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ABSTRACT 

For critical systems, timely recognition of an anomalous condition immediately starts the 

evaluation process.  For complex systems, isolating the fault to a component or subsystem results 

in corrective action sooner so that undesired consequences may be minimized.  There are many 

unique anomaly detection and fault isolation capabilities available with innovative techniques to 

quickly discover an issue and identify the underlying problems.   

 

This research develops a framework to aid in the selection of appropriate anomaly detection and 

fault isolation technology to augment a given system.  To optimize this process, the framework 

employs a model based systems engineering approach.  Specifically, a SysML model is 

generated that enables a system-level evaluation of alternative detection and isolation techniques, 

and subsequently identifies the preferable application(s) from these technologies 

 

A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space 

Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space 

Launch System rocket).  This system is operated remotely and supports time-critical and highly 

hazardous operations making it a good candidate to augment with this technology.  As the 

process depicted by the framework down-selects to potential applications for consideration, these 

too are tested in their ability to achieve required goals.      
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CHAPTER ONE: INTRODUCTION  

Space operation missions are of a critical nature.  This is due to the large expense associated with 

such missions, many of which have interrelated costs approaching, or exceeding, billions of 

dollars.  In addition, space exploration missions often have small windows with limited chances 

to recover from issues that may occur, and complete the mission successfully.  Once committed 

to a given phase during these missions, opportunities for do-overs are rare.  Adding to this 

criticality is that space operation systems require highly hazardous commodities to propel, power 

and operate the various systems.  This adds a safety factor both for those participating in crewed 

missions as well as those involved in ground processing of the launch vehicle and spacecraft. 

 

These spacecraft are comprised of numerous complex systems.  This includes the equipment that 

makeup the spacecraft used for delivery, and the various payloads and science instruments used 

to meet the research objectives.  Accompanying this complexity will be the assorted 

complications.  As individual components do not always operate as projected, some failures are 

to be expected.  This is further compounded as the system’s complexity increases.  With payload 

costs just recently starting to approach $1000 per pound (a tenth of that experienced by the space 

shuttle) (SpaceX, 2011), designers must still strike a balance between system redundancy, sensor 

allocation and hardware weight.  An absence of redundancy minimizes the options an operator 

has should a failure occur.  A lack of instrumentation limits visibility into system performance.   

 

For many systems, timely recognition of an anomalous situation means the issue gets evaluated 

and a course of action is decided on quickly.  Taking corrective action sooner can help minimize 
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damage generated from off-nominal conditions, or avoid serious outcomes for those problems 

that can escalate rapidly.  The ability to quickly detect and identify anomalies that arise is vital 

for critical space operations.   

Anomaly Detection 

One of the earlier definitions of ‘anomaly’ is that it is an observation that appears to deviate 

markedly from other members of the sample in which it occurs (Grubbs, 1969).  More recent 

definitions conclude that anomalies (or outliers) are patterns in the data that do not conform to a 

well-defined notion of normal behavior (Chandola, Banerjee, & Kumar, 2009).  Anomaly 

detection is a recurring term found within the academic literature and has been applied to a 

variety of fields.  One of these fields, and the one applicable to this topic, includes health 

management of complex systems.  For this research project, anomaly detection will be referred 

to as the ability to uncover abnormalities that arise.  This term is more comprehensive than ‘fault 

detection’ (also common in the literature) as it also includes anomalies generated by 

environmental influences or operational circumstances.   

 

In many cases, space operation systems are predisposed to take advantage of anomaly detection 

applications.  This not only applies to actual space missions that rely on autonomous designs, but 

also includes supporting ground systems.   Do to the hazardous nature of testing and launch 

support environments, many of the ground systems are operated remotely.  As processes 

operating via remote command and control (C&C) rely on (limited) sensor information, anomaly 
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detection capabilities can supplement the flow of useful information to the operators based on 

various techniques used to evaluate the sensor data. 

 

Anomaly detection routinely involves one or more people to monitor the system measurements.  

The primary method of anomaly detection is to bind the sensor data to predetermined limit 

exceptions.  If an excursion from these limits occurs, an operator is alerted who then assesses the 

significance of the exception.  This method is reliant on an operator with sufficient domain 

knowledge to take appropriate action, and subsequently, a large number of experts may be 

employed for complex systems.  Operators too can monitor the data real-time or during post-

operation analysis.  However, with limited display space, it is impractical to have visibility for 

every remote sensor in a complex system.  This is further hindered in that an operator can only 

focus on a smaller subset of displayed data.  Therefore, the operator relies heavily on the 

automated monitoring of the entire sensor array.  This reliance means an operator could benefit 

considerably from an enhanced anomaly detection capability.   

 

The predominant method for developing an anomaly detection system is to select one or more 

applications that may fit one's needs.  The selection process may be limited to what is readily 

available, and a scrub against the system requirements may end up diminished.  After these 

modules are selected, development then starts on a system-level architecture that can integrate 

the various elements into the current design.  As this is a niche application, a certain amount of 

tailoring will be required to render the forthcoming architecture functional.  An application that 
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is not a good fit can amass excessive development hours in an effort to make the system 

operational.  

Fault Isolation 

Detecting an anomaly is the first half of providing the operator with the vital data necessary to 

develop a course of action.  After an anomaly has been detected, the other half of the process 

(and equally important) is to isolate the fault within the system.  Isolation to a component or 

subassembly provides the domain experts with the essential information necessary to respond 

and possibly remedy the situation.  Fault isolation will optimally be able to point to a specific 

source.  However, a lack of sensor information often leads to uncertainty which can result in an 

inadequate diagnosis.  It is often the case that the initial data related to the anomaly is not 

sufficient to pinpoint the original problem, and involve additional troubleshooting to find the 

cause.  This may result in an initial isolation of the problem to an upper subsystem level.  In this 

limited-visibility scenario, it would not be unusual to have multiple suspect subassemblies and/or 

components identified. 

 

In addition to issues related to limited sensor data, system complexity can make the fault 

isolation process arduous.  The task of isolating to a fault entails assessing all possible 

contributors to the problem, each with varying degrees of sensor coverage.  For a complex 

system, these contributors can number into the hundreds and possibly thousands.  A fault that 

yields additional damage compounds the problem as one must differentiate if that damage is 

collateral to a single fault or originating from an entirely different fault source. 



5 

 

Problem Statement 

There are many types of anomaly detection and fault isolation techniques described within the 

academic literature.  Some of these applications are specific to a given system or to a type of 

problem, while others cover a wider spectrum of cases in general context.  In addition, they have 

varying degrees of effectiveness.  Complex systems may require several anomaly detectors and 

fault isolators to provide an adequate discovery capability.  These diverse applications may target 

different areas of a system, or may focus on a specific concern and work independently to 

provide consensus that an anomaly is occurring or the fault source has been determined.    

 

Although a multitude of anomaly detection and fault isolation programs can be found in the 

research literature, there does not appear to be any work published on architectural templates that 

could take advantage of multiple programs and integrate them into the desired systems.  More 

specifically, there is an absence of a methodological process for generating anomaly detection 

and fault isolation designs to either embed within new system concepts, or supplement existing 

schemes. 

Research Objectives 

An architectural framework template is being considered that assists with anomaly detection and 

fault isolation module selection.  Such a framework would consider the user requirements and 

then be able to model the proposed system.  This will enhance the module selection process and 

thereby optimizing the detection/isolation suite.  Such a model will assist the developers when it 

comes time to implement the system.  The primary objectives of this research include: 
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• Develop an architectural framework template using system engineering principles 

that standardizes how users can model a system augmented with detection/isolation 

capabilities   

• Based on architectural analysis, provide a methodology that can determine an 

optimal suite of detectors and isolators that best meet the user requirements. 

• Generate a model that can integrate the detector components into the system and 

provide a basis to directly produce design implementation documentation 

• Verify and validate the model by experimentation using actual space operation 

systems data 

Research Contributions 

The importance of anomaly detection and fault isolation is already valued by those operating 

complex and critical systems.  This is consistent with the amount of work devoted to 

development of these methods and the abundance of techniques that currently exist.  Many of 

these detectors and isolators are developed for specific applications with a very narrow field of 

focus.   

 

The primary contribution of this research effort is realizing a conceptual model that assists users 

in generating anomaly detection and fault isolation schema.  This research should extend the 

contributions of those development efforts by providing a means to organize the 

detectors/isolators for ingestion into the model, and subsequently, acceptance for use should the 
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capabilities meet the desired requirements (or rejection of the detector/isolator should they not).  

The secondary contributions should then include: 

• Couple anomaly detectors and/or fault isolators with unique applications for 

which they were never intended, but could benefit from the underlying detection/isolation 

techniques  

• Improve accuracy in anomaly detection and fault isolation capabilities by pairing 

those deemed optimal for the given environment in which they will operate 

Dissertation Organization 

This chapter provides an introduction to the anomaly detection/fault isolation topic, and how this 

research effort will focus on developing an architectural framework for inclusion of these 

technologies for space operation systems. 

 

Chapter 2 will survey the academic literature for relevant anomaly detection and fault isolation 

technologies.  This review will also encompass system engineering techniques that may support 

development of an architectural framework.  A gap analysis is then performed to determine 

where a need might exist to extend the prevailing level of research. 

 

Chapter 3 will discuss the methodologies and procedures used to conduct the research effort.  

This includes an outline of the research design for the proposed framework, rationale of the 

methodologies used, type and source of the information needed and analysis of the data gathered.  
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Chapter 4 focuses on developing the proposed framework.  This consists of examination of the 

detection/isolation techniques and a means to organize these applications by variables that 

support the architectural design.  System engineering practices will provide the foundation for 

model development.      

 

Chapter 5 will present a space-operations related case study that showcases an implementation of 

the proposed framework.   

 

Chapter 6 centers on the analysis of the case study.  This chapter will also validate the model 

being generated.   

 

Chapter 7 will summarize the research results, provide concluding remarks, and offer 

recommendations for future work. 
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CHAPTER TWO: LITERATURE REVIEW  

Purpose 

To formulate a conceptual architecture addressing anomaly detection and fault isolation, a 

comprehensive literature review was conducted.  The rationale for conducting the review was 

twofold.  First, a thorough review aids in bounding the research problem and directing the path 

forward.  This is accomplished by identifying the existing work, and from that, recognizing 

which areas within the field of study that can benefit from additional inquiry.  These ‘gaps’ 

enable the narrowing of the designated field to either a new study domain or one that extends 

existing research, thus avoiding duplicate efforts that have already taken place.  A gap analysis 

will further assist with differentiating those areas that could benefit from additional study. 

 

The second reason is that a literature review expands insight into the chosen topic.  A review is 

necessary to assess the related prevailing concepts.  More specifically, the review includes 

discovering the various detection/isolation methodologies already developed and understanding 

the variables that make up the different technologies.  Insight is also gained by identifying 

relationships among the applications and realizing different perspectives for implementing within 

diverse systems.  

 

One objective of the review was to identify the current scope of anomaly detection and fault 

isolation applications.  This includes existing technology that may already be in use, conceptual 

designs not yet implemented or paired with a system, or any related emerging technologies.  The 

other review objective was to attain relevant system engineering methodologies that could be 
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used to build an architectural framework that forms a standard model to support future 

implementation.  This chapter surveys the relevant academic literature related to these topics and 

provides a baseline from which advancement by new research can be appraised.  

Anomaly Detectors 

Numerous models are available in both model-based and data-driven classes.  The algorithms 

involved tend to be ‘specialists’ in that they are most effective for selective failure modes and/or 

component types.  Anomaly detection is typically accomplished by a rule or signal-based 

method.  However, data-driven models have found a niche for possible better performance in 

complex, dynamical systems, an important factor for critical systems.   

Data-Driven Models 

One area of anomaly detection that is getting considerable attention involves a data-driven 

approach.  This involves developing a knowledgebase of data depicting normal behavior which 

becomes a baseline set for comparison.  Abnormal behavior is then described as incidents were 

the data behavior diverges from the baseline.  Data-driven models tend to disregard the physics 

behind the data and instead focus on the differences behind the dataset standard and test case 

data.  Hence, an advantage of data-driven models is that the developers do not require domain 

knowledge of the system under study nor do they need to model the system specifics.  Such a 

design allows for distribution across multiple system platforms with little (if any) modification.  

In addition, the requisite system knowledge is captured in the training datasets.  These datasets 

can also be expanded as nominal operational data is collected (D. Iverson et al., 2012).  
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Developing the model will require some system subject matter expert (SME) input to identify 

related subsystem sensor data.  The SME can also characterize the sensors based on criticality.  

This information can be used to adjust sensitivity levels and establishing threshold values.  This 

data-driven method appears to be a simple approach, but does have its challenges as stated below 

by (Chandola et al., 2009): 

• Defining a normal region that encompasses every possible normal behavior is 

very difficult. In addition, the boundary between normal and anomalous behavior is often 

not precise. Thus an anomalous observation that lies close to the boundary can actually 

be normal, and vice versa. 

• In many domains normal behavior keeps evolving and a current notion of normal 

behavior might not be sufficiently representative in the future. 

• The exact notion of an anomaly is different for different application domains. For 

example, in the medical domain a small deviation from normal (e.g., fluctuations in body 

temperature) might be an anomaly, while similar deviation in the stock market domain 

(e.g., fluctuations in the value of a stock) might be considered as normal. Thus applying a 

technique developed in one domain to another, is not straightforward. 

• Availability of labeled data for training/validation of models used by anomaly 

detection techniques is usually a major issue. 

• Often the data contains noise that tends to be similar to the actual anomalies and 

hence is difficult to distinguish and remove. (p. 15:3) 
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For data driven models, the baseline dataset is often referred to as the ‘training’ data.  The 

training data itself has different classifications based on what is known about this dataset.  A 

supervised dataset is one that combines known anomalies with known normal data.  Such a 

dataset is considered labeled accordingly (anomaly and normal).  A semi-supervised dataset 

contains only normal data and an unsupervised data set does not have any labels (Omar, Ngadi, 

& Jebur, 2013).  In many cases, obtaining labeled datasets is not at all practical for complex 

systems.  For anomaly sets, this requires simulating the anomalies to a resolution that closely 

mimics real-world.  Fabricating anomalies such that the issue is fully propagated throughout the 

system can be both a difficult and comprehensive task.  The alternative to simulation is actually 

experiencing the anomaly numerous times.  This (of course) is not the optimal approach to 

developing a training dataset and would only be practical if a hardware failure could be 

simulated without system collateral damage.   

Models/Algorithms 

There is an assortment of algorithms that have been developed and applied to many complex 

system applications.  Due to the longevity of the Space Shuttle program, its unique need for 

anomaly detection capabilities, complexity, and NASA’s inherent goal to support scientific 

research, it has been the subject of numerous studies and testing related to algorithm 

development.  The simplest type of anomaly is classified as a ‘point anomaly.’  This is “an 

instance of the data that has been found to be anomalous with respect to the rest of the data” 

(Gogoi, Bhattacharyya, Borah, & Kalita, 2011).  As this includes the data found with sensor 

arrays under study, the anomaly detection methods will only address this type of anomaly.  In a 
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majority of applications, this is the type of anomaly occurs most often, and a good amount of 

research addresses this issue.  The following list summarizes the various point-type anomaly 

detection methodologies as described by (Chandola et al., 2009).  

• Classification 

o Neural Networks 

o Bayesian Networks 

o Support Vector Machines 

o Rule-Based 

• Nearest Neighbor 

o Kth  Nearest Neighbor (K-NN) 

o Relative Density 

• Clustering 

• Statistical 

o Parametric Techniques 

 Gaussian Model 

 Regression Model 

 Mixture of Parametric Distributions 

o Non-Parametric Techniques 

 Histograms 

 Kernal Function 

• Information Theoretic 

• Spectral 
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All of these techniques will be given consideration for inclusion in the anomaly detection 

architecture.  Using the classifications from the list above, the following sections will review 

some of the anomaly detection research that has already been applied to space operation systems. 

Rule Based 

The primary method currently used for anomaly detection is an exception notification 

methodology which could be considered a derivation of a rule-based practice.  Although 

Chandola et al describe this method as requiring a rule-learning algorithm, due to both the 

criticality and reliance of this methodology, the rules are predesigned and embedded within the 

controlling application.   

 

The rules are quite simple.  Each analog parameter is given an upper and/or lower exception 

limit value that encompasses the nominal range (also called signal-based).  The exception limit 

for a discrete variable is the opposite of its current state.  If an exception to these limits occur, the 

operator is alerted.  Exception limits can be generated to protect either the design or operational 

limits of the system.  As the operational environment changes, limit settings can be widened or 

inhibited so as not to alert on nominal transient responses, and then reset to the newly desired 

limits for that phase of the operation.  Note that transient operations often create ‘blind-spots’ 

while monitoring the system as anomaly detection works best with stable processes.  For 

hazardous, time-critical or hardware-concern issues, exception limits are often used as trigger-
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points to initiate additional rules (i.e. turning off a failed sensor or switching from a primary to a 

secondary system).     

Nearest Neighbor 

The nearest neighbor approach is based on an assumption that related data tends to group in 

dense neighborhoods.  Anomalies are those outliers that are found some distance away from the 

closest neighbor (Chandola et al., 2009).   

 

An anomaly detection method called Orca (Bay & Schwabacher, 2003) uses a nearest neighbor 

based algorithm to determine outliers. To minimize the computational time, it employs a pruning 

technique which allows it to perform in near linear time. Orca calculates a weighted average of 

the Euclidian distance for the numerical values and a Hanning distance for the discrete variables. 

The output from Orca is a distance score which represents the average distance to its k-nearest 

neighbors.  The further away the nearest neighbors, the more anomalous the data correlating to a 

higher score.  Orca has been used to detect anomalies in the Space Shuttle main engines (SSME) 

during both flight and engine test-stand runs  (Abdul-Aziz, Woike, Oza, Matthews, & lekki, 

2011) (M. Schwabacher, Oza, & Matthews, 2009). 

Clustering Algorithms 

In a clustering-based approach to outlier detection, the “key assumption made is that large and 

dense clusters have normal data.  The data which do not belong to any cluster or small clusters 

(low dense clusters) are considered outliers” (Murugavel & Punithavalli, 2011). 
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A data-driven application called Inductive Monitoring System (IMS) is a distance-based 

anomaly detection tool that uses a clustering technique.  The data structure used for distance-

based analysis is a vector of concurrent values from related system parameters.  IMS reads real-

time (or archived) data and formats it into a vector structure.  It then searches the knowledgebase 

of nominal data (training data) and returns the distance between real-time and the nearest 

nominal data vectors (Matthews, Srivastava, Iverson, Beil, & Lane, 2011) (Martin, Schwabacher, 

& Matthews, 2010).  When the real-time data is consistent with nominal, this difference is close 

to zero.  If the data vectors start to diverge, an increase in the vector differences is noted and the 

real-time data is then deemed ‘out-of-family.’  This can be an indication of an anomaly that is 

occurring. 

 

It should be noted that the real-time data is being compared to previous collected empirical data.  

Thus, an out-of-family indication can also reflect a normal condition that was not fully 

characterized within the nominal data sets used to ‘train’ the model.  The IMS application works 

well with unsupervised data which is likely the only type of data available for most large 

complex systems.  Unsupervised means there is an assumption of normalcy, but a potential exists 

that undetected anomalies are embedded within such data sets.  In these cases, IMS could treat 

some anomaly precursors as nominal, requiring even greater vector disparity before getting 

flagged as anomalous.    
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IMS has been used for anomaly detection testing in the Space Shuttle (wings, main engines) and 

ground launch systems.  In addition, it is currently used to monitor Space Station subsystems 

(Matthews et al., 2011).  Reference Figure 1 - Anomaly Detection Process Flow Example for a 

process flow example using a data-driven distance-based anomaly detection model.  

 

Figure 1 - Anomaly Detection Process Flow Example 

 

Neural Network 

A neural network is trained on a nominal reference data set to learn the different normal classes.  

Each test occurrence is then submitted as an input to the neural network.  If accepted, the test 
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instance is deemed normal, and if rejected, anomalous (De Stefano, Sansone, & Vento, 2000) 

(Chandola et al., 2009). 

 

NASA started the Methane Thruster Test-Bed Project (MTTP) as a platform for research of 

plume diagnostics and Integrated System Health Management ISHM. A method to validate the 

sensors was developed using an auto-associative neural network (AANN).  Archived data was 

used to train and test the (AANN) for sensor validation. Sensor faults ranging from hard (loss of 

power or over powered which would drive the sensor off-scale low or high) to soft (indication 

drifts from actual) were artificially injected.  The AANN was able to detect the faults from 

within the pressure sensor data as well as predict the values of the pressure measurement to a 

reasonable degree (Russell, Lecakes, Mandayam, & Jensen, 2011). 

Statistical/Parametric 

A regression analysis for anomaly detection requires that the individual data be fitted to the 

regression model.  The focus is then on the residuals as these represent data that the regression 

model could not explain.  The anomaly score is an accumulation of divergence values of the 

residuals from the model.    

 

A Beacon-based Exception Analysis for Multi-missions (BEAM) tool was developed by the Jet 

Propulsion Laboratory (JPL) to monitor autonomous space systems.  This application was then 

modified to support the monitoring of the Space Shuttle main engines during both flight (real-

time) and post-flight analysis (or post-test for ground testing).  The anomaly detection module 
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for this application is called Dynamical Invariant Anomaly Detector (DIAD).  The DIAD 

element performs a parametric estimate of the residuals based on a single quantitative 

measurement.  It is believed that the ‘dynamical invariants’ are less sensitive to operational 

influences and impacted more by internal changes to the system dynamics (Park et al., 2002). 

 

A method of generating an adaptive anomaly detection threshold using interval models has been 

proposed by (Puig, Quevedo, Escobet, Nejjari, & de las Heras, 2008).  This concept was adapted 

to monitor a propellant ground controlled linear-actuated valve used for rocket engine testing at 

the Stennis Space Center (SSC).  Nominal data was obtained from both the performance and 

simulated operations of the valve under study.  A number of autoregressive moving average 

(ARMA) models are generated so that the valve’s behavior is satisfactorily represented based on 

the control data (this can be a trial-and-error process) (Russell et al., 2011).  The valve’s control 

pressure was adjusted such that the valve could not close completely, thus simulating an 

obstruction which is subsequently detected as a fault by the model.  It should be noted that 

applying this method of simulation, manipulating control parameters to achieve a desired result, 

negates the use of those control outputs for the nominal data set (often, these outputs are 

monitored to determine valve performance).      

One-Class Support Vector Machines 

Support vector machines (SVM) map the input vector into a higher-dimensional feature space 

and then separates the nominal data from anomalous in that feature space (one-class refers to the 

possibility that only normal data is available).  A separating hyper-plane is determined by 
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support vectors (a subset of the training data) rather than the whole training samples and thus is 

extremely robust to outliers. The training and test cases are represented using a kernel function 

that returns the distances between pairs of examples.  The anomaly score reported is the distance 

from the test data point to the hyper-plane as measured in feature space.  One-class SVMs have 

been used to detect anomalies in the SSMEs during both flight and engine test-stand runs 

(Abdul-Aziz et al., 2011) (Omar et al., 2013) (M. Schwabacher et al., 2009). 

Fault Isolators 

With an overabundant number of potential fault sources for a given anomaly, it would be ideal to 

have a model that can automate the fault isolation process.  This provides the capability to 

ascertain each of the possible failure scenarios, and utilize the entire sensor array to evaluate 

each case.  In those instances when multiple fault sources or subsystems are identified, the model 

can rank the potential candidates and present them in order of those deemed ‘most-likely.’  For 

time and safety critical circumstances, the initial system-safe actions can be automated to trigger 

based on the type of fault identified. To accomplish this, the fault isolation algorithm must 

recognize the failure type, locate the failure position and detecting the extent of the failure (Wu, 

2005). 

 

Data-driven detection models are indifferent to the physics behind the sensor data as they devote 

their attention to abnormalities found within the data.  However, fault isolation models require 

system knowledge to accurately pinpoint the source of the fault.  There are cases where data 

observation alone will be able to identify the faulty component.  For instance, an analog sensor 
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with a nominal indication (approximately midscale) goes off-scale low or high in a single sample 

step (an electronically high sample rate is assumed).  Typically, such a rate of change would be a 

physical impossibility for that system.  Therefore, a model could accurately conclude the sensor 

itself has failed.  Conversely, if the sensor indication just starts drifting away from nominal, the 

challenge is then determining if the sensor is reporting system dynamics accurately, or if in fact, 

the sensor is failed.  Note that a sensor is also just one component in a command and control 

system that leads back to an operator.  This requires additional corroborating data combined with 

system knowledge (for both Process and C&C systems).  This highlights that the fault source 

may occur at any point from the C&C work station to the remote system being operated 

(reference Figure 2 - Potential System Fault Sources).  A supervised data-driven model has the 

capability to accomplish this task, but this requires a bank of anomaly classified datasets (a 

method of archiving system knowledge).  As stated earlier in this paper, deriving anomaly 

classification datasets is likely an impractical option for complex systems. 

 

Figure 2 - Potential System Fault Sources 

Local 
C&C 

Processing

Remote 
C&C 

Processing

Commands

Sensor Data

Sensor 
Array System

Control 
Room

Signal Transmission
(RF, Wire, Fiber Optics)

Remote System
(Satellite, Launch Pad, Space Craft)



22 

 

Fault Isolation Models 

 The following is a review of fault isolation research that is being applied to space operation 

systems.  The emphasis is on work that supports large-scale complex systems (vs. isolation at the 

component level or smaller subsystems).  All of these techniques will be given consideration for 

inclusion in the fault isolation portion of the proposed architecture. 

Physics Model 

Physics-based modeling that accurately represents the system can be adapted to perform fault 

isolation duties.  A physics model captures the system knowledge within mathematical formulas 

that define the system.  Therefore, such a model will ‘understand’ the system dynamics to 

include areas not covered by instrumentation, an advantage that overcomes limited sensor 

deployment.  A physics model can be used to simulate a given system, and failures can be 

injected and subsequent outcomes recorded.  The expectation is the model will fully propagate 

the issue throughout the system.  This methodology can be used to develop anomaly cases that 

could support both detection and isolation.  For unknown problems, one can alter the parameters 

of a high-resolution model to match suspect failures until an outcome comparable to the issue 

experienced is obtained.  Physics models are complex and may not be deemed practical for a 

fault isolation application alone.  However, these models have become the norm for assisting 

with the design of new complex systems.  This means much of the computational effort may 

already be accomplished and available for modification and integration into a fault isolation 

environment. 

 



23 

 

NASA is developing a physics based model to simulate the launch pad’s liquid hydrogen 

propellant ground system.  They modify the nominal-run model by simulating faults.  The sensor 

data is collected and archived for use in fault diagnosis applications (Osipov et al., 2011).  A 

modeled-based diagnostic approach to the system is accomplished using a combined qualitative-

quantitative methodology approach per (Mosterman & Biswas, 1999).  As the measured values 

diverged from predicted values, these are compared to qualitative predictions made using the 

system model for fault isolation.  Fault identification is performed using particle filters for joint 

state-parameter estimation (Daigle, Foygel, & Smelyanskiy, 2011). 

 

Expert Systems 

As expert systems are intended to mimic human-reasoning (the predominant method employed to 

identify fault sources), they have been widely used for fault isolation applications.  Expert systems 

are developed using rules based on empirical associations.  Fault diagnosis is a hierarchical process 

carried out in a step-by-step manner with the next step dependent on the results from the previous 

one (Kodavade, 2012).  An expert will reason via a set of rules that leads to a logical chain of 

events.  A fault is detected if a violation of these rules occurs (Marzat, Piet-Lahanier, Damongeot, 

& Walter, 2012).  Table 1 - Expert System Techniques for Fault Detection/Diagnosis (Angeli, 

2010) provides a summary of the pros/cons to the different types of expert systems. 
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Table 1 - Expert System Techniques for Fault Detection/Diagnosis (Angeli, 2010) 

ADVANTAGES DISADVANTAGES 
Rule based diagnostic expert systems 

Rules can be added or removed easily Lack of generality 
Explanation of the reasoning process Poor handling of novel situations 
Induction and Deduction process is easy Inability to represent time-varying and spatially 

varying phenomena 
A process model  is not required Inability to learn from their errors 
Efficiency and effectiveness in  fault detection Difficulties in acquiring knowledge from experts 

reliably 
Development and maintenance is costly 

Model based diagnostic expert systems 
Device independent diagnosis Domain dependent 
Knowledge acquisition is not needed Difficulties in isolation of faults 
Ability of diagnosing incipient faults Knowledgebases very demanding 
Deal with unexpected cases 
Flexibility in the cases of design changes 
Dynamic fault detection 

On-line diagnostic expert systems 
Real time fault diagnosis Domain dependent 
Ability to handle noise Good models are required 
Generalization Require considerable data 
Fast computation Inability to explain the reasoning process 
Ability to handle with dynamics Computationally expensive 

 

 

NASA has developed a rule-based expert system called Spacecraft Health Inference Engine 

(SHINE) to perform system health diagnostic functions.  SHINE uses heuristics to quickly 

isolate possible fault causes and causal-reasoning to analyze the fault and further refine possible 

causes (Straub, 2011).  This system has been used for ground testing of the ARES 1X rocket (M. 

A. Schwabacher et al., 2010a) and the Tactical Satellite-3 (TacSat-3) spacecraft (Mackey, 

Brownston, Castle, & Sweet, 2010). 
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Functional Fault Model  

A functional fault model (FFM) is a term being applied to an application that maps out the 

system in a way that links the inputs/outputs down to specific components.  A commercial 

product being used in several space operation systems is called TEAMS (“Qualtech Systems » 

TEAMS-Designer,” n.d.).  An FFM will identify the Failure Effect Propagation Paths (FEPP) 

from a failure mode back to the sensor that detected the anomaly.  It then uses the archived maps 

to identify the potential failure sources or modes that are consistent with the system response to 

the anomaly (Ferrell, Lewis, Perotti, Oostdyk, & Brown, 2010).    

Anomaly Detection and Fault Isolation 

This paper has reviewed the topics of anomaly detection and fault isolation separately as 

approaches to developing the corresponding models differ substantially.  This is further 

necessitated as the forthcoming architectural framework will have to treat the models 

independently.  It should be noted that the academic literature often combines these two areas of 

study into a single topic.  There is compelling rationale to take this approach as both detection 

and isolation must occur before corrective action(s) take place.  This complexity of complex 

models is the driving force behind the need for an architectural framework that can integrate 

many ‘modules’ that will comprise fault detection and isolation schemes. 

System Engineering Tools 

This research effort is focused on building a framework that enables the current anomaly 

detection and fault isolation technologies.  Such a framework must be capable of integrating a 



26 

 

multitude of potential models to meet user requirements (many still in development).  In 

addition, it shall be readily adaptable so that it can be ‘custom-fitted’ to meet specific mission 

requirements for the various operations it is envisioned to support.  With an assortment of 

models and algorithms available (each with its own unique specialty) and the numerous 

requirements anticipated, a systems engineering approach is deemed the best method to manage 

the complex architecture development.  After an initial survey of the available tools, System 

Modeling Language (SysML) is the application selected to support this research effort 

(“OMGSysML-v1.3-12-06-02.pdf,” n.d.).  A complete specification of SysML can be found in 

(Friedenthal, Moore, & Steiner, 2012a). 

 

Model-based systems engineering supports analysis, specification, design, and verification of the 

system by organizing activities through formalized representations of the system referred to as 

models.  This methodology enhances the quality of the design process, supports reuse of the 

various output components and augments the identification of system impacts should subsequent 

design changes be considered (Friedenthal, Moore, & Steiner, 2012b) (Cressent, David, Idasiak, 

& Kratz, 2010). 

 

SysML is a derivative of the Unified Modeling Language (UML).  UML has become a very 

popular tool used to develop large-scale, complex software applications across multiple 

platforms.  As UML is software-centric, SysML was developed to apply the successful UML 

techniques to the system engineering field in all areas (not just software engineering).  To 

support an application base that includes both hardware (mechanical, fluids, electrical) and 
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software applications, SysML reuses and extends a subset of UML 2.1 constructs (Johnson, 

Kerzhner, Paredis, & Burkhart, 2012, para. 1.1):  

• Extends UML classes into blocks 

• Enables requirements modeling 

• Supports parametric modeling 

• Extends UML dependencies into allocations 

• Reuses and modifies UML activities 

• Extends UML standard ports into flow ports 

 

Utilizing the SysML language, models can be produced that are capable of describing the system 

in detail.  Disciplinary engineers use analytical tools to accomplish design and analysis tasks.  If 

there are times when a study (cost, risk, tradeoff, etc.) requires both system and analytical 

information, this must be manually obtained from each application.  There are system 

engineering tools that bridge this gap and integrate the corresponding information and 

subsequent updates (Kim, Fried, Menegay, Soremekun, & Oster, 2013).  This points out that a 

single system engineering tool may not be sufficient to achieve research goals, and SysML may 

have to be augmented with a compliment of supporting tools. 

 

The European Space Agency (ESA) has a facility called the Concurrent Design Facility (CDF) 

that is a state-of-the-art program in the field of concurrent engineering and system engineering 

research.  The CDF is used to perform feasibility studies for potential future space missions.  

They currently build system engineering models using Excel, and decided to test a model-based 
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system engineering approach using SysML.  The MBSE model was considered applicable to the 

concurrent engineering approach.  They selected a case study on a project called Near Earth 

Exploration Minimum System.  The results of their testing are mixed with complaints about the 

significant amount of time to build the model with too little added value.  However, their final 

conclusion was that SysML modeling should be paired to work in conjunction with their current 

integrated design model as they see potential in this tool as the technology matures (de Lange, 

Guo, & de Koning, 2012).   

 

There is a French program developing a ramjet powered vehicle capable of reaching speeds 

between Mach 4 and 8 (called LEA).  A Failure Modes and Effects Analysis (FMEA) was 

performed on the components that make up the vehicle.  They input the FMEA results into 

SysML identifying all the blocks and parts and establishing the hierarchy between these items.  

Then they mapped each component using ports and connectors.  With several system 

architectures to choose from, the resulting model allowed the final decision to include the failure 

mode of the system (Cressent et al., 2010).  In fault isolation modeling, a FMEA is routinely the 

first document assessed as much of the work in identifying the failure modes and components 

involved is complete.  SysML’s diagraming tools allow for suitable characterization of these 

failures and this technique could be adapted to developing a fault isolation model. 

 

Recognizing the trend in model-based system engineering (MBSE), NASA's Langley Research 

Center initiated a project to test this technique.  They implemented a pilot program to evaluate 

MBSE methodology and centered it on the early phase of the Materials International Space 
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Station Experiment-X (MISSE-X).  MISSE-X is designed to be installed on the exterior of the 

international space station in which experiments reside that “advance the technology readiness of 

materials and devices necessary for future space exploration.”  The goal was to develop a SysML 

model that could capture requirements, behavior, architecture and operating environment of the 

experiment.  The results of the pilot program showed that the investment of effort in MBSE is 

substantial, but one that produced noteworthy returns (Vipavetz, Murphy, & Infeld, 2012). 

Gap Analysis 

A gap analysis on the reviewed literature is essential to determine if a research gap exists, thus 

identifying an area for which additional study is appropriate. The review was structured such that 

the literature cited would best support the research topic.  However, since the goal is to find a 

research area that may benefit from additional study, a lack of conclusive references specific to 

the topic should be expected.  To determine if the documents reviewed are supportive to this 

research effort, certain questions are asked to include: 

• Anomaly Detection/Fault Isolation 

o What is the scope of existing anomaly detection and fault isolation 

applications? 

o Are they specific to an application or more general and used universally? 

o Can anomaly detection techniques be used for fault isolation (and vice-

versa)? 

o Are multiple anomaly detection/fault isolation models presented? 
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 Are the models specific to anomaly detection or fault isolation, or 

are they cross functional? 

 Are these models integrated so that they work collectively? 

o Is there an architecture defined for the model (or multiple models)? 

• System Engineering Tools 

o Which methods/tools are used for framework development? 

o Are there existing applications supporting space operations? 

o Are there existing applications focused on anomaly detection and/or fault 

isolation? 

o  Is there a conceptual detector and/or isolator framework already in-place?  

The literature review concentrated on three areas to include anomaly detection, fault isolation 

and system engineering tools from which to build a model.  During the review, it was found that 

the majority of the anomaly detectors and fault isolators were “specialists.”  These techniques 

often had narrow design functions targeting specific technologies.  Even the data driven 

applications, those that are effective without insight into the physics behind the system, have to 

be fine-tuned to recognize system operational nuances. As this research effort is intended to be 

applicable to complex systems, the use of multiple anomaly detectors and/or fault isolators is 

anticipated to be the norm.  Therefore, it is important that any resulting framework must be able 

to integrate multiple and diverse applications. 

 

The gap analysis commenced by identifying the characteristics that support development of a 

standardized framework for designing anomaly detection/fault isolation systems.   The research 
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literature was then reviewed and documents that met the selected characteristics were identified.  

These characteristics were divided into three separate categories.  The first category simply 

identified the documents as being related to either anomaly detection, fault isolation or research 

that supports framework development, thus matching the three focus areas mentioned above.  

Referenced literature that did not meet one of these characteristics was excluded from the gap 

analysis.  

 

It was not unusual to find research that included both anomaly detection and fault isolation as 

these topics are often combined to meet industrial needs.  However, it should be noted that 

literature involving anomaly detection or fault isolation did not include framework development 

methods for selecting these types of applications.  Nor did any of the framework development 

literature reviewed involve applications specific to anomaly detection or fault isolation content. 

 

The next category centered on the anomaly detection and fault isolation literature.  These 

characteristics first included the class of technology that these detectors/isolators fit as outlined 

earlier in this literature review (reference table 2).  This classification allowed for identifying 

common techniques between the anomaly detection and fault isolation applications.  Another 

characteristic within this group then keyed on whether these works pertained to multiple models, 

and if so, did the research integrate these models together.  This is considered important as the 

eventual detection/isolation system developed will likely be comprised of multiple models.  The 

last characteristic in this category highlighted any of the works that included an architecture 

depicting the models. 
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The third category addresses the system engineering practices for generating a framework that 

standardizes anomaly detection and fault isolation system development.  The first characteristic 

within this category refers to whether the literature includes SysML and/or MBSE techniques for 

system development.  Next it identifies those works where SysML/MBSE has been applied to 

anomaly detection or fault isolation applications.  Finally, it determines if architectural 

development is already occurred these areas.  Reference Table 2 - Gap Analysis Summary for a 

summary of the gap analysis results. 
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Table 2 - Gap Analysis Summary 
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apping

M
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odels
M

odels Integrated

Archetecture Defined
SysM

L/M
BSE

AD and/or FI Application(s)

AD/FI Architecture Defined

Researchers
Abdul-Aziz, et al, 2011 X X X X X
Angeli, 2010 X X
Bay & Schwabacher, 2003 X X
Chandola, et al., 2009 X X X X X X
Cressant, et al., 2010 X X
Daigle, et al., 2011 X X X
De Lange, et al., 2012 X X
De Stefano, et al., 2000 X X
Ferrell, et al., 2010 X X
Gogoi, et al., 2011 X X X X X
Friedenthal, et al., 2012 X X
Iverson, et al., 2012 X X
Johnson, et al., 2012 X X
Kim, et al., 2013 X X
Kodavade & Apte, 2012 X X X
Mackey, et al., 2010 X X X X X
Martin, et al., 2010 X X X X
Mathews, et al., 2011 X X
Marzat, et al., 2011 X X X X
Murugavel & Prunithavalli, 2011 X X X
Omar, et al., 2013 X X X X X
Osipov, et al., 2011 X X
Park, et al., 2001 X X X X
Puig, et al., 2008 X X X
Russell, et al., 2011 X X X X X X X
Schwabacher, et al., 2010 X X X X X X X X
Schwabacher, et al., 2009 X X X X X
Vipavetz, et al., 2012 X X
Wu, 2005 X X X X X
Clark, 2015 X X X X X X X X X X X X X X X X

Category Sys EngAnomoly Detection/Fault Isolation
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Gap Analysis Observations 

The various characteristics have been identified from the literature reviewed and this information 

has been consolidated in table 3.  Inspection of this table shows that ‘gaps’ do appear to exist in 

relation to the research topic.  The following observations summarize areas in which conclusive 

research is absent: 

• The literature involving anomaly detection/fault isolation (AD/FI) did not include 

an architecture as to how these applications should be selected and used.  Those works 

that had the ‘architecture defined’ feature selected (Kodavade & Apte, Schwabacher, et 

al.) only had an upper-level depiction of the architecture specific to the model(s) being 

presented. 

• The SysML/MBSE references did present several instances of applications related 

to space operations processing.  However, none presented methods for developing a 

framework specific to AD/FI applications. 

• There was little research encountered related to integrating multiple models.  

Much of the AD/FI literature was specific to a single application.  Several surveys 

described multiple models (Abdul-Aziz, et al., Chandola, et al., Gogoi, et al. and Omar, et 

al.) but these works did not attempt to integrate the models exhibited.  Park provides an 

overview of an integrated anomaly detection scheme called ‘BEAM,’ but the emphasis of 

the article is on a single module within this system (Park et al., 2002).  Russell and 

Schwabacher both present integrated AD/FI systems (with mixed results), but each uses 

an unique framework (Russell et al., 2011) (M. A. Schwabacher et al., 2010b).  None of 

the literature reviewed provides the methodology for AD/FI application selection.  
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Literature Review Summary 

A survey of the literature was performed on the topics of anomaly detection and fault isolation, 

as well as system engineering tools that could be used to develop a detection/isolation 

framework.  Numerous models are available in both model-based and data-driven classes.  The 

algorithms involved tend to be ‘specialists’ in that they are most effective for selective failure 

modes and/or component types.  Therefore, it is anticipated that a detector/isolator system will be 

comprised of multiple applications so that it is effective on the complex system for which it is 

being designed 

 

The primary method of anomaly detection is an exception-based method.  This method notifies 

an operator if design or operational limits are exceeded.  Data-driven models have found a role in 

complex, dynamical systems, and function by detecting outliers in the data which have not yet 

exceeded predetermined limits.  Such models can disregard the physics behind the system 

allowing for distribution across multiple systems, though detection accuracy is dependent on the 

quality of training data and effectiveness of the scoring-algorithm.  Fault isolation techniques 

tend to be model-based as system knowledge is required to isolate the fault to its source.  

Isolation is a difficult task as systems often lack the requisite sensor data, hence lacking the 

necessary insight for accurate identification.  This difficulty is further compounded by large 

numbers of potential sources to evaluate within complex systems.   

 

An architectural framework that combines these methods is desirable.  A model based system 

engineering tool, SysML, shall be used to evaluate the premise that such a framework is possible.  



36 

 

A descriptive model that can assist with analysis, specification, design and verification of this 

concept is the desired outcome.  

 

A gap analysis was performed on the literature reviewed.  The analysis shows that a gap exists in 

the methodology for selecting anomaly detection and fault isolation applications.  In addition, the 

review was unable to uncover a systematic approach for a selection process using model-based 

system engineering techniques.  This dissertation will pursue this line of research.   
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CHAPTER THREE: RESEARCH METHODOLOGY  

This chapter depicts the methodology used in this dissertation.  It provides a road map towards 

developing a framework that can standardize the selection of anomaly detection and fault 

isolation applications that can best be integrated into a desired system.  This design addresses the 

research gap identified and provides a process by which the research objectives can be realized. 

Methodology 

This research topic originated from an observation that anomaly detection and fault isolation 

applications were selected based more on availability than on ability to meet system needs.  

Initial research was unable to uncover a practice that could assist a user with this selection 

process.  In addition, this preliminary research determined that a significant amount of research 

has been generated related to anomaly detection and fault isolation techniques.  Much of this 

research has not been applied in commercial applications.  This led to the Problem Statement 

described in Chapter 1.  

 

A framework that standardizes this selection process using system engineering principles is the 

goal of this research.  Such a model must be able to pair numerous and unique detection/isolation 

techniques to a variety of applications in a way that maximizes efficiency of the integrated 

system.  Figure 3 - Research Methodology Diagram illustrates how this study will go forward to 

meet this objective.    
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Problem Statement 

The research process starts by first identifying a ‘problem,’ or an area that could benefit from 

additional academic-level research.   In this case, the focus is on anomaly detection and fault 

isolation applications that could be used in space operation systems.  Little research could be 

found on existing architectural templates that could integrate these applications into the 

designated systems.  More specifically, there is an absence of a methodological process for 

generating anomaly detection and fault isolation designs to either embed within new system 

concepts, or supplement existing schemes. 

Research Objectives 

The next step is to generate objectives that will work towards resolving the problem area 

identified.  Achieving these objectives is the goal of this study (and meeting this goal signals that 

the dissertation research effort is complete).  The objectives for this research include: 

• Develop a framework that standardizes how users can augment a system with 

detection/isolation capabilities   

o Framework to use system engineering principles 

o System can be either existing or a new design 

o Framework to provide a means to rank or optimize detectors and 

isolators under consideration 

• Validate the model by experimentation using actual space operation systems data 
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Literature Review 

A comprehensive literature review is performed to survey relevant works that may exist 

addressing the problem identified.  A thorough review aids in bounding the research problem and 

directing the path forward.  A literature review expands insight into the chosen topic, and allows 

for assessing related prevailing concepts.  More specifically, the review includes discovering the 

various detection/isolation methodologies already developed and understanding the variables that 

make up the different technologies.  These applications have been categorized into class-objects 

as this organization will assist with model development.  Insight is also gained by identifying 

relationships among the system applications for which these detectors/isolators are designed to 

support. 

Gap Analysis  

After a literature review is complete and the effort summarized, a gap analysis is performed to 

determine where existing research efforts are lacking.  Research gaps in the designated field are 

an indication that those areas could benefit from additional study.  In this case, conclusive 

references specific to system engineering techniques that support development of a 

detector/isolator framework were not discovered, thus signifying that this topic is deserving of 

further pursuit. 

Synthesis 

Identifying all the pertinent data is the first step in generating a framework.  When an anomaly 

occurs, it is expected to ‘disrupt’ the sensor array thus signaling an operator that the system is 
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diverging from nominal.  A domain expert (or an algorithm) must then ‘interpret’ the deviations 

observed from the instrumentation, and using a logical process of elimination, isolate the 

problem to a specific subsystem or component fault.  At this point, remedial action (if required) 

can be considered.  Therefore, an important relationship exists between the type of anomalies 

that can occur and the availability/arrangement of sensors used to monitor the system.  These are 

the primary dataset sources that will support this research. 

Failure Identification 

As the goal of this research is the enhancement of anomaly detection and fault isolation 

capabilities of complex systems, the potential failures that can occur must be quantified to 

encompass all that can operationally impair the system.  If a ‘Failure Modes and Effects 

Analysis’ (FMEA) has been accomplished on the system, then potential faults may have already 

been identified.  Fault-tree analysis is a technique that can be used to scope the potential failures 

for a component or system.  Each of the fault-tree’s basic or intermediate events denotes a failure 

that can impact the functionality of the top-level item indicated.     

 

Not all failures will impact system performance.  For example, a cabinet that houses system 

instrumentation inside a conditioned room with a broken latch may be considered a benign 

failure.  The same broken-latch cabinet mounted outside may have more ominous consequences 

while operating during inclement weather.  Therefore, failure criticality must be taken into 

consideration when determining those problems that require inclusion.  In addition, some 

potential problems may have an extremely low probability of occurring.  A pipe support tends to 
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be a static structure designed to carry more than its prescribed load.  This precludes having to 

instrument each and every pipe support even though a support failure could result in damage to a 

crucial pipe run.  A risk analysis (criticality vs. probability) can be used to maintain the list of 

potential failures at a manageable level and remain focused on credible issues that threaten 

system performance.     

 

As the path forward in developing this framework is guided by a systems engineering approach, 

defining requirements will be an essential element to this process.  The inventory of failures 

generated by this analysis will lead to a corresponding requirement that states the failure mode 

shall be detected.    

System Monitoring 

The principal limitation in the ability to fully detect/isolate anomalies can be directly correlated 

to the system instrumentation.  Instrumentation must be embedded within the remote hardware it 

is evaluating, and communicate via a C&C subsystem to provide operator feedback.  This is 

costly and makes it impractical to include a sensor for every possible failure mode.  These 

indicators too are susceptible to failure which results in some system degradation (for non-

redundant sensors) as a reduction in visibility occurs.  The first question routinely asked when a 

measurement alarms is, “Did the sensor fail?”  In addition, unwanted actions may occur as 

automated processes may be invoked that are linked to (failed) instrument data. 
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For remote systems, the operator’s ‘view’ is restricted to what the sensor array provides.  The 

instrumentation encompassed within a design will have a specific purpose for its inclusion.  

Typically, it will meet operational requirements for monitoring the system functionality in 

general, as well as supporting various tasks.  These operational requirements will bound the 

measurement to a tolerance range, and induce an alarm should the tolerance be exceeded.  This is 

where the various anomaly detection techniques come into play.  They are not limited to 

monitoring a specific measurement for a specific operational band.  Instead, they look at the 

system or subsystems as a whole and extrapolate information from multiple sensors.  This 

method uses both direct and indirect measurements to infer system health.   

 

Using, for example, a valve that fails to indicate closed after being commanded to that state.  The 

fact that the close switch never went on was a direct indication of that valve’s state.  However, 

this one indicator should not be taken at face value, but treated only as an alarm that something is 

amiss.  A fault tree may show numerous faults that can lead to a valve malfunctioning.  In 

addition to the closed indicator remaining OFF, Table 3 - Valve Fault Scenarios, describes sensor 

feedback that will assist in determining the valve’s current position.  For all three possible states, 

multiple sensors must be evaluated to corroborate that position.  This process is anomaly 

detection.  It is not limited to simply fielding an alarm, but using this alarm combined with other 

indications (both anomalous and nominal) to determine the system’s current state.   
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Table 3 - Valve Fault Scenarios 

Valve Position Sensor Feedback 

Open 
Close Limit Switch Remained OFF (anomalous) 
Open Limit Switch Remained ON (anomalous) 
No changes to immediate upstream/downstream pressures or 
temperatures (anomalous) 

Partially 
Open/Closed 

Close Limit Switch Remained OFF (anomalous) 
Open limit switch goes OFF (valve moved) (nominal) 
Downstream pressure drops some, but not fully (anomalous) 

Closed Close Limit Switch Remained OFF (anomalous) 
Open limit switch goes OFF (valve moved) (nominal) 
Downstream pressure drops completely (nominal) 

 

Fault isolation is the process of using the sensor array to pinpoint the source of the fault to a 

specific component (or base-event on a fault tree).  This too is important as it assists in 

determining the extent of the anomaly’s impact.  If the example valve did in fact close, this 

would imply the close limit switch failed per the fault scenarios above (reference Table 3 - Valve 

Fault Scenarios).  However, if the failure was due to a failed discrete processing card in the C&C 

subsystem, then it may have other implications as these cards typically contain multiple 

indicators.  This requires that all measurements that can provide any insight into an anomaly be 

identified for that anomalous condition.   

Datasets 

Several datasets have been identified to support this research project.  First, all potential 

anomalies must be identified.  This will be accomplished using fault-tree analysis at the 

component level.  A risk analysis will limit the collection of faults by ruling out those deemed 
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non-credible based on probability and criticality of the failure.  Next, all system sensors must be 

described.  These will be cataloged to the type of failure they can detect and subsystem they 

support.     

 

A matrix can be generated that combines these datasets and relates this information at a 

component level.  For each fault, any indicators that can provide awareness to that component 

and supporting subsystems will be listed.  In addition, when multiple measurements are required 

to make a judgment, the matrix must be able to distinguish those sensors that must collaborate 

with others to make a failure determination. 

 

The Space Shuttle program’s Problem Reporting and Compliance Application (PRACA) 

repository contains all non-conformances reported for both the LH2 and LO2 systems.  This will 

be a valuable source of actual issues that can support both model testing and validation.  

Synthetic problems may also need to be generated to account for credible problems not 

encountered during critical Shuttle operations.  

Preliminary Framework Development 

This section focuses on developing a preliminary framework.  This framework begins with the 

data synthesis just described.  In keeping with a systems engineering approach in this research 

effort, a Model-Based System Engineering (MBSE) application will be employed for framework 

development.  This application will meet SysML language standards.  SysML is derived from 

UML in that it has been extended to support both hardware and software development.  An 
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MBSE model has several advantages that support this effort.  First, the ability to make changes 

and analyze the subsequent impact will be beneficial when it comes time to fit the various 

detectors/isolators onto the designated system.  Next, the capability to reuse objects created can 

reduce the overall effort, a process that can be quite tedious for a complex system.  A SysML 

modeling tool enforces the language rules and also provides means for tracking requirements and 

validating the model which are important features for this project. 

 

With a modeling approach selected, initial framework development involves examination of the 

detection/isolation techniques and a means to organize these applications by variables that 

support the framework design.  These applications will be aligned into classes (and sub-classes) 

consistent with the groupings outlined within the literature review.  Each anomaly detection and 

fault isolation class will be labeled by both their capabilities and interface.  The capabilities (or 

behaviors) will be used to determine which requirements they can satisfy, and the interface will 

identify the inputs/outputs for that application.  This preliminary framework will result in 

detection/isolation ‘modules’ that are ready for system inclusion in a model-based environment.    

Case Study 

A space-operations related case study will be presented that showcases the implementation of the 

proposed framework.  In this case, a system to augment with a detector/isolator application is 

necessary.  To meet this need, the cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) 

systems at the Kennedy Space Center (KSC) have been selected.  These systems, located at the 

launch pad, were used to fill the Space Shuttle’s external tank with propellant and oxidizer for 
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the Shuttle’s three main engines (and are slated for use again with the next NASA Space Launch 

System (SLS) program).  Due to the hazardous aspects of these operations, the pad systems are 

operated remotely in a control room located approximately three miles away.  In addition, the 

cryogenic properties of the propellant dictates that loading the Shuttle occurred within hours of 

launch leaving little time to resolve issues that arise in narrow launch windows.  These time-

critical and high-risk operations makes the designated systems good candidates to be ‘outfitted’ 

with anomaly detection and fault isolation enhancements.  

 

This case study involves taking the LH2 system initially and replicating it in an MBSE format.  

A unique approach is planned that models the system not only as it operates nominally, but as a 

system of ‘failures.’  This involves capturing the component states at a given failure mode and 

modeling the subsequent actions (behavior) as an impact to the sensor array.  It is envisioned that 

this method will better enable the detector/isolator selection process.  Being able to match the 

application capabilities directly to failure modes they are designed to detect should facilitate the 

application-system pairing process.  

 

This initial modeling includes identifying those components and assemblies in which 

detection/isolation attributes are desired as these will evolve into requirements.  At this point, the 

anomaly detection and fault isolation modules will be integrated into the model.  The goal here is 

to ensure all potential fault sources are covered and corresponding system requirements are being 

satisfied.  Legacy LH2 system problem data will be available for ingestion into the model while 

developing and testing this case study. 
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Evaluation 

This section centers on the analysis of the case study results.  This includes verifying the 

progressing design to include confirmation that requirements are fulfilled and all system 

interfaces are identified.  During evaluation, a methodology will be developed that optimizes the 

component selection.  By optimal, it will assume a design that meets requirements while 

lessening complexity, and subsequently, the aggregate cost for design, implementation and 

procurement.  This will be accomplished by minimizing the number of detection/isolator 

applications and enabling data sharing via common interfaces.  The advantage to an MBSE 

approach is the capability to insert/remove various components (from both system and/or 

detector/isolator applications) and assess the overall impact on the design.  This is expected to 

ease process development.  Finally, the resultant data will be interpreted, synthesized, and all 

findings uncovered shall be reported.  

Framework 

Testing via the system (and problem data) provided from the case study, evaluation of the results 

and framework development is expected to be an iterative process.  This task will focus on 

capturing this process and will ultimately define the framework.  The initial phase will 

continuously modify the model until a (sufficiently) functional framework emerges.  This will be 

followed by fine-tuning the framework to achieve some optimizing characteristics for the 

selection process.   

 



49 

 

Once the resultant framework is specified, it will be validated.  This will be accomplished by 

using the framework to augment the LO2 system with anomaly detection and fault isolation 

capabilities.  Both real system faults (legacy) and synthetic problems will be used to test the 

model.  This section concludes when a framework can be validated that ideally meets the 

research objectives.    

Conclusion 

The conclusion will summarize the research to include analysis, interpretations, findings, results 

and concluding remarks.  This will also comprise the various accomplishments and their relation 

to the research objectives.  Recommendations will be suggested for future work from either 

related questions raised during the study in areas that may benefit from closer examination, or for 

the next logical path in further developing a standard that integrates anomaly detection and fault 

isolation technologies.  
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CHAPTER FOUR: PRELIMINARY FRAMEWORK 

This chapter proposes a preliminary framework that forms the foundation from which this 

research effort is based.   This framework will describe the principles and procedures used to pair 

anomaly detection and fault isolation (AD/FI) applications to new or existing complex systems.  

This framework involves a multi-stage process as outlined below: 

• Ascertain and scope the system to be augmented 

• Identify and categorize the sensor data available for ingest 

• Identify and categorize the potential system faults 

• Identify and categorize the possible AD/FI applications for consideration 

• Model the system 

• Model the AD/FI techniques 

• Perform MBSE-centered ‘trade studies’ of the various AD/FI techniques 

o Evaluate/analyze those tested 

• Make recommendation(s) 

 

Some of these processes may work in parallel while others have distinct predecessors and/or 

successors.  Reference Figure 4 - Preliminary Framework Process Flow for a process flow 

diagram of the initial framework. 
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System Scope 

The first step is to define the system to be enhanced with AD/FI capabilities and determine the 

scope to which detection is required.  This scope not only includes the breath or boundaries of 

the system, it is also comprised of the level of granularity to which detection abilities are 

applicable.  These boundaries should encompass the system itself, the sensors that provide 
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Figure 4 - Preliminary Framework Process Flow 
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feedback to the operators and the command-and-control subsystems (both reception and transmit 

locales).   

 

The level of detail at which the detection capabilities must function must also be defined.  This 

detail level will be dependent on the system design combined with requirements derived from the 

stakeholders.  Typically, this detail will go to the component level at which a specific element is 

replaced.  However, when the system includes redundant subassemblies or process legs, then 

detection may be required only for this level as the secondary assembly/process may be brought 

online should the primary subsystem fail. 

 

  Scoping the system should also identify AD/FI capabilities that already exist within the system.  

This can avoid unnecessary overlap in cases where existing techniques are robust.  It may also 

identify cases where additional enhancement is required for capabilities that may be 

underprovided. 

Sensor Array 

The sensors are the principal means of providing visibility into the health and status of a remote 

operated system for those monitoring its performance.  This is also the limiting factor in the 

ability to determine if an anomaly is occurring and what is the root cause for that problem.  The 

sensors are designed into the system in positions that communicate key information for specific 

operational scenarios.  For complex systems, it may take many such measurements to provide an 
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adequate status.  Often, system health and status is inferred from a combination of indicators, and 

not necessarily as that specific measurement were originally intended to be used. 

 

As the sensor array provides the view of the system, it is very important to identify all the 

sensors available within the system.  These indicators will determine the detail level scope at 

which the system will be modeled.  There is no need to provide high granularity detail if the 

sensor array does not provide high resolution visibility.  Once the sensors are identified, they 

must then be categorized based on the type of data they provide.  This will include both direct 

and indirect information that can be gathered from these indicators.  This is a key step.  Many of 

the AD/FI techniques are based on their ability to garner bits of information from multiple 

sensors and provide an accurate depiction of the system status. 

Determine Potential Faults 

All potential faults that can adversely impact system performance must be identified.  The 

resulting list will drive requirement development stating that the system shall have the capability 

to detect such faults    This will initially be accomplished using a fault tree analysis approach.  

Fault trees are a graphical method that model component failures and also show how such 

failures can propagate through the system (Ruijters & Stoelinga, 2015).  As the name implies, 

this is a tree structure that identifies basic (circle) and intermediate (rectangle) events that could 

possibly lead to the issue denoted in the top-level block.  These events (or failures) follow a path 

towards this top-level anomaly, and this path is controlled by AND or OR gates.  Reference 
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Figure 5 - Valve Component Fault Tree for a partially developed fault-tree representing a remote 

operated valve).     

 

A systematic approach should be applied to bind the number of potential faults.  Initially, this 

will encompasses all components at the operational level at which they are replaced should a 

failure occur.  However, there may be circumstances when it is not practical to provide detail all 

the way down to the component level.  This could include cases where the component is not that 

critical and its loss will have minor, if any, impact on the system.  In addition, there may be 

redundant process legs that can be completely isolated from one another.  The failure mode in 

this scenario need only be identified to one of the redundant subassemblies.  Finally, the system 
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visibility provided by the sensor array will likely not cover 100% of the system components, thus 

the system design forces a reduction in failure modes for inclusion. 

Fault Reduction from Sensor Capability 

The sensor array will be the primary factor in resolving the failure modes identified by the fault 

tree to those in consideration for the framework.  For those components that have some degree of 

sensor oversight, criticality will be assumed (and assumed non-critical if sensor visibility is 

lacking).  If indicator granularity can only provide insight to a subassembly level, then the 

corresponding failure mode will only be identified to this level. 

 

A ‘Failures vs. Measurements’ table was produced using the fault-tree failures and a hypothetical 

suite of corresponding measurements (reference Table 4 - Failures vs. Instrument Matrix).  This 

table uses a “D” to denote an indicator that directly monitors for a particular failure.  Assuming 

that sensor has not failed, then it is a sufficient data point to ascertain the corresponding failure 

mode as the problem source.  An “I” represents an indirect measurement.  These cannot 

exclusively determine the failure mode and require additional collaboration to reach a 

conclusion.   
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Table 4 - Failures vs. Instrument Matrix 

 

The above matrix (Table 4 - Failures vs. Instrument Matrix) can be used to further reduce the 

number of failure modes.  If a failure mode results in duplicate ‘mode vs. sensor’ allocation, then 

these are candidates for merging into a single problem.  In this case, the instrumentation may 

detect a valve failure, but cannot distinguish between Seat Contamination, Valve Binding, Valve 

Structural Failure or Actuator Structural Failure.   

 

In the process of scaling down potential faults due to sensor limitations, it will not be unusual to 

find gaps in the design that may allow critical processes to fail without detection.  This can be 

related to a design process that focuses on operational requirements.  By performing an analysis 

of the various fault modes, weaknesses in sensor types and distribution may be uncovered.  This 
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is a key point, and one that emphasizes the need to complete the arduous task of identifying the 

majority of the potential faults.  The task of selecting AD/FI should be biased heavily towards 

anomalous conditions and less so towards nominal operations. 

Anomaly Detection/Fault Isolation Applications 

A review of the available AD/FI techniques should be performed to determine which 

applications should be considered for system inclusion.  This will be based on the requirements 

generated that the application is expected to satisfy.  It should not be assumed that a single 

application will suffice.  An ‘all-purpose’ algorithm may give up precision to accommodate a 

broad detection capability while issue-specific methods may provide the needed accuracy, but 

fulfill fewer requirements.  Several factors may be used to prescreen which techniques will be 

applicable for the given circumstance.  These can include: 

• Budget  

o License costs to purchase an existing application 

 Setup costs to ‘customize’ the application for the given 

system 

o Costs to develop a non-commercially available application 

o Maintenance and data gathering to support functionality  

o Hardware platforms/system integration  

• Effectiveness 

o Meets requirements 

o Specific functionality vs. general application 
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o Accuracy 

 Captures all (most) issues 

 Minimal ‘false’ alarms 

 

The AD/FI applications will be addressed as classes that describe how their corresponding 

techniques function.  The framework will make a recommendation at this class level.  Therefore, 

it will be incumbent on the user to determine if commercial applications exist from which to 

select the final product, or if development of a custom application is required.  The following list 

outlines the AD/FI classes that will be developed for this framework. 

• Anomaly Detectors 

o Rule Based 

o Nearest Neighbor 

o Clustering Algorithms  

o Neural Network 

o Statistical/Parametric 

o One-Class Support Vector Machines 

• Fault Isolators 

o Physics Model  

o Expert Systems 

o Fault Map Model 
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Model the System 

Using a model-based system engineering (MBSE) approach, the system will be modeled by 

means of the system modeling language (SysML).  SysML uses a complement of diagrams to 

portray the system graphically for users and stakeholders.  These diagrams provide a ’view’ of a 

portion of that system.  However, there is an underlying structure that connects the various 

diagrams and interrelates with the model elements that are generated.  The package diagrams 

will be used to portray the structure of the model.  When modeling the system, the following list 

highlights fundamental elements that will be used to compose the model.   

• System Structure 

• System Behavior 

• Constraints 

• Requirements 

• Include Existing AD/FI Capabilities 

The SysML diagrams are designed to support model development specific for this functionality.  

These elements are explained in detail in the following sections. 

System Structure 

The system will be modeled by first focusing on the system structure.  The SysML block 

definition diagram (BDD) and internal block diagram (IBD) are used to define the system 

structure.  The fundamental element of structure in SysML is called a block which is used to 

represent systems, subassemblies and components (among other abstractions).  A BDD is used to 

describe the structural schema of a system, and is composed of blocks that show their 
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relationship with other blocks.  A BDD was generated for a ‘remote operated valve’ assembly as 

an example (reference Figure 6 - BDD for Remote Operated Valve Assembly).  This BDD shows 

that the Remote Operated Valve is composed of an Actuator, Valve and open/close Solenoid 

Valves.  The valve is also composed of 1 or 2 limit switches.  

 

An IBD is used to show the internal connections of the parts within a block.  This is used when 

there is a desire to add resolution to the composition of a block.  An IBD was produced 

(reference Figure 7 - IBD/Remote Operated Valve Assembly) that uses the parts that make up 
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Figure 6 - BDD for Remote Operated Valve Assembly 
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the Remote Operated Valve block (per figure 6).  This diagram shows how the various parts 

interface with one another.   The parts include ‘ports’ that reveal some type of media is passed 

between those parts.  In this case, if the open and closed solenoid valves are energized, 750 

pounds per square inch (PSIG) of gaseous nitrogen (GN2) is applied to the actuator’s open side 

while the closed side is vented.  This forces the actuator to move upward which opens the valve 

(connected by valve stem).  

 

System Behavior 

SysML also provides diagrams that depict system behavior to include Activity, Sequence, State 

Machines and Use Cases.  A use case diagram is simply used to show (typically) high level use 

cases that the system may perform.  A sequence diagram shows the interactions among the 

ibd [Block] RemoteOperatedValv e [RemoteOperatedValv e]     

«flowPort» ActClose

«flowPort» ActOpen ValveStem

: Actuator

«flowPort» ActClose

«flowPort» ActOpen ValveStem

: Valve

«flowSpecific...
Pwr_28VDC

«flowSpecific...
Act_750GN2

«flowPort»
SV_Close

«flowPort» PwrVDC

: PriCloseSV

«flowPort»
SV_Close

«flowPort» PwrVDC
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Figure 7 - IBD/Remote Operated Valve Assembly 
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various system elements (or environment) based on ‘messages’ between these elements.  These 

two diagrams will be used in this framework to a lesser degree (if at all).  

  

To model system behavior, this effort will concentrate on capturing that behavior using activity 

and state machine diagrams.  An activity diagram is used to portray behavior over time with an 

emphasis on the flow of matter, energy and data among a set of actions (Delligatti, 2013).  State 

machines focus on event based behavior, and show how the system reacts to an event via state 

changes of the model elements.  These events are often asynchronous which is consistent with 

anomaly occurrence within a system.  State machine diagrams will be used to represent anomaly 

events and the subsequent impact these events have on the system in the form of state changes.  

This is a very important aspect of the modeling effort.  Modeling the failure modes will enable 

the ability to adapt model segments of the AD/FI applications to the system model, and 

subsequently, the ability to test performance of those model sections. 

Constraints 

A parametric diagram is used to express constraints in the form of equations, expressions or rules 

(Holt & Perry, 2013).  This will provide support for analysis in the performance of the AD/FI 

applications being tested.  Violating a constraint is what signals the model that an anomalous 

condition is occurring, thus constraints will be tied closely to the system sensors. 
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Requirements 

A requirements diagram is also provided by the SysML modeling language.  As stated earlier, 

requirements will be generated for those anomalies that the system shall require the capability to 

detect.  The requirements diagram is text based, though it allows one to link requirements to both 

structural and behavioral model elements.  This enhances the traceability between the 

requirement, its implementation and satisfaction. 

Existing AD/FI Capabilities 

When modeling the system, it will be important to identify existing AD/FI capabilities embedded 

within the system.  This will minimize the duplication of capabilities when selecting from the 

various applications, though some overlap will be expected.  Often, these existing capabilities 

will fall short of the desired detection level.  Hence, the need to augment those capabilities with 

additional coverage. 

Model AD/FI Applications 

Similar to modeling the system, the AD/FI applications too must be modeled.  As previously 

stated, a constraint violation will flag the system that an anomaly is occurring.  Therefore, the 

goal in modeling these techniques is to further bind the constraints which results in a higher 

expectation that an exception will occur.  These ’easier’ exceptions should correlate to a quicker 

detection of a problem from a wider range of potential anomalies.  This will be accomplished by 

using the parametric diagrams to capture the application techniques, and then describing these 

techniques in the terms of a system constraint. 
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Trade Studies/Application Evaluations 

Within the SysML literature, it is at times stated that an MBSE approach enables the ability to 

perform trade studies.  However, there is little written that formalizes this process.  This is not 

unusual as SysML does not dictate model methodology, it only specifies the language in the 

form of rules.  The actual model implementation is left to be formed by the user.  

  

As part of the trade study, it is important to evaluate each of the alternatives and quantify the 

value that application can add to the system.  For a complex system, it is unlikely that a ‘one-

size-fits–all’ application will suffice, thus several of the alternatives may be required.  Analysis 

will be required to rank the options.  The goal will be maximizing the effectiveness while 

minimizing the cost (assumed to correlate to the number of applications).  

 

The Object Management Group (OMG), the organization that governs the SysML standard, has 

recognized the necessity of trade studies.  In the current specification for SysML 1.3, the OMG 

includes an Annex for “non-normative extensions” that it may consider for inclusion into the 

language in future versions.  This Annex (D.3) describes the extension of a parametric diagram 

to support trade studies and analysis.  A trade study will be used to evaluate a set of alternative 

AD/FI based on predefined criteria.  An objective function can be used to represent the criteria 

and determine the value of each alternative.  A measure of effectiveness (MOE) will represent a 

parameter with a value that is essential for determining the performance level of the alternative 

applications  (“OMGSysML-v1.3-12-06-02.pdf,” 2012).   
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By extending the SysML language as outlined above, the process of performing the trade study 

and evaluating the alternatives can be accomplished using an MBSE approach.  This effort then 

becomes embedded within the SysML model hierarchy, and subsequently, is available for recall 

if system design artifacts are requested. 

Make Recommendation(s) 

Following the trade study, a list of recommendations should be produced.  These 

recommendations should be consistent with the analysis completed, however they should also 

take into consideration the deficiencies that were observed during this process.  For instance, not 

all of the requirements may have been fully met with the available suite of candidate AD/FI 

applications.  This may drive a modification to the requirement or to the system itself.  It may 

also identify the need for a custom detector/isolator to meet the requirement.  In addition, this 

type of analysis will typically uncover inadequacies in the system design.  This may highlight the 

need for additional sensors to provide added feedback, or it may uncover critical components 

without adequate redundancy.  All such findings should be included in the recommendations. 
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CHAPTER FIVE: CASE STUDY 

This chapter will present a case study to describe the implementation of the anomaly detection 

(AD) and fault isolation (FI) selection framework.  As stated previously, the system under study 

is the liquid hydrogen (LH2) system at the Kennedy Space Center (KSC).  This system is located 

at the launch pads and was used to load both the Apollo and Space Shuttle launch vehicles.  It is 

currently going through a redesign process to support NASA’s next generation Space Launch 

System (SLS) program.   

 

The LH2 system provides the fuel for the launch vehicle’s oxygen/hydrogen engines.  For 

Shuttle, nearly 400,000 gallons of this fuel was loaded into the external tank (ET).  Working with 

LH2 poses many technical challenges.  First, LH2 is a cryogenic fluid at -423 degrees 

Fahrenheit.  This extremely low temperature drives a system design that must be highly insulated 

to minimize the commodity boil-off, and the hardware itself must be able to operate while 

withstanding thermal cycles from ambient to cryogenic temperatures.  As hydrogen is the 

smallest molecule known, it is can prove difficult to keep leak-free within the system, a highly 

desirable feature given that hydrogen is extremely flammable.  Liquid hydrogen also poses risks 

to personnel in that direct exposure will cause severe cryogenic burns, induces asphyxiation if 

released in confined spaces and has a propensity to ignite and/or detonate if large quantities are 

released in air.   

 

These safety concerns, combined with the technical challenges, result in the cryogenic tank 

loading operations being performed remotely with the Pad cleared of all personnel.  The 
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astronauts and support crews do not enter the pad until the initial filling is complete.  At this 

point, only ‘replenish’ loading operations are underway to make up for boil-off losses (over 100 

gallons per minute).  To minimize the boil-off losses, loading operations commence as late as 

possible resulting in a time-critical process.  It is these operationally complex, highly hazardous 

and time-critical characteristics that make this system an ideal candidate to augment with AD/FI 

technology. 

Framework Development 

This case study will follow the proposed framework identified in Chapter 4 for initial system 

model development (reference Figure 8 - Preliminary Framework Process Flow).  As the course 

of developing this case study model is anticipated to be an iterative process, this framework will 

be improved and the implementing details refined as the model matures.  The final framework 

will be presented following analysis in the next chapter. 
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System Scope 

The first step delineated in the proposed framework is to scope the system to be augmented with 

enhanced AD/FI capabilities.  This scope not only includes the breath or boundaries of the 

system, it is also comprised of the level of granularity to which detection abilities are applicable.  

These boundaries should encompass the system itself, the sensors that provide feedback to the 

operators and the command-and-control subsystems (at both reception and transmit locales).   

 

Framework
Process

Scope the 
System

Identify & 
Categorize 

Fault Modes

Identify & 
Categorize 

Sensor Data

Identify & 
Categorize 
AD/FI Apps

Model the 
System

Model the 
AD/FI 

Applications

Perform
AD/FI-System 
Trade Studies

Make 
Recommendations

Figure 8 - Preliminary Framework Process Flow 
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The level of detail at which the detection capabilities must function need also be defined.  This 

detail level will be dependent on the system design combined with requirements derived from the 

stakeholders.  Typically, this detail will go to the component level at which a specific element is 

replaced.  However, when the system includes redundant subassemblies or process legs, then 

detection may be required only for this level as the secondary assembly/process may be brought 

online should the primary subsystem fail. 

 

  Scoping the system should also identify AD/FI capabilities that already exist within the system.  

This can avoid unnecessary overlap in cases where existing techniques are robust.  It may also 

identify cases where additional enhancement is required for capabilities that may be 

underprovided. 

Liquid Hydrogen System 

The LH2 system within the launch pads at KSC was used to fill the fuel portion of the space 

shuttle’s external tank (ET) with nearly 400,000 gallons.  The LH2 was used as the fuel for the 

shuttle’s three main engines.  This same system is planned to support the next generation Space 

Launch System (SLS).  Part of the system resides on the mobile launcher platform (MLP).  The 

shuttle vehicle is mounted on the MLP in the vehicle assembly building (VAB).  The MLP then 

rolls to the pad the LH2 lines are mated at the Pad/MLP interface to ‘complete’ the system.  The 

LH2 system hardware for both the pad and MLP are included in this scope.  The LH2 is stored in 

a vacuum jacketed storage tank with a total capacity of 900,000 gallons.   
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There are three primary hardware subsystems built around this storage tank that enable the 

transfer of LH2 to the flight vehicle.  These include pressurization, transfer and vent systems. In 

addition, a command and control system (C&C) is used to enable remote operations from a safe 

distance.  These subsystems are further detailed as follows. 

Pressurization Subsystem 

As LH2 is a very light liquid (0.591 lbs/gal), and the ET operates at lower pressures, the use of 

pumps to flow the liquid is not necessary.  Instead, the storage tank is pressurized to a nominal 

pressure of 66 PSIG for initial higher-flow operations, and subsequently lowered as the flow rate 

is decreased.  The primary components that comprise this subsystem include a main and 

auxiliary vaporizer (heat exchangers), a variable flow control valve (main) and control valves 

(main & aux).  The vaporizers are supplied LH2 from the tank separate from the cross-country 

transfer lines.  The vaporizer outlets return the gaseous hydrogen (GH2) to the top of the tank 

(reference Figure 9 - LH2 Pressurization System).  LH2 has an expansion ratio of 833:1, so 

vaporization of a relatively small amount of liquid provides an adequate gas volume that is 

compressed to pressurize the tank.  As LH2 has a boiling point below -400 degrees Fahrenheit, 

exposing the liquid to near ambient temperatures will force the evaporation necessary to generate 

tank pressure. 
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Transfer Subsystem 

The transfer subsystem consists of piping that traverses the pad and MLP and connects to the 

flight vehicle via an umbilical.  This piping is dual-walled with a vacuum maintained between 

the piping’s annular-space.  These vacuum-jacketed lines provide the insulation necessary to 

minimize the boil-off of the cryogen LH2.   

 

Figure 9 - LH2 Pressurization System 
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These cross-country transfer lines also include two valve control assemblies.  One valve complex 

is located at the base of the storage tank, and is comprised of several valves that allow both high 

and low flow rates, as well as venting capability.  The other valve complex is located on the ML 

just upstream (when loading) of the vehicle umbilical.  This valve assembly is used in 

conjunction with the pad control system to provide various flow rates during vehicle loading, and 

also supports drain operations should the launch get scrubbed for that day. 

Vent Subsystem 

As hydrogen is highly flammable, the GH2 is not allowed to be vented directly overboard from 

the vehicle during loading operations.  Instead, this vented gas is captured and routed to flare 

stacks for safe disposal.  There are four primary sources of vented GH2 as follows: 

1. The boil-off gas generated from the ET during fill operations. 

2. Within the flight vehicle, a small volume of LH2 is diverted to the engines 

to provide thermal conditioning during the loading operations.  The LH2/GH2 

from this ‘bleed’ flow is captured by the vent system. 

3. The LH2 storage tank (following pressurization). 

4. Each section of the cross-country transfer lines that can be independently 

isolated. 

The vent system includes the isolation valves for all vent sources.  The vehicle sources include 

both vehicle and ground isolation valves (vehicle valves are out-of-scope for this case study).  

The vent system also includes two flare stacks, and corresponding subsystems, that support 

burning the exhaust GH2. 
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Command and Control Subsystem 

The C&C architecture is composed of computer servers (and supporting peripheral equipment) 

within the control rooms that communicate with programmable logic controllers (PLCs) in the 

vicinity of the hardware for which they control.  The operators interface with their system via 

keyboard and display(s).  The PLCs located in the field directly energize/de-energize the 

equipment based on the operator’s (or automated software) commanding.  These PLCs also 

provide instrumentation feedback for monitoring system performance.   

 

As the operation and maintenance of C&C hardware requires a different skill set than those 

performing launch vehicle loading operations, it is classified as a different subsystem from the 

LH2 subsystem under study.  Much of the C&C hardware has health and diagnostic functionality 

built into the architecture, so there are limited opportunities to augment this with additional 

value-added AD/FI technology.  This health is monitored by that subsystem when the control 

room is active.  The C&C system also impacts multiple subsystems making it difficult to limit 

the scope for this analysis.  However, it is imperative that the operators know if they are dealing 

with an issue related to their subsystem hardware as this directly influences the course of action 

going forward.  As the PLCs include numerous command or measurement cards (with less 

‘health’ capability), the PLC control system will be included in this scope. 

Existing AD/FI Capabilities 

Scoping the system includes identifying the current AD/FI capabilities already employed.  This 

information is used to disqualify potential redundant AD applications from consideration, or 
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select AD technologies intended to enhance those existing capabilities.  For the LH2 system 

under review, the primary method of anomaly detection is to bind tolerances to the 

instrumentation.  Should an exceedance occur on one of these sensors, an alarm is generated that 

alerts the operators.  This includes discrete measurements (i.e. position indicators or pressure 

switches) in which case the alarm-state is set to the opposing nominal state.  It also pertains to 

analog measurements in which specific tolerances can be set both above and below a nominal 

range.  There are no fault isolation applications used within the LH2 system.   

 

There are external AD provided by other subsystems that monitor LH2 operations.  As stated 

earlier, much of the C&C subsystem has health detection embedded within the architecture.  Any 

exceptions observed are annunciated over an audio communication network as the ability to field 

an alarm on console may be suspect.  There is also a Hazardous Gas Leak and Fire Detection 

system.  This subsystem monitors all vehicle and ground subsystems operating with hazardous 

commodities.   

Scope Overview 

The LH2 system scope for this case study can be defined as follows: 

• Pressurization subsystem to the component level 

• Transfer subsystem to the component level 

• Vent subsystem to the component level 

• C&C subsystem to PLC end items only 

o Need ability to differentiate between system vs. C&C failure 
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Existing AD/FI capabilities in which duplication is not desired include: 

• Alarm setting on system sensors 

• Health status for C&C processing components 

o Monitored by C&C subsystem 

o Limited health status for C&C end-item components (directly 

interfaces with hardware) 

• Hazardous gas leak and fire detection 

o Monitored and operated by HGLFD subsystem 

Identify and Categorize Fault Modes 

To adequately apply AD/FI techniques on the given system, the potential faults that can have 

detrimental consequences will need to be identified.  There is an assortment of methods available 

to include Failure Modes and Effects Analysis (FMEA) and its extension Failure Mode, Effects, 

and Criticality Analysis (FMECA), Design Review by Failure Mode (DRBFM), Fault Tree 

Analysis (FTA) and its extension Event Tree Analysis (ETA), Hazard & Operability Studies 

(HAZOP), Hazard Analysis and Critical Control Points (HACCP) among others.  The most 

predominant techniques used in industry are FMEA and FTA (Cristea & Constantinescu, 2017).   

Fault Tree Analysis 

Fault tree analysis will be used to identify potential faults for this case study.  Fault trees (FTs) 

offer a graphical breakdown with regard to the hierarchy of failure modes. The base of the tree is 

called the top event and the leaves are called basic events (Adler et al., 2011).  Fault trees use a 



76 

 

top-down methodology that depicts, via a graphical representation, of how an anomaly can 

propagate through the system.  It is this propagation that may stimulate the AD/FI techniques 

employed to detect system anomalies when direct signals may not be available/adequate to alert 

the users, hence the selection of FTA. 

Fault Tree Development 

For complex systems, fault analysis is often accomplished in parallel during the design’s 

development phase.  This aids the designers with identifying critical areas that may require 

fortification, redundancy and/or additional instrumentation for visibility.  For added efficiency, a 

system engineering best-practice would then be to leverage off existing analysis.  To facilitate 

this process, such analysis would optimally be embedded within the SysML model.  The 

following depicts a method to auto-generate FTs based on the SysML model generated (Clark, 

Rabelo, & Yazici, 2017)    

 

SysML uses diagrams to portray the system.  The system’s structure is represented by Block 

Definition Diagrams (BDDs) which are intended to describe the hierarchy of the structural 

elements, or blocks.  A block can represent a single component or an entire system.  Structure is 

further defined by Internal Block Diagrams (IBDs) used to depict the how the elements within a 

block are connected and the type of matter, energy or data that flows between them.  The IBD 

provides an alternate view that can show the ‘usages’ of these blocks.  Specifically, how the parts 

are connected (and the flow that occurs between these parts) that involve the portion of the 

system within the IBD view.  For instance, a valve can be configured to an open or closed 
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position.  For a closed valve, both internal and external leakage may be a concern.  For a valve 

that is open for critical operations, internal leakage would not be a concern.  This detail is 

depicted with IBD views, so concentrating on these diagrams should result in fault associations 

based on the component functions applicable to that subsystem.  This combination of 

connectivity and flow can illustrate how a failure is distributed through a system.  Thus, it is 

conducive to providing the necessary information in developing an FT.   

 

The development of FTs for a complex system is not a trivial task.  Many of the commercial FT 

software packages will support import sheets with component data (beneficial to those with 

existing component lists within their design documentation).  However, identification of the 

relevant failure modes, linkage of components to applicable subsystems and assignment of the 

appropriate ‘gate’ is a manual process.  As most of a system’s individual components will likely 

have multiple failure modes, the number of basic events generated can far exceed the number of 

components.  As with most largely manual efforts, the input may be prone to errors, and 

omission of critical data likely to occur.  Since FTs are a graphical representation of the system, 

they are difficult to condense without undermining the readability advantage from which they are 

based.  Subsequently, traversing large FTs also presents a challenge and can hamper the reviews 

intended to find/remove such errors. 

 

The system design information embedded within an IBD (with minimal model augmentation) is 

used to auto-generate FTs.  The intent is to provide an initial FT that is all-inclusive of the 

components contained within the design, and therefore, minimize the errors and omissions that 
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may occur from manual generation.  This also reduces the effort required by the safety 

engineer(s) as it is easier to modify or prune an existing tree vs. generating one from scratch. It 

should be noted that this method does not preclude the subject matter expert’s (SME) 

involvement.  SME reviews will still be required to identify unique failures, multi-failure modes, 

system-level (non-component) and external failures.   

SysML/FT Abstraction 

As stated earlier, much of the FT development is a manual process.  Although there are 

commercial applications available that can assist with this process, the structure of an FT renders 

it unique and with minimal commonality among the numerous design models supplementing 

development.  Subsequently, there is little overlap of information to be garnered in support of 

generating FTs.  The process for constructing an FT can be summarized as follows: 

• Identify a top event and corresponding intermediate events  

• Scope the system to include all components that can contribute to the failure of 

these events 

• Generate ‘Failure Modes’ at the component level (basic events) 

• Link the events via Boolean gates to form the tree structure 

 

Although a SysML IBD too lacks all the information needed to accomplish the process above, 

much of it can be found embedded within the IBD’s design.  The remaining gaps can be filled by 

extending the SysML model.  An IBD represents a predefined block and graphically shows how 

the parts within that block interconnect (may include the flow of matter, energy or data among 
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these parts).  These blocks can characterize the entire system, the various subsystems, component 

assemblies, components and even the component makeup if that is the level of detail desired by 

the stakeholders.   As is typical for most MBSE methods, the system is first defined at a high-

level.  This broadly defined system is then decomposed into subsystems, an iterative process that 

continues until the desired level of detail is achieved.  Therefore, a developed SysML model will 

contain IBDs that denote the system structure at all levels of the project.   

 

The 1st step in FT auto-generation is identifying the top event, followed by the applicable 

intermediate events.  This is accomplished by simply using the IBD frame title as this should 

accurately reflect the subsystem’s functionality (assuming modeling best-practices employed). 

  

The next step is to scope the system to ensure all applicable components are included.  As the 

IBDs illustrate the system’s design structure, they also define the system scope.  All parts within 

the IBD that have failure modes identified will be included in the FT. 

 

Creditable failure modes must be determined for each component within the IBD.  These modes 

will be used to identify the basic events for the FT.  This is information that is not readily 

available within a SysML project, and therefore must be added to the model.  A block can be 

used to define the various failure modes, though for large projects, the user may want to create a 

specific stereotyped element to represent these modes.  To create the failure modes for the initial 

FT, first categorize the components into common classifications.  For instance, an ‘indicator’ 

class may include pressure transducers, temperature transducers, flowmeters, etc.  For each 



80 

 

component class, list the generic failure modes that applicable to that class.  Generic failure 

modes for a valve-class may include: 

• Valve fails open 

• Valve fails closed  

• Valve position unknown 

• Valve leaks externally 

• Valve leaks internally 

Note too that failure modes may be applicable to multiple component classes (i.e. ‘leaks 

externally’).  Generating component classes results in a much smaller subset of failure modes 

compared to the overall component base.  Subsequently, the SysML model updates to 

accomplish this step are minimal, compared to embedding this information within all the 

component blocks. 

 

The last step for FT development is to link events via Boolean gates to form the tree’s structure.  

Linkage is already established between the top level of the localized FT (IBD title) and the parts 

contained within the IBD.  However, a connection must be made between the components and 

failure modes added to the model.  This can be accomplished by allocating failure modes to their 

corresponding component classes.  SysML specifies the use of ‘allocations’ as a means of 

crosscutting the model and linking (integrating) the various model elements.  An allocation 

simply reflects that if a change occurs to the ‘supplier’ side, a change may be needed on the 

‘client’ side, thus it represents a dependency of the clients to their supplier (“OMGSysML-v1.4-
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15-06-03.pdf,” n.d.).  Allocation also allows for easy selection/deselection of the generic failure 

modes as not all will be applicable in every component instance.  

 

A Boolean gate must also be inserted between each level of events.  NASA’s Fault Tree 

Handbook with Aerospace Applications defines a “state of component” failure as one that is 

localized to a component (all other failures are deemed “state of system”) and that state-of-

component failures should always utilize OR gates (Stamatelatos et al., 2002).  This simplifies 

the gate selection between the components and the failure modes as all will be OR gates.  

However, the gates between the localized top event (likely a subsystem event) and corresponding 

component levels may utilize either an AND or an OR gate.  For instance, both primary and 

secondary valves (redundant flow path) must fail for the system to fail.  This relationship is FT 

modeled with an AND gate.  This needs to be noted as that information is not readily embedded 

within the IBD or within the failure modes added to the model.  Therefore, it needs to be 

addressed to maximize the integrity of the initial FT.  The example that follows provides one 

method to accomplish this before FT auto-generation takes place. 

Example 

This section will provide an example of FT auto-generation.  It uses an IBD that depicts the 

liquid hydrogen (LH2) storage tank pressurization subsystem (reference Figure 10 - 

IBD/LH2StorTankPressSys.  This system pressurizes an LH2 storage tank which enabled LH2 

flow to the Space Shuttle’s external tank.  The last bracketed term in the IBD frame is 

‘LH2StorTankPressSys.’  This is the top-level (subsystem) event for this IBD, and will later be 
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appended with “_Fails” as events should reflect the issue under analysis.  All the parts within this 

IBD will make up the subsequent intermediate levels. 

 

The 1st step in extending the SysML model is to add the generic failure modes.  For this example, 

failure modes have been produced for the component classes applicable to this IBD only.  They 

ibd [block] LH2StorTankPressSys [LH2StorTankPressSys]     

PneuToPneuCntrl: 
CNTRL-Pneu-1

StorTankPress: IND-
Press-6

LH2Storage: TNK-LH2-1

Vaporizer: VAP-1[1..2]

VapOutCheck: 
VLV-Chk-8[1..2]

SigPressIN

MainVapFlowCntrl: 
VLV-Cntrl-1

SigPressIN

MainVapSO: VLV-Pneu-
17

AuxVapCntrl: VLV-
Pneu-18

: GH2

: LH2

«ValueType» LH2
«itemFlow»

«ValueType» GH2
«itemFlow»

«ValueType» LH2
«itemFlow»

«ValueType» Pressure
«itemFlow»

«ValueType» LH2

«itemFlow»

«ValueType» GH2
«itemFlow»

«ValueType» GH2

«itemFlow»

Figure 10 - IBD/LH2StorTankPressSys 
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have been created as blocks and added to a package titled ‘FailureModes’ where they can be 

accessed from the model repository (reference Figure 11 - Model Repository Example). 

 

With inclusion of the failure modes, they can now be allocated to applicable components.  The 

parts within the system where initially generated as ‘blocks.’  However, these blocks can have 

multiple instances within a system, and each of those instances may have different functions.  

When an instance of a component block is used within an IBD, it is categorized as a part- 

Figure 11 - Model Repository Example 
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property.  As the applicable failure modes may differ based on how that part is used, the failure 

modes should be linked to the individual part properties.  This can be done via SysML diagrams 

and the corresponding tool’s drawing features (reference Figure 12 – ‘FailureMode’ to Part 

BDD).   

 

If a stakeholder need for a diagram view of these allocations is not required, then it is 

recommended that a Relationship Matrix be used.  The SysML standard does promote the use of 

matrices, but does not standardized their use.  Therefore, the functionality of matrices can differ 

bdd [package] FaultTreeLinks [FailModeToProp_Vlv]     

«block»
FailureModes::
VlvFailsClosed

VLV_MainVapSO

(from 
LH2StorTankPressSys)

«block»
FailureModes::

VlvLeaksInt

«block»
FailureModes::

VlvLeaksExt

«block»
FailureModes::

VlvPosUnknown

«block»
FailureModes::

VlvFailsOpen

«block»
FailureModes::
VlvFailsPartially

«allocate»«allocate»«allocate»

«allocate» «allocate» «allocate»

Figure 12 – ‘FailureMode’ to Part BDD 
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between the tools.  A matrix enables easy selection/deselection for both individual and multiple 

blocks, and it also captures the IBD structure that is used to generate the FT (reference Figure 13 

- Relationship Matrix).   

 

 

As noted earlier, the IBD does not readily signal which Boolean gate should be used at the 

component level.  This is typically determined by analysis (and SysML is accommodating with 

inclusion of such data).  However, using a matrix from which to build an FT does limit the 

information that can be embedded.  To diminish the need to make such modifications after the 

Figure 13 - Relationship Matrix 
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FT is generated, the following method was employed.  Two ‘AND’ blocks were included in the 

model repository for failure modes.  These blocks are intended to associate any AND conditions 

for the components within that IBD.  It needs to be stated that this usage of blocks does not 

enhance the SysML model (and the element descriptions should be annotated accordingly).  

Lacking a standard that aligns SysML with FT generation, this simply provides a means to 

transfer information for external use.  The IBD contains ‘main’ and ‘auxiliary’ vaporizer control 

valves.  These should be reflected with an AND gate, and the Relationship matrix has been 

annotated accordingly.   

 

The tool used for this example (Sparx’s Enterprise Architect) has the capability to export a 

relationship matrix in a ‘.csv’ format.  The following steps outline the process for building an FT 

from the matrix.  For this example, the ‘.csv’ file was imported into Excel.  A VBA macro was 

written that performs the following steps to auto-generate the FT (OR and AND gates are shown 

textually) (reference Figure 16 - Excel/VBA Generated Partial FT): 

1) Save the .csv file using the IBD name.  Append “_Fails” to the file name and use 

this as the top event. 

a. Place an OR gate below this event 

2) For the next level, add all the components that are not allocated in the matrix to an 

AND block (target).  Append each component name with “_Fails.” 

a. Connect these events to the OR gate from the top level. 

b. Place an OR gate below the component intermediate events. 
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3) If applicable:  For those components intended for AND gates (target), create a 

new intermediate event (remains at the same level as the component OR gates).  Event 

title to be composed of component names, and appended with ‘_Fail.’  

a. Connect the events to the OR gate from the top level. 

b. Place an AND gate below these component events. 

c. Add a new level for those components linked to AND gates.  Append each 

component name with “_Fails.” 

i. Connect these events to the corresponding AND gate(s). 

ii. Place an OR gate below these component events. 

4) For all component events, add a new lower level with the corresponding failure 

modes (source).  

a. Connect these events to the OR gates at the inetermediate level(s).  

b. Place a circle below the failure mode events (denotes a basic event). 

  

  

/
|

|
|
|    / | | | |     \
| | | | | | |
| | | |
|    ⃝ |    ⃝ |    ⃝ |
|
|    ⃝    ⃝    ⃝

/ \
| |

   / | | | |     \    / | | | |     \
| | | | | | | | | | | |

| | | | | |
   ⃝ |    ⃝ |    ⃝ |    ⃝ |    ⃝ |    ⃝ |

   ⃝    ⃝    ⃝    ⃝    ⃝    ⃝

VLV_AuxVap and MainVap_Failed
AND

VlvFailsOpen VlvLeaksExt VlvPosUnknown

VLV_MainVapFlowCntrl_Failed
OR
|
|

VlvFailsClosed VlvFailsPartially VlvLeaksInt

VlvFailsOpen VlvLeaksExt VlvPosUnknown

OR
|
|

VlvFailsClosed VlvFailsPartially VlvLeaksInt

|
|
|

OR
LH2StorTankPressSys2_Failed

|
|

OR
VLV_MainVapSO_Failed

|
\

VlvFailsClosed

VlvFailsOpen

VlvFailsPartially

VlvLeaksExt

VlvLeaksInt

VlvPosUnknown

VLV_AuxVapCntrl_Failed

Figure 14 - Excel/VBA Generated Partial FT 
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As shown in Figure 14 - Excel/VBA Generated Partial FT), an FT can be generated with 

minimal extension of SysML to include the basis events (failure modes) and the structure 

internal to an IBD.  Although there are limitations with the amount of information that can be 

transferred in a matrix, the following lists the advantages of generating FTs directly from the 

SysML model: 

• Minimizes SME assistance for initial FT construction 

o SMEs  develop the IBDs so this expertise is propagated to initial FTs 

o Stakeholder’s IBD design review updates also transmitted to FTs 

• Initial FT all-encompassing (component level) with inclusion of components identified 

within the SysML design 

o It is easier to prune or modify an existing FT than build from   

• Relationship matrix provides an easy method to add/delete prior to FT generation  

• FT organization consistent with SysML model (IBDs) 

o SysML updates transmitted to FTs 

• Linkage between systems and potential failure modes collected in SysML model to 

support other analysis 

Fault Tree Auto-Generation Limitations 

The primary limitation is the depth or layering of the components within the IBD.  With a two-

dimensional matrix from which the data is transferred, capturing multiple levels of sub tiered 

systems and components within the IBD cannot be accomplished for FT development.  Inserting 

multiple levels into an IBD can increase the complexity of that view, and subsequently, be 
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counter-productive to its readability.  Modelers may minimize this practice, but it should not be 

restricted.  For this method to be successful, multi-level IBDs must be further decomposed when 

encountered.  Therefore, implementing this technique has the potential to drive IBD design.  

Identify and Categorize Sensor Data 

The sensors convey the operational status of a remotely controlled system.  As such, a sensor can 

be defined as a component that provides feedback to the operator on the status of the system via 

the command and control architecture.  They are the only means of providing an operator the 

visibility to determine the state of a monitored system.  Therefore, the sensor array is the primary 

mechanism that can restrict and/or enhance the insight into system performance.  System health 

and status is typically derived from sensors directly measuring a specific function, as well as a 

combination of indirect measurements that may have influence over that portion of the 

subsystem.   

 

As the sensor array allows the system to be observed, it is very important to identify all the 

sensors available within the system.  This information will be used to refine the fault tree 

developed for this system as the availability of measurements will influence the granularity of 

the failure modes detected.  If the fault tree has identified failure modes that the existing sensors 

provide limited visibility and cannot reasonably detect, then it is not practical to expect an AD 

system to overcome this deficiency.  However, a couple of insights should be noted.  First, 

supplement AD systems are expected to be ‘smart,’ and perhaps capable of detecting issues with 

limited indications in ways that may not appear obvious to an observer.  Second, if the (limited-
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visibility) failure mode is credible and has potentially serious consequences, then the correct 

course of action may be a sensor modification to the system that facilitates detection of that 

failure mode.  

 

The sensor array will be the primary factor in resolving the failure modes identified by the fault 

tree to those in consideration for the framework.  For those components that have some degree of 

sensor oversight, criticality will be assumed (and assumed non-critical if sensor visibility is 

lacking).  If indicator granularity can only provide insight to a subassembly level, then the 

corresponding failure mode will only be identified to this level.  

 

In the preliminary framework described in chapter 4, a matrix was proposed to identify and 

categorize the sensor array (reference Table 4: Failures vs. Instrument Matrix).  This matrix 

would relate the potential faults to the system’s available measurements.  In addition, the method 

applied would annotate if that measurement was a direct or indirect means of detecting the fault.  

This implementation would initially aid in reducing the potential faults being considered if it 

could be determined adequate instrumentation was not available to uncover those issues. 

 

For this case study, the means to identify and categorize the sensors will instead build upon the 

current model (a systems engineering best practice).  Relationship matrixes are fully available 

within SysML, and can be generated and modified using a matrix format, or graphically within 

the various SysML diagrams.  Furthermore, the auto FT generator technique embedded the 

applicable faults within the model structure making them readily available to associate with other 
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model elements.  The following will leverage off these existing faults to illustrate this 

development task supporting the framework. 

 

When developing a SysML model, a ‘parts list’ is generated in the process of identifying the 

system structure.  This is done by first creating Block Definition Diagrams (BDDs) depicting 

higher level structure, and then decomposing this system structure until the individual 

components are identified.  Building off an accessible list within the model is not only efficient, 

but has the ability to capture additional associations which further develops the underlying 

structure of the model. 

 

In addition to stand-alone instruments added to measure a given part of a system, indicators are 

also embedded within components to provide status for that component.  The most common 

application for this case study are valves that are ‘switched’ to provide feedback to that valve’s 

open, closed or intermediate position.  These indicators can provide discrete data such as a limit-

switches that are placed so that they get ‘depressed’ when a valve reaches a given position (i.e. 

open/closed).  A component may have 1 or more indicators to determine its position (reference 

Figure 15 – BDD of Remote Valve with 1 or 2 Limit Switches).  They can also be potentiometer 

type indicators that provide an analog signal for variable position valves. 
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Figure 15 – BDD of Remote Valve with 1 or 2 Limit Switches 

 

An association between indicators and faults they could potentially detect could be made.  

However, the majority of the indicators will have some degree of detection for most fault modes 

which would result in a matrix that is mostly ‘filled-in.’ In addition, the process of assigning 

indicators to faults could result in leaving out measurements that may have some unique way of 

uncovering an issue.  As this framework is intended to apply new technologies to many systems, 

implementing a method that predetermines which sensors are applicable to which faults can be 
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counterproductive.  Subsequently, a method that readily identifies and categorizes all types of 

measurements will suffice.  

 

For this case study, all stand-alone indicator components are assigned part numbers prefixed with 

“IND_,” and located in an Indicator package (embedded within a Component List package).  A 

BDD was created to organize and show temperature indicators (reference Figure 16 - BDD 

Containing Temperature Indicators).  To categorize the sensors, a package can be created for 

each type of indicator inclusive to that system.  This method provides both a parts list of all 

indicators inclusive to the system as well as a means to quickly find that item within the 

diagrams so that the instrument’s functionality can also be determined.   

 

Figure 16 - BDD Containing Temperature Indicators 

 

The parts list comprised of BDDs will show all the components used within a system, and if 

desired, how many of each of those components are used.  The fault tree development process 

addresses indicator failures.  This section considers the need for associating indicator 
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components to faults that they may detect as proposed within the initial framework.  The goal 

here was to use this information to help bound the number of credible faults to address only 

those for which there is visibility.  As stated above, linking indicators within an IBD to potential 

faults they may detect will likely result in and association for nearly all (if not all) faults-to-

indicators.  As an alternative, the association can be made at the BDD level, but this too could 

produce an outcome of the same result in using the IBDs.  These indicator BDDs will be the 

means for identifying the system sensors and categorizing their attributes.      

Identify and Categorize AD/FI Applications 

The next step in this case study is to identify the AD/FI applications that should be considered 

for implementation.  This pre-selection process should be driven primarily by the project’s 

requirements.  As there are numerous applications and techniques available, a significant amount 

of time can be spent researching all the possibilities which is not necessarily a practical 

approach.  To reduce this effort, AD/FI classes are identified in which the technologies are 

similar.  The onus for testing the various apps belongs to the users/stakeholders, though this 

framework assists with the selection process. 

Requirements 

One of the primary objectives of building a system model is having the ability to generate 

requirements, and then readily track implementation of those requirements through the system’s 

life cycle.  This capability is requisite within the systems engineering discipline, and SysML 

provides this functionality by providing a requirements diagram.  This diagram works with text-
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based requirements in that it can show relationships among the assorted requirements, other 

model elements and external objects (analysis, drawings, etc.) identified within the model.  There 

are various notations available that provide traceability of these relationships.  A requirement 

block (with associations) can also be dropped on other diagrams when it benefits the 

stakeholders to have this visibility and corresponding relationships.   

Mission Statement 

Requirements are typically generated at a higher level, and then broken down into lower level 

requirements as the design takes shape.  For the LH2 system, a Mission Statement is created that 

describes what the system will accomplish.  This statement is parsed to derive the initial upper 

level requirements for the system design.  A requirements diagram is developed titled Mission 

Statement Requirements (reference Figure 17 – Mission Statement/Requirements Diagram).  

This diagram includes requirements ‘contained’ within the mission statement (those linked with 

a plus within a circle in the figure).  These are the higher-level requirements that will be 

decomposed to system level ones that drive the design.  In figure xx, a derived requirement 

necessitating AD/FD capabilities was added subordinate to the ‘Safe Operations’ requirement.   
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Mission Requirements 

With a requirement embedded in the Mission Needs Statement that dictates AD/FI capabilities, 

the mission requirements can now be developed.  These are, for the most part, functional 

requirements in that they qualitatively define what is expected of the AD/FI applications.  These 

requirements will drive the AD/FI technology to apply to the system.  At this point, requirements 

req [package] Mission Needs Statement [Mission Statement Requirements]     

«requirement»
LH2 Transfer System

id = "MS-1.1.2"
text = "Will transfer LH2 from
storage tank to vehicle."

«requirement»
Automate Operations

id = "MS-2.1"
text = "Remote loading
operations are
automated."

«requirement»
Control Room 

id = "MS-2.2"
text = "Remote operations
take place in a control
room."

«requirement»
Remote Operations

id = "MS-2"
text = "Fill operations are
performed remotely."

«requirement»
Safe Operations

id = "MS-3"
text = "System has to operate
safely for both nominal and off-
nominal operations."

«requirement»
Stor Tank Press System

id = "MS-1.1.1"
text = "Storage tank
pressurization will allow for
varying flow rates."

«requirement»
Fill Launch Vehicles

id = "MS-1"
text = "LH2 storage tank used to
fill space launch vehicles."

«requirement»
Flow LH2

id = "MS-1.1"
text = "Ground and vehicle
systems result in back
pressure when trying to load
the vehicle."

The Mission Statement (MS) 
requirements are parsed from the 
Mission Needs Statement. These are 
high-level requirements and form the 
base that directs the system design.

«requirement»
Mission Needs Statement

id = "MS-0"
text = "A mission needs statement will be
developed to describe the higher-level needs for
which a system design will be developed."

«requirement»
Anomaly Detection/Fault 

Isolation

id = "3.1"
text = "Provide anomaly
detection and fault
isolation capabilities"

«requirement»
Vent System

id = "3.2"
text = "Vent system to
provide safe disposal of
hydrogen gas generated
during loading."

«deriveReqt» «deriveReqt»

«deriveReqt»

Figure 17 – Mission Statement/Requirements Diagram 
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can be decomposed that are specific towards covering the desired subsystems.  Note that 

requirements that focus on an explicit scenario may limit the available applications to consider.  

Since there are many technologies available including some that work indirectly with available 

data, the initial mission requirements should address overall AD/FI desires along with the 

operator’s interface.  A Mission Requirements (AD-FI) diagram was generated to collect and 

organize the AD/FI requirements (reference Figure 18 - Mission Requirements).  It is at this level 

that the requirements will be used for selecting the potential AD/FI application(s) for 

consideration.  After the selection process is completed, these requirements can be further 

decomposed to start showing implementation details for the system design. 

 

req [package] Mission Requirements [Mission Requirements AD-FI]     

«requirement»
Anomaly 

Detection/Fault 
Isolation

(from Mission Needs 
Statement)

«requirement»
Provide Anomaly 

Detection Capability

«requirement»
Provide Fault Isolation 

Capability

«requirement»
Have means to notify 
(alarm) the operator

«requirement»
Have a high level of 
detection accuracy

«requirement»
Minimizes false alarms

«requirement»
Provide real-time 

monitoring of system

«requirement»
Have ability to analyze 

post-test data

«requirement»
Have ability to adjust 

sensitivity of detection

«requirement»
Have means to notify the 

operator

«requirement»
List all potential faulty 

components

«requirement»
List in order of fault 

probability

«requirement»
Have ability to limit list 

to most-probable

«requirement»
Minimize cost

«deriveReqt»

«deriveReqt»«deriveReqt»

Figure 18 - Mission Requirements 
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A ‘minimize cost’ requirement was included with the mission requirements.  As cost is always a 

major factor in system design, it is important to include cost factors in the prescreening process.  

A diagram is included that decomposes the cost requirement and provides additional detail as to 

how costs will be controlled (reference Figure 19 - Requirements AD-FI Diagram). 

Effectiveness Requirements 

Effectiveness requirements provide a means to measure the system’s functional capabilities 

against the expectations of the design.  Developing effectiveness AD/FI requirements can be 

quite challenging.  Typically, a requirement is developed to meet a desired objective.  As the 

design takes into consideration the operating environment, an expectation of how the system will 

req [package] Requirements AD-FI [Requirements AD-FI]     

«requirement»
Minimize cost

(from Mission 
Requirements)

«requirement»
Existing Application

«requirement»
Minimal Development

«requirement»
Minimize Number of 

Applications

«requirement»
Minimize Supporting 

Applications

«requirement»
Use Existing Data

«requirement»
Use Existing Hardware

«deriveReqt»

«deriveReqt»«deriveReqt»

Figure 19 - Requirements AD-FI Diagram 
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perform is rendered.  Effectiveness requirements bring about ways to measure this performance.  

The difficulty posed by dealing with anomalies is that systems are not (purposely) designed to 

fail.  Failures can occur for a variety of reasons to include component/material failure, 

operation/environment excursions, design flaws, operator error, etc.  Some failures will have an 

immediate impact on system performance while others may slowly degrade before they reach a 

point that is detrimental to operations.   How a failure propagates thru the system can differ 

based on the severity of the failure and the system configuration supporting the current process.  

Fault trees are used to identify various failure modes, but the same failure may present itself 

entirely different to the operators.  For a complex system, it is unreasonable to wholly catalog the 

number of abnormal conditions that may arise and how the instrumentation will respond with 

certainty for all phases of operations.  This means there are many ‘unknowns’ (which is, of 

course, the rationale for applying AD/FI technology).  Subsequently, trying to measure the 

effectiveness in detecting this unknown can be challenging.  

 

By identifying both functional and cost-related requirements, enough information is provided to 

select which classes of AD/FI applications should be pursued.  These requirements remain high-

level so as not to constrain the initial selection process too tightly.  They are summarized below 

(reference Table 5 – Requirement Summary). 
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AD-FI Initial Selection 

Classes of both AD and FI applications/technology have been previously identified.  These 

classes attempt to group individual techniques utilizing common methodology.  This framework 

Req ID Title Description
AD-1 Provide Anomaly Detection Capability Overall requirement to provide AD capability
AD-1.1 Have means to notify (alarm) the operator Provide a means to notify operator of exceptions (via existing 

C&C architecture or stand-alone system available to operators)
AD-1.2 Have a high level of detection accuracy Have ability to accurately detect issues above existing AD 

capabilities
AD-1.3 Minimizes false alarms Minimizes nuisance-alarms that detract operators from system 

monitoring 
AD-1.4 Have ability to analyze post-test data Have ability to 'playback' data for post-test data reviews
AD-1.4.1 Have ability to adjust sensitivity of detection Have ability to increase the sensitivity of post-test runs so all 

exceptions are addressed (both nominal/off-nominal)
AD-1.5 Provide real-time monitoring of system Provide real-time AD monitoring during operations
FI-1 Provide Fault Isolation Capability Overall requirement to provide FI capability
FI-1.1 Have means to notify the operator Provide a means to notify operator of exceptions (via existing 

C&C architecture or stand-alone system available to operators)
FI-1.2 List all potential faulty components When more than 1 potential source of an issue is possible, list all 

possibilities 
FI-1.2.1 Have ability to limit list to most-probable When listing all possibilities, have the ability to limit what is 

displayed (no scrolling pages)
FI-1.2.2 List in order of fault probability When listing multiple issues, rank in order of probability and 

display in this order
ADFI-1 Minimize cost (AD/FI) Overall requirement to minimize ADFI costs
ADFI-1.1 Minimal Development Minimize overall development related to adding ADFI 

technology
ADFI-1.1.1 Use Existing Data Use existing data already available to support applications (i.e. 

system empirical data, existing models, etc).
ADFI-1.1.2 Use Existing Hardware Use existing system instrumentation and C&C architecture 

(mimimize system modifications)
ADFI-1.2 Existing Application Use existing AD and/or FI applications either commercially 

available or mature in development process
ADFI-1.3 Minimize Number of Applications Minimize the number of aumented applications to meet 

requirements
ADFI-1.3.1 Minimize Supporting Applications Use only existing models or applications necessary to 

supplement ADFI applications

Table 5 – Requirement Summary 
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will first distinguish which classes have the potential to meet requirements, and then focus on 

advancing these.  These classes include: 

• Anomaly Detectors 

o Nearest Neighbor/Clustering Algorithms  

o Neural Network 

o Statistical/Parametric 

o One-Class Support Vector Machines 

• Fault Isolators 

o Physics Model  

o Expert Systems 

o Fault Map Model 

Anomaly Detection 

For AD, there are several existing techniques used for detecting LH2 system problems.  These 

include limit-setting, data plotting, software notifications and system video views.  The use of 

cameras to scan and monitor the physical system provides very limited AD capability.  However, 

they have occasionally detected vapor clouds generated by cryogenic leaks in areas that do not 

have leak detection instrumentation.   

 

Limit-setting allows the operators to set alarms above and/or below analog measurements, as 

well as opposing states for discrete measurements.  Limits can be set on all measurements and 

modified as required when the system transitions to different phases.  This provides an overall 
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level of protection that goes well beyond a small subset of measurements that can be viewed at a 

given time by the operator.  As the alarms are set just inside the operational (or design) 

specifications, they can provide notification prior to an exceedance for issues that do not 

immediately initiate/propagate to unacceptable levels.  This remains the predominant method for 

detecting system anomalies.  The application software for controlling the system has additional 

AD functionality.  Most valves have a design specification that identifies a maximum amount of 

time a valve should cycle to its opposite state when operating nominally.  The software monitors 

all valve cycles, and displays the valve timing.  If this exceeds specified values, and alarm is 

generated. 

 

Another existing AD method is the ability to plot system data real-time (this capability was not 

available in Shuttle until approximately half-way through the program).  Operators could select 

related data and plot these indicators on a single display.  This provided a graphical view of 

performance over time vs. a ‘snapshot’ view provided by system displays.  These plots made it 

easy to spot data trends that started to diverge from ‘nominal.’  This proved to be valuable at 

times as some anomalies could be seen developing long before an alarm was triggered.  This 

provides additional time for an operator to respond which is highly desirable in time-critical and 

hazardous operations. 
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AD Application Rankings 

The AD applications under consideration are all data-driven detection techniques.  This can be 

expected for a couple of reasons.  First, this is an existing system with a mature design.  So 

anomaly detection hardware (additional sensors) should already be embedded within the system.  

There is a cost component to consider as modifying the system can be costly.  Since the existing 

sensor array met the original design requirements, adding additional sensors or detection 

hardware may not be considered unless a potential (and credible) failure mode is uncovered with 

severe consequences.  For this case study, this is also reflected in a cost-related requirement that 

dictates no additional hardware.  Since modifying the system is not typically a viable option, 

then the other option is to focus on the data that the system produces.  This data is relatively 

cheap and readily available.  Based on the literature, researches are finding unique ways to yield 

additional information from this data. 

 

For remote systems, operators monitor displays to ensure indications remain within specified 

parameters.  Not every measurement can be found on a display, and a very limited number of 

displays can be viewed concurrently.  Subsequently, the operator’s overall visibility of the 

system is very restricted.  A limit-setting application compensates for this handicap by 

monitoring all measurements and notifying the operator of exceedances by means of an alarm.  

When data plotting (real-time) became available, operator recognition of deviations from 

nominal trends became more discernible.  This provided a way to detect failures that were 

developing, but had not yet triggered an alarm.  Again, the operator is constrained by a lack of 

visibility into the overall system.  The data-driven models all work to distinguish between 
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nominal and off-nominal data.  Having an application that can monitor a system and detect when 

data points transition from normal-to-anomaly extends this ability beyond the visible plots, just 

as the limit-setting application did for tolerance violations. 

 

The AD functional requirements are intended to provide a higher-level detail as to what is 

desired without overly restricting the potential AD candidate field.  There are a couple of 

requirements (can alarm, adds value over existing AD) that direct general necessities.  There are 

also a couple of performance ones written qualitatively (detection accuracy, minimize false 

alarms).  These may be later be decomposed to provide specific values that the application(s) 

will need to meet.  The remainder of the requirements address specific functions that are sought 

after to support the LH2 system.  These include: 

• Provide real-time monitoring of system  

o The application must be able to function in a real-time environment.  This is a tool 

used to augment AD and should be available when time-critical decisions are 

required.  This can also be difficult to implement if the underlying algorithm has a 

high level of computational complexity.  The LH2 system will have hundreds of 

indicators reporting at a sample rate of 10 per second 

• Have ability to analyze post-test data  

o The application should not only work real-time, but also be able to playback test 

data.  All vehicle loadings require a post-test data review looking for irregular 

events.  This is accomplished while not time-critical.  It should be noted that if the 



105 

 

post test data reviews show nominal operations, that data set then gets added to 

the training data used for subsequent operations 

• Have ability to adjust sensitivity of detection  

o As the application is intended to support both real-time and post-test analysis, it 

should allow for adjusting the sensitivity.  Being able to desensitize the 

application during real-time operations should limit the concern that a high 

number of false alarms will just distract the operators.  Post-test reviews are very 

thorough as they account for every unexpected data point.  A highly sensitive tool 

will better support this effort. 

• Functions in multi-phasing and transient operations 

o Much of the literature uses examples of where a system is operating, perhaps with 

numerous dynamics involved (i.e. rocket engine runs), but it does so in a 

relatively stable operational and/or configuration setting.  This is not the case for 

loading the vehicle with cryogenic fluids.  There are multiple phases to load a 

vehicle and each requires a change in configuration.  When using limit-settings 

and a transition is required, the applicable limits are inhibited.  Once the transition 

is complete, the limits are again activated to the changed levels that support the 

new phase.  The AD application needs to be versatile enough to accommodate the 

various phases.  It is also desirable to monitor the system transients as limit-

setting is inhibited at this time leaving only visual display monitoring for issue 

detection. 
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As budget is often a major factor in determining if a project goes forward, cost requirements are 

needed to ensure investment does not exceed the value-added.  As this technology tends to be 

customized towards user with unique purposes, there are very few commercial applications 

readily available.  Therefore, developing an application to meet requirements is a possibility.  

This also means estimating the project cost is much more difficult as there many unknown 

variables at this point in the life-cycle.  Subsequently, the cost requirements are written such they 

minimize development, implementation and maintenance costs associated with a new 

application.  This is an indirect way of controlling costs associated with the ambiguity 

surrounding new development. 

 

A matrix was developed showing both requirements and AD classes (reference Table 6 - 

Requirement/AD-Class Matrix).  This uses a simple scoring system to rank the AD classes.  It 

does give partial credit if it is known that at least some of the requirement can be satisfied or if it 

is unknown if it can be satisfied at all.  This is intended to lower the scores for those classes that 

require additional research without ruling them out completely by scoring ‘does not meet.’  The 

requirement/AD-class were scored as follows: 

• 0=Does Not Meet Requirement 

• 1=Partially Meets Requirement or Unknown 

• 2=Meets Requirement 
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Within the functional requirements, the applications scored very closely.  As these are all data-

driven techniques, this is not unexpected.  The basic difference between the classes is how they 

determine data is normal or anomalous.  Therefore, the ability to meet functional requirements 

should be similar.  For the performance related requirements, it is unknown if they can be met so 

Title

Nearest Neighbor/Clustering 

Neural Netw
ork

Statistical/Param
etric

One-Class SVM
s

Have means to notify (alarm) the operator 2 2 2 2
Have a high level of detection accuracy 1 1 1 1
Minimizes false alarms 1 1 1 1
Have ability to analyze post-test data 2 2 2 2
Provide real-time monitoring of system 2 1 1 1
Have ability to adjust sensitivity of detection 2 2 2 2
Functions in multi-phasing and transient ops 1 1 1 1
Adds value above existing AD capabilities 1 1 1 1

Totals: 12 11 11 11

Minimal Development 2 1 1 1
Uses Existing Data 2 2 2 2
Uses Existing Hardware 2 2 2 2
Existing Application 2 1 1 1
Minimize Number of Applications 1 1 1 1
Minimize Supporting Applications 1 1 1 1

Totals: 10 8 8 8
Grand Totals: 22 19 19 19

Minimize Cost (AD/FI)

Provide Anomaly Detection Capability

Table 6 - Requirement/AD-Class Matrix 
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these too are comparably scored.  However, there is an exception within the Nearest-

Neighbor/Clustering class.  NASA has developed an AD application called Inductive Monitoring 

System (IMS) (“Inductive Monitoring System,” n.d.).  They have licensed this technology on a 

non-exclusive basis in that it will be made available for use in NASA applications.  As this 

application is being used in industry and supporting real-time applications, it will be assumed it 

can meet the real-time requirement.  Although the literature is generally favorable in the 

detection capabilities for all the AD classes, these were specific cases that are not necessarily 

common to the LH2 system.  Subsequently, requirements related to detection skills are rated 

‘unknown.’ 

 

As IMS is an existing application ready to adapt to a given system, it will require less 

development as the core algorithm is already functional.  This advantage gives the Nearest-

Neighbor/Clustering class a favorable ranking for the cost related requirements.  Therefore, a 

down-selection will be made at this time to pursue a Clustering application.  However, as the 

ability of this application to function well within the LH2 system remains unknown, further 

analysis will be required. 

FI Application Rankings 

There are three classes identified related to FI.  The first is a physics model.  It is presumed that 

the model can mimic system operations, and if the system goes off-nominal, the model can be 

adapted to determine why.  The second method involves an expert system.  Such a system 

involves developing a knowledgebase, and then uses this information to follow a path that leads 
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to the root cause of the issue.  It does this by incrementally performing a series of tests.  The 

result of each test determines which test is next applied.  The third class is termed a fault map 

model.  This technique also develops a knowledgebase that maps the individual failures to the 

sensors used to detect that failure. 

 

A complex system will have a very large number of potential failures.  Often, a failure will 

propagate through the system further disrupting performance and possibly creating additional 

failures.  As this propagation is dependent on system configuration, and this often changes for 

the LH2 system, it is not easily predictable.  With a large number of potential failures, 

propagation unpredictability and a sensor array that provides a limited view of the system, 

isolating the issue to a specific component cannot always be accomplished during remote 

operations.  Therefore, an FI application should be able to list multiple possible failure modes. 

 

The LH2 system is composed of approximately 2,500 labeled components (this does not include 

piping, wiring, fittings structural components that also comprise the system).  As shown during 

fault tree development, each component can have multiple failures.  As each of the FI classes 

under consideration need this information to function, generating the applicable knowledgebase 

will be labor intense.  In addition, relating these failures (and propagation) to the instrumentation 

that detects them requires system expert knowledge.   

 

The FI functional requirements are intended to provide a higher-level detail as to what is desired 

without restricting options as with the AD functional requirements.  These requirements include: 
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• Have means to notify the operator 

o The application needs to display results to the operator.  This can be an automated 

report (triggered from an alarm) or a manual request by the operator.  This 

application can run embedded within the existing C&C architecture, or from a 

standalone platform. 

• List all potential faulty components 

o As it is unlikely that an FI application will be able to settle on a definitive 

problem, all suspect issues should be displayed to the operators.   

• Have ability to limit list to most-probable 

o When displaying multiple issues, the operator should have the means to limit the 

displayed items.  This protects against a failure (i.e. major C&C component) that 

can generate hundreds of alarms, and subsequently, hundreds of potential faults 

(limits scrolling pages). 

• List in order of fault probability 

o When displaying multiple issues, order the list so that ‘most-likely’ items are 

shown first.  This requires a means to assign a probability score to the possible 

fault causes. 
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The cost-related requirements used for AD ranking were developed to minimize development 

costs, and these same requirements apply to the FI applications.  A matrix was generated to rank 

the FI classes using the same 0-2 scoring method (reference Table 7 - Requirement/IF-Class 

Matrix). 

 

The FI classes scored closely for the functional requirements with the only advantage given to 

Fault Map Models.  There is an existing application called TEAMS-RT that has been tested in 

other NASA applications (“TEAMS-RT,” n.d.).  This model does have the ability to rank the 

suspect faults detected.  It is unknown if the other classes can include this feature. 

Title
Phsics M

odel
Expert System
Fault M

ap M
odel

Have means to notify the operator 2 2 2
List all potential faulty components 1 1 1
Have ability to limit list to most-probable 2 2 2
List in order of fault probability 1 1 2

Totals: 6 6 7

Minimal Development 1 1 1
Uses Existing Data 2 2 2
Uses Existing Hardware 2 2 2
Existing Application 1 1 2
Minimize Number of Applications 1 1 1
Minimize Supporting Applications 0 1 1

Totals: 7 8 9
Grand Totals: 13 14 16

Provide Fault Isolation Capability

Minimize Cost (AD/FI)

Table 7 - Requirement/IF-Class Matrix 
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For the cost-related requirements, a physics model by itself cannot provide fault isolation.  As 

the LH2 system under study does not have an existing physics model, a supporting model must 

be generated to provide this capability.  Therefore, this class did not meet the ‘minimize 

supporting applications’ requirement.  The Fault Map Model class had a slight advantage over 

Expert Systems in that a commercial application is available (and tested in other NASA 

projects).  As Fault Map Models ranked slightly higher in both functional and cost requirements, 

this class will be pursued further.  It should be noted that there are still several unknowns 

associated with this class and additional analysis will be required. 

Model the System 

By selecting a model-based system engineering (MBSE) approach, the system will be modeled 

as part of the design process.  SysML uses diagrams to convey graphically the various 

subsystems to users.  The power of an MBSE approach is the underlying structure generated that 

links the various diagrams and model elements.  Since diagram development with element 

associations are part of the MBSE model construction, no additional effort is required to provide 

information related to AD/FI applications.  If augmenting an existing system that lacks the 

requisite documentation in a readily usable format, then at a minimum, the system structure 

should be modeled in SysML.  For this case study, BDDs and IBDs will be developed for the 

three major LH2 subsystems identified in the Scope Overview section to include: 

• Pressurization subsystem 

• Transfer subsystem 
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• Vent subsystem 

A BDD is used to describe physical characteristics of a system and uses a ‘block’ to represent 

those items.  The system itself is a block which can be decomposed to subsystems, components 

and parts as deemed necessary by the stakeholders.  The BDD shows the relationships in a 

hierarchal format.  Since the BDDs identify all the components used within a system, this 

information is used to define system scope.  While a BDD shows the composition of a block, an 

IBD differs in that it shows how the internal parts within a block are connected.  This includes 

the flow of matter, energy and data among these parts.  This information will assist with the 

generation of potential faults for the system. 

LH2 Pressurization Subsystem 

The LH2 pressurization system is used to pressurize the LH2 storage tank.  This pressure, 

combined with different sized valves or variable position valves, controls the flow rate to the 

vehicle for the various loading phases.  This system utilizes a main and auxiliary vaporizer (heat 

exchangers), a variable flow control valve (main) and control valves (main & auxiliary) to 

control the tank pressure.  A BDD titled ‘LH2StorTankPressSys’ identifies the main components 

that comprise this subsystem (reference Figure 20 - BDD/LH2StorTankPressSys).  
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As stated earlier, the BDD gives a view of the structure comprised of blocks in a hierarchy 

format.  An IBD shows the internal connections of the block to include any media that is passed 

among those parts.  The ‘LH2StorTankPressSys’ IBD shows how LH2 flows from the storage 

tank to the vaporizer, is converted to gaseous hydrogen (GH2) and returned to the tank (reference 

Figure 21 - IBD/LH2StorTankPressSys).  As LH2 has an expansion ratio of approximately 

833:1, a much larger volume is returned to the tank which drives the pressure upwards. 

Figure 20 - BDD/LH2StorTankPressSys 



115 

 

 

 

The ‘LH2StorTankPressSys’ is a higher level view of this subsystem.  During the modeling 

process, these higher-level diagrams will be further refined until adequate detail is represented 

that meets the design, user, and stakeholder groups.  As an example, in the 

‘LH2StorTankPressSys’ BDD, there is a block titled ‘LH2VapCntrlVlvSys’ which is 

decomposed further in a BDD of the same name (reference Figure 22 - 

BDD/LH2VapCntrlVlvSys). 

Figure 21 - IBD/LH2StorTankPressSys 
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The corresponding IBD shows the interaction among these components.  Note that parts that are 

not part of the corresponding BDD can still be included within the IBD when necessary to 

enhance the diagram’s view (annotated “from IBD”).  In addition, when the flow inputs and 

outputs (matter, energy and data) do not originate or terminate within the diagram, these are 

shown as ‘ported’ to the diagram’s frame (reference Figure 23 - IBD/LH2VapCntrlVlvSys). 

Figure 22 - BDD/LH2VapCntrlVlvSys 
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LH2 Transfer Subsystem 

There are two valve control assemblies (ground systems) that control the LH2 flow to the launch 

vehicle.  One of these valve skids is located at the Pad in the vicinity of the storage tank, while 

the other is on the mobile launcher platform just upstream of the Shuttle vehicle.  A BDD 

showing both valve complexes was developed.  Note that all the valves on these skids are 

included, though not all support LH2 transfer operations.  

Figure 23 - IBD/LH2VapCntrlVlvSys 
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The focus of this IBD is to depict the transfer of LH2 from the storage tank to the launch vehicle.  

Therefore, some of the components listed in the BDD that do not directly support LH2 flow are 

not included in this IBD. 

LH2 Vent Subsystem 

As LH2 is a cryogenic liquid that is constantly boiling, anywhere you have the potential to trap 

liquid (i.e. storage/flight tanks, transfer line piping) must also have the ability to vent that part of 

the system to prevent over-pressurization.  For the system under study, there are four primary 

generators of GH2 that require active control during loading operations to include: 

1. The GH2 generated from the external tank while being filled. 

2. A liquid bleed flow used to thermally condition the Shuttles’ engines. 

3. The LH2 storage tank (following pressurization). 

4. The cross-country transfer lines that can be independently isolated. 

The Pad LH2 valve skid has the ability to vent the storage tank as well as the transfer line piping 

between the Pad and MLP valve skids.  The MLP LH2 valve skid controls venting of the transfer 

line between this valve skid and the vehicle.  It also controls the bleed flow from the vehicle.   

Model the AD/FI Applications 

When the down-selection was made to determine which AD and FI classes would be pursued, it 

was noted that enough information was not available to determine if these classes could fully 



119 

 

meet the requirements.  This section will model the selected AD and FI classes so this 

determination can be made. 

Anomaly Detection Model 

The AD class chosen was the Nearest Neighbor/Clustering method.  This is a data driven 

application.  Data is ingested into the model (referred to as training data) which provides a 

reference when later compared to test data.  Data sources can be classified as supervised, semi-

supervised or unsupervised.  Supervised data means that the data set includes both normal and 

anomalous data that is ‘labelled.’  Labelled data is known to be normal or otherwise.  Semi-

supervised data can include both normal and anomalous, but only the normal data is labelled.  

Unsupervised data is not labelled (Goldstein & Uchida, 2016).  For large datasets, it is typically 

impractical to label the data.  As this is the case for the LH2 system, only unsupervised data will 

be utilized.  This data comes from previous LH2 loadings that were deemed nominal following a 

post-test review.  This is not sufficient to label the data, but it does increase the level of 

confidence that the data represents only nominal operations.  When using unsupervised data, it is 

assumed to be normal and all exceptions anomalous.  However, it needs to be noted that such 

datasets may include (undetected) abnormal data.  In addition, divergence from nominal does not 

always reflect an anomalous condition.  It could mean the training data does not include all 

variations that represent nominal operations. 

 

The Nearest Neighbor and Clustering methods are two different techniques.  These were 

combined into a single class as the most common approach to implementing both involves 
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determining the Euclidian distance of a test point to either its nearest neighbor(s), or to a central 

point within a cluster.  This class ended up ranked the highest because there is an existing 

application that was originally developed by NASA and tested in various applications.  This 

application utilizes the Clustering model.  The main advantage to this is that the center of the 

clusters is calculated during the training phase, and that value is provided as a constant during 

testing.  The Nearest-Neighbor needs to know the test point so it can seek out the neighbors.  By 

shifting as much of the calculation process to the training-side of the model as possible, the 

computational complexity during testing is reduced enabling the application to run real-time. 

 

During the down-select process, there were four requirements that were flagged ‘unknown’ 

requiring further analysis.  The Clustering AD process will be modeled to determine if these 

requirements can be met.  These requirements include: 

• Have a high level of detection accuracy 

• Minimizes false alarms 

• Functions in multi-phasing and transient ops 

• Adds value above existing AD capabilities 

   

The K-Means model follows the methodology as described by the IMS developers (D. L. Iverson 

& Field, n.d.).  The initial testing will focus on a single cluster as the objective at this point is to 

test the sensitivity of changes in test data.  The training data is synthetic, but based on actual 

parameters used within the LH2 system.  The data types are also varied as this would be common 

when developing the desired vectors for system monitoring.  A vector would be composed of 
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measurements that are in some way related to one another (user defined).  This is intended to 

capture system performance by monitoring sensor groups that are influenced by associated 

operations. 

Sensitivity Analysis 

The K-means algorithm makes the nominal/off-nominal determination of a data point based on 

its distance from the cluster’s center.  This application defines that center as the average between 

the high and low values for each vector element.  Subsequently, the only information needed to 

support testing is the high and low values for each range within the vector.  The training data 

(single cluster) uses only ten inputs.  This data is centered on the nominal value it represents, 

though it was varied by +/- 1% via a random number function.  So the total range of the data 

within this cluster does not exceed 2% (reference Table 8 - Training Data).  

 

 

 

 



122 

 

 

The measurements chosen have quite a bit of disparity in the numerical values.  To determine the 

distance a test point falls away from the cluster’s center, a Euclidian metric is used.  As this 

method determines a vector length, larger values will have a disproportional impact on this 

distance.  Therefore, the data should be normalized before entered into the vector.  There may be 

cases when it is desirable for the model to be more sensitive to critical indicators.  These 

parameters should still be normalized, but can then be weighted to obtain an elevated (or muted) 

response.  All data will be normalized to a 0-1 scale per equation 1.         

 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑋𝑋 − 𝑋𝑋𝑁𝑁𝑀𝑀𝑁𝑁

𝑋𝑋𝑁𝑁𝑀𝑀𝑀𝑀 −  𝑋𝑋𝑁𝑁𝑀𝑀𝑁𝑁
 (1) 

 

The model works by finding the distance between two points: the cluster center and individual 

test data.  If a = (a1, a2,…,an) and b = (b1, b2,…,bn), the Euclidian distance (d) between points a 

and b is shown below (equation 2). 

Press1 Press2 Press3 Temp1 Temp2 VlvPos(%)
Nom 100 750 3000 -423 85 100

99.04 744.03 3004.98 -420.06 85.78 99.55
100.48 756.60 2980.02 -425.34 84.23 100.70
100.43 754.45 2985.01 -421.87 85.16 100.60
100.06 755.54 2991.16 -421.39 85.75 100.46
99.97 743.15 3013.36 -424.95 85.33 100.66
100.41 755.18 3003.67 -422.32 85.33 99.45
100.70 746.93 2971.44 -418.85 84.68 99.30
99.21 743.52 3008.02 -425.55 85.82 99.81

Min 99.0 743.1 2971.4 -425.5 84.2 99.3
Max 100.7 756.6 3013.4 -418.9 85.8 100.7

Tr
ai

ni
ng

 D
at

a

Table 8 - Training Data 
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𝑑𝑑(𝑎𝑎, 𝑏𝑏) =  �(𝑎𝑎1 − 𝑏𝑏1)2 + (𝑎𝑎2 − 𝑏𝑏2)2 + ⋯+  (𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2 

 

(2) 

 

The training data tracks the high and low values for the entire range of each parameter for a 

given cluster.  As it uses the average of these two values, the normalized value for each element 

results in ‘0.5’.  Equation 2 can be summarized as follows: 

 

 𝑑𝑑(𝑎𝑎, 𝑏𝑏) =  ��(0.5 − 𝑏𝑏𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

 

(3) 

 

With the training data established for a single cluster, the test data can be formulated.  This data 

will start nominally, and then be manipulated to simulate various anomalies.  This initial testing 

will assist in determining the sensitivity of the model to detect deviations from normal.  For 

demonstration purposes, the test data will be limited to a count of fifty.  Each vector length is 

calculated and then plotted.  When data is nominal, a baseline is formed.  An upward deflection 

from this baseline is an indication that one or more of the monitored sensors is deviating from 

nominal.  It is this visual cue that alerts the operator that the system has changed.  An alarm can 

be established by setting a threshold above the baseline. 

 

The initial data selected does not represent a related subsystem.  This data was chosen to model 

the responsiveness of a sensor grouping that includes both extremes (nominal pressures from 100 

to 3000 PSIG; temperatures from 85 to -423oF) and common values (pressure and valve position 

with a nominal value of 100).  Initial values are from actual data and all fall within the training 
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data’s min/max values, or are very close.  This ensures the initial vector generated would be 

assigned to this cluster.     

 

The first test will increment a single parameter (100 PSIG) in the test data.  Typically, a 100 

PSIG system would have an operating range of +/- 10% (90 – 110 PSIG).  The low and high 

alarm limits would be set to those operational limits.  A plot of this test is presented below 

(reference Figure 28 - Single Indicator Test).  The first 10 samples represent a nominal baseline.  

This measurement is incremented by 1 PSIG at every 10th sample (to 5%).  The min/max values 

for this indicator are 99.04 and 100.70 respectively (reference Figure 24 - Single Indicator Test).  

The first increment to 101 PSIG moved the parameter just outside its max-value, and the plot 

registered a slight increase from baseline.  As data toggles around a value, the baseline will 

oscillate to reflect these slight variations.  With each subsequent increment, the test data moved 

further from the cluster as exhibited with the upward trend from baseline.  A 5% increase on a 

single variable resulted in a distance value that is more than triple the baseline.      
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The next test involves incrementing multiple variables within the vector.  These values were 

adjusted both upward and downward.  The first 20 data points remain the same as in the previous 

test (baseline and 1% increase on 1 indicator).  The subsequent samples represent a 1% increase 

on a different measurement every 10th sample (reference Figure 25 - Multiple Indicator Test).  

Similar to the previous test, a 1% increment has a slight impact to the baseline.  In addition, the 

last variable incremented brings the baseline back down (Temp-2).  This measurement’s initial 

value is set just under the min-value for this parameter.  So a 1% increase brings the distance 

closer to the cluster as depicted by the plot.  An upward trend can be noted, but not necessarily 

significant enough to warrant additional evaluation.               

Figure 24 - Single Indicator Test 
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The next plot is the same five indicator test, but with 2% increments (reference Figure 26 - 

Multiple Indicator test (2%)).  The upward trend is now more noteworthy.  Had this been an 

interrelated grouping of measurements, this would have flagged the operator that the system was 

changing in a way not captured by the training data.  It should also be noted that the ten-sample 

increments are intended to test sensitivity.  If the change in the system did influence five of the 

six vector elements, the plot would have captured this over the transient range.  For short 

duration transients, this could make the plotted shift more apparent.  A longer duration trend may 

not be as obvious.  This is rationale for including a threshold limit as subtle trend changes may 

not be easy to observe, but a declining gap between trend and threshold should be noticed. 

 

Figure 25 - Multiple Indicator Test (1%) 
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The previous tests held the test data fixed so that the actual impact from a change in state was 

easily observed.  However, data from dynamic systems often have noise associated with the 

measurement (frequent oscillations above/below a value).  The previous tests will be repeated, 

but this time with noise being introduced into all the test variables.  This is accomplished by 

generating a random number that is +/- 1% of the nominal value, much like what was done with 

the training data.  The noise will be maintained while the data is being manipulated to simulate a 

change in the system.  This 2% total range is aggressive for simulating noise as it is not often 

observed to this extent.  It will also be applied to all the test variables, though many 

measurements are often stable indications.  Consequently, this test case should represent a 

worse-case scenario.  As the baseline is not so easily distinguished with noisy data, a full-run 

plot is displayed showing only the baseline from which subsequent test plots build upon 

(reference Figure 27 – Baseline Data (Noisy)). 

 

Figure 26 - Multiple Indicator test (2%) 
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The first 20 samples now represent a nominal baseline and the measurement is incremented by 1 

PSIG at every 20th sample to 5% (reference Figure 28 - Single Indicator Test (noisy)).  There is 

no longer a discernable ‘step’ formation with the plot.  However, there is an obvious upward 

trend that is approximately three times that of the baseline.  This is consistent with what was 

observed with the non-noisy test. 

 

Figure 27 – Baseline Data (Noisy) 
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The next two tests involve incrementing multiple variables within the vector.  A new indicator 

was added to the plot every 20th sample.  Each new value was increased by either 1% (reference 

Figure 29 - Multiple Indicator Test (1% - Noisy)), or 2% (reference Figure 30 - Multiple 

Indicator Test (2% - Noisy)) based on the nominal target, which is then modified to continue 

mimicking noise.  An upward trend can be noted in both plots, though it is much more 

predominant with 2% adjustments. 

 

Figure 28 - Single Indicator Test (noisy) 
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Figure 29 - Multiple Indicator Test (1% - Noisy) 

Figure 30 - Multiple Indicator Test (2% - Noisy) 
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Transition Analysis 

One of the requirements levied is that the AD application function during the different 

operational phases and be able to capture transient conditions.  As the limit settings for the 

indicators monitoring these transitions are inhibited between phases, much of the alarms are not 

available for these short durations.  Hence, an AD application that can determine if the transition 

was nominal or not was deemed desirable.   

 

For this testing, data was used from both STS-134 and STS-135 Shuttle missions (reference 

Figure 31 - STS-134 LH2 Loading (SF to FF) and Figure 32 - STS-135 LH2 Loading (SF to 

FF)).  This data includes several pressure sensors and one temperature measurement.  These 

indicators are related in that changes in the flow of LH2 will influence all four indicators.  The 

data from the STS-134 mission will be used as the training data for the model.  Both missions 

took place on Pad A.  STS-134 used MLP-2 while STS-135 took place on MLP-3.  The 

timeframe within the loading operations targets the transition from Slow Fill (approximately 900 

GPM) to Fast Fill (approximately 8000 GPM).    
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Figure 32 - STS-135 LH2 Loading (SF to FF) 

Figure 31 - STS-134 LH2 Loading (SF to FF) 
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LH2 Slow Fill involves a low flow rate, and all three pressures can be seen to be near-equal.  As 

the LH2 external tank (ET) is loaded under pressure, the line pressures are gradually increasing.  

For STS-135, an ET vent cycle is observed just before transition as noted by the transfer line 

pressure drop that precedes an increase.  Fast Fill is initiated by opening a larger fill valve 

increasing the flow rate from approximately 900 GPM to 8,000 GPM.  The transfer line 

pressures all increase, but the impact of the various flow restrictions becomes obvious at the 

higher flow rate based on the disparity among the pressure measurements.  The ET vent valve 

cycling becomes more frequent as depicted by the oscillations seen in the pressures. 

 

The temperature is slowly decreasing towards that of LH2, and is within 2oF at the latter part of 

Slow Fill.  When Fast Fill is initiated, the temperature starts to decline quicker as the transfer line 

pressure is elevated (flow rate increased).  During this transition, it is typical to see a slight 

upward spike in temperature caused by liquid hitting the un-wetted surfaces which generates 

additional boil off of liquid.  As the line completely fills with liquid, a rapid chill down to LH2 

temperatures occurs. 

 

Although the temperature decline profiles shown in figures 35 and 36 are similar, there is a shift 

between the two.  These values are scaled the same, and the value ranges shown in the plots 

equate to approximately 1.5oF for each indicator.  Therefore, this is high-granularity data 

(instrument range is -409oF to 427oF).  Assuming the temperature of LH2 remains constant (at 
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pressures shown), a bias can be determined when the temperatures bottom-out.  In this case, it is 

approximately 0.8oF.  Although this is a low value, and an acceptable bias, it is significant when 

compared to the 1.5oF.  The following plot includes the K-Distance with the STS-135 data 

(Figure 33 - STS-135 Flow and K-Distance). 

 

 

Figure 33 - STS-135 Flow and K-Distance 
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The K-Distance value shows the system is off-nominal (compared to the STS-134 data) during 

Slow Fill.  One of the advantages of a K-Means methodology is it is easy to determine which 

variable(s) are responsible for the deviation.  In the following table (reference Table 9 - Elements 

used for K-Distance), K-Distance is the variable plotted (against GMT).  Also shown are the 

normalized values of the four variables that make up this distance calculation.  Only the Orbiter 

Inlet temperature is (significantly) over one making this temperature the only outlier. 

 

The next test pulls the temperature out of the plot to see how K-Distance works with the three 

pressure values during transition (reference Figure 34 - Pressure and K-Distance).  An increasing 

trend during Slow Fill shows some disparity compared to the training data, but at just over a 

value of 1.0, this is not considered problematic.  A spike to just over 3.0 during transition is 

noted.  K-Distance then returns to nominal, though it does track with the ET vent valve cycles. 

GMT K-Dist P-SkidIn P-SkidOut P-OrbIn T-OrbIn
6:46:39 5.504 0.60 0.67 0.40 6.00
6:46:39 5.502 0.60 0.50 0.40 6.00
6:46:40 5.509 0.20 0.50 0.40 6.00
6:46:40 6.008 0.20 0.50 0.40 6.50

Table 9 - Elements used for K-Distance 
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Finally, the same data is used but with a failure inserted.  The Skid Inlet pressure was held at a 

fixed value during the ramp up to Fast Fill pressure (reference Figure 35 - Pressure and K-

Distance with Failure).  This failure mimics a loss of communication to the sensor, and 

subsequently, the value in the buffer does not change.  When this type of failure occurs within 

the measurement’s limit settings, an alarm is not produced.  If it is close to nominal system 

values, it is not easily recognized on a system display view.  This failure type can be 

distinguished on a plot, with dynamic data, as it is characterized by a ‘flat line.’  The K-Distance 

plots the same during Slow Fill and transition, but once the failure is inserted, it climbs to 

Figure 34 - Pressure and K-Distance 
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approximately 4.0.  In this case, the K-Means AD method did well to identify a failure occurring 

during transition.       

   

Fault Isolation Model 

All three of the original FI classes require extensive support to implement this capability into a 

large system.  A single-fault method would look at all components and the various failure modes 

that they can experience.  If there is a need to consider multiple faults, then this effort can grow 

quite quickly.  To start this mapping exercise, the focus will be on individual components.  In 

addition, if a components’ failure mode cannot be traced to a detecting indicator, then it is not 

Figure 35 - Pressure and K-Distance with Failure 



138 

 

included.  For example, filters have a failure mode in which the filter media fails allowing 

possible contaminants to pass.  Such a failure would likely be undetectable by monitoring system 

pressure.  However, debris may now pass the element and block flow thru a downstream orifice.  

A plugged orifice can be detected by a drop in downstream pressure.  Subsequently, the model 

will (possibly) fault the orifice, which is behaving anomalously, though the root cause of the 

problem is the failed filter element.   

 

Failure modes for components that cannot occur do to configuration are also omitted.  This drops 

modes such as ‘internal leakage’ or ‘failure to close’ for valves that remain open during the 

entire operation.  The initial pass at mapping the system will concentrate on single fault 

scenarios.  It is projected that the model will be expanded to include multiple faults and all 

modes identified on the system fault tree.  With this initial pass, modes such as ‘relief valve fails 

to open’ are excluded as it first requires a failure to over-pressurize the system. 

 

As a fault map model was the selected class, the focus will now be on developing one that 

encompasses the LH2 system.  The literature review was unable to uncover detail methods 

utilized by the (very few) vendors.  So Excel will be employed to capture and organize the data 

needed to generate the mapping.  It is anticipated that any application selected to implement this 

technology will have the capability to either work with Excel data (either by linking to the file or 

importing the desired data).  The following outlines the fields to be populated: 

• Component - As labeled by its unique identifier 

• Description – Components nomenclature 
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• Failure Mode - As identified by the SysML model, and as required based on component 

configuration 

• Sensor – The primary indicator used to detect the failure identified. 

• State – The indicators’ state that flagged the issue (high, low, erratic, nominal) 

• Additional Sensor and corresponding State fields as required to characterize multiple 

sensors used in detection 

 

With a fault map knowledgebase being created within Excel (using the fields defined above), the 

FI inputs can be tested while the knowledgebase is being produced.  Simply adding a filter to 

each of the fields enables the operator to select an offending measurement to get a list of 

potential component faults.  If there are multiple sensors available with applicable states, these 

too can be selected to refine the list, thus allowing the SME to test inputs in parallel with 

development. To model this effort, a knowledgebase for a purge panel feeding the LH2 transfer 

lines was generated.  A high limit setting is exceeded for one of the indicators (PT057), which is 

then selected (reference Table 10 - Fault Map (PT057-High)). 
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Table 10 - Fault Map (PT057-High) 

 

This results in a list of 26 component/failure combinations.  Since a high limit was exceeded, the 

state of the corresponding sensor is then filtered on ‘high,’ reducing the potential failures to 

seven.  A secondary indication (PT076) is also available for the remaining faults (this could be 

multiple indicators).  The field filtering can continue, but with only 7 items listed, the logic can 

be carried out by observation (reference Table 11 - Fault Map (PT076 Check)).  If a review of 

PT076 in the timeframe that the alarm was received showed no change in status, then a failure of 

PT076 is suspected, which can be further confirmed by looking to see if PT5977 remained 

nominal.  For this example, we will assume PT076 also diverged high (it does not have to set off 

an alarm), leaving one additional indicator (PT047) that could have been influenced by the 

Comp Description Failure Mode Sensor-1 State-1 Sensor-2 State-2 Sensor-3 State-3
HR051 3000/750 Hand Reg (Dome) RegCreepsHigh PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegCreepsLow PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegFailsClosed PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegFailsOpen PT057 High PT076 High PT047 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksExt PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksInt PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegPressUnstable PT057 Erratic PT076 Erratic
DR054 3000/750 Dome Reg RegCreepsHigh PT057 High PT076 High
DR054 3000/750 Dome Reg RegCreepsLow PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegFailsClosed PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegFailsOpen PT057 High PT076 High PT047 Low
DR054 3000/750 Dome Reg RegLeaksExt PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegLeaksInt PT057 High PT076 High
DR054 3000/750 Dome Reg RegPressUnstable PT057 Erratic PT076 Erratic
RV059 750 Relief Valve VlvFailsOpen PT057 Low PT076 Low
RV059 750 Relief Valve VlvLeaksExt PT057 Low PT076 Low
RV059 750 Relief Valve VlvLeaksInt PT057 Low PT076 Low
FL063 750 Filter FilterPlugged PT057 Low PT076 Low
FL063 750 Filter FllterLeaksExt PT057 Low PT076 Low
MV105 750 Purge-Leg Iso Valve VlvLeaksExt PT057 Low
SV060 Vent Line Purge Sol Valve VlvLeaksExt PT057 Low
SV065 Fill Line Purge S/O Sol Valve VlvLeaksExt PT057 Low
SV038 Fill Line Purge Sol Valve VlvLeaksExt PT057 Low
PT057 750 GHe Press IndHigh PT057 High PT076 Nominal PT5977 Nominal
PT057 750 GHe Press IndLow PT057 Low PT076 Nominal PT5977 Nominal
PT057 750 GHe Press IndErratic PT057 Erratic PT076 Nominal PT5977 Nominal
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change in system status.  If this trended downwards, then the FI leads to two possible faults (vs. 

six if it remained nominal).  These include the hand or dome regulators to have failed open.   

 

 

Assuming PT047 did drop, this implies either the hand or dome regulator failed open.  Hand and 

dome regulators work in parallel.  Hand regulators provide finite control in manually setting an 

operational pressure.  The trade-off is that this manual control capability results in a component 

used in low flow applications.  Dome regulators have the capacity for high-flow, but cannot be 

manually adjusted.  Pressure is set by applying the desired pressure into the top (dome) of the 

regulator using a hand regulator.   

 

The failure logic for this scenario is described as follows.  When a regulator fails open, it is no 

longer able to control pressure, and the downstream side of the regulator is exposed to the 

upstream pressures (3,000 vs. 750 PSIG).  If the hand regulator fails, it applies 3,000 PSIG to the 

dome regulator which then opens fully.  This is the same outcome if the dome regulator fails 

open.  In both cases, the 750 PSIG system is now exposed to 3,000 PSIG, though this leg 

includes a relief valve to protect against over-pressurization.  There is another pressure reduction 

in this leg (750 to 80 PSIG) via a hand regulator only.  If the upstream pressure to this regulator 

Comp Description Failure Mode Sensor-1 State-1 Sensor-2 State-2 Sensor-3 State-3
HR051 3000/750 Hand Reg (Dome) RegCreepsHigh PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegFailsOpen PT057 High PT076 High PT047 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksInt PT057 High PT076 High
DR054 3000/750 Dome Reg RegCreepsHigh PT057 High PT076 High
DR054 3000/750 Dome Reg RegFailsOpen PT057 High PT076 High PT047 Low
DR054 3000/750 Dome Reg RegLeaksInt PT057 High PT076 High
PT057 750 GHe Press IndHigh PT057 High PT076 Nominal PT5977 Nominal

Table 11 - Fault Map (PT076 Check) 
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spikes to relief pressure (880 PSIG), then an upward deflection would be expected on the 80 

PSIG leg, monitored by PT076.  Since the dome regulator is capable of high flow, combined 

with the high upstream pressure, it is likely flowing through the relief valve (which is sized to 

handle the maximum flow).  Therefore, a drop in upstream pressure is expected (PT047) as the 

system struggles to maintain 3,000 PSIG with off-nominally high flow.  

Perform Trade Studies 

When the preliminary framework was developed, it was envisioned that after down-selecting to 

classes that best met requirements, there would be many options to choose from.  This did not 

turn out to be the case.  The existing limit-setting, plot capabilities and software controls 

employed in industry (and current KSC launch systems) are sufficient for most applications.  In 

addition, the Programmable Logic Controllers (PLC’s) that have become common in remote-

operated control systems are embedded with health and status capabilities specific to C&C 

functions.  Subsequently, proficient AD/FI expertise supporting control systems is included with 

the purchase of this hardware.  There is an abundance of techniques found within the literature, 

but most have not advance beyond the conceptual phase.  This does not diminish the need for 

this technology, but it does limit the commercial options.  This trade study will assess using an 

available application or developing one internally.  Both are viable options.  

Anomaly Detection Application 

A commercial application (IMS) exists that implements a K-Means method of AD.  This 

application can run both real-time and playback historical data.  It allows the user to select the 
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vector elements (variables) for inclusion and cluster size when inputting the training data.  When 

running, the user can assign a threshold over the k-distance to be used as an alarm.  It also has 

the ability to show how much each measurement contributes to the k-distance to readily 

determine which indicators are off-nominal. 

 

The k-means methodology was modeled using Excel.  However, this application cannot provide 

real-time system monitoring.  It can provide playback of test data, but dataset size may overcome 

Excel’s limitations requiring both training and test data be segmented.  The clusters for the 

model were developed manually, but this could be automated using an Excel macro.  The other 

functions provided by IMS (element selection, cluster radius, thresholds, variable contribution) 

can all be mirrored in Excel.  

 

The AD model testing also resolved the ‘unknown’ requirements as follows: 

• Have a high level of detection accuracy 

o The model illustrated a sensitivity to change for both static and dynamic data 

when compared to nominal training data.  The training data is unsupervised, so 

there could be anomalous information contained within.  A diverging k-distance     

shows a deviation from the training data which does not always reflect an off-

nominal condition. 

• Minimizes false alarms 

o When ‘zoomed in’ on a high-resolution temperature indicator, testing did show a 

significant deviation in k-distance.  After a reviewing the plot, it was determined 
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that an acceptable bias existed between the instruments on from two different 

MLPs.   

o These types of issues can be uncovered when testing historical data, and there 

are several actions that can be taken to mitigate the issue as follows: 

 Training data can be matched to the launch elements used (i.e. use Pad A 

and MLP-2 training data for launches using this combination).  This 

ensures the same sensors are being compared. 

 Add multiple launches to the training dataset.  This will further minimize 

the false alarms by capturing system variations within the training 

dataset. 

 Each element within the vector can be weighted to amplify or mute the 

impact on k-distance.  The measurement tested is critical, so it would 

likely not be muted.  However, this is an option for other non-critical 

sensors. 

• Functions in a multi-phasing/transient ops 

o Testing (Slow Fill to Fast Fill) demonstrated that transient operations can be 

captured. 

• Adds value above existing AD capabilities 

o The sensitivity analysis showed that both single and multiple indicator 

divergences can be detected well before a limit exceedance is triggered.  This is 

a very strong capability. 

• Minimizes number of applications and/or supporting applications 
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o This adds only one new application and requires no supporting applications.        

Fault Isolation Application 

It should be noted the LH2 system has local gages for viewing the system status which are 

located throughout the system.  The fault mapping concentrates on a system configuration that 

supports launch vehicle loadings as these are the time-critical and hazardous operations that take 

place in a control room.  The remote sensors available are a smaller subset of what can be 

accessed locally.  In one case, a storage area panel that provides pneumatic pressure to all the 

remote operated valves is set up manually to support these operations.  There are local gages 

used to reflect the supply pressure and for setting up two pressure reductions, including primary 

and secondary legs for the actuation pressure.  However, the only remote sensor on this panel is a 

pressure switch that is sensing only the actuation pressure leg.  In this case, all the components 

that can impact this pressure, and have a failure mode that results in a loss of pressure, will be 

linked to the switch.  Failures that increase pressure above nominal will go undetected.  

Consequently, should this switch unexpectedly drop out, a large list of potential faults will be 

generated.  With only a discrete measurement providing notification, the information needed to 

refine this list is just not available.  Should the pressure dropout be real (and not a switch failure), 

and pressure continues to drop, any actuated valves will soon change state confirming the loss of 

pneumatic control. 

 

This example is being presented to highlight that an FI application will be limited to what data is 

provided by the sensor array (applicable for the physics, expert systems and fault map FI 
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classes).  Often, the fault cannot be isolated until the local hardware can be accessed to view the 

local instruments and/or take additional troubleshooting steps.  Therefore, expectations need to 

be tempered for FI performance.  During the analysis and development of an FI application, 

system design shortcomings may be uncovered.  These can be addressed to determine if a system 

modification is warranted.  Therefore, developing an FI knowledgebase also provides an indirect 

system review which is also beneficial. 

 

A commercial application known as TEAMS (described in literature review) is available for fault 

mapping, and has been previously tested on a cryogenic test-bed at KSC.  This application can 

support real-time monitoring and includes a means to encompass system configuration (via 

switches).  There was only over-view information discovered as to how this application works, 

so it was not modeled.   

 

A component-sensor-fault related knowledgebase was developed using Excel.  The fields 

selected were those that are projected to be included should TEAMS (or another fault map 

application) be selected.  The reason for developing an internal knowledgebase is this need 

amounts to an organization of data issue, and a means to present data in a timely manner with 

minimal input.  It was presumed that Excel could accomplish this task, so a model was 

developed to test this functionality.  Should an existing application be chosen, the effort to create 

the knowledgebase within Excel will likely not be unproductive as it is anticipated this data can 

be ported to other applications.    
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The FI model testing also resolved the ‘unknown’ requirements as follows: 

• Lists all potential faulty components 

o This requirement is partially met (by design).  Per the filter/orifice example 

described previously, FI will list all components it can link to the indicator(s) in 

question.  This may not include the root component responsible for the failure as 

that failure mode may not be detectable with the current sensor array 

• Minimal development 

o This requirement is partially met.  There is minimal development related to 

getting an application active.  However, populating the application with all the 

possible component/failure-modes will be an extensive and challenging exercise. 

• Minimizes number of applications and/or supporting applications 

o This adds only one new application and requires no supporting applications. 

Make Recommendations 

For AD, the K-Means method was shown to be sensitive to changes when compared to previous 

operations that were deemed nominal.  The model testing resolved the unknown requirements, 

and this application has the flexibility to be ‘dialed-in’ to meet various system peculiarities.  

However, it needs to be reiterated that the training data is unsupervised, so it is possible that 

abnormal data may be embedded within this dataset.  The recommendation is to use the IMS 

application.  It was developed by NASA and they retained a licensing exemption that allows its 

use for NASA programs. 
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When the Shuttle program gained real-time plotting capability, this provided the ability to 

monitor the system over time.  As there is very limited monitor space, only one plot could be 

viewed at a time.  For implementation, it is envisioned that K-Means vectors would be built that 

are common to a saved plot of related data.  A display would be set up that showed multiple k-

distance graphs.  Should one of these start to diverge high, the corresponding plot would be 

brought up so the operator can see the plotted data of the indicators of concern.  This 

methodology provides a ‘health’ indicator allowing the operator to indirectly monitor multiple 

plots on a single display.  In addition, a threshold value can be set that will alarm should a k-

distance value exceed it (whether it is visible or not). 

 

During the FI modeling, a knowledgebase was developed using Excel.  The intent was to see if 

the desired information could be presented with minimal user input.  As the model for this 

functionality turned out to be relatively easy, creating a comprehensive knowledgebase with 

Excel is the recommendation going forward.  If it later turns out that this is not sufficient, then a 

fault-map application could be considered at that time.  Both methods are level in their ability to 

meet requirements, though minimal development could only be partially met.  As this is an 

extensive effort, Excel has an advantage in that it requires only SME support where those 

inputting the model require both SME and FI application know-how. 
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CHAPTER SIX: ANALYSIS/EVALUATION 

A preliminary framework was proposed in Chapter 4 that provided a methodological approach to 

selecting anomaly detection (AD) and fault isolation (FI) technologies that can be adapted to 

complex systems.  A case study was presented in Chapter 5 that followed this process to 

augment the liquid hydrogen (LH2) system at the Kennedy Space Center (KSC) launch pads.  

This system supported loading the external tanks (ET) to support Space Shuttle launches, and 

will be used again for NASA’s next-generation Space Launch System (SLS) rockets.  As LH2 is 

the fuel for the Shuttle main engines, it is very flammable.  LH2 is also a cryogenic fluid (-423 

oF).  This involves insulation challenges as the liquid is constantly boiling.  To minimize losses, 

the ET is not loaded until very late in the launch countdown (within ten hours of planned 

launch).  Loading the Shuttle is performed from a control room located several miles from the 

launch pads.  Therefore, these remote, time-critical and hazardous operations make the LH2 

system a good candidate to supplement with AD/FI capabilities.  This chapter will analyze the 

case study and its implementation of the framework process, and then finalize the proposed 

framework.  This framework will then be validated by applying the process to the liquid oxygen 

(LOX) system at KSC that is also used to load the ET. 

Framework Analysis 

The framework process follows the chart shown previously (reference Figure 8 - Preliminary 

Framework Process Flow).  This analysis will step through each process block and review the 

details necessary to accomplish these steps.  It will also note any changes that will be reflected in 

the final version. 
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Scope the System 

Establishing the system scope not only identified the system boundaries under study, it also 

identified exiting AD/FI capabilities.  The LH2 system was broken to three major subsystems 

(Pressurization, transfer and vent).  The existing AD capabilities were described (no existing FI 

functionality) so that new applications with common functionality are ground-ruled out. 

 

This task did highlight a couple of items worth noting as this impacted the scope of this case 

study.  First, the command and control (C&C) system at KSC went through an upgrade utilizing 

programmable logic controllers (PLCs).  As this new C&C architecture has significant health and 

status capability embedded within, further AD/FI augmentation was considered unneeded.  

Second, as hydrogen is very flammable, and potentially explosive, the ability to monitor for 

leaks and/or fires is considered crucial.  This is already accomplished via a ‘HazGas’ subsystem 

that has installed leak and fire detectors throughout the LH2 system. 

Identify and Categorize Sensor Data 

Identifying all the sensors supporting both AD and FI applications is a way to ensure inclusion of 

all possible measurements.  Sensors are monitored for nominal operations with AD, and used to 

authenticate fault-modes with FI.  Most system designs include a parts list (as does the LH2 

system).  However, when using SysML to model the system, it becomes intuitive to organize the 

component blocks in ‘packages’ that reflect the component type for later retrievals.  This was 

helpful for itemizing the types of indicators.  When these instruments are later depicted in IBDs 
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(as instances of ‘part properties’), they are readily found within those diagrams, and IBDs also 

reflect how they are used. 

Identify and Categorize Fault Modes 

For this case study, knowing the fault modes was not required to apply the selected AD utility.  

AD focused on the ability to detect instruments deviating from the norm, and therefore, it did not 

consider the faults that drove the disparity.  The FI application requires that all faults be 

identified, and those that can be detected by the system instrument array be catalogued within a 

knowledgebase.  As stated previously, this can be a comprehensive task for a complex system. 

 

This framework development is guided by system engineering principles of which one best 

practice is to leverage off of existing artifacts.  If a SysML model is being developed, then the 

corresponding IBDs will depict which components are within the system, and how they are being 

used.  This information might make it practical to auto-generate a fault tree (FT) using the 

information generated by the system design.  The model was extended by adding generic failure 

modes (blocks) and allocating them to the components shown on the IBD (via a relationship 

matrix).  The matrix was exported to Excel, and a macro written to draw a basic fault tree as 

described in Chapter 5.  This task was successful in highlighting the potential of extending 

SysML so that existing design constructs can assist in generating other design products.  Fault 

trees are typically generated as a separate project to the design effort.  Safety engineering 

oversees the development, though it is supplemented by the SME’s who have the required 

technical expertise.  Having the ability to auto-generate an initial FT that is directly related to the 
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design documents is efficient in the use of engineering labor, less prone to mistakes and likely to 

identify deficiencies in the design product(s) earlier in their life-cycle.  This proof-of-concept 

exercise focused on FT’s, but it is foreseen that other design or operational products could 

benefit from SysML’s flexibility in working with its core data. 

Identify and Categorize AD/FI Applications 

This section of the test case started with the discussion on requirements.  One of the changes to 

the framework process chart is to pull the requirements development out into its own block 

following the system scope effort.  The functional requirements development does need to follow 

the system scope.  While defining system scope, having to apply AD/FI was ground-ruled out for 

C&C functions and Leak & Fire detection.  In addition, the existing AD/FI methods were 

appraised.  It is expected that the detection results will overlap, but the detection methods should 

not be common.  This type of information is helpful before functional requirements are 

produced.   

 

Requirement generation was planned to precede the AD/FI selection process, so the preliminary 

framework scheduled this activity accordingly.  However, since the sensor and fault (more so the 

faults) organization can be a comprehensive undertaking, the requirements should be defined 

prior to committing resources to this effort.  These actions are shown in parallel with the system 

categorization items, but the process flow will be changed to drive the requirements generation 

prior to additional work following system scope. 
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The requirements generated were categorized as functional (qualitative) and cost related.  They 

were purposely kept at a higher level for several reasons.  For the functional requirements, a 

concern exits that requirements that are too restrictive may exclude technologies that provide 

considerable benefit to the system.  Also, as this system is being augmented with additional 

AD/FI, the current operational needs are satisfied by the implementation of the original design 

requirements.  On the cost side, the requirements are written generically to keep potential project 

expenses minimized.  The case study had to decide between existing applications or internal 

development.  These options have different means of costing that impact different groups.          

 

Modeling the AD/FI technologies is time consuming, and therefore, modeling all the potential 

applications is not practical.  In addition, many methods found in the literature did not provide 

adequate details to build a test model.  To lessen the potential effort, both the AD and FI 

applications were divided into classes based on common underlying techniques used to realize 

their objective.  These classes were then ranked based on their ability to meet requirements.  This 

is an intermediate step intended to reduce the potential candidates to a class that is most likely to 

meet system needs.   

 

There is a cost requirement that gives priority to an existing application (or mature 

development).  This requirement is based on an assumption that it is cheaper to purchase a 

software license than it is to internally develop and sustain this functionality.  In addition, 

commercially available packages publish the capabilities of the product making it easier to 

determine which functional requirements they could satisfy.  Thus, the requirements derived for 
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this case study favor such applications (both directly and indirectly) as reflected in the down-

select decisions.  The ability of the chosen classes to meet the functionality requirements, related 

to performance, remained mostly ‘unknown.’  Resolving these unknowns is what drives model 

development and subsequent testing.           

Model the System  

This framework is designed to work with both new projects and legacy systems.  As the SysML 

language was selected for modeling the system, it is assumed any new design would also be 

implemented with this standard.  Therefore, a suite of SysML diagrams would be available (or 

quickly generated) to the applicable stakeholders.  This assumption is based on the remote 

likelihood of selecting multiple MBSE standards.  Should another language/method be selected, 

the case study still provides an outline of system engineering practices that apply, and may be 

implemented in a similar way with the tool(s) supporting those standards. 

 

This test case is enhancing a legacy system used for Shuttle (and planned to support future 

launch programs).  The ground systems were modified from the Apollo program in the late-

1970’s/early-1980’s predating any formal MBSE standards.  Subsequently, a mature design 

exists, though it epitomizes a document-centric methodology that was predominant at that time.  

For operational systems, the goal is not to model the entire system as this is not an efficient use 

of resources.  However, if the product life-cycle is to continue into the future, then incorporating 

SysML elements to support system design changes may be appropriate.  In this case, four of the 

nine available SysML diagrams supported this effort to include: 
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• Package Diagram 

o A Package Diagram is required to contain all other SysML diagrams generated, so 

it is required for any SysML model.  It is used simply to organize the model, and 

works very similar to folders used within Windows.  The package name is 

included in the frame-label of all other diagrams.  

• Block Definition Diagram (BDD) 

o BDD’s were developed to show the composition of the various subsystems 

(LH2StorTankPressSys) and also as a way to graphically display elements stored 

as blocks (components, failure modes).  This supported scoping the system. 

• Internal Block Diagram (IBD) 

o An IBD shows the internal workings of a single block to include the inner 

connections of the parts and flow between them.  The block ‘LH2StorTankPress’ 

was created and showed via additional blocks of all the components that 

comprised this subsystem.  An IBD was then created from the 

‘LH2StorTankPress’ block.  However, all the composite blocks included in the 

BDD are changed to a property of ‘parts.’  A block shows a given component 

used within the system, where as an IBD shows an instance of that part (block 

equates to a part number – of which there may be many used - where an IBD part 

refers to the unique identifier for that component).  IBD’s were used to support 

system scoping, FT development, failure-mode development and fault mapping.      

• Requirements Diagram 
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o SysML has a very strong capability to track requirements from initiation to 

closure.  Requirements diagrams were used to develop the AD/FI application 

requirements. 

Model the AD/FI Applications 

It could not be determined if both the AD and FI classes selected could fully meet the 

requirements.  This drove a need to model and test these methods to determine if they 

incorporating them within the LH2 system was feasible.   

Anomaly Detection Analysis 

The first tests performed a sensitivity analysis of the K-Means method of detection.  A single 

cluster was simulated, and training data was selected.  The initial variables represented: 

• Multiple data types (pressure, temperature, valve position)  

• Common value ranges (0-100%; 0-150 PSIG, 0-150 oF) 

• Dissimilar value ranges (0-150 and (-409)-(-423) oF; 0-150, 0-750 and 0-3000 PSIG) 

These variables replicate actual indicators within the LH2 system, and the initial training data 

values come from real data.  However, they are not related to one another.  They were selected as 

the initial testing is looking for responses from a diverse dataset.   

 

When a cluster is formed, only the high and low values from each element within the vector are 

needed to determine a k-distance.  The initial training data values were randomized to +/- 1%, 

and the resulting high/low values retained.  This simulates the influence of training data as each 
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variable will have differing impacts to that baseline as corresponding value trends away from 

nominal, and by raising the k-distance baseline above zero.   

 

With training data simulated, a single indicator was incremented by 1% up to 5%.  As the initial 

1% increment will keep it within or near the training data high/low values, only a slight shift is 

observed.  As the increments continue, the baseline shifts grow.  At 3%, the baseline has roughly 

doubled, and at 5%, more than tripled.  This test is repeated, but with five different indicators 

being incremented (both high and low) as this mimics the data being related to one another.  A 

1% increment keeps all the test values within or near the training data high/lows, and a slight 

increase is noted with four of the five increments.  The initial starting value on the last indicator 

was set outside the training data low value, so an upward increment brought it closer to its norm.  

Overall, a slight upward trend is noted.  Each is then increased by 2%, and the baseline nearly 

triples.   

 

Often, the data being tested is not as stable as shown previously.  The same series of tests were 

repeated, but this time with +/-1% of randomized noise simulated with the test data.  The results 

were similar, though the stable data plots stepped up while the noisy ones trended.  Selecting a 

threshold value is a subjective task and will likely be based on how the baseline plot is acting.  

As a general rule for this case study, a doubling of the baseline should flag the operator of a 

possible trend away from nominal.  A tripling should indicate divergence from nominal (as 

defined by the training data).  A 100 PSIG system would have limits set at +/- 10%.  Therefore, 

the K-Means method would have flagged the operator well before an alarm is issued. 
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The next test was specific to a requirement that was specifically developed to address an existing 

limitation.  During the requisite configuration changes for the various loading phases, the limit 

settings are inhibited at the end of one phase, and activated (possibly to new levels) at the start of 

the next phase.  This essentially turns off the alarms during these transitions.  To test the K-

Means ability to monitor these transient conditions, data from STS-134 (training) and STS-135 

(test) during an LH2 transition from Slow Fill to Fast Fill is used.  When presented during the 

case study, it was noted that there is an approximate 0.8 oF temperature bias between the two 

mobile launch platforms used for these launches (an acceptable tolerance).  This bias further 

impacted the k-distance value due to the narrow range of the indicator in this timeframe.  

However, as the bias exists during the entire plot, further examination is necessary. 

 

The STS-134 & 135 LH2 Slow Fill to Fast Fill transitions were previously plotted (reference 

figures 31 and 32).  Both the pressure and temperature profiles, and the pressure values were 

much alike.  Only the temperature stood out due to the noted bias.  The STS-135 transition plot 

was changed to include the STS134 temperature (reference Figure 36 - STS-135 LH2 Loading 

(SF to FF) with STS-134 Temp.  This plot starts out with a k-distance between 5-6 (very high) 

and remains above four throughout Slow Fill.  During this time, a new cluster is being defined 

with approximately a 2 PSIG increase on the three pressure indicators.  As the temperature is bit-

toggling between 2 or 3 values, and a bit equates to 0.072 oF, the difference of the high/low 

values for this cluster equate to a small number.  So normalizing a value with 0.8 bias results in a 

high k-distance value.  During transition, a couple of spikes are noted, but these were also 
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observed in the graph with only pressures plotted.  The spike is elevated some from the pressure-

only calculations, but a view of the vector element’s normalized values indicates all four 

measurements contributed roughly the same to this spike.   

 

Following the transition spikes, the k-distance drops to just over one.  As the bias is still present, 

this is unexpected.  At this point, the three transfer line pressures have diverged to their Fast Fill 

values, and a cyclic pattern can be observed as they track the ET vent valve cycling that 

maintains back pressure on the tank.  During this period, new clusters are being defined, but the 

temperature measurement is more active.  This larger gap (approximately 1.0 oF) between the 

temperature’s high and low element values lowers the normalized value, and subsequently, the k-

distance. 

 

The final observation is related to the latter part of Fast Fill.  Again, the temperature is bit-

toggling which drove the k-distance value significantly higher during Slow Fill.  For Fast Fill, k-

distance drops to approximately 0.5.  What is also observed is that the STS-135 temperature has 

dropped into a region where the STS-134 temperature had been active (training data), and the 

three pressures had already started their Fast Fill profile.  Therefore, the low k-distance value is 

correlating to the activities immediately following the start of Fast Fill for STS-134, and not the 

latter part of Fast Fill when it decreases to LH2 temperatures.   
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This test highlights that when working with dynamic data, there may be times this data better fits 

a cluster that does not reflect the same activity from which generated the test data.  An 

observation such as this is desired when doing post-test data reviews as the time is available to 

resolve the issue.  However, this was a non-issue that was initially depicted as off-nominal, and 

with the bias remaining constant, later displayed as nominal.  These are not the type of events 

wanted for supporting real-time operations as they can distract the operators from their primary 

goal of monitoring system operations.  

  

Figure 36 - STS-135 LH2 Loading (SF to FF) with STS-134 Temp 
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Fault Isolation Analysis 

The implementation selected involves generating a knowledgebase which is a straightforward 

task.  However, there is an open issue regarding inclusion of single vs. multiple fault modes as 

follows: 

• If the knowledgebase is to include multiple-fault failures: 

o Should it be limited to auxiliary and/or secondary subsystems that are activated 

due to a failure on the primary subsystem? 

o Should it include the possibility of dual failures within a related subsystem (i.e. 

a regulator fails open and the corresponding relief valve fails to open)? 

o Should it include components that may be impacted due to failure propagation 

thru the system (i.e. an over-pressurization due to relief valve failure)? 

As this task is comprehensive, the initial focus should be including all single-fault modes that 

can be detected by instrumentation.  It can also include auxiliary or secondary subsystems as 

these will be common to the primary side (and are often active and being monitored).  As the 

goal is to present likely candidates, including multiple failures will likely generate lengthy lists 

with many unrealistic scenarios.  This is a knowledgebase, so the user always has the option to 

include multi-failures they deem credible or have experienced in the past.   

Proposed Framework 

With the case study concluded and an analysis of the applicable elements performed, a proposed 

framework will be summarized.  This updates the preliminary version and incorporates 

additional detail gathered during the study process. 
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• Scope the system 

o Determine the extent of the system to be augmented 

o Identify existing AD/FI capabilities 

 Avoid duplication of existing techniques  

 Rule out subsystem inclusion or failure types if already supplemented 

• Generate Requirements 

o Include both cost and functional related requirements 

o Generate initial requirements at a higher level 

 Do not want to restrict initial AD/FI classes to consider 

• Identify/categorize sensors 

• Identify/categorize fault modes 

o Initially done at the component level, and then applied generically to like 

components 

• Research available AD/FI technologies 

o Consider: 

 Commercially available applications 

 Mature development (algorithm(s) constructed and tested) 

 Conceptual techniques with supporting test results from multiple origins  

o Categorized technologies into classes with common underlying methodologies 

• Down select to an AD and FI class that best meets requirements 

• Model the system 

o For existing systems, model elements of system that will support AD/FI testing 
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• Model the AD/FI techniques 

o If testing proves application is unacceptable, consider next AD or FI class    

• Perform trade studies of available options within the class 

o Can include existing applications or new development 

• Make recommendation 

Some of these tasks outlined above may also be performed in parallel.  The process flow diagram 

has also been updated to reflect the proposed framework (reference Figure 37 - Proposed ADFI 

Selection Framework).  The following highlights the changes to the final version: 

• Generating requirements was added as its own step prior to identifying sensors and fault 

modes 

o This task was originally embedded within the Identify AD/FI applications block 

o Knowing the requirements may provide insight as whether listing all sensors 

and/or fault modes is required 

• Down-select to AD and FI classes was added following steps to gather system and 

AD/FI information. 

o As the research uncovered numerous potential methods, a means to limit the 

modeling and testing was a required intermediate step 
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bdd [package] ADFI_Apps [ADFI_SelectionFramework]     

«block»
Scope_System

«block»
Generate_Requirements

Determine extent of the system under study
Identify existing AD/FI capabilities
Rule out subsystems with augmented AD/FI

«block»
Identify_Categorize_Sensors

«block»
Identify_Categorize_Fault_Modes

«block»
Research_ADFI_Technologies

«block»
DownSelect_ADFI_Class

«block»
Model_System

«block»
Model_ADFI_Techniques

«block»
Perform_Trade_Studies

«block»
Make_Recommendation

Include both cost and functional related requirements
Generate initial requirements at a higher level
   Do not want to restrict initial AD/FI classes to consider

Categorized technologies 
into classes with common 
underlying methodologies

For existing systems, model 
elements of system that will 
support AD/FI testing

Can include existing applications 
or new development

Initially done at the component level, and 
then applied generically to like 
components

Fails

Figure 37 - Proposed ADFI Selection Framework 
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Framework Validation 

To validate the framework, this process will be implemented on the liquid oxygen (LOX) system 

that supported ET loadings for launch.  This system is also planned to be used with the next-

generation of NASA rockets.   Liquid oxygen is also a cryogenic fluid and provides the oxidizer 

used by the Shuttle’s main engines.   

 

The various KSC systems that operate out of the control room share the same C&C architecture, 

and subsequently, there is commonality as to how the existing AD and FI capabilities currently 

function.  Therefore, many of the framework processes implemented during the case study are 

also applicable to these other varied systems.  A system engineering best practice is to reuse any 

applicable artifacts as this both reduces effort by not recreating them and keeps the content 

consistent when used across a spectrum of disciplines.  When possible,     

 

The LOX system loading operations also take place late in the launch countdown.  They are both 

hazardous and time-critical, so this system could also benefit from AD/FI augmentation.  As 

LOX is much heavier than LH2, one of the main differences between these two systems is LOX 

requires the use of large cryogenic pumps (primary and secondary) to load the vehicle.  LH2 is 

loaded by pressure only, so lacks any comparable hardware.  Therefore, the scope for this effort 

will encompass the LOX pump subsystem. 

 

The C&C subsystem has its own health and status capabilities, so this will be excluded from 

consideration.  If a leak occurs, LOX does not pose the same threat as LH2, so it does not have a 
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supporting leak and fire subsystem.  As cryogenic fluids produce large vapor clouds when 

exposed to ambient temperatures, the pad camera system will be used to identify leaks.  Limit 

setting is the primary method of AD for this system. 

 

With the scope defined, the requirements can be generated.  The requirements developed for 

LH2 were reviewed, and as these are generally high-level (and not system specific), they were 

found to be applicable to LOX.  Subsequently, the research and ranking of the AD and FI 

applications is also applicable.  The LOX sensor and fault modes will be needed for the FI 

application, so they are added to the SysML model.  Some of the LOX components within the 

pump subsystem are of the same type as LH2, so the generic fault modes for these items can be 

ported over to the LOX model. 

 

As the down-select classes are suitable for the LOX system, the K-Means method will be used 

for AD.  Training data was pulled from the STS-134 mission during the Replenish loading phase.  

Replenish operations follow the initial tank loading, and keep the ET liquid level at flight mass 

to compensate for the boil-off of cryogen fluids.  It is during Replenish when the astronauts can 

board the Shuttle, and this phase can last 4 to 10 hours.  Four measurements related to pump 

performance include thrust bearing temperature, bearing oil temperature, current applied to the 

variable frequency drive and pump outlet flow (GPM).  The data is plotted over an approximate 

4-hour window, and no obvious anomalies are observed (reference Figure 38 - STS-134 LOX 

Pump - Replenish). 
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During Replenish operations for STS-135, a leak occurred on the pump after approximately three 

hours of Replenish.  It started slowly, and very gradually worsened (reference Figure 39 - STS-

135 LOX Pump – Replenish (k-distance)).  After nearly an hour, the pump was secured and the 

secondary pump brought online to support a successful launch.  The STS-135 pump plot includes 

the corresponding k-distance plot.  Even with a couple of noisy indicators, the k-distance forms a 

stable baseline.  When the pump temperatures start to drop, the upward deflection on k-distance 

is quite apparent signaling an off-nominal trend.         

 

Figure 38 - STS-134 LOX Pump - Replenish 
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For a leak failure, camera views are the primary method for both detection and isolation.  Cold 

vapors are the norm in the storage area as there are uninsulated pipes (in addition to the pumps) 

that experience cryogenic temperatures.  When a leak occurs, these vapors will tend to envelop 

Figure 39 - STS-135 LOX Pump – Replenish (k-distance) 
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the area of origin which is an indicator for the operator.  Leaks can occur anywhere in the 

cryogenic systems, though fastened joints are the primary source.  Rarely are temperature 

sensors ideally located to capture external leaks, so having these measurements corroborate a 

leak is unique.  These indicators are installed to monitor the pump’s bearings in which the failure 

mode is high temperature.  The two LOX pumps are swapped operationally with each loading so 

they are both exposed to run time.  The secondary pump’s thrust bearing temp typically 

approaches its limit when the loads are at their highest (Fast Fill), and the pump speed is reduced 

slightly so it stays within specification (temperature and operator actions create entirely different 

pump profiles which must be considered when selecting training data).     

 

For the FI knowledgebase, perhaps only the high limit was considered a valid failure mode for 

these indicators.  This could then be remedied by simply adding the low value faults.  A model 

update would be more complicated requiring one with adequate skills to accomplish the task.  If 

the model is configuration controlled, then there are additional reviews and approvals required.  

This highlights how an internal knowledgebase provides more flexibility in being sustained.  If it 

is adequately providing FI capabilities, then this ease of maintenance should be a factor involved 

if a decision to choose an FI model is needed.      

 

The framework provided a process that was used to select AD/FI applications for the LOX 

system.  The hardware was scoped to the pump subsystem as there are no pumps on the LH2 

system that was used in the case study.  However, when possible, actions accomplished during 

the case study that were applicable to the LOX system were not repeated if the results were not 
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expected to change.  This was primarily related to requirements generation.  Although the 

hardware differed significantly, the existing AD/FI capabilities were common (as they are to 

most systems in the launch control room).  This validates the decision to go forward with K-

Means AD (via the IMS application) and generating an internal knowledgebase to incorporate FI 

capabilities, and therefore, the AD/FI selection framework.  It is noted that K-Means could 

potentially have issues related to real-time operations.  However, as these issues are understood, 

they can also be overcome with methods to control the training data utilized combined with the 

flexibility IMS provides in tuning the model.  
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CHAPTER SEVEN: CONCLUSION 

This research proposes a framework to be used by organizations with a need to enhance system 

anomaly detection and fault isolation capabilities.  This chapter will summarize the effort, 

highlight resulting contributions, describe a limitation encountered and recommend future work 

to further expand this subject matter. 

Summary 

Chapter 1 introduces a need to improve upon existing anomaly detection and fault isolation 

capabilities for critical systems.  It points out that there are other methods available, but the 

applications selected for implementation do not always provide the anticipated benefit.  A 

problem statement is formulated and potential research objectives defined.  

 

Chapter 2 performs a literature review and confirms many new AD/FI techniques have been 

reported.  The review also focuses on systems engineering approaches to select and implement 

this technology.  Minimal research was uncovered that addresses the implementation of these 

new AD/FI technologies.  Furthermore, literature describing current systems engineering 

practices did not deal with inclusion of AD/FI technologies.  A gap analysis is performed 

indicating additional research is warranted. 

 

 Chapter 3 organizes and defines the methodology that will be used for this research project.  It 

depicts the development of an initial framework followed by a case study for time-critical, 
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highly-hazardous system.  The resulting (finalized) framework would be validated and the 

research effort summarized. 

 

Chapter 4 produces an initial framework to provide guidance on AD/FI selection incorporating 

system engineering practices.  It settles on a model-based system engineering approach and 

selects SysML as the standard to support the MBSE modeling.  It describes a detailed process 

flow for identifying requirements, the system under consideration, and the AD/FI technologies 

candidates.  Determining if requirements can be satisfied drives modeling of the techniques for 

testing.  Most of the system modeling can be accomplished within the SysML tool.  Testing the 

candidate applications required functionality beyond SysML capabilities.  The framework 

process ends with an evaluation of the applications followed by a recommendation.     

 

Chapter 5 conducts the case study with a focus on the liquid hydrogen system at KSC.  Liquid 

hydrogen is used to fuel the Space Shuttle’s main engines (as well as the next generation NASA 

rockets).  These are highly-hazardous and time-critical operations executed from a remotely 

located control room.  Thus supplemental AD/FI technologies could be valuable additions.  This 

study follows the initial framework while scrutinizing the individual steps in an effort to enhance 

the process steps.  As modeling the new technologies proves time consuming (many lack 

adequate detail and/or contain proprietary information), an intermediate step was added to the 

process flow to down-select to a classes of common techniques.  The modeling effort, and 

subsequent testing, then focuses on those methods.  For this case study, the choice came down to 

a single application (both AD and FI), or internal development.  A recommendation is made to 
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go forward with an AD application, and internally develop a means to provide fault mapping to 

accommodate the FI requirements. 

 

Chapter 6 analyzes both the framework methodology leading to the selection process and the 

chosen applications ability to meet the system requirements.  The proposed framework 

incorporates the refinements noted during the case study and those generated from the analysis to 

establish a ‘finalized’ product.  This framework is then validated against the liquid oxygen 

system also located at KSC.  The AD application successfully signaled a downward trend in two 

indicators used to monitor pump bearing performance.  The failure mode was attributed to a 

failed seal resulting in a liquid oxygen leak at the pump.  The AD plotted (k-distance) value had 

flagged the off-nominal trend well before an alarm was triggered.      

 

Chapter 7 concludes the research effort by summarizing the overall project.  It also describes the 

research contributions realized, limitations encountered during the study, and a recommendation 

for future work to continue the study of related topics.      

Framework 

The detection/isolation technologies described herein go above what is readily available, or 

currently implemented, in industry (and providing adequate coverage).  Therefore, the customer 

for this technology will have critical need(s) to offset the costs and/or effort.  These can include 

systems that are: (a) large, complex, costly; (b) highly-hazardous; (c) time-critical; (d) remote 
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operated (e) expensive when idle.  The framework developed recognizes this customer profile, as 

well as the necessity to provide a value-added result.  Advantages realized by this framework: 

• It adheres to systems engineering practices. 

o Organizations with systems requiring such applications are likely practicing 

system engineering, so will be consistent with their current policies. 

• Uses MBSE methodology implemented with SysML 

o Organizations using same methods may already have much of their systems 

adequately modeled 

• Selection process is requirements driven 

o If it cannot be determined that technologies under consideration fully meet 

requirements, drives additional modeling/testing to test capabilities 

o Validates the model prior to making recommendations 

• Objective process, so minimizes impact from biased stakeholders 

Contributions 

This dissertation is the first attempt to develop a framework with strict adherence to system 

engineering practices to improve and optimize system fault detection and isolation. The primary 

contribution is the framework itself as it provides a novel strategy to implementing new 

technology that can enhance system performance. It lays out a systematic approach to assist 

users in generating anomaly detection and fault isolation schema supporting existing or new 

designs. This directly addresses the original problem statement that initiated this research project.  
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Additional contributions include: 

• Extending SysML to include generic component failures.  This data was combined with 

existing Internal Block Diagrams components to auto-generate a fault tree (proof-of-

concept demonstrated).   

• Extend the contributions of those developing AD/FI technologies by providing a means 

to organize the detectors/isolators for consideration, and subsequently, acceptance for 

implementation should the capabilities meet the desired requirements 

• Couple AD and/or FI with unique applications for which they were never intended.  Path 

to generating AD/FI classes may uncover needs that could benefit from the underlying 

detection/isolation techniques 

• Improve accuracy in anomaly detection and fault isolation capabilities by pairing those 

deemed optimal for the given environment in which they will operate 

Limitations 

A limitation encountered was that the systems under study, for the most part, shared the same 

requirements.  These two systems were identified early in this project (LH2 and LOX), and the 

actual hardware selected for modeling/testing was (purposely) dissimilar.  However, as the 

command and control system is common among all the systems operating out of the control 

room, the requirements did not change enough to drive the down-select to another class of AD or 

FI candidates.  Ultimately, the model testing did show the selected classes were effective for 

both systems, even with the disparity in hardware tested.  On the flip-side, the LH2/LOX testing 
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may be a test-case indicating these applications can be implemented for all systems operating out 

of the control room. 

Future Work 

The ability to automatically create an initial fault tree from a SysML IBD was illustrated.  This 

relied on exporting a relationship matrix linking the IBD components to fault modes added to the 

SysML.  The next logical step is to create new ‘stereotypes’ of the applicable model elements 

(further extension of the model) that can capture multiple component layering within an IBD.  

This information can then be passed to external applications via the SysML export standard (vs. 

a 2-dimensional matrix) for auto-generation use. 

 

The construction of a system fault map was identified as being a comprehensive task.  If SysML 

is extended to assign faults to components (as per the fault tree example above), then it can be 

further extended to associate indicator responses to a given component/fault combination.  This 

too can be exported to an application for auto-generation of system fault maps. 

 

The K-Means method of anomaly detection requires ingestion of training data where the user 

determines the sensitivity level in which the clusters are generated.  It also allows for adjusting 

the sensitivity of the individual elements within a vector.  Additional research should be pursued 

to include: 

• Optimization of cluster sizing  

o To include high sensitivity for post-test reviews 
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o To include low sensitivity for real-time operations 

• Optimization of individual test parameter settings 

• Optimization for threshold (alarm) setting 

• Testing for biases between datasets 

• Testing for anomalies within the (unsupervised) training data 

• Testing (and handling) of very narrow high/low ranges for data that will be 

normalized.  

 

With limited data streams and display space to monitor the system, research that can integrate 

AD/FI technologies into a single application would provide value.  With two applications 

running standalone, they are not going to be designed to communicate with one-another.  

Furthermore, it is unlikely that either will be directly tied into the C&C network.  An integrated 

application can react to its self-generated alarms driving it to fetch the corresponding faults. 

 

Further testing of the framework outside of a space operations environment.  This addresses the 

‘narrow-testing’ limitation identified earlier, and would provide further confidence that this 

framework is appropriate for broad-industry use. 
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