which are not
detected as significant in spite of si 6= 0. Note that all three methods for
all three noise scenarios have comparable values of errors errA and errC.
The only exception is errB which is significantly larger when the noise has
heavier tails since in this case it is much easier to confuse noise with signal.
Note also that results of case-2-II are comparable with those of case-1 and are
quite different from those of case-2-I. The reason for this is that the MLE of
parameters γ and b are higher than in case-2-I. Hence, the T-distribution in
case-2-II approximates closely the normal distribution of case-1 and are quite
distant from the T-distribution in case-2-I.

ErrC is comparable for all the methods and represents a sort of detection
limit (in L2-norm), under which the effect of the treatment cannot be detected
by the proposed methods. Figure 1 shows the histograms of errA, errB and
errC computed on data simulated with T(3) noise and processed by our method
(case 1, λ = 9, Lmax = 6 and ν = 0). We have to point out that the histograms
are drawn for the absolutely worst noise scenario when the actual noise has
T(3) distribution and the data is processed as if the noise was Gaussian. In
spite of this, the histograms show that the pdfs of the errors are unimodal,
centered around small values and have thin tails.

3.2 Real data application

We applied the proposed methods to the time-course microarray study
described in Cicatiello et al. (2004) (the data are available on the
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Figure 1: Histograms of the estimation errors, errA, errB and errC computed
with the data simulated with T(3) noise and processed according to case 1,
λ = 9, Lmax = 6, ν = 0.
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Table 4: Average relative estimation error (errA); Average false positive error
(errB); Average false negative error (errC). Results are obtained with Lmax = 6,
λ = 9, ν = 1.

N noise T (5) noise T (3) noise
errA errB errC errA errB errC errA errB errC

case-1 .07536 .00550 .42738 .08300 .71074 .41384 .09344 .90208 .39634
case-2-I .07524 .01141 .45080 .07695 .25375 .43511 .07620 .26662 .40459
case-2-II .07497 .00560 .43933 .07798 .42431 .42401 .08429 .43825 .40088
case-3 .07426 .00894 .47344 .07922 .21030 .45074 .07918 .25972 .41210

GEO repository - http://www.ncbi.nlm.nih.gov/geo/, accession number
GSE1864). The objective of the experiment was to identify genes involved in
the estrogen response in a human breast cancer cell line. Estrogen has a known
role in promoting cell proliferation and thus in cancer development in hormone-
responsive tissues such as breast and ovary. In the original experiment,
ZR-75.1 cells were stimulated with a mitogenic dose of 17β-estradiol, after
5 days of starvation on an hormone-free medium, and samples were taken
after t = 1, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32 hours, with a total of 11 time points
covering the completion of a full mitotic cycle in hormone-stimulated cells.
For each time point at least two replicates were available (three replicates at
t = 2, 8, 16).

From the 8400 genes we first removed the genes that did not pass the image
analysis quality control flag. Then, we filtered out individual spots with low
intensity values in any single channel, red or green (min (log2(R), log2(G)) <
5), or in both channels (log2(R ∗ G) < 11), and replaced the corresponding
values with a missing. Here R (red) and G (green) are the values measured
on the cDNA microarray on the red and green channel, respectively. We also
removed a few spots that showed opposite signs and big difference between
the expression values of replicates at the same time point. After that, a
gene was removed from further investigation if more than 20% of values were
missing. As a result, the total number of analyzed genes was 8161 (among
them about 350 contained at least one missing value). We then normalized
data using the standard lowess normalization procedure with span parameter
0.3 in order to remove various nuisance sources of systematic variation in
the measured fluorescence intensities (e.g. different labeling efficiencies and
scanning properties of the two fluorochromes or suboptimal choice of the
scanning parameters). We refer the reader to Yang et al. (2002) and Cui et al.
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(2002) for a review of normalization procedures for microarrays. We carried
out our procedure with various choices of parameters at the preprocessing stage
but it made very little difference in the approximation and testing results.

We analyzed this data set using the proposed methods and various choices
of the parameters ν and λ. Table 5 shows the number of genes declared
affected by the treatment for Lmax = 6, ν = 0 and λ’s ranging between 6 and
12, corresponding to an expected prior degree of polynomials from 2.5 to 3.5.
Table 5 shows that the results are quite robust with respect to the number
of detected significant genes, with smaller λ providing larger lists (λ > 12
does not provide any noticeable changes in the list). The technique is also
very robust with respect to the list of genes declared significant: 574 genes
were common to all 28 lists (combination of different methods and different
parameter values) while 958 genes have been selected in at least one of the 28
lists. Moreover, we note a very substantial overlap also in any sublist of genes
(for example, for any i, there is an overlap of about 85% in the top i ranked
genes of all lists). Note also that our list of 574 common genes includes 270
genes out of the 344 genes identified as significant in Cicatiello et al. (2004).
Among the remaining 74 genes, 16 were filtered out in our analysis, due to a
more stringent selection in the preprocessing stage, and 58 genes were selected
by our method with some combinations of priors and parameters but not with
all of them. Indeed, the list of 958 contains 309 genes already detected in
Cicatiello et al. (2004). By examining the raw expression profiles, we found
those 58 genes having between weak and very weak responses, compared to
the noise. On the other hand, our list contains 304 genes not detected in
Cicatiello et al. (2004). While looking at the newly selected response curves,
we noticed that the raw data show much more variability between replicates
than the gene profiles selected in Cicatiello et al. (2004). Since the Cicatiello
et al. (2004) analysis was carried out manually, point by point, the data
for those genes was probably considered unreliable and genes were discarded.
However, the functional approach which lies at the core of our method allows
one to estimate the gene profiles with enough precision even with missing or
less reliable individual data points. Figure 2 shows an example of a gene
expression profile selected as significant by both our method and Cicatiello
et al. (2004) and an example of a gene selected by our method but not by
Cicatiello et al. (2004).

Moreover, interestingly, 17 of the 304 newly selected genes were replicate
spots of genes already selected in the Cicatiello et al. (2004). Most of them
are known to be involved in biological processes related to estrogen response,
such as cell cycle and cell proliferation (AREG, NOLC1, cyclin D1), DNA
replication (MCM7, RFC5), mRNA processing (SFRS1) and lipid metabolism
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Figure 2: Gene6485 (TFF1, a well-known target of the estrogen receptor) has
been selected with rank 1 by our method and included in the list of 574 genes
selected by all the 28 combinations. This gene has been detected in Cicatiello
et al. (2004) and by Tai and Speed (2006) and Storey et al. (2005) approaches
as well. Gene6155 (MKI67, a gene involved in cell-cycle control but with a
less clear association with estrogen action in literature) has been selected with
rank 13 by our method and included in the list of 574 genes selected by all the
28 combinations. This gene has not been detected by Cicatiello et. al (2004)
or EDGE (with q-value=0.1), while it has been detected by Tai and Speed
(2006) with rank 2. Results are obtained for case 1, λ = 9, Lmax = 6 and
ν = 0.
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Table 5: Total number of genes in Cicatiello et al. (2004) dataset detected as
significant by our method (with ν = 0 and  Lmax = 6)

λ = 6 λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12
case-1 867 808 753 712 692 688 691
case-2-I 893 823 765 711 679 657 650
case-2-II 869 810 755 714 694 690 693
case-3 855 786 726 676 640 617 609

(APOD and LDHA).
The analysis was also repeated on the same data set using ν = 1 and the

same range of λ’s leading to an expected result of detecting a larger number of
significant genes (since simulation results show that ν = 1 is less conservative).
The difference of about 100 − 200 more genes is not negligible, however, the
genes selected with ν = 0 were all present in the list of ν = 1. Finally, we
also repeated the analysis with different choices at the preprocessing stage (the
size of the span parameter of the lowess method, the cut off on the intensities,
etc.) and we observed that the results are quite robust to these choices with
deviations of only 20 − 40 genes.

3.3 Comparisons with other methods

In order to further evaluate the performance of our method, we compared
it with two recent competitive methods: Storey et al. (2005) and Tai and
Speed (2006). The first method was implemented by the EDGE software
(Leek et al. 2006) while the second by the R-package timecourse. Since all
three methods apply to different experimental designs, account for different
biological information and are valid under different assumptions, we felt that
it would be more fair to compare our method with the others using a real
data set that does not conform to the assumptions in the present paper. For
comparisons, we chose the above mentioned Cicatiello et al. (2004) dataset
since it does not comply with any artificial assumptions. In addition, Cicatiello
et al. (2004) provides a “biology-guided” selection of significant genes that can
be used as a “benchmark” in our comparisons.

We should mention that EDGE was originally designed for the “two-
sample” problem following the methodological paper of Storey et al. (2005)
and afterwards equipped with a special tool to handle the “one-sample”
problem. Tai and Speed (2006) approach applies both on the “one-sample”
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and the “two-sample” problem for classical longitudinal data where replicates
are biologically meaningful.

Since the EDGE software does not automatically account for missing values
but only suggests a preliminary procedure (K-nearest-neighbors) for filling
them in, we repeated the analysis both using this procedure and filtering out
genes with missing values. Additionally, EDGE allows the user to choose the
degree of the splines or the polynomials common to all genes. Hence, similarly
to Table 5, we carried out the analysis with different choices of λ and we
found results were robust with respect to those choices (data not shown). To
estimate the distribution of the statistics under the null hypothesis EDGE
uses a bootstrap approach, thus requiring a high computational effort and
appropriate memory resources. We used 1000 permutations in our comparisons
and we discovered that the gene selections were robust with different random
seeds (only a few different genes). In order to control the multiplicity error,
EDGE uses the q-values, which we chose to be q = 0.05 and q = 0.1 in our
analysis.

The method of Tai and Speed (2006) neither allows missing values nor
suggests a specific procedure for treating them. Moreover, it requires that each
time point has the same number of replicates (different number of replicates
are allowed between different genes). In order to apply the method, we
first filtered out all the genes with missing observations and then discarded
the third observations which was available at time points t = 2, 8, 16. To
be fair, we should mention that the method of Tai and Speed (2006) is
designed for data where replicates are biologically meaningful. Hence, since
Cicatiello et al. (2004) dataset contains only technical (indistinguishable)
replicates, the method of Tai and Speed (2006) could not take advantage of the
replicate identification. On the other hand, the information about the time
measurements is not used by their method. Since the method only provides
rank-ordered list of genes (without any automatic cut off point), we perform
the comparisons taking the top 500 and 1000 genes in their list. Table 6 shows
the number of detected genes with different procedures and the overlap with
the genes detected as significant in Cicatiello et al. (2004).

Table 6 shows that the proposed approach has a noticeably wider overlap
with the “biology guided” selection of significant genes of Cicatiello et al.
(2004). Moreover, most genes selected by EDGE, timecourse and Cicatiello
et al. (2004) were also selected by our method. Indeed, out of the 186 genes
selected by EDGE and declared significant in Cicatiello et al. (2004), 165 were
contained in the list of 574 genes common to all the lists. On the other hand,
only 186 out of 767 genes selected by EDGE were present on the Cicatiello
et al. (2004) list, and among the 500 top-ranked genes by timecourse only
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Table 6: Total number of genes declared affected by the treatment and overlap
with Cicatiello et al. (2004)

Selected genes Overlap
All of the 28 methods in Table 5 574 270
At least one of the 28 methods in Table 5 958 309
Case 1, λ = 9 in Table 5 (default choice) 712 295
EDGE with default choices and q=0.05 767 186
EDGE with default choices and q=0.1 1178 219
Timecourse 500 174
Timecourse 1000 215

174 were detected as significant. Note that out of 174 genes selected by the
R-package timecourse, 166 were present in the list of 574 genes common to all
methods. Finally, 138 genes were common to all selections (Cicatiello et al.
(2004), all versions of our method, EDGE and timecourse).

The comparisons show that in the case of analysis of the Cicatiello et al.
(2004) data, the algorithm proposed above provides results which are much
closer to a “biologist’s choice” and delivers a lower percentage of false positive
and negative answers than the competitive algorithms.

Finally, we carried out a limited simulation study to compare performances
of EDGE, timecourse and our method. To this purpose, with the same
experimental structure and parameters’ choice as in Section 3.1, we generated
data sets with 8000 genes among which 600 or 1500 were significant and with
the same kinds of noise (normal, T (5) and T (3) rescaled to have σ = 0.27).
In order to apply EDGE, missing data were filled in using the K-nearest-
neighbors algorithm. For the timecourse R-package, the records containing
missing values were removed and only the first two replicates were used (note
that at most 19 record were removed from the analysis). Moreover, since
timecourse does not provide an automatic cut off point and only provides a
ranked list, for the sake of comparison we used the same number of significant
genes as in our method. Also, similarly to the case of analysis of Cicatiello
et al. (2004) data set we used EDGE with q = 0.05 and q = 0.1 and our
technique was applied with λ = 9 and normal noise model. The following
tables report the number of rejected genes (reje) and the number of correctly
rejected genes (corr), averaged over 5 simulated data sets. The results show
that our method provides more accurate results than its competitors.
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Table 7: Total number of genes declared significant and the number of correctly
rejected genes (600 significant out of 8000 genes)

Normal T (5) T (3)
reje corr reje corr reje corr

Our method (case 1, λ = 9) 491.6 491.6 497.4 485.0 580.8 506.4
EDGE with q = 0.05 409.8 377.2 416.8 379.0 452.8 403.8
EDGE with q = 0.1 354.2 343.6 359.2 345.4 387.6 372.6
Timecourse 491.6 453.0 495.4 414.2 580.8 453.0

Table 8: Total number of genes declared significant and the number of correctly
rejected genes (1500 significant out of 8000 genes)

Normal T (5) T (3)
reje corr reje corr reje corr

Our method (case 1, λ = 9) 1110 1110 1096 1093 1152 1129
EDGE with q = 0.05 1199 1085 1183 1077 1232 1120
EDGE with q = 0.1 1050 1002 1025 992 1093 1045
Timecourse 1110.4 1099 1096 1025 1132 1076

4 Discussion

In this paper we present a fully Bayesian approach for detecting differentially
expressed genes in a time-course experiment. The proposed method
contributes to the new and increasingly popular research area of the analysis of
time-course microarray data (see Figure 1 of Ernst et al. (2005) for examples
of experiments in which the proposed procedure may be helpful). To the
best of our knowledge, our approach is the first functional fully Bayesian
procedure available in literature for such kind of problem. Our method can
also be complemented with a somewhat similar Bayesian approach for the
cluster analysis of gene profiles proposed by Heard et al. (2006). Indeed,
any clustering procedure may benefit of a preliminary step where differentially
expressed genes are selected.

The Bayesian formulation allows one to explicitly use the prior information
that biologists may provide and successfully deals with various technical
difficulties that arise in microarray time-course experiments such as a small
number of observations, non-uniform sampling intervals, missing or multiple
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data and temporal dependence between observations for each gene. Moreover,
the method can accommodate a wide variety of errors, thus avoiding the
two undesirable extreme cases: treating the error distribution as completely
unknown, which leads to rather expensive computational procedures (as
e.g. in Storey et al. (2005)), or assuming that the errors are normally
distributed, which is unrealistic. As a result, all evaluations are based on
explicit expressions, thus leading to fast and simple computational procedures
that are attractive to a practitioner. In addition, since the computational cost
of the method is relatively small, fine tuning of the prior parameters can be
easily done.

The proposed procedure was evaluated using simulated and real microarray
data provided by Cicatiello et al. (2004), describing the estrogen response in a
human breast cancer cell line. It was also compared to the recent competitive
methods by Storey et al. (2005) and Tai and Speed (2006) using the same
data set and the “biology-guided” selection of significant genes by Cicatiello
et al. (2004). The comparison shows that for the Cicatiello et al. (2004) data,
the proposed algorithm provides results much closer to a “biologist’s choice”
and delivers a lower percentage of false positive and negative answers than
the competitive algorithms. Moreover, application of our technique allows one
to estimate the profiles for those genes with sufficient precision even in the
presence of missing or less reliable individual data points.

In addition, in the course of our study, we detected a number of genes that
resulted strongly affected by the treatment but were discarded in Cicatiello et
al. (2004) because data on those genes were considered unreliable.

The pre-processed data and the Matlab routines used for carrying out
simulations and analysis of real data are available upon request from the first
two authors. A software package BATS that implements the methodology
described in the paper is under preparation.

5 Appendix

5.1 Derivation of p(Li|zi)

Combination of the model and the priors leads to the following joint pdf

p(zi, ci, Li, σ
2) = gλ(Li)ρ(σ2)(2π)−Mi/2σ−Mi exp

{
− (zi−Dici)T (zi−Dici)

2σ2

}
[
π0δ(0, . . . , 0) + (1 − π0)

√
|Qi|

(2πσ2τ2
i )(Li+1)/2 exp

(
−cT

i Qici

2σ2τ2
i

)]
.

(17)
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Using equality

(zi − Dici)
T (zi −Dici) + τ−2

i cT
i Qici =[

ci − (DT
i Di + τ−2

i Qi)
−1DT

i zi

]T
[ci − (DT

i Di + τ−2
i Qi)

−1DT
i zi] + Hi(zi),

where Hi(zi) is defined in (8), we integrate out ci:

p(zi, Li, σ
2) = gλ(Li)ρ(σ2)(2π)−Mi/2σ−Mi [ π0 exp

(
−zi

T zi

2σ2

)
+

(1−π0)[(Li+1)!]ν

(τ2
i )(Li+1)/2

√
|DT

i Di+
Qi
τ2
i

|
exp

(
−Hi(zi)

2σ2

)
] .

(18)

Integrating out σ2 and using definition of F given in (5) we obtain

p(zi, Li) = (2π)−Mi/2 gλ(Li)
[
π0F (Mi, z

T
i zi) + (1 − π0) V (zi, Li,Mi)

]
. (19)

Summing over all possible degrees Li = 0, . . . , Lmax, we derive the marginal
pdf of the data (10). The posterior pdf (11) of the degree Li can be obtained
by dividing (19) by (10).

5.2 Estimation of ci

Plugging an estimate L̂i in (17) and dividing it by gλ(L̂i) we obtain
p(zi, ci, σ

2|L̂i). Integrating out σ2, we derive

p(zi, ci|L̂i) = (2π)−Mi/2
[
π0F (Mi, (zi −Dici)

T (zi − Dici))δ(0, . . . , 0)+
(1−π0)[(L̂i+1)!]ν

(2πτ2
i )(L̂i+1)/2

F (Mi + L̂i + 1, (zi −Dici)
T (zi − Dici) + τ−2

i cT
i Qici) ] .

(20)
Similarly, plugging L̂i in (19) and dividing by gλ(L̂i) we obtain

p(zi|L̂i) = (2π)−Mi/2
[
π0F (Mi, z

T
i zi) + (1 − π0) V (zi, L̂i,Mi)

]
. (21)

Finally we obtain the posterior pdf (12) of ci dividing (20) by (21). The
estimator ĉi of coefficients ci is the mean of the pdf (12).
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