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Anisotropic optical phonon scattering of holes in cubic semiconductors
M. V. Dolguikh and R. E. Pealea�

Department of Physics, University of Central Florida, Orlando, Florida 32816

�Received 5 March 2007; accepted 18 April 2007; published online 15 June 2007�

The formula for the nonpolar optical phonon scattering rate of holes in cubic semiconductors is
obtained in the case of strong valence band anisotropy. The deformation potential approximation is
used. A three-band, 6�6, k ·p Luttinger-Kohn representation includes states belonging to the heavy,
light, and split-off bands. Mixing with the latter causes strong anisotropy in the transition matrix
elements as well as in the density of final states. The derived formula is recommended for silicon,
where inter- and intravalence-band scattering rates are much more strongly anisotropic and have
significantly different values than those estimated from the usual two-band 4�4, “warped spheres”
approximation that neglects the split-off band. Results for the more isotropic case of germanium are
presented for comparison. © 2007 American Institute of Physics. �DOI: 10.1063/1.2745222�

INTRODUCTION

Scattering of holes in semiconductors is induced by
emission or absorption of phonons �acoustic and optical�,
scattering on impurities �ionized and neutral�, and scattering
on mobile carriers. A general discussion of different scatter-
ing mechanisms in p-type semiconductors is found in Refs.
1–3. Rate formulas for each type of scattering have been
derived in separate papers by different authors.4–7 Clearly,
any accurate description of transport or device performance
must consider all mechanisms simultaneously.

The description of each scattering phenomenon remains
incomplete, as published rate formulas have limited applica-
bility. Recently, it was found necessary to develop more ac-
curate formulas for hole-hole scattering7 to accurately simu-
late hot-hole dynamics for p-Ge intervalence-band laser
structures at high hole concentrations.8,9 For p-Si, a potential
hot-hole terahertz gain medium,10–12 published rate
formulas1,12,13 incompletely account for the strong valence-
band anisotropy by neglecting the split-off band. Mixing
with this band strongly affects hole wave functions, the scat-
tering matrix elements, and the density of states.

In the case of acoustic phonon scattering, the rate in-
creases with temperature. Since acoustic phonons also ab-
sorb terahertz radiation, they limit the maximum hot-hole
laser operating temperature and duty cycle. Yet anisotropic
scattering rate formulas for p-Si are lacking in the literature.
Fortunately, acoustic phonon scattering can be neglected in
initial zeroth-order simulations because it is frozen out at low
temperatures.

Ionized impurity and hole-hole scattering are important
even at low temperature. These limit the maximum useful
concentration of holes, and therefore the maximum achiev-
able hot-hole laser gain. The recently published7 hole-hole
scattering rate formulas are accurate for p-Si. Impurity scat-
tering is similar to hole-hole scattering, where one of the
particles is fixed.

Optical phonon scattering involves large energy ex-

change, dominates hot-carrier transport, and is responsible
for generating population inversion in hot-hole semiconduc-
tor lasers.14–16 Accurate optical phonon scattering rates are of
primary importance for numerical simulation and optimiza-
tion of intervalence-band hot-hole lasers based on p-type
Ge,14–16 Si,12 GaAs,17 the negative mass cyclotron-resonance
maser,18,19 and other devices. The slow holes produced after
optical phonon emission are especially vulnerable to hole-
hole and ionized impurity scattering,7 simulation of which
demands accurate directional distributions. Traditional for-
mulas for optical phonon scattering1,12 fail in providing such
distributions for p-Si by neglecting the split-off band and the
resulting anisotropy. In this paper, the optical phonon scat-
tering rate formula in the case of strong valence band aniso-
tropy is obtained and discussed.

When the optical phonon energy is much smaller than
spin-orbit splitting �e.g., for Ge and GaAs�, mixing of light-
and heavy-hole states with split-off band states is safely ne-
glected. Then, optical phonon scattering of holes is treated in
the “warped spheres” approximation �4�4 k ·p model� with
parabolic hole dispersion law.20 This simplification is suit-
able for Ge and GaAs, but is inapplicable to silicon, whose
optical phonon scattering threshold ��op=61 meV exceeds
the spin-orbit splitting �=44 meV. For silicon, mixing with
the split-off band states significantly alters the scattering rate
and directional dependence. Due to the complexity of this
problem, past authoritative treatments have elected to con-
sider optical phonon scattering in all cubic semiconductors,
including silicon, in a basis that excludes the split-off
band.1,12 We demonstrate here the poorness of this approxi-
mation for p-Si.

Drift velocities and hole current in crossed electric and
magnetic fields at low temperatures in p-Si have been calcu-
lated previously,21 where authors claimed to incorporate an-
isotropy of optical phonon scattering in a Monte Carlo simu-
lation, but presentation or citation of a rate formula was
lacking, so that it was unclear whether anisotropy in both
transition matrix element and density of final states were
accounted for. The transition matrix elements for some se-
lected high-symmetry directions in germanium have beena�Electronic mail: rep@physics.ucf.edu

JOURNAL OF APPLIED PHYSICS 101, 113716 �2007�

0021-8979/2007/101�11�/113716/9/$23.00 © 2007 American Institute of Physics101, 113716-1

http://dx.doi.org/10.1063/1.2745222
http://dx.doi.org/10.1063/1.2745222


previously calculated with inclusion of split-off band
states,22 but results for arbitrary directions were absent. Thus,
a presentation of an explicit rate formula for the general case
of optical phonon scattering in the three-band, 6�6 basis,
which includes admixture of the split-off band states into
light- and heavy-hole states, appears to be lacking. This pa-
per presents explicit matrix elements and total scattering
rates for arbitrary directions in cubic semiconductors in the
three-band model, together with a comparative discussion for
p-Si and the more isotropic p-Ge.

An immediate application is accurate simulation of hot-
hole dynamics in silicon in order to calculate and optimize
gain in a p-Si terahertz laser, which has potential advantages
over the two established semiconductor terahertz lasers,
namely, the p-Ge laser14 and AlGaAs-based quantum cas-
cade lasers.23 Those lasers operate only up to frequencies of
about 4.5 THz due to the onset of strong terahertz absorption
by phonons, which increases rapidly with frequency and
temperature. In contrast, Si has high transparency up to
10 THz, and the temperature dependence of the lattice ab-
sorption is comparatively weak.24 In addition to the better
material properties for high terahertz and high temperature
operation, a Si terahertz laser might be integrated with Si
optoelectronics.

An early Monte Carlo investigation of hot-hole lasing in
p-Si reported results for orientations �B ,E�= �111,11-2� and
�001, 100� only.25 A classical calculation of the volume of
light-hole accumulation in momentum space has suggested
maximal spontaneous emission for low temperature p-Si in
crossed electric and magnetic fields with orientations �001,
1-10� and �11-2, 111�.26 A second Monte Carlo study12 found
terahertz amplification for �001, 100� and �001, 110�, but not
for �110, 1-10�. The first �and never repeated� experimental
observation27 of stimulated emission in p-Si was limited to
the orientation �11-2, 1-10� and found weak signal in the
range of 28–40 cm−1. Quantum mechanical calculations of
light-hole Landau level lifetimes have been performed only
for the orientations �110, 1-10� and �001,1-10�, for which the
Hamiltonian simplifies.28 A subsequent experiment,29 which
was limited to applied field orientations �001, 100�, reported
terahertz emission above 50 cm−1. Clearly, neither theoreti-
cal nor experimental possibilities have been thoroughly ex-
plored, and in some cases the theoretical predictions are con-
tradictory. Accurate predictions require the formula
presented here.

A possible future application of the result presented here
is simulation of hot-hole transport in p-type diamond. In dia-
mond, the spin-orbit splitting �6 meV� �Ref. 1� is much
smaller than in silicon, and the optical phonon scattering
threshold �167 meV� �Ref. 1� is much higher. Thus, the ef-
fects of valence band anisotropy are expected to be more
severe. High-field hole-drift velocity in natural diamond has
been measured, but the theory used a two-band Monte Carlo
simulation that did not allow interpretation of the observed
anisotropy.30

SCATTERING RATE FORMULA

Equation �1� presents the total transition rate with ab-
sorption �upper part� or emission �lower part� of an optical
phonon. The derivation is presented in the Appendix.

P�k,�,��� =
1

8�2��op
� n̄��op

n̄��op
+ 1

� � k�2

��E���k�,���/�k����

�Ropt�k,�;��,���d��, �1�

where

Ropt�k,�;��,��� =
1

2 �
	,	�=+,−

�
es

�	k�,��	��Hopt�es��k,�	
�2,

�2�

with k�=k��k� ,���, and magnitude k� is subject to condition
�Eq. �A16��. In Eq. �1� � is the mass density, �op the optical
phonon frequency, n̄��op

the Bose-Einstein phonon distribu-
tion, E�� is the energy of the final-state band ��, and we
integrate over the direction of the final-state hole wave vec-
tor k�. In Eq. �2� Hopt is the deformation potential operator,
we sum over the three orthogonal phonon polarization vec-
tors es,13 sum over final effective spin projections 	�, and
average over initial effective spin projections 	. Equation �2�
depends on both initial and final directions of the hole. When
this anisotropic squared matrix element is multiplied by the
anisotropic density of the final states, as in the integrand of
Eq. �1�, the anisotropy of the total scattering rate is deter-
mined. The integrand of Eq. �1� defines the differential scat-
tering rate of the hole with wave vector k from band � to
band �� into the direction ��. Using well-known hole wave
functions �Eqs. �A8� and �A9��, all possible intra- and
intervalence-band transition rates between light and heavy
bands with absorption or emission of an optical phonon can
be found for an arbitrary initial hole state in the anisotropic
and nonparabolic three-band model.

Optical phonon scattering in cubic semiconductors1,12,13

usually is considered in the warped spheres, 4�4, two-band
approximation. See Eqs. �A10�–�A12� for energy spectrum
and wave functions. This achieves great analytic simplifica-
tion. We repeat the simplified scattering rate formula here for
completeness. Neglecting the split-off band, Eq. �2�
becomes20

Ropt
warp�k,�;��,��� = dopt

2 
kk�
��� + �

es

�E��k,es��E���k�,es� ,

�3�

where
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s�
�B2k4 + C2�kx

2ky
2 + kx

2kz
2 + ky

2kz
2�

. �5�

The upper �lower� sign in Eq. �4� holds for intra-
�inter-�valence-band transitions. The upper �lower� sign in
�5� holds for the heavy-�light�-hole band. Using parabolic
dispersion �Eq. �A10��, integral �1� simplifies to

P�k,�;��� =
�E��k� ± ��op

25/2�2��3�op
� n̄��op

n̄��op
+ 1

� � m��
*3/2����

�Ropt
warp�k,�;��,���d��, �6�

where m�
*���=�2k2 /2E��k ,�� is the effective mass of the

hole within the �th band in the � direction. The effective
mass is independent of the magnitude of k in this approxi-
mation.

DISCUSSION

Squared matrix elements Eqs. �2� and �3�, and scattering
rates Eqs. �1� and �6�, were evaluated numerically using val-
ues for the parameters �L ,M ,N ,� ,��op� of �−30.4, −5.7,
−33.9, 290, 37� for germanium and �−6.5, −3.6, −8.7, 44, 61�
for silicon �see Appendix�.31 The units for valence band pa-
rameters L, M, and N are �2 /2me. The spin-orbit splitting �
and optical phonon energy ��op are in meV.

To demonstrate the effect of including the split-off band
on the transition matrix elements, squared matrix element
Eq. �2� for the case of emission of an optical phonon in Si is
plotted in Figs. 1 and 2 for different initial hole energies and
all possible intra- and intervalence-band transitions as a func-
tion of the final direction of the scattered hole. For these
examples, the hole is chosen to move in the 	100
 direction
initially, as indicated by the arrows. The prominent lobes in
the horizontal plane in the lower right diagram in Fig. 1 are
all in the 	110
 directions, and all other diagrams in Figs. 1
and 2 are similarly oriented. Left �right� columns represent
intra-�inter-�valence-band transitions for the hole initially in
the heavy �Fig. 1� or light �Fig. 2� band. The top row in each
figure presents results calculated from Eq. �3� in the two-
band approximation, where the matrix element is indepen-
dent of the initial hole energy, whose spectrum is parabolic.
The three lower rows in each figure are results from Eq. �2�
for the full three-band model �see Eqs. �A7�–�A9��. In this
approximation the shape of the surface depends on the initial
energy of the hole, so results are plotted for three energy
values 1.1��op, 1.5��op, and 2.0��op. The matrix element
becomes highly anisotropic as energy increases, and in the
case of an initially light hole �Fig. 2� it also decreases in
magnitude as energy grows �all surfaces are plotted to scale�.

We next demonstrate the effect of split-off band inclu-
sion on the direction dependence of the scattering. Figure 3
presents differential intra- and intervalence-band transition
rates with emission of an optical phonon, as defined by the
integrand of Eq. �1� where the squared matrix element Eq.
�2� is multiplied by the density of final states, as a function of
final hole direction in germanium and silicon. Initial energies
are taken to be 2��op �74 meV for Ge and 122 meV for Si�,

FIG. 1. Comparison of three-band model and two-band approximation ma-
trix elements for optical phonon scattering of heavy holes in silicon. �Top
row� The distance of the surface from the origin is proportional to the
squared matrix element Eq. �3� for intra-�H→H, left� and inter-�H→L,
right�valence-band transitions with emission of an optical phonon calculated
in the two-band approximation as a function of final hole direction. �Lower
three rows� Squared matrix element Eq. �2� H→H, left� and inter-�H→L,
right�valence-band transitions with emission of an optical phonon calculated
in the three-band model as a function of hole energy and final hole direction.
The hole is initially moving in the 	100
 direction as indicated by the
arrows.
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and the chosen initial direction of the hole is 	100
 as indi-
cated by the arrows. The scale of each surface is chosen
differently for clarity. The plotted surfaces are directional
diagrams for hole scattering with the chosen initial direction
and energy. Such results should be used for the statistical
selection of the final direction of the scattered hole in nu-
merical simulations. The anisotropy is clearly very much
stronger for Si than for Ge. In contrast, the two-band ap-
proximation gives differential rates for Si and Ge that have
very similar angular dependence, which is very close to the
three-band model results for Ge in Fig. 3.

The effect of the initial hole direction on the total scat-
tering rate is discussed next. When integrated over all pos-
sible final directions, the scattering rate Eq. �1� is still a
strong function of initial direction in the case of silicon in the
three-band model. Figures 4 and 5 present scattering rate Eq.
�1� plotted for all possible intra- �light-to-light and heavy-to-
heavy� and inter- �heavy-to-light and light-to-heavy�valence-
band transitions for a hole initially moving along the main
crystallographic directions �	100
, 	110
, and 	111
� in Si, as
a function of initial hole energy. The rates are plotted in the
low temperature limit �n̄��op

1�, so that only scattering with

FIG. 2. Comparison of three-band model and two-band approximation ma-
trix elements for scattering of light holes in silicon. The layout is the same
as in Fig. 1 except that the left column is for L→L and the right column for
L→H transitions.

FIG. 3. Comparison of differential optical phonon scattering rates for holes
in Ge and Si. Diagrams represent the directional distribution of scattered
holes, and the distance from the origin to the surface is proportional to the
scattering rate. Arrows indicate the initial 	100
 hole direction and the view-
point is the same as in Figs. 1 and 2.

FIG. 4. Heavy-hole scattering rate spectrum. The intra-�top� and
intervalence-band �bottom� total transition rates for scattering of heavy holes
with emission of an optical phonon in Si as a function of hole energy. The
different initial directions are indicated in the legend. The rate in the two-
band approximation, which is independent of intial hole direction, is plotted
for comparison.
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emission of an optical phonon occurs. The rates have a
threshold at the optical phonon energy 61 meV. For heavy-
to-heavy transitions �Fig. 4�, the rates along directions 	100

and 	111
 are indistinguishable on this scale, and the same
holds for heavy-to-light transitions. The rate Eq. �6� in the
two-band approximation is plotted for comparison in Figs. 4
and 5, and it is independent of the initial direction of the
hole.

The dependence of the scattering rate Eq. �1� on initial
direction for silicon is illustrated in Fig. 6 for a fixed initial
hole energy of 90 meV. The viewpoint and crystallographic
directions are the same as in Figs. 1–3. The angular depen-
dences for intra- and intervalence-band transitions with the
same initial band are similar �see Figs. 4 and 5�, so that one
diagram serves for both rates but with different scales. For
the 	100
 initial direction, the scattering rate is about 1.5
times higher than for the 	110
 �	111
� initial direction for
heavy �light� holes. This ratio is increased when the incident
hole becomes faster. Anisotropy in the same total scattering
rates calculated for germanium is negligible.

CONCLUSIONS

The rates for inter- and intravalence-band transitions
caused by emission or absorption of an optical phonon are
characterized by two factors. First is the matrix-element an-
isotropy. When mixing with the split-off band is included
�three-band model�, matrix-element anisotropy is very strong
for silicon and increases with hole energy. When split-off
band states are excluded �two-band approximation�, the ma-
trix element lacks strong anisotropy and has no energy de-
pendence. Therefore, the two-band approximation is poor for
Si, though it has been widely used. The second factor is the
density of states in the final band. The integrated density of
states is significantly larger when split-off band states are
included. The ratio between these densities grows rapidly

with energy.10 For some special initial hole directions, this
increase is compensated by a decrease in the matrix element,
and the total rate in the three-band model approaches that
found in the two-band approximation. Use of the two-band
approximation matrix element together with the fully aniso-
tropic density of the final states, as was done in Ref. 12,
overestimates the total scattering rate in Si by a factor of up
to �2��3� for heavy �light� holes.

For accurate calculation of optical phonon scattering in
silicon, split-off band states must be included when deter-
mining both density of states and transition matrix element.
The usual two-band approximation1,13 is unsuitable for semi-
conductors with small spin-orbit splitting because it fails to
describe accurately the anisotropy of the integrated scattering
rate, revealed for silicon in Fig. 6. However, exclusion of
split-off band states is justified for semiconductors with large
spin-orbit splitting, such as Ge or GaAs.

Anisotropy of the integrated optical phonon scattering
rate for Si is important in choosing the best light- and heavy-
hole streaming directions for intervalence-band p-Si
lasers.10,11 For this type of device, optical phonon scattering
is the dominant source of inversion-building heavy-to-light
transitions. Because of the strong anisotropy of light- and
heavy-hole streaming in crossed fields and hole-hole scatter-
ing anisotropy,7 correct calculation of the directional distri-

FIG. 6. Total �integrated over final states� optical phonon rate for holes in Si
plotted as a function of initial direction of the hole with energy of 90 meV.
The distance of the surface from the origin is proportional to the rate, while
the gray scale bars indicate actual rate values in units of ps−1. The 	100

directions correspond to the large rounded lobes on top and on the lower
sides of the upper diagram, while the three dark pits are the 	110
 directions
in this diagram. The same point of view applies to the lower diagram, where
the central dark pit is a 	111
 direction.

FIG. 5. Light-hole scattering rate spectrum. The organization of the plots is
the same as in Fig. 4.
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bution of scattered holes is very important for correct esti-
mation of hole lifetimes. The preferable direction of the
heavy-hole streaming �in terms of highest light-hole genera-
tion rate� would be 	100
 or 	111
 �see Figs. 4–6�. At the
same time it is favorable for the light-hole population to have
the fastest part of the trajectory in the 	111
 direction, since
then the light-to-heavy hole transitions by optical phonon
emission are minimized. Because of the complexity of the
problem, Monte Carlo simulation using three-band model
scattering rates can help to optimize the laser performance.
As was shown above, simulation with simplified approxima-
tion can give wrong predictions.
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APPENDIX
Spin-orbit coupling splits the sixfold degenerate valence

band at hole wave vector k=0 for semiconductors with dia-
mond or zinc-blende structure into a fourfold degenerate
band �light and heavy bands� and a twofold degenerate band
�split-off band�, which is shifted toward higher hole energy.
If both spin-orbit splitting at k=0 and hole kinetic energy are
small compared to the fundamental band gap, the wave func-
tions of light- and heavy-hole states, to lowest order in k, can
be written as20

���k,r� = exp�ik · r� �
J=3/2,1/2

�
mJ=−J

J

cJ,mJ

� �k��mJ

J �r� . �A1�

Here, � is the band index �heavy, light, or split-off�. The �mJ

J

are basis functions in the Luttinger-Kohn representation20,32

given by

�3/2
3/2 =

1
�2

�X + iY��, �1/2
3/2 =

i
�6

��X + iY�� − 2Z�� ,

�−1/2
3/2 =

1
�6

��X − iY�� + 2Z��, �−3/2
3/2 =

i
�2

�X − iY�� ,

�1/2
1/2 =

1
�3

��X + iY�� + Z��,

�−1/2
1/2 =

i
�3

�− �X − iY�� + Z�� , �A2�

where X, Y, and Z are the Bloch functions for k=0 that
transform under operations of the cubic group as Cartesian
coordinates x, y, and z, respectively.20 The � and � are the
spin functions corresponding to positive and negative spin
projections, respectively. The spin-orbit interaction operator
is diagonal in this representation, and the coefficients cJ,mJ

�

are eigenvectors of the Hamiltonian matrix.20 The six eigen-
values are degenerate in pairs due to time reversal symmetry.
Eigenvalues of the Hamiltonian matrix in representation

�A2� are defined by20 three constants of the valence band, L,
M, and N, and by the spin-orbit splitting � at k=0. These
eigenvalues �for valence electrons since ��0� are

EH =
F + G

2
−

�

3
+ � T

12
−

3�

T
��� + �3�1 − �2�� , �A3a�

and

EL =
F + G

2
−

�

3
+ � T

12
−

3�

T
��� − �3�1 − �2�� , �A3b�

ES =
F + G

2
−

�

3
− ��T

6
−

6�

T
� , �A3c�

where

F =
L + M

2
�kx

2 + ky
2� + Mkz

2, �A4a�

G =
F

3
+

2

3
�M�kx

2 + ky
2� + Lkz

2� , �A4b�

I =
1

�12
��L − M��kx

2 − ky
2� − 2iNkxky� , �A4c�

H = −
N
�3

�kykz + ikxkz� , �A4d�

T = �6 27� , �A5a�

� = 36�F − G�4��2 + 6��I�2 + �H�2�� + 432��I�2

+ �H�2�2�3�F − G�2 + 4��I�2 + �H�2�� + 288��I�2

+ �H�2��2��F − G�2 + 2��I�2 + �H�2�� +
1

9
��F − G�2

+ 4��I�2 + �H�2���144�4 + 243�F − G�4� +
64

27
�6,

�A5b�
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� = cos�1

3
cos−1� �− 162�3R − 8�3 − 27�F − G���F − G�2 + 6��H�2 − 2�I�2���

T3 �� , �A5c�

R = IH*2 + I*H2 =
N2kz

2

6�3
�− 2�L − M��kx

2 − ky
2�2

− 8Nkx
2ky

2� , �A5d�

� = − �F − G

2
�2

− �H�2 − �I�2 −
�2

9
. �A5e�

Subscript labels of energies in Eq. �A3� represent heavy band
�H�, light band �L�, and split-off band �S�. The positive en-
ergies of holes are the negative of Eqs. �A3�.

The band constants L, M, and N needed to calculate all
terms in Eqs. �A3�–�A5� are tabulated for a number of semi-
conductors in Ref. 31. Light- and heavy-hole constant energy
surfaces for silicon have been presented in Refs. 33 and 34.
The energy surfaces of germanium are warped spheres,
where the small anisotropy results from weak mixing with
the distant ��=290 meV� split-off band. In contrast, the mix-
ing is much stronger for silicon, and a warped spheres de-
scription is a poor choice. The strong anisotropy of energy
surfaces gives strong direction dependence for the density of
hole states, which clearly affects the rates of optical phonon
scattering.

Once the hole spectrum E� ��=H ,L ,S� has been found,
corresponding coefficients ci

� that determine the hole wave
function can be calculated. Since all three distinct eigenval-
ues �Eq. �A3�� are doubly degenerate, the sets of coefficients
cJ,mJ

� for each band � are determined only to within a unitary
transformation of the degenerate functions. The coefficients
cJ,mJ

�+ and cJ,mJ

�− of the two degenerate functions ��+ and ��−

for each band � may be subjected to the following
conditions:20

c3/2,3/2
�− = − c3/2,−3/2

�+ *, c3/2,−3/2
�− = c3/2,3/2

�+ *,

c3/2,1/2
�− = c3/2,−1/2

�+ *, c3/2,−1/2
�− = − c3/2,1/2

�+ *,

c1/2,1/2
�− = − c1/2,−1/2

�+ *, c1/2,−1/2
�− = c1/2,1/2

�+ *. �A6�

This choice of the coefficients �Eq. �A6�� is consistent with
the requirement that the eigenvalues �Eq. �A3�� of the Hamil-
tonian matrix in the basis �Eq. �A2�� are doubly degenerate.
The “�” and “�” labels on the band index � can be consid-
ered as an “effective spin” projection 	. It is convenient to
write the wavefunctions �A1� as a column matrix of expan-

sion coefficients cJ,mJ

�	
�k� in terms of Luttinger-Kohn func-

tions �Eq. �A2��,

��	
�k,r� = exp�ik · r��

c3/2,3/2
�	

c3/2,1/2
�	

c3/2,−1/2
�	

c3/2,−3/2
�	

c1/2,1/2
�	

c1/2,−1/2
�	

� = exp�ik · r���	
�k� ,

�A7�

where the eigenfunctions ��	
�k� that satisfy Eq. �A6� are, for

light ��=L� and heavy ��=H� bands,

�H+

= �
�EH − F��2EH + F − 3G� − 2��G − EH� − 3�H�2

2H*�EH − F + �� − 2�3HI*

I*�2EH + F − 3G + 2�� − �3H*2

0

i�2�− H*�EH − F� + �3HI*�

i�2�I*�2EH + F − 3G� − �3H*2�

� ,

�A8a�

�H−

= �
0

I�2EH + F − 3G + 2�� − �3H2

− 2H�EH − F + �� + 2�3H*I

�EH − F��2EH + F − 3G� − 2��G − EH� − 3�H�2

i�2�I�2EH + F − 3G� − �3H2�

− i�2�− H�EH − F� + �3H*I�

� ,

�A8b�

�L+
= �

− 2H�EL − F + �� + 2�3H*I

�EL − F��− 2EL + F + G − 2�� + 4�I�2 + �H�2

0

− I*�2EL + F − 3G + 2�� + �3H*2

i�2��EL − F��G − F� + �H�2 − 2�I�2�

i�2��3H*�EL − F� − 3HI*�

� ,

�A9a�
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�L−
= �

I�2EL + F − 3G + 2�� − �3H2

0

�EL − F��2EL − F − G + 2�� − 4�I�2 − �H�2

− 2H*�EL − F + �� + 2�3HI*

i�2��3H�EL − F� − 3H*I�

− i�2��EL − F��G − F� + �H�2 − 2�I�2�

� .

�A9b�

Normalizing these vectors determines the wave functions
�A1� for light- and heavy-hole valence bands in the three-
band, 6�6, Luttinger-Kohn representation. Any linear com-
bination of column vectors ��+ and ��− for the same band
index � from Eqs. �A8� and �A9� is also an eigenfunction of
the Hamiltonian matrix.

When carrier kinetic energy is small compared to the
spin-orbit splitting, the wave function �A1� can be written in
a reduced basis consisting of the first four Luttinger-Kohn
functions with J=3/2, namely, �3/2

3/2, �1/2
3/2, �−1/2

3/2 , and �−3/2
3/2 . In

this two-band 4�4 approximation, the valence band is para-
bolic and constant energy surfaces in momentum space are
warped spheres. The valence electron �A is negative� energy
spectrum in this approximation is20

EH =
F + G

2
+��F − G

2
�2

+ �H�2 + �I�2

= Ak2 + �B2k4 + C2�kx
2ky

2 + kx
2kz

2 + ky
2kz

2� , �A10a�

EL =
F + G

2
−��F − G

2
�2

+ �H�2 + �I�2

= Ak2 − �B2k4 + C2�kx
2ky

2 + kx
2kz

2 + ky
2kz

2� , �A10b�

ES =
F + G

2
− � = Ak2 − � . �A10c�

Positive hole energies are the negative of Eqs. �A10�. The
wave functions �A8� and �A9� reduce to

�3/2
H+��� =

1
��EH − F��EH − EL��

H

EH − F

0

I*
� ,

�A11�

�3/2
H−��� =

1
��EH − F��EH − EL��

− I

0

− �EH − F�
H*

� ,

�3/2
L+ ��� =

1
��EL − F��EL − EH��

H

EL − F

0

I*
� ,

�A12�

�3/2
L− ��� =

1
��EL − F��EL − EH��

− I

0

− �EL − F�
H*

� ,

Numerical values for constants A, B, C, and D in Eqs. �A10�,
�4�, and �5� are calculated20 from the constants L, M, and N.

Having presented the wave functions and energy spec-
trum for both three-band model and two-band approxima-
tion, we next consider transitions between states caused by
scattering on optical phonons for each case. The optical
branch of the phonon spectrum represents the set of har-
monic oscillators describing the relative motion of the two
individual atoms in a primitive cell. The phonon polarization
may be taken as any set of orthogonal unit vectors.13 The
matrix of the optical deformation operator Hopt in the basis
�A2� is20

Hopt�es� =
2
�3

dopt�ex
s�JyJz� + ey

s�JxJz� + ez
s�JxJy�� , �A13�

where dopt=d0 /a0, the optical deformation potential d0 has
the value1 40.3 �26.6� eV for Ge �Si�, the lattice constant a0

is 0.566 �0.543� nm for Ge �Si�, and es is the phonon
s-branch polarization vector. The �JiJj� are the symmetrized
products of the matrices of angular momentum components35

Ji and Jj in the basis �A2�,

�JiJj� =
1

2
�JiJj + JjJi� . �A14�

The rate of transitions from state �k ,�	
 to state
�k� ,��	�
 with absorption �upper part� or emission �lower
part� of an optical phonon q of branch s is

P�k,�	;k�,��	�� =
2�

�
� �

2��opVc
�� n̄��op

n̄��op
+ 1

�
��	k�,��	��Hopt�es��k,�	
�2��E��k�

− E���k�� ± ��op� , �A15�

which is subject to the condition

k� = k��E��k� ± ��op,��,��� . �A16�

In Eq. �A15� � is the mass density, n̄��op
is the Bose-Einstein

phonon distribution, Hopt is the deformation potential opera-
tor, and Vc is the volume of the crystal. Integrating over
final-state hole wave vector k�, summing over three orthogo-
nal phonon polarization vectors,13 summing over final effec-
tive spin projections, and averaging over initial effective spin
projections �see Eq. �2��, we obtain for the total transition
rate Eq. �1�.
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