
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2019

A Framework to Develop Anomaly Detection/Fault Isolation A Framework to Develop Anomaly Detection/Fault Isolation

Architecture Using System Engineering Principles Architecture Using System Engineering Principles

Thomas Clark
University of Central Florida

 Part of the Industrial Engineering Commons, and the Systems Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Clark, Thomas, "A Framework to Develop Anomaly Detection/Fault Isolation Architecture Using System
Engineering Principles" (2019). Electronic Theses and Dissertations. 6834.
https://stars.library.ucf.edu/etd/6834

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F6834&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=stars.library.ucf.edu%2Fetd%2F6834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6834?utm_source=stars.library.ucf.edu%2Fetd%2F6834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A FRAMEWORK TO DEVELOP ANOMALY DETECTION/FAULT ISOLATION

ARCHITECTURE USING SYSTEM ENGINEERING PRINCIPLES

by

THOMAS J. CLARK
B.S.B.A. Rollins College, 1988

M.B.A. University of Central Florida, 1991
B.S.C.S. Rollins College, 1996

M.S.I.E. University of Central Florida, 2012

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2019

Major Professors: Luis Rabelo, Gene Lee

ii

© 2019 Thomas J. Clark

iii

ABSTRACT

For critical systems, timely recognition of an anomalous condition immediately starts the

evaluation process. For complex systems, isolating the fault to a component or subsystem results

in corrective action sooner so that undesired consequences may be minimized. There are many

unique anomaly detection and fault isolation capabilities available with innovative techniques to

quickly discover an issue and identify the underlying problems.

This research develops a framework to aid in the selection of appropriate anomaly detection and

fault isolation technology to augment a given system. To optimize this process, the framework

employs a model based systems engineering approach. Specifically, a SysML model is

generated that enables a system-level evaluation of alternative detection and isolation techniques,

and subsequently identifies the preferable application(s) from these technologies

A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space

Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space

Launch System rocket). This system is operated remotely and supports time-critical and highly

hazardous operations making it a good candidate to augment with this technology. As the

process depicted by the framework down-selects to potential applications for consideration, these

too are tested in their ability to achieve required goals.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Rabelo for his continued guidance and support during this research

project. His insightfulness in in the fields of System Engineering and Anomaly Detection were

quite valuable. I would also like to thank my committee members, Dr Lee, Dr. Elshennawy and

Dr. Yazici. Their time, contributions and patience with this effort is greatly appreciated.

v

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES .. xii

CHAPTER ONE: INTRODUCTION ... 1

Anomaly Detection .. 2

Fault Isolation .. 4

Problem Statement ... 5

Research Objectives ... 5

Research Contributions .. 6

Dissertation Organization... 7

CHAPTER TWO: LITERATURE REVIEW ... 9

Purpose ... 9

Anomaly Detectors... 10

Data-Driven Models .. 10

Models/Algorithms .. 12

Fault Isolators ... 20

vi

Fault Isolation Models ... 22

Anomaly Detection and Fault Isolation ... 25

System Engineering Tools ... 25

Gap Analysis .. 29

Gap Analysis Observations ... 34

Literature Review Summary .. 35

CHAPTER THREE: RESEARCH METHODOLOGY ... 37

Methodology .. 37

Problem Statement .. 39

Research Objectives .. 39

Literature Review .. 40

Gap Analysis ... 40

Synthesis .. 40

Preliminary Framework Development .. 45

Case Study ... 46

Evaluation .. 48

Framework .. 48

Conclusion ... 49

CHAPTER FOUR: PRELIMINARY FRAMEWORK .. 50

vii

System Scope ... 51

Sensor Array... 52

Determine Potential Faults ... 53

Fault Reduction from Sensor Capability ... 55

Anomaly Detection/Fault Isolation Applications... 57

Model the System ... 59

System Structure ... 59

System Behavior ... 61

Constraints ... 62

Requirements ... 63

Existing AD/FI Capabilities .. 63

Model AD/FI Applications .. 63

Trade Studies/Application Evaluations .. 64

Make Recommendation(s) ... 65

CHAPTER FIVE: CASE STUDY .. 66

Framework Development ... 67

System Scope .. 68

Identify and Categorize Fault Modes .. 75

viii

Identify and Categorize Sensor Data ... 89

Identify and Categorize AD/FI Applications .. 94

Model the System .. 112

Model the AD/FI Applications .. 118

Perform Trade Studies ... 142

Make Recommendations ... 147

CHAPTER SIX: ANALYSIS/EVALUATION .. 149

Framework Analysis .. 149

Scope the System .. 150

Identify and Categorize Sensor Data ... 150

Identify and Categorize Fault Modes .. 151

Identify and Categorize AD/FI Applications .. 152

Model the System .. 154

Model the AD/FI Applications .. 156

Proposed Framework ... 161

Framework Validation ... 165

CHAPTER SEVEN: CONCLUSION .. 171

Summary .. 171

Framework ... 173

ix

Contributions .. 174

Limitations ... 175

Future Work ... 176

REFERENCES ... 178

x

LIST OF FIGURES

Figure 1 - Anomaly Detection Process Flow Example ... 17

Figure 2 - Potential System Fault Sources .. 21

Figure 3 - Research Methodology Diagram.. 38

Figure 4 - Preliminary Framework Process Flow ... 51

Figure 5 - Valve Component Fault Tree ... 54

Figure 6 - BDD for Remote Operated Valve Assembly ... 60

Figure 7 - IBD/Remote Operated Valve Assembly .. 61

Figure 8 - Preliminary Framework Process Flow ... 68

Figure 9 - LH2 Pressurization System .. 71

Figure 10 - IBD/LH2StorTankPressSys ... 82

Figure 11 - Model Repository Example.. 83

Figure 12 – ‘FailureMode’ to Part BDD ... 84

Figure 13 - Relationship Matrix .. 85

Figure 14 - Excel/VBA Generated Partial FT... 87

Figure 15 – BDD of Remote Valve with 1 or 2 Limit Switches ... 92

Figure 16 - BDD Containing Temperature Indicators .. 93

Figure 17 – Mission Statement/Requirements Diagram ... 96

Figure 18 - Mission Requirements .. 97

Figure 19 - Requirements AD-FI Diagram ... 98

Figure 20 - BDD/LH2StorTankPressSys .. 114

Figure 21 - IBD/LH2StorTankPressSys ... 115

xi

Figure 22 - BDD/LH2VapCntrlVlvSys .. 116

Figure 23 - IBD/LH2VapCntrlVlvSys .. 117

Figure 24 - Single Indicator Test .. 125

Figure 25 - Multiple Indicator Test (1%) .. 126

Figure 26 - Multiple Indicator test (2%) ... 127

Figure 27 – Baseline Data (Noisy).. 128

Figure 28 - Single Indicator Test (noisy) .. 129

Figure 29 - Multiple Indicator Test (1% - Noisy) ... 130

Figure 30 - Multiple Indicator Test (2% - Noisy) ... 130

Figure 31 - STS-134 LH2 Loading (SF to FF) ... 132

Figure 32 - STS-135 LH2 Loading (SF to FF) ... 132

Figure 33 - STS-135 Flow and K-Distance .. 134

Figure 34 - Pressure and K-Distance .. 136

Figure 35 - Pressure and K-Distance with Failure .. 137

Figure 36 - STS-135 LH2 Loading (SF to FF) with STS-134 Temp.. 160

Figure 37 - Proposed ADFI Selection Framework ... 164

Figure 38 - STS-134 LOX Pump - Replenish ... 167

Figure 39 - STS-135 LOX Pump – Replenish (k-distance) .. 168

xii

LIST OF TABLES

Table 1 - Expert System Techniques for Fault Detection/Diagnosis (Angeli, 2010) 24

Table 2 - Gap Analysis Summary ... 33

Table 3 - Valve Fault Scenarios .. 44

Table 4 - Failures vs. Instrument Matrix .. 56

Table 5 – Requirement Summary ... 100

Table 6 - Requirement/AD-Class Matrix .. 107

Table 7 - Requirement/IF-Class Matrix .. 111

Table 8 - Training Data ... 122

Table 9 - Elements used for K-Distance ... 135

Table 10 - Fault Map (PT057-High) ... 140

Table 11 - Fault Map (PT076 Check) ... 141

1

CHAPTER ONE: INTRODUCTION

Space operation missions are of a critical nature. This is due to the large expense associated with

such missions, many of which have interrelated costs approaching, or exceeding, billions of

dollars. In addition, space exploration missions often have small windows with limited chances

to recover from issues that may occur, and complete the mission successfully. Once committed

to a given phase during these missions, opportunities for do-overs are rare. Adding to this

criticality is that space operation systems require highly hazardous commodities to propel, power

and operate the various systems. This adds a safety factor both for those participating in crewed

missions as well as those involved in ground processing of the launch vehicle and spacecraft.

These spacecraft are comprised of numerous complex systems. This includes the equipment that

makeup the spacecraft used for delivery, and the various payloads and science instruments used

to meet the research objectives. Accompanying this complexity will be the assorted

complications. As individual components do not always operate as projected, some failures are

to be expected. This is further compounded as the system’s complexity increases. With payload

costs just recently starting to approach $1000 per pound (a tenth of that experienced by the space

shuttle) (SpaceX, 2011), designers must still strike a balance between system redundancy, sensor

allocation and hardware weight. An absence of redundancy minimizes the options an operator

has should a failure occur. A lack of instrumentation limits visibility into system performance.

For many systems, timely recognition of an anomalous situation means the issue gets evaluated

and a course of action is decided on quickly. Taking corrective action sooner can help minimize

2

damage generated from off-nominal conditions, or avoid serious outcomes for those problems

that can escalate rapidly. The ability to quickly detect and identify anomalies that arise is vital

for critical space operations.

Anomaly Detection

One of the earlier definitions of ‘anomaly’ is that it is an observation that appears to deviate

markedly from other members of the sample in which it occurs (Grubbs, 1969). More recent

definitions conclude that anomalies (or outliers) are patterns in the data that do not conform to a

well-defined notion of normal behavior (Chandola, Banerjee, & Kumar, 2009). Anomaly

detection is a recurring term found within the academic literature and has been applied to a

variety of fields. One of these fields, and the one applicable to this topic, includes health

management of complex systems. For this research project, anomaly detection will be referred

to as the ability to uncover abnormalities that arise. This term is more comprehensive than ‘fault

detection’ (also common in the literature) as it also includes anomalies generated by

environmental influences or operational circumstances.

In many cases, space operation systems are predisposed to take advantage of anomaly detection

applications. This not only applies to actual space missions that rely on autonomous designs, but

also includes supporting ground systems. Do to the hazardous nature of testing and launch

support environments, many of the ground systems are operated remotely. As processes

operating via remote command and control (C&C) rely on (limited) sensor information, anomaly

3

detection capabilities can supplement the flow of useful information to the operators based on

various techniques used to evaluate the sensor data.

Anomaly detection routinely involves one or more people to monitor the system measurements.

The primary method of anomaly detection is to bind the sensor data to predetermined limit

exceptions. If an excursion from these limits occurs, an operator is alerted who then assesses the

significance of the exception. This method is reliant on an operator with sufficient domain

knowledge to take appropriate action, and subsequently, a large number of experts may be

employed for complex systems. Operators too can monitor the data real-time or during post-

operation analysis. However, with limited display space, it is impractical to have visibility for

every remote sensor in a complex system. This is further hindered in that an operator can only

focus on a smaller subset of displayed data. Therefore, the operator relies heavily on the

automated monitoring of the entire sensor array. This reliance means an operator could benefit

considerably from an enhanced anomaly detection capability.

The predominant method for developing an anomaly detection system is to select one or more

applications that may fit one's needs. The selection process may be limited to what is readily

available, and a scrub against the system requirements may end up diminished. After these

modules are selected, development then starts on a system-level architecture that can integrate

the various elements into the current design. As this is a niche application, a certain amount of

tailoring will be required to render the forthcoming architecture functional. An application that

4

is not a good fit can amass excessive development hours in an effort to make the system

operational.

Fault Isolation

Detecting an anomaly is the first half of providing the operator with the vital data necessary to

develop a course of action. After an anomaly has been detected, the other half of the process

(and equally important) is to isolate the fault within the system. Isolation to a component or

subassembly provides the domain experts with the essential information necessary to respond

and possibly remedy the situation. Fault isolation will optimally be able to point to a specific

source. However, a lack of sensor information often leads to uncertainty which can result in an

inadequate diagnosis. It is often the case that the initial data related to the anomaly is not

sufficient to pinpoint the original problem, and involve additional troubleshooting to find the

cause. This may result in an initial isolation of the problem to an upper subsystem level. In this

limited-visibility scenario, it would not be unusual to have multiple suspect subassemblies and/or

components identified.

In addition to issues related to limited sensor data, system complexity can make the fault

isolation process arduous. The task of isolating to a fault entails assessing all possible

contributors to the problem, each with varying degrees of sensor coverage. For a complex

system, these contributors can number into the hundreds and possibly thousands. A fault that

yields additional damage compounds the problem as one must differentiate if that damage is

collateral to a single fault or originating from an entirely different fault source.

5

Problem Statement

There are many types of anomaly detection and fault isolation techniques described within the

academic literature. Some of these applications are specific to a given system or to a type of

problem, while others cover a wider spectrum of cases in general context. In addition, they have

varying degrees of effectiveness. Complex systems may require several anomaly detectors and

fault isolators to provide an adequate discovery capability. These diverse applications may target

different areas of a system, or may focus on a specific concern and work independently to

provide consensus that an anomaly is occurring or the fault source has been determined.

Although a multitude of anomaly detection and fault isolation programs can be found in the

research literature, there does not appear to be any work published on architectural templates that

could take advantage of multiple programs and integrate them into the desired systems. More

specifically, there is an absence of a methodological process for generating anomaly detection

and fault isolation designs to either embed within new system concepts, or supplement existing

schemes.

Research Objectives

An architectural framework template is being considered that assists with anomaly detection and

fault isolation module selection. Such a framework would consider the user requirements and

then be able to model the proposed system. This will enhance the module selection process and

thereby optimizing the detection/isolation suite. Such a model will assist the developers when it

comes time to implement the system. The primary objectives of this research include:

6

• Develop an architectural framework template using system engineering principles

that standardizes how users can model a system augmented with detection/isolation

capabilities

• Based on architectural analysis, provide a methodology that can determine an

optimal suite of detectors and isolators that best meet the user requirements.

• Generate a model that can integrate the detector components into the system and

provide a basis to directly produce design implementation documentation

• Verify and validate the model by experimentation using actual space operation

systems data

Research Contributions

The importance of anomaly detection and fault isolation is already valued by those operating

complex and critical systems. This is consistent with the amount of work devoted to

development of these methods and the abundance of techniques that currently exist. Many of

these detectors and isolators are developed for specific applications with a very narrow field of

focus.

The primary contribution of this research effort is realizing a conceptual model that assists users

in generating anomaly detection and fault isolation schema. This research should extend the

contributions of those development efforts by providing a means to organize the

detectors/isolators for ingestion into the model, and subsequently, acceptance for use should the

7

capabilities meet the desired requirements (or rejection of the detector/isolator should they not).

The secondary contributions should then include:

• Couple anomaly detectors and/or fault isolators with unique applications for

which they were never intended, but could benefit from the underlying detection/isolation

techniques

• Improve accuracy in anomaly detection and fault isolation capabilities by pairing

those deemed optimal for the given environment in which they will operate

Dissertation Organization

This chapter provides an introduction to the anomaly detection/fault isolation topic, and how this

research effort will focus on developing an architectural framework for inclusion of these

technologies for space operation systems.

Chapter 2 will survey the academic literature for relevant anomaly detection and fault isolation

technologies. This review will also encompass system engineering techniques that may support

development of an architectural framework. A gap analysis is then performed to determine

where a need might exist to extend the prevailing level of research.

Chapter 3 will discuss the methodologies and procedures used to conduct the research effort.

This includes an outline of the research design for the proposed framework, rationale of the

methodologies used, type and source of the information needed and analysis of the data gathered.

8

Chapter 4 focuses on developing the proposed framework. This consists of examination of the

detection/isolation techniques and a means to organize these applications by variables that

support the architectural design. System engineering practices will provide the foundation for

model development.

Chapter 5 will present a space-operations related case study that showcases an implementation of

the proposed framework.

Chapter 6 centers on the analysis of the case study. This chapter will also validate the model

being generated.

Chapter 7 will summarize the research results, provide concluding remarks, and offer

recommendations for future work.

9

CHAPTER TWO: LITERATURE REVIEW

Purpose

To formulate a conceptual architecture addressing anomaly detection and fault isolation, a

comprehensive literature review was conducted. The rationale for conducting the review was

twofold. First, a thorough review aids in bounding the research problem and directing the path

forward. This is accomplished by identifying the existing work, and from that, recognizing

which areas within the field of study that can benefit from additional inquiry. These ‘gaps’

enable the narrowing of the designated field to either a new study domain or one that extends

existing research, thus avoiding duplicate efforts that have already taken place. A gap analysis

will further assist with differentiating those areas that could benefit from additional study.

The second reason is that a literature review expands insight into the chosen topic. A review is

necessary to assess the related prevailing concepts. More specifically, the review includes

discovering the various detection/isolation methodologies already developed and understanding

the variables that make up the different technologies. Insight is also gained by identifying

relationships among the applications and realizing different perspectives for implementing within

diverse systems.

One objective of the review was to identify the current scope of anomaly detection and fault

isolation applications. This includes existing technology that may already be in use, conceptual

designs not yet implemented or paired with a system, or any related emerging technologies. The

other review objective was to attain relevant system engineering methodologies that could be

10

used to build an architectural framework that forms a standard model to support future

implementation. This chapter surveys the relevant academic literature related to these topics and

provides a baseline from which advancement by new research can be appraised.

Anomaly Detectors

Numerous models are available in both model-based and data-driven classes. The algorithms

involved tend to be ‘specialists’ in that they are most effective for selective failure modes and/or

component types. Anomaly detection is typically accomplished by a rule or signal-based

method. However, data-driven models have found a niche for possible better performance in

complex, dynamical systems, an important factor for critical systems.

Data-Driven Models

One area of anomaly detection that is getting considerable attention involves a data-driven

approach. This involves developing a knowledgebase of data depicting normal behavior which

becomes a baseline set for comparison. Abnormal behavior is then described as incidents were

the data behavior diverges from the baseline. Data-driven models tend to disregard the physics

behind the data and instead focus on the differences behind the dataset standard and test case

data. Hence, an advantage of data-driven models is that the developers do not require domain

knowledge of the system under study nor do they need to model the system specifics. Such a

design allows for distribution across multiple system platforms with little (if any) modification.

In addition, the requisite system knowledge is captured in the training datasets. These datasets

can also be expanded as nominal operational data is collected (D. Iverson et al., 2012).

11

Developing the model will require some system subject matter expert (SME) input to identify

related subsystem sensor data. The SME can also characterize the sensors based on criticality.

This information can be used to adjust sensitivity levels and establishing threshold values. This

data-driven method appears to be a simple approach, but does have its challenges as stated below

by (Chandola et al., 2009):

• Defining a normal region that encompasses every possible normal behavior is

very difficult. In addition, the boundary between normal and anomalous behavior is often

not precise. Thus an anomalous observation that lies close to the boundary can actually

be normal, and vice versa.

• In many domains normal behavior keeps evolving and a current notion of normal

behavior might not be sufficiently representative in the future.

• The exact notion of an anomaly is different for different application domains. For

example, in the medical domain a small deviation from normal (e.g., fluctuations in body

temperature) might be an anomaly, while similar deviation in the stock market domain

(e.g., fluctuations in the value of a stock) might be considered as normal. Thus applying a

technique developed in one domain to another, is not straightforward.

• Availability of labeled data for training/validation of models used by anomaly

detection techniques is usually a major issue.

• Often the data contains noise that tends to be similar to the actual anomalies and

hence is difficult to distinguish and remove. (p. 15:3)

12

For data driven models, the baseline dataset is often referred to as the ‘training’ data. The

training data itself has different classifications based on what is known about this dataset. A

supervised dataset is one that combines known anomalies with known normal data. Such a

dataset is considered labeled accordingly (anomaly and normal). A semi-supervised dataset

contains only normal data and an unsupervised data set does not have any labels (Omar, Ngadi,

& Jebur, 2013). In many cases, obtaining labeled datasets is not at all practical for complex

systems. For anomaly sets, this requires simulating the anomalies to a resolution that closely

mimics real-world. Fabricating anomalies such that the issue is fully propagated throughout the

system can be both a difficult and comprehensive task. The alternative to simulation is actually

experiencing the anomaly numerous times. This (of course) is not the optimal approach to

developing a training dataset and would only be practical if a hardware failure could be

simulated without system collateral damage.

Models/Algorithms

There is an assortment of algorithms that have been developed and applied to many complex

system applications. Due to the longevity of the Space Shuttle program, its unique need for

anomaly detection capabilities, complexity, and NASA’s inherent goal to support scientific

research, it has been the subject of numerous studies and testing related to algorithm

development. The simplest type of anomaly is classified as a ‘point anomaly.’ This is “an

instance of the data that has been found to be anomalous with respect to the rest of the data”

(Gogoi, Bhattacharyya, Borah, & Kalita, 2011). As this includes the data found with sensor

arrays under study, the anomaly detection methods will only address this type of anomaly. In a

13

majority of applications, this is the type of anomaly occurs most often, and a good amount of

research addresses this issue. The following list summarizes the various point-type anomaly

detection methodologies as described by (Chandola et al., 2009).

• Classification

o Neural Networks

o Bayesian Networks

o Support Vector Machines

o Rule-Based

• Nearest Neighbor

o Kth Nearest Neighbor (K-NN)

o Relative Density

• Clustering

• Statistical

o Parametric Techniques

 Gaussian Model

 Regression Model

 Mixture of Parametric Distributions

o Non-Parametric Techniques

 Histograms

 Kernal Function

• Information Theoretic

• Spectral

14

All of these techniques will be given consideration for inclusion in the anomaly detection

architecture. Using the classifications from the list above, the following sections will review

some of the anomaly detection research that has already been applied to space operation systems.

Rule Based

The primary method currently used for anomaly detection is an exception notification

methodology which could be considered a derivation of a rule-based practice. Although

Chandola et al describe this method as requiring a rule-learning algorithm, due to both the

criticality and reliance of this methodology, the rules are predesigned and embedded within the

controlling application.

The rules are quite simple. Each analog parameter is given an upper and/or lower exception

limit value that encompasses the nominal range (also called signal-based). The exception limit

for a discrete variable is the opposite of its current state. If an exception to these limits occur, the

operator is alerted. Exception limits can be generated to protect either the design or operational

limits of the system. As the operational environment changes, limit settings can be widened or

inhibited so as not to alert on nominal transient responses, and then reset to the newly desired

limits for that phase of the operation. Note that transient operations often create ‘blind-spots’

while monitoring the system as anomaly detection works best with stable processes. For

hazardous, time-critical or hardware-concern issues, exception limits are often used as trigger-

15

points to initiate additional rules (i.e. turning off a failed sensor or switching from a primary to a

secondary system).

Nearest Neighbor

The nearest neighbor approach is based on an assumption that related data tends to group in

dense neighborhoods. Anomalies are those outliers that are found some distance away from the

closest neighbor (Chandola et al., 2009).

An anomaly detection method called Orca (Bay & Schwabacher, 2003) uses a nearest neighbor

based algorithm to determine outliers. To minimize the computational time, it employs a pruning

technique which allows it to perform in near linear time. Orca calculates a weighted average of

the Euclidian distance for the numerical values and a Hanning distance for the discrete variables.

The output from Orca is a distance score which represents the average distance to its k-nearest

neighbors. The further away the nearest neighbors, the more anomalous the data correlating to a

higher score. Orca has been used to detect anomalies in the Space Shuttle main engines (SSME)

during both flight and engine test-stand runs (Abdul-Aziz, Woike, Oza, Matthews, & lekki,

2011) (M. Schwabacher, Oza, & Matthews, 2009).

Clustering Algorithms

In a clustering-based approach to outlier detection, the “key assumption made is that large and

dense clusters have normal data. The data which do not belong to any cluster or small clusters

(low dense clusters) are considered outliers” (Murugavel & Punithavalli, 2011).

16

A data-driven application called Inductive Monitoring System (IMS) is a distance-based

anomaly detection tool that uses a clustering technique. The data structure used for distance-

based analysis is a vector of concurrent values from related system parameters. IMS reads real-

time (or archived) data and formats it into a vector structure. It then searches the knowledgebase

of nominal data (training data) and returns the distance between real-time and the nearest

nominal data vectors (Matthews, Srivastava, Iverson, Beil, & Lane, 2011) (Martin, Schwabacher,

& Matthews, 2010). When the real-time data is consistent with nominal, this difference is close

to zero. If the data vectors start to diverge, an increase in the vector differences is noted and the

real-time data is then deemed ‘out-of-family.’ This can be an indication of an anomaly that is

occurring.

It should be noted that the real-time data is being compared to previous collected empirical data.

Thus, an out-of-family indication can also reflect a normal condition that was not fully

characterized within the nominal data sets used to ‘train’ the model. The IMS application works

well with unsupervised data which is likely the only type of data available for most large

complex systems. Unsupervised means there is an assumption of normalcy, but a potential exists

that undetected anomalies are embedded within such data sets. In these cases, IMS could treat

some anomaly precursors as nominal, requiring even greater vector disparity before getting

flagged as anomalous.

17

IMS has been used for anomaly detection testing in the Space Shuttle (wings, main engines) and

ground launch systems. In addition, it is currently used to monitor Space Station subsystems

(Matthews et al., 2011). Reference Figure 1 - Anomaly Detection Process Flow Example for a

process flow example using a data-driven distance-based anomaly detection model.

Figure 1 - Anomaly Detection Process Flow Example

Neural Network

A neural network is trained on a nominal reference data set to learn the different normal classes.

Each test occurrence is then submitted as an input to the neural network. If accepted, the test

18

instance is deemed normal, and if rejected, anomalous (De Stefano, Sansone, & Vento, 2000)

(Chandola et al., 2009).

NASA started the Methane Thruster Test-Bed Project (MTTP) as a platform for research of

plume diagnostics and Integrated System Health Management ISHM. A method to validate the

sensors was developed using an auto-associative neural network (AANN). Archived data was

used to train and test the (AANN) for sensor validation. Sensor faults ranging from hard (loss of

power or over powered which would drive the sensor off-scale low or high) to soft (indication

drifts from actual) were artificially injected. The AANN was able to detect the faults from

within the pressure sensor data as well as predict the values of the pressure measurement to a

reasonable degree (Russell, Lecakes, Mandayam, & Jensen, 2011).

Statistical/Parametric

A regression analysis for anomaly detection requires that the individual data be fitted to the

regression model. The focus is then on the residuals as these represent data that the regression

model could not explain. The anomaly score is an accumulation of divergence values of the

residuals from the model.

A Beacon-based Exception Analysis for Multi-missions (BEAM) tool was developed by the Jet

Propulsion Laboratory (JPL) to monitor autonomous space systems. This application was then

modified to support the monitoring of the Space Shuttle main engines during both flight (real-

time) and post-flight analysis (or post-test for ground testing). The anomaly detection module

19

for this application is called Dynamical Invariant Anomaly Detector (DIAD). The DIAD

element performs a parametric estimate of the residuals based on a single quantitative

measurement. It is believed that the ‘dynamical invariants’ are less sensitive to operational

influences and impacted more by internal changes to the system dynamics (Park et al., 2002).

A method of generating an adaptive anomaly detection threshold using interval models has been

proposed by (Puig, Quevedo, Escobet, Nejjari, & de las Heras, 2008). This concept was adapted

to monitor a propellant ground controlled linear-actuated valve used for rocket engine testing at

the Stennis Space Center (SSC). Nominal data was obtained from both the performance and

simulated operations of the valve under study. A number of autoregressive moving average

(ARMA) models are generated so that the valve’s behavior is satisfactorily represented based on

the control data (this can be a trial-and-error process) (Russell et al., 2011). The valve’s control

pressure was adjusted such that the valve could not close completely, thus simulating an

obstruction which is subsequently detected as a fault by the model. It should be noted that

applying this method of simulation, manipulating control parameters to achieve a desired result,

negates the use of those control outputs for the nominal data set (often, these outputs are

monitored to determine valve performance).

One-Class Support Vector Machines

Support vector machines (SVM) map the input vector into a higher-dimensional feature space

and then separates the nominal data from anomalous in that feature space (one-class refers to the

possibility that only normal data is available). A separating hyper-plane is determined by

20

support vectors (a subset of the training data) rather than the whole training samples and thus is

extremely robust to outliers. The training and test cases are represented using a kernel function

that returns the distances between pairs of examples. The anomaly score reported is the distance

from the test data point to the hyper-plane as measured in feature space. One-class SVMs have

been used to detect anomalies in the SSMEs during both flight and engine test-stand runs

(Abdul-Aziz et al., 2011) (Omar et al., 2013) (M. Schwabacher et al., 2009).

Fault Isolators

With an overabundant number of potential fault sources for a given anomaly, it would be ideal to

have a model that can automate the fault isolation process. This provides the capability to

ascertain each of the possible failure scenarios, and utilize the entire sensor array to evaluate

each case. In those instances when multiple fault sources or subsystems are identified, the model

can rank the potential candidates and present them in order of those deemed ‘most-likely.’ For

time and safety critical circumstances, the initial system-safe actions can be automated to trigger

based on the type of fault identified. To accomplish this, the fault isolation algorithm must

recognize the failure type, locate the failure position and detecting the extent of the failure (Wu,

2005).

Data-driven detection models are indifferent to the physics behind the sensor data as they devote

their attention to abnormalities found within the data. However, fault isolation models require

system knowledge to accurately pinpoint the source of the fault. There are cases where data

observation alone will be able to identify the faulty component. For instance, an analog sensor

21

with a nominal indication (approximately midscale) goes off-scale low or high in a single sample

step (an electronically high sample rate is assumed). Typically, such a rate of change would be a

physical impossibility for that system. Therefore, a model could accurately conclude the sensor

itself has failed. Conversely, if the sensor indication just starts drifting away from nominal, the

challenge is then determining if the sensor is reporting system dynamics accurately, or if in fact,

the sensor is failed. Note that a sensor is also just one component in a command and control

system that leads back to an operator. This requires additional corroborating data combined with

system knowledge (for both Process and C&C systems). This highlights that the fault source

may occur at any point from the C&C work station to the remote system being operated

(reference Figure 2 - Potential System Fault Sources). A supervised data-driven model has the

capability to accomplish this task, but this requires a bank of anomaly classified datasets (a

method of archiving system knowledge). As stated earlier in this paper, deriving anomaly

classification datasets is likely an impractical option for complex systems.

Figure 2 - Potential System Fault Sources

Local
C&C

Processing

Remote
C&C

Processing

Commands

Sensor Data

Sensor
Array System

Control
Room

Signal Transmission
(RF, Wire, Fiber Optics)

Remote System
(Satellite, Launch Pad, Space Craft)

22

Fault Isolation Models

 The following is a review of fault isolation research that is being applied to space operation

systems. The emphasis is on work that supports large-scale complex systems (vs. isolation at the

component level or smaller subsystems). All of these techniques will be given consideration for

inclusion in the fault isolation portion of the proposed architecture.

Physics Model

Physics-based modeling that accurately represents the system can be adapted to perform fault

isolation duties. A physics model captures the system knowledge within mathematical formulas

that define the system. Therefore, such a model will ‘understand’ the system dynamics to

include areas not covered by instrumentation, an advantage that overcomes limited sensor

deployment. A physics model can be used to simulate a given system, and failures can be

injected and subsequent outcomes recorded. The expectation is the model will fully propagate

the issue throughout the system. This methodology can be used to develop anomaly cases that

could support both detection and isolation. For unknown problems, one can alter the parameters

of a high-resolution model to match suspect failures until an outcome comparable to the issue

experienced is obtained. Physics models are complex and may not be deemed practical for a

fault isolation application alone. However, these models have become the norm for assisting

with the design of new complex systems. This means much of the computational effort may

already be accomplished and available for modification and integration into a fault isolation

environment.

23

NASA is developing a physics based model to simulate the launch pad’s liquid hydrogen

propellant ground system. They modify the nominal-run model by simulating faults. The sensor

data is collected and archived for use in fault diagnosis applications (Osipov et al., 2011). A

modeled-based diagnostic approach to the system is accomplished using a combined qualitative-

quantitative methodology approach per (Mosterman & Biswas, 1999). As the measured values

diverged from predicted values, these are compared to qualitative predictions made using the

system model for fault isolation. Fault identification is performed using particle filters for joint

state-parameter estimation (Daigle, Foygel, & Smelyanskiy, 2011).

Expert Systems

As expert systems are intended to mimic human-reasoning (the predominant method employed to

identify fault sources), they have been widely used for fault isolation applications. Expert systems

are developed using rules based on empirical associations. Fault diagnosis is a hierarchical process

carried out in a step-by-step manner with the next step dependent on the results from the previous

one (Kodavade, 2012). An expert will reason via a set of rules that leads to a logical chain of

events. A fault is detected if a violation of these rules occurs (Marzat, Piet-Lahanier, Damongeot,

& Walter, 2012). Table 1 - Expert System Techniques for Fault Detection/Diagnosis (Angeli,

2010) provides a summary of the pros/cons to the different types of expert systems.

24

Table 1 - Expert System Techniques for Fault Detection/Diagnosis (Angeli, 2010)

ADVANTAGES DISADVANTAGES
Rule based diagnostic expert systems

Rules can be added or removed easily Lack of generality
Explanation of the reasoning process Poor handling of novel situations
Induction and Deduction process is easy Inability to represent time-varying and spatially

varying phenomena
A process model is not required Inability to learn from their errors
Efficiency and effectiveness in fault detection Difficulties in acquiring knowledge from experts

reliably
Development and maintenance is costly

Model based diagnostic expert systems
Device independent diagnosis Domain dependent
Knowledge acquisition is not needed Difficulties in isolation of faults
Ability of diagnosing incipient faults Knowledgebases very demanding
Deal with unexpected cases
Flexibility in the cases of design changes
Dynamic fault detection

On-line diagnostic expert systems
Real time fault diagnosis Domain dependent
Ability to handle noise Good models are required
Generalization Require considerable data
Fast computation Inability to explain the reasoning process
Ability to handle with dynamics Computationally expensive

NASA has developed a rule-based expert system called Spacecraft Health Inference Engine

(SHINE) to perform system health diagnostic functions. SHINE uses heuristics to quickly

isolate possible fault causes and causal-reasoning to analyze the fault and further refine possible

causes (Straub, 2011). This system has been used for ground testing of the ARES 1X rocket (M.

A. Schwabacher et al., 2010a) and the Tactical Satellite-3 (TacSat-3) spacecraft (Mackey,

Brownston, Castle, & Sweet, 2010).

25

Functional Fault Model

A functional fault model (FFM) is a term being applied to an application that maps out the

system in a way that links the inputs/outputs down to specific components. A commercial

product being used in several space operation systems is called TEAMS (“Qualtech Systems »

TEAMS-Designer,” n.d.). An FFM will identify the Failure Effect Propagation Paths (FEPP)

from a failure mode back to the sensor that detected the anomaly. It then uses the archived maps

to identify the potential failure sources or modes that are consistent with the system response to

the anomaly (Ferrell, Lewis, Perotti, Oostdyk, & Brown, 2010).

Anomaly Detection and Fault Isolation

This paper has reviewed the topics of anomaly detection and fault isolation separately as

approaches to developing the corresponding models differ substantially. This is further

necessitated as the forthcoming architectural framework will have to treat the models

independently. It should be noted that the academic literature often combines these two areas of

study into a single topic. There is compelling rationale to take this approach as both detection

and isolation must occur before corrective action(s) take place. This complexity of complex

models is the driving force behind the need for an architectural framework that can integrate

many ‘modules’ that will comprise fault detection and isolation schemes.

System Engineering Tools

This research effort is focused on building a framework that enables the current anomaly

detection and fault isolation technologies. Such a framework must be capable of integrating a

26

multitude of potential models to meet user requirements (many still in development). In

addition, it shall be readily adaptable so that it can be ‘custom-fitted’ to meet specific mission

requirements for the various operations it is envisioned to support. With an assortment of

models and algorithms available (each with its own unique specialty) and the numerous

requirements anticipated, a systems engineering approach is deemed the best method to manage

the complex architecture development. After an initial survey of the available tools, System

Modeling Language (SysML) is the application selected to support this research effort

(“OMGSysML-v1.3-12-06-02.pdf,” n.d.). A complete specification of SysML can be found in

(Friedenthal, Moore, & Steiner, 2012a).

Model-based systems engineering supports analysis, specification, design, and verification of the

system by organizing activities through formalized representations of the system referred to as

models. This methodology enhances the quality of the design process, supports reuse of the

various output components and augments the identification of system impacts should subsequent

design changes be considered (Friedenthal, Moore, & Steiner, 2012b) (Cressent, David, Idasiak,

& Kratz, 2010).

SysML is a derivative of the Unified Modeling Language (UML). UML has become a very

popular tool used to develop large-scale, complex software applications across multiple

platforms. As UML is software-centric, SysML was developed to apply the successful UML

techniques to the system engineering field in all areas (not just software engineering). To

support an application base that includes both hardware (mechanical, fluids, electrical) and

27

software applications, SysML reuses and extends a subset of UML 2.1 constructs (Johnson,

Kerzhner, Paredis, & Burkhart, 2012, para. 1.1):

• Extends UML classes into blocks

• Enables requirements modeling

• Supports parametric modeling

• Extends UML dependencies into allocations

• Reuses and modifies UML activities

• Extends UML standard ports into flow ports

Utilizing the SysML language, models can be produced that are capable of describing the system

in detail. Disciplinary engineers use analytical tools to accomplish design and analysis tasks. If

there are times when a study (cost, risk, tradeoff, etc.) requires both system and analytical

information, this must be manually obtained from each application. There are system

engineering tools that bridge this gap and integrate the corresponding information and

subsequent updates (Kim, Fried, Menegay, Soremekun, & Oster, 2013). This points out that a

single system engineering tool may not be sufficient to achieve research goals, and SysML may

have to be augmented with a compliment of supporting tools.

The European Space Agency (ESA) has a facility called the Concurrent Design Facility (CDF)

that is a state-of-the-art program in the field of concurrent engineering and system engineering

research. The CDF is used to perform feasibility studies for potential future space missions.

They currently build system engineering models using Excel, and decided to test a model-based

28

system engineering approach using SysML. The MBSE model was considered applicable to the

concurrent engineering approach. They selected a case study on a project called Near Earth

Exploration Minimum System. The results of their testing are mixed with complaints about the

significant amount of time to build the model with too little added value. However, their final

conclusion was that SysML modeling should be paired to work in conjunction with their current

integrated design model as they see potential in this tool as the technology matures (de Lange,

Guo, & de Koning, 2012).

There is a French program developing a ramjet powered vehicle capable of reaching speeds

between Mach 4 and 8 (called LEA). A Failure Modes and Effects Analysis (FMEA) was

performed on the components that make up the vehicle. They input the FMEA results into

SysML identifying all the blocks and parts and establishing the hierarchy between these items.

Then they mapped each component using ports and connectors. With several system

architectures to choose from, the resulting model allowed the final decision to include the failure

mode of the system (Cressent et al., 2010). In fault isolation modeling, a FMEA is routinely the

first document assessed as much of the work in identifying the failure modes and components

involved is complete. SysML’s diagraming tools allow for suitable characterization of these

failures and this technique could be adapted to developing a fault isolation model.

Recognizing the trend in model-based system engineering (MBSE), NASA's Langley Research

Center initiated a project to test this technique. They implemented a pilot program to evaluate

MBSE methodology and centered it on the early phase of the Materials International Space

29

Station Experiment-X (MISSE-X). MISSE-X is designed to be installed on the exterior of the

international space station in which experiments reside that “advance the technology readiness of

materials and devices necessary for future space exploration.” The goal was to develop a SysML

model that could capture requirements, behavior, architecture and operating environment of the

experiment. The results of the pilot program showed that the investment of effort in MBSE is

substantial, but one that produced noteworthy returns (Vipavetz, Murphy, & Infeld, 2012).

Gap Analysis

A gap analysis on the reviewed literature is essential to determine if a research gap exists, thus

identifying an area for which additional study is appropriate. The review was structured such that

the literature cited would best support the research topic. However, since the goal is to find a

research area that may benefit from additional study, a lack of conclusive references specific to

the topic should be expected. To determine if the documents reviewed are supportive to this

research effort, certain questions are asked to include:

• Anomaly Detection/Fault Isolation

o What is the scope of existing anomaly detection and fault isolation

applications?

o Are they specific to an application or more general and used universally?

o Can anomaly detection techniques be used for fault isolation (and vice-

versa)?

o Are multiple anomaly detection/fault isolation models presented?

30

 Are the models specific to anomaly detection or fault isolation, or

are they cross functional?

 Are these models integrated so that they work collectively?

o Is there an architecture defined for the model (or multiple models)?

• System Engineering Tools

o Which methods/tools are used for framework development?

o Are there existing applications supporting space operations?

o Are there existing applications focused on anomaly detection and/or fault

isolation?

o Is there a conceptual detector and/or isolator framework already in-place?

The literature review concentrated on three areas to include anomaly detection, fault isolation

and system engineering tools from which to build a model. During the review, it was found that

the majority of the anomaly detectors and fault isolators were “specialists.” These techniques

often had narrow design functions targeting specific technologies. Even the data driven

applications, those that are effective without insight into the physics behind the system, have to

be fine-tuned to recognize system operational nuances. As this research effort is intended to be

applicable to complex systems, the use of multiple anomaly detectors and/or fault isolators is

anticipated to be the norm. Therefore, it is important that any resulting framework must be able

to integrate multiple and diverse applications.

The gap analysis commenced by identifying the characteristics that support development of a

standardized framework for designing anomaly detection/fault isolation systems. The research

31

literature was then reviewed and documents that met the selected characteristics were identified.

These characteristics were divided into three separate categories. The first category simply

identified the documents as being related to either anomaly detection, fault isolation or research

that supports framework development, thus matching the three focus areas mentioned above.

Referenced literature that did not meet one of these characteristics was excluded from the gap

analysis.

It was not unusual to find research that included both anomaly detection and fault isolation as

these topics are often combined to meet industrial needs. However, it should be noted that

literature involving anomaly detection or fault isolation did not include framework development

methods for selecting these types of applications. Nor did any of the framework development

literature reviewed involve applications specific to anomaly detection or fault isolation content.

The next category centered on the anomaly detection and fault isolation literature. These

characteristics first included the class of technology that these detectors/isolators fit as outlined

earlier in this literature review (reference table 2). This classification allowed for identifying

common techniques between the anomaly detection and fault isolation applications. Another

characteristic within this group then keyed on whether these works pertained to multiple models,

and if so, did the research integrate these models together. This is considered important as the

eventual detection/isolation system developed will likely be comprised of multiple models. The

last characteristic in this category highlighted any of the works that included an architecture

depicting the models.

32

The third category addresses the system engineering practices for generating a framework that

standardizes anomaly detection and fault isolation system development. The first characteristic

within this category refers to whether the literature includes SysML and/or MBSE techniques for

system development. Next it identifies those works where SysML/MBSE has been applied to

anomaly detection or fault isolation applications. Finally, it determines if architectural

development is already occurred these areas. Reference Table 2 - Gap Analysis Summary for a

summary of the gap analysis results.

33

Table 2 - Gap Analysis Summary

Anom
oly Detection

Fault Isolation

Fram
ew

ork Developm
ent

Clasification
Nearest Neighbor

Clustering
Statistical

Physics Based
Expert System

s

Functional Fault M
apping

M
ultiple M

odels
M

odels Integrated

Archetecture Defined
SysM

L/M
BSE

AD and/or FI Application(s)

AD/FI Architecture Defined

Researchers
Abdul-Aziz, et al, 2011 X X X X X
Angeli, 2010 X X
Bay & Schwabacher, 2003 X X
Chandola, et al., 2009 X X X X X X
Cressant, et al., 2010 X X
Daigle, et al., 2011 X X X
De Lange, et al., 2012 X X
De Stefano, et al., 2000 X X
Ferrell, et al., 2010 X X
Gogoi, et al., 2011 X X X X X
Friedenthal, et al., 2012 X X
Iverson, et al., 2012 X X
Johnson, et al., 2012 X X
Kim, et al., 2013 X X
Kodavade & Apte, 2012 X X X
Mackey, et al., 2010 X X X X X
Martin, et al., 2010 X X X X
Mathews, et al., 2011 X X
Marzat, et al., 2011 X X X X
Murugavel & Prunithavalli, 2011 X X X
Omar, et al., 2013 X X X X X
Osipov, et al., 2011 X X
Park, et al., 2001 X X X X
Puig, et al., 2008 X X X
Russell, et al., 2011 X X X X X X X
Schwabacher, et al., 2010 X X X X X X X X
Schwabacher, et al., 2009 X X X X X
Vipavetz, et al., 2012 X X
Wu, 2005 X X X X X
Clark, 2015 X X X X X X X X X X X X X X X X

Category Sys EngAnomoly Detection/Fault Isolation

34

Gap Analysis Observations

The various characteristics have been identified from the literature reviewed and this information

has been consolidated in table 3. Inspection of this table shows that ‘gaps’ do appear to exist in

relation to the research topic. The following observations summarize areas in which conclusive

research is absent:

• The literature involving anomaly detection/fault isolation (AD/FI) did not include

an architecture as to how these applications should be selected and used. Those works

that had the ‘architecture defined’ feature selected (Kodavade & Apte, Schwabacher, et

al.) only had an upper-level depiction of the architecture specific to the model(s) being

presented.

• The SysML/MBSE references did present several instances of applications related

to space operations processing. However, none presented methods for developing a

framework specific to AD/FI applications.

• There was little research encountered related to integrating multiple models.

Much of the AD/FI literature was specific to a single application. Several surveys

described multiple models (Abdul-Aziz, et al., Chandola, et al., Gogoi, et al. and Omar, et

al.) but these works did not attempt to integrate the models exhibited. Park provides an

overview of an integrated anomaly detection scheme called ‘BEAM,’ but the emphasis of

the article is on a single module within this system (Park et al., 2002). Russell and

Schwabacher both present integrated AD/FI systems (with mixed results), but each uses

an unique framework (Russell et al., 2011) (M. A. Schwabacher et al., 2010b). None of

the literature reviewed provides the methodology for AD/FI application selection.

35

Literature Review Summary

A survey of the literature was performed on the topics of anomaly detection and fault isolation,

as well as system engineering tools that could be used to develop a detection/isolation

framework. Numerous models are available in both model-based and data-driven classes. The

algorithms involved tend to be ‘specialists’ in that they are most effective for selective failure

modes and/or component types. Therefore, it is anticipated that a detector/isolator system will be

comprised of multiple applications so that it is effective on the complex system for which it is

being designed

The primary method of anomaly detection is an exception-based method. This method notifies

an operator if design or operational limits are exceeded. Data-driven models have found a role in

complex, dynamical systems, and function by detecting outliers in the data which have not yet

exceeded predetermined limits. Such models can disregard the physics behind the system

allowing for distribution across multiple systems, though detection accuracy is dependent on the

quality of training data and effectiveness of the scoring-algorithm. Fault isolation techniques

tend to be model-based as system knowledge is required to isolate the fault to its source.

Isolation is a difficult task as systems often lack the requisite sensor data, hence lacking the

necessary insight for accurate identification. This difficulty is further compounded by large

numbers of potential sources to evaluate within complex systems.

An architectural framework that combines these methods is desirable. A model based system

engineering tool, SysML, shall be used to evaluate the premise that such a framework is possible.

36

A descriptive model that can assist with analysis, specification, design and verification of this

concept is the desired outcome.

A gap analysis was performed on the literature reviewed. The analysis shows that a gap exists in

the methodology for selecting anomaly detection and fault isolation applications. In addition, the

review was unable to uncover a systematic approach for a selection process using model-based

system engineering techniques. This dissertation will pursue this line of research.

37

CHAPTER THREE: RESEARCH METHODOLOGY

This chapter depicts the methodology used in this dissertation. It provides a road map towards

developing a framework that can standardize the selection of anomaly detection and fault

isolation applications that can best be integrated into a desired system. This design addresses the

research gap identified and provides a process by which the research objectives can be realized.

Methodology

This research topic originated from an observation that anomaly detection and fault isolation

applications were selected based more on availability than on ability to meet system needs.

Initial research was unable to uncover a practice that could assist a user with this selection

process. In addition, this preliminary research determined that a significant amount of research

has been generated related to anomaly detection and fault isolation techniques. Much of this

research has not been applied in commercial applications. This led to the Problem Statement

described in Chapter 1.

A framework that standardizes this selection process using system engineering principles is the

goal of this research. Such a model must be able to pair numerous and unique detection/isolation

techniques to a variety of applications in a way that maximizes efficiency of the integrated

system. Figure 3 - Research Methodology Diagram illustrates how this study will go forward to

meet this objective.

38

Problem
Statement

Research
Objectives

Literature
Review

Gap
Analysis Synthesis Preliminary

Framework

Case
Study Evaluation Framework

Research
Objectives

Met?
End

Yes

No

Conclusion

Iterative Process

Figure 3 - Research Methodology Diagram

39

Problem Statement

The research process starts by first identifying a ‘problem,’ or an area that could benefit from

additional academic-level research. In this case, the focus is on anomaly detection and fault

isolation applications that could be used in space operation systems. Little research could be

found on existing architectural templates that could integrate these applications into the

designated systems. More specifically, there is an absence of a methodological process for

generating anomaly detection and fault isolation designs to either embed within new system

concepts, or supplement existing schemes.

Research Objectives

The next step is to generate objectives that will work towards resolving the problem area

identified. Achieving these objectives is the goal of this study (and meeting this goal signals that

the dissertation research effort is complete). The objectives for this research include:

• Develop a framework that standardizes how users can augment a system with

detection/isolation capabilities

o Framework to use system engineering principles

o System can be either existing or a new design

o Framework to provide a means to rank or optimize detectors and

isolators under consideration

• Validate the model by experimentation using actual space operation systems data

40

Literature Review

A comprehensive literature review is performed to survey relevant works that may exist

addressing the problem identified. A thorough review aids in bounding the research problem and

directing the path forward. A literature review expands insight into the chosen topic, and allows

for assessing related prevailing concepts. More specifically, the review includes discovering the

various detection/isolation methodologies already developed and understanding the variables that

make up the different technologies. These applications have been categorized into class-objects

as this organization will assist with model development. Insight is also gained by identifying

relationships among the system applications for which these detectors/isolators are designed to

support.

Gap Analysis

After a literature review is complete and the effort summarized, a gap analysis is performed to

determine where existing research efforts are lacking. Research gaps in the designated field are

an indication that those areas could benefit from additional study. In this case, conclusive

references specific to system engineering techniques that support development of a

detector/isolator framework were not discovered, thus signifying that this topic is deserving of

further pursuit.

Synthesis

Identifying all the pertinent data is the first step in generating a framework. When an anomaly

occurs, it is expected to ‘disrupt’ the sensor array thus signaling an operator that the system is

41

diverging from nominal. A domain expert (or an algorithm) must then ‘interpret’ the deviations

observed from the instrumentation, and using a logical process of elimination, isolate the

problem to a specific subsystem or component fault. At this point, remedial action (if required)

can be considered. Therefore, an important relationship exists between the type of anomalies

that can occur and the availability/arrangement of sensors used to monitor the system. These are

the primary dataset sources that will support this research.

Failure Identification

As the goal of this research is the enhancement of anomaly detection and fault isolation

capabilities of complex systems, the potential failures that can occur must be quantified to

encompass all that can operationally impair the system. If a ‘Failure Modes and Effects

Analysis’ (FMEA) has been accomplished on the system, then potential faults may have already

been identified. Fault-tree analysis is a technique that can be used to scope the potential failures

for a component or system. Each of the fault-tree’s basic or intermediate events denotes a failure

that can impact the functionality of the top-level item indicated.

Not all failures will impact system performance. For example, a cabinet that houses system

instrumentation inside a conditioned room with a broken latch may be considered a benign

failure. The same broken-latch cabinet mounted outside may have more ominous consequences

while operating during inclement weather. Therefore, failure criticality must be taken into

consideration when determining those problems that require inclusion. In addition, some

potential problems may have an extremely low probability of occurring. A pipe support tends to

42

be a static structure designed to carry more than its prescribed load. This precludes having to

instrument each and every pipe support even though a support failure could result in damage to a

crucial pipe run. A risk analysis (criticality vs. probability) can be used to maintain the list of

potential failures at a manageable level and remain focused on credible issues that threaten

system performance.

As the path forward in developing this framework is guided by a systems engineering approach,

defining requirements will be an essential element to this process. The inventory of failures

generated by this analysis will lead to a corresponding requirement that states the failure mode

shall be detected.

System Monitoring

The principal limitation in the ability to fully detect/isolate anomalies can be directly correlated

to the system instrumentation. Instrumentation must be embedded within the remote hardware it

is evaluating, and communicate via a C&C subsystem to provide operator feedback. This is

costly and makes it impractical to include a sensor for every possible failure mode. These

indicators too are susceptible to failure which results in some system degradation (for non-

redundant sensors) as a reduction in visibility occurs. The first question routinely asked when a

measurement alarms is, “Did the sensor fail?” In addition, unwanted actions may occur as

automated processes may be invoked that are linked to (failed) instrument data.

43

For remote systems, the operator’s ‘view’ is restricted to what the sensor array provides. The

instrumentation encompassed within a design will have a specific purpose for its inclusion.

Typically, it will meet operational requirements for monitoring the system functionality in

general, as well as supporting various tasks. These operational requirements will bound the

measurement to a tolerance range, and induce an alarm should the tolerance be exceeded. This is

where the various anomaly detection techniques come into play. They are not limited to

monitoring a specific measurement for a specific operational band. Instead, they look at the

system or subsystems as a whole and extrapolate information from multiple sensors. This

method uses both direct and indirect measurements to infer system health.

Using, for example, a valve that fails to indicate closed after being commanded to that state. The

fact that the close switch never went on was a direct indication of that valve’s state. However,

this one indicator should not be taken at face value, but treated only as an alarm that something is

amiss. A fault tree may show numerous faults that can lead to a valve malfunctioning. In

addition to the closed indicator remaining OFF, Table 3 - Valve Fault Scenarios, describes sensor

feedback that will assist in determining the valve’s current position. For all three possible states,

multiple sensors must be evaluated to corroborate that position. This process is anomaly

detection. It is not limited to simply fielding an alarm, but using this alarm combined with other

indications (both anomalous and nominal) to determine the system’s current state.

44

Table 3 - Valve Fault Scenarios

Valve Position Sensor Feedback

Open
Close Limit Switch Remained OFF (anomalous)
Open Limit Switch Remained ON (anomalous)
No changes to immediate upstream/downstream pressures or
temperatures (anomalous)

Partially
Open/Closed

Close Limit Switch Remained OFF (anomalous)
Open limit switch goes OFF (valve moved) (nominal)
Downstream pressure drops some, but not fully (anomalous)

Closed Close Limit Switch Remained OFF (anomalous)
Open limit switch goes OFF (valve moved) (nominal)
Downstream pressure drops completely (nominal)

Fault isolation is the process of using the sensor array to pinpoint the source of the fault to a

specific component (or base-event on a fault tree). This too is important as it assists in

determining the extent of the anomaly’s impact. If the example valve did in fact close, this

would imply the close limit switch failed per the fault scenarios above (reference Table 3 - Valve

Fault Scenarios). However, if the failure was due to a failed discrete processing card in the C&C

subsystem, then it may have other implications as these cards typically contain multiple

indicators. This requires that all measurements that can provide any insight into an anomaly be

identified for that anomalous condition.

Datasets

Several datasets have been identified to support this research project. First, all potential

anomalies must be identified. This will be accomplished using fault-tree analysis at the

component level. A risk analysis will limit the collection of faults by ruling out those deemed

45

non-credible based on probability and criticality of the failure. Next, all system sensors must be

described. These will be cataloged to the type of failure they can detect and subsystem they

support.

A matrix can be generated that combines these datasets and relates this information at a

component level. For each fault, any indicators that can provide awareness to that component

and supporting subsystems will be listed. In addition, when multiple measurements are required

to make a judgment, the matrix must be able to distinguish those sensors that must collaborate

with others to make a failure determination.

The Space Shuttle program’s Problem Reporting and Compliance Application (PRACA)

repository contains all non-conformances reported for both the LH2 and LO2 systems. This will

be a valuable source of actual issues that can support both model testing and validation.

Synthetic problems may also need to be generated to account for credible problems not

encountered during critical Shuttle operations.

Preliminary Framework Development

This section focuses on developing a preliminary framework. This framework begins with the

data synthesis just described. In keeping with a systems engineering approach in this research

effort, a Model-Based System Engineering (MBSE) application will be employed for framework

development. This application will meet SysML language standards. SysML is derived from

UML in that it has been extended to support both hardware and software development. An

46

MBSE model has several advantages that support this effort. First, the ability to make changes

and analyze the subsequent impact will be beneficial when it comes time to fit the various

detectors/isolators onto the designated system. Next, the capability to reuse objects created can

reduce the overall effort, a process that can be quite tedious for a complex system. A SysML

modeling tool enforces the language rules and also provides means for tracking requirements and

validating the model which are important features for this project.

With a modeling approach selected, initial framework development involves examination of the

detection/isolation techniques and a means to organize these applications by variables that

support the framework design. These applications will be aligned into classes (and sub-classes)

consistent with the groupings outlined within the literature review. Each anomaly detection and

fault isolation class will be labeled by both their capabilities and interface. The capabilities (or

behaviors) will be used to determine which requirements they can satisfy, and the interface will

identify the inputs/outputs for that application. This preliminary framework will result in

detection/isolation ‘modules’ that are ready for system inclusion in a model-based environment.

Case Study

A space-operations related case study will be presented that showcases the implementation of the

proposed framework. In this case, a system to augment with a detector/isolator application is

necessary. To meet this need, the cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2)

systems at the Kennedy Space Center (KSC) have been selected. These systems, located at the

launch pad, were used to fill the Space Shuttle’s external tank with propellant and oxidizer for

47

the Shuttle’s three main engines (and are slated for use again with the next NASA Space Launch

System (SLS) program). Due to the hazardous aspects of these operations, the pad systems are

operated remotely in a control room located approximately three miles away. In addition, the

cryogenic properties of the propellant dictates that loading the Shuttle occurred within hours of

launch leaving little time to resolve issues that arise in narrow launch windows. These time-

critical and high-risk operations makes the designated systems good candidates to be ‘outfitted’

with anomaly detection and fault isolation enhancements.

This case study involves taking the LH2 system initially and replicating it in an MBSE format.

A unique approach is planned that models the system not only as it operates nominally, but as a

system of ‘failures.’ This involves capturing the component states at a given failure mode and

modeling the subsequent actions (behavior) as an impact to the sensor array. It is envisioned that

this method will better enable the detector/isolator selection process. Being able to match the

application capabilities directly to failure modes they are designed to detect should facilitate the

application-system pairing process.

This initial modeling includes identifying those components and assemblies in which

detection/isolation attributes are desired as these will evolve into requirements. At this point, the

anomaly detection and fault isolation modules will be integrated into the model. The goal here is

to ensure all potential fault sources are covered and corresponding system requirements are being

satisfied. Legacy LH2 system problem data will be available for ingestion into the model while

developing and testing this case study.

48

Evaluation

This section centers on the analysis of the case study results. This includes verifying the

progressing design to include confirmation that requirements are fulfilled and all system

interfaces are identified. During evaluation, a methodology will be developed that optimizes the

component selection. By optimal, it will assume a design that meets requirements while

lessening complexity, and subsequently, the aggregate cost for design, implementation and

procurement. This will be accomplished by minimizing the number of detection/isolator

applications and enabling data sharing via common interfaces. The advantage to an MBSE

approach is the capability to insert/remove various components (from both system and/or

detector/isolator applications) and assess the overall impact on the design. This is expected to

ease process development. Finally, the resultant data will be interpreted, synthesized, and all

findings uncovered shall be reported.

Framework

Testing via the system (and problem data) provided from the case study, evaluation of the results

and framework development is expected to be an iterative process. This task will focus on

capturing this process and will ultimately define the framework. The initial phase will

continuously modify the model until a (sufficiently) functional framework emerges. This will be

followed by fine-tuning the framework to achieve some optimizing characteristics for the

selection process.

49

Once the resultant framework is specified, it will be validated. This will be accomplished by

using the framework to augment the LO2 system with anomaly detection and fault isolation

capabilities. Both real system faults (legacy) and synthetic problems will be used to test the

model. This section concludes when a framework can be validated that ideally meets the

research objectives.

Conclusion

The conclusion will summarize the research to include analysis, interpretations, findings, results

and concluding remarks. This will also comprise the various accomplishments and their relation

to the research objectives. Recommendations will be suggested for future work from either

related questions raised during the study in areas that may benefit from closer examination, or for

the next logical path in further developing a standard that integrates anomaly detection and fault

isolation technologies.

50

CHAPTER FOUR: PRELIMINARY FRAMEWORK

This chapter proposes a preliminary framework that forms the foundation from which this

research effort is based. This framework will describe the principles and procedures used to pair

anomaly detection and fault isolation (AD/FI) applications to new or existing complex systems.

This framework involves a multi-stage process as outlined below:

• Ascertain and scope the system to be augmented

• Identify and categorize the sensor data available for ingest

• Identify and categorize the potential system faults

• Identify and categorize the possible AD/FI applications for consideration

• Model the system

• Model the AD/FI techniques

• Perform MBSE-centered ‘trade studies’ of the various AD/FI techniques

o Evaluate/analyze those tested

• Make recommendation(s)

Some of these processes may work in parallel while others have distinct predecessors and/or

successors. Reference Figure 4 - Preliminary Framework Process Flow for a process flow

diagram of the initial framework.

51

System Scope

The first step is to define the system to be enhanced with AD/FI capabilities and determine the

scope to which detection is required. This scope not only includes the breath or boundaries of

the system, it is also comprised of the level of granularity to which detection abilities are

applicable. These boundaries should encompass the system itself, the sensors that provide

Framework
Process

Scope the
System

Identify &
Categorize

Fault Modes

Identify &
Categorize

Sensor Data

Identify &
Categorize
AD/FI Apps

Model the
System

Model the
AD/FI

Applications

Perform
AD/FI-System
Trade Studies

Make
Recommendations

Figure 4 - Preliminary Framework Process Flow

52

feedback to the operators and the command-and-control subsystems (both reception and transmit

locales).

The level of detail at which the detection capabilities must function must also be defined. This

detail level will be dependent on the system design combined with requirements derived from the

stakeholders. Typically, this detail will go to the component level at which a specific element is

replaced. However, when the system includes redundant subassemblies or process legs, then

detection may be required only for this level as the secondary assembly/process may be brought

online should the primary subsystem fail.

 Scoping the system should also identify AD/FI capabilities that already exist within the system.

This can avoid unnecessary overlap in cases where existing techniques are robust. It may also

identify cases where additional enhancement is required for capabilities that may be

underprovided.

Sensor Array

The sensors are the principal means of providing visibility into the health and status of a remote

operated system for those monitoring its performance. This is also the limiting factor in the

ability to determine if an anomaly is occurring and what is the root cause for that problem. The

sensors are designed into the system in positions that communicate key information for specific

operational scenarios. For complex systems, it may take many such measurements to provide an

53

adequate status. Often, system health and status is inferred from a combination of indicators, and

not necessarily as that specific measurement were originally intended to be used.

As the sensor array provides the view of the system, it is very important to identify all the

sensors available within the system. These indicators will determine the detail level scope at

which the system will be modeled. There is no need to provide high granularity detail if the

sensor array does not provide high resolution visibility. Once the sensors are identified, they

must then be categorized based on the type of data they provide. This will include both direct

and indirect information that can be gathered from these indicators. This is a key step. Many of

the AD/FI techniques are based on their ability to garner bits of information from multiple

sensors and provide an accurate depiction of the system status.

Determine Potential Faults

All potential faults that can adversely impact system performance must be identified. The

resulting list will drive requirement development stating that the system shall have the capability

to detect such faults This will initially be accomplished using a fault tree analysis approach.

Fault trees are a graphical method that model component failures and also show how such

failures can propagate through the system (Ruijters & Stoelinga, 2015). As the name implies,

this is a tree structure that identifies basic (circle) and intermediate (rectangle) events that could

possibly lead to the issue denoted in the top-level block. These events (or failures) follow a path

towards this top-level anomaly, and this path is controlled by AND or OR gates. Reference

54

Figure 5 - Valve Component Fault Tree for a partially developed fault-tree representing a remote

operated valve).

A systematic approach should be applied to bind the number of potential faults. Initially, this

will encompasses all components at the operational level at which they are replaced should a

failure occur. However, there may be circumstances when it is not practical to provide detail all

the way down to the component level. This could include cases where the component is not that

critical and its loss will have minor, if any, impact on the system. In addition, there may be

redundant process legs that can be completely isolated from one another. The failure mode in

this scenario need only be identified to one of the redundant subassemblies. Finally, the system

Valve Not Indicating
Closed

(following issue of
close command)

Valve Failed
(System)

Remote Comm Lost
(Command &

Control)

Closed
Indicator Fails

(Sensor)

Actuation System
Fails

Structural
Failure

Valve Binding
Prevent Full

Closure

Seat
Contamination
Prevents Full

Closure

Solenoid Valve
Fails

Actuation
Pressure is

Lost

Actuator
Structural

Failure

Control Card
Fails Processor FailsLoss of Power

Fuse Blows DC Power
Supply Fails

Facility Power
Loss

Figure 5 - Valve Component Fault Tree

55

visibility provided by the sensor array will likely not cover 100% of the system components, thus

the system design forces a reduction in failure modes for inclusion.

Fault Reduction from Sensor Capability

The sensor array will be the primary factor in resolving the failure modes identified by the fault

tree to those in consideration for the framework. For those components that have some degree of

sensor oversight, criticality will be assumed (and assumed non-critical if sensor visibility is

lacking). If indicator granularity can only provide insight to a subassembly level, then the

corresponding failure mode will only be identified to this level.

A ‘Failures vs. Measurements’ table was produced using the fault-tree failures and a hypothetical

suite of corresponding measurements (reference Table 4 - Failures vs. Instrument Matrix). This

table uses a “D” to denote an indicator that directly monitors for a particular failure. Assuming

that sensor has not failed, then it is a sufficient data point to ascertain the corresponding failure

mode as the problem source. An “I” represents an indirect measurement. These cannot

exclusively determine the failure mode and require additional collaboration to reach a

conclusion.

56

Table 4 - Failures vs. Instrument Matrix

The above matrix (Table 4 - Failures vs. Instrument Matrix) can be used to further reduce the

number of failure modes. If a failure mode results in duplicate ‘mode vs. sensor’ allocation, then

these are candidates for merging into a single problem. In this case, the instrumentation may

detect a valve failure, but cannot distinguish between Seat Contamination, Valve Binding, Valve

Structural Failure or Actuator Structural Failure.

In the process of scaling down potential faults due to sensor limitations, it will not be unusual to

find gaps in the design that may allow critical processes to fail without detection. This can be

related to a design process that focuses on operational requirements. By performing an analysis

of the various fault modes, weaknesses in sensor types and distribution may be uncovered. This

Seat Contam
ination

Valve Binds
Structural Failure

Actuation Solenoid Fails

Actuation Pressure is lost

Actuator Structural Failure

Closed indicator Fails
Control Card Fails

Pocessor Fails

Power - Fuse Blow
s

DC Power Supply Fails

Loss of Facility Power

Valve Fails to Close Ind

Open Indicator I I I I I I I I I I I I

Close Indicator I I I I I I D I I I I I

Upstream Pressure I I I I I

Downstream Pressure I I I I I

Downstream Temperature I I I I I

Actuation Pressure I D

DC Voltage D D

Amperage I D I

Comm/Health Relays D D

Valve C&C

57

is a key point, and one that emphasizes the need to complete the arduous task of identifying the

majority of the potential faults. The task of selecting AD/FI should be biased heavily towards

anomalous conditions and less so towards nominal operations.

Anomaly Detection/Fault Isolation Applications

A review of the available AD/FI techniques should be performed to determine which

applications should be considered for system inclusion. This will be based on the requirements

generated that the application is expected to satisfy. It should not be assumed that a single

application will suffice. An ‘all-purpose’ algorithm may give up precision to accommodate a

broad detection capability while issue-specific methods may provide the needed accuracy, but

fulfill fewer requirements. Several factors may be used to prescreen which techniques will be

applicable for the given circumstance. These can include:

• Budget

o License costs to purchase an existing application

 Setup costs to ‘customize’ the application for the given

system

o Costs to develop a non-commercially available application

o Maintenance and data gathering to support functionality

o Hardware platforms/system integration

• Effectiveness

o Meets requirements

o Specific functionality vs. general application

58

o Accuracy

 Captures all (most) issues

 Minimal ‘false’ alarms

The AD/FI applications will be addressed as classes that describe how their corresponding

techniques function. The framework will make a recommendation at this class level. Therefore,

it will be incumbent on the user to determine if commercial applications exist from which to

select the final product, or if development of a custom application is required. The following list

outlines the AD/FI classes that will be developed for this framework.

• Anomaly Detectors

o Rule Based

o Nearest Neighbor

o Clustering Algorithms

o Neural Network

o Statistical/Parametric

o One-Class Support Vector Machines

• Fault Isolators

o Physics Model

o Expert Systems

o Fault Map Model

59

Model the System

Using a model-based system engineering (MBSE) approach, the system will be modeled by

means of the system modeling language (SysML). SysML uses a complement of diagrams to

portray the system graphically for users and stakeholders. These diagrams provide a ’view’ of a

portion of that system. However, there is an underlying structure that connects the various

diagrams and interrelates with the model elements that are generated. The package diagrams

will be used to portray the structure of the model. When modeling the system, the following list

highlights fundamental elements that will be used to compose the model.

• System Structure

• System Behavior

• Constraints

• Requirements

• Include Existing AD/FI Capabilities

The SysML diagrams are designed to support model development specific for this functionality.

These elements are explained in detail in the following sections.

System Structure

The system will be modeled by first focusing on the system structure. The SysML block

definition diagram (BDD) and internal block diagram (IBD) are used to define the system

structure. The fundamental element of structure in SysML is called a block which is used to

represent systems, subassemblies and components (among other abstractions). A BDD is used to

describe the structural schema of a system, and is composed of blocks that show their

60

relationship with other blocks. A BDD was generated for a ‘remote operated valve’ assembly as

an example (reference Figure 6 - BDD for Remote Operated Valve Assembly). This BDD shows

that the Remote Operated Valve is composed of an Actuator, Valve and open/close Solenoid

Valves. The valve is also composed of 1 or 2 limit switches.

An IBD is used to show the internal connections of the parts within a block. This is used when

there is a desire to add resolution to the composition of a block. An IBD was produced

(reference Figure 7 - IBD/Remote Operated Valve Assembly) that uses the parts that make up

bdd [Package] Operational Domain Model [Remote Operated Valv e]

«block»
RemoteOperatedValv e

parts
 : PriCloseSV
 : Actuator
 : PriOpenSV
 : Valve

«block»
Valv e

parts
 : LimitSwitches

«block»
Actuator

flowProperties
 inout 750_GN2

«block»
LimitSwitches

«block»
PriOpenSV

«block»
PriCloseSV

1..2LS

Act CSVOSVVlv

Figure 6 - BDD for Remote Operated Valve Assembly

61

the Remote Operated Valve block (per figure 6). This diagram shows how the various parts

interface with one another. The parts include ‘ports’ that reveal some type of media is passed

between those parts. In this case, if the open and closed solenoid valves are energized, 750

pounds per square inch (PSIG) of gaseous nitrogen (GN2) is applied to the actuator’s open side

while the closed side is vented. This forces the actuator to move upward which opens the valve

(connected by valve stem).

System Behavior

SysML also provides diagrams that depict system behavior to include Activity, Sequence, State

Machines and Use Cases. A use case diagram is simply used to show (typically) high level use

cases that the system may perform. A sequence diagram shows the interactions among the

ibd [Block] RemoteOperatedValv e [RemoteOperatedValv e]

«flowPort» ActClose

«flowPort» ActOpen ValveStem

: Actuator

«flowPort» ActClose

«flowPort» ActOpen ValveStem

: Valve

«flowSpecific...
Pwr_28VDC

«flowSpecific...
Act_750GN2

«flowPort»
SV_Close

«flowPort» PwrVDC

: PriCloseSV

«flowPort»
SV_Close

«flowPort» PwrVDC

«flowPort»
SV_Open

«flowPort» PwrVDC

: PriOpenSV «flowPort»
SV_Open

«flowPort» PwrVDC

Figure 7 - IBD/Remote Operated Valve Assembly

62

various system elements (or environment) based on ‘messages’ between these elements. These

two diagrams will be used in this framework to a lesser degree (if at all).

To model system behavior, this effort will concentrate on capturing that behavior using activity

and state machine diagrams. An activity diagram is used to portray behavior over time with an

emphasis on the flow of matter, energy and data among a set of actions (Delligatti, 2013). State

machines focus on event based behavior, and show how the system reacts to an event via state

changes of the model elements. These events are often asynchronous which is consistent with

anomaly occurrence within a system. State machine diagrams will be used to represent anomaly

events and the subsequent impact these events have on the system in the form of state changes.

This is a very important aspect of the modeling effort. Modeling the failure modes will enable

the ability to adapt model segments of the AD/FI applications to the system model, and

subsequently, the ability to test performance of those model sections.

Constraints

A parametric diagram is used to express constraints in the form of equations, expressions or rules

(Holt & Perry, 2013). This will provide support for analysis in the performance of the AD/FI

applications being tested. Violating a constraint is what signals the model that an anomalous

condition is occurring, thus constraints will be tied closely to the system sensors.

63

Requirements

A requirements diagram is also provided by the SysML modeling language. As stated earlier,

requirements will be generated for those anomalies that the system shall require the capability to

detect. The requirements diagram is text based, though it allows one to link requirements to both

structural and behavioral model elements. This enhances the traceability between the

requirement, its implementation and satisfaction.

Existing AD/FI Capabilities

When modeling the system, it will be important to identify existing AD/FI capabilities embedded

within the system. This will minimize the duplication of capabilities when selecting from the

various applications, though some overlap will be expected. Often, these existing capabilities

will fall short of the desired detection level. Hence, the need to augment those capabilities with

additional coverage.

Model AD/FI Applications

Similar to modeling the system, the AD/FI applications too must be modeled. As previously

stated, a constraint violation will flag the system that an anomaly is occurring. Therefore, the

goal in modeling these techniques is to further bind the constraints which results in a higher

expectation that an exception will occur. These ’easier’ exceptions should correlate to a quicker

detection of a problem from a wider range of potential anomalies. This will be accomplished by

using the parametric diagrams to capture the application techniques, and then describing these

techniques in the terms of a system constraint.

64

Trade Studies/Application Evaluations

Within the SysML literature, it is at times stated that an MBSE approach enables the ability to

perform trade studies. However, there is little written that formalizes this process. This is not

unusual as SysML does not dictate model methodology, it only specifies the language in the

form of rules. The actual model implementation is left to be formed by the user.

As part of the trade study, it is important to evaluate each of the alternatives and quantify the

value that application can add to the system. For a complex system, it is unlikely that a ‘one-

size-fits–all’ application will suffice, thus several of the alternatives may be required. Analysis

will be required to rank the options. The goal will be maximizing the effectiveness while

minimizing the cost (assumed to correlate to the number of applications).

The Object Management Group (OMG), the organization that governs the SysML standard, has

recognized the necessity of trade studies. In the current specification for SysML 1.3, the OMG

includes an Annex for “non-normative extensions” that it may consider for inclusion into the

language in future versions. This Annex (D.3) describes the extension of a parametric diagram

to support trade studies and analysis. A trade study will be used to evaluate a set of alternative

AD/FI based on predefined criteria. An objective function can be used to represent the criteria

and determine the value of each alternative. A measure of effectiveness (MOE) will represent a

parameter with a value that is essential for determining the performance level of the alternative

applications (“OMGSysML-v1.3-12-06-02.pdf,” 2012).

65

By extending the SysML language as outlined above, the process of performing the trade study

and evaluating the alternatives can be accomplished using an MBSE approach. This effort then

becomes embedded within the SysML model hierarchy, and subsequently, is available for recall

if system design artifacts are requested.

Make Recommendation(s)

Following the trade study, a list of recommendations should be produced. These

recommendations should be consistent with the analysis completed, however they should also

take into consideration the deficiencies that were observed during this process. For instance, not

all of the requirements may have been fully met with the available suite of candidate AD/FI

applications. This may drive a modification to the requirement or to the system itself. It may

also identify the need for a custom detector/isolator to meet the requirement. In addition, this

type of analysis will typically uncover inadequacies in the system design. This may highlight the

need for additional sensors to provide added feedback, or it may uncover critical components

without adequate redundancy. All such findings should be included in the recommendations.

66

CHAPTER FIVE: CASE STUDY

This chapter will present a case study to describe the implementation of the anomaly detection

(AD) and fault isolation (FI) selection framework. As stated previously, the system under study

is the liquid hydrogen (LH2) system at the Kennedy Space Center (KSC). This system is located

at the launch pads and was used to load both the Apollo and Space Shuttle launch vehicles. It is

currently going through a redesign process to support NASA’s next generation Space Launch

System (SLS) program.

The LH2 system provides the fuel for the launch vehicle’s oxygen/hydrogen engines. For

Shuttle, nearly 400,000 gallons of this fuel was loaded into the external tank (ET). Working with

LH2 poses many technical challenges. First, LH2 is a cryogenic fluid at -423 degrees

Fahrenheit. This extremely low temperature drives a system design that must be highly insulated

to minimize the commodity boil-off, and the hardware itself must be able to operate while

withstanding thermal cycles from ambient to cryogenic temperatures. As hydrogen is the

smallest molecule known, it is can prove difficult to keep leak-free within the system, a highly

desirable feature given that hydrogen is extremely flammable. Liquid hydrogen also poses risks

to personnel in that direct exposure will cause severe cryogenic burns, induces asphyxiation if

released in confined spaces and has a propensity to ignite and/or detonate if large quantities are

released in air.

These safety concerns, combined with the technical challenges, result in the cryogenic tank

loading operations being performed remotely with the Pad cleared of all personnel. The

67

astronauts and support crews do not enter the pad until the initial filling is complete. At this

point, only ‘replenish’ loading operations are underway to make up for boil-off losses (over 100

gallons per minute). To minimize the boil-off losses, loading operations commence as late as

possible resulting in a time-critical process. It is these operationally complex, highly hazardous

and time-critical characteristics that make this system an ideal candidate to augment with AD/FI

technology.

Framework Development

This case study will follow the proposed framework identified in Chapter 4 for initial system

model development (reference Figure 8 - Preliminary Framework Process Flow). As the course

of developing this case study model is anticipated to be an iterative process, this framework will

be improved and the implementing details refined as the model matures. The final framework

will be presented following analysis in the next chapter.

68

System Scope

The first step delineated in the proposed framework is to scope the system to be augmented with

enhanced AD/FI capabilities. This scope not only includes the breath or boundaries of the

system, it is also comprised of the level of granularity to which detection abilities are applicable.

These boundaries should encompass the system itself, the sensors that provide feedback to the

operators and the command-and-control subsystems (at both reception and transmit locales).

Framework
Process

Scope the
System

Identify &
Categorize

Fault Modes

Identify &
Categorize

Sensor Data

Identify &
Categorize
AD/FI Apps

Model the
System

Model the
AD/FI

Applications

Perform
AD/FI-System
Trade Studies

Make
Recommendations

Figure 8 - Preliminary Framework Process Flow

69

The level of detail at which the detection capabilities must function need also be defined. This

detail level will be dependent on the system design combined with requirements derived from the

stakeholders. Typically, this detail will go to the component level at which a specific element is

replaced. However, when the system includes redundant subassemblies or process legs, then

detection may be required only for this level as the secondary assembly/process may be brought

online should the primary subsystem fail.

 Scoping the system should also identify AD/FI capabilities that already exist within the system.

This can avoid unnecessary overlap in cases where existing techniques are robust. It may also

identify cases where additional enhancement is required for capabilities that may be

underprovided.

Liquid Hydrogen System

The LH2 system within the launch pads at KSC was used to fill the fuel portion of the space

shuttle’s external tank (ET) with nearly 400,000 gallons. The LH2 was used as the fuel for the

shuttle’s three main engines. This same system is planned to support the next generation Space

Launch System (SLS). Part of the system resides on the mobile launcher platform (MLP). The

shuttle vehicle is mounted on the MLP in the vehicle assembly building (VAB). The MLP then

rolls to the pad the LH2 lines are mated at the Pad/MLP interface to ‘complete’ the system. The

LH2 system hardware for both the pad and MLP are included in this scope. The LH2 is stored in

a vacuum jacketed storage tank with a total capacity of 900,000 gallons.

70

There are three primary hardware subsystems built around this storage tank that enable the

transfer of LH2 to the flight vehicle. These include pressurization, transfer and vent systems. In

addition, a command and control system (C&C) is used to enable remote operations from a safe

distance. These subsystems are further detailed as follows.

Pressurization Subsystem

As LH2 is a very light liquid (0.591 lbs/gal), and the ET operates at lower pressures, the use of

pumps to flow the liquid is not necessary. Instead, the storage tank is pressurized to a nominal

pressure of 66 PSIG for initial higher-flow operations, and subsequently lowered as the flow rate

is decreased. The primary components that comprise this subsystem include a main and

auxiliary vaporizer (heat exchangers), a variable flow control valve (main) and control valves

(main & aux). The vaporizers are supplied LH2 from the tank separate from the cross-country

transfer lines. The vaporizer outlets return the gaseous hydrogen (GH2) to the top of the tank

(reference Figure 9 - LH2 Pressurization System). LH2 has an expansion ratio of 833:1, so

vaporization of a relatively small amount of liquid provides an adequate gas volume that is

compressed to pressurize the tank. As LH2 has a boiling point below -400 degrees Fahrenheit,

exposing the liquid to near ambient temperatures will force the evaporation necessary to generate

tank pressure.

71

Transfer Subsystem

The transfer subsystem consists of piping that traverses the pad and MLP and connects to the

flight vehicle via an umbilical. This piping is dual-walled with a vacuum maintained between

the piping’s annular-space. These vacuum-jacketed lines provide the insulation necessary to

minimize the boil-off of the cryogen LH2.

Figure 9 - LH2 Pressurization System

72

These cross-country transfer lines also include two valve control assemblies. One valve complex

is located at the base of the storage tank, and is comprised of several valves that allow both high

and low flow rates, as well as venting capability. The other valve complex is located on the ML

just upstream (when loading) of the vehicle umbilical. This valve assembly is used in

conjunction with the pad control system to provide various flow rates during vehicle loading, and

also supports drain operations should the launch get scrubbed for that day.

Vent Subsystem

As hydrogen is highly flammable, the GH2 is not allowed to be vented directly overboard from

the vehicle during loading operations. Instead, this vented gas is captured and routed to flare

stacks for safe disposal. There are four primary sources of vented GH2 as follows:

1. The boil-off gas generated from the ET during fill operations.

2. Within the flight vehicle, a small volume of LH2 is diverted to the engines

to provide thermal conditioning during the loading operations. The LH2/GH2

from this ‘bleed’ flow is captured by the vent system.

3. The LH2 storage tank (following pressurization).

4. Each section of the cross-country transfer lines that can be independently

isolated.

The vent system includes the isolation valves for all vent sources. The vehicle sources include

both vehicle and ground isolation valves (vehicle valves are out-of-scope for this case study).

The vent system also includes two flare stacks, and corresponding subsystems, that support

burning the exhaust GH2.

73

Command and Control Subsystem

The C&C architecture is composed of computer servers (and supporting peripheral equipment)

within the control rooms that communicate with programmable logic controllers (PLCs) in the

vicinity of the hardware for which they control. The operators interface with their system via

keyboard and display(s). The PLCs located in the field directly energize/de-energize the

equipment based on the operator’s (or automated software) commanding. These PLCs also

provide instrumentation feedback for monitoring system performance.

As the operation and maintenance of C&C hardware requires a different skill set than those

performing launch vehicle loading operations, it is classified as a different subsystem from the

LH2 subsystem under study. Much of the C&C hardware has health and diagnostic functionality

built into the architecture, so there are limited opportunities to augment this with additional

value-added AD/FI technology. This health is monitored by that subsystem when the control

room is active. The C&C system also impacts multiple subsystems making it difficult to limit

the scope for this analysis. However, it is imperative that the operators know if they are dealing

with an issue related to their subsystem hardware as this directly influences the course of action

going forward. As the PLCs include numerous command or measurement cards (with less

‘health’ capability), the PLC control system will be included in this scope.

Existing AD/FI Capabilities

Scoping the system includes identifying the current AD/FI capabilities already employed. This

information is used to disqualify potential redundant AD applications from consideration, or

74

select AD technologies intended to enhance those existing capabilities. For the LH2 system

under review, the primary method of anomaly detection is to bind tolerances to the

instrumentation. Should an exceedance occur on one of these sensors, an alarm is generated that

alerts the operators. This includes discrete measurements (i.e. position indicators or pressure

switches) in which case the alarm-state is set to the opposing nominal state. It also pertains to

analog measurements in which specific tolerances can be set both above and below a nominal

range. There are no fault isolation applications used within the LH2 system.

There are external AD provided by other subsystems that monitor LH2 operations. As stated

earlier, much of the C&C subsystem has health detection embedded within the architecture. Any

exceptions observed are annunciated over an audio communication network as the ability to field

an alarm on console may be suspect. There is also a Hazardous Gas Leak and Fire Detection

system. This subsystem monitors all vehicle and ground subsystems operating with hazardous

commodities.

Scope Overview

The LH2 system scope for this case study can be defined as follows:

• Pressurization subsystem to the component level

• Transfer subsystem to the component level

• Vent subsystem to the component level

• C&C subsystem to PLC end items only

o Need ability to differentiate between system vs. C&C failure

75

Existing AD/FI capabilities in which duplication is not desired include:

• Alarm setting on system sensors

• Health status for C&C processing components

o Monitored by C&C subsystem

o Limited health status for C&C end-item components (directly

interfaces with hardware)

• Hazardous gas leak and fire detection

o Monitored and operated by HGLFD subsystem

Identify and Categorize Fault Modes

To adequately apply AD/FI techniques on the given system, the potential faults that can have

detrimental consequences will need to be identified. There is an assortment of methods available

to include Failure Modes and Effects Analysis (FMEA) and its extension Failure Mode, Effects,

and Criticality Analysis (FMECA), Design Review by Failure Mode (DRBFM), Fault Tree

Analysis (FTA) and its extension Event Tree Analysis (ETA), Hazard & Operability Studies

(HAZOP), Hazard Analysis and Critical Control Points (HACCP) among others. The most

predominant techniques used in industry are FMEA and FTA (Cristea & Constantinescu, 2017).

Fault Tree Analysis

Fault tree analysis will be used to identify potential faults for this case study. Fault trees (FTs)

offer a graphical breakdown with regard to the hierarchy of failure modes. The base of the tree is

called the top event and the leaves are called basic events (Adler et al., 2011). Fault trees use a

76

top-down methodology that depicts, via a graphical representation, of how an anomaly can

propagate through the system. It is this propagation that may stimulate the AD/FI techniques

employed to detect system anomalies when direct signals may not be available/adequate to alert

the users, hence the selection of FTA.

Fault Tree Development

For complex systems, fault analysis is often accomplished in parallel during the design’s

development phase. This aids the designers with identifying critical areas that may require

fortification, redundancy and/or additional instrumentation for visibility. For added efficiency, a

system engineering best-practice would then be to leverage off existing analysis. To facilitate

this process, such analysis would optimally be embedded within the SysML model. The

following depicts a method to auto-generate FTs based on the SysML model generated (Clark,

Rabelo, & Yazici, 2017)

SysML uses diagrams to portray the system. The system’s structure is represented by Block

Definition Diagrams (BDDs) which are intended to describe the hierarchy of the structural

elements, or blocks. A block can represent a single component or an entire system. Structure is

further defined by Internal Block Diagrams (IBDs) used to depict the how the elements within a

block are connected and the type of matter, energy or data that flows between them. The IBD

provides an alternate view that can show the ‘usages’ of these blocks. Specifically, how the parts

are connected (and the flow that occurs between these parts) that involve the portion of the

system within the IBD view. For instance, a valve can be configured to an open or closed

77

position. For a closed valve, both internal and external leakage may be a concern. For a valve

that is open for critical operations, internal leakage would not be a concern. This detail is

depicted with IBD views, so concentrating on these diagrams should result in fault associations

based on the component functions applicable to that subsystem. This combination of

connectivity and flow can illustrate how a failure is distributed through a system. Thus, it is

conducive to providing the necessary information in developing an FT.

The development of FTs for a complex system is not a trivial task. Many of the commercial FT

software packages will support import sheets with component data (beneficial to those with

existing component lists within their design documentation). However, identification of the

relevant failure modes, linkage of components to applicable subsystems and assignment of the

appropriate ‘gate’ is a manual process. As most of a system’s individual components will likely

have multiple failure modes, the number of basic events generated can far exceed the number of

components. As with most largely manual efforts, the input may be prone to errors, and

omission of critical data likely to occur. Since FTs are a graphical representation of the system,

they are difficult to condense without undermining the readability advantage from which they are

based. Subsequently, traversing large FTs also presents a challenge and can hamper the reviews

intended to find/remove such errors.

The system design information embedded within an IBD (with minimal model augmentation) is

used to auto-generate FTs. The intent is to provide an initial FT that is all-inclusive of the

components contained within the design, and therefore, minimize the errors and omissions that

78

may occur from manual generation. This also reduces the effort required by the safety

engineer(s) as it is easier to modify or prune an existing tree vs. generating one from scratch. It

should be noted that this method does not preclude the subject matter expert’s (SME)

involvement. SME reviews will still be required to identify unique failures, multi-failure modes,

system-level (non-component) and external failures.

SysML/FT Abstraction

As stated earlier, much of the FT development is a manual process. Although there are

commercial applications available that can assist with this process, the structure of an FT renders

it unique and with minimal commonality among the numerous design models supplementing

development. Subsequently, there is little overlap of information to be garnered in support of

generating FTs. The process for constructing an FT can be summarized as follows:

• Identify a top event and corresponding intermediate events

• Scope the system to include all components that can contribute to the failure of

these events

• Generate ‘Failure Modes’ at the component level (basic events)

• Link the events via Boolean gates to form the tree structure

Although a SysML IBD too lacks all the information needed to accomplish the process above,

much of it can be found embedded within the IBD’s design. The remaining gaps can be filled by

extending the SysML model. An IBD represents a predefined block and graphically shows how

the parts within that block interconnect (may include the flow of matter, energy or data among

79

these parts). These blocks can characterize the entire system, the various subsystems, component

assemblies, components and even the component makeup if that is the level of detail desired by

the stakeholders. As is typical for most MBSE methods, the system is first defined at a high-

level. This broadly defined system is then decomposed into subsystems, an iterative process that

continues until the desired level of detail is achieved. Therefore, a developed SysML model will

contain IBDs that denote the system structure at all levels of the project.

The 1st step in FT auto-generation is identifying the top event, followed by the applicable

intermediate events. This is accomplished by simply using the IBD frame title as this should

accurately reflect the subsystem’s functionality (assuming modeling best-practices employed).

The next step is to scope the system to ensure all applicable components are included. As the

IBDs illustrate the system’s design structure, they also define the system scope. All parts within

the IBD that have failure modes identified will be included in the FT.

Creditable failure modes must be determined for each component within the IBD. These modes

will be used to identify the basic events for the FT. This is information that is not readily

available within a SysML project, and therefore must be added to the model. A block can be

used to define the various failure modes, though for large projects, the user may want to create a

specific stereotyped element to represent these modes. To create the failure modes for the initial

FT, first categorize the components into common classifications. For instance, an ‘indicator’

class may include pressure transducers, temperature transducers, flowmeters, etc. For each

80

component class, list the generic failure modes that applicable to that class. Generic failure

modes for a valve-class may include:

• Valve fails open

• Valve fails closed

• Valve position unknown

• Valve leaks externally

• Valve leaks internally

Note too that failure modes may be applicable to multiple component classes (i.e. ‘leaks

externally’). Generating component classes results in a much smaller subset of failure modes

compared to the overall component base. Subsequently, the SysML model updates to

accomplish this step are minimal, compared to embedding this information within all the

component blocks.

The last step for FT development is to link events via Boolean gates to form the tree’s structure.

Linkage is already established between the top level of the localized FT (IBD title) and the parts

contained within the IBD. However, a connection must be made between the components and

failure modes added to the model. This can be accomplished by allocating failure modes to their

corresponding component classes. SysML specifies the use of ‘allocations’ as a means of

crosscutting the model and linking (integrating) the various model elements. An allocation

simply reflects that if a change occurs to the ‘supplier’ side, a change may be needed on the

‘client’ side, thus it represents a dependency of the clients to their supplier (“OMGSysML-v1.4-

81

15-06-03.pdf,” n.d.). Allocation also allows for easy selection/deselection of the generic failure

modes as not all will be applicable in every component instance.

A Boolean gate must also be inserted between each level of events. NASA’s Fault Tree

Handbook with Aerospace Applications defines a “state of component” failure as one that is

localized to a component (all other failures are deemed “state of system”) and that state-of-

component failures should always utilize OR gates (Stamatelatos et al., 2002). This simplifies

the gate selection between the components and the failure modes as all will be OR gates.

However, the gates between the localized top event (likely a subsystem event) and corresponding

component levels may utilize either an AND or an OR gate. For instance, both primary and

secondary valves (redundant flow path) must fail for the system to fail. This relationship is FT

modeled with an AND gate. This needs to be noted as that information is not readily embedded

within the IBD or within the failure modes added to the model. Therefore, it needs to be

addressed to maximize the integrity of the initial FT. The example that follows provides one

method to accomplish this before FT auto-generation takes place.

Example

This section will provide an example of FT auto-generation. It uses an IBD that depicts the

liquid hydrogen (LH2) storage tank pressurization subsystem (reference Figure 10 -

IBD/LH2StorTankPressSys. This system pressurizes an LH2 storage tank which enabled LH2

flow to the Space Shuttle’s external tank. The last bracketed term in the IBD frame is

‘LH2StorTankPressSys.’ This is the top-level (subsystem) event for this IBD, and will later be

82

appended with “_Fails” as events should reflect the issue under analysis. All the parts within this

IBD will make up the subsequent intermediate levels.

The 1st step in extending the SysML model is to add the generic failure modes. For this example,

failure modes have been produced for the component classes applicable to this IBD only. They

ibd [block] LH2StorTankPressSys [LH2StorTankPressSys]

PneuToPneuCntrl:
CNTRL-Pneu-1

StorTankPress: IND-
Press-6

LH2Storage: TNK-LH2-1

Vaporizer: VAP-1[1..2]

VapOutCheck:
VLV-Chk-8[1..2]

SigPressIN

MainVapFlowCntrl:
VLV-Cntrl-1

SigPressIN

MainVapSO: VLV-Pneu-
17

AuxVapCntrl: VLV-
Pneu-18

: GH2

: LH2

«ValueType» LH2
«itemFlow»

«ValueType» GH2
«itemFlow»

«ValueType» LH2
«itemFlow»

«ValueType» Pressure
«itemFlow»

«ValueType» LH2

«itemFlow»

«ValueType» GH2
«itemFlow»

«ValueType» GH2

«itemFlow»

Figure 10 - IBD/LH2StorTankPressSys

83

have been created as blocks and added to a package titled ‘FailureModes’ where they can be

accessed from the model repository (reference Figure 11 - Model Repository Example).

With inclusion of the failure modes, they can now be allocated to applicable components. The

parts within the system where initially generated as ‘blocks.’ However, these blocks can have

multiple instances within a system, and each of those instances may have different functions.

When an instance of a component block is used within an IBD, it is categorized as a part-

Figure 11 - Model Repository Example

84

property. As the applicable failure modes may differ based on how that part is used, the failure

modes should be linked to the individual part properties. This can be done via SysML diagrams

and the corresponding tool’s drawing features (reference Figure 12 – ‘FailureMode’ to Part

BDD).

If a stakeholder need for a diagram view of these allocations is not required, then it is

recommended that a Relationship Matrix be used. The SysML standard does promote the use of

matrices, but does not standardized their use. Therefore, the functionality of matrices can differ

bdd [package] FaultTreeLinks [FailModeToProp_Vlv]

«block»
FailureModes::
VlvFailsClosed

VLV_MainVapSO

(from
LH2StorTankPressSys)

«block»
FailureModes::

VlvLeaksInt

«block»
FailureModes::

VlvLeaksExt

«block»
FailureModes::

VlvPosUnknown

«block»
FailureModes::

VlvFailsOpen

«block»
FailureModes::
VlvFailsPartially

«allocate»«allocate»«allocate»

«allocate» «allocate» «allocate»

Figure 12 – ‘FailureMode’ to Part BDD

85

between the tools. A matrix enables easy selection/deselection for both individual and multiple

blocks, and it also captures the IBD structure that is used to generate the FT (reference Figure 13

- Relationship Matrix).

As noted earlier, the IBD does not readily signal which Boolean gate should be used at the

component level. This is typically determined by analysis (and SysML is accommodating with

inclusion of such data). However, using a matrix from which to build an FT does limit the

information that can be embedded. To diminish the need to make such modifications after the

Figure 13 - Relationship Matrix

86

FT is generated, the following method was employed. Two ‘AND’ blocks were included in the

model repository for failure modes. These blocks are intended to associate any AND conditions

for the components within that IBD. It needs to be stated that this usage of blocks does not

enhance the SysML model (and the element descriptions should be annotated accordingly).

Lacking a standard that aligns SysML with FT generation, this simply provides a means to

transfer information for external use. The IBD contains ‘main’ and ‘auxiliary’ vaporizer control

valves. These should be reflected with an AND gate, and the Relationship matrix has been

annotated accordingly.

The tool used for this example (Sparx’s Enterprise Architect) has the capability to export a

relationship matrix in a ‘.csv’ format. The following steps outline the process for building an FT

from the matrix. For this example, the ‘.csv’ file was imported into Excel. A VBA macro was

written that performs the following steps to auto-generate the FT (OR and AND gates are shown

textually) (reference Figure 16 - Excel/VBA Generated Partial FT):

1) Save the .csv file using the IBD name. Append “_Fails” to the file name and use

this as the top event.

a. Place an OR gate below this event

2) For the next level, add all the components that are not allocated in the matrix to an

AND block (target). Append each component name with “_Fails.”

a. Connect these events to the OR gate from the top level.

b. Place an OR gate below the component intermediate events.

87

3) If applicable: For those components intended for AND gates (target), create a

new intermediate event (remains at the same level as the component OR gates). Event

title to be composed of component names, and appended with ‘_Fail.’

a. Connect the events to the OR gate from the top level.

b. Place an AND gate below these component events.

c. Add a new level for those components linked to AND gates. Append each

component name with “_Fails.”

i. Connect these events to the corresponding AND gate(s).

ii. Place an OR gate below these component events.

4) For all component events, add a new lower level with the corresponding failure

modes (source).

a. Connect these events to the OR gates at the inetermediate level(s).

b. Place a circle below the failure mode events (denotes a basic event).

/
|

|
|
| / | | | | \
⃝	⃝	⃝			
⃝ ⃝ ⃝					

/ \
| |

 / | | | | \ / | | | | \
| | | | | | | | | | | |

| | | | | |
 ⃝ | ⃝ | ⃝ | ⃝ | ⃝ | ⃝ |

 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

VLV_AuxVap and MainVap_Failed
AND

VlvFailsOpen VlvLeaksExt VlvPosUnknown

VLV_MainVapFlowCntrl_Failed
OR
|
|

VlvFailsClosed VlvFailsPartially VlvLeaksInt

VlvFailsOpen VlvLeaksExt VlvPosUnknown

OR
|
|

VlvFailsClosed VlvFailsPartially VlvLeaksInt

|
|
|

OR
LH2StorTankPressSys2_Failed

|
|

OR
VLV_MainVapSO_Failed

|
\

VlvFailsClosed

VlvFailsOpen

VlvFailsPartially

VlvLeaksExt

VlvLeaksInt

VlvPosUnknown

VLV_AuxVapCntrl_Failed

Figure 14 - Excel/VBA Generated Partial FT

88

As shown in Figure 14 - Excel/VBA Generated Partial FT), an FT can be generated with

minimal extension of SysML to include the basis events (failure modes) and the structure

internal to an IBD. Although there are limitations with the amount of information that can be

transferred in a matrix, the following lists the advantages of generating FTs directly from the

SysML model:

• Minimizes SME assistance for initial FT construction

o SMEs develop the IBDs so this expertise is propagated to initial FTs

o Stakeholder’s IBD design review updates also transmitted to FTs

• Initial FT all-encompassing (component level) with inclusion of components identified

within the SysML design

o It is easier to prune or modify an existing FT than build from

• Relationship matrix provides an easy method to add/delete prior to FT generation

• FT organization consistent with SysML model (IBDs)

o SysML updates transmitted to FTs

• Linkage between systems and potential failure modes collected in SysML model to

support other analysis

Fault Tree Auto-Generation Limitations

The primary limitation is the depth or layering of the components within the IBD. With a two-

dimensional matrix from which the data is transferred, capturing multiple levels of sub tiered

systems and components within the IBD cannot be accomplished for FT development. Inserting

multiple levels into an IBD can increase the complexity of that view, and subsequently, be

89

counter-productive to its readability. Modelers may minimize this practice, but it should not be

restricted. For this method to be successful, multi-level IBDs must be further decomposed when

encountered. Therefore, implementing this technique has the potential to drive IBD design.

Identify and Categorize Sensor Data

The sensors convey the operational status of a remotely controlled system. As such, a sensor can

be defined as a component that provides feedback to the operator on the status of the system via

the command and control architecture. They are the only means of providing an operator the

visibility to determine the state of a monitored system. Therefore, the sensor array is the primary

mechanism that can restrict and/or enhance the insight into system performance. System health

and status is typically derived from sensors directly measuring a specific function, as well as a

combination of indirect measurements that may have influence over that portion of the

subsystem.

As the sensor array allows the system to be observed, it is very important to identify all the

sensors available within the system. This information will be used to refine the fault tree

developed for this system as the availability of measurements will influence the granularity of

the failure modes detected. If the fault tree has identified failure modes that the existing sensors

provide limited visibility and cannot reasonably detect, then it is not practical to expect an AD

system to overcome this deficiency. However, a couple of insights should be noted. First,

supplement AD systems are expected to be ‘smart,’ and perhaps capable of detecting issues with

limited indications in ways that may not appear obvious to an observer. Second, if the (limited-

90

visibility) failure mode is credible and has potentially serious consequences, then the correct

course of action may be a sensor modification to the system that facilitates detection of that

failure mode.

The sensor array will be the primary factor in resolving the failure modes identified by the fault

tree to those in consideration for the framework. For those components that have some degree of

sensor oversight, criticality will be assumed (and assumed non-critical if sensor visibility is

lacking). If indicator granularity can only provide insight to a subassembly level, then the

corresponding failure mode will only be identified to this level.

In the preliminary framework described in chapter 4, a matrix was proposed to identify and

categorize the sensor array (reference Table 4: Failures vs. Instrument Matrix). This matrix

would relate the potential faults to the system’s available measurements. In addition, the method

applied would annotate if that measurement was a direct or indirect means of detecting the fault.

This implementation would initially aid in reducing the potential faults being considered if it

could be determined adequate instrumentation was not available to uncover those issues.

For this case study, the means to identify and categorize the sensors will instead build upon the

current model (a systems engineering best practice). Relationship matrixes are fully available

within SysML, and can be generated and modified using a matrix format, or graphically within

the various SysML diagrams. Furthermore, the auto FT generator technique embedded the

applicable faults within the model structure making them readily available to associate with other

91

model elements. The following will leverage off these existing faults to illustrate this

development task supporting the framework.

When developing a SysML model, a ‘parts list’ is generated in the process of identifying the

system structure. This is done by first creating Block Definition Diagrams (BDDs) depicting

higher level structure, and then decomposing this system structure until the individual

components are identified. Building off an accessible list within the model is not only efficient,

but has the ability to capture additional associations which further develops the underlying

structure of the model.

In addition to stand-alone instruments added to measure a given part of a system, indicators are

also embedded within components to provide status for that component. The most common

application for this case study are valves that are ‘switched’ to provide feedback to that valve’s

open, closed or intermediate position. These indicators can provide discrete data such as a limit-

switches that are placed so that they get ‘depressed’ when a valve reaches a given position (i.e.

open/closed). A component may have 1 or more indicators to determine its position (reference

Figure 15 – BDD of Remote Valve with 1 or 2 Limit Switches). They can also be potentiometer

type indicators that provide an analog signal for variable position valves.

92

Figure 15 – BDD of Remote Valve with 1 or 2 Limit Switches

An association between indicators and faults they could potentially detect could be made.

However, the majority of the indicators will have some degree of detection for most fault modes

which would result in a matrix that is mostly ‘filled-in.’ In addition, the process of assigning

indicators to faults could result in leaving out measurements that may have some unique way of

uncovering an issue. As this framework is intended to apply new technologies to many systems,

implementing a method that predetermines which sensors are applicable to which faults can be

bdd [Package] Operational Domain Model [Remote Operated Valv e]

«block»
RemoteOperatedValv e

parts
 : PriCloseSV
 : Actuator
 : PriOpenSV
 : Valve

«block»
Valv e

parts
 : LimitSwitches

«block»
Actuator

flowProperties
 inout 750_GN2

«block»
LimitSwitches

«block»
PriOpenSV

«block»
PriCloseSV

1..2LS

Act CSVOSVVlv

93

counterproductive. Subsequently, a method that readily identifies and categorizes all types of

measurements will suffice.

For this case study, all stand-alone indicator components are assigned part numbers prefixed with

“IND_,” and located in an Indicator package (embedded within a Component List package). A

BDD was created to organize and show temperature indicators (reference Figure 16 - BDD

Containing Temperature Indicators). To categorize the sensors, a package can be created for

each type of indicator inclusive to that system. This method provides both a parts list of all

indicators inclusive to the system as well as a means to quickly find that item within the

diagrams so that the instrument’s functionality can also be determined.

Figure 16 - BDD Containing Temperature Indicators

The parts list comprised of BDDs will show all the components used within a system, and if

desired, how many of each of those components are used. The fault tree development process

addresses indicator failures. This section considers the need for associating indicator

bdd [package] Indicator [IND-Temp]

«block»
IND-Temp-9

«block»
IND-Temp-1

«block»
IND-Temp-2

«block»
IND-Temp-3

«block»
IND-Temp-4

«block»
IND-Temp-5

«block»
IND-Temp-6

«block»
IND-Temp-7

94

components to faults that they may detect as proposed within the initial framework. The goal

here was to use this information to help bound the number of credible faults to address only

those for which there is visibility. As stated above, linking indicators within an IBD to potential

faults they may detect will likely result in and association for nearly all (if not all) faults-to-

indicators. As an alternative, the association can be made at the BDD level, but this too could

produce an outcome of the same result in using the IBDs. These indicator BDDs will be the

means for identifying the system sensors and categorizing their attributes.

Identify and Categorize AD/FI Applications

The next step in this case study is to identify the AD/FI applications that should be considered

for implementation. This pre-selection process should be driven primarily by the project’s

requirements. As there are numerous applications and techniques available, a significant amount

of time can be spent researching all the possibilities which is not necessarily a practical

approach. To reduce this effort, AD/FI classes are identified in which the technologies are

similar. The onus for testing the various apps belongs to the users/stakeholders, though this

framework assists with the selection process.

Requirements

One of the primary objectives of building a system model is having the ability to generate

requirements, and then readily track implementation of those requirements through the system’s

life cycle. This capability is requisite within the systems engineering discipline, and SysML

provides this functionality by providing a requirements diagram. This diagram works with text-

95

based requirements in that it can show relationships among the assorted requirements, other

model elements and external objects (analysis, drawings, etc.) identified within the model. There

are various notations available that provide traceability of these relationships. A requirement

block (with associations) can also be dropped on other diagrams when it benefits the

stakeholders to have this visibility and corresponding relationships.

Mission Statement

Requirements are typically generated at a higher level, and then broken down into lower level

requirements as the design takes shape. For the LH2 system, a Mission Statement is created that

describes what the system will accomplish. This statement is parsed to derive the initial upper

level requirements for the system design. A requirements diagram is developed titled Mission

Statement Requirements (reference Figure 17 – Mission Statement/Requirements Diagram).

This diagram includes requirements ‘contained’ within the mission statement (those linked with

a plus within a circle in the figure). These are the higher-level requirements that will be

decomposed to system level ones that drive the design. In figure xx, a derived requirement

necessitating AD/FD capabilities was added subordinate to the ‘Safe Operations’ requirement.

96

Mission Requirements

With a requirement embedded in the Mission Needs Statement that dictates AD/FI capabilities,

the mission requirements can now be developed. These are, for the most part, functional

requirements in that they qualitatively define what is expected of the AD/FI applications. These

requirements will drive the AD/FI technology to apply to the system. At this point, requirements

req [package] Mission Needs Statement [Mission Statement Requirements]

«requirement»
LH2 Transfer System

id = "MS-1.1.2"
text = "Will transfer LH2 from
storage tank to vehicle."

«requirement»
Automate Operations

id = "MS-2.1"
text = "Remote loading
operations are
automated."

«requirement»
Control Room

id = "MS-2.2"
text = "Remote operations
take place in a control
room."

«requirement»
Remote Operations

id = "MS-2"
text = "Fill operations are
performed remotely."

«requirement»
Safe Operations

id = "MS-3"
text = "System has to operate
safely for both nominal and off-
nominal operations."

«requirement»
Stor Tank Press System

id = "MS-1.1.1"
text = "Storage tank
pressurization will allow for
varying flow rates."

«requirement»
Fill Launch Vehicles

id = "MS-1"
text = "LH2 storage tank used to
fill space launch vehicles."

«requirement»
Flow LH2

id = "MS-1.1"
text = "Ground and vehicle
systems result in back
pressure when trying to load
the vehicle."

The Mission Statement (MS)
requirements are parsed from the
Mission Needs Statement. These are
high-level requirements and form the
base that directs the system design.

«requirement»
Mission Needs Statement

id = "MS-0"
text = "A mission needs statement will be
developed to describe the higher-level needs for
which a system design will be developed."

«requirement»
Anomaly Detection/Fault

Isolation

id = "3.1"
text = "Provide anomaly
detection and fault
isolation capabilities"

«requirement»
Vent System

id = "3.2"
text = "Vent system to
provide safe disposal of
hydrogen gas generated
during loading."

«deriveReqt» «deriveReqt»

«deriveReqt»

Figure 17 – Mission Statement/Requirements Diagram

97

can be decomposed that are specific towards covering the desired subsystems. Note that

requirements that focus on an explicit scenario may limit the available applications to consider.

Since there are many technologies available including some that work indirectly with available

data, the initial mission requirements should address overall AD/FI desires along with the

operator’s interface. A Mission Requirements (AD-FI) diagram was generated to collect and

organize the AD/FI requirements (reference Figure 18 - Mission Requirements). It is at this level

that the requirements will be used for selecting the potential AD/FI application(s) for

consideration. After the selection process is completed, these requirements can be further

decomposed to start showing implementation details for the system design.

req [package] Mission Requirements [Mission Requirements AD-FI]

«requirement»
Anomaly

Detection/Fault
Isolation

(from Mission Needs
Statement)

«requirement»
Provide Anomaly

Detection Capability

«requirement»
Provide Fault Isolation

Capability

«requirement»
Have means to notify
(alarm) the operator

«requirement»
Have a high level of
detection accuracy

«requirement»
Minimizes false alarms

«requirement»
Provide real-time

monitoring of system

«requirement»
Have ability to analyze

post-test data

«requirement»
Have ability to adjust

sensitivity of detection

«requirement»
Have means to notify the

operator

«requirement»
List all potential faulty

components

«requirement»
List in order of fault

probability

«requirement»
Have ability to limit list

to most-probable

«requirement»
Minimize cost

«deriveReqt»

«deriveReqt»«deriveReqt»

Figure 18 - Mission Requirements

98

A ‘minimize cost’ requirement was included with the mission requirements. As cost is always a

major factor in system design, it is important to include cost factors in the prescreening process.

A diagram is included that decomposes the cost requirement and provides additional detail as to

how costs will be controlled (reference Figure 19 - Requirements AD-FI Diagram).

Effectiveness Requirements

Effectiveness requirements provide a means to measure the system’s functional capabilities

against the expectations of the design. Developing effectiveness AD/FI requirements can be

quite challenging. Typically, a requirement is developed to meet a desired objective. As the

design takes into consideration the operating environment, an expectation of how the system will

req [package] Requirements AD-FI [Requirements AD-FI]

«requirement»
Minimize cost

(from Mission
Requirements)

«requirement»
Existing Application

«requirement»
Minimal Development

«requirement»
Minimize Number of

Applications

«requirement»
Minimize Supporting

Applications

«requirement»
Use Existing Data

«requirement»
Use Existing Hardware

«deriveReqt»

«deriveReqt»«deriveReqt»

Figure 19 - Requirements AD-FI Diagram

99

perform is rendered. Effectiveness requirements bring about ways to measure this performance.

The difficulty posed by dealing with anomalies is that systems are not (purposely) designed to

fail. Failures can occur for a variety of reasons to include component/material failure,

operation/environment excursions, design flaws, operator error, etc. Some failures will have an

immediate impact on system performance while others may slowly degrade before they reach a

point that is detrimental to operations. How a failure propagates thru the system can differ

based on the severity of the failure and the system configuration supporting the current process.

Fault trees are used to identify various failure modes, but the same failure may present itself

entirely different to the operators. For a complex system, it is unreasonable to wholly catalog the

number of abnormal conditions that may arise and how the instrumentation will respond with

certainty for all phases of operations. This means there are many ‘unknowns’ (which is, of

course, the rationale for applying AD/FI technology). Subsequently, trying to measure the

effectiveness in detecting this unknown can be challenging.

By identifying both functional and cost-related requirements, enough information is provided to

select which classes of AD/FI applications should be pursued. These requirements remain high-

level so as not to constrain the initial selection process too tightly. They are summarized below

(reference Table 5 – Requirement Summary).

100

AD-FI Initial Selection

Classes of both AD and FI applications/technology have been previously identified. These

classes attempt to group individual techniques utilizing common methodology. This framework

Req ID Title Description
AD-1 Provide Anomaly Detection Capability Overall requirement to provide AD capability
AD-1.1 Have means to notify (alarm) the operator Provide a means to notify operator of exceptions (via existing

C&C architecture or stand-alone system available to operators)
AD-1.2 Have a high level of detection accuracy Have ability to accurately detect issues above existing AD

capabilities
AD-1.3 Minimizes false alarms Minimizes nuisance-alarms that detract operators from system

monitoring
AD-1.4 Have ability to analyze post-test data Have ability to 'playback' data for post-test data reviews
AD-1.4.1 Have ability to adjust sensitivity of detection Have ability to increase the sensitivity of post-test runs so all

exceptions are addressed (both nominal/off-nominal)
AD-1.5 Provide real-time monitoring of system Provide real-time AD monitoring during operations
FI-1 Provide Fault Isolation Capability Overall requirement to provide FI capability
FI-1.1 Have means to notify the operator Provide a means to notify operator of exceptions (via existing

C&C architecture or stand-alone system available to operators)
FI-1.2 List all potential faulty components When more than 1 potential source of an issue is possible, list all

possibilities
FI-1.2.1 Have ability to limit list to most-probable When listing all possibilities, have the ability to limit what is

displayed (no scrolling pages)
FI-1.2.2 List in order of fault probability When listing multiple issues, rank in order of probability and

display in this order
ADFI-1 Minimize cost (AD/FI) Overall requirement to minimize ADFI costs
ADFI-1.1 Minimal Development Minimize overall development related to adding ADFI

technology
ADFI-1.1.1 Use Existing Data Use existing data already available to support applications (i.e.

system empirical data, existing models, etc).
ADFI-1.1.2 Use Existing Hardware Use existing system instrumentation and C&C architecture

(mimimize system modifications)
ADFI-1.2 Existing Application Use existing AD and/or FI applications either commercially

available or mature in development process
ADFI-1.3 Minimize Number of Applications Minimize the number of aumented applications to meet

requirements
ADFI-1.3.1 Minimize Supporting Applications Use only existing models or applications necessary to

supplement ADFI applications

Table 5 – Requirement Summary

101

will first distinguish which classes have the potential to meet requirements, and then focus on

advancing these. These classes include:

• Anomaly Detectors

o Nearest Neighbor/Clustering Algorithms

o Neural Network

o Statistical/Parametric

o One-Class Support Vector Machines

• Fault Isolators

o Physics Model

o Expert Systems

o Fault Map Model

Anomaly Detection

For AD, there are several existing techniques used for detecting LH2 system problems. These

include limit-setting, data plotting, software notifications and system video views. The use of

cameras to scan and monitor the physical system provides very limited AD capability. However,

they have occasionally detected vapor clouds generated by cryogenic leaks in areas that do not

have leak detection instrumentation.

Limit-setting allows the operators to set alarms above and/or below analog measurements, as

well as opposing states for discrete measurements. Limits can be set on all measurements and

modified as required when the system transitions to different phases. This provides an overall

102

level of protection that goes well beyond a small subset of measurements that can be viewed at a

given time by the operator. As the alarms are set just inside the operational (or design)

specifications, they can provide notification prior to an exceedance for issues that do not

immediately initiate/propagate to unacceptable levels. This remains the predominant method for

detecting system anomalies. The application software for controlling the system has additional

AD functionality. Most valves have a design specification that identifies a maximum amount of

time a valve should cycle to its opposite state when operating nominally. The software monitors

all valve cycles, and displays the valve timing. If this exceeds specified values, and alarm is

generated.

Another existing AD method is the ability to plot system data real-time (this capability was not

available in Shuttle until approximately half-way through the program). Operators could select

related data and plot these indicators on a single display. This provided a graphical view of

performance over time vs. a ‘snapshot’ view provided by system displays. These plots made it

easy to spot data trends that started to diverge from ‘nominal.’ This proved to be valuable at

times as some anomalies could be seen developing long before an alarm was triggered. This

provides additional time for an operator to respond which is highly desirable in time-critical and

hazardous operations.

103

AD Application Rankings

The AD applications under consideration are all data-driven detection techniques. This can be

expected for a couple of reasons. First, this is an existing system with a mature design. So

anomaly detection hardware (additional sensors) should already be embedded within the system.

There is a cost component to consider as modifying the system can be costly. Since the existing

sensor array met the original design requirements, adding additional sensors or detection

hardware may not be considered unless a potential (and credible) failure mode is uncovered with

severe consequences. For this case study, this is also reflected in a cost-related requirement that

dictates no additional hardware. Since modifying the system is not typically a viable option,

then the other option is to focus on the data that the system produces. This data is relatively

cheap and readily available. Based on the literature, researches are finding unique ways to yield

additional information from this data.

For remote systems, operators monitor displays to ensure indications remain within specified

parameters. Not every measurement can be found on a display, and a very limited number of

displays can be viewed concurrently. Subsequently, the operator’s overall visibility of the

system is very restricted. A limit-setting application compensates for this handicap by

monitoring all measurements and notifying the operator of exceedances by means of an alarm.

When data plotting (real-time) became available, operator recognition of deviations from

nominal trends became more discernible. This provided a way to detect failures that were

developing, but had not yet triggered an alarm. Again, the operator is constrained by a lack of

visibility into the overall system. The data-driven models all work to distinguish between

104

nominal and off-nominal data. Having an application that can monitor a system and detect when

data points transition from normal-to-anomaly extends this ability beyond the visible plots, just

as the limit-setting application did for tolerance violations.

The AD functional requirements are intended to provide a higher-level detail as to what is

desired without overly restricting the potential AD candidate field. There are a couple of

requirements (can alarm, adds value over existing AD) that direct general necessities. There are

also a couple of performance ones written qualitatively (detection accuracy, minimize false

alarms). These may be later be decomposed to provide specific values that the application(s)

will need to meet. The remainder of the requirements address specific functions that are sought

after to support the LH2 system. These include:

• Provide real-time monitoring of system

o The application must be able to function in a real-time environment. This is a tool

used to augment AD and should be available when time-critical decisions are

required. This can also be difficult to implement if the underlying algorithm has a

high level of computational complexity. The LH2 system will have hundreds of

indicators reporting at a sample rate of 10 per second

• Have ability to analyze post-test data

o The application should not only work real-time, but also be able to playback test

data. All vehicle loadings require a post-test data review looking for irregular

events. This is accomplished while not time-critical. It should be noted that if the

105

post test data reviews show nominal operations, that data set then gets added to

the training data used for subsequent operations

• Have ability to adjust sensitivity of detection

o As the application is intended to support both real-time and post-test analysis, it

should allow for adjusting the sensitivity. Being able to desensitize the

application during real-time operations should limit the concern that a high

number of false alarms will just distract the operators. Post-test reviews are very

thorough as they account for every unexpected data point. A highly sensitive tool

will better support this effort.

• Functions in multi-phasing and transient operations

o Much of the literature uses examples of where a system is operating, perhaps with

numerous dynamics involved (i.e. rocket engine runs), but it does so in a

relatively stable operational and/or configuration setting. This is not the case for

loading the vehicle with cryogenic fluids. There are multiple phases to load a

vehicle and each requires a change in configuration. When using limit-settings

and a transition is required, the applicable limits are inhibited. Once the transition

is complete, the limits are again activated to the changed levels that support the

new phase. The AD application needs to be versatile enough to accommodate the

various phases. It is also desirable to monitor the system transients as limit-

setting is inhibited at this time leaving only visual display monitoring for issue

detection.

106

As budget is often a major factor in determining if a project goes forward, cost requirements are

needed to ensure investment does not exceed the value-added. As this technology tends to be

customized towards user with unique purposes, there are very few commercial applications

readily available. Therefore, developing an application to meet requirements is a possibility.

This also means estimating the project cost is much more difficult as there many unknown

variables at this point in the life-cycle. Subsequently, the cost requirements are written such they

minimize development, implementation and maintenance costs associated with a new

application. This is an indirect way of controlling costs associated with the ambiguity

surrounding new development.

A matrix was developed showing both requirements and AD classes (reference Table 6 -

Requirement/AD-Class Matrix). This uses a simple scoring system to rank the AD classes. It

does give partial credit if it is known that at least some of the requirement can be satisfied or if it

is unknown if it can be satisfied at all. This is intended to lower the scores for those classes that

require additional research without ruling them out completely by scoring ‘does not meet.’ The

requirement/AD-class were scored as follows:

• 0=Does Not Meet Requirement

• 1=Partially Meets Requirement or Unknown

• 2=Meets Requirement

107

Within the functional requirements, the applications scored very closely. As these are all data-

driven techniques, this is not unexpected. The basic difference between the classes is how they

determine data is normal or anomalous. Therefore, the ability to meet functional requirements

should be similar. For the performance related requirements, it is unknown if they can be met so

Title

Nearest Neighbor/Clustering

Neural Netw
ork

Statistical/Param
etric

One-Class SVM
s

Have means to notify (alarm) the operator 2 2 2 2
Have a high level of detection accuracy 1 1 1 1
Minimizes false alarms 1 1 1 1
Have ability to analyze post-test data 2 2 2 2
Provide real-time monitoring of system 2 1 1 1
Have ability to adjust sensitivity of detection 2 2 2 2
Functions in multi-phasing and transient ops 1 1 1 1
Adds value above existing AD capabilities 1 1 1 1

Totals: 12 11 11 11

Minimal Development 2 1 1 1
Uses Existing Data 2 2 2 2
Uses Existing Hardware 2 2 2 2
Existing Application 2 1 1 1
Minimize Number of Applications 1 1 1 1
Minimize Supporting Applications 1 1 1 1

Totals: 10 8 8 8
Grand Totals: 22 19 19 19

Minimize Cost (AD/FI)

Provide Anomaly Detection Capability

Table 6 - Requirement/AD-Class Matrix

108

these too are comparably scored. However, there is an exception within the Nearest-

Neighbor/Clustering class. NASA has developed an AD application called Inductive Monitoring

System (IMS) (“Inductive Monitoring System,” n.d.). They have licensed this technology on a

non-exclusive basis in that it will be made available for use in NASA applications. As this

application is being used in industry and supporting real-time applications, it will be assumed it

can meet the real-time requirement. Although the literature is generally favorable in the

detection capabilities for all the AD classes, these were specific cases that are not necessarily

common to the LH2 system. Subsequently, requirements related to detection skills are rated

‘unknown.’

As IMS is an existing application ready to adapt to a given system, it will require less

development as the core algorithm is already functional. This advantage gives the Nearest-

Neighbor/Clustering class a favorable ranking for the cost related requirements. Therefore, a

down-selection will be made at this time to pursue a Clustering application. However, as the

ability of this application to function well within the LH2 system remains unknown, further

analysis will be required.

FI Application Rankings

There are three classes identified related to FI. The first is a physics model. It is presumed that

the model can mimic system operations, and if the system goes off-nominal, the model can be

adapted to determine why. The second method involves an expert system. Such a system

involves developing a knowledgebase, and then uses this information to follow a path that leads

109

to the root cause of the issue. It does this by incrementally performing a series of tests. The

result of each test determines which test is next applied. The third class is termed a fault map

model. This technique also develops a knowledgebase that maps the individual failures to the

sensors used to detect that failure.

A complex system will have a very large number of potential failures. Often, a failure will

propagate through the system further disrupting performance and possibly creating additional

failures. As this propagation is dependent on system configuration, and this often changes for

the LH2 system, it is not easily predictable. With a large number of potential failures,

propagation unpredictability and a sensor array that provides a limited view of the system,

isolating the issue to a specific component cannot always be accomplished during remote

operations. Therefore, an FI application should be able to list multiple possible failure modes.

The LH2 system is composed of approximately 2,500 labeled components (this does not include

piping, wiring, fittings structural components that also comprise the system). As shown during

fault tree development, each component can have multiple failures. As each of the FI classes

under consideration need this information to function, generating the applicable knowledgebase

will be labor intense. In addition, relating these failures (and propagation) to the instrumentation

that detects them requires system expert knowledge.

The FI functional requirements are intended to provide a higher-level detail as to what is desired

without restricting options as with the AD functional requirements. These requirements include:

110

• Have means to notify the operator

o The application needs to display results to the operator. This can be an automated

report (triggered from an alarm) or a manual request by the operator. This

application can run embedded within the existing C&C architecture, or from a

standalone platform.

• List all potential faulty components

o As it is unlikely that an FI application will be able to settle on a definitive

problem, all suspect issues should be displayed to the operators.

• Have ability to limit list to most-probable

o When displaying multiple issues, the operator should have the means to limit the

displayed items. This protects against a failure (i.e. major C&C component) that

can generate hundreds of alarms, and subsequently, hundreds of potential faults

(limits scrolling pages).

• List in order of fault probability

o When displaying multiple issues, order the list so that ‘most-likely’ items are

shown first. This requires a means to assign a probability score to the possible

fault causes.

111

The cost-related requirements used for AD ranking were developed to minimize development

costs, and these same requirements apply to the FI applications. A matrix was generated to rank

the FI classes using the same 0-2 scoring method (reference Table 7 - Requirement/IF-Class

Matrix).

The FI classes scored closely for the functional requirements with the only advantage given to

Fault Map Models. There is an existing application called TEAMS-RT that has been tested in

other NASA applications (“TEAMS-RT,” n.d.). This model does have the ability to rank the

suspect faults detected. It is unknown if the other classes can include this feature.

Title
Phsics M

odel
Expert System
Fault M

ap M
odel

Have means to notify the operator 2 2 2
List all potential faulty components 1 1 1
Have ability to limit list to most-probable 2 2 2
List in order of fault probability 1 1 2

Totals: 6 6 7

Minimal Development 1 1 1
Uses Existing Data 2 2 2
Uses Existing Hardware 2 2 2
Existing Application 1 1 2
Minimize Number of Applications 1 1 1
Minimize Supporting Applications 0 1 1

Totals: 7 8 9
Grand Totals: 13 14 16

Provide Fault Isolation Capability

Minimize Cost (AD/FI)

Table 7 - Requirement/IF-Class Matrix

112

For the cost-related requirements, a physics model by itself cannot provide fault isolation. As

the LH2 system under study does not have an existing physics model, a supporting model must

be generated to provide this capability. Therefore, this class did not meet the ‘minimize

supporting applications’ requirement. The Fault Map Model class had a slight advantage over

Expert Systems in that a commercial application is available (and tested in other NASA

projects). As Fault Map Models ranked slightly higher in both functional and cost requirements,

this class will be pursued further. It should be noted that there are still several unknowns

associated with this class and additional analysis will be required.

Model the System

By selecting a model-based system engineering (MBSE) approach, the system will be modeled

as part of the design process. SysML uses diagrams to convey graphically the various

subsystems to users. The power of an MBSE approach is the underlying structure generated that

links the various diagrams and model elements. Since diagram development with element

associations are part of the MBSE model construction, no additional effort is required to provide

information related to AD/FI applications. If augmenting an existing system that lacks the

requisite documentation in a readily usable format, then at a minimum, the system structure

should be modeled in SysML. For this case study, BDDs and IBDs will be developed for the

three major LH2 subsystems identified in the Scope Overview section to include:

• Pressurization subsystem

• Transfer subsystem

113

• Vent subsystem

A BDD is used to describe physical characteristics of a system and uses a ‘block’ to represent

those items. The system itself is a block which can be decomposed to subsystems, components

and parts as deemed necessary by the stakeholders. The BDD shows the relationships in a

hierarchal format. Since the BDDs identify all the components used within a system, this

information is used to define system scope. While a BDD shows the composition of a block, an

IBD differs in that it shows how the internal parts within a block are connected. This includes

the flow of matter, energy and data among these parts. This information will assist with the

generation of potential faults for the system.

LH2 Pressurization Subsystem

The LH2 pressurization system is used to pressurize the LH2 storage tank. This pressure,

combined with different sized valves or variable position valves, controls the flow rate to the

vehicle for the various loading phases. This system utilizes a main and auxiliary vaporizer (heat

exchangers), a variable flow control valve (main) and control valves (main & auxiliary) to

control the tank pressure. A BDD titled ‘LH2StorTankPressSys’ identifies the main components

that comprise this subsystem (reference Figure 20 - BDD/LH2StorTankPressSys).

114

As stated earlier, the BDD gives a view of the structure comprised of blocks in a hierarchy

format. An IBD shows the internal connections of the block to include any media that is passed

among those parts. The ‘LH2StorTankPressSys’ IBD shows how LH2 flows from the storage

tank to the vaporizer, is converted to gaseous hydrogen (GH2) and returned to the tank (reference

Figure 21 - IBD/LH2StorTankPressSys). As LH2 has an expansion ratio of approximately

833:1, a much larger volume is returned to the tank which drives the pressure upwards.

Figure 20 - BDD/LH2StorTankPressSys

115

The ‘LH2StorTankPressSys’ is a higher level view of this subsystem. During the modeling

process, these higher-level diagrams will be further refined until adequate detail is represented

that meets the design, user, and stakeholder groups. As an example, in the

‘LH2StorTankPressSys’ BDD, there is a block titled ‘LH2VapCntrlVlvSys’ which is

decomposed further in a BDD of the same name (reference Figure 22 -

BDD/LH2VapCntrlVlvSys).

Figure 21 - IBD/LH2StorTankPressSys

116

The corresponding IBD shows the interaction among these components. Note that parts that are

not part of the corresponding BDD can still be included within the IBD when necessary to

enhance the diagram’s view (annotated “from IBD”). In addition, when the flow inputs and

outputs (matter, energy and data) do not originate or terminate within the diagram, these are

shown as ‘ported’ to the diagram’s frame (reference Figure 23 - IBD/LH2VapCntrlVlvSys).

Figure 22 - BDD/LH2VapCntrlVlvSys

117

LH2 Transfer Subsystem

There are two valve control assemblies (ground systems) that control the LH2 flow to the launch

vehicle. One of these valve skids is located at the Pad in the vicinity of the storage tank, while

the other is on the mobile launcher platform just upstream of the Shuttle vehicle. A BDD

showing both valve complexes was developed. Note that all the valves on these skids are

included, though not all support LH2 transfer operations.

Figure 23 - IBD/LH2VapCntrlVlvSys

118

The focus of this IBD is to depict the transfer of LH2 from the storage tank to the launch vehicle.

Therefore, some of the components listed in the BDD that do not directly support LH2 flow are

not included in this IBD.

LH2 Vent Subsystem

As LH2 is a cryogenic liquid that is constantly boiling, anywhere you have the potential to trap

liquid (i.e. storage/flight tanks, transfer line piping) must also have the ability to vent that part of

the system to prevent over-pressurization. For the system under study, there are four primary

generators of GH2 that require active control during loading operations to include:

1. The GH2 generated from the external tank while being filled.

2. A liquid bleed flow used to thermally condition the Shuttles’ engines.

3. The LH2 storage tank (following pressurization).

4. The cross-country transfer lines that can be independently isolated.

The Pad LH2 valve skid has the ability to vent the storage tank as well as the transfer line piping

between the Pad and MLP valve skids. The MLP LH2 valve skid controls venting of the transfer

line between this valve skid and the vehicle. It also controls the bleed flow from the vehicle.

Model the AD/FI Applications

When the down-selection was made to determine which AD and FI classes would be pursued, it

was noted that enough information was not available to determine if these classes could fully

119

meet the requirements. This section will model the selected AD and FI classes so this

determination can be made.

Anomaly Detection Model

The AD class chosen was the Nearest Neighbor/Clustering method. This is a data driven

application. Data is ingested into the model (referred to as training data) which provides a

reference when later compared to test data. Data sources can be classified as supervised, semi-

supervised or unsupervised. Supervised data means that the data set includes both normal and

anomalous data that is ‘labelled.’ Labelled data is known to be normal or otherwise. Semi-

supervised data can include both normal and anomalous, but only the normal data is labelled.

Unsupervised data is not labelled (Goldstein & Uchida, 2016). For large datasets, it is typically

impractical to label the data. As this is the case for the LH2 system, only unsupervised data will

be utilized. This data comes from previous LH2 loadings that were deemed nominal following a

post-test review. This is not sufficient to label the data, but it does increase the level of

confidence that the data represents only nominal operations. When using unsupervised data, it is

assumed to be normal and all exceptions anomalous. However, it needs to be noted that such

datasets may include (undetected) abnormal data. In addition, divergence from nominal does not

always reflect an anomalous condition. It could mean the training data does not include all

variations that represent nominal operations.

The Nearest Neighbor and Clustering methods are two different techniques. These were

combined into a single class as the most common approach to implementing both involves

120

determining the Euclidian distance of a test point to either its nearest neighbor(s), or to a central

point within a cluster. This class ended up ranked the highest because there is an existing

application that was originally developed by NASA and tested in various applications. This

application utilizes the Clustering model. The main advantage to this is that the center of the

clusters is calculated during the training phase, and that value is provided as a constant during

testing. The Nearest-Neighbor needs to know the test point so it can seek out the neighbors. By

shifting as much of the calculation process to the training-side of the model as possible, the

computational complexity during testing is reduced enabling the application to run real-time.

During the down-select process, there were four requirements that were flagged ‘unknown’

requiring further analysis. The Clustering AD process will be modeled to determine if these

requirements can be met. These requirements include:

• Have a high level of detection accuracy

• Minimizes false alarms

• Functions in multi-phasing and transient ops

• Adds value above existing AD capabilities

The K-Means model follows the methodology as described by the IMS developers (D. L. Iverson

& Field, n.d.). The initial testing will focus on a single cluster as the objective at this point is to

test the sensitivity of changes in test data. The training data is synthetic, but based on actual

parameters used within the LH2 system. The data types are also varied as this would be common

when developing the desired vectors for system monitoring. A vector would be composed of

121

measurements that are in some way related to one another (user defined). This is intended to

capture system performance by monitoring sensor groups that are influenced by associated

operations.

Sensitivity Analysis

The K-means algorithm makes the nominal/off-nominal determination of a data point based on

its distance from the cluster’s center. This application defines that center as the average between

the high and low values for each vector element. Subsequently, the only information needed to

support testing is the high and low values for each range within the vector. The training data

(single cluster) uses only ten inputs. This data is centered on the nominal value it represents,

though it was varied by +/- 1% via a random number function. So the total range of the data

within this cluster does not exceed 2% (reference Table 8 - Training Data).

122

The measurements chosen have quite a bit of disparity in the numerical values. To determine the

distance a test point falls away from the cluster’s center, a Euclidian metric is used. As this

method determines a vector length, larger values will have a disproportional impact on this

distance. Therefore, the data should be normalized before entered into the vector. There may be

cases when it is desirable for the model to be more sensitive to critical indicators. These

parameters should still be normalized, but can then be weighted to obtain an elevated (or muted)

response. All data will be normalized to a 0-1 scale per equation 1.

 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑋𝑋 − 𝑋𝑋𝑁𝑁𝑀𝑀𝑁𝑁

𝑋𝑋𝑁𝑁𝑀𝑀𝑀𝑀 − 𝑋𝑋𝑁𝑁𝑀𝑀𝑁𝑁
 (1)

The model works by finding the distance between two points: the cluster center and individual

test data. If a = (a1, a2,…,an) and b = (b1, b2,…,bn), the Euclidian distance (d) between points a

and b is shown below (equation 2).

Press1 Press2 Press3 Temp1 Temp2 VlvPos(%)
Nom 100 750 3000 -423 85 100

99.04 744.03 3004.98 -420.06 85.78 99.55
100.48 756.60 2980.02 -425.34 84.23 100.70
100.43 754.45 2985.01 -421.87 85.16 100.60
100.06 755.54 2991.16 -421.39 85.75 100.46
99.97 743.15 3013.36 -424.95 85.33 100.66
100.41 755.18 3003.67 -422.32 85.33 99.45
100.70 746.93 2971.44 -418.85 84.68 99.30
99.21 743.52 3008.02 -425.55 85.82 99.81

Min 99.0 743.1 2971.4 -425.5 84.2 99.3
Max 100.7 756.6 3013.4 -418.9 85.8 100.7

Tr
ai

ni
ng

 D
at

a

Table 8 - Training Data

123

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = �(𝑎𝑎1 − 𝑏𝑏1)2 + (𝑎𝑎2 − 𝑏𝑏2)2 + ⋯+ (𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2

(2)

The training data tracks the high and low values for the entire range of each parameter for a

given cluster. As it uses the average of these two values, the normalized value for each element

results in ‘0.5’. Equation 2 can be summarized as follows:

 𝑑𝑑(𝑎𝑎, 𝑏𝑏) = ��(0.5 − 𝑏𝑏𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(3)

With the training data established for a single cluster, the test data can be formulated. This data

will start nominally, and then be manipulated to simulate various anomalies. This initial testing

will assist in determining the sensitivity of the model to detect deviations from normal. For

demonstration purposes, the test data will be limited to a count of fifty. Each vector length is

calculated and then plotted. When data is nominal, a baseline is formed. An upward deflection

from this baseline is an indication that one or more of the monitored sensors is deviating from

nominal. It is this visual cue that alerts the operator that the system has changed. An alarm can

be established by setting a threshold above the baseline.

The initial data selected does not represent a related subsystem. This data was chosen to model

the responsiveness of a sensor grouping that includes both extremes (nominal pressures from 100

to 3000 PSIG; temperatures from 85 to -423oF) and common values (pressure and valve position

with a nominal value of 100). Initial values are from actual data and all fall within the training

124

data’s min/max values, or are very close. This ensures the initial vector generated would be

assigned to this cluster.

The first test will increment a single parameter (100 PSIG) in the test data. Typically, a 100

PSIG system would have an operating range of +/- 10% (90 – 110 PSIG). The low and high

alarm limits would be set to those operational limits. A plot of this test is presented below

(reference Figure 28 - Single Indicator Test). The first 10 samples represent a nominal baseline.

This measurement is incremented by 1 PSIG at every 10th sample (to 5%). The min/max values

for this indicator are 99.04 and 100.70 respectively (reference Figure 24 - Single Indicator Test).

The first increment to 101 PSIG moved the parameter just outside its max-value, and the plot

registered a slight increase from baseline. As data toggles around a value, the baseline will

oscillate to reflect these slight variations. With each subsequent increment, the test data moved

further from the cluster as exhibited with the upward trend from baseline. A 5% increase on a

single variable resulted in a distance value that is more than triple the baseline.

125

The next test involves incrementing multiple variables within the vector. These values were

adjusted both upward and downward. The first 20 data points remain the same as in the previous

test (baseline and 1% increase on 1 indicator). The subsequent samples represent a 1% increase

on a different measurement every 10th sample (reference Figure 25 - Multiple Indicator Test).

Similar to the previous test, a 1% increment has a slight impact to the baseline. In addition, the

last variable incremented brings the baseline back down (Temp-2). This measurement’s initial

value is set just under the min-value for this parameter. So a 1% increase brings the distance

closer to the cluster as depicted by the plot. An upward trend can be noted, but not necessarily

significant enough to warrant additional evaluation.

Figure 24 - Single Indicator Test

126

The next plot is the same five indicator test, but with 2% increments (reference Figure 26 -

Multiple Indicator test (2%)). The upward trend is now more noteworthy. Had this been an

interrelated grouping of measurements, this would have flagged the operator that the system was

changing in a way not captured by the training data. It should also be noted that the ten-sample

increments are intended to test sensitivity. If the change in the system did influence five of the

six vector elements, the plot would have captured this over the transient range. For short

duration transients, this could make the plotted shift more apparent. A longer duration trend may

not be as obvious. This is rationale for including a threshold limit as subtle trend changes may

not be easy to observe, but a declining gap between trend and threshold should be noticed.

Figure 25 - Multiple Indicator Test (1%)

127

The previous tests held the test data fixed so that the actual impact from a change in state was

easily observed. However, data from dynamic systems often have noise associated with the

measurement (frequent oscillations above/below a value). The previous tests will be repeated,

but this time with noise being introduced into all the test variables. This is accomplished by

generating a random number that is +/- 1% of the nominal value, much like what was done with

the training data. The noise will be maintained while the data is being manipulated to simulate a

change in the system. This 2% total range is aggressive for simulating noise as it is not often

observed to this extent. It will also be applied to all the test variables, though many

measurements are often stable indications. Consequently, this test case should represent a

worse-case scenario. As the baseline is not so easily distinguished with noisy data, a full-run

plot is displayed showing only the baseline from which subsequent test plots build upon

(reference Figure 27 – Baseline Data (Noisy)).

Figure 26 - Multiple Indicator test (2%)

128

The first 20 samples now represent a nominal baseline and the measurement is incremented by 1

PSIG at every 20th sample to 5% (reference Figure 28 - Single Indicator Test (noisy)). There is

no longer a discernable ‘step’ formation with the plot. However, there is an obvious upward

trend that is approximately three times that of the baseline. This is consistent with what was

observed with the non-noisy test.

Figure 27 – Baseline Data (Noisy)

129

The next two tests involve incrementing multiple variables within the vector. A new indicator

was added to the plot every 20th sample. Each new value was increased by either 1% (reference

Figure 29 - Multiple Indicator Test (1% - Noisy)), or 2% (reference Figure 30 - Multiple

Indicator Test (2% - Noisy)) based on the nominal target, which is then modified to continue

mimicking noise. An upward trend can be noted in both plots, though it is much more

predominant with 2% adjustments.

Figure 28 - Single Indicator Test (noisy)

130

Figure 29 - Multiple Indicator Test (1% - Noisy)

Figure 30 - Multiple Indicator Test (2% - Noisy)

131

Transition Analysis

One of the requirements levied is that the AD application function during the different

operational phases and be able to capture transient conditions. As the limit settings for the

indicators monitoring these transitions are inhibited between phases, much of the alarms are not

available for these short durations. Hence, an AD application that can determine if the transition

was nominal or not was deemed desirable.

For this testing, data was used from both STS-134 and STS-135 Shuttle missions (reference

Figure 31 - STS-134 LH2 Loading (SF to FF) and Figure 32 - STS-135 LH2 Loading (SF to

FF)). This data includes several pressure sensors and one temperature measurement. These

indicators are related in that changes in the flow of LH2 will influence all four indicators. The

data from the STS-134 mission will be used as the training data for the model. Both missions

took place on Pad A. STS-134 used MLP-2 while STS-135 took place on MLP-3. The

timeframe within the loading operations targets the transition from Slow Fill (approximately 900

GPM) to Fast Fill (approximately 8000 GPM).

132

Figure 32 - STS-135 LH2 Loading (SF to FF)

Figure 31 - STS-134 LH2 Loading (SF to FF)

133

LH2 Slow Fill involves a low flow rate, and all three pressures can be seen to be near-equal. As

the LH2 external tank (ET) is loaded under pressure, the line pressures are gradually increasing.

For STS-135, an ET vent cycle is observed just before transition as noted by the transfer line

pressure drop that precedes an increase. Fast Fill is initiated by opening a larger fill valve

increasing the flow rate from approximately 900 GPM to 8,000 GPM. The transfer line

pressures all increase, but the impact of the various flow restrictions becomes obvious at the

higher flow rate based on the disparity among the pressure measurements. The ET vent valve

cycling becomes more frequent as depicted by the oscillations seen in the pressures.

The temperature is slowly decreasing towards that of LH2, and is within 2oF at the latter part of

Slow Fill. When Fast Fill is initiated, the temperature starts to decline quicker as the transfer line

pressure is elevated (flow rate increased). During this transition, it is typical to see a slight

upward spike in temperature caused by liquid hitting the un-wetted surfaces which generates

additional boil off of liquid. As the line completely fills with liquid, a rapid chill down to LH2

temperatures occurs.

Although the temperature decline profiles shown in figures 35 and 36 are similar, there is a shift

between the two. These values are scaled the same, and the value ranges shown in the plots

equate to approximately 1.5oF for each indicator. Therefore, this is high-granularity data

(instrument range is -409oF to 427oF). Assuming the temperature of LH2 remains constant (at

134

pressures shown), a bias can be determined when the temperatures bottom-out. In this case, it is

approximately 0.8oF. Although this is a low value, and an acceptable bias, it is significant when

compared to the 1.5oF. The following plot includes the K-Distance with the STS-135 data

(Figure 33 - STS-135 Flow and K-Distance).

Figure 33 - STS-135 Flow and K-Distance

135

The K-Distance value shows the system is off-nominal (compared to the STS-134 data) during

Slow Fill. One of the advantages of a K-Means methodology is it is easy to determine which

variable(s) are responsible for the deviation. In the following table (reference Table 9 - Elements

used for K-Distance), K-Distance is the variable plotted (against GMT). Also shown are the

normalized values of the four variables that make up this distance calculation. Only the Orbiter

Inlet temperature is (significantly) over one making this temperature the only outlier.

The next test pulls the temperature out of the plot to see how K-Distance works with the three

pressure values during transition (reference Figure 34 - Pressure and K-Distance). An increasing

trend during Slow Fill shows some disparity compared to the training data, but at just over a

value of 1.0, this is not considered problematic. A spike to just over 3.0 during transition is

noted. K-Distance then returns to nominal, though it does track with the ET vent valve cycles.

GMT K-Dist P-SkidIn P-SkidOut P-OrbIn T-OrbIn
6:46:39 5.504 0.60 0.67 0.40 6.00
6:46:39 5.502 0.60 0.50 0.40 6.00
6:46:40 5.509 0.20 0.50 0.40 6.00
6:46:40 6.008 0.20 0.50 0.40 6.50

Table 9 - Elements used for K-Distance

136

Finally, the same data is used but with a failure inserted. The Skid Inlet pressure was held at a

fixed value during the ramp up to Fast Fill pressure (reference Figure 35 - Pressure and K-

Distance with Failure). This failure mimics a loss of communication to the sensor, and

subsequently, the value in the buffer does not change. When this type of failure occurs within

the measurement’s limit settings, an alarm is not produced. If it is close to nominal system

values, it is not easily recognized on a system display view. This failure type can be

distinguished on a plot, with dynamic data, as it is characterized by a ‘flat line.’ The K-Distance

plots the same during Slow Fill and transition, but once the failure is inserted, it climbs to

Figure 34 - Pressure and K-Distance

137

approximately 4.0. In this case, the K-Means AD method did well to identify a failure occurring

during transition.

Fault Isolation Model

All three of the original FI classes require extensive support to implement this capability into a

large system. A single-fault method would look at all components and the various failure modes

that they can experience. If there is a need to consider multiple faults, then this effort can grow

quite quickly. To start this mapping exercise, the focus will be on individual components. In

addition, if a components’ failure mode cannot be traced to a detecting indicator, then it is not

Figure 35 - Pressure and K-Distance with Failure

138

included. For example, filters have a failure mode in which the filter media fails allowing

possible contaminants to pass. Such a failure would likely be undetectable by monitoring system

pressure. However, debris may now pass the element and block flow thru a downstream orifice.

A plugged orifice can be detected by a drop in downstream pressure. Subsequently, the model

will (possibly) fault the orifice, which is behaving anomalously, though the root cause of the

problem is the failed filter element.

Failure modes for components that cannot occur do to configuration are also omitted. This drops

modes such as ‘internal leakage’ or ‘failure to close’ for valves that remain open during the

entire operation. The initial pass at mapping the system will concentrate on single fault

scenarios. It is projected that the model will be expanded to include multiple faults and all

modes identified on the system fault tree. With this initial pass, modes such as ‘relief valve fails

to open’ are excluded as it first requires a failure to over-pressurize the system.

As a fault map model was the selected class, the focus will now be on developing one that

encompasses the LH2 system. The literature review was unable to uncover detail methods

utilized by the (very few) vendors. So Excel will be employed to capture and organize the data

needed to generate the mapping. It is anticipated that any application selected to implement this

technology will have the capability to either work with Excel data (either by linking to the file or

importing the desired data). The following outlines the fields to be populated:

• Component - As labeled by its unique identifier

• Description – Components nomenclature

139

• Failure Mode - As identified by the SysML model, and as required based on component

configuration

• Sensor – The primary indicator used to detect the failure identified.

• State – The indicators’ state that flagged the issue (high, low, erratic, nominal)

• Additional Sensor and corresponding State fields as required to characterize multiple

sensors used in detection

With a fault map knowledgebase being created within Excel (using the fields defined above), the

FI inputs can be tested while the knowledgebase is being produced. Simply adding a filter to

each of the fields enables the operator to select an offending measurement to get a list of

potential component faults. If there are multiple sensors available with applicable states, these

too can be selected to refine the list, thus allowing the SME to test inputs in parallel with

development. To model this effort, a knowledgebase for a purge panel feeding the LH2 transfer

lines was generated. A high limit setting is exceeded for one of the indicators (PT057), which is

then selected (reference Table 10 - Fault Map (PT057-High)).

140

Table 10 - Fault Map (PT057-High)

This results in a list of 26 component/failure combinations. Since a high limit was exceeded, the

state of the corresponding sensor is then filtered on ‘high,’ reducing the potential failures to

seven. A secondary indication (PT076) is also available for the remaining faults (this could be

multiple indicators). The field filtering can continue, but with only 7 items listed, the logic can

be carried out by observation (reference Table 11 - Fault Map (PT076 Check)). If a review of

PT076 in the timeframe that the alarm was received showed no change in status, then a failure of

PT076 is suspected, which can be further confirmed by looking to see if PT5977 remained

nominal. For this example, we will assume PT076 also diverged high (it does not have to set off

an alarm), leaving one additional indicator (PT047) that could have been influenced by the

Comp Description Failure Mode Sensor-1 State-1 Sensor-2 State-2 Sensor-3 State-3
HR051 3000/750 Hand Reg (Dome) RegCreepsHigh PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegCreepsLow PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegFailsClosed PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegFailsOpen PT057 High PT076 High PT047 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksExt PT057 Low PT076 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksInt PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegPressUnstable PT057 Erratic PT076 Erratic
DR054 3000/750 Dome Reg RegCreepsHigh PT057 High PT076 High
DR054 3000/750 Dome Reg RegCreepsLow PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegFailsClosed PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegFailsOpen PT057 High PT076 High PT047 Low
DR054 3000/750 Dome Reg RegLeaksExt PT057 Low PT076 Low
DR054 3000/750 Dome Reg RegLeaksInt PT057 High PT076 High
DR054 3000/750 Dome Reg RegPressUnstable PT057 Erratic PT076 Erratic
RV059 750 Relief Valve VlvFailsOpen PT057 Low PT076 Low
RV059 750 Relief Valve VlvLeaksExt PT057 Low PT076 Low
RV059 750 Relief Valve VlvLeaksInt PT057 Low PT076 Low
FL063 750 Filter FilterPlugged PT057 Low PT076 Low
FL063 750 Filter FllterLeaksExt PT057 Low PT076 Low
MV105 750 Purge-Leg Iso Valve VlvLeaksExt PT057 Low
SV060 Vent Line Purge Sol Valve VlvLeaksExt PT057 Low
SV065 Fill Line Purge S/O Sol Valve VlvLeaksExt PT057 Low
SV038 Fill Line Purge Sol Valve VlvLeaksExt PT057 Low
PT057 750 GHe Press IndHigh PT057 High PT076 Nominal PT5977 Nominal
PT057 750 GHe Press IndLow PT057 Low PT076 Nominal PT5977 Nominal
PT057 750 GHe Press IndErratic PT057 Erratic PT076 Nominal PT5977 Nominal

141

change in system status. If this trended downwards, then the FI leads to two possible faults (vs.

six if it remained nominal). These include the hand or dome regulators to have failed open.

Assuming PT047 did drop, this implies either the hand or dome regulator failed open. Hand and

dome regulators work in parallel. Hand regulators provide finite control in manually setting an

operational pressure. The trade-off is that this manual control capability results in a component

used in low flow applications. Dome regulators have the capacity for high-flow, but cannot be

manually adjusted. Pressure is set by applying the desired pressure into the top (dome) of the

regulator using a hand regulator.

The failure logic for this scenario is described as follows. When a regulator fails open, it is no

longer able to control pressure, and the downstream side of the regulator is exposed to the

upstream pressures (3,000 vs. 750 PSIG). If the hand regulator fails, it applies 3,000 PSIG to the

dome regulator which then opens fully. This is the same outcome if the dome regulator fails

open. In both cases, the 750 PSIG system is now exposed to 3,000 PSIG, though this leg

includes a relief valve to protect against over-pressurization. There is another pressure reduction

in this leg (750 to 80 PSIG) via a hand regulator only. If the upstream pressure to this regulator

Comp Description Failure Mode Sensor-1 State-1 Sensor-2 State-2 Sensor-3 State-3
HR051 3000/750 Hand Reg (Dome) RegCreepsHigh PT057 High PT076 High
HR051 3000/750 Hand Reg (Dome) RegFailsOpen PT057 High PT076 High PT047 Low
HR051 3000/750 Hand Reg (Dome) RegLeaksInt PT057 High PT076 High
DR054 3000/750 Dome Reg RegCreepsHigh PT057 High PT076 High
DR054 3000/750 Dome Reg RegFailsOpen PT057 High PT076 High PT047 Low
DR054 3000/750 Dome Reg RegLeaksInt PT057 High PT076 High
PT057 750 GHe Press IndHigh PT057 High PT076 Nominal PT5977 Nominal

Table 11 - Fault Map (PT076 Check)

142

spikes to relief pressure (880 PSIG), then an upward deflection would be expected on the 80

PSIG leg, monitored by PT076. Since the dome regulator is capable of high flow, combined

with the high upstream pressure, it is likely flowing through the relief valve (which is sized to

handle the maximum flow). Therefore, a drop in upstream pressure is expected (PT047) as the

system struggles to maintain 3,000 PSIG with off-nominally high flow.

Perform Trade Studies

When the preliminary framework was developed, it was envisioned that after down-selecting to

classes that best met requirements, there would be many options to choose from. This did not

turn out to be the case. The existing limit-setting, plot capabilities and software controls

employed in industry (and current KSC launch systems) are sufficient for most applications. In

addition, the Programmable Logic Controllers (PLC’s) that have become common in remote-

operated control systems are embedded with health and status capabilities specific to C&C

functions. Subsequently, proficient AD/FI expertise supporting control systems is included with

the purchase of this hardware. There is an abundance of techniques found within the literature,

but most have not advance beyond the conceptual phase. This does not diminish the need for

this technology, but it does limit the commercial options. This trade study will assess using an

available application or developing one internally. Both are viable options.

Anomaly Detection Application

A commercial application (IMS) exists that implements a K-Means method of AD. This

application can run both real-time and playback historical data. It allows the user to select the

143

vector elements (variables) for inclusion and cluster size when inputting the training data. When

running, the user can assign a threshold over the k-distance to be used as an alarm. It also has

the ability to show how much each measurement contributes to the k-distance to readily

determine which indicators are off-nominal.

The k-means methodology was modeled using Excel. However, this application cannot provide

real-time system monitoring. It can provide playback of test data, but dataset size may overcome

Excel’s limitations requiring both training and test data be segmented. The clusters for the

model were developed manually, but this could be automated using an Excel macro. The other

functions provided by IMS (element selection, cluster radius, thresholds, variable contribution)

can all be mirrored in Excel.

The AD model testing also resolved the ‘unknown’ requirements as follows:

• Have a high level of detection accuracy

o The model illustrated a sensitivity to change for both static and dynamic data

when compared to nominal training data. The training data is unsupervised, so

there could be anomalous information contained within. A diverging k-distance

shows a deviation from the training data which does not always reflect an off-

nominal condition.

• Minimizes false alarms

o When ‘zoomed in’ on a high-resolution temperature indicator, testing did show a

significant deviation in k-distance. After a reviewing the plot, it was determined

144

that an acceptable bias existed between the instruments on from two different

MLPs.

o These types of issues can be uncovered when testing historical data, and there

are several actions that can be taken to mitigate the issue as follows:

 Training data can be matched to the launch elements used (i.e. use Pad A

and MLP-2 training data for launches using this combination). This

ensures the same sensors are being compared.

 Add multiple launches to the training dataset. This will further minimize

the false alarms by capturing system variations within the training

dataset.

 Each element within the vector can be weighted to amplify or mute the

impact on k-distance. The measurement tested is critical, so it would

likely not be muted. However, this is an option for other non-critical

sensors.

• Functions in a multi-phasing/transient ops

o Testing (Slow Fill to Fast Fill) demonstrated that transient operations can be

captured.

• Adds value above existing AD capabilities

o The sensitivity analysis showed that both single and multiple indicator

divergences can be detected well before a limit exceedance is triggered. This is

a very strong capability.

• Minimizes number of applications and/or supporting applications

145

o This adds only one new application and requires no supporting applications.

Fault Isolation Application

It should be noted the LH2 system has local gages for viewing the system status which are

located throughout the system. The fault mapping concentrates on a system configuration that

supports launch vehicle loadings as these are the time-critical and hazardous operations that take

place in a control room. The remote sensors available are a smaller subset of what can be

accessed locally. In one case, a storage area panel that provides pneumatic pressure to all the

remote operated valves is set up manually to support these operations. There are local gages

used to reflect the supply pressure and for setting up two pressure reductions, including primary

and secondary legs for the actuation pressure. However, the only remote sensor on this panel is a

pressure switch that is sensing only the actuation pressure leg. In this case, all the components

that can impact this pressure, and have a failure mode that results in a loss of pressure, will be

linked to the switch. Failures that increase pressure above nominal will go undetected.

Consequently, should this switch unexpectedly drop out, a large list of potential faults will be

generated. With only a discrete measurement providing notification, the information needed to

refine this list is just not available. Should the pressure dropout be real (and not a switch failure),

and pressure continues to drop, any actuated valves will soon change state confirming the loss of

pneumatic control.

This example is being presented to highlight that an FI application will be limited to what data is

provided by the sensor array (applicable for the physics, expert systems and fault map FI

146

classes). Often, the fault cannot be isolated until the local hardware can be accessed to view the

local instruments and/or take additional troubleshooting steps. Therefore, expectations need to

be tempered for FI performance. During the analysis and development of an FI application,

system design shortcomings may be uncovered. These can be addressed to determine if a system

modification is warranted. Therefore, developing an FI knowledgebase also provides an indirect

system review which is also beneficial.

A commercial application known as TEAMS (described in literature review) is available for fault

mapping, and has been previously tested on a cryogenic test-bed at KSC. This application can

support real-time monitoring and includes a means to encompass system configuration (via

switches). There was only over-view information discovered as to how this application works,

so it was not modeled.

A component-sensor-fault related knowledgebase was developed using Excel. The fields

selected were those that are projected to be included should TEAMS (or another fault map

application) be selected. The reason for developing an internal knowledgebase is this need

amounts to an organization of data issue, and a means to present data in a timely manner with

minimal input. It was presumed that Excel could accomplish this task, so a model was

developed to test this functionality. Should an existing application be chosen, the effort to create

the knowledgebase within Excel will likely not be unproductive as it is anticipated this data can

be ported to other applications.

147

The FI model testing also resolved the ‘unknown’ requirements as follows:

• Lists all potential faulty components

o This requirement is partially met (by design). Per the filter/orifice example

described previously, FI will list all components it can link to the indicator(s) in

question. This may not include the root component responsible for the failure as

that failure mode may not be detectable with the current sensor array

• Minimal development

o This requirement is partially met. There is minimal development related to

getting an application active. However, populating the application with all the

possible component/failure-modes will be an extensive and challenging exercise.

• Minimizes number of applications and/or supporting applications

o This adds only one new application and requires no supporting applications.

Make Recommendations

For AD, the K-Means method was shown to be sensitive to changes when compared to previous

operations that were deemed nominal. The model testing resolved the unknown requirements,

and this application has the flexibility to be ‘dialed-in’ to meet various system peculiarities.

However, it needs to be reiterated that the training data is unsupervised, so it is possible that

abnormal data may be embedded within this dataset. The recommendation is to use the IMS

application. It was developed by NASA and they retained a licensing exemption that allows its

use for NASA programs.

148

When the Shuttle program gained real-time plotting capability, this provided the ability to

monitor the system over time. As there is very limited monitor space, only one plot could be

viewed at a time. For implementation, it is envisioned that K-Means vectors would be built that

are common to a saved plot of related data. A display would be set up that showed multiple k-

distance graphs. Should one of these start to diverge high, the corresponding plot would be

brought up so the operator can see the plotted data of the indicators of concern. This

methodology provides a ‘health’ indicator allowing the operator to indirectly monitor multiple

plots on a single display. In addition, a threshold value can be set that will alarm should a k-

distance value exceed it (whether it is visible or not).

During the FI modeling, a knowledgebase was developed using Excel. The intent was to see if

the desired information could be presented with minimal user input. As the model for this

functionality turned out to be relatively easy, creating a comprehensive knowledgebase with

Excel is the recommendation going forward. If it later turns out that this is not sufficient, then a

fault-map application could be considered at that time. Both methods are level in their ability to

meet requirements, though minimal development could only be partially met. As this is an

extensive effort, Excel has an advantage in that it requires only SME support where those

inputting the model require both SME and FI application know-how.

149

CHAPTER SIX: ANALYSIS/EVALUATION

A preliminary framework was proposed in Chapter 4 that provided a methodological approach to

selecting anomaly detection (AD) and fault isolation (FI) technologies that can be adapted to

complex systems. A case study was presented in Chapter 5 that followed this process to

augment the liquid hydrogen (LH2) system at the Kennedy Space Center (KSC) launch pads.

This system supported loading the external tanks (ET) to support Space Shuttle launches, and

will be used again for NASA’s next-generation Space Launch System (SLS) rockets. As LH2 is

the fuel for the Shuttle main engines, it is very flammable. LH2 is also a cryogenic fluid (-423

oF). This involves insulation challenges as the liquid is constantly boiling. To minimize losses,

the ET is not loaded until very late in the launch countdown (within ten hours of planned

launch). Loading the Shuttle is performed from a control room located several miles from the

launch pads. Therefore, these remote, time-critical and hazardous operations make the LH2

system a good candidate to supplement with AD/FI capabilities. This chapter will analyze the

case study and its implementation of the framework process, and then finalize the proposed

framework. This framework will then be validated by applying the process to the liquid oxygen

(LOX) system at KSC that is also used to load the ET.

Framework Analysis

The framework process follows the chart shown previously (reference Figure 8 - Preliminary

Framework Process Flow). This analysis will step through each process block and review the

details necessary to accomplish these steps. It will also note any changes that will be reflected in

the final version.

150

Scope the System

Establishing the system scope not only identified the system boundaries under study, it also

identified exiting AD/FI capabilities. The LH2 system was broken to three major subsystems

(Pressurization, transfer and vent). The existing AD capabilities were described (no existing FI

functionality) so that new applications with common functionality are ground-ruled out.

This task did highlight a couple of items worth noting as this impacted the scope of this case

study. First, the command and control (C&C) system at KSC went through an upgrade utilizing

programmable logic controllers (PLCs). As this new C&C architecture has significant health and

status capability embedded within, further AD/FI augmentation was considered unneeded.

Second, as hydrogen is very flammable, and potentially explosive, the ability to monitor for

leaks and/or fires is considered crucial. This is already accomplished via a ‘HazGas’ subsystem

that has installed leak and fire detectors throughout the LH2 system.

Identify and Categorize Sensor Data

Identifying all the sensors supporting both AD and FI applications is a way to ensure inclusion of

all possible measurements. Sensors are monitored for nominal operations with AD, and used to

authenticate fault-modes with FI. Most system designs include a parts list (as does the LH2

system). However, when using SysML to model the system, it becomes intuitive to organize the

component blocks in ‘packages’ that reflect the component type for later retrievals. This was

helpful for itemizing the types of indicators. When these instruments are later depicted in IBDs

151

(as instances of ‘part properties’), they are readily found within those diagrams, and IBDs also

reflect how they are used.

Identify and Categorize Fault Modes

For this case study, knowing the fault modes was not required to apply the selected AD utility.

AD focused on the ability to detect instruments deviating from the norm, and therefore, it did not

consider the faults that drove the disparity. The FI application requires that all faults be

identified, and those that can be detected by the system instrument array be catalogued within a

knowledgebase. As stated previously, this can be a comprehensive task for a complex system.

This framework development is guided by system engineering principles of which one best

practice is to leverage off of existing artifacts. If a SysML model is being developed, then the

corresponding IBDs will depict which components are within the system, and how they are being

used. This information might make it practical to auto-generate a fault tree (FT) using the

information generated by the system design. The model was extended by adding generic failure

modes (blocks) and allocating them to the components shown on the IBD (via a relationship

matrix). The matrix was exported to Excel, and a macro written to draw a basic fault tree as

described in Chapter 5. This task was successful in highlighting the potential of extending

SysML so that existing design constructs can assist in generating other design products. Fault

trees are typically generated as a separate project to the design effort. Safety engineering

oversees the development, though it is supplemented by the SME’s who have the required

technical expertise. Having the ability to auto-generate an initial FT that is directly related to the

152

design documents is efficient in the use of engineering labor, less prone to mistakes and likely to

identify deficiencies in the design product(s) earlier in their life-cycle. This proof-of-concept

exercise focused on FT’s, but it is foreseen that other design or operational products could

benefit from SysML’s flexibility in working with its core data.

Identify and Categorize AD/FI Applications

This section of the test case started with the discussion on requirements. One of the changes to

the framework process chart is to pull the requirements development out into its own block

following the system scope effort. The functional requirements development does need to follow

the system scope. While defining system scope, having to apply AD/FI was ground-ruled out for

C&C functions and Leak & Fire detection. In addition, the existing AD/FI methods were

appraised. It is expected that the detection results will overlap, but the detection methods should

not be common. This type of information is helpful before functional requirements are

produced.

Requirement generation was planned to precede the AD/FI selection process, so the preliminary

framework scheduled this activity accordingly. However, since the sensor and fault (more so the

faults) organization can be a comprehensive undertaking, the requirements should be defined

prior to committing resources to this effort. These actions are shown in parallel with the system

categorization items, but the process flow will be changed to drive the requirements generation

prior to additional work following system scope.

153

The requirements generated were categorized as functional (qualitative) and cost related. They

were purposely kept at a higher level for several reasons. For the functional requirements, a

concern exits that requirements that are too restrictive may exclude technologies that provide

considerable benefit to the system. Also, as this system is being augmented with additional

AD/FI, the current operational needs are satisfied by the implementation of the original design

requirements. On the cost side, the requirements are written generically to keep potential project

expenses minimized. The case study had to decide between existing applications or internal

development. These options have different means of costing that impact different groups.

Modeling the AD/FI technologies is time consuming, and therefore, modeling all the potential

applications is not practical. In addition, many methods found in the literature did not provide

adequate details to build a test model. To lessen the potential effort, both the AD and FI

applications were divided into classes based on common underlying techniques used to realize

their objective. These classes were then ranked based on their ability to meet requirements. This

is an intermediate step intended to reduce the potential candidates to a class that is most likely to

meet system needs.

There is a cost requirement that gives priority to an existing application (or mature

development). This requirement is based on an assumption that it is cheaper to purchase a

software license than it is to internally develop and sustain this functionality. In addition,

commercially available packages publish the capabilities of the product making it easier to

determine which functional requirements they could satisfy. Thus, the requirements derived for

154

this case study favor such applications (both directly and indirectly) as reflected in the down-

select decisions. The ability of the chosen classes to meet the functionality requirements, related

to performance, remained mostly ‘unknown.’ Resolving these unknowns is what drives model

development and subsequent testing.

Model the System

This framework is designed to work with both new projects and legacy systems. As the SysML

language was selected for modeling the system, it is assumed any new design would also be

implemented with this standard. Therefore, a suite of SysML diagrams would be available (or

quickly generated) to the applicable stakeholders. This assumption is based on the remote

likelihood of selecting multiple MBSE standards. Should another language/method be selected,

the case study still provides an outline of system engineering practices that apply, and may be

implemented in a similar way with the tool(s) supporting those standards.

This test case is enhancing a legacy system used for Shuttle (and planned to support future

launch programs). The ground systems were modified from the Apollo program in the late-

1970’s/early-1980’s predating any formal MBSE standards. Subsequently, a mature design

exists, though it epitomizes a document-centric methodology that was predominant at that time.

For operational systems, the goal is not to model the entire system as this is not an efficient use

of resources. However, if the product life-cycle is to continue into the future, then incorporating

SysML elements to support system design changes may be appropriate. In this case, four of the

nine available SysML diagrams supported this effort to include:

155

• Package Diagram

o A Package Diagram is required to contain all other SysML diagrams generated, so

it is required for any SysML model. It is used simply to organize the model, and

works very similar to folders used within Windows. The package name is

included in the frame-label of all other diagrams.

• Block Definition Diagram (BDD)

o BDD’s were developed to show the composition of the various subsystems

(LH2StorTankPressSys) and also as a way to graphically display elements stored

as blocks (components, failure modes). This supported scoping the system.

• Internal Block Diagram (IBD)

o An IBD shows the internal workings of a single block to include the inner

connections of the parts and flow between them. The block ‘LH2StorTankPress’

was created and showed via additional blocks of all the components that

comprised this subsystem. An IBD was then created from the

‘LH2StorTankPress’ block. However, all the composite blocks included in the

BDD are changed to a property of ‘parts.’ A block shows a given component

used within the system, where as an IBD shows an instance of that part (block

equates to a part number – of which there may be many used - where an IBD part

refers to the unique identifier for that component). IBD’s were used to support

system scoping, FT development, failure-mode development and fault mapping.

• Requirements Diagram

156

o SysML has a very strong capability to track requirements from initiation to

closure. Requirements diagrams were used to develop the AD/FI application

requirements.

Model the AD/FI Applications

It could not be determined if both the AD and FI classes selected could fully meet the

requirements. This drove a need to model and test these methods to determine if they

incorporating them within the LH2 system was feasible.

Anomaly Detection Analysis

The first tests performed a sensitivity analysis of the K-Means method of detection. A single

cluster was simulated, and training data was selected. The initial variables represented:

• Multiple data types (pressure, temperature, valve position)

• Common value ranges (0-100%; 0-150 PSIG, 0-150 oF)

• Dissimilar value ranges (0-150 and (-409)-(-423) oF; 0-150, 0-750 and 0-3000 PSIG)

These variables replicate actual indicators within the LH2 system, and the initial training data

values come from real data. However, they are not related to one another. They were selected as

the initial testing is looking for responses from a diverse dataset.

When a cluster is formed, only the high and low values from each element within the vector are

needed to determine a k-distance. The initial training data values were randomized to +/- 1%,

and the resulting high/low values retained. This simulates the influence of training data as each

157

variable will have differing impacts to that baseline as corresponding value trends away from

nominal, and by raising the k-distance baseline above zero.

With training data simulated, a single indicator was incremented by 1% up to 5%. As the initial

1% increment will keep it within or near the training data high/low values, only a slight shift is

observed. As the increments continue, the baseline shifts grow. At 3%, the baseline has roughly

doubled, and at 5%, more than tripled. This test is repeated, but with five different indicators

being incremented (both high and low) as this mimics the data being related to one another. A

1% increment keeps all the test values within or near the training data high/lows, and a slight

increase is noted with four of the five increments. The initial starting value on the last indicator

was set outside the training data low value, so an upward increment brought it closer to its norm.

Overall, a slight upward trend is noted. Each is then increased by 2%, and the baseline nearly

triples.

Often, the data being tested is not as stable as shown previously. The same series of tests were

repeated, but this time with +/-1% of randomized noise simulated with the test data. The results

were similar, though the stable data plots stepped up while the noisy ones trended. Selecting a

threshold value is a subjective task and will likely be based on how the baseline plot is acting.

As a general rule for this case study, a doubling of the baseline should flag the operator of a

possible trend away from nominal. A tripling should indicate divergence from nominal (as

defined by the training data). A 100 PSIG system would have limits set at +/- 10%. Therefore,

the K-Means method would have flagged the operator well before an alarm is issued.

158

The next test was specific to a requirement that was specifically developed to address an existing

limitation. During the requisite configuration changes for the various loading phases, the limit

settings are inhibited at the end of one phase, and activated (possibly to new levels) at the start of

the next phase. This essentially turns off the alarms during these transitions. To test the K-

Means ability to monitor these transient conditions, data from STS-134 (training) and STS-135

(test) during an LH2 transition from Slow Fill to Fast Fill is used. When presented during the

case study, it was noted that there is an approximate 0.8 oF temperature bias between the two

mobile launch platforms used for these launches (an acceptable tolerance). This bias further

impacted the k-distance value due to the narrow range of the indicator in this timeframe.

However, as the bias exists during the entire plot, further examination is necessary.

The STS-134 & 135 LH2 Slow Fill to Fast Fill transitions were previously plotted (reference

figures 31 and 32). Both the pressure and temperature profiles, and the pressure values were

much alike. Only the temperature stood out due to the noted bias. The STS-135 transition plot

was changed to include the STS134 temperature (reference Figure 36 - STS-135 LH2 Loading

(SF to FF) with STS-134 Temp. This plot starts out with a k-distance between 5-6 (very high)

and remains above four throughout Slow Fill. During this time, a new cluster is being defined

with approximately a 2 PSIG increase on the three pressure indicators. As the temperature is bit-

toggling between 2 or 3 values, and a bit equates to 0.072 oF, the difference of the high/low

values for this cluster equate to a small number. So normalizing a value with 0.8 bias results in a

high k-distance value. During transition, a couple of spikes are noted, but these were also

159

observed in the graph with only pressures plotted. The spike is elevated some from the pressure-

only calculations, but a view of the vector element’s normalized values indicates all four

measurements contributed roughly the same to this spike.

Following the transition spikes, the k-distance drops to just over one. As the bias is still present,

this is unexpected. At this point, the three transfer line pressures have diverged to their Fast Fill

values, and a cyclic pattern can be observed as they track the ET vent valve cycling that

maintains back pressure on the tank. During this period, new clusters are being defined, but the

temperature measurement is more active. This larger gap (approximately 1.0 oF) between the

temperature’s high and low element values lowers the normalized value, and subsequently, the k-

distance.

The final observation is related to the latter part of Fast Fill. Again, the temperature is bit-

toggling which drove the k-distance value significantly higher during Slow Fill. For Fast Fill, k-

distance drops to approximately 0.5. What is also observed is that the STS-135 temperature has

dropped into a region where the STS-134 temperature had been active (training data), and the

three pressures had already started their Fast Fill profile. Therefore, the low k-distance value is

correlating to the activities immediately following the start of Fast Fill for STS-134, and not the

latter part of Fast Fill when it decreases to LH2 temperatures.

160

This test highlights that when working with dynamic data, there may be times this data better fits

a cluster that does not reflect the same activity from which generated the test data. An

observation such as this is desired when doing post-test data reviews as the time is available to

resolve the issue. However, this was a non-issue that was initially depicted as off-nominal, and

with the bias remaining constant, later displayed as nominal. These are not the type of events

wanted for supporting real-time operations as they can distract the operators from their primary

goal of monitoring system operations.

Figure 36 - STS-135 LH2 Loading (SF to FF) with STS-134 Temp

161

Fault Isolation Analysis

The implementation selected involves generating a knowledgebase which is a straightforward

task. However, there is an open issue regarding inclusion of single vs. multiple fault modes as

follows:

• If the knowledgebase is to include multiple-fault failures:

o Should it be limited to auxiliary and/or secondary subsystems that are activated

due to a failure on the primary subsystem?

o Should it include the possibility of dual failures within a related subsystem (i.e.

a regulator fails open and the corresponding relief valve fails to open)?

o Should it include components that may be impacted due to failure propagation

thru the system (i.e. an over-pressurization due to relief valve failure)?

As this task is comprehensive, the initial focus should be including all single-fault modes that

can be detected by instrumentation. It can also include auxiliary or secondary subsystems as

these will be common to the primary side (and are often active and being monitored). As the

goal is to present likely candidates, including multiple failures will likely generate lengthy lists

with many unrealistic scenarios. This is a knowledgebase, so the user always has the option to

include multi-failures they deem credible or have experienced in the past.

Proposed Framework

With the case study concluded and an analysis of the applicable elements performed, a proposed

framework will be summarized. This updates the preliminary version and incorporates

additional detail gathered during the study process.

162

• Scope the system

o Determine the extent of the system to be augmented

o Identify existing AD/FI capabilities

 Avoid duplication of existing techniques

 Rule out subsystem inclusion or failure types if already supplemented

• Generate Requirements

o Include both cost and functional related requirements

o Generate initial requirements at a higher level

 Do not want to restrict initial AD/FI classes to consider

• Identify/categorize sensors

• Identify/categorize fault modes

o Initially done at the component level, and then applied generically to like

components

• Research available AD/FI technologies

o Consider:

 Commercially available applications

 Mature development (algorithm(s) constructed and tested)

 Conceptual techniques with supporting test results from multiple origins

o Categorized technologies into classes with common underlying methodologies

• Down select to an AD and FI class that best meets requirements

• Model the system

o For existing systems, model elements of system that will support AD/FI testing

163

• Model the AD/FI techniques

o If testing proves application is unacceptable, consider next AD or FI class

• Perform trade studies of available options within the class

o Can include existing applications or new development

• Make recommendation

Some of these tasks outlined above may also be performed in parallel. The process flow diagram

has also been updated to reflect the proposed framework (reference Figure 37 - Proposed ADFI

Selection Framework). The following highlights the changes to the final version:

• Generating requirements was added as its own step prior to identifying sensors and fault

modes

o This task was originally embedded within the Identify AD/FI applications block

o Knowing the requirements may provide insight as whether listing all sensors

and/or fault modes is required

• Down-select to AD and FI classes was added following steps to gather system and

AD/FI information.

o As the research uncovered numerous potential methods, a means to limit the

modeling and testing was a required intermediate step

164

bdd [package] ADFI_Apps [ADFI_SelectionFramework]

«block»
Scope_System

«block»
Generate_Requirements

Determine extent of the system under study
Identify existing AD/FI capabilities
Rule out subsystems with augmented AD/FI

«block»
Identify_Categorize_Sensors

«block»
Identify_Categorize_Fault_Modes

«block»
Research_ADFI_Technologies

«block»
DownSelect_ADFI_Class

«block»
Model_System

«block»
Model_ADFI_Techniques

«block»
Perform_Trade_Studies

«block»
Make_Recommendation

Include both cost and functional related requirements
Generate initial requirements at a higher level
 Do not want to restrict initial AD/FI classes to consider

Categorized technologies
into classes with common
underlying methodologies

For existing systems, model
elements of system that will
support AD/FI testing

Can include existing applications
or new development

Initially done at the component level, and
then applied generically to like
components

Fails

Figure 37 - Proposed ADFI Selection Framework

165

Framework Validation

To validate the framework, this process will be implemented on the liquid oxygen (LOX) system

that supported ET loadings for launch. This system is also planned to be used with the next-

generation of NASA rockets. Liquid oxygen is also a cryogenic fluid and provides the oxidizer

used by the Shuttle’s main engines.

The various KSC systems that operate out of the control room share the same C&C architecture,

and subsequently, there is commonality as to how the existing AD and FI capabilities currently

function. Therefore, many of the framework processes implemented during the case study are

also applicable to these other varied systems. A system engineering best practice is to reuse any

applicable artifacts as this both reduces effort by not recreating them and keeps the content

consistent when used across a spectrum of disciplines. When possible,

The LOX system loading operations also take place late in the launch countdown. They are both

hazardous and time-critical, so this system could also benefit from AD/FI augmentation. As

LOX is much heavier than LH2, one of the main differences between these two systems is LOX

requires the use of large cryogenic pumps (primary and secondary) to load the vehicle. LH2 is

loaded by pressure only, so lacks any comparable hardware. Therefore, the scope for this effort

will encompass the LOX pump subsystem.

The C&C subsystem has its own health and status capabilities, so this will be excluded from

consideration. If a leak occurs, LOX does not pose the same threat as LH2, so it does not have a

166

supporting leak and fire subsystem. As cryogenic fluids produce large vapor clouds when

exposed to ambient temperatures, the pad camera system will be used to identify leaks. Limit

setting is the primary method of AD for this system.

With the scope defined, the requirements can be generated. The requirements developed for

LH2 were reviewed, and as these are generally high-level (and not system specific), they were

found to be applicable to LOX. Subsequently, the research and ranking of the AD and FI

applications is also applicable. The LOX sensor and fault modes will be needed for the FI

application, so they are added to the SysML model. Some of the LOX components within the

pump subsystem are of the same type as LH2, so the generic fault modes for these items can be

ported over to the LOX model.

As the down-select classes are suitable for the LOX system, the K-Means method will be used

for AD. Training data was pulled from the STS-134 mission during the Replenish loading phase.

Replenish operations follow the initial tank loading, and keep the ET liquid level at flight mass

to compensate for the boil-off of cryogen fluids. It is during Replenish when the astronauts can

board the Shuttle, and this phase can last 4 to 10 hours. Four measurements related to pump

performance include thrust bearing temperature, bearing oil temperature, current applied to the

variable frequency drive and pump outlet flow (GPM). The data is plotted over an approximate

4-hour window, and no obvious anomalies are observed (reference Figure 38 - STS-134 LOX

Pump - Replenish).

167

During Replenish operations for STS-135, a leak occurred on the pump after approximately three

hours of Replenish. It started slowly, and very gradually worsened (reference Figure 39 - STS-

135 LOX Pump – Replenish (k-distance)). After nearly an hour, the pump was secured and the

secondary pump brought online to support a successful launch. The STS-135 pump plot includes

the corresponding k-distance plot. Even with a couple of noisy indicators, the k-distance forms a

stable baseline. When the pump temperatures start to drop, the upward deflection on k-distance

is quite apparent signaling an off-nominal trend.

Figure 38 - STS-134 LOX Pump - Replenish

168

For a leak failure, camera views are the primary method for both detection and isolation. Cold

vapors are the norm in the storage area as there are uninsulated pipes (in addition to the pumps)

that experience cryogenic temperatures. When a leak occurs, these vapors will tend to envelop

Figure 39 - STS-135 LOX Pump – Replenish (k-distance)

169

the area of origin which is an indicator for the operator. Leaks can occur anywhere in the

cryogenic systems, though fastened joints are the primary source. Rarely are temperature

sensors ideally located to capture external leaks, so having these measurements corroborate a

leak is unique. These indicators are installed to monitor the pump’s bearings in which the failure

mode is high temperature. The two LOX pumps are swapped operationally with each loading so

they are both exposed to run time. The secondary pump’s thrust bearing temp typically

approaches its limit when the loads are at their highest (Fast Fill), and the pump speed is reduced

slightly so it stays within specification (temperature and operator actions create entirely different

pump profiles which must be considered when selecting training data).

For the FI knowledgebase, perhaps only the high limit was considered a valid failure mode for

these indicators. This could then be remedied by simply adding the low value faults. A model

update would be more complicated requiring one with adequate skills to accomplish the task. If

the model is configuration controlled, then there are additional reviews and approvals required.

This highlights how an internal knowledgebase provides more flexibility in being sustained. If it

is adequately providing FI capabilities, then this ease of maintenance should be a factor involved

if a decision to choose an FI model is needed.

The framework provided a process that was used to select AD/FI applications for the LOX

system. The hardware was scoped to the pump subsystem as there are no pumps on the LH2

system that was used in the case study. However, when possible, actions accomplished during

the case study that were applicable to the LOX system were not repeated if the results were not

170

expected to change. This was primarily related to requirements generation. Although the

hardware differed significantly, the existing AD/FI capabilities were common (as they are to

most systems in the launch control room). This validates the decision to go forward with K-

Means AD (via the IMS application) and generating an internal knowledgebase to incorporate FI

capabilities, and therefore, the AD/FI selection framework. It is noted that K-Means could

potentially have issues related to real-time operations. However, as these issues are understood,

they can also be overcome with methods to control the training data utilized combined with the

flexibility IMS provides in tuning the model.

171

CHAPTER SEVEN: CONCLUSION

This research proposes a framework to be used by organizations with a need to enhance system

anomaly detection and fault isolation capabilities. This chapter will summarize the effort,

highlight resulting contributions, describe a limitation encountered and recommend future work

to further expand this subject matter.

Summary

Chapter 1 introduces a need to improve upon existing anomaly detection and fault isolation

capabilities for critical systems. It points out that there are other methods available, but the

applications selected for implementation do not always provide the anticipated benefit. A

problem statement is formulated and potential research objectives defined.

Chapter 2 performs a literature review and confirms many new AD/FI techniques have been

reported. The review also focuses on systems engineering approaches to select and implement

this technology. Minimal research was uncovered that addresses the implementation of these

new AD/FI technologies. Furthermore, literature describing current systems engineering

practices did not deal with inclusion of AD/FI technologies. A gap analysis is performed

indicating additional research is warranted.

 Chapter 3 organizes and defines the methodology that will be used for this research project. It

depicts the development of an initial framework followed by a case study for time-critical,

172

highly-hazardous system. The resulting (finalized) framework would be validated and the

research effort summarized.

Chapter 4 produces an initial framework to provide guidance on AD/FI selection incorporating

system engineering practices. It settles on a model-based system engineering approach and

selects SysML as the standard to support the MBSE modeling. It describes a detailed process

flow for identifying requirements, the system under consideration, and the AD/FI technologies

candidates. Determining if requirements can be satisfied drives modeling of the techniques for

testing. Most of the system modeling can be accomplished within the SysML tool. Testing the

candidate applications required functionality beyond SysML capabilities. The framework

process ends with an evaluation of the applications followed by a recommendation.

Chapter 5 conducts the case study with a focus on the liquid hydrogen system at KSC. Liquid

hydrogen is used to fuel the Space Shuttle’s main engines (as well as the next generation NASA

rockets). These are highly-hazardous and time-critical operations executed from a remotely

located control room. Thus supplemental AD/FI technologies could be valuable additions. This

study follows the initial framework while scrutinizing the individual steps in an effort to enhance

the process steps. As modeling the new technologies proves time consuming (many lack

adequate detail and/or contain proprietary information), an intermediate step was added to the

process flow to down-select to a classes of common techniques. The modeling effort, and

subsequent testing, then focuses on those methods. For this case study, the choice came down to

a single application (both AD and FI), or internal development. A recommendation is made to

173

go forward with an AD application, and internally develop a means to provide fault mapping to

accommodate the FI requirements.

Chapter 6 analyzes both the framework methodology leading to the selection process and the

chosen applications ability to meet the system requirements. The proposed framework

incorporates the refinements noted during the case study and those generated from the analysis to

establish a ‘finalized’ product. This framework is then validated against the liquid oxygen

system also located at KSC. The AD application successfully signaled a downward trend in two

indicators used to monitor pump bearing performance. The failure mode was attributed to a

failed seal resulting in a liquid oxygen leak at the pump. The AD plotted (k-distance) value had

flagged the off-nominal trend well before an alarm was triggered.

Chapter 7 concludes the research effort by summarizing the overall project. It also describes the

research contributions realized, limitations encountered during the study, and a recommendation

for future work to continue the study of related topics.

Framework

The detection/isolation technologies described herein go above what is readily available, or

currently implemented, in industry (and providing adequate coverage). Therefore, the customer

for this technology will have critical need(s) to offset the costs and/or effort. These can include

systems that are: (a) large, complex, costly; (b) highly-hazardous; (c) time-critical; (d) remote

174

operated (e) expensive when idle. The framework developed recognizes this customer profile, as

well as the necessity to provide a value-added result. Advantages realized by this framework:

• It adheres to systems engineering practices.

o Organizations with systems requiring such applications are likely practicing

system engineering, so will be consistent with their current policies.

• Uses MBSE methodology implemented with SysML

o Organizations using same methods may already have much of their systems

adequately modeled

• Selection process is requirements driven

o If it cannot be determined that technologies under consideration fully meet

requirements, drives additional modeling/testing to test capabilities

o Validates the model prior to making recommendations

• Objective process, so minimizes impact from biased stakeholders

Contributions

This dissertation is the first attempt to develop a framework with strict adherence to system

engineering practices to improve and optimize system fault detection and isolation. The primary

contribution is the framework itself as it provides a novel strategy to implementing new

technology that can enhance system performance. It lays out a systematic approach to assist

users in generating anomaly detection and fault isolation schema supporting existing or new

designs. This directly addresses the original problem statement that initiated this research project.

175

Additional contributions include:

• Extending SysML to include generic component failures. This data was combined with

existing Internal Block Diagrams components to auto-generate a fault tree (proof-of-

concept demonstrated).

• Extend the contributions of those developing AD/FI technologies by providing a means

to organize the detectors/isolators for consideration, and subsequently, acceptance for

implementation should the capabilities meet the desired requirements

• Couple AD and/or FI with unique applications for which they were never intended. Path

to generating AD/FI classes may uncover needs that could benefit from the underlying

detection/isolation techniques

• Improve accuracy in anomaly detection and fault isolation capabilities by pairing those

deemed optimal for the given environment in which they will operate

Limitations

A limitation encountered was that the systems under study, for the most part, shared the same

requirements. These two systems were identified early in this project (LH2 and LOX), and the

actual hardware selected for modeling/testing was (purposely) dissimilar. However, as the

command and control system is common among all the systems operating out of the control

room, the requirements did not change enough to drive the down-select to another class of AD or

FI candidates. Ultimately, the model testing did show the selected classes were effective for

both systems, even with the disparity in hardware tested. On the flip-side, the LH2/LOX testing

176

may be a test-case indicating these applications can be implemented for all systems operating out

of the control room.

Future Work

The ability to automatically create an initial fault tree from a SysML IBD was illustrated. This

relied on exporting a relationship matrix linking the IBD components to fault modes added to the

SysML. The next logical step is to create new ‘stereotypes’ of the applicable model elements

(further extension of the model) that can capture multiple component layering within an IBD.

This information can then be passed to external applications via the SysML export standard (vs.

a 2-dimensional matrix) for auto-generation use.

The construction of a system fault map was identified as being a comprehensive task. If SysML

is extended to assign faults to components (as per the fault tree example above), then it can be

further extended to associate indicator responses to a given component/fault combination. This

too can be exported to an application for auto-generation of system fault maps.

The K-Means method of anomaly detection requires ingestion of training data where the user

determines the sensitivity level in which the clusters are generated. It also allows for adjusting

the sensitivity of the individual elements within a vector. Additional research should be pursued

to include:

• Optimization of cluster sizing

o To include high sensitivity for post-test reviews

177

o To include low sensitivity for real-time operations

• Optimization of individual test parameter settings

• Optimization for threshold (alarm) setting

• Testing for biases between datasets

• Testing for anomalies within the (unsupervised) training data

• Testing (and handling) of very narrow high/low ranges for data that will be

normalized.

With limited data streams and display space to monitor the system, research that can integrate

AD/FI technologies into a single application would provide value. With two applications

running standalone, they are not going to be designed to communicate with one-another.

Furthermore, it is unlikely that either will be directly tied into the C&C network. An integrated

application can react to its self-generated alarms driving it to fetch the corresponding faults.

Further testing of the framework outside of a space operations environment. This addresses the

‘narrow-testing’ limitation identified earlier, and would provide further confidence that this

framework is appropriate for broad-industry use.

178

REFERENCES

Abdul-Aziz, A., Woike, M. R., Oza, N. C., Matthews, B. L., & lekki, J. D. (2011). Rotor health

monitoring combining spin tests and data-driven anomaly detection methods. Structural

Health Monitoring, 11(1), 3–12. https://doi.org/10.1177/1475921710395811

Adler, R., Domis, D., Höfig, K., Kemmann, S., Kuhn, T., Schwinn, J.-P., & Trapp, M. (2011).

Integration of Component Fault Trees into the UML. In J. Dingel & A. Solberg (Eds.),

Models in Software Engineering (Vol. 6627, pp. 312–327). Berlin, Heidelberg: Springer

Berlin Heidelberg. Retrieved from http://link.springer.com/10.1007/978-3-642-21210-

9_30

Angeli, C. (2010). Diagnostic Expert Systems: From Expert’s Knowledge to Real—Time

Systems. Advanced Knowledg Based Systems (Model, Applications & Search), 1, 50–73.

Bay, S. D., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with

randomization and a simple pruning rule. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 29–38).

Retrieved from http://dl.acm.org/citation.cfm?id=956758

Boeing: X-37B Orbital Test Vehicle. (n.d.). Retrieved November 22, 2013, from

http://www.boeing.com/boeing/defense-space/ic/sis/x37b_otv/x37b_otv.page

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM

Computing Surveys, 41(3), 15.1-15.58.

Clark, T., Rabelo, L., & Yazici, H. (2017). Extending SysML Models to Enable Automatic

Generation of Fault Trees. IIE Annual Conference. Proceedings; Norcross, 1085–1090.

179

Cressent, R., David, P., Idasiak, V., & Kratz, F. (2010). Increasing reliability of embedded

systems in a SysML centered MBSE process: Application to LEA project. M-BED 2010

Proceedings. Retrieved from http://hal.archives-ouvertes.fr/hal-00630821/

Cristea, G., & Constantinescu, D. M. (2017). A comparative critical study between FMEA and

FTA risk analysis methods. IOP Conference Series: Materials Science and Engineering,

252(1), 012046. https://doi.org/10.1088/1757-899X/252/1/012046

Daigle, M., Foygel, M., & Smelyanskiy, V. (2011). Model-based diagnostics for propellant

loading systems. In Aerospace Conference, 2011 IEEE (pp. 1–11). Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5747596

de Lange, D., Guo, J., & de Koning, H.-P. (2012). Applicability of SysML to the Early

Definition Phase of Space Missions in a Concurrent Environment. In Complex Systems

Design & Management (pp. 173–185). Springer. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-25203-7_12

De Stefano, C., Sansone, C., & Vento, M. (2000). To reject or not to reject: that is the question-

an answer in case of neural classifiers. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions On, 30(1), 84–94.

Delligatti, L. (2013). SysML Distilled: A Brief Guide to the Systems Modeling Language (1

edition). Upper Saddle River, NJ: Addison-Wesley Professional.

Ferrell, B., Lewis, M., Perotti, J., Oostdyk, R., & Brown, B. (2010). Functional Fault Modeling

of a Cryogenic System for Real-Time Fault Detection and Isolation. In Proceedings of

the AIAA Infotech@ Aerospace 2010 Conference, AIAA, Atlanta, GA. Retrieved from

http://arc.aiaa.org/doi/pdf/10.2514/6.2010-3548

180

Friedenthal, S., Moore, A., & Steiner, R. (2012a). A practical guide to SysML: the systems

modeling language. Waltham, MA: Morgan Kaufmann.

Friedenthal, S., Moore, A., & Steiner, R. (2012b). Model-Based Systems Engineering. In A

practical guide to SysML: the systems modeling language (Second, pp. 15–27). Waltham,

MA: Morgan Kaufmann.

Gogoi, P., Bhattacharyya, D. K., Borah, B., & Kalita, J. K. (2011). A survey of outlier detection

methods in network anomaly identification. The Computer Journal, 54(4), 570–588.

Goldstein, M., & Uchida, S. (2016). A Comparative Evaluation of Unsupervised Anomaly

Detection Algorithms for Multivariate Data. PLOS ONE, 11(4), e0152173.

https://doi.org/10.1371/journal.pone.0152173

Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples.

Technometrics, 11(1), 1.

Holt, J., & Perry, S. (2013). SysML for Systems Engineering: A Model-Based Approach (2

edition). London: The Institution of Engineering and Technology.

Inductive Monitoring System. (n.d.). Retrieved March 2, 2019, from

https://technology.nasa.gov/patent/TOP2-175

Iverson, D. L., & Field, M. (n.d.). Inductive System Health Monitoring, 7.

Iverson, D., Martin, R., Schwabacher, M., Spirkovska, L., Taylor, W., Mackey, R., … Baskaran,

V. (2012). General Purpose Data-Driven System Monitoring for Space Operations.

JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION,

9(2), 26–44.

181

Johnson, T., Kerzhner, A., Paredis, C. J., & Burkhart, R. (2012). Integrating models and

simulations of continuous dynamics into SysML. Transactions of the ASME-S-

Computing AndInfor Science in Engin, 12(1), 011002.

Kim, H., Fried, D., Menegay, P., Soremekun, G., & Oster, C. (2013). Application of Integrated

Modeling and Analysis to Development of Complex Systems. Procedia Computer

Science, 16, 98–107. https://doi.org/10.1016/j.procs.2013.01.011

Kodavade, D. V. (2012). A Universal Object Oriented Expert System Frame Work for Fault

Diagnosis. International Journal of Intelligence Science, 02(03), 63–70.

https://doi.org/10.4236/ijis.2012.23009

Mackey, R., Brownston, L., Castle, J. P., & Sweet, A. (2010). Getting diagnostic reasoning off

the ground: maturing technology with TacSat-3. Intelligent Systems, IEEE, 25(5), 27–35.

Martin, R. A., Schwabacher, M. A., & Matthews, B. L. (2010). Data-Driven Anomaly Detection

Performance for the Ares I-X Ground Diagnostic Prototype.

Marzat, J., Piet-Lahanier, H., Damongeot, F., & Walter, E. (2012). Model-based fault diagnosis

for aerospace systems: a survey. Proceedings of the Institution of Mechanical Engineers,

Part G: Journal of Aerospace Engineering, 226(10), 1329–1360.

https://doi.org/10.1177/0954410011421717

Matthews, B. L., Srivastava, A. N., Iverson, D., Beil, B., & Lane, B. (2011). Space shuttle main

propulsion system anomaly detection: A case study. Aerospace and Electronic Systems

Magazine, IEEE, 26(9), 4–13.

182

Mosterman, P. j., & Biswas, G. (1999). Diagnosis of continuous valued systems in transient

operating regions. IEEE Transactions on Systems, Man & Cybernetics: Part A, 29(6),

554–565. https://doi.org/10.1109/3468.798059

Murugavel, P., & Punithavalli, M. (2011). Improved Hybrid Clustering and Distance-based

Technique for Outlier Removal. International Journal, 3. Retrieved from

http://www.doaj.org/doaj?func=fulltext&aId=699249

Omar, S., Ngadi, A., & Jebur, H. H. (2013). Machine Learning Techniques for Anomaly

Detection: An Overview. International Journal of Computer Applications, 79, 33.

OMG SysML. (n.d.). Retrieved July 27, 2016, from http://www.omgsysml.org/#What-Is_SysML

OMGSysML-v1.3-12-06-02.pdf. (n.d.). Retrieved from

http://sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf

OMGSysML-v1.4-15-06-03.pdf. (n.d.). Retrieved from

http://sysml.org/docs/specs/OMGSysML-v1.4-15-06-03.pdf

Osipov, V. V., Daigle, M. J., Muratov, C. B., Foygel, M., Smelyanskiy, V., & Watson, M. D.

(2011). Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen. Journal

of Spacecraft and Rockets, 48(6), 987–998. https://doi.org/10.2514/1.52587

Park, H., Mackey, R., James, M., Zak, M., Kynard, M., Sebghati, J., & Greene, W. (2002).

Analysis of space shuttle main engine data using Beacon-based exception analysis for

multi-missions. In Aerospace Conference Proceedings, 2002. IEEE (Vol. 6, pp. 6–2835).

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1036123

183

Puig, V., Quevedo, J., Escobet, T., Nejjari, F., & de las Heras, S. (2008). Passive Robust Fault

Detection of Dynamic Processes Using Interval Models. IEEE Transactions on Control

Systems Technology, 16(5), 1083–1089. https://doi.org/10.1109/TCST.2007.906339

Qualtech Systems » TEAMS-Designer. (n.d.). Retrieved November 23, 2013, from

http://www.teamqsi.com/products/teams-designer/

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art in

modeling, analysis and tools. Computer Science Review, 15–16, 29–62.

https://doi.org/10.1016/j.cosrev.2015.03.001

Russell, M. J., Lecakes, G. D., Mandayam, S., & Jensen, S. (2011). The Intelligent Valve: A

Diagnostic Framework for Integrated System-Health Management of a Rocket-Engine

Test Stand. IEEE Transactions on Instrumentation and Measurement, 60(4), 1489–1497.

https://doi.org/10.1109/TIM.2010.2101350

Schwabacher, M. A., Martin, R. A., Waterman, R. D., Oostdyk, R. L., Ossenfort, J. P., &

Matthews, B. (2010a). Ares IX ground diagnostic prototype. Retrieved from

http://ntrs.nasa.gov/search.jsp?R=20100027332

Schwabacher, M. A., Martin, R. A., Waterman, R. D., Oostdyk, R. L., Ossenfort, J. P., &

Matthews, B. (2010b). Ares IX ground diagnostic prototype. Retrieved from

http://ntrs.nasa.gov/search.jsp?R=20100027332

Schwabacher, M., Oza, N., & Matthews, B. (2009). Unsupervised Anomaly Detection for

Liquid-Fueled Rocket Propulsion Health Monitoring. Journal of Aerospace Computing,

Information, and Communication, 6(7), 464–482. https://doi.org/10.2514/1.42783

184

Space Exploration Systems. (n.d.). Retrieved November 22, 2013, from

http://www.sncspace.com/ss_space_exploration.php

SpaceX. (2011). SpaceX Breaks Ground on Vandenberg Launch Site for Falcon Heavy - The

World’s Most Powerful Rocket. Business Wire (English). Retrieved from

https://login.ezproxy.net.ucf.edu/login?auth=shibb&url=http://search.ebscohost.com/logi

n.aspx?direct=true&db=bwh&AN=bizwire.c35402034&site=eds-live&scope=site

Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick III, J., & Railsback, J. (2002).

Fault Tree Handbook with Aerospace Applications (Version 1.1). NASA Headquarters

Washington, DC 20546: NASA Office of Safety and Mission Assurance.

Straub, J. (2011). A Review of Spacecraft AI Control Systems. In Proc. 15th World Multi-

Conference on Systemics, Cybernetics and Informatics. Retrieved from

http://works.bepress.com/cgi/viewcontent.cgi?article=1042&context=jeremy_straub

TEAMS-RT. (n.d.). Retrieved March 3, 2019, from https://www.teamqsi.com/products/teams-rt/

Vipavetz, K. G., Murphy, D. G., & Infeld, S. I. (2012). Model-Based Systems Engineering Pilot

Program at NASA Langley. Retrieved from

http://ntrs.nasa.gov/search.jsp?R=20120014575

Wu, J. (2005). Liquid-propellant rocket engines health-monitoring—a survey. Acta Astronautica,

56(3), 347–356. https://doi.org/10.1016/j.actaastro.2004.05.070

	A Framework to Develop Anomaly Detection/Fault Isolation Architecture Using System Engineering Principles
	STARS Citation

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Anomaly Detection
	Fault Isolation
	Problem Statement
	Research Objectives
	Research Contributions
	Dissertation Organization

	CHAPTER TWO: LITERATURE REVIEW
	Purpose
	Anomaly Detectors
	Data-Driven Models
	Models/Algorithms

	Fault Isolators
	Fault Isolation Models

	Anomaly Detection and Fault Isolation
	System Engineering Tools
	Gap Analysis
	Gap Analysis Observations

	Literature Review Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	Methodology
	Problem Statement
	Research Objectives
	Literature Review
	Gap Analysis
	Synthesis
	Preliminary Framework Development
	Case Study
	Evaluation
	Framework
	Conclusion

	CHAPTER FOUR: PRELIMINARY FRAMEWORK
	System Scope
	Sensor Array
	Determine Potential Faults
	Fault Reduction from Sensor Capability

	Anomaly Detection/Fault Isolation Applications
	Model the System
	System Structure
	System Behavior
	Constraints
	Requirements
	Existing AD/FI Capabilities

	Model AD/FI Applications
	Trade Studies/Application Evaluations
	Make Recommendation(s)

	CHAPTER FIVE: CASE STUDY
	Framework Development
	System Scope
	Identify and Categorize Fault Modes
	Identify and Categorize Sensor Data
	Identify and Categorize AD/FI Applications
	Model the System
	Model the AD/FI Applications
	Perform Trade Studies
	Make Recommendations

	CHAPTER SIX: ANALYSIS/EVALUATION
	Framework Analysis
	Scope the System
	Identify and Categorize Sensor Data
	Identify and Categorize Fault Modes
	Identify and Categorize AD/FI Applications
	Model the System
	Model the AD/FI Applications

	Proposed Framework
	Framework Validation

	CHAPTER SEVEN: CONCLUSION
	Summary
	Framework
	Contributions
	Limitations
	Future Work

	REFERENCES

